

1

alaa abu srhan --email: alaaa@hu.edu.jo

The Hashemite University

Computer Programming (C++)

For Faculty of Engineering

(110400102)

Lecturer: Alaa Abu-Srhan

2

alaa abu srhan --email: alaaa@hu.edu.jo

Course Syllabus

Hashemite University

College of Engineering

(3 Credit Hours/Fac. Compulsory)

Course Name: Computer Programming

Course

Number:

110400102

Prerequisite: 110108099

Textbook: C++ Programming: From Problem Analysis to Program D.S. Malik, 6th

Edition

References C++ How to Program, Paul J. Deitel and Harvey Deitel, Pearson, 4th

edition.

Course

Description:

This course covers main topics of C++ programming including C++

fundamentals, operations, elements, structured methods, variables,

assignment, Input/Output, control structures, functions, arrays, pointer,

strings and classes.

Course

Learning

Outcomes

(CLOs):

CLO1: understand basic programming structures. (a, c)

CLO2: design C++ program to perform predefined task (c, k).

CLO3: analyze written C++ program to predict output (c, k).

CLO4: develop, debug and run C++ programs on Visual Studio

(k)

Important

material

- Lecture notes

- References

- Internet resources

Major Topics Covered and Schedule:

Topic Chapter # Lectures

Introduction to computers and programming languages Chapter 1 2

Basics of C++

 Data types, variables

 Arithmetic expressions, operators, assignment,

increment, decrement

Chapter 2 6

Input/ Output Basics Chapter 3 2

Quiz

Control Structure I (Selection)

 Relational and logical operators

 “if, if … else”

 Switch Structure

Chapter 4 5

Control Structure II (Repetition)

 Loops: “while” Loop, “for” Loop and “do… while”

Loop.

 Nested control structure

Chapter 5 5

Midterm Exam March 11, 2019

Arrays and strings Chapter 7, 8 4

3

alaa abu srhan --email: alaaa@hu.edu.jo

 One dimensional Arrays creation, initialization and

manipulation

 Strings

 Multidimensional Arrays

Homework

User defined functions

 Predefined functions, user defined functions

 Value returning functions, void functions

 Value Parameters

 Reference Variables as Parameters

 Value and Reference Parameters and Memory Allocation

 Reference Parameters and Value-Returning Functions

Scope of an Identifier

 Global Variables, Named Constants, Static and

Automatic Variables

 Function Overloading

 Functions with Default Parameters

 Recursive function

 Arrays as a parameter to function

Chapter 6 8

POINTERS

 Pointer Data Type and Pointer Variables

 Address of Operator (&) and dereferencing Operator (*)

 Pointers with arrays

 Pointers as a parameter to functions

Chapter 12 4

In-lab Assignment

Course Policy

- Course Website (Moodle): http://www.mlms.hu.edu.jo/. Students are asked to check the

website regularly for announcements.

- Students are responsible for the reading assignments from the text and handouts

- Students are responsible for following up the lecture materials

- If you miss class, there won’t be a makeup test, quiz, etc. and you WILL get a zero unless

you have a valid excuse.

- Cheating and plagiarism are completely prohibited.

- If you miss more than 15% of classes you will automatically fail the class.

- Grading policy:

 Midterm exam: 35%

 Quiz, homework and in-lab Assignment: 25%

 Final exam: 40%

- Midterm Exam will be held in March 11, 2018

4

alaa abu srhan --email: alaaa@hu.edu.jo

Chapter 1

5

alaa abu srhan --email: alaaa@hu.edu.jo

Introduction to computers and programming

languages

outline:

 The Language of a Computer

 The Evolution of Programming Languages

 Processing a C++ Program

 Programming with the Problem

Analysis–Coding–Execution Cycle

6

alaa abu srhan --email: alaaa@hu.edu.jo

 Editor
Use an editor to create a source program in C++.

 Preprocessor
Preprocessor directives begin with #, used to

include other files.

 Compiler
Check that the program obeys the language rules,

Translate into machine language (object program)

 Linker:
Combines object program with other programs

provided by the SDK to create executable code

 Loader:
Loads executable program into main memory

 Execute
The last step is to execute the program

• Library: contains prewritten

code you can use

7

alaa abu srhan --email: alaaa@hu.edu.jo

Program Development Cycle:
Programming is a process of Problem Solving. Three

main steps in good problem solving technique:

1. Analysis: Understanding the problem in depth,

determine the inputs, outputs, and operations. Pin

points the problems in the current system, suggest

solutions and algorithms to solve the problem.

2. Coding: implement the algorithm in a

programming language, including:

a. Editor: writing your programming

instructions in an editor, instructions

should follow c++ syntax rules. The file

saved in extension ".cpp"

b. Preprocessor: process any statement start

with the preprocessor directive # (ex.

#include<iostream>)

c. Compiler: converting (.cpp)code to a

machine language (.obj) code

d. Linker: combine the object file with

library object files. The extension of the

result file is (.exe)

e. Loader: A program that loads an

executable program into main memory.

f. Execution: read and execute instruction by

the CPU and show the result.

3. Execution: while the program deployed in the

environment, maintain the program to solve any

new issues and modify it to accommodate with

any change.

During this process, errors may appear in different

phases. For Examplesyntax errors may appear in the

compilation phase, let us to return to the editor in

order to fix these errors. Symantec errors (logical

errors) may appear during program execution because

of wrong ordering of sum operations or errors in the

implemented algorithm or there may be some wrong

understanding of sub-problem issues and needed to

reanalyze.

8

alaa abu srhan --email: alaaa@hu.edu.jo

Program development cycle steps:
1. Problem definition.

 To understand the problem is half the solution.

 Describe it by precise, up to the point statements that will make both analyzing and solving the problem

easier and clearer.
2. Problem analysis (understanding).

 Determine the inputs, outputs, and the required operations.

 Explore all possible solutions.

 Pick the easiest, in terms of implementation cost (space, time) one.

3. Algorithm Development

 Algorithm is a procedure that determines the:

 Actions to be executed.

 Order in which these actions are to be executed (which is called program control and in industry it is

called work flow).

 So, it is a plan for solving the given problem.

 You must validate the developed algorithm, i.e. make sure that it solves the correct problem.

 You must verify the developed algorithm, i.e. make sure that it produces correct results.

 You must check the feasibility (in terms of the needed resources, ease of implementation, ease of

understanding and debugging, its expected execution time, etc.) of the developed algorithm.

 Algorithm Representation:

1. Human language

2. Pseudocode.

3. Flowcharts (also called UML activity diagram).

4. Coding

 Writing the source code of your solution that is to convert the developed algorithm into code statements of

the used language, i.e. C++.

 Some useful tips:

 Make sure of using correct syntax.

 Use meaningful identifiers to make your code more readable.

 Add suitable documentation and comments.

 Make your code modular or structured as possible.
5.Execution and Testing

 Compilation and debugging.

 Types of errors:

 Syntax errors (Compile time errors): Errors caught by compiler

 Logical errors (Runtime errors): Errors which have their effect at execution time

 Non-fatal logic errors: program runs, but has incorrect output

 Fatal logic errors: program exits prematurely

 Tracing to verify your program with different sets of inputs.

6. Maintenance

 Not always applicable in education, i.e. highly required in real world jobs.

 Update your code based on:

 Discovered and reported bugs.

 Customer feedback to make your application more efficient and flexible.

 Upgrade the code

9

alaa abu srhan --email: alaaa@hu.edu.jo

Chapter 2 and 3

10

alaa abu srhan --email: alaaa@hu.edu.jo

C++ Basics
Outline:

 Introduction to C++ code.

 Data types.

 Identifiers.

 Casting.

 C++ keywords.

Sample C++ Program

Program Explanation:

 Comments:

 You use comments to document programs

 Comments should appear in a program to:

o Explain the purpose of the program

o Identify who wrote it

o Explain the purpose of particular statements

Note: Comments are not processed by the compiler, feel free

to write anything you want.

 Preprocessor directives:

example:

11

alaa abu srhan --email: alaaa@hu.edu.jo

or

 Special instructions for the preprocessor.Start with # and

usually come at the beginning of the program.

 Tell the preprocessor to perform code substitutions, variables

definitions, or conditional compilation in the source code.

 Use iostream header file to receive data from keyboard and

send output to the screen

 Contains definitions of two data types:

 istream: input stream

 ostream: output stream

 Has two variables:

 cin: stands for common input

 cout: stands for common output

 .h file:

 Header file which is simply a library that includes the

definitions of the used functions within the program, i.e. the

frequently used ones to avoid repeating the code.

 Two types: standard (comes with C++ package) and user

defined.

 int main():

 The main part of your program and it represents the entry

point of it.

 The compiler will compile all instructions inside the main().

 So, place all instruction within the main function, i.e.

between its braces { }.

 main executes when a program is run, other functions

execute only when called

 { }:

 Braces define a block of code.

 { is the start of this block and } is its end.

 a1, a2, sum:

12

alaa abu srhan --email: alaaa@hu.edu.jo

 Names of variables and they are called identifiers.

 int:

 Define the data type of the used variable.

 int means an integer variable.

 cout:

 Function defined in the iostream library.

 An output operator.

 Tells the compiler to display the string or variable value after

the insertion operator << on the screen.

 cout is always followed by <<.

 cin:

 An input function defined in the iostream library.

 Get an input usually from the keyboard.

 Followed by the extraction operator >> then the variable

name in which you want to store the input value.

 Input type depends on the variable type in which you store

the input.

 return 0:

 Tells the compiler that the main function returns 0 to the

operating system in case of successful execution of the

program.

 Semicolon ; :

 Tells the compiler that one instruction line has been

terminated.

 A large set of errors will appear if you forget to put a

semicolon at the end of every code line in your program.

 Any line of code terminated with ; is for the compiler,

preprocessor directives do not end with ;

C++ Versions:

 Visual C++.

 Visual studio

Identifiers (variable):

 memory location whose content may change during execution

13

alaa abu srhan --email: alaaa@hu.edu.jo

 Names of variables, constants, and functions.

 Data must be loaded into main memory before it can be manipulated

 Storing data in memory is a two-step process:

o Instruct computer to allocate memory (define a variable)

o Include statements to put data into memory (set its value)

Variable declaration:
 A variable is said to be initialized the first time a value is placed into it

 In C++, = is called the assignment operator

Example:

 To declare a variable you must specify its name and its data type.

int x ; --> variable name is x and its data type is int

 data type :
1. int : Integer Positive and negative integer values (no decimal point is allowed).

2. floot : Floating point numbers include integers, decimal point (fractions) and exponents

(power of 10).

3. double: Same as float but with greater range.

4. char : Character is one byte of memory used to save any symbol, alphabet or digit number

presented on the keyboard, e.g. :, /, @, d, 5.

5. bool : Boolean value is either true or false.

Example:

 All variables must be declared before they are being used in the program. If you use a

variable not declared the compiler will give you a syntax error.

Example:

14

alaa abu srhan --email: alaaa@hu.edu.jo

 syntax error - make sure to declare variable before the first usage of the

variables(declare it then use it)

 You can place declarations in any place within your program, but it is preferred to place

them at the beginning of your program.

example:

 Multiple variables of the same data type can be defined using one statement having the

variables name comma separated.

Example:

 declare variable twice is syntax error.

Example:

15

alaa abu srhan --email: alaaa@hu.edu.jo

Example:

 syntax error -- C++ is case sensitive, i.e. xx is different from Xx and xX.

You can use anything as an identifier with the following restrictions:

1. Do not use any of C++ keywords, e.g. if, for, int, float, cout, ...

 syntax error

2. Never start your identifier with a digit (number) always start it with alphabet or

underscore.

3. Do not use white spaces in your identifier, use underscores instead.

16

alaa abu srhan --email: alaaa@hu.edu.jo

4. Do not use special symbols in your identifier such as #, $, etc.

 syntax error

5. Do not use any of the operators (arithmetic, logical, etc.) in your identifier such as +, =,

etc

 syntax error

Naming Identifiers

 Identifiers can be self-documenting:

 CENTIMETERS_PER_INCH

 Avoid run-together words :

 annualsale

 Solution:

 Capitalizing the beginning of each new word: annualSale

 Inserting an underscore just before a new word: annual_sale

17

alaa abu srhan --email: alaaa@hu.edu.jo

C++ Keywords

 Words reserved by C++.

 Always lower case, should not be used as identifiers.

cout example:

• Prompt lines: executable statements that inform the user what to do

cout << "Please enter a number between 1 and 10 and " << "press the return key" ;

cout<<endl;

cin >> num;

• Always include prompt lines when input is needed from users

C++ Keywords

Keywords common to the

C and C++ programming

languages

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

C++ only keywords

asm bool catch class const_cast

delete dynamic_cast explicit false friend

inline mutable namespace new operator

private protected public reinterpret_cast

static_cast template this throw true

try typeid typename using virtual

wchar_t

18

alaa abu srhan --email: alaaa@hu.edu.jo

Example1

Example2

 when we found cout<<endl; twice this mean empty line

Example3

 use any variable before assignment(give the variable value) is logical error

19

alaa abu srhan --email: alaaa@hu.edu.jo

Example5

 logical error

Data Types:

1. int :
Example1:

 Positive and negative integer values (no decimal point is allowed).

Example2:

 What will happen if you save a float number in an integer?

result : ignore everything after the decimal point without rounding

Example3

20

alaa abu srhan --email: alaaa@hu.edu.jo

 note: The default of int type depends on the used compiler and the operating system

under which this compiler is work:

 int a; // here ‘a’ is by default signed long integer under VC++ (works under

windows).

 int a; // here ‘a’ is by default signed short integer under Turbo C++ (works

under DOS)

Example4

 you can combine signed and long or short for the same variable, and you can combine

signed and long or short for the same variable.

Example5

 syntax error

 You cannot combine signed and unsigned for the same variable and you cannot combine

long and short for the same variable.

21

alaa abu srhan --email: alaaa@hu.edu.jo

2. float :

 Floating point numbers include integers, decimal point (fractions) and

exponents (power of 10).

 Memory size: 4 bytes.

Example1

Example2

 float Include both positive and negative values.

example3

 Float has decimal point precision up to 6 digits. What happen if you enter more than

6 digits ? (truncation) 6 digit will store and last digit(in the right) must be rounded.

Example 4

22

alaa abu srhan --email: alaaa@hu.edu.jo

Example6

 2.5*100=250

3. double:

 Same as float but with greater range.

 Syntax: double a;

 Its size is 8 bytes.

Example1

Note:

 Maximum number of significant digits (decimal places) for float values: 6 or 7

 Maximum number of significant digits for double: 15

 Precision: maximum number of significant digits

o Float values are called single precision

o Double values are called double precision

23

alaa abu srhan --email: alaaa@hu.edu.jo

4. char :

 Character is one byte of memory used to save any symbol, alphabet or digit number

presented on the keyboard, e.g. :, /, @, d, 5.

 Syntax: char a;

 Each character is enclosed in single quotes

 'A', 'a', '0', '*', '+', '$', '&'

 A blank space is a character written ' ', with a space left between the single quotes

Example1

 only and only one character can be stored in a char variable

Example2

 only and only one character can be stored in a char variable--> if you initialize char

variable with more than one character, then only the last one will be taken and stored in

your variable.

Example3

 if you enter it from the keyboard (using cin) you must enter only one character. If you

enter more than one character for a char variable only the first one will be taken and

stored in your variable.

Example 4

24

alaa abu srhan --email: alaaa@hu.edu.jo

 Syntax error since “a” is not only one character (a+null value)

character coding:

 Character coding is used to store the values of characters in char variable in C++

since computers only knows binary numbers.

 Based on this coding every character has a number value.

 Coding types:

 ASCII (American Standard Code for Information Interchange).

 EBCDIC (Extended Binary Coded Decimal Information Code).

 Unicode : used mainly for Internet applications.

 ASCII is the most dominant.

ASCII Table

Example5

25

alaa abu srhan --email: alaaa@hu.edu.jo

 y has char data type so it will store character, 97 is the value of ‘a’ in ASCI.

Example 6

5. bool :

 Boolean value is either true or false.

 Size = 1 byte.

 Syntax: bool a;

Example1

 When you print a bool value on the screen, i.e. using cout statement, it will be either 1

when true or 0 when false.

Example2

26

alaa abu srhan --email: alaaa@hu.edu.jo

 When you print a bool value on the screen, i.e. using cout statement, it will be either 1

when true or 0 when false.

Example3

 syntax error --> False is not keyword , also True is not keyword (False and True are

variables)

Example4

 syntax error--> note that b is not character (character between ') b is undefined variable .

Example5

 "false" is string, not false keyword.

Data Types Range

27

alaa abu srhan --email: alaaa@hu.edu.jo

Allocating Memory with Constants and Variables
• Named constant: memory location whose content can’t change during execution

• Syntax to declare a named constant:

const dataType identifier = value;

• In C++, const is a reserved word

Example:

 casting:

 Casting is converting the data type of the value of a specified variable to another data type

temporarily.

 Two types of casting:

o Implicit casting: done by the compiler implicitly.

o Explicit casting: need to be coded explicitly by the programmer (to force

casting).

Implicit casting:

Name
Bytes

(Compiler dependent)
Description Range (depends on number of bytes)

char
1 Character or 8 bit integer. signed: -128 to 127

unsigned: 0 to 255

bool 1 Boolean type. It takes only two values. true or false

short
2 16 bit integer. signed: -32768 to 32767

unsigned: 0 to 65535

long 4 32 bit integer. signed:-2147483648 to 2147483647

int 2/4

Integer. Length depends on the size of a

‘word’ used by the Operating system. In

MSDOS a word is 2 bytes and so an

integer is also 2 bytes.

Depends on whether 2/4 bytes.

float 4 Floating point number. --

double 8 double precision floating point number. --

28

alaa abu srhan --email: alaaa@hu.edu.jo

 Implicit casting is done when needed by the compiler not when needed by you.

Explicit casting:

 Explicit casting types:

1) C-style explicit casting.

 Just put the data type name that you want to convert to it before the variable name

(or value) that you want to convert and place the parenthesis correctly.

example:

 Note that You cast the type of the value of the variable only. So, you do not change the

original data type of the variable through casting.

 data type of a will stay the same (float data type).

Example:

 implicitly the compiler will convert 7.666 into 7.

 b has float data type which contain value of x after casting it to float, and 7 will be

stored in b

Example:

29

alaa abu srhan --email: alaaa@hu.edu.jo

2) C++ casting operators.

 There are 4 casting operators in C++, we will take only one of them.

Syntax: static_cast <new_type> (expression)

 Where:

 new_type: is the type you want to convert to.

 expression: is the variable name or the expression that you want to cast its

value.

Example1

Example2

Example3

30

alaa abu srhan --email: alaaa@hu.edu.jo

31

alaa abu srhan --email: alaaa@hu.edu.jo

Example: Write a program to perform athematic operations (*,+,-,/) for two numbers

Example: Write a program to compute the area of the rectangle.

32

alaa abu srhan --email: alaaa@hu.edu.jo

String Type

 Sequence of zero or more characters enclosed in double quotation marks

 Length of a string is number of characters in it

o Example: length of "William Jacob" is 13

o Position of character ‘W’ is 0

o Position of character ‘J’ is 8

 To use the string type, you need to access its definition from the header file string,

Include the following preprocessor directive:

o #include <string>

Example1

• The function getline reads until end of the current line

• cin skips any leading whitespace characters, reading stops at a whitespace character

Example

Arithmetic Operators

33

alaa abu srhan --email: alaaa@hu.edu.jo

 Addition +

 Subtraction -

 Division /

 Multiplication *

 Modulus %

 Arithmetic expressions: contain values and arithmetic operators

 Operands: the number of values on which the operators will work

 Operators can be unary (one operand) or binary (two operands)

Example

 the result of any arithmetic operation is either store on variable and we call the variable

holder, or use directly without store it so we call it temporary result .

 Arithmetic operators are binary operators (take two operands).

 Division Operator General Rules:

we have two case:

1. without store the result (temporary result).

 if one of the operands or both has float/ double data type, then the result will be

floating point

 if the two operands has int data type, then the result will be integer.

2. using holder .

 if one of the operands or both has float/ double data type and the holder data type is

int , then the result will be integer.

 if one of the operands or both has float/ double data type and the holder data type is

float/double, then the result will be floating point .

 if the two operands has int data type, then the result will be integer.

examples:

34

alaa abu srhan --email: alaaa@hu.edu.jo

Example

35

alaa abu srhan --email: alaaa@hu.edu.jo

 % (modulus which finds the remainder)

Example

 syntax error -->modulus is applied for integer values only.

 arithmetic operators precedence:

 *, %, and / have the same priority which are higher than + and – (+ and – have the same

priority).

 If multiple operators are combined which have the same priority you start implementation

from left to right.

 Remember that parenthesis forces priority.

 For nested parenthesis you start with the most inner parenthesis pair.

 For multiple parenthesis start implementation from left to right.

Example1:

x = d*a + c%b - b + d/e;

x=35*9+89%30-30+35/3

x=315+89%30-30+35/3

x=315+29-30+35/3

x=315+29-30+11.6667

x=325.6667

but x is int so output is 325

36

alaa abu srhan --email: alaaa@hu.edu.jo

Example2

y = d*a + c%b - b + d/e;

y=35*9+89%30-30+35/3

y=315+89%30-30+35/3

y=315+29-30+35/3

y=315+29-30+11.6667

y=325.6667

but y is float so output is

325.667
Example3

d*a + c%b - b + d/e

35*9+89%30-30+35/3

315+89%30-30+35/3

315+29-30+35/3

315+29-30+11.6667

325.6667

since d is int and e is float so

output will be float

Example4

x = d*a + c%b - (b + d/e);

x=35*9+89%30-(30+35/3);

x=35*9+89%30-(30+11.6667)

x=35*9+89%30-41.6667

x=315+89%30-41.6667

x=315+29-41.6667

x=344-41.6667

x=302.333

but x is int so output is 302

Example5

y = d*a + c%b - (b + d/e);

y=35*9+89%30-(30+35/3);

y=35*9+89%30-(30+11.6667)

y=35*9+89%30-41.6667

y=315+89%30-41.6667

y=315+29-41.6667

y=344-41.6667

y=302.333

but y is float so output is 302.333

Example6

37

alaa abu srhan --email: alaaa@hu.edu.jo

• Use % only with integral data types

Assignment

 = assigns the value on the right hand side to what present on the left hand side.

Example1

 Assignment expression abbreviations

 a= a +2 ; can be abbreviated as a+=2 ; using the addition assignment operator

 Examples of other assignment operators include:

d -= 4 (d = d - 4)

n += 4 (n = n + 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

Example2

38

alaa abu srhan --email: alaaa@hu.edu.jo

d=a+=b*c;

d=a+=7*11

d=a+=77

d=a=3+77

a=80

d=80

 Multiple assignments at the same time are allowed where implementation starts from

right to left

Example 3

xx=x+=y/z;

xx=x+=9/2

xx=x+=4.5

xx=(x=x+4.5)

xx=(x=9.5)--> xx is int

xx=9

x=9

xx=x+4.5

xx=9+4.5=13.5 -->xx is int

so

xx=13

Example4

 you cannot use arithmetic operators between multiple assignments.

39

alaa abu srhan --email: alaaa@hu.edu.jo

Increment & Decrement Operators

 Increment operator (++) - can be used instead of c += 1 (unary operator)

 Decrement operator (--) - can be used instead of c -= 1 (unary operator)

 Pre-increment/decrement

 When the operator is used before the variable (++c or --c)

 Variable is changed, then the expression it is in is evaluated.

 Post-increment/decrement

 When the operator is used after the variable (c++ or c--)

 Expression the variable is in executes, then the variable is changed.

Example1

Example2

Example3

40

alaa abu srhan --email: alaaa@hu.edu.jo

 When Variable is not in an expression --> Preincrementing and postincrementing have

the same effect.

Example4

Example5

 note that ++ and -- cannot be applied to expressions

Increment and Decrement Operators precedence:

 Post-increment and post-decrement has higher priority than pre-decrement and pre-

increment.

 Post-increment and post-decrement associates from left to right.

 Pre-increment and pre-decrement associates from right to left.

Example6

41

alaa abu srhan --email: alaaa@hu.edu.jo

Example7

more Example:

1)

2)

42

alaa abu srhan --email: alaaa@hu.edu.jo

3)

4)

43

alaa abu srhan --email: alaaa@hu.edu.jo

Operators Precedence table

Precedence
Operato

r
Description Associativity

1 :: Scoping operator None

2

()

[]

++

--

Grouping operator

Array access

Post-increment

Post-decrement

left to right

3

!

~

++

--

-

+

*

&

(type)

sizeof

Logical negation

Bitwise complement

Pre-increment

Pre-decrement

Unary minus

Unary plus

Dereference

Address of

Cast to a given type

Return size in bytes

right to left

4

*

/

%

Multiplication

Division

Modulus

left to right

5
+

-

Addition

Subtraction
left to right

6
<<

>>

Bitwise shift left

Bitwise shift right
left to right

7

<

<=

>

>=

Comparison less-than

Comparison less-than-or-equal-to

Comparison greater-than

Comparison greater-than-or-equal-to

left to right

8
==

!=

Comparison equal-to

Comparison not-equal-to
left to right

9 & Bitwise AND left to right

10 ^ Bitwise exclusive OR left to right

11 | Bitwise inclusive (normal) OR left to right

12 && Logical AND left to right

44

alaa abu srhan --email: alaaa@hu.edu.jo

13 || Logical OR left to right

14 ? : Ternary conditional (if-then-else) right to left

Escape Sequences

 An escape sequence begins with a \ (backslash or called escape character) followed

by an alphanumeric character.

 Note that the two characters of an escape sequence are construed as a single character

and indicates a special output on the screen.

 Also, it is used to allow the usage of some characters within a character constant

which are reserved for C++ (e.g. \, “).

 Note that the escape sequence is considered as one character by the compiler. So,

writing both of the following is correct:

cout << “\n”;

Or

cout <<‘\n’;

Escape Sequence Meaning

\n new line

\t horizontal tab

\a bell sound (alert)

\\ Backslash

\" double quotation

\b Backspace (place the cursor one character space back not

deleting characters).

\r Carriage return (place the cursor at the beginning of the

current line not a new one)

\0 Null character (used in strings)

45

alaa abu srhan --email: alaaa@hu.edu.jo

Example1

Example2

Example3

Example4

46

alaa abu srhan --email: alaaa@hu.edu.jo

cout Function

 Ostream class.

 Tied to the standard output device (monitor or screen).

 Can display:

 A string.

 A variable value.

 A result of an operation (mathematical, logical, function call, etc.).

 Concatenating or cascading or chaining of stream insertion operators: output

many values using one cout and multiple insertion operators.

 The evaluation of the cascaded expressions starts from right to left but the

printing on the screen starts from left to right

Example1

Example2

47

alaa abu srhan --email: alaaa@hu.edu.jo

Example3

cin Function

 Istream class.

 Tied to the standard input device (keyboard).

 When reading a string cin will stop at the first white space encountered in the

string or when you press enter.

Example1

 Cascaded extraction operator can be applied to read more than one variable from

the keyboard using one statement (after entering each variable value press enter).

Example2

48

alaa abu srhan --email: alaaa@hu.edu.jo

Example3

• Entering a char value into an int or double variable causes serious errors, called input

failure

• When reading data into a char variable

• >> skips leading whitespace, finds and stores only the next character

• Reading stops after a single character

• To read data into an int or double variable

• >> skips leading whitespace, reads + or - sign (if any), reads the digits (including

decimal)

• Reading stops on whitespace non-digit character

Example:

49

alaa abu srhan --email: alaaa@hu.edu.jo

Example:

Example:

Using Predefined Functions in a Program

 Header file may contain several functions

 To use a predefined function, you need the name of the appropriate header file

o You also need to know:

 Function name

50

alaa abu srhan --email: alaaa@hu.edu.jo

 Number of parameters required

 Type of each parameter

 What the function is going to do

Example:

 To use pow (power), include cmath

o Two numeric parameters

 Syntax: pow(x,y)

o = xy

o x and y are the arguments or parameters

 To use sqrt include cmath

o Two numeric parameters

 Syntax: sqrt(x,y)

o x and y are the arguments or parameters

Code Lines Breakage:

 You can split a long line of code among multiple lines by pressing enter. However, you

must be careful when selecting the break locations of the line of code:

 After or before an operator.

 After a comma in a comma separated list.

 After the end of a string (do not break at the middle of a string).

51

alaa abu srhan --email: alaaa@hu.edu.jo

Syntax Error Example

• Errors in syntax are found in compilation

int x; //Line 1

int y //Line 2: error

double z; //Line 3

y = w + x; //Line 4: error

52

alaa abu srhan --email: alaaa@hu.edu.jo

Chapter 4

53

alaa abu srhan --email: alaaa@hu.edu.jo

Control Structure

Selection control

Outline :

 Control Structure Introduction.

 if statement.

 if/else statement.

 Nested if/else statements.

Control Structure Introduction.

 Sequential execution: Statements executed one after the other in the order

written

 Transfer of control: When the next statement executed is not the next one in

sequence

 All programs written in terms of 3 control structures:

1. Sequence structure: Built into C++, programs executed sequentially by

default.

2. Selection structures: C++ has three types - if, if/else, and switch

3. Repetition structures: C++ has three types - while, do/while, and for

54

alaa abu srhan --email: alaaa@hu.edu.jo

Equality and Relational Operators

 Relational Operators:

Greater than >

Less than <

Greater than or equal >=

Less than or equal <=

 Equality operators:

Equal to ==

 Not equal to !=

Operator Operation Performed

x>y Is x greater than y?

x<y Is x less than y?

x>=y Is x greater than or equal to y?

x<=y Is x less than or equal to y?

x==y Is x equal to y?

x!=y Is x not equal to y?

Example1

e=a>b

mean is a>b and store result

on e--> 9>30 no so its false

then e = false, and the output

will then 0

 Equality and relational operators are binary operators, used for comparison between two

operands.

 Their result is either “true” --> output will be 1 or “false” --> output will be 0, i.e. boolean

data type.

Example2

f=d==b -->

d== b mean is d equal to b --

>false

f=false --> will print as 0

55

alaa abu srhan --email: alaaa@hu.edu.jo

Relational and equality Operators precedence:

 Relational operators have the same priority which is higher than the equality operators.

 If relational operators are associated, precedence is implemented from left to right.

 If equality operators are associated, precedence is implemented from left to right.

 Again, parenthesis forces priority.

Example3

e = a>=b == d;

note that Relational operators have

the same priority which is higher

than the equality operators

so start with a>=b it's false then 0

we get e=0==d; then e = 0 since d

!=0

 f = a<=b!=a>=d;

start with Relational operators from

left to right then with equality from

left to right

a<=b --> true then 1--> f=1=!a>=d

 a>=d false then 0--> f=1!=0

 1!=0 true then 1 --> f=1

lvalues and rvalues:

 lvalues or l-values(left value): What can appear on the left side of an

equation

 rvalues or r-values(right value): What can appear on the right side of an

equation

 lvalues can be just variable but rvalues Can be Constants, such as numbers,

Variables,Or expressions

 note lvalues can be used as rvalues, but not vice versa

Example4

x+5= 10

left(lvalue) right

(rvalue)

 syntax error --> lvalues can be just variable (expressions cannot be used as l-values)

Example5

56

alaa abu srhan --email: alaaa@hu.edu.jo

 syntax error --> lvalues can be just variable (constant cannot be used as l-values)

 Relational Operators and thestring Type

 Relational operators can be applied to strings

o Strings are compared character by character, starting with the first

character

o Comparison continues until either a mismatch is found or all

characters are found equal

o If two strings of different lengths are compared and the comparison is

equal to the last character of the shorter string

 The shorter string is less than the larger string

Example

57

alaa abu srhan --email: alaaa@hu.edu.jo

58

alaa abu srhan --email: alaaa@hu.edu.jo

 Logical Operators
Logical operators allows the programmer to combine more than one condition with each other to

form more complex conditions.

 && (logical AND)

 It is a binary operator.

 Returns true if both conditions are true.

 || (logical OR)

 It is a binary operator.

 Returns true if either of its conditions is true.

 ! (logical NOT or logical negation)

 Reverses the truth/falsity of its condition (reverse the meaning of a condition).

 Returns true when its condition is false.

 It is a unary operator, only takes one condition.

 Logical operators used as conditions in loops, e.g. for and while, and conditional

statements, e.g. if/else.

Truth tables

 Logical (Boolean) Operators and Logical Expressions

1. Not (!)

59

alaa abu srhan --email: alaaa@hu.edu.jo

2. AND(&&)

3. OR(||)

Example1

Example2

60

alaa abu srhan --email: alaaa@hu.edu.jo

 Note that logical operators are applied to Boolean values only, if other types are given as

operands implicit casting will work to convert them to Boolean.

Logical Operators precedence:

 ! has the highest priority followed by && and then || (i.e. || has the lowest

priority).

 When any of these operators are combined, implementation starts from left to

right.

 Order of Precedence

Example3

Example4

61

alaa abu srhan --email: alaaa@hu.edu.jo

Example5

Example6

Example7

62

alaa abu srhan --email: alaaa@hu.edu.jo

Example8

63

alaa abu srhan --email: alaaa@hu.edu.jo

Exapmle

 Two types of control structures combination:

64

alaa abu srhan --email: alaaa@hu.edu.jo

a. Control structure stacking: use them one after the other.

b. Control structure nesting: use one control structure inside the body of another control

structure.

Selection structure
o used to choose among alternative courses of action

o If the condition is true: print statement executed and program goes on to next statement

o If the condition is false: print statement is ignored and the program goes onto the next

statement

o Indenting makes programs easier to read

 C++ ignores white-space characters

if and if...else statement

 if and if...else statements can be used to create:

– One-way selection

• Statement is executed if the value of the expression is true

• Statement is bypassed if the value is false; program goes to the next

statement

• Expression is called a decision maker

• Only performs an action if the condition is true (single selection structure)

– Two-way selection

65

alaa abu srhan --email: alaaa@hu.edu.jo

• If expression is true, statement1 is executed; otherwise, statement2 is

executed

 statement1 and statement2 are any C++ statements

– Multiple selections(nested if)

• Nesting: one control statement is located within another

• An else is associated with the most recent if that has not been

paired with an else

Example1

 A decision can be made on any expression(zero - false, nonzero - true).

Example2

Example3

66

alaa abu srhan --email: alaaa@hu.edu.jo

Example4

 If no braces after else then the body will be only the first statement after it .

Example5

 Placing lines of codes between else and the body of its if is syntax error.

Example6

67

alaa abu srhan --email: alaaa@hu.edu.jo

 Leaving the parenthesis after the if empty (you have not put an expression for the

condition) is syntax error.

Example7

 What about if x =3 ??

 What about if x=5 ??

Example8

 Nested if/else structures:

 Test for multiple cases by placing if/else selection structures inside if/else selection

structures.

 What about if x =3 ??

 what about if x=5 ??

Example

68

alaa abu srhan --email: alaaa@hu.edu.jo

 Example

Example

Example

69

alaa abu srhan --email: alaaa@hu.edu.jo

Short-circuit evaluation

• Short-circuit evaluation: evaluation of a logical expression

stops as soon as the value of the expression is known

Comparing Floating-Point Numbers for Equality: A

Precaution

• Comparison of floating-point numbers for equality may not behave as

you would expect

– Example:

• 1.0 == 3.0/7.0 + 2.0/7.0 + 2.0/7.0 evaluates to false

• Why? 3.0/7.0 + 2.0/7.0 + 2.0/7.0 =

0.99999999999999989

• Solution: use a tolerance value

– Example: if fabs(x – y) < 0.000001

The output of this program is :
x is greater than y.

 If we assign the values of x & y as
follow: int x = 2; int y = 6;

then the output is:
 y is greater than x.

 If we assign the values of x & y as
follow: int x = 2; int y = 2;

then the output is:
x and y are equal.

70

alaa abu srhan --email: alaaa@hu.edu.jo

Associativity of Relational Operators: A Precaution

Ternary conditional operator (?:)

• Conditional operator (?:)

– Ternary operator: takes 3 arguments

• Syntax for the conditional operator:

 Expression1 ? Expression2 : expression3

• If expression1 is true, the result of the conditional expression is expression2

– Otherwise, the result is expression3

• Example: max = (a >= b) ? a : b;

Example1

71

alaa abu srhan --email: alaaa@hu.edu.jo

 Ternary conditional operator (?:) (the only C++ ternary operator)

o Takes three arguments (condition, value if true, value if false)

Example2

 omitting () is syntax error

 Remember that the precedence of ?: is low, so do not forget the parenthesis that is

used to force its priority

Example3

72

alaa abu srhan --email: alaaa@hu.edu.jo

Example4

 You can't use ? without :

Example5

Conditional Operator Equivalent if else Output

int A = 15, B = 2;

cout << (A > B ? A : B)

 << " is greater \n";

int A = 15, B = 2;

if(A>B)

 cout << A << " is greater \n“; else

 cout<<B<<<< " is greater\n";

15 is greater

int x, y = 15;

x = (y < 10) ? 100 : -40;

cout << "value of x: " << x ;

int x, y = 15;

if (y < 10)

 x=100;

else

 x= -40;

cout << "value of x: " << x;

value of x: -40

int n;

cout << "Enter a number : ";

cin >> n;

(n% 2 == 0) ? cout << n <<

“:Even number\n" : cout << n <<

“:Odd number\n";

int n;

cout << "Enter a number : ";

cin >> n;

if(n% 2 == 0)

 cout<<n<<“ :Even number\n" ;

else

 cout<<n<<“ :Odd number\n";

More Example

Example 1

73

alaa abu srhan --email: alaaa@hu.edu.jo

Example2

• C++ allows you to use any expression that can be evaluated to either true or false as an

expression in the if statement:

if (x = 5)

 cout << "The value is five." << endl;

• The appearance of = in place of == resembles a silent killer

– It is not a syntax error

– It is a logical error

Example3

74

alaa abu srhan --email: alaaa@hu.edu.jo

b=2 a=3

 is a= b++?? (b++ --> post increment)

 3 = 2 ?? false

Now after we get the result b will be

incremented by one

Example4

 Is --a=b ???

 2 = 2 ?? true --> now a= 2

 Then Execute if body

Example5

 A decision can be made on any expression(zero - false, nonzero - true).

 if x= 5 then it mean true --> print ok , if x=2 then it mean false ---> print nothing

Example6

Example7

75

alaa abu srhan --email: alaaa@hu.edu.jo

Example8

Example9: what is the output of the following code ??

Example10

Note that a-c = 97-99=-2

Example11

76

alaa abu srhan --email: alaaa@hu.edu.jo

Example12

 syntax error --> x must be int

Example13

Int(x)%3 --> 3%3 = 0

But

X will stay 3.5

Example14

Example15

77

alaa abu srhan --email: alaaa@hu.edu.jo

Example16

Example17

 if we put ; after () of if this mean that if sentence is end (no body for if), but the

compiler will read the condition of if; x++==0 so x will be 6 not 5. cout<<x ;

will be executed always
Example18

 there is ; after () of if

 syntax error -->if statement

has been ended so else now

without if

Example19

78

alaa abu srhan --email: alaaa@hu.edu.jo

 cou<<x+1 will be executed always, since else statement has been ended (else;

mean that else ended , and it has no body).

Example20

The switch Multiple-Selection Structure

switch:
 Useful when variable or expression is tested for multiple values.

 Consists of a series of case labels and an optional default case.

 Used instead of nested if/else statements to make the code more readable and easier to trace.

 switch (integral) expression is evaluated first

 Value of the expression determines which corresponding action is taken

 Expression is sometimes called the selector

79

alaa abu srhan --email: alaaa@hu.edu.jo

Syntax:

 switch (variable or expression)

{

case value1: //do something;

break;

case value2: //do something;

break;

case value3: //do something;

break;

case value4: //do something;

break;

default: // do something

break;

}

• One or more statements may follow a case label

• Braces are not needed to turn multiple statements into a single compound statement

• When a case value is matched, all statements after it execute until a break is encountered

• The break statement may or may not appear after each statement

• switch, case, break, and default are reserved words

Example1

 In this Examplevariable x is called the controlling expression.
 x will determine which case will be executed

 break determine the end of the case code block

80

alaa abu srhan --email: alaaa@hu.edu.jo

Example2

 If no break statement is included, all case statements will be implemented once a

match has been found.

 Forgetting break statement is logical error.
Example3

Example4

 Forgetting white space between case and the value to test against it. logical

error

81

alaa abu srhan --email: alaaa@hu.edu.jo

Example5

 what about if x ='A' ???

Example6

X=1

X++--> mean case 1 then x will be 2

Case 1 will print value of x which is 12

 what about if switch(++x)???

Example7

 Identical case labels in switch is a syntax error.

Example8

82

alaa abu srhan --email: alaaa@hu.edu.jo

X++ + x++;

 1 + 1 =2 ---> case 2

There is no case 2 so nothing will appear on

screen

Example9

 if no case matches then default statement will be executed

 default statement is optional in switch

Example10

 default and case statements can be placed in any order inside the switch structure

Example11

83

alaa abu srhan --email: alaaa@hu.edu.jo

Example12

Syntax error

Syntax error

#include<iostream>

using namespace std;

int main()

{

int grade=0;

cin>>grade;

switch (grade+10)

{

default: cout<<"no
matching found";

case 50: cout<<"50";

 break;

case 40: cout<<"40";

 break;

case 60: cout<<"60";

case 70: cout<<"70";

case 80: cout<<"80";

}

return 0;

}

Remember that writing the switch or the break like
this Switch, Break will give a syntax error

If you enter 40 , the program will display 50
If you enter 30 , the program will display 40
If you enter 50 , the program will display 607080
If you enter 60 , the program will display 7080

If you enter 10 , the program will display no
matching found50

Placing case 80: cout<<”hi”; is
syntax error (never place similar
cases in one program)

84

alaa abu srhan --email: alaaa@hu.edu.jo

 For case statements only constants integer values are allowed (either integer or single

characters). No expressions, float/double values, and variables are allowed.

Example13

Syntax error

Syntax error

Syntax error

Syntax error

Syntax error

85

alaa abu srhan --email: alaaa@hu.edu.jo

x and y have int data type --> no error

 switch is used for testing constant integral expressions only, i.e. float, arrays, strings are

not allowed. Only integer values or single character values. These values can be the result

of an expression, variable, or a constant value.

Example14

 putting ; after switch is syntax error

Example15

Example16

86

alaa abu srhan --email: alaaa@hu.edu.jo

Example17

Example18

Example19

87

alaa abu srhan --email: alaaa@hu.edu.jo

What will be happened if we didn't put braces between body of switch ??

Example 20

Syntax error

 case 97 == case 'a' , case 98 ==case 'b' and so on

Example21

88

alaa abu srhan --email: alaaa@hu.edu.jo

syntax error

 Syntax error

 case true == case 1 , case false = case 0

Example22

 note that there are no braces for switch statement

Example23

• case 97 has two statements , and switch doesn't match this case. so it will print

nothing.

89

alaa abu srhan --email: alaaa@hu.edu.jo

Example24

• There is no case 1 so it will print nothing

More Example

Example

Example

90

alaa abu srhan --email: alaaa@hu.edu.jo

Example

91

alaa abu srhan --email: alaaa@hu.edu.jo

Chapter 5

92

alaa abu srhan --email: alaaa@hu.edu.jo

Control Structure

(Repetition)

 In this chapter, you will study:

 Why Is Repetition Needed?

 while Repetition Structure.

 for Repetition Structure.

 do/while Repetition Structure.

 continue and break Statements.

 Nested Control Structures

 Debugging loops
__

 Why Is Repetition Needed?

• Repetition allows efficient use of variables

• Can input, add, and average multiple numbers using a limited

number of variables

• For example, to add five numbers:

– Declare a variable for each number, input the numbers

and add the variables together

– Create a loop that reads a number into a variable and

adds it to a variable that contains the sum of the

numbers

 Repetition (or looping) control structures:

1. while.

2. for.

3. do/while.

 Two types of repetition or looping exist:

1. Sentinel-Controlled Repetition.

93

alaa abu srhan --email: alaaa@hu.edu.jo

 In this type you do not know the number of times the

body of the loop must be repeated, i.e. do not know

the number of loop iterations.

 Mainly you use while, and do/while control structures

for this type of looping.

2. Counter-Controlled Repetition.

 In this type you know the number of times the body

of the loop must be repeated, i.e. the number of loop

iterations is defined in advance.

 Mainly you use for control structures for this type of

looping.

 while Repetition Structure:

• Programmer specifies an action to be repeated while some

condition remains true.

• Also called looping or simply loop.

syntax :

• statement can be simple or compound

• expression acts as a decision maker and is usually a logical

expression

• statement is called the body of the loop

• The parentheses are part of the syntax

Example1

94

alaa abu srhan --email: alaaa@hu.edu.jo

 while loop repeated until condition becomes false where the

next line of code after while loop will be executed

 counter in the Exampleis called the loop control variable

(LCV)

Example2

 The body of the while loop is the code block contained within

the braces after the while, otherwise it is the first statement

after the while only.

Example3

95

alaa abu srhan --email: alaaa@hu.edu.jo

 The body of the while loop is the first statement after the while only.

 The condition of the while is always true, i.e. the body of the while

loop does not modify the condition value.

 the execution will not finish (the condition is always true) --->Infinite

loop

 Infinite loop is Logical error in the while structure.

 Infinite loop: continues to execute endlessly

 Avoided by including statements in loop body that assure the

exit condition is eventually false

Example4

 Leaving the parenthesis after the while empty (i.e. you do not

specify any condition) is syntax error

Example5

96

alaa abu srhan --email: alaaa@hu.edu.jo

Example6

Example7

Example8

Example9

97

alaa abu srhan --email: alaaa@hu.edu.jo

Example10

Example11

!x||!y

!5||!2

0||0 --> 0 false stop while

X=4

Y=1

Will print z++ --> 1

Z=2

 putting ; after while mean no body for while

Example12

98

alaa abu srhan --email: alaaa@hu.edu.jo

x

1 1<3 true do nothing

2 2<3 true do nothing

3 3<3 false stop loop

4

Example13

Example14

• Infinite loop-->logical error

99

alaa abu srhan --email: alaaa@hu.edu.jo

 While has three cases:

 Case 1 :Counter-Controlled while Loops

o When you know exactly how many times the

statements need to be executed

o Use a counter-controlled while loop

Example(test your self)

• 10 Students at a local middle school volunteered to sell fresh baked

cookies to raise funds to increase the number of computers for the

computer lab. Each student reported the number of boxes he/she sold.

We will write a program that will do the following:

– Ask each student about the total number of boxes of cookies

he/she sold

– Output the total number of boxes of cookies sold

– Output the total revenue generated by selling the cookies

– Output the average number of boxes sold by each student

• Assume the cost of each box of cookies = 5$.

100

alaa abu srhan --email: alaaa@hu.edu.jo

 Case 2: Sentinel-Controlled while Loops

o Sentinel variable is tested in the condition

o Loop ends when sentinel is encountered

 Case 3: Flag-Controlled while Loops

o Flag-controlled while loop: uses a bool variable to control the

o loop

Example(Number Guessing Game)

• implementing a number guessing game using a flag-controlled while

loop

• Uses the function rand of the header file cstdlib to generate a random

number

– rand() returns an int value between 0 and 32767

– To convert to an integer >= 0 and < 100:

• rand() % 100

101

alaa abu srhan --email: alaaa@hu.edu.jo

Example

 Consider the following sequence of numbers:

o 1, 1, 2, 3, 5, 8, 13, 21, 34,

 Called the Fibonacci sequence

 Given the first two numbers of the sequence (say, a1

and a2)

o nth number an, n >= 3, of this sequence is given

by: an = an-1 + an-2 Fibonacci sequence

102

alaa abu srhan --email: alaaa@hu.edu.jo

 nth Fibonacci number

o a2 = 1

o a1 = 1

o Determine the nth number an, n >= 3

 Suppose a2 = 6 and a1 = 3

o a3 = a2 + a1 = 6 + 3 = 9

o a4 = a3 + a2 = 9 + 6 = 15

 Write a program that determines the nth Fibonacci

number, given the first two numbers

• Algorithm:

– Get the first two Fibonacci numbers

– Get the desired Fibonacci number

• Get the position, n, of the number in the

sequence

– Calculate the next Fibonacci number

• Add the previous two elements of the

sequence

– Repeat Step 3 until the nth Fibonacci number is

found

– Output the nth Fibonacci number

103

alaa abu srhan --email: alaaa@hu.edu.jo

 do while repetition structure
The do/while repetition structure is similar to the while structure except

that Condition for repetition tested after the body of the loop is executed.

Syntax:

• The statement executes first, and then the expression is

evaluated

– As long as expression is true, loop continues

• To avoid an infinite loop, body must contain a statement that

makes the expression false

• Loop always iterates at least once

Example1

 All actions are performed at least once.

104

alaa abu srhan --email: alaaa@hu.edu.jo

Example2

Example3

Example4

Example5

105

alaa abu srhan --email: alaaa@hu.edu.jo

Example6

 Always be careful with the pre or post
condition when applied to the while or
do/while repetition

int num=3;

while(++num<7)

cout<<"loop"<<endl; //
loop will be printed
3 times on the
screen

int num=3;

while(num++<7)

cout<<"loop"<<endl;
// loop will be
printed 4 times on
the screen

int count=-3;

do {

cout<<"loop“<<endl;

}while(count++);//
loop will be
printed 4 times on
the screen

int count=-3;

do {

cout<<"loop“<<endl
;

}while(++count);//
loop will be
printed 3 times on
the screen

106

alaa abu srhan --email: alaaa@hu.edu.jo

 for repetition structure
 Handles all the details of counter-controlled repetition in a

concise way.

syntax :

Example1

Example2

 for loop has three part separated by semicolon.

107

alaa abu srhan --email: alaaa@hu.edu.jo

Example3

Syntax error

 The three parts of the for loop are optional , don't omit ; inside

for if you omit any part.

 we have to declare variable i outside for in this case , otherwise

its syntax error.

Example4

 The three parts of the for loop are

optional, if the condition is omitted

this will create an infinite loop since

the compiler assumes that the for

condition is true.

Infinite loop -->logical error

Example5

infinite loop-->logical error

 if you omit increment or decrement from for sentence don't

forget to put it inside the for body, otherwise it will give you

infinite loop.

Example6

108

alaa abu srhan --email: alaaa@hu.edu.jo

 omitting any part of the three parts of for doesn't mean to omit

any ; . omitting ; give us syntax error.

Example7

 be careful where you put increment or decrement of for .

Example8

 The body of the for loop is the code block contained within the

braces after the while, otherwise it is the first statement after the

for only.

 the second cout sentence will execute once since it is outside

for body .

 variable i can used inside and outside for body.

109

alaa abu srhan --email: alaaa@hu.edu.jo

Example9

Example10

 I

output

-21

 is -21<3 ?? --> true

hi

-20

-20*-2=40

 is 40<3 ??--> false stop

Example11

Example12

110

alaa abu srhan --email: alaaa@hu.edu.jo

Example13

Example14

 The two for loops above will print loop 4 times. There is no difference if

the increment/decrement is pre or post inside the third part of the for

loop statement.

Example15

Example16

111

alaa abu srhan --email: alaaa@hu.edu.jo

Example17

 infinite loop --> logical error

Example18

Example19

 syntax error

Example19

 putting ; after for mean no body for for

112

alaa abu srhan --email: alaaa@hu.edu.jo

Example20

 syntax error, if we declare variable outside and inside for sentence

Example21

Example22

how many time cout<<e<<endl; will execute??

answer : 6

Example23

what this code do ??

113

alaa abu srhan --email: alaaa@hu.edu.jo

0

answer: print even numbers between 1 and 99 on screen .

Example24

Note that even if variable i is float but it is used as integer counter in the for loop,

however it’s value is printed as float inside the body.

 Choosing the Right Looping Structure

 All three loops have their place in C++

o If you know or can determine in advance the

number of repetitions needed, the for loop is the

correct choice

o If you do not know and cannot determine in

advance the number of repetitions needed, and it

could be zero, use a while loop

o If you do not know and cannot determine in

advance the number of repetitions needed, and it

is at least one, use a do...while loop

 break and continue Statements

break:
 Causes immediate exit from a while, for, do/while or switch structure

114

alaa abu srhan --email: alaaa@hu.edu.jo

 Program execution continues with the first statement after the

structure

 Common uses of the break statement:

 Escape early from a loop

 Skip the remainder of a switch structure

 break statement is used for two purposes:

 To exit early from a loop

 Can eliminate the use of certain (flag) variables

 To skip the remainder of a switch structure

 After break executes, the program continues with the first statement

after the structure

Example1

 break mean exit loop and continue with the first statement after loop(loop: for, while, do

while)

Example2

Example3

115

alaa abu srhan --email: alaaa@hu.edu.jo

Example4

 Using break outside a loop or switch (e.g. inside if/else) statement is a syntax error.

Example5

continue:

 Skips the remaining statements in the body of a while, for or do/while structure and

proceeds with the next iteration of the loop. Also, can be used with switch.

 In while and do/while, the loop-continuation test is evaluated immediately after the

continue statement is executed.

 In the for structure, the increment/decrement expression is executed, then the loop-

continuation test is evaluated.

Example1

116

alaa abu srhan --email: alaaa@hu.edu.jo

Example2

 In the for structure, the increment/decrement expression is executed, then the loop-

continuation test is evaluated

Example3

 infinate loop --> logical error

 In while and do/while, the loop-continuation test is evaluated immediately after the continue

statement is executed

Example3

117

alaa abu srhan --email: alaaa@hu.edu.jo

Example4

 infinite loop-->logical error

Example 5

what this C++ code do?

 answer : sum of odd numbers between 3 and 11 [3,11]

118

alaa abu srhan --email: alaaa@hu.edu.jo

Example6

 Using continue outside a loop or switch (e.g. inside if/else) statement is a syntax

error.

Example:

Write the pseudocode to create the following multiplication table:

Example:

• To create the following pattern:

 *

 **

• We can use the following code:

 for (i = 1; i <= 5 ; i++)

 {

 for (j = 1; j <= i; j++)

 cout << "*";

 cout << endl;

 }

119

alaa abu srhan --email: alaaa@hu.edu.jo

1

alaa abu srhan --email: alaaa@hu.edu.jo

The Hashemite University

Computer Programming (C++)

Part 2

For Faculty of Engineering

(110400102)

Lecturer: Alaa Abu-Srhan

2

alaa abu srhan --email: alaaa@hu.edu.jo

Course Syllabus

 Hashemite University

College of Engineering

(3 Credit Hours/Fac. Compulsory)

Course Name: Computer Programming

Course

Number:

110400102

Prerequisite: 110108099

Textbook: C++ Programming: From Problem Analysis to Program D.S. Malik, 6th

Edition

References C++ How to Program, Paul J. Deitel and Harvey Deitel, Pearson, 4th

edition.

Course

Description:

This course covers main topics of C++ programming including C++

fundamentals, operations, elements, structured methods, variables,

assignment, Input/Output, control structures, functions, arrays, pointer,

strings and classes.

Course

Learning

Outcomes

(CLOs):

CLO1: understand basic programming structures. (a, c)

CLO2: design C++ program to perform predefined task (c, k).

CLO3: analyze written C++ program to predict output (c, k).

CLO4: develop, debug and run C++ programs on Visual Studio

(k)

Important

material

- Lecture notes

- References

- Internet resources

Major Topics Covered and Schedule:

Topic Chapter # Lectures

Introduction to computers and programming languages Chapter 1 2

3

alaa abu srhan --email: alaaa@hu.edu.jo

Basics of C++

 Data types, variables

 Arithmetic expressions, operators, assignment,

increment, decrement

Chapter 2 6

Input/ Output Basics Chapter 3 2

Quiz

Control Structure I (Selection)

 Relational and logical operators

 “if, if … else”

 Switch Structure

Chapter 4 5

Control Structure II (Repetition)

 Loops: “while” Loop, “for” Loop and “do… while”

Loop.

 Nested control structure

Chapter 5 5

Midterm Exam March 11, 2019

Arrays and strings

 One dimensional Arrays creation, initialization and

manipulation

 Strings

 Multidimensional Arrays

Chapter 7, 8 4

Homework

User defined functions

 Predefined functions, user defined functions

 Value returning functions, void functions

 Value Parameters

 Reference Variables as Parameters

 Value and Reference Parameters and Memory Allocation

Chapter 6 8

4

alaa abu srhan --email: alaaa@hu.edu.jo

 Reference Parameters and Value-Returning Functions

Scope of an Identifier

 Global Variables, Named Constants, Static and

Automatic Variables

 Function Overloading

 Functions with Default Parameters

 Recursive function

 Arrays as a parameter to function

POINTERS

 Pointer Data Type and Pointer Variables

 Address of Operator (&) and dereferencing Operator (*)

 Pointers with arrays

 Pointers as a parameter to functions

Chapter 12 4

In-lab Assignment

Course Policy

- Course Website (Moodle): http://www.mlms.hu.edu.jo/. Students are asked to check the

website regularly for announcements.

- Students are responsible for the reading assignments from the text and handouts

- Students are responsible for following up the lecture materials

- If you miss class, there won’t be a makeup test, quiz, etc. and you WILL get a zero unless

you have a valid excuse.

- Cheating and plagiarism are completely prohibited.

- If you miss more than 15% of classes you will automatically fail the class.

- Grading policy:

 Midterm exam: 35%

 Quiz, homework and in-lab Assignment: 25%

5

alaa abu srhan --email: alaaa@hu.edu.jo

 Final exam: 40%

- Midterm Exam will be held in March 11, 2018

6

alaa abu srhan --email: alaaa@hu.edu.jo

Chapter 8

Array

7

alaa abu srhan --email: alaaa@hu.edu.jo

Outline:
– Arrays

– Searching an Array for a Specific Item

– C-Strings (Character Arrays)

– Parallel Arrays

– Two- and Multidimensional Arrays

 Simple data type: variables of these types can store only one value at a time

 Structured data type: a data type in which each data item is a collection of

other data items

 An array is a series of elements of the same type placed in contiguous memory
locations that can be individually referenced by adding an index to a unique
identifier.

 That means that, for example, five values of type int can be declared as an array
without having to declare 5 different variables (each with its own identifier). Instead,
using an array.

 Format:

• intExp: any constant expression that evaluates to a positive integer

Example1:

 we have array a that has 10 element

o First element at position 0
o last element at position n-1. where n is number of elements
o a[0] :first element , a[1] : is 2nd element ... a[9] : last element.

Example 2
 int num[5];

• declares an array num of five components. Each component

is of type int. The components are num[0], num[1], num[2],

num[3], and num[4].

• Basic operations on a one-dimensional array:

• Initializing

• Inputting data

• Outputting data stored in an array

8

alaa abu srhan --email: alaaa@hu.edu.jo

• Finding the largest and/or smallest element

 Declaring arrays - specify: Name, Type of array, Number of elements
Example 1

 Declaring multiple arrays of same type

Example 2

 Value of the index is the position of the item in the array

 []: array subscripting operator

 Array index always starts at 0

Example3:

9

alaa abu srhan --email: alaaa@hu.edu.jo

 initialize an array (b) Using an initializers list.

 Arrays can be initialized during declaration

 Values are placed between curly braces

 Size determined by the number of initial values in the braces

Example 4

 If too many initializers, a syntax error is generated

Example 5

 If not enough initializers, rightmost elements become 0.

 Cout<<b[4];  array element that have index = 4.

Example 6

 We can initialize an array Using a loop.

Example 7

10

alaa abu srhan --email: alaaa@hu.edu.jo

 to output all array elements use loop (for or while)

Example 8

 Sets all the elements to 0 since the first element is initialized to 0 and the rest are

implicitly initialized to 0.

Example 9

`

 the first element is initialized to 1 and the rest are implicitly initialized to 0.

Example 10

 If size omitted, the initializers determine it

 4 initializers, therefore b is a 4 elements array

11

alaa abu srhan --email: alaaa@hu.edu.jo

Example 11

 syntax error
Example 12

 ith element in an array has the index (or subscript) of i – 1.

 The subscript must be an integer value, where it could be: Constant, Variable,
Expression, and A result of a function call.

Example 13

More Examples
Example 1

• Write the required code to do the following:

1. Define an array sales of 10 components of type double.

Subscript is always int variable or value

double sales[10];

12

alaa abu srhan --email: alaaa@hu.edu.jo

2. initializes every component of the array sales to 0.0

3. Reading data from user into an array:

4. Printing an array

5. Finding the sum and average of an array

6. Largest element in the array:

for (int index = 0; index <

10; index++)
 sales[index] = 0.0;

for (index = 0; index < 10;

index++)
 cin >> sales[index];

for (index = 0; index < 10;

index++)
 cout << sales[index] << " ";

double sum = 0;
for (index = 0; index < 10;

index++)

sum = sum + sales[index];

double average = sum / 10;

13

alaa abu srhan --email: alaaa@hu.edu.jo

 Aggregate operation: any operation that manipulates the entire array as a single unit is
Not allowed on arrays in C++

double maxIndex = 0;
for (index = 1; index < 10;

index++)
if (sales[maxIndex] <

sales[index])
maxIndex = index;

largestSale = sales[maxIndex];

14

alaa abu srhan --email: alaaa@hu.edu.jo

Example 2

Example 3

 const : also called named constants or read-only variables, mean that x has fixed value

Example 14

 constant variable cannot be modified throughout the program after it is being declared.

 modified it is syntax error.

Example 15

 Arrays sizes are usually declared with type const since they are static (fixed).

Example 16

15

alaa abu srhan --email: alaaa@hu.edu.jo

 If you want to declare the size of an array using a variable this variable must be declared

const, otherwise you will get a syntax error.

Example 17

 Going outside the range of an array is a logical error in C++.

 Index of an array is in bounds if the index is >=0 and <= ARRAY_SIZE-1 Otherwise, the

index is out of bounds

 In C++, there is no guard against indices that are out of bounds

Example 18

 syntax error (index is always positive integer number)

Base Address of an Array and Array in Computer Memory
• Base address of an array: address (memory location) of the first array component

• Example:

– If list is a one-dimensional array, its base address is the address of list[0]

16

alaa abu srhan --email: alaaa@hu.edu.jo

• What is the output of the

following statements?
int myList[4]={1,5,3,2};

cout << myList[0];

cout<< myList;

output:

1

1000

Size of Array
example 1

 For arrays, sizeof returns

(the size of 1 element) * (number of elements)

example 2

 number of element =3*4 =12, size of one element =4, so result will be 4*12=48

17

alaa abu srhan --email: alaaa@hu.edu.jo

example3

note that : number of element = 3

example 4

 To get the size of an array (number of elements) using sizeof operator do the following:

number of element = sizeof(myArray)/ sizeof(int);

Searching an Array for a Specific Item

• Sequential search (or linear search):

– Searching a list for a given item, starting from the first

array element

– Compare each element in the array with value being

searched for

– Continue the search until item is found or no more

data is left in the list

18

alaa abu srhan --email: alaaa@hu.edu.jo

Selection Sort
• Selection sort: rearrange the list by selecting an element and moving

it to its proper position

• Steps:

– Find the smallest element in the unsorted portion of the list

– Move it to the top of the unsorted portion by swapping with

the element currently there

– Start again with the rest of the list

19

alaa abu srhan --email: alaaa@hu.edu.jo

20

alaa abu srhan --email: alaaa@hu.edu.jo

C-Strings (Character Arrays)
 Character array: an array whose components are of type char

 Strings is the same as array of characters.

 C-strings are null-terminated ('\0‘) character arrays

 Example:

 'A' is the character A

 "A" is the C-string A

 "A" represents two characters, 'A' and '\0‘

Example:

 char name[16];
• Since C-strings are null terminated and name has 16 components, the largest string it

can store has 15 characters

• If you store a string whose length is less than the array size, the last components are

unused

Example:

• Size of an array can be omitted if the array is initialized during declaration

• Declares an array of length 5 and stores the C-string "John" in it.

Useful string manipulation functions
• strcpy, strcmp, and strlen

21

alaa abu srhan --email: alaaa@hu.edu.jo

Example

String Input
Example:

 cin >> name;

– Stores the next input C-string into name

• To read strings with blanks, use get function:

 cin.get(str, m+1);

– Stores the next m characters into str but the newline character is not stored in

str

– If input string has fewer than m characters, reading stops at the newline

character

String Output
Example:

 cout << name;

– Outputs the content of name on the screen

– << continues to write the contents of name until it finds the null character

22

alaa abu srhan --email: alaaa@hu.edu.jo

– If name does not contain the null character, then strange output may occur

• << continues to output data from memory adjacent to name until a '\0'

is found

String VS character array

String Character array
string n1="ahmad";
string n2="ali";
string n3;
n3=n2;

char n1[10]={'a','h','m','a','d'};
char n2[10]="ali";
char n3[10];
strcpy(n3,n2);

If(n1<n2)
cout<<n1.length();
else{
n3=n1+n2;
cout<<n3;}

if(strcmp(n1,n2)<0)
cout<<strlen(n1)
else
{
strcpy(n3,n1);
strcat(n3,n2);
cout<<n3

cin>>n1;
getline(cin,n2);

cin>>n1;
getline(n2);
cin.get(n6,10);

Parallel Arrays
• Two (or more) arrays are called parallel if their corresponding components hold related

information

23

alaa abu srhan --email: alaaa@hu.edu.jo

Example

 Character array initialization With initializers

Example

 If you initialize a string with smaller size than the array size it will automatically add

spaces at the end of the string within the array .

 in the example size = 6 and we enter 3 char so the output will be hel and three spaces

24

alaa abu srhan --email: alaaa@hu.edu.jo

Example

Example

 cout stop printing an array of character when it reaches the ‘\0’.

Multiple-Subscripted Arrays

• Two-dimensional array: collection of a fixed number of components (of the same type)

arranged in two dimensions

Sometimes called matrices or tables

 Multiple subscripts - tables with rows, columns, Like matrices: specify row, then column.

 Declaration syntax:

o intExp1 and intExp2 are expressions with positive integer values specifying the

number of rows and columns in the array

 Accessing components in a two-dimensional array:

25

alaa abu srhan --email: alaaa@hu.edu.jo

o Where indexExp1 and indexExp2 are expressions with positive integer values, and

specify the row and column position

 Processing Two-Dimensional Arrays

o Ways to process a two-dimensional array:

 Process entire array

 Row processing: process a single row at a time

 Column processing: process a single column at a time

o Each row and each column of a two-dimensional array is a one-dimensional array

 To process, use algorithms similar to processing one-dimensional arrays

 Example:

 sales[5][3] = 25.75;

Example

 Using initializers list: Initializers grouped by row in braces

26

alaa abu srhan --email: alaaa@hu.edu.jo

Example

Example

Example

 If you declare an array (onesubscript or multisubscript) and don’t initialize it the

elements will have garbage numbers.

27

alaa abu srhan --email: alaaa@hu.edu.jo

Example

 If you declare an array (onesubscript or multisubscript) and initialize some elements and

leave the others uninitialized , the uninitialized elements will be given the value 0 if it is

a integer array and assigned a space if it is an character array.

Example

 If you try to fill a location (using initializer list) that is outside the array boundary syntax

error will be generated

Example

 To find the sum of each individual column

28

alaa abu srhan --email: alaaa@hu.edu.jo

 To find the sum of each individual row

 To find the largest element in each row:



Example

29

alaa abu srhan --email: alaaa@hu.edu.jo

 Note that only the first subscript (or dimension size) is allowed to be empty.

Example 7

 If you try to fill a location (using initializer list) that is outside the array boundary syntax

error will be generated(we have 3 columns and we fill 4 !!!)

Example 8

correct initializations examples :

1. int b[][3] = {{-1,1,2},{4}};

2. int b[2][2] = { 1, 2, 5 };--> we have two rows and two columns, in this case we start read the

elements and put 1 and 2 at the first row (since we have 2 columns) and 5 in the first column of

second row, and since there are no more elements so it will be 0 in b[1][1](second row,

second column).

Example 9

Arrays of Strings

30

alaa abu srhan --email: alaaa@hu.edu.jo

• Strings in C++ can be manipulated using either the data type

string or character arrays (C-strings)

• On some compilers, the data type string may not be

available in Standard C++ (i.e., non-ANSI/ISO Standard C++)

• To declare an array of 100 components of type string:

• Basic operations, such as assignment, comparison, and

input/output, can be performed on values of the string type

• The data in list can be processed just like any one-

dimensional array

Example

31

alaa abu srhan --email: alaaa@hu.edu.jo

• The following for loop is used to read and store string in

each row:

 The following for loop outputs the string in each row:

32

alaa abu srhan --email: alaaa@hu.edu.jo

Chapter 6

Function

33

alaa abu srhan --email: alaaa@hu.edu.jo

In this chapter, you will study:

– Predefined Functions

– User-Defined Functions

– Value-Returning Functions

– Void Functions

– Value Parameters

– Reference Variables as Parameters

– Value and Reference Parameters and Memory Allocation

– Reference Parameters and Value-Returning Functions

– Scope of an Identifier

– Global Variables, Named Constants, and Side Effects

– Static and Automatic Variables

– Function Overloading: An Introduction

– Functions with Default Parameters

Function
 Functions are often called modules

 They are like miniature programs that can be combined to form larger

programs

 They allow complicated programs to be divided into manageable

pieces

 used when the same code block is used many times within the

program.

 int main() is function (main function tells the compiler that you have

to start here).



function definition :

Where:

• -functionType also called the data type or return type: is the type of the value returned

by the function.

34

alaa abu srhan --email: alaaa@hu.edu.jo

- functionName is the identifier by which the function can be called.

- Formal parameter list (as many as needed):

 Each parameter consists of a type followed by an identifier, with each

parameter being separated from the next by a comma.

 Each parameter looks very much like a regular variable declaration (for

example:int x), and in fact acts within the function as a regular variable which is

local to the function.

 The purpose of parameters is to allow passing arguments to the function from

the location where it is called from.

-Syntax:

- Statements is the function's body. It is a block of statements surrounded by braces { } that

specify what the function actually does.

Note: Functions are invoked by a function call

 A function call specifies the function name and provides information
(as arguments) that the called function needs.

Example:

35

alaa abu srhan --email: alaaa@hu.edu.jo

Call the function inside main() :

• Syntax to call a value-returning function:

• Syntax of the actual parameter list:

• Formal parameter list can be empty:

• A call to a value-returning function with an empty formal parameter list is:

• Function returns its value via the return statement

– It passes this value outside the function

• In C++, return is a reserved word

• When a return statement executes

– Function immediately terminates

– Control goes back to the caller

• When a return statement executes in the function main, the program terminates

Local variables

 Known only in the function in which they are defined.

 All variables declared in function definitions are local variables.

Example

36

alaa abu srhan --email: alaaa@hu.edu.jo

Example

 This program is divided in two functions: addition and main. Remember that no

matter the order in which they are defined, a C++ program always starts by

calling main function.

 the program started from main()

 In fact, main is the only function called automatically.

 the code in any other function is only executed if its function is called from main

or another function (directly or indirectly).

 addition(5,3); --> function call (call function addition and pass 5 and as

parameters or arguments addition), call by value

• In a function call, you specify only the actual parameter, not its data type.

Example

• Once a function is written, you can use it anywhere in the program. Even as a parameter

to another function

37

alaa abu srhan --email: alaaa@hu.edu.jo

Example

Example

Example

 Print Function has void return data

type

 void : function return nothing.

 don't use return inside print

function, since this function return

nothing .

 return 0; : the function returns

nothing.

 we can use return; : the function

returns nothing.

38

alaa abu srhan --email: alaaa@hu.edu.jo

Example

 Calling a function that does not return any value inside cout statement or stored in a variable

is syntax error (cout<<print()  syntax error)

void printer1 () function that return nothing (data type is void) so when we call it from main()

we can't put printer1(); in cout statement or store it in variable.

Example

 syntax error; we can't use return inside function that return nothing (its data type is void)

Example

39

alaa abu srhan --email: alaaa@hu.edu.jo

 A function can actually be called multiple times within a program, and its argument is

naturally not limited just to literals.

1. store result of function call in variable then use cout to output this variable.
2. call inside cout statement , The arguments passed to sub are numbers (value not

variable).
3. call inside cout statement , The arguments passed to sub are variables That is also valid,

and works fine. The function is called with the values x and y have at the moment of the
call: 3 and 1 respectively, returning 2 as result.

4. use function as operand of any arithmetic operations
cout<<sub(4,5)+sub(x,y)+4 ; (what is the output ??)

Example

 function prototype :Used by the compiler to check the validity of the function

call within the main program (function name, its return data type, number of

arguments, their data types, and their order).

 Function prototype: function heading without the body of the function

 int add(intx, int y); is prototype (same as function but end with ;)

 Function prototype is Only needed if function definition comes after the

function call in the program (after the main()).

 Function prototype can used to define default value for function variable (will

discuss later !!)

 Syntax:

o Not necessary to specify the variable name in the parameter list

o Data type of each parameter must be specified

40

alaa abu srhan --email: alaaa@hu.edu.jo

 if function definition comes after the function call in the program (after the

main()) then you have to use prototype.

 error because main() come before add function so we have to use prototype

and there is no prototype in this code .

Example

What is the function prototype for the following function:

1)

answer :

int sub(int ,int);

or

int sub(int x,int y);

or

 int sub(int x1, int z1); we can use any variable

2)

answer:

int add(int ,int,int);

or

int add(int x,int z, int y);

or

 int add (int x1, int y, int z); we can use any variable

41

alaa abu srhan --email: alaaa@hu.edu.jo

3)

answer:

float mult(float ,float);

or

float mult(float x, float z);

or

 float mult(float x1, float z1); we can use any variable

Example

Example

 remember that fun return data type is int.

42

alaa abu srhan --email: alaaa@hu.edu.jo

Example

Example

Example

 we can pass the same variable more than one time

 Do not use any of C++ keywords(while ,do, for ,...) as function name

 While is not C++ keywords While =! while

43

alaa abu srhan --email: alaaa@hu.edu.jo

Example

 Syntax error -- function name has the same rule as identifier.

Example

 you can write function without any need to use it --> While will not be called from main !!

Example

Example

44

alaa abu srhan --email: alaaa@hu.edu.jo

 syntax error

Example

 name of function could be the same name of one of its parameters

Example

 Example

45

alaa abu srhan --email: alaaa@hu.edu.jo

Example

Example

46

alaa abu srhan --email: alaaa@hu.edu.jo

Example

Value-Returning Functions: Some Peculiarities

1)

47

alaa abu srhan --email: alaaa@hu.edu.jo

A correct definition of the function secret is:

2)

3)

Predefined Functions

Math Library Functions
 Allow the programmer to perform common mathematical calculations

 Are used by including the header file <cmath> or <math.h>

 Functions called by writing functionName (argument)

 All math library functions return double values (as a result).

math functions:

 acos(x) inverse cosine, -1 <= x <= +1, returns value in radians in range 0 to PI

 asin(x) inverse sine, -1 <= x <= +1, returns value in radians in range 0 to PI

 atan(x) inverse tangent, returns value in radians in range -PI/2 to PI/2

 cos(x) returns cosine of x, x in radians

 sin(x) returns sine of x, x in radians

 tan(x) returns tangent of x, x in radians

 exp(x) exponential function, e to power x

 log(x) natural log of x (base e), x > 0

 sqrt(x) square root of x, x >= 0

48

alaa abu srhan --email: alaaa@hu.edu.jo

 fabs(x) absolute value of x

 floor(x) largest integer not greater than x

 ceil(x) smallest integer not less than x.

 pow(x, y) returns xy.

 fmod(x, y) computes the modulus of floating point numbers.

Example 1

 log10(10)=1 ,log10(100)=2,

log10(1000)=3

 pow(2,2) --> 2 to the power 2 =4

 sqrt(36) -->square root of 36 =6

 fabs(-1)=|-1|=1

Example 2

49

alaa abu srhan --email: alaaa@hu.edu.jo

Example 3

Example 4

 logical error
Example 5

Example 6

Example 7

50

alaa abu srhan --email: alaaa@hu.edu.jo

Example 8

Example 9

Example 10

 islower returns non zero value if x is lowercase letter.

 Isupper returns nonzero value if x is uppercase letter.

51

alaa abu srhan --email: alaaa@hu.edu.jo

Random Number
rand() function:
 is used in C++ to generate random integer numbers between 0 and a maximum

specified value.

 rand() function takes nothing (i.e. void) as its arguments and returns an unsigned
integer.

 In order to use this function you must Load <cstdlib> or <stdlib.h>

 rand function syntax:
int i = rand();

 Generates a pseudorandom number between 0 and RAND_MAX (usually 32767)

 RAND_MAX is a symbolic constant defined in the stdlib header file.

 0 <= rand() <= RAND_MAX.

 A pseudorandom number is a preset sequence of "random" numbers.

 The same sequence is generated upon every program execution, is this preferred?.

 This repeated behavior is essentially in programming debug and verification in
simulation and other random-based applications.

 the sequence is repeated every time

srand function:

 Jumps to a seeded location in a "random" sequence.

 Similar to rand() function, srand function is defined in the <stdlib.h> library.

 Takes an unsigned integer as a seed (i.e. as an argument).

 It does not return any value (returns void), it just change the random sequence
(randomizing the rand() function).

 Can be called more than once within the same program.

 Still you need to use the rand() function to get the random numbers.

 srand syntax:
 srand(seed);

 seed can be any unsigned integer entered manually be the user or initialized
through the program.

 If the same seed is used every time the program is run we will get the same
random sequence (i.e. the same without seed).

52

alaa abu srhan --email: alaaa@hu.edu.jo

 The random sequence is changed , however if you run this code more than

one time, the same set of random numbers will be displayed every time

 To initialize seed value automatically use the following syntax:
srand(time(0));

 time(0)
 Returns the current calendar time in seconds.
 time() function takes a pointer as an argument and returns unsigned

integer.

 Changes the seed every time the program is run, thereby allowing rand() to
generate random numbers. So, it is much better than manual seeding.

So that…

41

18467

6334

26500

19169

The sequence before calling
srand()

48

7196

9294

9091

7031

The sequence after calling
srand()

Thus, calling srand() will change the sequence of random numbers
given that you change the seed value passed ti it, otherwise if the same
seed value the same random numbers will appear over and over again.

53

alaa abu srhan --email: alaaa@hu.edu.jo

 Need to include the <ctime> or <time.h> library to use the time() function.

54

alaa abu srhan --email: alaaa@hu.edu.jo

Reduces random number to a certain range:

Number = offset (shift value) + rand() % scaling_factor

Lets assume the range is [min, max], then:
min=offset .
max =scaling factor +min-1
[min, max]=(min-1,max+1) =[min,max+1]=(min-1,max]

example 1

what is the output of the following program:

1)153426

2)1153

3)115

4)1761

offset =1
scalling factor = 6
[min, max]
min =offset =1
max =scalling factor +min-1=6+1-1=6

the program will print 4 random number [1,6] so the answer is (2)

example 2

syntax error (where <csdlib> or <stdlib.h>??)

55

alaa abu srhan --email: alaaa@hu.edu.jo

example 3

what is the output of the following program:

1)24321

2)2432

3)24325

4)2435

solution:

offset =1

scalling factor = 4

[min, max]

min =offset =1

max =scalling factor +min-1=4+1-1=4

The program will print 5 random number [1,4] so the answer is (1)

example 4

what is the output of the following program:

1)78
2)743
3)77
4)783
solution:
offset =2
scalling factor = 6
[min, max]

56

alaa abu srhan --email: alaaa@hu.edu.jo

min =offset =2
max =scalling factor +min-1=6+2-1=7
the program will print 2 random number [2,7] so the answer is (3)

example 5

what is the range that the following rand equation generate?

return 8+rand()%17;

offset =8

scalling factor = 17

[min, max]

min =offset =8

max =scalling factor +min-1=17+8-1=24

 [8,24] or (7,25) or [8,25) or (7,24]

example 6

what is the range that the following rand equation generate?

(6+ rand()%12)*.01

offset =6

scalling factor = 12

[min, max]

min =offset =6

max =scalling factor +min-1=12+6-1=17

 [6,17] or (5,18) or [6,18) or (5,17]

then multiply it with 0.01

[0.06,0.17] or (0.05,0.18) or [0.06,0.18) or (0.05,0.17]

example 7

what is the range that the following rand equation generate?

(3+ rand()%3)

offset =3

scalling factor = 3

[min, max]

min =offset =3

max =scalling factor +min-1=3+3-1=5

 [3,5] or (2,6) or [3,6) or (2,5]

example 8

what is the range that the following rand equation generate?

 rand()%3

answer : [0, 2]

example 9

Generate random numbers in the following ranges:

 100 <= n <= 200  int n = 100 + rand()%101

 100 <= n < 500  int n = 100 + rand()%400

57

alaa abu srhan --email: alaaa@hu.edu.jo

 50 < n <= 200  int n = 51 + rand()%150

 100 < n < 200  int n = 101 + rand()%99

 0.01 <= n <= 0.08 

 double n = (1 + rand()%8)/100 -- with step width = 0.01
Or double n = (10+rand()%71)/1000

 0.02 <= n <= 0.9 
double n = (20 + rand()%881)/1000 -- with step width = 0.001

example 9

what is the output of the following program:

1) 3 7

2) 0.1 0.04

3) 0.4 0.5 0.6

4) 0.02 0.22

the program will print 2 random number [0.03,0.22] so the answer is (2)

58

alaa abu srhan --email: alaaa@hu.edu.jo

Reference Variables

 Reference variable is an alias to some variable.

 & (ampersand) is used to signify a reference

example 1

 Here y is an alias to the variable x since the address of y is equal to the address of x

 x and y have the same value, since the address of y is equal to the address of x.

example 2

 modifying either x or y both variables will have the same modified value since both of

them refer to the same memory location or address.

example 3

59

alaa abu srhan --email: alaaa@hu.edu.jo

 Reference variables must be initialized within the same statement that defines them, if not

it will be a syntax error (reference must be initialized).

example 4

 Reference variables must be initialized with a variable only, constants and allowed
 syntax error.

example 5

 syntax error >>>>x and &y must have the same data type

example 6

 syntax error >>>> we can't use the same name for the reference variable and what the

variable refer to.

60

alaa abu srhan --email: alaaa@hu.edu.jo

example 7

 You cannot reassign the reference variable to another
variable since you simply copy the value of the new variable
in the old one and you still working on the old one and this is
considered as a logical error.

Call By Reference
 Two types of function call:

o Call by value

 Copy of data passed to function.

 Changes to copy do not change the original found in the caller.

 Used to prevent unwanted side effects.

o Call by reference

 Function can directly access data.

 Changes affect the original found in the caller.

 No copy exist (reduce overhead), however, it is dangerous

since the original value is overwritten.

 Reference parameters are useful in three situations:

o Returning more than one value

o Changing the actual parameter

o When passing the address would save memory space and time

Example 1

 Function arguments can be passed by reference.

61

alaa abu srhan --email: alaaa@hu.edu.jo

 In both the function header and prototype you must proceed the reference variable by &.

 In the function call just type the name of the variable that you want to pass.

 Inside the function body use the reference variable by its name without &.
example 2

example 3

 the reference argument must be a variable (constants or expressions are not

allowed  syntax error
example 4

62

alaa abu srhan --email: alaaa@hu.edu.jo

Example 5

Example 6

Example 7

63

alaa abu srhan --email: alaaa@hu.edu.jo

Write a program example

• Write a program that takes a course score (a value between 0 and 100) and

determines a student’s course grade. This program has three functions: main,

getScore, and printGrade, as follows:

• main

– Get the course score.

– Print the course grade.

• getScore

– Prompt the user for the input.

– Get the input.

– Print the course score.

• printGrade

– Calculate the course grade.

– Print the course grade.

64

alaa abu srhan --email: alaaa@hu.edu.jo

Identifiers
The main attributes attached with any variable or identifier include:
1. Name, type, size, value (as taken before).

2. Storage class: Determines the period during which the variable exists in memory

storage class types

Types : Automatic storage Static storage

Keywords: auto register extern static mutable

3. Scope: Where the identifier can be referenced in program

Scope Types:

1. File scope:

 Defined outside a function, known in all functions
 Known in all functions from the point at which the identifier is

declared until the end of the file
 Examples include, global variables, function definitions and

functions prototypes
2. Function scope:

 Can only be referenced inside a function body
3. Block scope:

 Declared inside a block. Begins at declaration, ends at }.
 Includes variables, function parameters (local variables of function).
 If two nested blocks have the same variable, outer blocks “hidden”

from inner blocks.
4. Function prototype scope:

 Identifiers in parameter list
Names in function prototype optional, and can be used anywhere

65

alaa abu srhan --email: alaaa@hu.edu.jo

Identifiers scope
 Scope of an identifier:where in the program the identifier is

accessible.

 Local identifier: identifiers declared within a function (or block)

 Global identifier: identifiers declared outside of every function
definition

 C++ does not allow nested functions
o Definition of one function cannot be included in the body of

another function

 Rules when an identifier is accessed:
o Global identifiers are accessible by a function or block if:

 Declared before function definition

 Function name different from identifier
 Parameters to the function have different names
 All local identifiers have different names

o Nested block
 Identifier accessible from declaration to end of block

in which it is declared

 Within nested blocks if no identifier with same name
exists

o Scope of function name similar to scope of identifier
declared outside any block

 i.e., function name scope = global variable scope
Example 1:

 x can be accessed only by calling out function or by using default value (will

discuss later !!)

 x is local variable within (out) function so it just used inside this function, z is
local variable within main function so it just used inside main function .

 we have two block (anything between { } is called block).

66

alaa abu srhan --email: alaaa@hu.edu.jo

Example 2

 we have two nested blocks (inner and outer block)

 If two nested blocks have the same variable, outer blocks “hidden” from inner
blocks.

Example 3

Example 4

 syntax error--> z declare in inner block, it is only used within this block

Example 5

 If a global variable and a local variable share the same name then local value will

used.

outer

block
inner block

67

alaa abu srhan --email: alaaa@hu.edu.jo

Example 6

Example 7

 syntax error --> x has a prototype scope, you can't use it from main or any function .

 function name is file scope you can access it anywhere in your code after the prototype.

 Inside any scope (function scope or block scope) you can't define two variables with the

same names.

Example 8

 we have two block main block and for block, so we can define x in both blocks.(block

scope)

68

alaa abu srhan --email: alaaa@hu.edu.jo

Example 9

 x1 has function scope, it just used in fun1

Example 10

Example 11

 Global variables are always accessible. Function fun1 references the global x.

69

alaa abu srhan --email: alaaa@hu.edu.jo

 To access a global variable declared after the definition of a function, the function

must not contain any identifier with the same name

o Reserved word extern indicates that a global variable has been declared

elsewhere

Storage class

Storage class: Determines the period during which the variable exists in memory

storage class types

Types : Automatic storage Static storage

Keywords: auto register extern static mutable

1. Automatic storage:

 Variables created and destroyed within its block (created when entering the
block and destroyed when leaving this block).

 Can only be used with local variables and parameters of a specified function.
 auto :Default for local variables.

2. Static Storage:
 Variables exist from the point of declaration for entire program execution.
 Static variables are created and initialized once when the program begins execution.
 Numeric variables are initialized to 0 by default unless the programmer initialize them

explicitly
static:

 Usually, used with local variables defined in functions
 Permanent storage for the static variable is allocated, so that it is not

removed from memory when leaving the block it is defined on.
 Keep value after function ends
 Only known in their own function (known inside its function like auto and

register but it is not removed from memory when the function exit).

Example 1

70

alaa abu srhan --email: alaaa@hu.edu.jo

 static Numeric variables are initialized to 0 by default unless the programmer initialize
them explicitly.

Example 2

 syntax error -->Do not use multiple storage specifiers at the same time.

Example 3

 syntax error var is local to fun()

 var is static so it will be stored in memory from line 3 to the end of the code, but you can't

print it outside fun().

Example 4

 var is static and global so it will be stored in memory from line 1 to the end of the code, and

you can print it anywhere in your code.

71

alaa abu srhan --email: alaaa@hu.edu.jo

Example 5

 syntax error (var inside fun() is not defined yet)

 var is static so it will be stored in memory from line 5 to the end of the code, and you can

print it from line 5 to the end of the code.

 Local static variables are not destroyed when the function ends.

notes:

 Global variables are by default static

 Local variable are by default auto

 You can't reference (print/modify) local variable outside its scope

Example 6

 Permanent storage for the static variable is allocated, so that it is not removed from

memory when leaving the block it is defined on.

 each time you call the function it will print last value of x +5 (not 2+5=7)--> because x is

static , if we use int x=2 then its auto so every time you call the function it will print 7.

Example 7

72

alaa abu srhan --email: alaaa@hu.edu.jo

Unary Scope Resolution Operator

 Unary scope resolution operator (::)

 If a global variable and a local variable share the same name, unary scope

resolution operator is used to access the global variables.

 Not needed if names are different

 Instead of variable use ::variable

 Very important  Cannot be used to access a local variable of the same name in

an outer block.

Example 1

Example 2

 Global variables are by default static

 Local variable are by default auto

73

alaa abu srhan --email: alaaa@hu.edu.jo

Example 3

Example 4

 syntax error -->z declare twice within the same block

Example 5

 syntax error--> z undefined as a global variable.

Example 6

74

alaa abu srhan --email: alaaa@hu.edu.jo

 unary operator Cannot be used to access a local variable of the same name in an

outer block.

Functions with empty parameter lists

Example 1

 Either writing void or leaving a parameter list empty indicates that the function takes no
arguments.

 Function print takes no arguments and returns no value.

Example 2

 Passing parameter to a function that does not take any parameter is syntax error.
Example 3

75

alaa abu srhan --email: alaaa@hu.edu.jo

 Calling a function that does not return any value inside cout statement is syntax error.

Functions with default arguments

Example 1

 syntax error, Default function has one argument, so when we call it we have to pass

value to this function. We can solve the problem using default argument(see next

example).

Example 2

 In the function prototype give all or some of the arguments default values

 When you call the function, you can omit one or more of the arguments values. The

omitted arguments will take their values from the default values in the function

prototype.

Example 3

76

alaa abu srhan --email: alaaa@hu.edu.jo

 Set defaults in function prototype (only) where the variables names are provided just for

readability

Example 4

 In a function call you can omit the parameters that have default values only.

 syntax error because a does not have value in the prototype

Example 5

 Not setting all the rightmost parameters after a default arguments to default is a syntax

error.

 This means that no argument can take a default value unless the one on its right has a default

value.

77

alaa abu srhan --email: alaaa@hu.edu.jo

Example 6

Example 7

78

alaa abu srhan --email: alaaa@hu.edu.jo

Functions overloading
 Function overloading means having functions with same name and different parameters

(different number of parameters, or different data types, or different order, or all of

these issues at the same time, different name of arguments is not function overloading)

 Overloading a function with another version that have the same parameters numbers,

types, and order with just the return result data type is different is a syntax error.

 The parameter list supplied in a call to an overloaded function determines which

function is executed

 Two functions are said to have different formal parameter lists if both functions have

either:

 A different number of formal parameters

 If the number of formal parameters is the same, but the data type of the formal

parameters differs in at least one position

#include<iostream>
using namespace std;
int fun1(int ,float ,char

);
int fun1(int , float,

char);
int main()
{
 cout<<fun1(5,3.

3,'a');
return 0;
}
int fun1(int x1,float

y1,char z1)
{

#include<iostream>
using namespace

std;
int fun1(int ,float

,char);
float fun1(int , float,

char);
int main()
{
 cout<<fun1(5

,3.3,'a');
return 0;
}
int fun1(int x1,float

y1,char z1)

#include<iostream>
using namespace

std;
int fun1(int ,float

,char);
int fun1(float, int ,

char);
int main()
{
 cout<<fun1(5

,3.3,'a');
return 0;
}
int fun1(int x1,float

y1,char z1)

#include<iostream>
using namespace

std;
int fun1(int ,float

,char);
int fun1(int , float);
int main()
{
 cout<<fun1(5

,3.3,'a');
return 0;
}
int fun1(int x1,float

y1,char z1)
{

Syntax error.
Two functions
are the same

Syntax error.
changing return
type is not
enough

Parameters
order is
different so it
is ok

of
parameters is
different so it
is ok

79

alaa abu srhan --email: alaaa@hu.edu.jo

Example 1

 Program chooses function by signature: signature is determined by function name and

parameter types.

 Can have the same return types.

Example 2

 You cannot overload a function with default arguments with another version that takes no

arguments  syntax error.

80

alaa abu srhan --email: alaaa@hu.edu.jo

Example 3

Example 4

example 5

 name of parameters in prototype is not necessary to be the same as name of parameters

on the corresponding function

 x1 will take its default value from the first variable on prototype whatever its name,

 y1 will take its default value from the first variable on prototype (y).

81

alaa abu srhan --email: alaaa@hu.edu.jo

Example 6

 syntax error

 change the name of parameters is not function overloading. remember ---> different

parameters (different number of parameters, or different data types, or different order, or

all of these issues at the same time) is ok.

Example 7

 syntax error >>>> which one will be used when we call the function

82

alaa abu srhan --email: alaaa@hu.edu.jo

Example 8

 all the parameters passed to function are double so the suitable function is fun(double ,int

,int)

Example 9

 1.2 is double

83

alaa abu srhan --email: alaaa@hu.edu.jo

Example 10

 ambiguous call to overloaded function ; 1 is integer so which function we will use !!!

Example 11

84

alaa abu srhan --email: alaaa@hu.edu.jo

Passing Arrays to Functions
Example 1

 Function prototype:

void Array(int b[], int arraySize);

 Parameter names optional in prototype

 int b[] could be simply int []

 int arraysize could be simply int.

 If the size of the array is passed as, e.g. int b[5], the compiler will ignore it.

Example 2

 Function Call:

 Specify the name without any brackets

 Array size is usually passed to the function to allow correct processing of the
array elements.

Example 3

 Arrays are passed as call-by-reference by default

85

alaa abu srhan --email: alaaa@hu.edu.jo

Example 4

 Individual array elements are passed by call-by-value

Example 5

 To prevent a function from modifying an array declare the parameter array within

both the function definition and the function prototype as a const (i.e. pass it as

read-only variable).

 so, any modification will be reported as a syntax error.

