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Notes to the Instructor

One goal in our writing has been to create flexible texts that afford the instructor a variety

of topics and make available to the student an abundance of practice problems and projects.

We recommend that the instructor read the discussion given in the preface in order to gain

an overview of the prerequisites, topics of emphasis, and general philosophy of the text.

Software Supplements

Interactive Differential Equations CD-ROM: By Beverly West (Cornell University),

Steven Strogatz (Cornell University), Jean Marie McDill (California Polytechnic State Uni-

versity – San Luis Obispo), John Cantwell (St. Louis University), and Hubert Hohn (Mas-

sachusetts College of Arts) is a popular software directly tied to the text that focuses on helping

students visualize concepts. Applications are drawn from engineering, physics, chemistry, and

biology. Runs on Windows or Macintosh and is included free with every book.

Instructor’s MAPLE/MATHLAB/MATHEMATICA manual: By Thomas W. Po-

laski (Winthrop University), Bruno Welfert (Arizona State University), and Maurino Bautista

(Rochester Institute of Technology). A collection of worksheets and projects to aid instruc-

tors in integrating computer algebra systems into their courses. Available via Addison-Wesley

Instructor’s Resource Center.

MATLAB Manual ISBN 13: 978-0-321-53015-8; ISBN 10: 0-321-53015-2

MAPLE Manual ISBN 13: 978-0-321-38842-1; ISBN 10: 0-321-38842-9

MATHEMATICA Manual ISBN 13: 978-0-321-52178-1; ISBN 10: 0-321-52178-1

Computer Labs

A computer lab in connection with a differential equations course can add a whole new di-

mension to the teaching and learning of differential equations. As more and more colleges

and universities set up computer labs with software such as MAPLE, MATLAB, DERIVE,

MATHEMATICA, PHASEPLANE, and MACMATH, there will be more opportunities to in-

clude a lab as part of the differential equations course. In our teaching and in our texts, we

have tried to provide a variety of exercises, problems, and projects that encourage the student

to use the computer to explore. Even one or two hours at a computer generating phase plane

diagrams can provide the students with a feeling of how they will use technology together
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with the theory to investigate real world problems. Furthermore, our experience is that they

thoroughly enjoy these activities. Of course, the software, provided free with the texts, is

especially convenient for such labs.

Group Projects

Although the projects that appear at the end of the chapters in the text can be worked

out by the conscientious student working alone, making them group projects adds a social

element that encourages discussion and interactions that simulate a professional work place

atmosphere. Group sizes of 3 or 4 seem to be optimal. Moreover, requiring that each individual

student separately write up the group’s solution as a formal technical report for grading by

the instructor also contributes to the professional flavor.

Typically, our students each work on 3 or 4 projects per semester. If class time permits, oral

presentations by the groups can be scheduled and help to improve the communication skills

of the students.

The role of the instructor is, of course, to help the students solve these elaborate problems on

their own and to recommend additional reference material when appropriate.

Some additional Group Projects are presented in this guide (see page 9).

Technical Writing Exercises

The technical writing exercises at the end of most chapters invite students to make documented

responses to questions dealing with the concepts in the chapter. This not only gives students

an opportunity to improve their writing skills, but it helps them organize their thoughts and

better understand the new concepts. Moreover, many questions deal with critical thinking

skills that will be useful in their careers as engineers, scientists, or mathematicians.

Since most students have little experience with technical writing, it may be necessary to return

ungraded the first few technical writing assignments with comments and have the students redo

the the exercise. This has worked well in our classes and is much appreciated by the students.

Handing out a “model” technical writing response is also helpful for the students.

Student Presentations

It is not uncommon for an instructor to have students go to the board and present a solution
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to a problem. Differential equations is so rich in theory and applications that it is an excellent

course to allow (require) a student to give a presentation on a special application (e.g., almost

any topic from Chapter 3 and 5), on a new technique not covered in class (e.g., material from

Section 2.6, Projects A, B, or C in Chapter 4), or on additional theory (e.g., material from

Chapter 6 which generalizes the results in Chapter 4). In addition to improving students’

communication skills, these “special” topics are long remembered by the students. Here, too,

working in groups of 3 or 4 and sharing the presentation responsibilities can add substantially

to the interest and quality of the presentation. Students should also be encouraged to enliven

their communication by building physical models, preparing part of their lectures on video

cassette, etc.

Homework Assignments

We would like to share with you an obvious, non-original, but effective method to encourage

students to do homework problems.

An essential feature is that it requires little extra work on the part of the instructor or grader.

We assign homework problems (about 10 of them) after each lecture. At the end of the week

(Fridays), students are asked to turn in their homework (typically, 3 sets) for that week. We

then choose at random one problem from each assignment (typically, a total of 3) that will

be graded. (The point is that the student does not know in advance which problems will be

chosen.) Full credit is given for any of the chosen problems for which there is evidence that the

student has made an honest attempt at solving. The homework problem sets are returned to

the students at the next meeting (Mondays) with grades like 0/3, 1/3, 2/3, or 3/3 indicating

the proportion of problems for which the student received credit. The homework grades are

tallied at the end of the semester and count as one test grade. Certainly, there are variations

on this theme. The point is that students are motivated to do their homework with little

additional cost (= time) to the instructor.

Syllabus Suggestions

To serve as a guide in constructing a syllabus for a one-semester or two-semester course, the

prefaces to the texts list sample outlines that emphasize methods, applications, theory, partial

differential equations, phase plane analysis, computation, or combinations of these. As a

further guide in making a choice of subject matter, we provide below a listing of text material

dealing with some common areas of emphasis.

3



Numerical, Graphical, and Qualitative Methods

The sections and projects dealing with numerical, graphical, and qualitative techniques of

solving differential equations include:

Section 1.3: Direction Fields

Section 1.4: The Approximation Method of Euler

Project A for Chapter 1: Taylor Series

Project B for Chapter 1: Picard’s Method

Project D for Chapter 1: The Phase Line

Section 3.6: Improved Euler’s Method, which includes step-by-step outlines of the im-

proved Euler’s method subroutine and improved Euler’s method with tolerance. These

outlines are easy for the student to translate into a computer program (cf. pages 135

and 136).

Section 3.7: Higher-Order Numerical Methods : Taylor and Runge-Kutta, which includes

outlines for the Fourth Order Runge-Kutta subroutine and algorithm with tolerance (see

pages 144 and 145).

Project H for Chapter 3: Stability of Numerical Methods

Project I for Chapter 3: Period Doubling an Chaos

Section 4.8: Qualitative Considerations for Variable Coefficient and Nonlinear Equa-

tions, which discusses the energy integral lemma, as well as the Airy, Bessel, Duffing,

and van der Pol equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which describes

the vectorized forms of Euler’s method and the Fourth Order Runge-Kutta method, and

discusses an application to population dynamics.

Section 5.4: Introduction to the Phase Plane, which introduces the study of trajectories

of autonomous systems, critical points, and stability.
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Section 5.8: Dynamical Systems, Poincarè Maps, and Chaos, which discusses the use of

numerical methods to approximate the Poincarè map and how to interpret the results.

Project A for Chapter 5: Designing a Landing System for Interplanetary Travel

Project B for Chapter 5: Things That Bob

Project D for Chapter 5: Strange Behavior of Competing Species – Part I

Project D for Chapter 9: Strange Behavior of Competing Species – Part II

Project D for Chapter 10: Numerical Method for ∆u = f on a Rectangle

Project D for Chapter 11: Shooting Method

Project E for Chapter 11: Finite-Difference Method for Boundary Value Problems

Project C for Chapter 12: Computing Phase Plane Diagrams

Project D for Chapter 12: Ecosystem of Planet GLIA-2

Appendix A: Newton’s Method

Appendix B: Simpson’s Rule

Appendix D: Method of Least Squares

Appendix E: Runge-Kutta Procedure for Equations

The instructor who wishes to emphasize numerical methods should also note that the text

contains an extensive chapter of series solutions of differential equations (Chapter 8).

Engineering/Physics Applications

Since Laplace transforms is a subject vital to engineering, we have included a detailed chapter

on this topic – see Chapter 7. Stability is also an important subject for engineers, so we

have included an introduction to the subject in Chapter 5.4 along with an entire chapter

addressing this topic – see Chapter 12. Further material dealing with engineering/physic

applications include:

Project C for Chapter 1: Magnetic “Dipole”
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Project B for Chapter 2: Torricelli’s Law of Fluid Flow

Section 3.1: Mathematical Modeling

Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and of population models.

Section 3.3: Heating and Cooling Buildings, which discusses temperature variations in

the presence of air conditioning or furnace heating.

Section 3.4: Newtonian Mechanics

Section 3.5: Electrical Circuits

Project C for Chapter 3: Curve of Pursuit

Project D for Chapter 3: Aircraft Guidance in a Crosswind

Project E for Chapter 3: Feedback and the Op Amp

Project F for Chapter 3: Band-Bang Controls

Section 4.1: Introduction: Mass-Spring Oscillator

Section 4.8: Qualitative Considerations for Variable-Coefficient and Nonlinear Equations

Section 4.9: A Closer Look at Free Mechanical Vibrations

Section 4.10: A Closer Look at Forced Mechanical Vibrations

Project B for Chapter 4: Apollo Reentry

Project C for Chapter 4: Simple Pendulum

Chapter 5: Introduction to Systems and Phase Plane Analysis, which includes sections

on coupled mass-spring systems, electrical circuits, and phase plane analysis.

Project A for Chapter 5: Designing a Landing System for Interplanetary Travel

Project B for Chapter 5: Things that Bob

Project C for Chapter 5: Hamiltonian Systems
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Project D for Chapter 5: Transverse Vibrations of a Beam

Chapter 7: Laplace Transforms, which in addition to basic material includes discussions

of transfer functions, the Dirac delta function, and frequency response modeling.

Projects for Chapter 8, dealing with Schrödinger’s equation, bucking of a tower, and

again springs.

Project B for Chapter 9: Matrix Laplace Transform Method

Project C for Chapter 9: Undamped Second-Order Systems

Chapter 10: Partial Differential Equations, which includes sections on Fourier series, the

heat equation, wave equation, and Laplace’s equation.

Project A for Chapter 10: Steady-State Temperature Distribution in a Circular Cylinder

Project B for Chapter 10: A Laplace Transform Solution of the Wave Equation

Project A for Chapter 11: Hermite Polynomials and the Harmonic Oscillator

Section 12.4: Energy Methods, which addresses both conservative and nonconservative

autonomous mechanical systems.

Project A for Chapter 12: Solitons and Korteweg-de Vries Equation

Project B for Chapter 12: Burger’s Equation

Students of engineering and physics would also find Chapter 8 on series solutions particularly

useful, especially Section 8.8 on special functions.

Biology/Ecology Applications

Project D for Chapter 1: The Phase Plane, which discusses the logistic population model

and bifurcation diagrams for population control.

Project A for Chapter 2: Differential Equations in Clinical Medicine

Section 3.1: Mathematical Modeling
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Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and population models.

Project A for Chapter 3: Dynamics for HIV Infection

Project B for Chapter 3: Aquaculture, which deals with a model of raising and harvesting

catfish.

Section 5.1: Interconnected Fluid Tanks, which introduces systems of equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which contains

an application to population dynamics.

Section 5.5: Applications to Biomathematics: Epidemic and Tumor Growth Models

Project D for Chapter 5: Strange Behavior of Competing Species – Part I

Project E for Chapter 5: Cleaning Up the Great Lakes

Project D for Chapter 9: Strange Behavior of Competing Species – Part II

Problem 19 in Exercises 10.5 , which involves chemical diffusion through a thin layer.

Project D for Chapter 12: Ecosystem on Planet GLIA-2

The basic content of the remainder of this instructor’s manual consists of supplemental group

projects, answers to the even-numbered problems, and detailed solutions to the even-numbered

problems in Chapters 1, 2, 4, and 7 as well as Sections 3.2, 3.3, and 3.4. The answers are,

for the most part, not available any place else since the text only provides answers to odd-

numbered problems, and the Student’s Solutions Manual contains only a handful of worked

solutions to even-numbered problems.

We would appreciate any comments you may have concerning the answers in this manual.

These comments can be sent to the authors’ email addresses below. We also would encourage

sharing with us (= the authors and users of the texts) any of your favorite group projects.

E. B. Saff A. D. Snider

Edward.B.Saff@Vanderbilt.edu snider@eng.usf.edu
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Group Projects for Chapter 3

Delay Differential Equations

In our discussion of mixing problems in Section 3.2, we encountered the initial value

problem

x′(t) = 6− 3

500
x (t− t0) , (0.1)

x(t) = 0 for x ∈ [−t0, 0] ,

where t0 is a positive constant. The equation in (0.1) is an example of a delay differ-

ential equation. These equations differ from the usual differential equations by the

presence of the shift (t− t0) in the argument of the unknown function x(t). In general,

these equations are more difficult to work with than are regular differential equations,

but quite a bit is known about them.1

(a) Show that the simple linear delay differential equation

x′ = ax(t− b), (0.2)

where a, b are constants, has a solution of the form x(t) = Cest for any constant

C, provided s satisfies the transcendental equation s = ae−bs.

(b) A solution to (0.2) for t > 0 can also be found using the method of steps. Assume

that x(t) = f(t) for −b ≤ t ≤ 0. For 0 ≤ t ≤ b, equation (0.2) becomes

x′(t) = ax(t− b) = af(t− b),

and so

x(t) =

t∫
0

af(ν − b)dν + x(0).

Now that we know x(t) on [0, b], we can repeat this procedure to obtain

x(t) =

t∫
b

ax(ν − b)dν + x(b)

for b ≤ x ≤ 2b. This process can be continued indefinitely.

1See, for example, Differential–Difference Equations, by R. Bellman and K. L. Cooke, Academic Press, New
York, 1963, or Ordinary and Delay Differential Equations, by R. D. Driver, Springer–Verlag, New York, 1977
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Use the method of steps to show that the solution to the initial value problem

x′(t) = −x(t− 1), x(t) = 1 on [−1, 0],

is given by

x(t) =
n∑

k=0

(−1)k [t− (k − 1)]k

k!
, for n− 1 ≤ t ≤ n ,

where n is a nonnegative integer. (This problem can also be solved using the

Laplace transform method of Chapter 7.)

(c) Use the method of steps to compute the solution to the initial value problem given

in (0.1) on the interval 0 ≤ t ≤ 15 for t0 = 3.

Extrapolation

When precise information about the form of the error in an approximation is known, a

technique called extrapolation can be used to improve the rate of convergence.

Suppose the approximation method converges with rate O (hp) as h→ 0 (cf. Section 3.6).

From theoretical considerations, assume we know, more precisely, that

y(x;h) = φ(x) + hpap(x) +O
(
hp+1

)
, (0.3)

where y(x;h) is the approximation to φ(x) using step size h and ap(x) is some function

that is independent of h (typically, we do not know a formula for ap(x), only that it

exists). Our goal is to obtain approximations that converge at the faster rate O (hp+1).

We start by replacing h by h/2 in (0.3) to get

y

(
x;
h

2

)
= φ(x) +

hp

2p
ap(x) +O

(
hp+1

)
.

If we multiply both sides by 2p and subtract equation (0.3), we find

2py

(
x;
h

2

)
− y(x;h) = (2p − 1)φ(x) +O

(
hp+1

)
.

Solving for φ(x) yields

φ(x) =
2py (x;h/2)− y(x;h)

2p − 1
+O

(
hp+1

)
.

Hence,

y∗
(
x;
h

2

)
:=

2py (x;h/2)− y(x;h)

2p − 1

has a rate of convergence of O (hp+1).
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(a) Assuming

y∗
(
x;
h

2

)
= φ(x) + hp+1ap+1(x) +O

(
hp+2

)
,

show that

y∗∗
(
x;
h

4

)
:=

2p+1y∗ (x;h/4)− y∗(x;h/2)

2p+1 − 1

has a rate of convergence of O (hp+2).

(b) Assuming

y∗∗
(
x;
h

4

)
= φ(x) + hp+2ap+2(x) +O

(
hp+3

)
,

show that

y∗∗∗
(
x;
h

8

)
:=

2p+2y∗∗ (x;h/8)− y∗∗(x;h/4)

2p+2 − 1

has a rate of convergence of O (hp+3).

(c) The results of using Euler’s method (with h = 1, 1/2, 1/4, 1/8) to approximate the

solution to the initial value problem

y′ = y, y(0) = 1

at x = 1 are given in Table 1.2, page 27. For Euler’s method, the extrapolation

procedure applies with p = 1. Use the results in Table 1.2 to find an approximation

to e = y(1) by computing y∗∗∗(1; 1/8). [Hint: Compute y∗ (1; 1/2), y∗ (1; 1/4), and

y∗ (1; 1/8); then compute y∗∗ (1; 1/4) and y∗∗ (1; 1/8).]

(d) Table 1.2 also contains Euler’s approximation for y(1) when h = 1/16. Use this

additional information to compute the next step in the extrapolation procedure;

that is, compute y∗∗∗∗(1; 1/16).

Group Projects for Chapter 5

Effects of Hunting on Predator–Prey Systems

As discussed in Section 5.3 (page 277), cyclic variations in the population of predators

and their prey have been studied using the Volterra-Lotka predator–prey model

dx

dt
= Ax−Bxy , (0.4)

dy

dt
= −Cy +Dxy , (0.5)
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where A, B, C, and D are positive constants, x(t) is the population of prey at time t, and

y(t) is the population of predators. It can be shown that such a system has a periodic

solution (see Project D). That is, there exists some constant T such that x(t) = x(t+T )

and y(t) = y(t + T ) for all t. The periodic or cyclic variation in the population has

been observed in various systems such as sharks–food fish, lynx–rabbits, and ladybird

beetles–cottony cushion scale. Because of this periodic behavior, it is useful to consider

the average population x and y defined by

x :=
1

T

t∫
0

x(t)dt , y :=
1

T

t∫
0

y(t)dt .

(a) Show that x = C/D and y = A/B. [Hint: Use equation (0.4) and the fact that

x(0) = x(T ) to show that

T∫
0

[A−By(t)] dt =

T∫
0

x′(t)

x(t)

d =

dt
0. ]

(b) To determine the effect of indiscriminate hunting on the population, assume hunting

reduces the rate of change in a population by a constant times the population. Then

the predator–prey system satisfies the new set of equations

dx

dt
= Ax−Bxy − εx = (A− ε)x−Bxy , (0.6)

dy

dt
= −Cy +Dxy − δy = −(C + δ)y +Dxy , (0.7)

where ε and δ are positive constants with ε < A. What effect does this have on the

average population of prey? On the average population of predators?

(c) Assume the hunting was done selectively, as in shooting only rabbits (or shooting

only lynx). Then we have ε > 0 and δ = 0 (or ε = 0 and δ > 0) in (0.6)–(0.7).

What effect does this have on the average populations of predator and prey?

(d) In a rural county, foxes prey mainly on rabbits but occasionally include a chicken

in their diet. The farmers decide to put a stop to the chicken killing by hunting

the foxes. What do you predict will happen? What will happen to the farmers’

gardens?

12



Limit Cycles

In the study of triode vacuum tubes, one encounters the van der Pol equation2

y′′ − µ
(
1− y2

)
y′ + y = 0 ,

where the constant µ is regarded as a parameter. In Section 4.8 (page 224), we used the

mass-spring oscillator analogy to argue that the nonzero solutions to the van der Pol

equation with µ = 1 should approach a periodic limit cycle. The same argument applies

for any positive value of µ.

(a) Recast the van der Pol equation as a system in normal form and use software to

plot some typical trajectories for µ = 0.1, 1, and 10. Re-scale the plots if necessary

until you can discern the limit cycle trajectory; find trajectories that spiral in, and

ones that spiral out, to the limit cycle.

(b) Now let µ = −0.1, −1, and −10. Try to predict the nature of the solutions using

the mass-spring analogy. Then use the software to check your predictions. Are

there limit cycles? Do the neighboring trajectories spiral into, or spiral out from,

the limit cycles?

(c) Repeat parts (a) and (b) for the Rayleigh equation

y′′ − µ
[
1− (y′)

2
]
y′ + y = 0 .

Group Project for Chapter 13

David Stapleton, University of Central Oklahoma

Satellite Altitude Stability

In this problem, we determine the orientation at which a satellite in a circular orbit of

radius r can maintain a relatively constant facing with respect to a spherical primary

(e.g., a planet) of mass M . The torque of gravity on the asymmetric satellite maintains

the orientation.

2Historical Footnote: Experimental research by E. V. Appleton and B. van der Pol in 1921 on the
oscillation of an electrical circuit containing a triode generator (vacuum tube) led to the nonlinear equation
now called van der Pol’s equation. Methods of solution were developed by van der Pol in 1926–1927.
Mary L. Cartwright continued research into nonlinear oscillation theory and together with J. E. Little-

wood obtained existence results for forced oscillations in nonlinear systems in 1945.
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Suppose (x, y, z) and (x, y, z) refer to coordinates in two systems that have a common

origin at the satellite’s center of mass. Fix the xyz-axes in the satellite as principal axes;

then let the z-axis point toward the primary and let the x-axis point in the direction of

the satellite’s velocity. The xyz-axes may be rotated to coincide with the xyz-axes by

a rotation φ about the x-axis (roll), followed by a rotation θ about the resulting y-axis

(pitch), and a rotation ψ about the final z-axis (yaw). Euler’s equations from physics

(with high terms omitted3 to obtain approximate solutions valid near (φ, θ, ψ) = (0, 0, 0))

show that the equations for the rotational motion due to gravity acting on the satellite

are

Ixφ
′′ = −4ω2

0 (Iz − Iy)φ− ω0 (Iy − Iz − Ix)ψ
′

Iyθ
′′ = −3ω2

0 (Ix − Iz) θ

Izψ
′′ = −4ω2

0 (Iy − Ix)ψ + ω0 (Iy − Iz − Ix)φ
′ ,

where ω0 =
√

(GM)/r3 is the angular frequency of the orbit and the positive constants

Ix, Iy, Iz are the moments of inertia of the satellite about the x, y, and z-axes.

(a) Find constants c1, . . . , c5 such tha these equations can be written as two systems

d

dt


φ

ψ

φ′

θ′

 =


0 0 1 0

0 0 0 1

c1 0 0 c2

0 c3 c4 0



φ

ψ

φ′

ψ′


and

d

dt

[
θ

θ′

]
=

[
0 1

c5 0

][
θ

θ′

]
.

(b) Show that the origin is asymptotically stable for the first system in (a) if

(c2c4 + c3 + c1)
2 − 4c1c3 > 0 ,

c1c3 > 0 ,

c2c4 + c3 + c1 > 0

and hence deduce that Iy > Ix > Iz yields an asymptotically stable origin. Are

there other conditions on the moments of inertia by which the origin is stable?

3The derivation of these equations is found in Attitude Stabilization and Control of Earth Satellites, by
O. H. Gerlach, Space Science Reviews, #4 (1965), 541–566
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(c) Show that, for the asymptotically stable configuration in (b), the second system

in (a) becomes a harmonic oscillator problem, and find the frequency of oscillation

in terms of Ix, Iy, Iz, and ω0 . Phobos maintains Iy > Ix > Iz in its orientation

with respect to Mars, and has angular frequency of orbit ω0 = 0.82 rad/hr. If

(Ix − Iz) /Iy = 0.23, show that the period of the libration for Phobos (the period

with which the side of Phobos facing Mars shakes back and forth) is about 9 hours.
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CHAPTER 1: Introduction

EXERCISES 1.1: Background

2. This equation is an ODE because it contains no partial derivatives. Since the highest

order derivative is d2y/dx2, the equation is a second order equation. This same term

also shows us that the independent variable is x and the dependent variable is y. This

equation is linear.

4. This equation is a PDE of the second order because it contains second partial derivatives.

x and y are independent variables, and u is the dependent variable.

6. This equation is an ODE of the first order with the independent variable t and the

dependent variable x. It is nonlinear.

8. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.

10. ODE of the fourth order with the independent variable x and the dependent variable y,

linear.

12. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.

14. The velocity at time t is the rate of change of the position function x(t), i.e., x′. Thus,

dx

dt
= kx4,

where k is the proportionality constant.

16. The equation is
dA

dt
= kA2,

where k is the proportionality constant.
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Chapter 1

EXERCISES 1.2: Solutions and Initial Value Problems

2. (a) Writing the given equation in the form y2 = 3 − x, we see that it defines two

functions of x on x ≤ 3, y = ±
√

3− x. Differentiation yields

dy

dx
=

d

dx

(
±
√

3− x
)

= ± d

dx

[
(3− x)1/2

]
= ±1

2
(3− x)−1/2(−1) = − 1

±2
√

3− x
= − 1

2y
.

(b) Solving for y yields

y3(x− x sin x) = 1 ⇒ y3 =
1

x(1− sin x)

⇒ y =
1

3
√
x(1− sin x)

= [x(1− sin x)]−1/3 .

The domain of this function is x 6= 0 and

sin x 6= 1 ⇒ x 6= π

2
+ 2kπ, k = 0,±1,±2, . . . .

For 0 < x < π/2, one has

dy

dx
=

d

dx

{
[x(1− sin x)]−1/3

}
= −1

3
[x(1− sin x)]−1/3−1 d

dx
[x(1− sin x)]

= −1

3
[x(1− sin x)]−1[x(1− sin x)]−1/3[(1− sin x) + x(− cosx)]

=
(x cosx+ sinx− 1)y

3x(1− sin x)
.

We also remark that the given relation is an implicit solution on any interval not

containing points x = 0, π/2 + 2kπ, k = 0,±1,±2, . . . .

4. Differentiating the function x = 2 cos t− 3 sin t twice, we obtain

x′ = −2 sin t− 3 cos t, x′′ = −2 cos t+ 3 sin t.

Thus,

x′′ + x = (−2 cos t+ 3 sin t) + (2 cos t− 3 sin t) = 0

for any t on (−∞,∞).

6. Substituting x = cos 2t and x′ = −2 sin 2t into the given equation yields

(−2 sin 2t) + t cos 2t = sin 2t ⇔ t cos 2t = 3 sin 2t .

Clearly, this is not an identity and, therefore, the function x = cos 2t is not a solution.
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Exercises 1.2

8. Using the chain rule, we have

y = 3 sin 2x+ e−x,

y′ = 3(cos 2x)(2x)′ + e−x(−x)′ = 6 cos 2x− e−x,

y′′ = 6(− sin 2x)(2x)′ − e−x(−x)′ = −12 sin 2x+ e−x.

Therefore,

y′′ + 4y =
(
−12 sin 2x+ e−x

)
+ 4

(
3 sin 2x+ e−x

)
= 5e−x,

which is the right-hand side of the given equation. So, y = 3 sin 2x+ e−x is a solution.

10. Taking derivatives of both sides of the given relation with respect to x yields

d

dx
(y − ln y) =

d

dx

(
x2 + 1

)
⇒ dy

dx
− 1

y

dy

dx
= 2x

⇒ dy

dx

(
1− 1

y

)
= 2x ⇒ dy

dx

y − 1

y
= 2x ⇒ dy

dx
=

2xy

y − 1
.

Thus, the relation y−ln y = x2+1 is an implicit solution to the equation y′ = 2xy/(y−1).

12. To find dy/dx, we use implicit differentiation.

d

dx

[
x2 − sin(x+ y)

]
=

d

dx
(1) = 0 ⇒ 2x− cos(x+ y)

d

dx
(x+ y) = 0

⇒ 2x− cos(x+ y)

(
1 +

dy

dx

)
= 0 ⇒ dy

dx
=

2x

cos(x+ y)
− 1 = 2x sec(x+ y)− 1,

and so the given differential equation is satisfied.

14. Assuming that C1 and C2 are constants, we differentiate the function φ(x) twice to get

φ′(x) = C1 cosx− C2 sin x, φ′′(x) = −C1 sin x− C2 cosx.

Therefore,

φ′′ + φ = (−C1 sin x− C2 cosx) + (C1 sin x+ C2 cosx) = 0.

Thus, φ(x) is a solution with any choice of constants C1 and C2.

16. Differentiating both sides, we obtain

d

dx

(
x2 + Cy2

)
=

d

dx
(1) = 0 ⇒ 2x+ 2Cy

dy

dx
= 0 ⇒ dy

dx
= − x

Cy
.

19



Chapter 1

Since, from the given relation, Cy2 = 1− x2, we have

− x

Cy
=

xy

−Cy2
=

xy

x2 − 1
.

So,
dy

dx
=

xy

x2 − 1
.

Writing Cy2 = 1− x2 in the form

x2 +
y2(

1/
√
C
)2 = 1,

we see that the curves defined by the given relation are ellipses with semi-axes 1 and

1/
√
C and so the integral curves are half-ellipses located in the upper/lower half plane.

18. The function φ(x) is defined and differentiable for all values of x except those satisfying

c2 − x2 = 0 ⇒ x = ±c.

In particular, this function is differentiable on (−c, c).

Clearly, φ(x) satisfies the initial condition:

φ(0) =
1

c2 − 02
=

1

c2
.

Next, for any x in (−c, c),

dφ

dx
=

d

dx

[(
c2 − x2

)−1
]

= (−1)
(
c2 − x2

)−2 (
c2 − x2

)′
= 2x

[(
c2 − x2

)−1
]2

= 2xφ(x)2.

Therefore, φ(x) is a solution to the equation y′ = 2xy2 on (−c, c).

Several integral curves are shown in Fig. 1–A on page 29.

20. (a) Substituting φ(x) = emx into the given equation yields

(emx)′′ + 6 (emx)′ + 5 (emx) = 0 ⇒ emx
(
m2 + 6m+ 5

)
= 0.

Since emx 6= 0 for any x, φ(x) satisfies the given equation if and only if

m2 + 6m+ 5 = 0 ⇔ m = −1,−5.
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Exercises 1.2

(b) We have

(emx)′′′ + 3 (emx)′′ + 2 (emx)′ = 0 ⇒ emx
(
m3 + 3m2 + 2m

)
= 0

⇒ m(m2 + 3m+ 2) = 0 ⇔ m = 0,−1,−2.

22. We find

φ′(x) = c1e
x − 2c2e

−2x , φ′′(x) = c1e
x + 4c2e

−2x .

Substitution yields

φ′′ + φ′ − 2φ =
(
c1e

x + 4c2e
−2x
)

+
(
c1e

x − 2c2e
−2x
)
− 2

(
c1e

x + c2e
−2x
)

= (c1 + c1 − 2c1) e
x + (4c2 − 2c2 − 2c2) e

−2x = 0.

Thus, with any choice of constants c1 and c2, φ(x) is a solution to the given equation.

(a) Constants c1 and c2 must satisfy the system{
2 = φ(0) = c1 + c2

1 = φ′(0) = c1 − 2c2 .

Subtracting the second equation from the first one yields

3c2 = 1 ⇒ c2 = 1/3 ⇒ c1 = 2− c2 = 5/3.

(b) Similarly to the part (a), we obtain the system{
1 = φ(1) = c1e+ c2e

−2

0 = φ′(1) = c1e− 2c2e
−2

which has the solution c1 = (2/3)e−1, c2 = (1/3)e2.

24. In this problem, the independent variable is t, the dependent variable is y. Writing the

equation in the form
dy

dt
= ty + sin2 t ,

we conclude that f(t, y) = ty + sin2 t, ∂f(t, y)/∂y = t. Both functions, f and ∂f/∂y,

are continuous on the whole ty-plane. So, Theorem 1 applies for any initial condition,

in particular, for y(π) = 5.
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Chapter 1

26. With the independent variable t and the dependent variable x, we have

f(t, x) = sin t− cosx,
∂f(t, x)

∂x
= sinx ,

which are continuous on tx-plane. So, Theorem 1 applies for any initial condition.

28. Here, f(x, y) = 3x− 3
√
y − 1 and

∂f(x, y)

∂y
=

∂

∂y

[
3x− (y − 1)1/3)

]
= − 1

3 3
√

(y − 1)2
.

The function f is continuous at any point (x, y) while ∂f/∂y is defined and continuous

at any point (x, y) with y 6= 1 i.e., on the xy-plane excluding the horizontal line y = 1.

Since the initial point (2, 1) belongs to this line, there is no rectangle containing the

initial point, on which ∂f/∂y is continuous. Thus, Theorem 1 does not apply.

30. Here, the initial point (x0, y0) is (0,−1) and G(x, y) = x + y + exy. The first partial

derivatives,

Gx(x, y) = (x+ y + exy)′x = 1 + yexy and Gy(x, y) = (x+ y + exy)′y = 1 + xexy,

are continuous on the xy-plane. Next,

G(0,−1) = −1 + e0 = 0, Gy(0,−1) = 1 + (0)e0 = 1 6= 0.

Therefore, all the hypotheses of Implicit Function Theorem are satisfied, and so the

relation x + y + exy = 0 defines a differentiable function y = φ(x) on some interval

(−δ, δ) about x0 = 0.

EXERCISES 1.3: Direction Fields

2. (a) Starting from the initial point (0,−2) and following the direction markers we get

the curve shown in Fig. 1–B on page 30.

Thus, the solution curve to the initial value problem dy/dx = 2x + y, y(0) = −2,

is the line with slope

dy

dx
(0) = (2x+ y)|x=0 = y(0) = −2

and y-intercept y(0) = −2. Using the slope-intercept form of an equation of a line,

we get y = −2x− 2.
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Exercises 1.3

(b) This time, we start from the point (−1, 3) and obtain the curve shown in Fig. 1–C

on page 30.

(c) From Fig. 1–C, we conclude that

lim
x→∞

y(x) = ∞, lim
x→−∞

y(x) = ∞.

4. The direction field and the solution curve satisfying the given initial conditions are

sketched in Fig. 1–D on page 30. From this figure we find that the terminal velocity is

limt→∞ v(t) = 2.

6. (a) The slope of the solution curve to the differential equation y′ = x+ sin y at a point

(x, y) is given by y′. Therefore the slope at (1, π/2) is equal to

dy

dx

∣∣∣∣
x=1

= (x+ sin y)|x=1 = 1 + sin
π

2
= 2.

(b) The solution curve is increasing if the slope of the curve is greater than zero. From

the part (a), we know that the slope is x + sin y. The function sin y has values

ranging from −1 to 1; therefore if x is greater than 1 then the slope will always

have a value greater than zero. This tells us that the solution curve is increasing.

(c) The second derivative of every solution can be determined by differentiating both

sides of the original equation, y′ = x+ sin y. Thus

d

dx

(
dy

dx

)
=

d

dx
(x+ sin y) ⇒

d2y

dx2
= 1 + (cos y)

dy

dx
(chain rule)

= 1 + (cos y)(x+ sin y)

= 1 + x cos y + sin y cos y = 1 + x cos y +
1

2
sin 2y .

(d) Relative minima occur when the first derivative, y′ , is equal to zero and the second

derivative, y′′ , is positive (Second Derivative Test). The value of the first derivative

at the point (0, 0) is given by

dy

dx
= 0 + sin 0 = 0.

This tells us that the solution has a critical point at the point (0, 0). Using the

second derivative found in part (c) we have

d2y

dx2
= 1 + 0 · cos 0 +

1

2
sin 0 = 1.
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This tells us that the point (0, 0) is a point of relative minimum.

8. (a) For this particle, we have x(2) = 1, and so the velocity

v(2) =
dx

dt

∣∣∣∣
t=2

= t3 − x3
∣∣
t=2

= 23 − x(2)3 = 7.

(b) Differentiating the given equation yields

d2x

dt2
=

d

dt

(
dx

dt

)
=

d

dt

(
t3 − x3

)
= 3t2 − 3x2dx

dt

= 3t2 − 3x2
(
t3 − x3

)
= 3t2 − 3t3x2 + 3x5.

(c) The function u3 is an increasing function. Therefore, as long as x(t) < t, x(t)3 < t3

and
dx

dt
= t3 − x(t)3 > 0

meaning that x(t) increases. At the initial point t0 = 2.5 we have x(t0) = 2 < t0.

Therefore, x(t) cannot take values smaller than 2.5, and the answer is “no”.

10. Direction fields and some solution curves to differential equations given in (a)–(e) are

shown in Fig. 1–E through Fig. 1–I on pages 31–32.

(a) y′ = sinx.

(b) y′ = sin y.

(c) y′ = sinx sin y.

(d) y′ = x2 + 2y2.

(e) y′ = x2 − 2y2.

12. The isoclines satisfy the equation f(x, y) = y = c, i.e., they are horizontal lines shown in

Fig. 1–J, page 32, along with solution curves. The curve, satisfying the initial condition,

is shown in bold.

14. Here, f(x, y) = x/y, and so the isoclines are defined by

x

y
= c ⇒ y =

1

c
x.

These are lines passing through the origin and having slope 1/c. See Fig. 1–K on

page 33.
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16. The relation x+2y = c yields y = (c−x)/2. Therefore, the isoclines are lines with slope

−1/2 and y-intercept c/2. See Fig. 1–L on page 33.

18. The direction field for this equation is shown in Fig. 1–M on page 33. From this picture

we conclude that any solution y(x) approaches zero, as x→ +∞.

EXERCISES 1.4: The Approximation Method of Euler

2. In this problem, x0 = 0, y0 = 4, h = 0.1, and f(x, y) = −x/y. Thus, the recursive

formulas given in equations (2) and (3) of the text become

xn+1 = xn + h = xn + 0.1 ,

yn+1 = yn + hf(xn, yn) = yn + 0.1

(
−xn

yn

)
, n = 0, 1, 2, . . . .

To find an approximation for the solution at the point x1 = x0 + 0.1 = 0.1, we let n = 0

in the last recursive formula to find

y1 = y0 + 0.1

(
−x0

y0

)
= 4 + 0.1(0) = 4.

To approximate the value of the solution at the point x2 = x1 + 0.1 = 0.2, we let n = 1

in the last recursive formula to obtain

y2 = y1 + 0.1

(
−x1

y1

)
= 4 + 0.1

(
−0.1

4

)
= 4− 1

400
= 3.9975 ≈ 3.998 .

Continuing in this way we find

x3 = x2 + 0.1 = 0.3 , y3 = y2 + 0.1

(
−x2

y2

)
= 3.9975 + 0.1

(
− 0.2

3.9975

)
≈ 3.992 ,

x4 = 0.4 , y4 ≈ 3.985 ,

x5 = 0.5 , y5 ≈ 3.975 ,

where all of the answers have been rounded off to three decimal places.

4. Here x0 = 0, y0 = 1, and f(x, y) = x+ y. So,

xn+1 = xn + h = xn + 0.1 ,

yn+1 = yn + hf(xn, yn) = yn + 0.1 (xn + yn) , n = 0, 1, 2, . . . .

Letting n = 0, 1, 2, 3, and 4, we recursively find

x1 = x0 + h = 0.1 , y1 = y0 + 0.1 (x0 + y0) = 1 + 0.1(0 + 1) = 1.1 ,
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x2 = x1 + h = 0.2 , y2 = y1 + 0.1 (x1 + y1) = 1.1 + 0.1(0.1 + 1.1) = 1.22 ,

x3 = x2 + h = 0.3 , y3 = y2 + 0.1 (x2 + y2) = 1.22 + 0.1(0.2 + 1.22) = 1.362 ,

x4 = x3 + h = 0.4 , y4 = y3 + 0.1 (x3 + y3) = 1.362 + 0.1(0.3 + 1.362) = 1.528 ,

x5 = x4 + h = 0.5 , y5 = y4 + 0.1 (x4 + y4) = 1.5282 + 0.1(0.4 + 1.5282) = 1.721 ,

where all of the answers have been rounded off to three decimal places.

6. In this problem, x0 = 1, y0 = 0, and f(x, y) = x− y2. So, we let n = 0, 1, 2, 3, and 4, in

the recursive formulas and find

x1 = x0 + h = 1.1 , y1 = y0 + 0.1
(
x0 − y2

0

)
= 0 + 0.1(1− 02) = 0.1 ,

x2 = x1 + h = 1.2 , y2 = y1 + 0.1
(
x1 − y2

1

)
= 0.1 + 0.1(1.1− 0.12) = 0.209 ,

x3 = x2 + h = 1.3 , y3 = y2 + 0.1
(
x2 − y2

2

)
= 0.209 + 0.1(1.2− 0.2092) = 0.325 ,

x4 = x3 + h = 1.4 , y4 = y3 + 0.1
(
x3 − y2

3

)
= 0.325 + 0.1(1.3− 0.3252) = 0.444 ,

x5 = x4 + h = 1.5 , y5 = y4 + 0.1
(
x4 − y2

4

)
= 0.444 + 0.1(1.4− 0.4442) = 0.564 ,

where all of the answers have been rounded off to three decimal places.

8. The initial values are x0 = y0 = 0, f(x, y) = 1− sin y. If number of steps is N , then the

step h = (π − x0)/N = π/N .

For N = 1, h = π,

x1 = x0 + h = π, y1 = y0 + h(1− sin y0) = π ≈ 3.1416 .

For N = 2, h = π/2,

x1 = x0 + π/2 = π/2, y1 = y0 + h(1− sin y0) = π/2 ≈ 1.571 ,

x2 = x1 + π/2 = π, y2 = y1 + h(1− sin y1) = π/2 ≈ 1.571 .

We continue with N = 4 and 8, and fill in Table 1 on page 28, where the approximations

to φ(π) are rounded to three decimal places.

10. We have x0 = y(0) = 0, h = 0.1. With this step size, we need (1− 0)/0.1 = 10 steps to

approximate the solution on [0, 1]. The results of computation are given in Table 1 on

page 28.

26



Exercises 1.4

Next we check that y = e−x + x − 1 is the actual solution to the given initial value

problem.

y′ =
(
e−x + x− 1

)′
= −e−x + 1 = x−

(
e−x + x− 1

)
= x− y,

y(0) =
(
e−x + x− 1

)∣∣
x=0

= e0 + 0− 1 = 0.

Thus, it is the solution.

The solution curve y = e−x + x − 1 and the polygonal line approximation using data

from Table 1 are shown in Fig. 1–N, page 34.

12. Here, x0 = 0, y0 = 1, f(x, y) = y. With h = 1/n, the recursive formula (3) of the text

yields

y(1) = yn = yn−1 +
yn−1

n
= yn−1

(
1 +

1

n

)
=

[
yn−2

(
1 +

1

n

)](
1 +

1

n

)
= yn−2

(
1 +

1

n

)2

= . . . = y0

(
1 +

1

n

)n

=

(
1 +

1

n

)n

.

14. Computation results are given in Table 1 on page 29.

16. For this problem notice that the independent variable is t and the dependent variable is

T . Hence, in the recursive formulas for Euler’s method, t will take the place of x and

T will take the place of y. Also we see that h = 0.1 and f(t, T ) = K (M4 − T 4), where

K = 40−4 and M = 70. Therefore, the recursive formulas given in equations (2) and (3)

of the text become

tn+1 = tn + 0.1 ,

Tn+1 = Tn + hf (tn, Tn) = Tn + 0.1
(
40−4

) (
704 − T 4

n

)
, n = 0, 1, 2, . . . .

From the initial condition T (0) = 100 we see that t0 = 0 and T0 = 100. Therefore, for

n = 0, we have

t1 = t0 + 0.1 = 0 + 0.1 = 0.1 ,

T1 = T0 + 0.1(40−4)(704 − T 4
0 ) = 100 + 0.1(40−4)(704 − 1004) ≈ 97.0316,

where we have rounded off to four decimal places.

For n = 1,

t2 = t1 + 0.1 = 0.1 + 0.1 = 0.2 ,
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T2 = T1 + 0.1(40−4)(704 − T 4
1 ) = 97.0316 + 0.1(40−4)(704 − 97.03164) ≈ 94.5068.

By continuing this way, we fill in Table 1 on page 29. From this table we see that

T (1) = T (t10) ≈ T10 = 82.694 ,

T (2) = T (t20) ≈ T20 = 76.446 ,

where we have rounded to three decimal places.

TABLES

NNN hhh φφφ(πππ)

1 π 3.142
2 π/2 1.571
4 π/4 1.207
8 π/8 1.148

Table 1–A: Euler’s approximations to y′ = 1− sin y, y(0) = 0, with N steps.

nnn xxxnnn yyynnn nnn xxxnnn yyynnn

0 0 0 6 0.6 0.131
1 0.1 0 7 0.7 0.178
2 0.2 0.01 8 0.8 0.230
3 0.3 0.029 9 0.9 0.287
4 0.4 0.056 10 1.0 0.349
5 0.5 0.091

Table 1–B: Euler’s approximations to y′ = x− y, y(0) = 0, on [0, 1] with h = 0.1.
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hhh yyy(2)

0.5 24.8438
0.1 ≈ 6.4 · 10176

0.05 ≈ 1.9 · 10114571

0.01 > 101030

Table 1–C: Euler’s method approximations of y(2) for y′ = 2xy2, y(0) = 1.

nnn tttnnn TTTnnn nnn tttnnn TTTnnn

1 0.1 97.0316 11 1.1 81.8049
2 0.2 94.5068 12 1.2 80.9934
3 0.3 92.3286 13 1.3 80.2504
4 0.4 90.4279 14 1.4 79.5681
5 0.5 88.7538 15 1.5 78.9403
6 0.6 87.2678 16 1.6 78.3613
7 0.7 85.9402 17 1.7 77.8263
8 0.8 84.7472 18 1.8 77.3311
9 0.9 83.6702 19 1.9 76.8721

10 1.0 82.6936 20 2.0 76.4459

Table 1–D: Euler’s approximations to the solution of T ′ = K (M4 − T 4), T (0) = 100,

with K = 40−4, M = 70, and h = 0.1.
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Figure 1–A: Integral curves in Problem 18.

29



Chapter 1

 
K1 0 1

 

K4

K2

2

Figure 1–B: The solution curve in Problem 2(a).
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Figure 1–C: The solution curve in Problem 2(b).
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Figure 1–D: The direction field and solution curves in Problem 4.
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Figure 1–E: The direction field and solution curves in Problem 10(a).
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Figure 1–F: The direction field and solution curves in Problem 10(b).
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Figure 1–G: The direction field and solution curves in Problem 10(c).
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Figure 1–H: The direction field and solution curves in Problem 10(d).
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Figure 1–I: The direction field and solution curves in Problem 10(e).
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Figure 1–J: The isoclines and solution curves in Problem 12.
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Figure 1–K: The isoclines and solution curves in Problem 14.
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Figure 1–L: The isoclines and solution curves in Problem 16.
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Figure 1–M: The direction field in Problem 18.
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Figure 1–N: Euler’s method approximations to y = e−x+x−1 on [0, 1] with h = 0.1.

34



CHAPTER 2: First Order Differential Equations

EXERCISES 2.2: Separable Equations

2. This equation is not separable because sin(x + y) cannot be expressed as a product

g(x)p(y).

4. This equation is separable because

ds

dt
= t ln

(
s2t
)

+ 8t2 = t(2t) ln |s|+ 8t2 = 2t2(ln |s|+ 4).

6. Writing the equation in the form

dy

dx
=

2x

xy2 + 3y2
=

2x

(x+ 3)y2
=

2x

x+ 3
· 1

y2
,

we see that the equation is separable.

8. Multiplying both sides of the equation by y3dx and integrating yields

y3dy =
dx

x
⇒

∫
y3dy =

∫
dx

x

⇒ 1

4
y4 = x ln |x|+ C1 ⇒ y4 = 4 ln |x|+ C ⇒ y = ± 4

√
4 ln |x|+ C ,

where C := 4C1 is an arbitrary constant.

10. To separate variables, we divide the equation by x and multiply by dt. Integrating yields

dx

x
= 3t2dt ⇒ ln |x| = t3 + C1 ⇒ |x| = et3+C1 = eC1et3

⇒ |x| = C2e
t3 ⇒ x = ±C2e

t3 = Cet3 ,

where C1 is an arbitrary constant and, therefore, C2 := eC1 is an arbitrary positive

constant, C = ±C2 is any nonzero constant. Separating variables, we lost a solution

x ≡ 0, which can be included in the above formula by taking C = 0. Thus, x = Cet3 , C

– arbitrary constant, is a general solution.
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12. We have

3vdv

1− 4v2
=
dx

x
⇒

∫
3vdv

1− 4v2
=

∫
dx

x

⇒ −3

8

∫
du

u
=

∫
dx

x

(
u = 1− 4v2, du = −8vdv

)
⇒ −3

8
ln
∣∣1− 4v2

∣∣ = ln |x|+ C1

⇒ 1− 4v2 = ± exp

[
−8

3
ln |x|+ C1

]
= Cx−8/3,

where C = ±eC1 is any nonzero constant. Separating variables, we lost constant solutions

satisfying

1− 4v2 = 0 ⇒ v = ±1

2
,

which can be included in the above formula by letting C = 0. Thus,

v = ±
√

1− Cx−8/3

2
, C arbitrary,

is a general solution to the given equation.

14. Separating variables, we get

dy

1 + y2
= 3x2dx ⇒

∫
dy

1 + y2
=

∫
3x2dx

⇒ arctan y = x3 + C ⇒ y = tan
(
x3 + C

)
,

where C is any constant. Since 1 + y2 6= 0, we did not lose any solution.

16. We rewrite the equation in the form

x(1 + y2)dx+ ex2

ydy = 0,

separate variables, and integrate.

e−x2

xdx = − ydy

1 + y2
⇒

∫
e−x2

xdx = −
∫

ydy

1 + y2

⇒
∫
e−udu = −dv

v

(
u = x2, v = 1 + y2

)
⇒ −e−u = − ln |v|+ C ⇒ ln

(
1 + y2

)
− e−x2

= C

is an implicit solution to the given equation. Solving for y yields

y = ±
√
C1 exp [exp (−x2)]− 1,

where C1 = eC is any positive constant,
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18. Separating variables yields

dy

1 + y2
= tanxdx ⇒

∫
dy

1 + y2
=

∫
tan xdx ⇒ arctan y = − ln | cosx|+ C.

Since y(0) =
√

3, we have

arctan
√

3 = − ln cos 0 + C = C ⇒ C =
π

3
.

Therefore,

arctan y = − ln | cosx|+ π

3
⇒ y = tan

(
− ln | cosx|+ π

3

)
is the solution to the given initial value problem.

20. Separating variables and integrating, we get∫
(2y + 1)dy =

∫ (
3x2 + 4x+ 2

)
dx ⇒ y2 + y = x3 + 2x2 + 2x+ C.

Since y(0) = −1, substitution yields

(−1)2 + (−1) = (0)3 + 2(0)2 + 2(0) + C ⇒ C = 0,

and the solution is given, implicitly, by y2 + y = x3 + 2x2 + 2x or, explicitly, by

y = −1

2
−
√

1

4
+ x3 + 2x2 + 2x.

(Solving for y, we used the initial condition.)

22. Writing 2ydy = −x2dx and integrating, we find

y2 = −x
3

3
+ C.

With y(0) = 2,

(2)2 = −(0)3

3
+ C ⇒ C = 4,

and so

y2 = −x
3

3
+ 4 ⇒ y =

√
−x

3

3
+ 4.

We note that, taking the square root, we chose the positive sign because y(0) > 0.
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24. For a general solution, we separate variables and integrate.∫
e2ydy =

∫
8x3dx ⇒ e2y

2
= 2x4 + C1 ⇒ e2y = 4x4 + C.

We substitute now the initial condition, y(1) = 0, and obtain

1 = 4 + C ⇒ C = −3.

Hence, the answer is given by

e2y = 4x4 − 3 ⇒ y =
1

2
ln
(
4x4 − 3

)
.

26. We separate variables and obtain∫
dy
√
y

= −
∫

dx

1 + x
⇒ 2

√
y = − ln |1 + x|+ C = − ln(1 + x) + C,

because at initial point, x = 0, 1 + x > 0. Using the fact that y(0) = 1, we find C.

2 = 0 + C ⇒ C = 2,

and so y = [2− ln(1 + x)]2 /4 is the answer.

28. We have

dy

dt
= 2y(1− t) ⇒ dy

y
= 2(1− t)dt ⇒ ln |y| = −(t− 1)2 + C

⇒ y = ±eCe−(t−1)2 = C1e
−(t−1)2 ,

where C1 6= 0 is any constant. Separating variables, we lost the solution y ≡ 0. So, a

general solution to the given equation is

y = C2e
−(t−1)2 , C2 is any.

Substituting t = 0 and y = 3, we find

3 = C2e
−1 ⇒ C2 = 3e ⇒ y = 3e1−(t−1)2 = 3e2t−t2 .

The graph of this function is given in Fig. 2–A on page 71.

Since y(t) > 0 for any t, from the given equation we have y′(t) > 0 for t < 1 and y′(t) < 0

for t > 1. Thus t = 1 is the point of absolute maximum with ymax = y(1) = 3e.
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30. (a) Dividing by (y + 1)2/3, multiplying by dx, and integrating, we obtain∫
dy

(y + 1)2/3
=

∫
(x− 3)dx ⇒ 3(y + 1)1/3 =

x2

2
− 3x+ C

⇒ y = −1 +

(
x2

6
− x+ C1

)3

.

(b) Substituting y ≡ −1 into the original equation yields

d(−1)

dx
= (x− 3)(−1 + 1)2/3 = 0,

and so the equation is satisfied.

(c) For y ≡ −1 for the solution in part (a), we must have(
x2

6
− x+ C1

)3

≡ 0 ⇔ x2

6
− x+ C1 ≡ 0,

which is impossible since a quadratic polynomial has at most two zeros.

32. (a) The direction field of the given differential equation is shown in Fig. 2–B, page 72.

Using this picture we predict that limx→∞ φ(x) = 1.

(b) In notation of Section 1.4, we have x0 = 0, y0 = 1.5, f(x, y) = y2 − 3y + 2, and

h = 0.1. With this step size, we need (1− 0)/0.1 = 10 steps to approximate φ(1).

The results of computation are given in Table 2 on page 71. From this table we

conclude that φ(1) ≈ 1.26660 .

(c) Separating variables and integrating, we obtain

dy

y2 − 3y + 2
= dx ⇒

∫
dy

y2 − 3y + 2
=

∫
dx ⇒ ln

∣∣∣∣y − 2

y − 1

∣∣∣∣ = x+ C ,

where we have used a partial fractions decomposition

1

y2 − 3y + 2
=

1

y − 2
− 1

y − 1

to evaluate the integral. The initial condition, y(0) = 1.5 , implies that C = 0, and

so

ln

∣∣∣∣y − 2

y − 1

∣∣∣∣ = x ⇒
∣∣∣∣y − 2

y − 1

∣∣∣∣ = ex ⇒ y − 2

y − 1
= −ex .

(We have chosen the negative sign because of the initial condition.) Solving for y

yields

y = φ(x) =
ex + 2

ex + 1

The graph of this solution is shown in Fig. 2–B on page 72.
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(d) We find

φ(1) =
e+ 2

e+ 1
≈ 1.26894 .

Thus, the approximate value φ(1) ≈ 1.26660 found in part (b) differs from the

actual value by less than 0.003 .

(e) We find the limit of φ(x) at infinity writing

lim
x→∞

ex + 2

ex + 1
= lim

x→∞

(
1 +

1

ex + 1

)
= 1 ,

which confirms our guess in part (a).

34. (a) Separating variables and integrating, we get

dT

T −M
= −kdt ⇒

∫
dT

T −M
= −

∫
kdt ⇒ ln |T −M | = −kt+ C1

⇒ |T −M | = eC1e−kt ⇒ T −M = ±eC1e−kt = Ce−kt,

where C is any nonzero constant. We can include the lost solution T ≡M into this

formula by letting C = 0. Thus, a general solution to the equation is

T = M + Ce−kt.

(b) Given that M = 70◦, T (0) = 100◦, T (6) = 80◦, we form a system to determine C

and k.{
100 = 70 + C

80 = 70 + Ce−6k
⇒

{
C = 30

k = −(1/6) ln[(80− 70)/30] = (1/6) ln 3.

Therefore,

T = 70 + 30e−(t ln 3)/6 = 70 + (30)3−t/6,

and after 20 min the reading is

T (20) = 70 + (30)3−20/6 ≈ 70.77◦.

36. A general solution to the cooling equation found in Problem 34, that is, T = M +Ce−kt.

Since T (0) = 100◦, T (5) = 80◦, and T (10) = 65◦, we determine M , C, and k from the

system
M + C = 100

M + Ce−5k = 80

M + Ce−10k = 65

⇒

{
C(1− e−5k) = 20

Ce−5k(1− e−5k) = 15
⇒ e−5k = 3/4.
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To find M , we can now use the first two equations in the above system.{
M + C = 100

M + (3/4)C = 80
⇒ M = 20.

38. With m = 10, g = 9.81, and k = 5, the equation becomes

100
dv

dt
= 100(9.81)− 5v ⇒ 20

dv

dt
= 196.2− v.

Separating variables and integrating yields∫
dv

v − 196.2
= − 1

20

∫
dt ⇒ ln |v − 196.2| = − t

20
+ C1 ⇒ v = 196.2 + Ce−t/20,

where C is an arbitrary nonzero constant. With C = 0, this formula also gives the (lost)

constant solution v = 196.2. From the initial condition, v(0) = 10, we find C.

196.2 + C = 10 ⇒ C = −186.2 ⇒ v(t) = 196.2− 186.2e−t/20.

The terminal velocity of the object can be found by letting t→∞.

v∞ = lim
t→∞

(
196.2− 186.2e−t/20

)
= 196.2 (m/sec).

EXERCISES 2.3: Linear Equations

2. Neither.

4. Linear.

6. Linear.

8. Writing the equation in standard form,

dy

dx
− y

x
= 2x+ 1,

we see that

P (x) = −1

x
⇒ µ(x) = exp

[∫ (
−1

x

)
dx

]
= exp (− lnx) =

1

x
.

Multiplying the given equation by µ(x), we get

d

dx

(y
x

)
= 2 +

1

x
⇒ y = x

∫ (
2 +

1

x

)
dx = x (2x+ ln |x|+ C) .
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10. From the standard form of the given equation,

dy

dx
+

2

x
y = x−4,

we find that

µ(x) = exp

[∫
(2/x)dx

]
= exp (2 lnx) = x2

⇒ d

dx

(
x2y
)

= x−2 ⇒ y = x−2

∫
x−2dx = x−2

(
−x−1 + C

)
=
Cx− 1

x3
.

12. Here, P (x) = 4, Q(x) = x2e−4x. So, µ(x) = e4x and

d

dx

(
e4xy

)
= x2 ⇒ y = e−4x

∫
x2dx = e−4x

(
x3

3
+ C

)
.

14. We divide the equation by x to get to get its standard form.

dy

dx
+

3

x
y = x2 − 2x+ 4.

Thus, P (x) = 3/x, Q(x) = x2 − 2x+ 4,

µ(x) = exp

(∫
3

x
dx

)
= x3

⇒ x3y =

∫
x3
(
x2 − 2x+ 4

)
dx =

x6

6
− 2x5

5
+ x4 + C

⇒ y =
x3

6
− 2x2

5
+ x+ Cx−3.

16. We divide by x2 + 1 both sides of the given equation to get its standard form,

dy

dx
+

4x

x2 + 1
y =

x2 + 2x− 1

x2 + 1
.

Thus, P (x) = (4x)/(x2 + 1), Q(x) = (x2 + 2x− 1)/(x2 + 1),

µ(x) = exp

(∫
4x

x2 + 1
dx

)
= exp

[
2 ln(x2 + 1)

]
= (x2 + 1)2

⇒ (x2 + 1)2y =

∫
(x2 + 1)(x2 + 2x− 1)dx =

x5

5
+
x4

2
+ x2 − x+ C

⇒ y =

(
x5

5
+
x4

2
+ x2 − x+ C

)(
x2 + 1

)−2
.
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18. Since µ(x) = exp
(∫

4dx
)

= e4x, we have

d

dx

(
e4xy

)
= e4xe−x = e3x

⇒ y = e−4x

∫
e3xdx =

e−x

3
+ Ce−4x.

Substituting the initial condition, y = 4/3 at x = 0, yields

4

3
=

1

3
+ C ⇒ C = 1,

and so y = e−x/3 + e−4x is the solution to the given initial value problem.

20. We have

µ(x) = exp

(∫
3dx

x

)
= exp (3 lnx) = x3

⇒ x3y =

∫
x3 (3x− 2) dx =

3x5

5
− x4

2
+ C

⇒ y =
3x2

5
− x

2
+ Cx−3.

With y(1) = 1,

1 = y(1) =
3

5
− 1

2
+ C ⇒ C =

9

10
⇒ y =

3x2

5
− x

2
+

9

10x3
.

22. From the standard form of this equation,

dy

dx
+ y cotx = x,

we find

µ(x) = exp

(∫
cotx dx

)
= exp (ln sinx) = sinx.

(Alternatively, one can notice that the left-hand side of the original equation is the

derivative of the product y sin x.) So, using integration by parts, we obtain

y sin x =

∫
x sin x dx = −x cosx+ sinx+ C

⇒ y = −x cotx+ 1 + C csc x.

We find C using the initial condition y(π/2) = 2:

2 = −π
2

cot
π

2
+ 1 + C csc

(π
2

)
= 1 + C ⇒ C = 1,

and the solution is given by

y = −x cotx+ 1 + cscx.
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24. (a) The equation (12) on of the text becomes

dy

dt
+ 20y = 50e−10t ⇒ µ(t) = e20t

⇒ y = e−20t

∫
50e10tdt = 5e−10t + Ce−20t.

Since y(0) = 40, we have

40 = 5 + C ⇒ C = 35 ⇒ y = 5e−10t + 35e−20t.

The term 5e−10t will eventually dominate.

(b) This time, the equation (12) has the form

dy

dt
+ 10y = 50e−10t ⇒ µ(t) = e10t

⇒ y = e−10t

∫
50dt = e−10t(50t+ C).

Substituting the initial condition yields

40 = y(0) = C ⇒ y = e−10t(50t+ 40).

26. Here

P (x) =
sin x cosx

1 + sin2 x

⇒ µ(x) = exp

(∫
sin x cosx dx

1 + sin2 x

)
= exp

[
1

2
ln
(
1 + sin2 x

)]
=
√

1 + sin2 x.

Thus,

y
√

1 + sin2 x =

x∫
0

√
1 + sin2 tdt ⇒ y = (1 + sin2 x)−1/2

x∫
0

(1 + sin2 t)1/2dt

and

y(1) = (1 + sin2 1)−1/2

1∫
0

(1 + sin2 t)1/2dt.

We now use the Simpson’s Rule to find that y(1) ≈ 0.860.

28. (a) Substituting y = e−x into the equation (16) yields

d(e−x)

dx
+ e−x = −e−x + e−x = 0.
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So, y = e−x is a solution to (16).

The function y = x−1 is a solution to (17) because

d(x−1)

dx
+ (x−1)2 = (−1)x−2 + x−2 = 0.

(b) For any constant C,

d(Ce−x)

dx
+ Ce−x = −Ce−x + Ce−x = 0.

Thus y = Ce−x is a solution to (16).

Substituting y = Cx−1 into (17), we obtain

d(Cx−1)

dx
+ (Cx−1)2 = (−C)x−2 + C2x−2 = C(C − 1)x−2,

and so we must have C(C − 1) = 0 in order that y = Cx−1 is a solution to (17).

Thus, either C = 0 or C = 1.

(c) For the function y = Cŷ, one has

d(Cŷ)

dx
+ P (x) (Cŷ) = C

dŷ

dx
+ C (P (x)ŷ) = C

(
dŷ

dx
+ P (x)ŷ

)
= 0

if ŷ is a solution to y′ + P (x)y = 0.

30. (a) Multiplying both sides of (18) by y2, we get

y2 dy

dx
+ 2y3 = x.

If v = y3, then v′ = 3y2y′. Thus, y2y′ = v′/3, and we have

1

3

dv

dx
+ 2v = x,

which is equivalent to (19).

(b) The equation (19) is linear with P (x) = 6 and Q(x) = 3x. So,

µ(x) = exp

(∫
6dx

)
= e6x

⇒ v(x) = e−6x

∫
(3xe6x)dx =

e−6x

2

(
xe6x −

∫
e6xdx

)
=
e−6x

2

(
xe6x − e6x

6
+ C1

)
=
x

2
− 1

12
+ Ce−6x,

where C = C1/2 is an arbitrary constant. The back substitution yields

y =
3

√
x

2
− 1

12
+ Ce−6x.
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32. In the given equation, P (x) = 2, which implies that µ(x) = e2x. Following guidelines,

first we solve the equation on [0, 3]. On this interval, Q(x) ≡ 2. Therefore,

y1(x) = e−2x

∫
(2)e2xdx = 1 + C1e

−2x.

Since y1(0) = 0, we get

1 + C1e
0 = 0 ⇒ C1 = −1 ⇒ y1(x) = 1− e−2x.

For x > 3, Q(x) = −2 and so

y2(x) = e−2x

∫
(−2)e2xdx = −1 + C2e

−2x.

We now choose C2 so that

y2(3) = y1(3) = 1− e−6 ⇒ −1 + C2e
−6 = 1− e−6 ⇒ C2 = 2e6 − 1.

Therefore, y2(x) = −1 + (2e6 − 1)e−2x, and the continuous solution to the given initial

value problem on [0,∞) is

y(x) =

{
1− e−2x, 0 ≤ x ≤ 3,

−1 + (2e6 − 1)e−2x, x > 3.

The graph of this function is shown in Fig. 2–C, page 72.

34. (a) Since P (x) is continuous on (a, b), its antiderivatives given by
∫
P (x)dx are con-

tinuously differentiable, and therefore continuous, functions on (a, b). Since the

function ex is continuous on (−∞,∞), composite functions µ(x) = e
R

P (x)dx are

continuous on (a, b). The range of the exponential function is (0,∞). This implies

that µ(x) is positive with any choice of the integration constant. Using the chain

rule, we conclude that

dµ(x)

dx
= e

R
P (x)dx d

dx

(∫
P (x)dx

)
= µ(x)P (x)

for any x on (a, b).

(b) Differentiating (8), we apply the product rule and obtain

dy

dx
= −µ−2µ′

(∫
µQdx+ C

)
+ µ−1µQ = −µ−1P

(∫
µQdx+ C

)
+Q ,

and so

dy

dx
+ Py =

[
−µ−1P

(∫
µQdx+ C

)
+Q

]
+ P

[
µ−1

(∫
µQdx+ C

)]
= Q .
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(c) Suggested choice of the antiderivative and the constant C yields

y(x0) = µ(x)−1

 x∫
x0

µQdx+ y0µ(x0)

∣∣∣∣∣∣
x=x0

= µ(x0)
−1y0µ(x0) = y0 .

(d) We assume that y(x) is a solution to the initial value problem (15). Since µ(x) is a

continuous positive function on (a, b), the equation (5) is equivalent to (4). Since,

from the part (a), the left-hand side of (5) is the derivative of the product µ(x)y(x),

this function must be an antiderivative of the right-hand side, which is µ(x)Q(x).

Thus, we come up with (8), where the integral means one of the antiderivatives, for

example, the one suggested in the part (c) (which has zero value at x0). Substituting

x = x0 into (8), we conclude that

y0 = y(x0) = µ(x0)
−1

(∫
µQdx+ C

)∣∣∣∣
x=x0

= Cµ(x0)
−1,

and so C = y0µ(x0) is uniquely defined.

36. (a) If µ(x) = exp
(∫

Pdx
)

and yh(x) = µ(x)−1, then

dyh

dx
= (−1)µ(x)−2dµ(x)

dx
= −µ(x)−2µ(x)P (x) = −µ(x)−1P (x)

and so
dyh

dx
+ P (x)yh = −µ(x)−1P (x) + P (x)µ(x)−1 = 0,

i.e., yh is a solution to the equation y′ + Py = 0. Now, the formula (8) yields

y = µ(x)−1

(∫
µ(x)Q(x)dx+ C

)
= yh(x)v(x) + Cyh(x) = yp(x) + Cyh(x),

where v(x) =
∫
µ(x)Q(x)dx.

(b) Separating variables in (22) and integrating, we obtain

dy

y
= −3dx

x
⇒

∫
dy

y
= −

∫
3dx

x
⇒ ln |y| = −3 ln x+ C.

Since we need just one solution yh, we take C = 0

ln |y| = −3 ln x ⇒ y = ±x−3,

and we choose, say, yh = x−3.
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(c) Substituting yp = v(x)yh(x) = v(x)x−3 into (21), we get

dv

dx
yh + v

dyh

dx
+

3

x
vyh =

dv

dx
yh + v

(
dyh

dx
+

3

x
yh

)
=
dv

dx
yh = x2.

Therefore, dv/dx = x2/yh = x5.

(d) Integrating yields

v(x) =

∫
x5dx =

x6

6
.

(We have chosen zero integration constant.)

(e) The function

y = Cyh + vyh = Cx−3 +
x3

6

is a general solution to (21) because

dy

dx
+

3

x
y =

d

dx

(
Cx−3 +

x3

6

)
+

3

x

(
Cx−3 +

x3

6

)
=

(
−3Cx−4 +

x2

2

)
+

(
3Cx−4 +

x2

2

)
= x2.

38. Dividing both sides of (6) by µ and multiplying by dx yields

dµ

µ
= Pdx ⇒

∫
dµ

µ
=

∫
Pdx

⇒ ln |µ| =
∫
Pdx ⇒ µ = ± exp

(∫
Pdx

)
.

Choosing the positive sign, we obtain (7).

EXERCISES 2.4: Exact Equations

2. This equation is not separable because the coefficient x10/3 − 2y cannot be written as a

product f(x)g(y). Writing the equation in the form

x
dy

dx
− 2y = −x10/3,

we see that the equation is linear. Since M(x, y) = x10/3 − 2y, N(x, y) = x,

∂M

∂y
= −2 6= ∂N

∂x
= 1,

and so the equation is not exact.
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4. First we note that M(x, y) =
√
−2y − y2 depends only on y and N(x, y) = 3 + 2x− x2

depends only on x. So, the equation is separable. It is not linear with x as independent

variable because M(x, y) is not a linear function of y. Similarly, it is not linear with y

as independent variable because N(x, y) is not a linear function of x. Computing

∂M

∂y
=

1

2

(
−2y − y2

)−1/2
(−2− 2y) = − 1 + y√

−2y − y2
,

∂N

∂x
= 2− 2x,

we see that the equation (5) in Theorem 2 is not satisfied. Therefore, the equation is

not exact.

6. It is separable, linear with x as independent variable, and not exact because

∂M

∂y
= x 6= ∂N

∂x
= 0.

8. Here, M(x, y) = 2x+y cos(xy), N(x, y) = x cos(xy)−2y. Since M(x, y)/N(x, y) cannot

be expressed as a product f(x)g(y), the equation is not separable. We also conclude that

it is not linear because M(x, y)/N(x, y) is not a linear function of y and N(x, y)/M(x, y)

is not a linear function of x. Taking partial derivatives

∂M

∂y
= cos(xy)− xy sin(xy) =

∂N

∂x
,

we see that the equation is exact.

10. In this problem, M(x, y) = 2x + y, N(x, y) = x − 2y. Thus, My = Nx = 1, and the

equation is exact. We find

F (x, y) =

∫
(2x+ y)dx = x2 + xy + g(y),

∂F

∂y
= x+ g′(y) = N(x, y) = x− 2y

⇒ g′(y) = −2y ⇒ g(y) =

∫
(−2y)dy = −y2

⇒ F (x, y) = x2 + xy − y2,

and so x2 + xy − y2 = C is a general solution.

12. We compute
∂M

∂y
= ex cos y =

∂N

∂x
.
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Thus, the equation is exact.

F (x, y) =

∫ (
ex sin y − 3x2

)
dx = ex sin y − x3 + g(y),

∂F

∂y
= ex cos y + g′(y) = ex cos y − 1

3
y−2/3

⇒ g′(y) = −1

3
y−2/3 ⇒ g(y) =

1

3

∫
y−2/3dy = y1/3 .

So, ex sin y − x3 + 3
√
y = C is a general solution.

14. Since M(t, y) = et(y − t), N(t, y) = 1 + et, we find that

∂M

∂y
= et =

∂N

∂t
.

Then

F (t, y) =

∫
(1 + et)dy = (1 + et)y + h(t),

∂F

∂t
= ety + h′(t) = et(y − t) ⇒ h′(t) = −tet

⇒ h(t) = −
∫
tetdt = −(t− 1)et,

and a general solution is given by

(1 + et)y − (t− 1)et = C ⇒ y =
(t− 1)et + C

1 + et
.

16. Computing

∂M

∂y
=

∂

∂y

(
yexy − y−1

)
= exy + xyexy + y−2,

∂N

∂x
=

∂

∂x

(
xexy + xy−2

)
= exy + xyexy + y−2,

we see that the equation is exact. Therefore,

F (x, y) =

∫ (
yexy − y−1

)
dx = exy − xy−1 + g(y).

So,
∂F

∂y
= xexy + xy−2 + g′(y) = N(x, y) ⇒ g′(y) = 0.

Thus, g(y) = 0, and the answer is exy − xy−1 = C.
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18. Since
∂M

∂y
=
∂N

∂x
= 2y2 + sin(x+ y),

the equation is exact. We find

F (x, y) =

∫ [
2x+ y2 − cos(x+ y)

]
dx = x2 + xy2 − sin(x+ y) + g(y),

∂F

∂y
= 2xy − cos(x+ y) + g′(y) = 2xy − cos(x+ y)− ey

⇒ g′(y) = −ey ⇒ g(y) = −ey.

Therefore,

F (x, y) = x2 + xy2 − sin(x+ y)− ey = C

gives a general solution.

20. We find

∂M

∂y
=

∂

∂y
[y cos(xy)] = cos(xy)− xy sin(xy),

∂N

∂x
=

∂

∂x
[x cos(xy)] = cos(xy)− xy sin(xy).

Therefore, the equation is exact and

F (x, y) =

∫ (
x cos(xy)− y−1/3

)
dy = sin(xy)− 3

2
y2/3 + h(x)

∂F

∂x
= y cos(xy) + h′(x) =

2√
1− x2

+ y cos(xy)

⇒ h′(x) =
2√

1− x2
⇒ h(x) = 2 arcsinx,

and a general solution is given by

sin(xy)− 3

2
y2/3 + 2 arcsinx = C.

22. In Problem 16, we found that a general solution to this equation is

exy − xy−1 = C.

Substituting the initial condition, y(1) = 1, yields e− 1 = C. So, the answer is

exy − xy−1 = e− 1.
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24. First, we check the given equation for exactness.

dM

dx
= et =

∂N

∂t
.

So, it is exact. We find

F (t, x) =

∫ (
et − 1

)
dx = x

(
et − 1

)
+ g(t),

∂F

∂t
= xet + g′(t) = xet + 1 ⇒ g(t) =

∫
dt = t

⇒ x
(
et − 1

)
+ t = C

is a general solution. With x(1) = 1, we get

(1) (e− 1) + 1 = C ⇒ C = e,

and the solution is given by

x =
e− t

et − 1
.

26. Taking partial derivatives My and Nx, we find that the equation is exact. So,

F (x, y) =

∫
(tan y − 2) dx = x(tan y − 2) + g(y),

∂F

∂y
= x sec2 y + g′(y) = x sec2 y + y−1

⇒ g′(y) = y−1 ⇒ g(y) = ln |y|,

and

x(tan y − 2) + ln |y| = C

is a general solution. Substituting y(0) = 1 yields C = 0. Therefore, the answer is

x(tan y − 2) + ln y = 0.

(We removed the absolute value sign in the logarithmic function because y(0) > 0.)

28. (a) Computing
∂M

∂y
= cos(xy)− xy sin(xy),

which must be equal to ∂N/∂x, we find that

N(x, y) =

∫
[cos(xy)− xy sin(xy)] dx

=

∫
[x cos(xy)]′x dx = x cos(xy) + g(y).
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(b) Since
∂M

∂y
= (1 + xy)exy − 4x3 =

∂N

∂x
,

we conclude that

N(x, y) =

∫ [
(1 + xy)exy − 4x3

]
dx = xexy − x4 + g(y).

30. (a) Differentiating, we find that

∂M

∂y
= 5x2 + 12x3y + 8xy ,

∂N

∂x
= 6x2 + 12x3y + 6xy .

Since My 6= Nx, the equation is not exact.

(b) Multiplying given equation by xnym and taking partial derivatives of new coeffi-

cients yields

d

dy

(
5xn+2ym+1 + 6xn+3ym+2 + 4xn+1ym+2

)
= 5(m+ 1)xn+2ym + 6(m+ 2)xn+3ym+1 + 4(m+ 2)xn+1ym+1

d

dx

(
2xn+3ym + 3xn+4ym+1 + 3xn+2ym+1

)
= 2(n+ 3)xn+2ym + 3(n+ 4)xn+3ym+1 + 3(n+ 2)xn+1ym+1.

In order that these polynomials are equal, we must have equal coefficients at similar

monomials. Thus, n and m must satisfy the system
5(m+ 1) = 2(n+ 3)

6(m+ 2) = 3(n+ 4)

4(m+ 2) = 3(n+ 2).

Solving, we obtain n = 2 and m = 1. Therefore, multiplying the given equation by

x2y yields an exact equation.

(c) We find

F (x, y) =

∫ (
5x4y2 + 6x5y3 + 4x3y3

)
dx

= x5y2 + x6y3 + x4y3 + g(y).

Therefore,

∂F

∂y
= 2x5y + 3x6y2 + 3x4y2 + g′(y)
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= 2x5y + 3x6y2 + 3x4y2 ⇒ g(y) = 0,

and a general solution to the given equation is

x5y2 + x6y3 + x4y3 = C.

32. (a) The slope of the orthogonal curves, say m⊥, must be −1/m, where m is the slope

of the original curves. Therefore, we have

m⊥ =
Fy(x, y)

Fx(x, y)
⇒ dy

dx
=
Fy(x, y)

Fx(x, y)
⇒ Fy(x, y) dx− Fx(x, y) dy = 0.

(b) Let F (x, y) = x2 + y2. Then we have Fx(x, y) = 2x and Fy(x, y) = 2y. Plugging

these expressions into the final result of part (a) gives

2y dx− 2x dy = 0 ⇒ y dx− x dy = 0.

To find the orthogonal trajectories, we must solve this differential equation. To this

end, note that this equation is separable and thus∫
1

x
dx =

∫
1

y
dy ⇒ ln |x| = ln |y|+ C

⇒ eln |x|−C = eln |y| ⇒ y = kx, where k = ±e−C .

Therefore, the orthogonal trajectories are lines through the origin.

(c) Let F (x, y) = xy. Then we have Fx(x, y) = y and Fy(x, y) = x. Plugging these

expressions into the final result of part (a) gives

x dx− y dy = 0.

To find the orthogonal trajectories, we must solve this differential equation. To this

end, note that this equation is separable and thus∫
x dx =

∫
y dy ⇒ x2

2
=
y2

2
+ C ⇒ x2 − y2 = k ,

where k := 2C. Therefore, the orthogonal trajectories are hyperbolas.

34. To use the method described in Problem 32, we rewrite the equation x2 + y2 = kx in

the form x+ x−1y2 = k. Thus, F (x, y) = x+ x−1y2,

∂F

∂x
= 1− x−2y2,

∂F

∂y
= 2x−1y.
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Substituting these derivatives in the equation given in Problem 32(b), we get the re-

quired. Multiplying the equation by xnym, we obtain

2xn−1ym+1dx+
(
xn−2ym+2 − xnym

)
dy = 0.

Therefore,

∂M

∂y
= 2(m+ 1)xn−1ym ,

∂N

∂x
= (n− 2)xn−3ym+2 − nxn−1ym .

Thus, to have an exact equation, n and m must satisfy{
n− 2 = 0

2(m+ 1) = −n .

Solving, we obtain n = 2, m = −2. With this choice, the equation becomes

2xy−1dx+
(
1− x2y−2

)
dy = 0,

and so

G(x, y) =

∫
M(x, y)dx =

∫
2xy−1dx = x2y−1 + g(y),

∂G

∂y
= −x2y−2 + g′(y) = N(x, y) = 1− x2y−2.

Therefore, g(y) = y, and the family of orthogonal trajectories is given by x2y−1 +y = C.

Writing this equation in the form x2 + y2−Cy = 0, we see that, given C, the trajectory

is the circle centered at (0, C/2) and of radius C/2.

Several given curves and their orthogonal trajectories are shown in Fig. 2–D, page 72.

36. The first equation in (4) follows from (9) and the Fundamental Theorem of Calculus.

∂F

∂x
=

∂

∂x

 x∫
x0

M(t, y)dt+ g(y)

 = M(t, y)|t=x = M(x, y).

For the second equation in (4),

∂F

∂y
=

∂

∂y

 x∫
x0

M(t, y)dt+ g(y)
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=
∂

∂y

x∫
x0

M(t, y)dt+ g′(y)

=
∂

∂y

x∫
x0

M(t, y)dt+

N(x, y)− ∂

∂y

x∫
x0

M(t, y)dt

 = N(x, y).

EXERCISES 2.5: Special Integrating Factors

2. This equation is neither separable, nor linear. Since

∂M

∂y
= x−1 6= ∂N

∂x
= y,

it is not exact either. But

My −Nx

N
=
x−1 − y

xy − 1
=

1− xy

x(xy − 1)
= −1

x

is a function of just x. So, there exists an integrating factor µ(x), which makes the

equation exact.

4. This equation is also not separable and not linear. Computing

∂M

∂y
= 1 =

∂N

∂x
,

we see that it is exact.

6. It is not separable, but linear with x as independent variable. Since

∂M

∂y
= 4 6= ∂N

∂x
= 1,

this equation is not exact, but it has an integrating factor µ(x), because

My −Nx

N
=

3

x

depends on x only.

8. We find that

∂M

∂y
= 2x,

∂N

∂x
= −6x ⇒ Nx −My

M
=
−8x

2xy
= −4

y

depends just on y. So, an integrating factor is

µ(y) = exp

[∫ (
−4

y

)
dy

]
= exp (−4 ln y) = y−4 .

56



Exercises 2.5

So, multiplying the given equation by y−4, we get an exact equation

2xy−3dx+
(
y−2 − 3x2y−4

)
dy = 0.

Thus,

F (x, y) =

∫
2xy−3dx = x2y−3 + g(y),

∂F

∂y
= −3x2y−4 + g′(y) = y−2 − 3x2y−4

⇒ g′(y) = y−2 ⇒ g(y) = −y−1 .

This yields a solution

F (x, y) = x2y−3 − y−1 = C,

which together with the lost solution y ≡ 0, gives a general solution to the given equation.

10. Since
∂M

∂y
= 1,

∂N

∂x
= −1, and

My −Nx

N
=

2

−x
,

the equation has an integrating factor

µ(x) = exp

[∫ (
−2

x

)
dx

]
= exp (−2 ln x) = x−2 .

Therefore, the equation

x−2
[(
x4 − x+ y

)
dx− xdy

]
=
(
x2 − x−1 + x−2y

)
dx− x−1dy = 0

is exact. Therefore,

F (x, y) =

∫ (
−x−1

)
dy = −x−1y + h(x),

∂F

∂x
= x−2y + h′(x) = x2 − x−1 + x−2y

⇒ h′(x) = x2 − x−1 ⇒ h(x) =
x3

3
− ln |x|

⇒ −y
x

+
x3

3
− ln |x| = C ⇒ y =

x4

3
− x ln |x| − Cx .

Together with the lost solution, x ≡ 0, this gives a general solution to the problem.

12. Here, M(x, y) = 2xy3 + 1, N(x, y) = 3x2y2 − y−1. Since

∂M

∂y
= 6xy2 =

∂N

∂x
,
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the equation is exact. So, we find that

F (x, y) =

∫ (
2xy3 + 1

)
dx = x2y3 + x+ g(y),

∂F

∂y
= 3x2y2 + g′(y) = 3x2y2 − y−1

⇒ g′(y) = −y−1 ⇒ g(y) = − ln |y|,

and the given equation has a general solution

x2y3 + x− ln |y| = C.

14. Multiplying the given equation by xnym yields

(
12xnym + 5xn+1ym+1

)
dx+

(
6xn+1ym−1 + 3xn+2ym

)
dy = 0.

Therefore,

∂M

∂y
= 12mxnym−1 + 5(m+ 1)xn+1ym,

∂N

∂x
= 6(n+ 1)xnym−1 + 3(n+ 2)xn+1ym.

Matching the coefficients, we get a system{
12m = 6(n+ 1)

5(m+ 1) = 3(n+ 2)

to determine n and m. This system has the solution n = 3, m = 2. Thus, the given

equation multiplied by x3y2, that is,

(
12x3y2 + 5x4y3

)
dx+

(
6x4y + 3x5y2

)
dy = 0,

is exact. We compute

F (x, y) =

∫ (
12x3y2 + 5x4y3

)
dx = 3x4y2 + x5y3 + g(y),

∂F

∂y
= 6x4y + 3x5y2 + g′(y) = 6x4y + 3x5y2

⇒ g′(y) = 0 ⇒ g(y) = 0,

and so 3x4y2 + x5y3 = C is a general solution to the given equation.
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16. (a) An equation Mdx +Ndy = 0 has an integrating factor µ(x + y) if and only if the

equation

µ(x+ y)M(x, y)dx+ µ(x+ y)N(x, y)dy = 0

is exact. According to Theorem 2, Section 2.4, this means that

∂

∂y
[µ(x+ y)M(x, y)] =

∂

∂x
[µ(x+ y)N(x, y)] .

Applying the product and chain rules yields

µ′(x+ y)M(x, y) + µ(x+ y)
∂M(x, y)

∂y
= µ′(x+ y)N(x, y) + µ(x+ y)

∂N(x, y)

∂x
.

Collecting similar terms yields

µ′(x+ y) [M(x, y)−N(x, y)] = µ(x+ y)

[
∂N(x, y)

∂x
− ∂M(x, y)

∂y

]
⇔ ∂N/∂x− ∂M/∂y

M −N
=
µ′(x+ y)

µ(x+ y)
. (2.1)

The right-hand side of (2.1) depends on x+ y only so the left-hand side does.

To find an integrating factor, we let s = x+ y and denote

G(s) =
∂N/∂x− ∂M/∂y

M −N
.

Then (2.1) implies that

µ′(s)

µ(s)
= G(s) ⇒ ln |µ(s)| =

∫
G(s) ds

⇒ |µ(s)| = exp

[∫
G(s) ds

]
⇒ µ(s) = ± exp

[∫
G(s) ds

]
. (2.2)

In this formula, we can choose either sign and any integration constant.

(b) We compute

∂N/∂x− ∂M/∂y

M −N
=

(1 + y)− (1 + x)

(3 + y + xy)− (3 + x+ xy)
= 1 .

Applying formula (2.2), we obtain

µ(s) = exp

[∫
(1)ds

]
= es ⇒ µ(x+ y) = ex+y ,

Multiplying the given equation by µ(x+ y), we get an exact equation

ex+y(3 + y + xy)dx+ ex+y(3 + x+ xy)dy = 0
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and follow the procedure of solving exact equations, Section 2.4.

F (x, y) =

∫
ex+y(3 + y + xy) dx = ey

[
(3 + y)

∫
exdx+ y

∫
xexdx

]
= ey [(3 + y)ex + y(x− 1)ex] + h(y) = ex+y(3 + xy) + h(y) .

Taking the partial derivative of F with respect to y, we find h(y).

∂F

∂y
= ex+y(3 + xy + x) + h′(y) = ex+yN(x, y) = ex+y(3 + x+ xy)

⇒ h′(y) = 0 ⇒ h(y) = 0 .

Thus, a general solution is

ex+y(3 + xy) = C .

18. The given condition, xM(x, y) + yN(x, y) ≡ 0, is equivalent to yN(x, y) ≡ −xM(x, y).

In particular, substituting x = 0, we obtain

yN(0, y) ≡ −(0)M(0, y) ≡ 0.

This implies that x ≡ 0 is a solution to the given equation.

To obtain other solutions, we multiply the equation by x−1y. This gives

x−1yM(x, y)dx+ x−1yN(x, y)dy = x−1yM(x, y)dx− x−1xM(x, y)dy

= xM(x, y)
(
x−2ydx− x−1dy

)
= −xM(x, y)d

(
x−1y

)
= 0 .

Therefore, x−1y = C or y = Cx.

Thus, a general solution is

y = Cx and x ≡ 0.

20. For the equation

e
R

P (x)dx [P (x)y −Q(x)] dx+ e
R

P (x)dxdy = 0,

we compute

∂M

∂y
=

∂

∂y

(
e

R
P (x)dx [P (x)y −Q(x)]

)
= e

R
P (x)dxP (x),

∂N

∂x
=

∂

∂x

(
e

R
P (x)dx

)
= e

R
P (x)dx d

dx

(∫
P (x)dx

)
= e

R
P (x)dxP (x).

Therefore, ∂M/∂y = ∂N/∂x, and the equation is exact.
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EXERCISES 2.6: Substitutions and Transformations

2. We can write the equation in the form

dx

dt
=
x2 − t2

2tx
=

1

2

(
x

t
− t

x

)
,

which shows that it is homogeneous. At the same time, it is a Bernoulli equation because

it can be written as
dx

dt
− 1

2t
x = − t

2
x−1,

4. This is a Bernoulli equation.

6. Dividing this equation by θdθ, we obtain

dy

dθ
− 1

θ
y =

1√
θ
y1/2.

Therefore, it is a Bernoulli equation. It can also be written in the form

dy

dθ
=
y

θ
+

√
y

θ
,

and so it is homogeneous too.

8. We can rewrite the equation in the form

dy

dx
=

sin(x+ y)

cos(x+ y)
= tan(x+ y).

Thus, it is of the form dy/dx = G(ax+ by) with G(t) = tan t.

10. Writing the equation in the form

dy

dx
=
xy + y2

x2
=
y

x
+
(y
x

)2

and making the substitution v = y/x, we obtain

v + x
dv

dx
= v + v2 ⇒ dv

v2
=
dx

x
⇒

∫
dv

v2
=

∫
dx

x

⇒ −1

v
= ln |x|+ C ⇒ −x

y
= ln |x|+ C ⇒ y = − x

ln |x|+ C
.

In addition, separating variables, we lost a solution v ≡ 0, corresponding to y ≡ 0.
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12. From
dy

dx
= −x

2 + y2

2xy
= −1

2

(
x

y
+
y

x

)
,

making the substitution v = y/x, we obtain

v + x
dv

dx
= −1

2

(
1

v
+ v

)
= −1 + v2

2v
⇒ x

dv

dx
= −1 + v2

2v
− v = −1 + 3v2

2v

⇒ 2v dv

1 + 3v2
= −dx

x
⇒

∫
2v dv

1 + 3v2
= −

∫
dx

x

⇒ 1

3
ln
(
1 + 3v2

)
= − ln |x|+ C2 ⇒ 1 + 3v2 = C1|x|−3,

where C1 = e3C2 is any positive constant. Making the back substitution, we finally get

1 + 3
(y
x

)2

=
C1

|x|3
⇒ 3

(y
x

)2

=
C1

|x|3
− 1 =

C1 − |x|3

|x|3

⇒ 3|x|y2 = C1 − |x|3 ⇒ 3|x|y2 + |x|3 = C1 ⇒ 3xy2 + x3 = C ,

where C = ±C1 is any nonzero constant.

14. Substituting v = y/θ yields

v + θ
dv

dθ
= sec v + v ⇒ θ

dv

dθ
= sec v

⇒ cos v dv =
dθ

θ
⇒

∫
cos v dv =

∫
dθ

θ
⇒ sin v = ln |θ|+ C ⇒ y = θ arcsin (ln |θ|+ C) .

16. We rewrite the equation in the form

dy

dx
=
y

x

(
ln
y

x
+ 1
)

and substitute v = y/x to get

v + x
dv

dx
= v (ln v + 1) ⇒ x

dv

dx
= v ln v ⇒

∫
dv

v ln v
=

∫
dx

x

⇒ ln | ln v| = ln |x|+ C1 ⇒ ln v = ±eC1x = Cx ⇒ v = eCx,

where C 6= 0 is any constant. Note that, separating variables, we lost a solution, v ≡ 1,

which can be included in the above formula by letting C = 0. Thus we have v = eCx.

where C is any constant. Substituting back y = xv yields a general solution

y = xeCx

to the given equation.
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18. With z = x+ y + 2 and z′ = 1 + y′, we have

dz

dx
= z2 + 1 ⇒ dz

z2 + 1
= dx ⇒

∫
dz

z2 + 1
=

∫
dx

⇒ arctan z = x+ C ⇒ x+ y + 2 = z = tan(x+ C)

⇒ y = tan(x+ C)− x− 2.

20. Substitution z = x− y yields

1− dz

dx
= sin z ⇒ dz

dx
= 1− sin z ⇒ dz

1− sin z
= dx

⇒
∫

dz

1− sin z
=

∫
dx = x+ C.

The left-hand side integral can be found as follows.∫
dz

1− sin z
=

∫
(1 + sin z)dz

1− sin2 z
=

∫
(1 + sin z)dz

cos2 z

=

∫
sec2 z +

∫
tan z sec z dz = tan z + sec z.

Thus, a general solution is given implicitly by

tan(x− y) + sec(x− y) = x+ C.

22. Dividing the equation by y3 yields

y−3 dy

dx
− y−2 = e2x.

We now make a substitution v = y−2 so that v′ = −2y−3y′, and get

dv

dx
+ 2v = −2e2x.

This is a linear equation. So,

µ(x) = exp

(∫
2dx

)
= e2x,

v(x) = e−2x

∫ (
−2e2x

)
e2xdx = −(1/2)e−2x

(
e4x + C

)
= −e

2x + Ce−2x

2
.

Therefore,
1

y2
= −e

2x + Ce−2x

2
⇒ y = ±

√
− 2

e2x + Ce−2x
.

Dividing the equation by y3, we lost a constant solution y ≡ 0.
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24. We divide this Bernoulli equation by y1/2 and make a substitution v = y1/2.

y−1/2 dy

dx
+

1

x− 2
y1/2 = 5(x− 2)

⇒ 2
dv

dx
+

1

x− 2
v = 5(x− 2) ⇒ dv

dx
+

1

2(x− 2)
v =

5(x− 2)

2
.

An integrating factor for this linear equation is

µ(x) = exp

[ ∫
dx

2(x− 2)

]
=
√
|x− 2|.

Therefore,

v(x) =
1√
|x− 2|

∫
5(x− 2)

√
|x− 2|

2
dx

=
1√
|x− 2|

(
|x− 2|5/2 + C

)
= (x− 2)2 + C|x− 2|−1/2.

Since y = v2, we finally get

y =
[
(x− 2)2 + C|x− 2|−1/2

]2
.

In addition, y ≡ 0 is a (lost) solution.

26. Multiplying the equation by y2, we get

y2 dy

dx
+ y3 = ex.

With v = y3, v′ = 3y2y′, the equation becomes

1

3

dv

dx
+ v = ex ⇒ dv

dx
+ 3v = 3ex ⇒ d

dx

(
e3xv

)
= 3e4x

⇒ v = e−3x

∫
3e4xdx =

3ex

4
+ Ce−3x.

Therefore,

y = 3
√
v =

3

√
3ex

4
+ Ce−3x .

28. First, we note that y ≡ 0 is a solution, which will be lost when we divide the equation

by y3 and make a substitution v = y−2 to get a linear equation

y−3 dy

dx
+ y−2 + x = 0 ⇒ dv

dx
− 2v = 2x.
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An integrating factor for this equation is

µ(x) = exp

[∫
(−2)dx

]
= e−2x.

Thus,

v = e2x

∫
2xe−2xdx = e2x

(
−xe−2x +

∫
e−2xdx

)
= e2x

(
−xe−2x − e−2x

2
+ C

)
= −x− 1

2
+ Ce2x.

So,

y = ±v−1/2 = ± 1√
−x− 1

2
+ Ce2x

.

30. We make a substitution

x = u+ h, y = v + k,

where h and k satisfy the system (14) in the text, i.e.,{
h+ k − 1 = 0

k − h− 5 = 0.

Solving yields h = −2, k = 3. Thus, x = u− 2 and y = v + 3. Since dx = du, dy = dv,

this substitution leads to the equation

(u+ v)du+ (v − u)dv = 0 ⇒ dv

du
=
u+ v

u− v
=

1 + (v/u)

1− (v/u)
.

This is a homogeneous equation, and a substitution z = v/u (v′ = z + uz′) yields

z + u
dz

du
=

1 + z

1− z
⇒ u

dz

du
=

1 + z

1− z
− z =

1 + z2

1− z

⇒ (1− z)dz

1 + z2
=
du

u

⇒ arctan z − 1

2
ln
(
1 + z2

)
= ln |u|+ C1

⇒ 2 arctan
v

u
− ln

[
u2
(
1 + z2

)]
= 2C1

⇒ 2 arctan
v

u
− ln

(
u2 + v2

)
= C.

The back substitution yields

2 arctan

(
y − 3

x+ 2

)
− ln

[
(x+ 2)2 + (y − 3)2] = C.
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32. To obtain a homogeneous equation, we make a substitution x = u + h, y = v + k with

h and k satisfying{
2h+ k + 4 = 0

h− 2k − 2 = 0
⇒ h = −6

5
, k = −8

5
.

This substitution yields

(2u+ v)du+ (u− 2v)dv = 0 ⇒ dv

du
=
v + 2u

2v − u
=

(v/u) + 2

2(v/u)− 1
.

We now let z = v/u (so, v′ = z + uz′) and conclude that

z + u
dz

du
=

z + 2

2z − 1
⇒ u

dz

du
=

z + 2

2z − 1
− z =

−2z2 + 2z + 2

2z − 1

⇒
∫

(2z − 1)dz

z2 − z − 1
= −2

∫
du

u

⇒ ln
∣∣z2 − z − 1

∣∣ = −2 ln |u|+ C1 ⇒ ln
∣∣u2z2 − u2z − u2

∣∣ = C1

⇒ ln
∣∣v2 − uv − u2

∣∣ = C1

⇒ ln

∣∣∣∣∣
(
y +

8

5

)2

−
(
y +

8

5

)(
x+

6

5

)
−
(
x+

6

5

)2
∣∣∣∣∣ = C1

⇒ (5y + 8)2 − (5y + 8) (5x+ 6)− (5x+ 6)2 = C,

where C = ±25eC1 6= 0 is any constant.

Separating variables, we lost two constant solutions z(u), which are the zeros of the

polynomial z2 − z − 1. They can be included in the above formula by taking C = 0.

Therefore, a general solution is given by

(5y + 8)2 − (5y + 8) (5x+ 6)− (5x+ 6)2 = C,

where C is an arbitrary constant.

34. In Problem 2, we found that the given equation can be written as a Bernoulli equation,

dx

dt
− 1

2t
x = − t

2
x−1 .

Thus,

2x
dx

dt
− 1

t
x2 = −t ⇒

(
v = x2

) dv

dt
− 1

t
v = −t.

The latter is a linear equation, which has an integrating factor

µ(t) = exp

(
−
∫
dt

t

)
=

1

t
.
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Thus,

v = t

∫
(−1)dt = t(−t+ C) = −t2 + Ct

⇒ x2 + t2 − Ct = 0,

where C is an arbitrary constant. We also note that a constant solution, t ≡ 0, was lost

in writing the given equation as a Bernoulli equation.

36. Dividing the equation by y2 yields

y−2 dy

dx
+

1

x
y−1 = x3 ⇒ v = y−1, v′ = −y−2y′

⇒ −dv
dx

+
1

x
v = x3 ⇒ dv

dx
− 1

x
v = −x3

⇒ µ(x) = exp

(
−
∫
dx

x

)
=

1

x

⇒ v = −x
∫
x2dx = −x

(
x3

3
+ C1

)
= −x

4 + Cx

3
,

where C = 3C1 is an arbitrary constant. Thus,

y = v−1 = − 3

x4 + Cx
.

Together with the constant (lost) solution y ≡ 0, this gives a general solution to the

original equation.

38. Since this equation is a Bernoulli equation (see Problem 6), we make a substitution

v = y1/2 so that 2v′ = y−1/2y′ and obtain a linear equation

2
dv

dθ
− 1

θ
v = θ−1/2 ⇒ dv

dθ
− 1

2θ
v =

1

2
θ−1/2.

An integrating factor for this equation is

µ(θ) = exp

(
−
∫
dθ

2θ

)
= θ−1/2.

So,

v = θ1/2

∫ (
1

2
θ−1/2θ−1/2

)
dθ =

θ1/2

2
(ln |θ|+ C).

Therefore,

y = v2 =
θ

4
(ln |θ|+ C)2 .

Dividing the given equation by θ dθ, we lost a constant solution θ ≡ 0.
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40. Using the conclusion made in Problem 8, we make a substitution v = x+ y, v′ = 1 + y′,

and obtain a separable equation

dv

dx
= tan v + 1 ⇒ dv

tan v + 1
= dx.

The integral of the left-hand side can be found, for instance, as follows.∫
dv

tan v + 1
=

∫
cos v dv

sin v + cos v
=

1

2

∫ (
cos v − sin v

sin v + cos v
+ 1

)
dv

=
1

2

[∫
d(sin v + cos v)

sin v + cos v
+

∫
dv

]
=

1

2
(ln | sin v + cos v|+ v) .

Therefore,

1

2
(ln | sin v + cos v|+ v) = x+ C1

⇒ ln | sin(x+ y) + cos(x+ y)|+ x+ y = 2x+ C2

⇒ ln | sin(x+ y) + cos(x+ y)| = x− y + C2

⇒ sin(x+ y) + cos(x+ y) = ±eC2ex−y = Cex−y,

where C 6= 0 is an arbitrary constant. Note that in procedure of separating variables we

lost solutions corresponding to

tan v + 1 = 0 ⇒ x+ y = v = −π
4

+ kπ, k = 0,±1,±2, . . . ,

which can be included in the above formula by letting C = 0.

42. Suggested substitution, y = vx2 (so that y′ = 2xv + x2v′), yields

2xv + x2 dv

dx
= 2vx+ cos v ⇒ x2 dv

dx
= cos v.

Solving this separable equation, we obtain

dv

cos v
=
dx

x2
⇒ ln | sec v + tan v| = −x−1 + C1

⇒ sec v + tan v = ±eC1e−1/x = Ce−1/x

⇒ sec
( y
x2

)
+ tan

( y
x2

)
= Ce−1/x ,

where C = ±eC1 is an arbitrary nonzero constant. With C = 0, this formula also

includes lost solutions

y =
[π
2

+ (2k + 1)π
]
x2, k = 0,±1,±2, . . . .
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So, together with the other set of lost solutions,

y =
(π

2
+ 2kπ

)
x2, k = 0,±1,±2, . . . ,

we get a general solution to the given equation.

44. From
dy

dx
= −a1x+ b1y + c1

a2x+ b2y + c2
,

using that a2 = ka1 and b2 = kb1, we obtain

dy

dx
= − a1x+ b1y + c1

ka1x+ kb1y + c2
= − a1x+ b1y + c1

k(a1x+ b1y) + c2
= G (a1x+ b1y) ,

where

G(t) = − t+ c1
kt+ c2

.

46. (a) Substituting y = u + 1/v into the Riccati equation (18) and using the fact that

u(x) is a solution, we obtain

d

dx

(
u+ v−1

)
= P (x)

(
u+ v−1

)2
+Q(x)

(
u+ v−1

)
+R(x)

⇔ du

dx
− v−2 dv

dx
= P (x)u2 + 2P (x)u(x)v−1 + P (x)v−2

+Q(x)u+Q(x)v−1 +R(x)

⇔ du

dx
− v−2 dv

dx
=
[
P (x)u2 +Q(x)u+R(x)

]
+ [2P (x)u(x) +Q(x)] v−1 + P (x)v−2

⇔ −v−2 dv

dx
= [2P (x)u(x) +Q(x)] v−1 + P (x)v−2

⇔ dv

dx
+ [2P (x)u(x) +Q(x)] v = −P (x),

which is indeed a linear equation with respect to v.

(b) Writing
dy

dx
= x3y2 +

(
−2x4 +

1

x

)
y + x5

and using notations in (18), we see that P (x) = x3, Q(x) = (−2x4 + 1/x), and

R(x) = x5. So, using part (a), we are looking for other solutions to the given

equation of the form y = x+ 1/v, where v(x) satisfies

dv

dx
+

[
2
(
x3
)
x+

(
−2x4 +

1

x

)]
v =

dv

dx
+−1

x
v = −x3.
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Since an integrating factor for this linear equation is

µ(x) = exp

(∫
dx

x

)
= x,

we obtain

v = x−1

∫ (
−x4

)
dx =

−x5 + C

5x
⇒ 1

v
=

5x

C − x5
,

and so a general solution is given by

y = x+
5x

C − x5
.

REVIEW PROBLEMS

2. y = −8x2 − 4x− 1 + Ce4x

4.
x3

6
− 4x2

5
+

3x

4
− Cx−3

6. y−2 = 2 ln |1− x2|+ C and y ≡ 0

8. y = (Cx2 − 2x3)
−1

and y ≡ 0

10. x+ y + 2y1/2 + arctan(x+ y) = C

12. 2ye2x + y3ex = C

14. x =
t2(t− 1)

2
+ t(t− 1) + 3(t− 1) ln |t− 1|+ C(t− 1)

16. y = cos x ln | cosx|+ C cosx

18. y = 1− 2x+
√

2 tan
(√

2x+ C
)

20. y =

(
Cθ−3 − 12θ2

5

)1/3

22. (3y − 2x+ 9)(y + x− 2)4 = C

24. 2
√
xy + sinx− cos y = C

26. y = Ce−x2/2

28. (y + 3)2 + 2(y + 3)(x+ 2)− (x+ 2)2 = C
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30. y = Ce4x − x− 1

4

32. y2 = x2 ln(x2) + 16x2

34. y = x2 sin x+
2x2

π2

36. sin(2x+ y)− x3

3
+ ey = sin 2 +

2

3

38. y =

[
2−

(
1

4

)
arctan

(x
2

)]2

40. y =
8

1− 3e−4x − 4x

TABLES

nnn xxxnnn yyynnn nnn xxxnnn yyynnn

1 0.1 1.475 6 0.6 1.353368921
2 0.2 1.4500625 7 0.7 1.330518988
3 0.3 1.425311875 8 0.8 1.308391369
4 0.4 1.400869707 9 0.9 1.287062756
5 0.5 1.376852388 10 1.0 1.266596983

Table 2–A: Euler’s approximations to y′ = x− y, y(0) = 0, on [0, 1] with h = 0.1.

FIGURES
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Figure 2–A: The graph of the solution in Problem 28.

71



Chapter 2

 
K3 K2 1 2 3

 

K3

K2

K1

1

2

3

Figure 2–B: The direction field and solution curve in Problem 32.
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Figure 2–C: The graph of the solution in Problem 32.
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Figure 2–D: Curves and their orthogonal trajectories in Problem 34.
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CHAPTER 3: Mathematical Models and Numerical

Methods Involving First Order Equations

EXERCISES 3.2: Compartmental Analysis

2. Let x(t) denote the mass of salt in the tank at time t with t = 0 denoting the moment

when the process started. Thus we have x(0) = 0.5 kg. We use the mathematical model

described by equation (1) of the text to find x(t). Since the solution is entering the tank

with rate 6 L/min and contains 0.05 kg/L of salt,

input rate = 6 (L/min) · 0.05 (kg/L) = 0.3 (kg/min).

We can determine the concentration of salt in the tank by dividing x(t) by the volume

of the solution, which remains constant, 50 L, because the flow rate in is the same as

the flow rate out. Therefore, the concentration of salt at time t is x(t)/50 kg/L and

output rate =
x(t)

50
(kg/L) · 6 (L/min) =

3x(t)

25
(kg/min).

Then the equation (1) yields

dx

dt
= 0.3− 3x

25
⇒ dx

dt
+

3x

25
= 0.3 , x(0) = 0.5 .

This equation is linear, has integrating factor µ(t) = exp
[∫

(3/25)dt
]

= e3t/25, and so

d
(
e3t/25x

)
dt

= 0.3e3t/25

⇒ e3t/25x = 0.3

(
25

3

)
e3t/25 + C = 2.5e3t/25 + C ⇒ x = 2.5 + Ce−3t/25.

Using the initial condition, we find C.

0.5 = x(0) = 2.5 + C ⇒ C = −2 ,

and so the mass of salt in the tank after t minutes is

x(t) = 2.5− 2e−3t/25.
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If the concentration of salt in the tank is 0.03 kg/L, then the mass of salt there is

0.03× 50 = 1.5 kg, and we solve

2.5− 2e−3t/25 = 1.5 ⇒ e−3t/25 =
1

2
⇒ t =

25 ln 2

3
≈ 5.8 (min).

4. Let x(t) denote the mass of salt in the tank at time t. Since at time t = 0 the tank

contained pure water, the initial condition is x(0) = 0. We use the mathematical model

described by equation (1) of the text to find x(t). Since the solution is entering the tank

with rate 4 L/min and contains 0.2 kg/L of salt,

input rate = 4 (L/min) · 0.2 (kg/L) = 0.8 (kg/min).

We can determine the concentration of salt in the tank by dividing x(t) by the volume

v(t) of the solution at time t. Since 4 L enter the tank every minute but only 3 L flow

out, the volume of the solution after t minutes is

v(t) = v(0) + (4− 3)t = 100 + t (L).

Therefore, the concentration of salt at time t is x(t)/v(t) = x(t)/(100 + t) kg/L and

output rate =
x(t)

100 + t
(kg/L) · 3 (L/min) =

3x(t)

100 + t
(kg/min).

Then the equation (1) yields

dx

dt
= 0.8− 3x

100 + t
⇒ dx

dt
+

3x

100 + t
= 0.8 , x(0) = 0 .

This equation is linear, has integrating factor

µ(t) = exp

(∫
3dt

100 + t

)
= (100 + t)3,

and so

d ((100 + t)3x)

dt
= 0.8(100 + t)3

⇒ (100 + t)3x = 0.2(100 + t)4 + C ⇒ x = 0.2(100 + t) + C(100 + t)−3.

Using the initial condition, we find C.

0 = x(0) = 20 + C · 10−6 ⇒ C = −2 · 107 ,
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and so the mass of salt in the tank after t minutes is

x = 0.2(100 + t)− 2 · 107(100 + t)−3.

To answer the second question, we solve

x(t)

v(t
= 0.2− 2 · 107(100 + t)−4 = 0.1 ⇒ (100 + t)4 = 2 · 108

⇒ t =
4
√

2 · 108 − 100 = 100
(

4
√

2− 1
)
≈ 19 (min).

6. The volume V of the room is

V = 12× 8× 8 = 768 ft3.

Let v(t) denote the amount of carbon monoxide in the room at time t. Since, at t = 0,

the room contained 3% of carbon monoxide, we have an initial condition

v(0) = 768 · 0.03 = 23.04 .

The input rate in this problem is zero, because incoming air does not contain carbon

monoxide. Next, the output rate can be found as the concentration at time t multiplied

by the rate of outgoing flow, which is 100 ft3/min. Thus,

output rate =
v(t)

V
· 100 =

100v(t)

768
=

25v(t)

192
,

and the equation (1) of the text yields

dv

dt
= −25v

192
, v(0) = 23.04 .

This is the exponential model (10), and so we can use formula (11) for the solution to

this initial value problem.

v(t) = 23.04e−(25/192)t .

The air in the room will be 0.01% carbon monoxide when

v(t)

V
= 10−4 ⇒ 23.04e−(25/192)t

768
= 10−4 ⇒ t =

192 ln 300

25
≈ 43.8 (min).

8. Let s(t), t ≥ 0, denote the amount of salt in the tank at time t. Thus we have s(0) = s0 lb.

We again use the mathematical model

rate of change = input rate− output rate (3.1)
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to find s(t). Here

input rate = 4 (gal/min) · 0.5 (lb/gal) = 2 (lb/min).

Since the flow rate in is the same as the flow rate out, the volume of the solution remains

constant (200 gal), we have

c(t) =
s(t)

200
(lb/gal)

and so

output rate = 4 (gal/min) · s(t)
200

(lb/gal) =
s(t)

50
(lb/min).

Then (3.1) yields
ds

dt
= 2− s

50
⇒ ds

dt
+

s

50
= 2 .

This equation is linear, has integrating factor µ(t) = exp
[∫

(1/50)dt
]

= et/50. Integrat-

ing, we get

d
(
et/50s

)
dt

= 2et/50 ⇒ s = 100 + Ce−t/50 ⇒ c(t) =
1

2
+ (C/200)e−t/50,

where the constant C depends on s0. (We do not need an explicit formula.) Taking the

limit yields

lim
t→∞

c(t) = lim
t→∞

[
1

2
+ (C/200)e−t/50

]
=

1

2
.

10. In this problem, the dependent variable is x, the independent variable is t, and the

function f(t, x) = a− bx. Since f(t, x) = f(x), i.e., does not depend on t, the equation

is autonomous. To find equilibrium solutions, we solve

f(x) = 0 ⇒ a− bx = 0 ⇒ x =
a

b
.

Thus, x(t) ≡ a/b is an equilibrium solution. For x < a/b, x′ = f(x) > 0 meaning that x

increases, while x′ = f(x) < 0 when x > a/b and so x decreases. Therefore, the phase

line for the given equation is as it is shown in Fig. 3–A on page 100. From this picture,

we conclude that the equilibrium x = a/b is a sink. Thus, regardless of an initial point

x0, the solution to the corresponding initial value problem will approach x = a/b, as

t→∞.

12. Equating expressions (21) evaluated at times ta and tb = 2ta yields

pap1e
−Ap1ta

p1 − pa (1− e−Ap1ta)
=

pbp1e
−2Ap1ta

p1 − pb (1− e−2Ap1ta)
.
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With χ = e−Ap1ta , this equation becomes

pap1χ

p1 − pa(1− χ)
=

pbp1χ
2

p1 − pb(1− χ2)

⇒ pap1(p1 − pb)χ+ papbp1χ
3 = pbp1(p1 − pa)χ

2 + papbp1χ
3

⇒ p1χ [pa(p1 − pb)− pb(p1 − pa)χ] = 0 ⇒ χ =
pa(p1 − pb)

pb(p1 − pa)
.

Hence, with t = ta, expression (21) yields

p0 =
pap1 [pa(p1 − pb)] / [pb(p1 − pa)]

p1 − pa + pa [pa(p1 − pb)] / [pb(p1 − pa)]

⇒ p0 =
p2

ap1(p1 − pb)

pb(p1 − pa)2 + p2
a(p1 − pb)

=
p2

a(p1 − pb)

pbp1 − 2papb + p2
a

⇒ p1

(
p0pb − p2

a

)
= pa (2p0pb − p0pa − papb)

⇒ p1 =
pa(papb − 2p0pb + p0pa)

p2
a − p0pb

,

and the formula for p1 is proved.

For the second formula, using the expression for χ, we conclude that

χ = e−Ap1ta =
pa(p1 − pb)

pb(p1 − pa)

⇒ A =
1

p1ta
ln

1

χ
=

1

p1ta
ln
pb(p1 − pa)

pa(p1 − pb)
.

Since

p1 − pa = pa

[
papb − 2p0pb + p0pa

p2
a − p0pb

− 1

]
= pa

papb − p0pb + p0pa − p2
a

p2
a − p0pb

=
pa(pb − pa)(pa − p0)

p2
a − p0pb

p1 − pb =
pa(papb − 2p0pb + p0pa)

p2
a − p0pb

− pb

=
p0p

2
a − 2p0papb + p0p

2
b

p2
a − p0pb

=
p0(pb − pa)

2

p2
a − p0pb

,

we have
pb(p1 − pa)

pa(p1 − pb)
=
pb

pa

· pa(pa − p0)

p0(pb − pa)
=
pb(pa − p0)

p0(pb − pa)
,

and the formula for A is proved.

14. Counting time from the year 1970, we have an initial condition p(0) = 300 for the

population of alligators. Thus, the formula (11) yields

p(t) = 300ekt.
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In the year 1980, t = 10 and, therefore,

p(10) = 300ek(10) = 1500 ⇒ k =
ln 5

10
⇒ p(t) = 300e(t ln 5)/10.

In the year 2010, t = 2010 − 1970 = 40, and the estimated population of alligators,

according to the Malthusian law, is

p(40) = 300e(40 ln 5)/10 = 300 · 54 = 187500.

16. By definition,

p′(t) = lim
h→0

p(t+ h)− p(t)

h
.

Replacing h by −h in the above equation, we obtain

p′(t) = lim
h→0

p(t− h)− p(t)

−h
= lim

h→0

p(t)− p(t− h)

h
.

Adding the previous two equations together yields

2p′(t) = lim
h→0

[
p(t+ h)− p(t)

h
+
p(t)− p(t− h)

h

]
= lim

h→0

[
p(t+ h)− p(t− h)

h

]
.

Thus

p′(t) = lim
h→0

[
p(t+ h)− p(t− h)

2h

]
.

18. Setting t = 0 for the year 2000, we obtain

ta = 1920− 1900 = 20 , tb = 1940− 1900 = 40 .

Thus, tb = 2ta , and so we can use formulas given in Problem 12 to find p1 and A. With

p0 = 76.21 , pa = 106.02 , pb = 132.16 ,

these formulas give

p1 =

[
papb − 2p0pb + p0pa

p2
a − p0pb

]
pa ≈ 176.73 ,

A =
1

p1ta
ln

[
pb(pa − p0)

p0(pb − pa)

]
≈ 0.0001929 .

We can now use the logistic equation (15).

In 1990, t = 90 and computations give p(90) ≈ 166.52.

In 2000, t = 100 and p(100) ≈ 169.35 .

The census data presented in Table 3.1 are 248.71 and 281.42, respectively.
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20. Assuming that only dust clouds affect the intensity of the light, we conclude that the

intensity of the light halved after passing the dust cloud.

Let s denote the distance (in light-years), and let I(s) be the intensity of the light after

passing s light-years in the dust cloud. Using the given conditions, we then obtain an

initial value problem
dI

ds
= −0.1I, I(0) = I0.

Using the formula (11), we find that

I(s) = I0e
−0.1s .

If the thickness of the dust cloud is s∗, then

I(s∗) = I0e
−0.1s∗ = (1/2)I0 ⇒ s∗ = 10 ln 2 ≈ 6.93 .

Thus, the thickness of the dust cloud is approximately 6.93 light-years.

22. Let D(t) and S(t) denote the diameter and the surface area of the snowball at time t,

respectively. From geometry, we know that S = πD2. Since we are given that D′(t) is

proportional to S(t), the equation describing the melting process is

dD

dt
= kS ⇒ dD

dt
= k

(
πD2

)
⇒ dD

D2
= kπ dt

⇒ −D−1 = kπt+ C ⇒ D = − 1

kπt+ C
.

Initially, D(0) = 4, and we also know that D(30) = 3. This yields a system

4 = D(0) = − 1

C
⇒ C = −1

4
;

3 = D(30) = − 1

30kπ + C
⇒ 30kπ + C = −1

3
⇒ kπ = − 1

360
.

Thus,

D(t) = − 1

(−1/360)t− (1/4)
=

360

t+ 90
.

The diameter D(t) of the snowball will be 2 inches when

360

t+ 90
= 2 ⇒ t = 90 (min),

and, mathematically speaking, the snowball will melt infinitely long, but will never

disappear, because D(t) is a strictly decreasing approaching zero, as t→∞.
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24. If m(t) (with t measured in years) denotes the mass of the radioactive substance, the

law of decay says that
dm

dt
= km(t) ,

with the decay constant k depending on the substance. If the initial mass of the substance

is m(0) = m0, then the formula (11) of the text yields

m(t) = m0e
kt.

In this problem, m0 = 300 g, and we know that m(5) = 200 g. These data yield

200 = m(5) = 300 · ek(5) ⇒ k =
ln(2/3)

5
,

and so the decay is governed by the equation

m(t) = 300e[t ln(2/3)]/5 = 300

(
2

3

)t/5

.

If only 10 g of the substance remain, them

300

(
2

3

)t/5

= 10 ⇒ t =
5 ln(30)

ln(3/2)
≈ 41.94 (yrs).

26. (a) Let M(t) denote the mass of carbon-14 present in the burnt wood of the campfire.

Since carbon-14 decays at a rate proportional to its mass, we have

dM

dt
= −αM,

where α is the proportionality constant. This equation is linear and separable.

Using the initial condition, M(0) = M0, from (11) we obtain

M(t) = M0e
−αt.

Given the half-life of carbon-14 to be 5550 years, we find α from

1

2
M0 = M0e

−α(5550) ⇒ 1

2
= e−α(5550) ⇒ α =

ln(0.5)

−5550
≈ 0.00012489 .

Thus,

M(t) = M0e
−0.00012489t .

Now we are told that after t years 2% of the original amount of carbon-14 remains

in the campfire and we are asked to determine t. Thus

0.02M0 = M0e
−0.00012489t ⇒ 0.02 = e−0.00012489t

⇒ t =
ln 0.02

−0.00012489
≈ 31323.75 (years).
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(b) We repeat the arguments from part (a), but use the half-life 5600 years given in

Problem 21 instead of 5550 years, to find that

1

2
M0 = M0e

−α(5600) ⇒ 1

2
= e−α(5600) ⇒ α =

ln(0.5)

−5600
≈ 0.00012378 ,

and so the decay is governed by

M(t) = M0e
−0.00012378t .

Therefore, 3% of the original amount of carbon-14 remains in the campfire when t

satisfies

0.03M0 = M0e
−0.00012378t ⇒ 0.03 = e−0.00012378t

⇒ t =
ln 0.03

−0.00012378
≈ 28328.95 (years).

(c) Comparing the results obtained in parts (a) and (b) with the answer to Problem 21,

that is, 31606 years, we conclude that the model is more sensitive to the percent of

the mass remaining.

EXERCISES 3.3: Heating and Cooling of Buildings

2. Let T (t) denote the temperature of the beer at time t (in minutes). According to the

Newton’s law of cooling (see (1)),

dT

dt
= K[70− T (t)],

where we have taken H(t) ≡ U(t) ≡ 0 and M(t) ≡ 70◦ F, with the initial condition

T (0) = 35◦ C. Solving this initial value problem yields

dT

T − 70
= −K dt ⇒ ln |T − 70| = −Kt+ C1 ⇒ T (t) = 70− Ce−Kt ;

35 = T (0) = 70− Ce−K(0) ⇒ C = 35 ⇒ T (t) = 70− 35e−Kt .

To find K, we use the fact that after 3min the temperature of the beer was 40◦ F. Thus,

40 = T (3) = 70− 35e−K(3) ⇒ K =
ln(7/6)

3
,

and so

T (t) = 70− 35e− ln(7/6)t/3 = 70− 35

(
6

7

)t/3

.
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Finally, after 20 min, the temperature of the beer will be

T (20) = 70− 35

(
6

7

)20/3

≈ 57.5 (F◦).

4. Let T (t) denote the temperature of the wine at time t (in minutes). According to the

Newton’s law of cooling,
dT

dt
= K[23− T (t)],

where we have taken the outside (room’s) temperature M(t) ≡ 23◦ C, with the initial

condition T (0) = 10◦ C. Solving this initial value problem yields

dT

T − 23
= −K dt ⇒ ln |T − 23| = −Kt+ C1 ⇒ T (t) = 23− Ce−Kt ;

10 = T (0) = 23− Ce−K(0) ⇒ C = 13 ⇒ T (t) = 23− 13e−Kt .

To find K, we use the fact that after 10min the temperature of the wine was 15◦ C.

Thus,

15 = T (10) = 23− 13e−K(10) ⇒ K =
ln(13/8)

10
,

and so

T (t) = 23− 13e− ln(13/8)t/10 = 23− 13

(
8

13

)t/10

.

We now solve the equation T (t) = 18.

18 = 23− 13

(
8

13

)t/10

⇒
(

8

13

)t/10

=
5

13
⇒ t =

10 ln(5/13)

ln(8/13)
≈ 19.7 (min).

6. The temperature function T (t) changes according to Newton’s law of cooling. Similarly

to Example 1, we conclude that, with H(t) = U(t) ≡ 0 and the outside temperature

M(t) ≡ 12◦C, a general solution formula (4) yields

T (t) = 12 + Ce−Kt .

To find C, we use the initial condition,

T (0) = T (at noon) = 21◦C ,

and get

21 = T (0) = 12 + Ce−K(0) ⇒ C = 21− 12 = 9 ⇒ T (t) = 12 + 9e−Kt .

82



Exercises 3.3

The time constant for the building is 1/K = 3hr; so K = 1/3 and T (t) = 12 + 9e−t/3 .

We now solve the equation

T (t) = 12 + 9e−t/3 = 16

to find the time when the temperature inside the building reaches 16◦C.

12 + 9e−t/3 = 16 ⇒ t = 3 ln

(
9

4

)
≈ 2.43 (hr).

Thus, the temperature inside the building will be 16◦C at 2.43 hours after noon, that is,

approximately at 2 :26p.m.

Similarly, with the time constant 1/K = 2, we get

T (t) = 12 + 9e−t/2 ⇒ 12 + 9e−t/2 = 16 ⇒ t = 2 ln

(
9

4

)
≈ 1.62 (hr)

or 12:37p.m.

8. Setting t = 0 at 2:00a.m., for the outside temperature M(t) we have

M(t) = 65− 15 cos

(
πt

12

)
so that a general solution (4) (with K = 1/2, H(t) ≡ U(t) ≡ 0) becomes

T (t) = e−t/2

{
1

2

∫
et/2

[
65− 15 cos

(
πt

12

)]
dt+ C

}
= 65− 540

36 + π2
cos

(
πt

12

)
− 90π

36 + π2
sin

(
πt

12

)
+ Ce−t/2 .

Neglecting the exponential term, which will become insignificant with time (say, next

day), we obtain

T (t) ≈ T̃ (t) = 65− 540

36 + π2
cos

(
πt

12

)
− 90π

36 + π2
sin

(
πt

12

)
.

Solving T̃ ′(t) = 0 on [0, 24) gives

540

36 + π2
sin

(
πt

12

)
− 90π

36 + π2
cos

(
πt

12

)
= 0 ⇒ tan

(
πt

12

)
=
π

6

⇒ tmin =
12

π
arctan

(π
6

)
≈ 1.84 (h) , tmax = tmin + 12 ≈ 13.84 (h) .

Therefore, the lowest temperature of T (tmin) ≈ 51.7◦F will be reached 1.84 (h) after

2 :00a.m., that is, at approximately 3 :50a.m.

The highest temperature of T (tmax) ≈ 78.3◦F will be 12 hours later, i.e., at 3 :50p.m.
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10. In this problem, we use the equation (9) from the text with the following values of

parameters.

K = 0.5 ,

M(t) ≡ 40 (◦F) ,

H(t) ≡ 0 ,

KU = K1 −K = 2− 0.5 = 1.5 ,

TD = 70 (◦F) .

Thus, we have
dT

dt
= 0.5 (40− T ) + 1.5 (70− T ) = 125− 2T .

Solving this linear equation yields

T (t) = e−2t

[∫
(125)e2tdt+ C

]
= 62.5 + Ce−2t .

Setting t = 0 at 7 : 00a.m., we find that

T (0) = 62.5 + C = 40 ⇒ C = −22.5 ⇒ T (t) = 62.5− 22.5e−2t .

At 8:00a.m., t = 1 so that

T (1) = 62.5− 22.5e−2 ≈ 59.5 (◦F) .

Since T (t) is an increasing function with

lim
t→∞

T (t) = 62.5 ,

the temperature in the lecture hall will never reach 65◦F.

12. We let T1(t) and T2(t) denote the temperature of the coffee of the impatient friend and

the relaxed friend, respectively, with t = 0 meaning the time when the coffee was served.

Both functions satisfy the Newton’s law (1) of cooling with H(t) ≡ U(t) ≡ 0 and the air

temperature M(t) ≡M0 = const. Therefore, by (4), we have

Tk(t) = M0 + Cke
−Kt , k = 1, 2 . (3.2)

The constants Ck depend on the initial temperatures of the coffee. Let’s assume that

the temperature of the coffee when served was T0 , the amount of the coffee ordered was
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V0 , the temperature of the cream was Tc , and the teaspoon used had the capacity of

Vc . With this assumptions, we have the initial conditions

T2(0) = T0 , T1(0) =
T0V0 + TcVc

V0 + Vc

(since the impatient friend immediately added a teaspoon of cream). Substituting these

initial conditions into (3.2) yields

C1 =
T0V0 + TcVc

V0 + Vc

−M0 , C2 = T0 −M0 .

Hence,

T1(t) = M0 +

(
T0V0 + TcVc

V0 + Vc

−M0

)
e−Kt = M0 +

(T0V0 + TcVc)−M0 (V0 + Vc)

V0 + Vc

e−Kt ,

T2(t) = M0 + (T0 −M0) e
−Kt ,

and so, after 5 min, the temperatures were

T1(5) = M0 +
(T0V0 + TcVc)−M0 (V0 + Vc)

V0 + Vc

e−5K ,

T2(5) = M0 + (T0 −M0) e
−5K .

At this same instant of time, the second (relaxed) friend had added a teaspoon of cream

reducing his coffee’s temperature to

T̃2(5) =
T2(5)V0 + TcVc

V0 + Vc

=

[
M0 + (T0 −M0) e

−5K
]
V0 + TcVc

V0 + Vc

.

We now compare T1(5) and T̃2(5).

T1(5)− T̃2(5) = (V0 + Vc)
−1 Vc (M0 − Tc)

(
1− e−5K

)
> 0 ,

because we assume that the cream is cooler than the air, i.e., Tc < M0 . Thus, the

impatient friend had the hotter coffee.

14. Since the time constant is now 72, we have K = 1/72. The temperature in the new tank

increases at the rate of 1◦F for every 1000 Btu. Furthermore, every hour of sunlight

provides an input of 2000 Btu to the tank. Thus,

H(t) = 1× 2 = 2 (◦F/h) .
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We are given that T (0) = 110, and that the temperature M(t) outside the tank is

constantly 80◦F. Hence, the temperature in the tank is governed by

dT

dt
=

1

72
[80− T (t)] + 2 = − 1

72
T (t) +

28

9
, T (0) = 110 .

Solving this separable equation gives

T (t) = 224− Ce−t/72 .

To find C, we use the initial condition and find that

T (0) = 110 = 224− C ⇒ C = 114 .

This yields

T (t) = 224− 114e−t/72 .

So, after 12 hours of sunlight, the temperature will be

T (12) = 224− 114e−12/72 ≈ 127.5 (◦F) .

16. Let A :=
√
C2

1 + C2
2 . Then

C1 cosωt+ C2 sinωt = A

(
C1√

C2
1 + C2

2

cosωt+
C2√

C2
1 + C2

2

sinωt

)
= A (α1 cosωt+ α2 sinωt) . (3.3)

We note that

α2
1 + α2

2 =

(
C1√

C2
1 + C2

2

)2

+

(
C2√

C2
1 + C2

2

)2

= 1 .

Therefore, α1 and α2 are the values of the cosine and sine functions of an angle φ, namely,

the angle satisfying

cosφ = α1 , sinφ = α2 ⇒ tanφ =
α2

α1

=
C2

C1

. (3.4)

Hence, (3.3) becomes

C1 cosωt+ C2 sinωt = A (cosφ cosωt+ sinφ sinωt) = A cos (ωt− φ) . (3.5)

In the equation (7) of the text,

F (t) =
cosωt+ (ω/K) sinωt

1 + (ω/K)2
= C1 cosωt+ C2 sinωt
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with

C1 =
1

1 + (ω/K)2
, C2 =

(ω/K)

1 + (ω/K)2

⇒ A =

√(
1

1 + (ω/K)2

)2

+

(
(ω/K)

1 + (ω/K)2

)2

=
(
1 + (ω/K)2

)−1/2
.

Thus, (3.4) and (3.5) give us

F (t) =
(
1 + (ω/K)2

)−1/2
cos (ωt− φ) , where tanφ =

ω

K
.

EXERCISES 3.4: Newtonian Mechanics

2. This problem is a particular case of Example 1 of the text. Therefore, we can use the

general formula (6) with

m =
400

g
=

400

32
= 12.5 (slugs),

b = 10, and v0 = v(0) = 0. But let us follow the general idea of Section 3.4, find an

equation of the motion, and solve it.

With given data, the force due to gravity is F1 = mg = 400 lb and the air resistance

force is F2 = −10v lb. Therefore, the velocity v(t) satisfies

12.5
dv

dt
= F1 + F2 = 400− 10v ⇒ dv

dt
= 32− 0.8v, v(0) = 0.

Separating variables and integrating yields

dv

0.8v − 32
= −dt ⇒ ln |0.8v − 32| = −0.8t+ C1

⇒ 0.8v − 32 = ±eC1e−0.8t = C2e
−0.8t ⇒ v(t) = 40 + Ce−0.8t .

Substituting the initial condition, v(0) = 0, we get C = −40, and so

v(t) = 40
(
1− e−0.8t

)
.

Integrating this equation yields

x(t) =

∫
v(t) dt = 40

∫ (
1− e−0.8t

)
dt = 40t+ 50e−0.8t + C,

and we find that C = −50 by using the initial condition, x(0) = 0. Therefore,

x(t) = 40t+ 50e−0.8t − 50 (ft).
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When the object hits the ground, x(t) = 500 ft. Thus we solve

x(t) = 40t+ 50e−0.8t − 50 = 500.

Since x(13) < 500 and x(14) > 500 a (positive) solution t ∈ [13, 14]. On this interval,

e−0.8t is very small, so we simply ignore it and solve

40t− 50 = 500 ⇒ t = 13.75 (sec).

4. Using the equation of the motion of the object found in Problem 2, we solve the equation

40t+ 50e−0.8t − 50 = 30 ⇒ 40t+ 50e−0.8t − 80 = 0.

This time, the solution belongs to [1, 2] and, therefore, we cannot ignore the exponential

term. Thus, we use Newton’s method (see Appendix A in the text) to approximate the

solution. We apply the recursive formula

tn+1 = tn −
g(tn)

g′(tn)

with

g(t) = 40t+ 50e−0.8t − 80 ⇒ g′(t) = 40
(
1− e−0.8t

)
and an initial guess t1 = 1. Computations yield

t1 = 1, g(t1) ≈ −17.53355;

t2 = 1.79601, g(t2) ≈ 3.72461;

t3 = 1.67386, g(t3) ≈ 0.05864;

t4 = 1.67187, g(t4) ≈ 0.000017 .

Therefore, the object will hit the ground approximately after 1.67 sec.

6. We can use the model discussed in Example 1 of the text with m = 8, b = 16, g = 9.81,

and the initial velocity v0 = −20 (the negative sign is due to the upward direction). The

formula (6) yields

x(t) =
mg

b
t+

m

b

(
v0 −

mg

b

) (
1− e−bt/m

)
=

(8)(9.81)

16
t− 8

16

(
20 +

(8)(9.81)

16

)(
1− e−(16)t/8

)
= 4.905t− 12.4525

(
1− e−2t

)
.
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Because the object is released 100 m above the ground, we determine when the object

strikes the ground by setting x(t) = 100 and solving for t. Since the (positive) root

belongs to [20, 24] (because x(20) < 100 and x(24) > 100), we can omit the exponential

term in x(t) and solve

4.905t− 12.4525 = 100 ⇒ t =
112.4525

4.905
≈ 22.9 (sec).

8. Since the air resistance force has different coefficients of proportionality for closed and

for opened chute, we need two differential equations describing the motion. Let x1(t),

x1(0) = 0, denote the distance the parachutist has fallen in t seconds with the chute

closed, and let v1(t) = dx1(t)/dt denote her velocity. With m = 100, b = b1 = 20 N-

sec/m, and v0 = 0 the initial value problem (4) of the text becomes

100
dv1

dt
= 100g − 20v1 ⇒ dv1

dt
+

1

5
v1 = g, v1(0) = 0.

This is a linear equation. Solving yields

dt
(
et/5v1

)
= et/5g ⇒ v1(t) = 5g + C1e

−t/5 ;

0 = v1(0) = 5g + C1 ⇒ C1 = −5g

⇒ v1(t) = 5g
(
1− e−t/5

)
= 49.05

(
1− e−t/5

)
⇒ x1(t) =

t∫
0

v1(s)ds = 49.05
(
s+ 5e−s/5

)∣∣s=t

s=0
= 49.05

(
t+ 5e−t/5 − 5

)
.

When the parachutist opens the chute t1 = 30 sec after leaving the helicopter, she is

3000− x1(30) ≈ 1773.14

meters above the ground and traveling at a velocity

v1(30) ≈ 48.93 (m/sec).

Setting the second equation, we for convenience reset the time t. Denoting by x2(t) the

distance passed by the parachutist during t sec from the moment when the chute opens,

and letting v2(t) = dx2(t)/dt, we have

100
dv2

dt
= 100g − 100v2, v2(0) = v1 (30) = 48.93, x2(0) = 0.
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Solving, we get

v2(t) = g + C2e
−t ;

48.93 = v2(0) = g + C2 ⇒ C2 = 48.93− g = 39.12

⇒ v2(t) = 9.81 + 39.12e−t

⇒ x2(t) =

t∫
0

v2(s)ds =
(
9.81s− 39.12e−s

)∣∣s=t

s=0

= 9.81t− 39.12e−t + 39.12.

With the chute open, the parachutist falls 1773.14m. Solving x2(t) = 1773.14 for t yields

9.81t− 39.12e−t + 39.12 = 1773.14 ⇒ t2 ≈ 176.76 (sec).

Therefore, the parachutist will hit the ground t1 + t2 = 30 + 176.76 = 206.76 sec after

dropping from the helicopter.

Repeating the above computations with t1 = 60, we get

v1(60) ≈ 49.05 ,

x1(60) = 2697.75 ,

v2(t) = 9.81 + 39.24e−t ,

x2(t) = 9.81t− 39.24e−t + 39.24 .

Solving x2(t) = 3000 − 2697.75 = 302.25 for t yields t2 ≈ 26.81 so that the parachutist

will land after t1 + t2 = 86.81 (sec).

10. The motion of the object is governed by two different equations. The first equation

describes the motion in the air, the second one corresponds to the motion in the water.

For the motion in the air, we let x1(t) be the distance from the object to the platform

and denote by v1(t) = x′1(t) its velocity at time t. Here we can use the model described

in Example 1 of the text with m = 2, b = b1 = 10, v0 = v1(0) = 0, and g = 9.81. Thus,

using formulas (5) and (6), we get

v(t) =
mg

b
+
(
v0 −

mg

b

)
e−bt/m = 1.962

(
1− e−5t

)
,

x(t) =
mg

b
t− m

b

(
v0 −

mg

b

) (
1− e−bt/m

)
= 1.962t− 0.392

(
1− e−5t

)
.

90



Exercises 3.4

Therefore, solving

x1(t) = 1.962t− 0.392
(
1− e−5t

)
= 30,

we obtain t ≈ 15.5 sec for the time when the object hit the water. The velocity of the

object at this moment was

v1(15.5) = 1.962
(
1− e−5(15.5)

)
≈ 1.962 .

We now go to the motion of the object in the water. For convenience, we reset the time.

Denoting by x2(t) the distance passed by the object from the water surface and by v2(t)

– its velocity at (reset) time t, we get we obtain initial conditions

v2(0) = 1.962 , x2(0) = 0.

For this motion, in addition to the gravity force Fg = mg and the resistance force

Fr = −100v, the buoyancy force Fb = −(1/2)mg is presented. Hence, the Newton’s

second law yields

m
dv2

dt
= mg − 100v − 1

2
mg =

1

2
mg − 100v

⇒ dv2

dt
=
g

2
− 100

m
v2 = 4.905− 50v2.

Solving the first equation and using the initial condition yields

v2(t) = 0.098 + Ce−50t ,

v2(0) = 0.098 + C = 1.962 ⇒ C = 1.864

⇒ v2(t) = 0.098 + 1.864e−50t

⇒ x2(t) =

∫ t

0

v2(s)ds = 0.098t− 0.037e−50t + 0.037 .

Combining the obtained formulas for the motion of the object in the air and in the water

and taking into account the time shift made, we obtain the following formula for the

distance from the object to the platform

x(t) =

{
1.962t− 0.392 (1− e−5t) , t ≤ 15.5

0.0981(t− 15.5)− 0.037e−50(t−15.5) + 30.037, t > 15.5 .

1 min after the object was released, it traveled in the water for 60 − 15.5 = 44.5 sec.

Therefore, it had the velocity

v2(44.5) ≈ 0.098 (m/sec).

91



Chapter 3

12. We denote by x(t) the distance from the shell to the ground at time t, and let v(t) = x′(t)

be its velocity. Choosing positive upward direction, we get initial conditions

x(0) = 0, v(0) = 200.

There are two forces acting on the shell: the gravity force Fg = −mg (with the negative

sign due to the upward positive direction) and the air resistance force Fr = −v/20 (with

the negative sign because air resistance acts in opposition to the motion). Thus, we

obtain an equation

m
dv

dt
= −mg − v

20
⇒ dv

dt
= −g − v

20m
= −g − v

40
.

Solving this linear equation yields

v(t) = −40g + Ce−t/40 = −392.4 + Ce−t/40 .

Taking into account the initial condition, we find C.

200 = v(0) = −392.4 + C ⇒ C = 592.4 ⇒ v(t) = −392.4 + 592.4e−t/40 .

At the point of maximum height, v(t) = 0. Solving

v(t) = −392.4 + 592.4e−t/40 = 0 ⇒ t = 40 ln

(
592.4

392.4

)
≈ 16.476,

we conclude that the shell reaches its maximum height 16.476 sec after the shot. Since

x(t) =

t∫
0

v(t) dt = −392.4t+ 23696
(
1− e−t/40

)
,

substituting t = 16.476, we find that the maximum height of the shell is

x(16.476) ≈ 1534.81 (m).

14. We choose downward positive direction and denote by v(t) the velocity of the object

at time t. There are two forces acting on the object: the gravity force Fg = mg and

the air resistance force Fr = −bvn (with the negative sign because air resistance acts in

opposition to the motion). Thus, we obtain an equation

m
dv

dt
= mg − bvn ⇒ dv

dt
= g − b

m
vn.

Assuming that a finite limit

lim
t→∞

v(t) = V

exists and using the equation of the motion, we conclude that
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(i) the limit

lim
t→∞

[v(t+ 1)− v(t)] = lim
t→∞

v(t+ 1)− lim
t→∞

v(t) = 0;

(ii) v′(t) has a finite limit at infinity and, moreover,

lim
t→∞

v′(t) = lim
t→∞

(
g − b

m
vn

)
= g − b

m
V n.

By Mean Value Theorem, for any N = 0, 1, 2, . . .

v(N + 1)− v(N) = v′ (θN) , θN ∈ (N,N + 1).

Therefore, (i) yields

lim
N→∞

v′ (θN) = 0,

and so, by (ii), v′(t) has zero limit at infinity and

g − b

m
V n = 0 ⇒ V = n

√
mg

b
.

16. The total torque exerted on the flywheel is the sum of the torque exerted by the motor

and the retarding torque due to friction. Thus, by Newton’s second law for rotation, we

have

I
dω

dt
= T − k

√
ω with ω(0) = ω0 ,

where I is the moment of inertia of the flywheel, ω(t) is the angular velocity, dω/dt is the

angular acceleration, T is the constant torque exerted by the motor, and k is a positive

constant of proportionality for the torque due to friction. Separating variables yields

dω√
ω − (T/k)

= −k
I
dt.

Since ∫
dx√
x− a

=
(
x = y2, dx = 2y dy

)
= 2

∫
y dy

y − a
= 2

[∫
dy + a

∫
dy

y − a

]
= 2 (y + a ln |y − a|) + C = 2

(√
x+ a ln |

√
x− a|

)
+ C,

integrating the above equation, we obtain

2
(√

ω + (T/k) ln
∣∣√ω − (T/k)

∣∣)+ C = −k
I
t

⇒ k
√
ω + T ln

∣∣k√ω − T
∣∣ = −k

2

2I
t+ C1 .
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Using the initial condition ω(0) = ω0 , we find that

C1 = k
√
ω0 + T ln |k

√
ω0 − T | .

Hence, ω(t) is given implicitly by

k
(√

ω −
√
ω0

)
+ T ln

∣∣∣∣ k√ω − T

k
√
ω0 − T

∣∣∣∣ = −k
2t

2I
.

18. Since we assume that there is no resistance force, there are only two forces acting on the

object: Fg, the force due to gravity, and Ff , the friction force. Using Fig. 3.11 in the

text, we obtain

Fg = mg sin 30◦ =
mg

2
,

Ff = −µN = −µmg cos 30◦ = −µmg
√

3

2
,

and so the equation describing the motion is

m
dv

dt
=
mg

2
− µmg

√
3

2
⇒ dv

dt
=
g

2

(
1− µ

√
3
)

=
g
(
5−

√
3
)

10

with the initial condition v(0) = 0. Therefore,

v(t) =

t∫
0

g
(
5−

√
3
)

10
ds =

g
(
5−

√
3
)

10
s

∣∣∣∣∣
s=t

s=0

=
g
(
5−

√
3
)

10
t

⇒ x(t) =

t∫
0

v(s)ds =
g
(
5−

√
3
)

20
s2

∣∣∣∣∣
s=t

s=0

=
g
(
5−

√
3
)

20
t2.

Solving

x(t) =
g
(
5−

√
3
)

20
t2 = 5 ⇒ t∗ =

10√
g
(
5−

√
3
) ,

we conclude that the object will reach the bottom of the plane t∗ sec after it is released

having the velocity

v (t∗) =
g
(
5−

√
3
)

10
· 10√

g
(
5−

√
3
) =

√
g
(
5−

√
3
)
≈ 5.66 (m/sec).

We remark that the mass of the object is irrelevant.
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20. The gravitational force Fg down the incline is

Fg = mg sinα,

the force Ff due to static friction satisfies

Ff ≤ µN = µmg cosα .

The object will slide if Fg > Ff . In the worst case, that is, in the case when the friction

force is the largest possible, the angle α must satisfy

mg sinα > µmg cosα ⇒ tanα > µ ⇒ α > arctanµ.

Thus, α0 = arctanµ.

22. In this problem, there are two forces acting on a sailboat: a constant horizontal force

due to the wind and a force due to the water resistance that acts in opposition to the

motion of the sailboat. All of the motion occurs along a horizontal axis. On this axis,

we choose the origin to be the point, where the boat begins to “plane”, set t = 0 at this

moment, and let x(t) and v(t) = x′(t) denote the distance the sailboat travels in time t

and its velocity, respectively. The force due to the wind is still

Fw = 600 N.

The force due to water resistance is now

Fr = −60v N.

Applying Newton’s second law we obtain

50
dv

dt
= 600− 60v ⇒ dv

dt
=

6

5
(10− v).

Since the velocity of the sailboat at t = 0 is 5 m/sec, a model for the velocity of the

moving sailboat is expressed as the initial value problem

dv

dt
=

6

5
(10− v), v(0) = 5 .

Separating variables and integrating yields

dv

v − 10
= −6dt

5
⇒ ln(v − 10) = −6t

5
+ C1 ⇒ v(t) = 10 + Ce−6t/5.
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Setting v = 5 when t = 0, we find that 5 = 10+C so that C = −5 and v(t) = 10−5e−6t/5.

The limiting velocity of the sailboat under these conditions is

lim
t→∞

v(t) = lim
t→∞

(
10− 5e−6t/5

)
= 10 (m/sec).

To find the equation of motion, we integrate v(t) using the initial condition x(0) = 0.

x(t) =

t∫
0

(
10− 5e−6s/5

)
ds =

(
10s+

25

6
e−6s/5

)∣∣∣∣t
0

= 10t+
25

6

(
e−6t/5 − 1

)
.

24. Dividing the equation by m0 − αt yields

dv

dt
= −g +

αβ

m0 − αt

⇒ v(t) =

t∫
0

(
−g +

αβ

m0 − αs

)
ds+ v(0)

= [−gs− β ln(m0 − αs)]|s=t
s=0 = −gt+ β ln

m0

m0 − αt
,

where we used the condition 0 ≤ t < m0/α so that m0 − αt > 0.

Since the height h(t) of the rocket satisfies h(0) = 0, we find

h(t) =

t∫
0

v(s)ds =

t∫
0

(
−gs+ β ln

m0

m0 − αs

)
ds

=

[
−gs

2

2
+ βs lnm0 +

β

α
(m0 − αs) ln

m0 − αs

e

]∣∣∣∣s=t

s=0

= βt− gt2

2
− β

α
(m0 − αt) ln

m0

m0 − αt
.

EXERCISES 3.5: Electrical Circuits

2. Capacitor voltage = − 10000

100000001
cos 100t+

100000000

100000001
sin 100t+

10000

100000001
e−1000000t V

Resistor voltage =
10000

100000001
cos 100t+

1

100000001
sin 100t− 10000

100000001
e−1000000t V

Current =
10000

100000001
cos 100t+

1

100000001
sin 100t− 10000

100000001
e−1000000t A

4. From (2), I =
1

L

∫
E(t)dt. From the derivative of (4), I = C

dE

dt
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6. Multiply (2) by I to derive
d

dt

(
1

2
LI2

)
+ RI2 = EI (power generated by the voltage

source equals the power inserted into the inductor plus the power dissipated by the

resistor). Multiply the equation above (4) by I, replace I by dq/dt and then replace q by

CEC in the capacitor term, and derive RI2 +
d

dt

(
1

2
CE2

C

)
= EI (power generated by

the voltage source equals the power inserted into the capacitor plus the power dissipated

by the resistor).

8. In cold weather, 96.27 hours. In (extremely) humid weather, 0.0485 seconds.

EXERCISES 3.6: Improved Euler’s Method

6. For k = 0, 1, 2, . . . , n, let xk = kh and zk = f (xk), where h = 1/n.

(a) h (z0 + z1 + z2 + · · ·+ zn−1)

(b) (h/2) (z0 + 2z1 + 2z2 + · · ·+ 2zn−1 + zn)

(c) (h/2) (z0 + 2z1 + 2z2 + · · ·+ 2zn−1 + zn)

8. See Table 3–A on page 98.

10. See Table 3–B on page 98.

12. φ(π) ≈ y (π; π2−4) ≈ 1.09589

14. 2.36 at x = 0.78

16. x = 1.26

20. See Table 3–C on page 99.

EXERCISES 3.7: Higher-Order Numerical Methods: Taylor and Runge-Kutta

2. yn+1 = yn + h
(
xnyn − y2

n

)
+
(
h2/2!

) [
yn + (xn − 2yn)

(
xnyn − y2

n

)]
4. yn+1 = yn + h

(
x2

n + yn

)
+
(
h2/2!

) (
2xn + x2

n + yn

)
+
(
h3/3!

) (
2 + 2xn + x2

n + yn

)
+
(
h4/4!

) (
2 + 2xn + x2

n + yn

)
6. Order 2: φ(1) ≈ 0.62747

Order 4: φ(1) ≈ 0.63231
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8. 0.63211

10. 0.70139 with h = 0.25

12. −0.928 at x = 1.2

14. 1.00000 with h = π/16

16. See Table 3–D on page 100.

20. x(10) ≈ 2.23597× 10−4

TABLES

Table 3–A: Improved Euler’s method approximations in Problem 8.

xn 1.2 1.4 1.6 1.8
yn 1.48 2.24780 3.65173 6.88712

Table 3–B: Improved Euler’s method approximations in Problem 10.

xnxnxn ynynyn

0.1 1.15845
0.2 1.23777
0.3 1.26029
0.4 1.24368
0.5 1.20046
0.6 1.13920
0.7 1.06568
0.8 0.98381
0.9 0.89623
1.0 0.80476
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Table 3–C: Improved Euler’s method approximations in Problem 20.

ttt r = 1.0r = 1.0r = 1.0 r = 1.5r = 1.5r = 1.5 r = 2.0r = 2.0r = 2.0
0 0.0 0.0 0.0

0.2 1.56960 1.41236 1.19211
0.4 2.63693 2.14989 1.53276
0.6 3.36271 2.51867 1.71926
0.8 3.85624 2.70281 1.84117
1.0 4.19185 2.79483 1.92743
1.2 4.42005 2.84084 1.99113
1.4 4.57524 2.86384 2.03940
1.6 4.68076 2.87535 2.07656
1.8 4.75252 2.88110 2.10548
2.0 4.80131 2.88398 2.12815
2.2 4.83449 2.88542 2.14599
2.4 4.85705 2.88614 2.16009
2.6 4.87240 2.88650 2.17126
2.8 4.88283 2.88668 2.18013
3.0 4.88992 2.88677 2.18717
3.2 4.89475 2.88682 2.19277
3.4 4.89803 2.88684 2.19723
3.6 4.90026 2.88685 2.20078
3.8 4.90178 2.88686 2.20360
4.0 4.90281 2.88686 2.20586
4.2 4.90351 2.88686 2.20765
4.4 4.90399 2.88686 2.20908
4.6 4.90431 2.88686 2.21022
4.8 4.90453 2.88686 2.21113
5.0 4.90468 2.88686 2.21186
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Table 3–D: Fourth-order Runge-Kutta approximations in Problem 16.

xnxnxn ynynyn

0.5 1.17677
1.0 0.37628
1.5 1.35924
2.0 2.66750
2.5 2.00744
3.0 2.72286
3.5 4.11215
4.0 3.72111

FIGURES

, < < < <>>>>
a/b

Figure 3–A: The phase line for x′ = a− bx in Problem 10.
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CHAPTER 4: Linear Second Order Equations

EXERCISES 4.1: Introduction: The Mass-Spring Oscillator

2. (a) Substituting cy(t) into the equation yields

m(cy)′′ + b(cy)′ + k(cy) = c (my′′ + by′ + ky) = 0.

(b) Substituting y1(t) + y2(t) into the given equation, we obtain

m (y1 + y2)
′′ + b (y1 + y2)

′ + k (y1 + y2) = (my′′1 + by′1 + ky1)

+ (my′′2 + by′2 + ky2) = 0.

4. With Fext = 0, m = 1, k = 9, and b = 6 equation (3) becomes

y′′ + 6y′ + 9y = 0 .

Substitution y1 = e−3t and y2 = te−3t yields

(
e−3t

)′′
+ 6

(
e−3t

)′
+ 9

(
e−3t

)
= 9e−3t − 18e−3t + 9e−3t = 0,(

te−3t
)′′

+ 6
(
te−3t

)′
+ 9

(
te−5t

)
= (9t− 6)e−3t + 6(1− 3t)e−3t + 9te−3t = 0.

Thus, y1 = e−3t and y2 = te−3t are solutions to the given equation.

Both solutions approach zero as t→∞.

6. With Fext = 2 cos 2t, m = 1, k = 4, and b = 0, the equation (3) has the form

y′′ + 4y′ = 2 cos 2t .

For y(t) = (1/2)t sin 2t, one has

y′(t) =
1

2
sin 2t+ t cos 2t, y′′(t) = 2 cos 2t− 2t sin 2t;

y′′ + 4y′ = (2 cos 2t− 2t sin 2t) + 4

(
1

2
t sin 2t

)
= 2 cos 2t.
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Hence, y(t) = (1/2)t sin 2t is a solution. Clearly, this function satisfies the initial condi-

tions. Indeed,

y(0) =
1

2
t sin 2t

∣∣∣∣
t=0

= 0

y′(0) =
1

2
sin 2t+ t cos 2t

∣∣∣∣
t=0

= 0.

As t increases, the spring will eventually break down since the solution oscillates with

the magnitude increasing without bound.

8. For y = A cos 3t+B sin 3t,

y′ = −3A sin 3t+ 3B cos 3t, y′′ = −9A cos 3t− 9B sin 3t.

Inserting y, y′, and y′′ into the given equation and matching coefficients yield

y′′ + 2y′ + 4y = 5 sin 3t

⇒ (−9A cos 3t− 9B sin 3t) + 2(−3A sin 3t+ 3B cos 3t) + 4(A cos 3t+B sin 3t)

= (−5A+ 6B) cos 3t+ (−6A− 5B) sin 3t = 5 sin 3t

⇒
−5A+ 6B = 0

−6A− 5B = 5
⇒

A = −30/61

B = −25/61.

Thus,

y = −(30/61) cos 3t− (25/61) sin 3t

is a synchronous solution to y′′ + 2y′ + 4y = 5 sin 3t.

10. (a) We seek solutions to (7) of the form y = A cos Ωt+B sin Ωt. Since

y′ = −AΩ sin Ωt+BΩ cos Ωt,

y′′ = −AΩ2 cos Ωt−BΩ2 sin Ωt,

we insert these equations into (7), collect similar terms, and match coefficients.

m(−AΩ2 cos Ωt−BΩ2 sin Ωt) + b(−AΩ sin Ωt+BΩ cos Ωt)

+k(A cos Ωt+B sin Ωt)

=
(
−mAΩ2 + bBΩ + kA

)
cos Ωt+

(
−mBΩ2 − bAΩ + kB

)
sin Ωt = cos Ωt

⇒

{
−mAΩ2 + bBΩ + kA = 1

−mBΩ2 − bAΩ + kB = 0
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⇒

{
A (−mΩ2 + k) +B (bΩ) = 1

A (−bΩ) +B (−mΩ2 + k) = 0

⇒ A = − mΩ2 − k

(mΩ2 − k)2 + b2Ω2
, B =

bΩ

(mΩ2 − k)2 + b2Ω2

⇒ y = − mΩ2 − k

(mΩ2 − k)2 + b2Ω2
cos Ωt+

bΩ

(mΩ2 − k)2 + b2Ω2
sin Ωt .

(b) With m = 1, b = 0.1, and k = 25, the coefficients A and B in part (a) are

A(Ω) = − Ω2 − 25

(Ω2 − 25)2 + 0.01
, B(Ω) =

0.1Ω2

(Ω2 − 25)2 + 0.01
.

The graphs of these functions are shown in Fig. 4–A on page 173.

(c) If m = 1, b = 0, and k = 25, the coefficients A and B in part (a) become

A(Ω) = − 1

Ω2 − 25
, B(Ω) ≡ 0 .

The graphs of these functions are shown in Fig. 4–B, page 173.

(d) If b = 0, then equation (7) reduces to my′′ + ky = cos Ωt.

Substituting y = A cos Ωt+B sin Ωt yields

m
(
−AΩ2 cos Ωt−BΩ2 sin Ωt

)
+ k (A cos Ωt+B sin Ωt) = cos Ωt

⇒
(
−mΩ2 + k

)
(A cos Ωt+B sin Ωt) = cos Ωt .

Assuming now that Ω =
√
k/m, we get −mΩ2 + k = 0, and so the above equation

is impossible with any choice of A and B.

(e) Differentiating y = (2mΩ)−1t sin Ωt twice, we obtain

y′ =
1

2mΩ
(sin Ωt+ tΩ cos Ωt) , y′′ =

1

2m
(2 cos Ωt− tΩ sin Ωt)

my′′ + ky =
1

2
(2 cos Ωt− tΩ sin Ωt) +

k

2mΩ
t sin Ωt

cos Ωt+

(
−Ω +

k

mΩ

)
t sin Ωt

2
= cos Ωt ,

since −Ω + k/(mΩ) = 0 if Ω =
√
k/m.

EXERCISES 4.2: Homogeneous Linear Equations: The General Solution

2. The auxiliary equation, r2 +6r+9 = (r+3)2 = 0, has a double root r = −3. Therefore,

e−3t and te−3t are two linearly independent solutions for this differential equation, and
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a general solution is given by

y(t) = c1e
−3t + c2te

−3t,

where c1 and c2 are arbitrary constants.

4. The auxiliary equation for this problem is r2− r− 2 = (r− 2)(r+ 1) = 0, which has the

roots r = 2 and r = −1. Thus {e2t, e−t} is a set of two linearly independent solutions to

this differential equation. Therefore, a general solution is given by

y(t) = c1e
2t + c2e

−t,

where c1 and c2 are arbitrary constants.

6. The auxiliary equation for this problem is r2−5r+6 = 0 with roots r = 2, 3. Therefore,

a general solution is

y(t) = c1e
2t + c2e

3t.

8. Solving the auxiliary equation, 6r2 + r − 2 = 0, yields r = −2/3, 1/2. Thus a general

solution is given by

y(t) = c1e
t/2 + c2e

−2t/3,

where c1 and c2 are arbitrary constants.

10. Solving the auxiliary equation, 4r2 − 4r + 1 = (2r − 1)2 = 0, we conclude that r = 1/2

is its double root. Therefore, a general solution to the given differential equation is

y(t) = c1e
t/2 + c2te

t/2.

12. The auxiliary equation for this problem is 3r2+11r−7 = 0. Using the quadratic formula

yields

r =
−11±

√
121 + 84

6
=
−11±

√
205

6
.

Thus, a general solution to the given equation is

y(t) = c1e
(−11+

√
205)t/6 + c2e

(−11−
√

205)t/6.

14. The auxiliary equation for this problem is r2 + r = 0, which has roots r = −1, 0. Thus,

a general solution is given by

y(t) = c1e
−t + c2 ,

104



Exercises 4.2

where c1, c2 are arbitrary constants. To satisfy the initial conditions, y(0) = 2, y′(0) = 1,

we find the derivative y′(t) = −c1e−t and solve the system

y(0) = c1e
−0 + c2 = c1 + c2 = 2

y′(0) = −c1e−0 = −c1 = 1
⇒

c1 = −1

c2 = 3.

Therefore, the solution to the given initial value problem is

y(t) = −e−t + 3 .

16. The auxiliary equation for this problem, r2 − 4r + 3 = 0, has roots r = 1, 3. Therefore,

a general solution is given by

y(t) = c1e
t + c2e

3t ⇒ y′(t) = c1e
t + 3c2e

3t .

Substitution of y(t) and y′(t) into the initial conditions yields the system

y(0) = c1 + c2 = 1

y′(0) = c1 + 3c2 = 1/3
⇒

c1 = 4/3

c2 = −1/3.

Thus, the solution satisfying the given initial conditions is

y(t) =
4

3
et − 1

3
e3t.

18. The auxiliary equation for this differential equation is r2−6r+9 = (r−3)2 = 0. We see

that r = 3 is a repeated root. Thus, two linearly independent solutions are y1(t) = e3t

and y2(t) = te3t. This means that a general solution is given by y(t) = c1e
3t + c2te

3t.

To find the constants c1 and c2, we substitute the initial conditions into the general

solution and its derivative, y′(t) = 3c1e
3t + c2 (e3t + 3te3t), and obtain

y(0) = 2 = c1

y′(0) = 25/3 = 3c1 + c2 .

So, c1 = 2 and c2 = 7/3. Therefore, the solution that satisfies the initial conditions is

given by

y(t) = 2e3t +
7

3
te3t =

(
7t

3
+ 2

)
e3t.
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20. The auxiliary equation for this differential equation, r2 − 4r + 4 = (r − 2)2 = 0, has

a double root r = 2. Thus, two linearly independent solutions are y1(t) = e2t and

y2(t) = te2t. This means that a general solution is given by y(t) = (c1 + c2t) e
2t.

Substituting the initial conditions into the general solution and its derivative yields

y(1) = (c1 + c2t) e
2t|t=1 = (c1 + c2) e

2 = 1

y′(1) = (c2 + 2c1 + 2c2t) e
2t|t=1 = (2c1 + 3c2) e

2 = 1 .

So, c1 = 2e−2 and c2 = −e−2. Therefore, the solution is

y(t) =
(
2e−2 − e−2t

)
e2t = (2− t)e2t−2 .

22. We substitute y = ert into the given equation and get

3rert − 7ert = (3r − 7)ert = 0.

Therefore,

3r − 7 = 0 ⇒ r =
7

3
,

and a general solution to the given differential equation is y(t) = ce7t/3, where c is an

arbitrary constant.

24. Similarly to the previous problem, we find the characteristic equation, 3r+11 = 0, which

has the root r = −11/3. Therefore, a general solution is given by z(t) = ce−11t/3.

26. (a) Substituting boundary conditions into y(t) = c1 cos t+ c2 sin t yields

2 = y(0) = c1

0 = y (π/2) = c2 .

Thus, c1 and c2 are determined uniquely, and so the given boundary value problem

has a unique solution y = 2 cos t.

(b) Similarly to part (a), we obtain a system to determine c1 and c2.

2 = y(0) = c1

0 = y (π) = −c1 .

However, this system is inconsistent, and so there is no solution satisfying given

boundary conditions.
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(c) This time, we come up with a system

2 = y(0) = c1

−2 = y (π) = −c1 ,

which has infinitely many solutions given by c1 = 2 and c2 – arbitrary. Thus, the

boundary value problem has infinitely many solutions of the form

y = 2 cos t+ c2 sin t .

28. Assuming that y1(t) = e3t and y2(t) = e−4t are linearly dependent on (0, 1), we conclude

that, for some constant c and all t ∈ (0, 1),

y1(t) = cy2(t) ⇒ e3t = ce−4t ⇒ e7t = c.

Since an exponential function is strictly monotone, this is a contradiction. Hence, given

functions are linearly independent on (0, 1).

30. These functions are linearly independent, because the equality y1(t) ≡ cy2(t) would

imply that

t2 cos(ln t) ≡ ct2 sin(ln t) ⇒ cot(ln t) ≡ c

on (0, 1), which is false.

32. These two functions are linearly dependent since y1(t) ≡ 0 · y2(t).

34. (a) This formula follows from the definition of 2× 2 determinant.

(b, c) If y1(t) and y2(t) are linearly independent on I, then W [y1, y2](t) is never zero on I

since, otherwise, these functions would be linearly dependent by Lemma 1. On the

other hand, if y1(t) and y2(t) are any two differentiable functions that are linearly

dependent on I, then, say, y1(t) ≡ cy2(t) on I and so

W [y1, y2](t) = y1 (cy1)
′ − y′1 (cy1) ≡ 0 on I.

36. Assume to the contrary that er1t, er2t, and er3t are linearly dependent. Without loss of

generality, let

er1t = c1e
r2t + c2e

r3t ⇒ e(r1−r2)t = c1 + c2e
(r3−r2)t
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for all t. Differentiating this identity, we obtain

(r1 − r2) e
(r1−r2)t ≡ c2 (r3 − r2) e

(r3−r2)t.

Since r1 − r2 6= 0, dividing both sides by (r1 − r2) e
(r1−r2)t, we obtain

c2 (r3 − r2)

(r1 − r2)
e(r3−r1)t ≡ 1 ⇒ ce(r3−r1)t ≡ 1

on (−∞,∞), which is a contradiction (r3 − r1 6= 0!).

38. The auxiliary equation for this problem is r3 − 6r2 − r + 6 = 0. Factoring yields

r3 − 6r2 − r + 6 =
(
r3 − 6r2

)
− (r − 6) = r2(r − 6)− (r − 6) = (r − 6)

(
r2 − 1

)
.

Thus the roots of the auxiliary equation are r = ±1 and r = 6. Therefore, the functions

et, e−t, and e6t are solutions to the given equation, and they are linearly independent on

(−∞,∞) (see Problem 40), and a general solution to the equation y′′′−6y′′−y′+6y = 0

is given by

y(t) = c1e
t + c2e

−t + c3e
6t .

40. The auxiliary equation associated with this differential equation is r3−7r2 +7r+15 = 0.

We see, by inspection, that r = −1 is a root. Dividing r3 − 7r2 + 7r + 15 by r + 1, we

find that

r3 − 7r2 + 7r + 15 = (r + 1)(r2 − 8r + 15) = (r + 1)(r − 3)(r − 5).

Hence r = −1, 3, 5 are the roots to the auxiliary equation, and a general solution is

y(t) = c1e
−t + c2e

3t + c3e
5t.

42. By inspection, we see that r = 1 is a root of the auxiliary equation, r3 + r2− 4r+2 = 0.

Dividing the polynomial r3 + r2 − 4r + 2 by r − 1 yields

r3 + r2 − 4r + 2 = (r − 1)
(
r2 + 2r − 2

)
.

Hence, two other roots of the auxiliary equation are r = −1±
√

3, and a general solution

is given by

y(t) = c1e
t + c2e

(−1+
√

3)t + c3e
(−1−

√
3)t.
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44. First we find a general solution to the equation y′′′− 2y′′− y′+2y = 0. Its characteristic

equation, r3 − 2r2 − r + 2 = 0, has roots r = 2, 1, and −1, and so a general solution is

given by

y(t) = c1e
2t + c2e

t + c3e
−t .

Differentiating y(t) twice yields

y′(t) = 2c1e
2t + c2e

t − c3e
−t , y′′(t) = 4c1e

2t + c2e
t + c3e

−t .

Now we substitute y, y′, and y′′ into the initial conditions and find c1, c2, and c3.

y(0) = c1 + c2 + c3 = 2

y′(0) = 2c1 + c2 − c3 = 3

y′′(0) = 4c1 + c2 + c3 = 5

⇒
c1 = 1

c2 = 1

c3 = 0.

Therefore, the solution to the given initial value problem is

y(t) = e2t + et .

46. (a) The characteristic equation associated with y′′ − y = 0 is r2 − 1 = 0, which has

distinct real roots r = ±1. Thus, a general solution is given by

y(t) = c1e
t + c2e

−t .

Differentiating y(t) yields y′(t) = c1e
t− c2e−t . We now substitute y and y′ into the

initial conditions for cosh t to find its explicit formula.

y(0) = c1 + c2 = 1

y′(0) = c1 − c2 = 0
⇒

c1 = 1/2

c2 = 1/2 .

Therefore,

cosh t =
et + e−t

2
.

Similarly, for sinh t, we have

y(0) = c1 + c2 = 0

y′(0) = c1 − c2 = 1
⇒

c1 = 1/2

c2 = −1/2 .

Therefore,

sinh t =
et − e−t

2
.
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Applying derivative rules, we find that

d

dt
cosh t =

d

dt

(
et + e−t

2

)
=

(et + e−t)
′

2
=
et − e−t

2
= sinh t ,

d

dt
sinh t =

d

dt

(
et − e−t

2

)
=

(et − e−t)
′

2
=
et + e−t

2
= cosh t .

(b) It easily follows from the initial conditions–cosh 0 = 1 and sinh 0 = 0– that cosh t

and sinh t are linearly independent on −∞,∞. Indeed, since sinh t is not identically

zero, neither of them is a constant multiple of the other. By Theorem 2, a general

solution to y′′ − y = 0 is y(t) = c1 cosh t+ c2 sinh t.

(c) Let r1 = α + β and r2 = α − β be to real distinct roots of the auxiliary equation

ar2 + br + c = 0. Then a general solution to ay′′ + by′ + cy = 0 has the form

y = C1e
r1 + C2e

r2 = eα
(
C1e

βt + C2e
−βt
)
. (4.1)

It follows from the explicit formulas obtained in part (a) that

cosh(βt) + sinh(βt) = eβt , cosh(βt)− sinh(βt) = e−βt .

Substituting these expressions into (4.1) yields

y = eαt [C1 (cosh(βt) + sinh(βt)) + C2 (cosh(βt)− sinh(βt))]

= eαt [(C1 + C2) cosh(βt) + (C1 − C2) sinh(βt)] = eαt [c1 cosh(βt) + c2 sinh(βt)] ,

where c1 = C1 + C2 and c2 = C1 − C2 are arbitrary constants.

(d) The auxiliary equation for y′′ + y′ − 6y = 0, which is r2 + r − 6 = 0, has two real

distinct roots r = −3, 2. Solving the system{
α+ β = −3

α− β = 2 ,

we find that α = −1/2, β = −5/2. Hence, a general solution is

y = e−t/2 [c1 cosh(−5t/2) + c2 sinh(−5t/2)] = e−t/2 [c1 cosh(5t/2)− c2 sinh(5t/2)]

⇒ y′ = e−t/2 [− (c1/2) cosh(5t/2) + (c2/2) sinh(5t/2)

+ (5c1/2) sinh(5t/2)− (5c2/2) cosh(5t/2)] .

110



Exercises 4.3

To satisfy the initial conditions, we solve the system

2 = y(0) = c1

−17/2 = y′(0) = − (c1/2)− (5c2/2)
⇒

c1 = 2

c2 = 3 .

Therefore, the answer is

y = e−t/2 [2 cosh(5t/2)− 3 sinh(5t/2)] .

EXERCISES 4.3: Auxiliary Equations with Complex Roots

2. The auxiliary equation in this problem is r2 + 1 = 0, which has roots r = ±i. We see

that α = 0 and β = 1. Thus, a general solution to the differential equation is given by

y(t) = c1e
(0)t cos t+ c2e

(0)t sin t = c1 cos t+ c2 sin t.

4. The auxiliary equation, r2 − 10r + 26 = 0, has roots r = 5± i. So, α = 5, β = 1, and

y(t) = c1e
5t cos t+ c2e

5t sin t

is a general solution.

6. This differential equation has the auxiliary equation r2 − 4r + 7 = 0. The roots of

this auxiliary equation are r =
(
4±

√
16− 28

)
/2 = 2 ±

√
3 i. We see that α = 2 and

β =
√

3. Thus, a general solution to the differential equation is given by

w(t) = c1e
2t cos

(√
3t
)

+ c2e
2t sin

(√
3t
)
.

8. The auxiliary equation for this problem is given by

4r2 + 4r + 6 = 0 ⇒ 2r2 + 2r + 3 = 0 ⇒ r =
−2±

√
4− 24

4
= −1

2
±
√

5

2
i.

Therefore, α = −1/2 and β =
√

5/2, and a general solution is given by

y(t) = c1e
−t/2 cos

(√
5t

2

)
+ c2e

−t/2 sin

(√
5t

2

)
.

10. The associated auxiliary equation, r2 + 4r+ 8 = 0, has two complex roots, r = −2± 2i.

Thus the answer is

y(t) = c1e
−2t cos 2t+ c2e

−2t sin 2t .

111



Chapter 4

12. The auxiliary equation for this problem is r2 + 7 = 0 with roots r = ±
√

7i. Hence,

u(t) = c1 cos
(√

7t
)

+ c2 sin
(√

7t
)
,

where c1 and c2 are arbitrary constants, is a general solution.

14. Solving the auxiliary equation yields complex roots

r2 − 2r + 26 = 0 ⇒ r = 1± 5i.

So, α = 1, β = 5, and a general solution is given by

y(t) = c1e
t cos 5t+ c2e

t sin 5t.

16. First, we find the roots of the auxiliary equation.

r2 − 3r − 11 = 0 ⇒ r =
3±

√
32 − 4(1)(−11)

2
=

3±
√

53

2
.

These are real distinct roots. Hence, a general solution to the given equation is

y(t) = c1e
(3+

√
53)t/2 + c2e

(3−
√

53)t/2.

18. The auxiliary equation in this problem, 2r2 + 13r − 7 = 0, has the roots r = 1/2,−7.

Therefore, a general solution is given by

y(t) = c1e
t/2 + c2e

−7t.

20. The auxiliary equation, r3 − r2 + 2 = 0, is a cubic equation. Since any cubic equation

has a real root, first we examine the divisors of the free coefficient, 2, to find integer real

roots (if any). By inspection, r = −1 satisfies the equation. Dividing r3− r2 +2 by r+1

yields

r3 − r2 + 2 = (r + 1)(r2 − 2r + 2).

Therefore, the other two roots of the auxiliary equation are the roots of the quadratic

equation r2 − 2r + 2 = 0, which are r = 1± i. A general solution to the given equation

is then given by

y(t) = c1e
−t + c2e

t cos t+ c3e
t sin t.
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22. The auxiliary equation for this problem is r2 + 2r + 17 = 0, which has the roots

r = −1± 4i.

So, a general solution is given by

y(t) = c1e
−t cos 4t+ c2e

−t sin 4t ,

where c1 and c2 are arbitrary constants. To find the solution that satisfies the initial

conditions, y(0) = 1 and y′(0) = −1, we first differentiate the solution and then plug in

the given initial conditions into y(t) and y′(t) to find c1 and c2. This yields

y′(t) = c1e
−t(− cos 4t− 4 sin 4t) + c2e

−t(− sin 4t+ 4 cos 4t)

and so

y(0) = c1 = 1

y′(0) = −c1 + 4c2 = −1 .

Thus c1 = 1, c2 = 0, and the solution is given by y(t) = e−t cos 4t .

24. The auxiliary equation for this problem is r2 + 9 = 0. The roots of this equation are

r = ±3i, and a general solution is given by y(t) = c1 cos 3t+c2 sin 3t, where c1 and c2 are

arbitrary constants. To find the solution that satisfies the initial conditions, y(0) = 1

and y′(0) = 1, we solve a system

y(0) = (c1 cos 3t+ c2 sin 3t) |t=0 = c1 = 1

y′(0) = (−3c1 sin 3t+ 3c2 cos 3t) |t=0 = 3c2 = 1 .

Solving this system of equations yields c1 = 1 and c2 = 1/3. Thus

y(t) = cos 3t+
sin 3t

3

is the desired solution.

26. The auxiliary equation, r2 − 2r + 1 = 0, has a repeated root r = 1. Thus, a general

solution is

y(t) = (c1 + c2t) e
t ,
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where c1 and c2 are arbitrary constants. To find the solution that satisfies the initial

conditions, y(0) = 1 and y′(0) = −2, we find y′(t) = (c1 + c2 + c2t) e
t and solve the

system

1 = y(0) = c1

−2 = y′(0) = c1 + c2 .

This yields c1 = 1, c2 = −2− c1 = −3. So, the answer is

y(t) = (1− 3t) et .

28. Let b = 5. Then the given equation becomes y′′ + 5y′ + 4y = 0. The auxiliary equation,

r2 + 5r + 4 = 0, has two real distinct roots r = −1,−4. Thus, a general solution is

y = c1e
−t + c2e

−4t ⇒ y′ = −c1e−t − 4c2e
−4t .

Substituting the initial conditions yields

1 = y(0) = c1 + c2

0 = y′(0) = −c1 − 4c2 .

Thus, c1 = 4/3, c2 = −1/3, and

y =
4e−t − e−4t

3

is the solution to the given initial value problem.

With b = 4, the auxiliary equation is r2 + 4r + 4 = 0, having a double root r = −2.

Hence, a general solution is given by

y = (c1 + c2t) e
−2t ⇒ y′ = (c2 − 2c1 − 2c2t) e

−2t .

Substituting the initial conditions, we obtain

1 = y(0) = c1

0 = y′(0) = −2c1 + c2 .

Thus, c1 = 1, c2 = 2, and

y = (1 + 2t) e−2t
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is the solution to the given initial value problem for b = 4.

Finally, if b = 2, our equation has the characteristic equation r2 + 2r + 4 = 0, with

complex roots r = −1±
√

3. Thus, a general solution is given by

y = e−t
[
c1 cos

(√
3t
)

+ c2 sin
(√

3t
)]

⇒

y′ = e−t
[(
−c1 +

√
3c2

)
cos
(√

3t
)
−
(√

3c1 + c2

)
sin
(√

3t
)]
,

and we have a system

1 = y(0) = c1

0 = y′(0) = −c1 +
√

3c2 .

Solving, we get c1 = 1, c2 = 1/
√

3, and y = e−t
[
cos
(√

3t
)

+
(
1/
√

3
)
sin
(√

3t
)]

.

The graphs of the solutions, corresponding to b = 5, 4, and 2, are shown in Fig. 4–C on

page 174.

30. Applying the product rule yields

de(α+iβ)t

dt
=

d

dt

[
eαt (cos βt+ i sin βt)

]
= αeαt (cos βt+ i sin βt) + eαt (−β sin βt+ iβ cos βt)

= eαt [(α+ iβ) cos βt+ (iα− β) sin βt]

= eαt [(α+ iβ) cos βt+ i (α+ iβ) sin βt]

= (α+ iβ) eαt (cos βt+ i sin βt) = (α+ iβ)e(α+iβ)t .

32. (a) We want to determine the equation of motion for a spring system with m = 10 kg,

b = 0, k = 250 kg/sec2, y(0) = 0.3 m, and y′(0) = −0.1 m/sec. That is, we seek

the solution to the initial value problem

10y′′(t) + 250y(t) = 0; y(0) = 0.3 , y′(0) = −0.1 .

The auxiliary equation for the above differential equation is

10r2 + 250 = 0 ⇒ r2 + 25 = 0,

which has the roots r ± 5i. Hence α = 0 and β = 5, and the displacement y(t) has

the form

y(t) = c1 cos 5t+ c2 sin 5t.
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We find c1 and c2 by using the initial conditions. We first differentiate y(t) to get

y′(t) = −5c1 sin 5t+ 5c2 cos 5t.

Substituting y(t) and y′(t) into the initial conditions, we obtain the system

y(0) = 0.3 = c1

y′(0) = −0.1 = 5c2 .

Solving, we find that c1 = 0.3 and c2 = −0.02. Therefore the equation of motion is

given by

y(t) = 0.3 cos 5t− 0.02 sin 5t (m).

(b) In part (a) we found that β = 5. Therefore the frequency of oscillation is 5/(2π).

34. For the specified values of the inductance L, resistance R, capacitance C, electromotive

force E(t), and initial values q0 and I0, the initial value problem (20) becomes

10
dI

dt
+ 20I + 6260q = 100; q(0) = 0, I(0) = 0.

In particular, substituting t = 0, we conclude that

10I ′(0) + 20I(0) + 6260q(0) = 100 ⇒ I ′(0) = 10.

Differentiating the above equation, using the relation I = dq/dt, and simplifying, yields

an initial value problem

I ′′ + 2I ′ + 626I = 0; I(0) = 0, I ′(0) = 10.

The auxiliary equation for this homogeneous second order equation, r2 + 2r + 626 = 0,

has roots r = −1± 25i. Thus, a general solution has the form

I(t) = e−t (c1 cos 25t+ c2 sin 25t) .

Since

I ′(t) = e−t [(−c1 + 25c2) cos 25t+ (−25c1 − c2) sin 25t] ,

for c1 and c2 we have a system of equations

I(0) = c1 = 0
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I ′(0) = −c1 + 25c2 = 10.

Hence, c1 = 0, c2 = 0.4, and the current at time t is given by

I(t) = 0.4e−t sin 25t .

36. (a) The auxiliary equation for Problem 21 is r2 + 2r + 2 = 0, which has the roots

r =
−2±

√
4− 8

2
= −1± i.

Thus, (21) gives a general solution of the form

y(t) = d1e
(−1+i)t + d2e

(−1−i)t .

The differentiation formula (7) for complex exponential function yields

y′(t) = (−1 + i)d1e
(−1+i)t + (−1− i)d2e

(−1−i)t .

Therefore, for d1 and d2 we obtain a system

y(0) = d1 + d2 = 2

y′(0) = (−1 + i)d1 + (−1− i)d2 = 1 .

Multiplying the first equation by (1+i) and adding the result to the second equation

yields

2id1 = 3 + 2i ⇒ d1 = 1− 3i

2
⇒ d2 = 2− d1 = 1 +

3i

2
,

and a complex form of the solution is

y(t) =

(
1− 3i

2

)
e(−1+i)t +

(
1 +

3i

2

)
e(−1−i)t .

A general solution, given by (9), is

y(t) = c1e
−t cos t+ c2e

−t sin t ,

where c1 and c2 are arbitrary constants. To find the solution that satisfies the initial

conditions, y(0) = 2 and y′(0) = 1, we first differentiate the solution found above,

then plug in given initial conditions. This yields

y′(t) = c1e
−t(− cos t− sin t) + c2e

−t(cos t− sin t)
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and

y(0) = c1 = 2

y′(0) = −c1 + c2 = 1 .

Thus c1 = 2, c2 = 3, and

y(t) = 2e−t cos t+ 3e−t sin t .

To verify that this form of the solution is equivalent to the complex form, obtained

using (21), we apply (6) to the latter and simplify.(
1− 3i

2

)
e(−1+i)t +

(
1 +

3i

2

)
e(−1−i)t

= e−t

[(
1− 3i

2

)
(cos t+ i sin t) +

(
1 +

3i

2

)
(cos t− i sin t)

]
= e−t (2 cos t+ 3 sin t) .

(b) If y(t) in (21) is a real-valued function, then, for any t,

y(t) = y(t) = d1e(α+iβ)t + d2e(α−iβ)t = d1e
(α−iβ)t + d2e

(α+iβ)t .

Therefore,

0 ≡ y(t)− y(t) =
(
d1 − d2

)
e(α+iβ)t +

(
d2 − d1

)
e(α−iβ)t

⇒
(
d1 − d2

)
e2iβt ≡ d1 − d2 .

Since β 6= 0, this is possible if and only if d1 − d2 = 0 or d1 = d2.

38. (a) Fixed x, consider the function f(t) := sin(x+ t). Differentiating f(t) twice yields

f ′(t) =
d [sin(x+ t)]

dt
= cos(x+ t)

d(x+ t)

dt
= cos(x+ t) ,

f ′′(t) =
d [cos(x+ t)]

dt
= − sin(x+ t)

d(x+ t)

dt
= − sin(x+ t) .

Thus, f ′′(t) + f(t) = − sin(x + t) + sin(x + t) = 0 . In addition, f(0) = sinx ,

f ′(0) = cos x . Therefore, f(t) is the solution to the initial value problem

y′′ + y = 0 , y(0) = sinx , y′(0) = cos x . (4.2)
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(b) The auxiliary equation for the difefrential equation in (4.2) is r2 +1 = 0, which has

two imaginary roots r = ±i. Therefore, a general solution is given by

y(t) = c1 cos t+ c2 sin t .

We now find constants c1 and c2 so that y(t) satisfies the initial conditions in (4.2).

sin x = y(0) = c1 ,

cosx = y′(0) = (−c1 sin t+ c2 cos t)
∣∣
t=0

= c2 .

Therefore, y(t) = sinx cos t+ cosx sin t .

(c) By Theorem 1, Section 4.2, the solution to the initial value problem (4.2) is unique.

Thus, y(t found in part (b) must be f(t) meaning that

sin(x+ t) = sin x cos t+ cosx sin t .

EXERCISES 4.4: Nonhomogeneous Equations: The Method of Undetermined

Coefficients

2. The method of undetermined coefficients can be used to find a particular solution in the

form (15) with m = 3, α = 0, and β = 4.

4. Writing
sin x

e4x
= e−4x sin x ,

we see that the right-hand side is of the form, for which (15) applies.

6. The nonhomogeneous term simplifies to

f(x) = 4x sin2 x+ 4x cos2 x = 4x
(
sin2 x+ cos2 x

)
= 4x .

Therefore, the method of undetermined coefficients can be used, and a particular solution

has the form (14) with m = 1 and r = 0.

8. Yes, one can use the method of undetermined coefficients because the right-hand side of

the given equation is exactly of the form, for which (15) applies.

10. Since r = 0 is not a root of the auxiliary equation, r2 + 2r − 1 = 0, we choose s = 0 in

(14) and seek a particular solution of the form yp(t) ≡ A0. Substitution into the original

equation yields

(A0)
′′ + 2 (A0)

′ − A0 = 10 ⇒ A0 = −10.
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Thus, yp(t) ≡ −10 is a particular solution to the given nonhomogeneous equation.

12. The associated auxiliary equation, 2r + 1 = 0, has the root r = −1/2 6= 0. So, we take

s = 0 in (14) and look for a particular solution to the nonhomogeneous equation of the

form

xp(t) = A2t
2 + A1t+ A0

Substitution into the original differential equation yields

2x′p(t)+xp(t) = 2 (2A2t+ A1)+A2t
2+A1t+A0 = A2t

2+(4A2 + A1) t+(2A1 + A0) = 3t2.

By equating coefficients we obtain

A2 = 3

4A2 + A1 = 0

2A1 + A0 = 0

⇒
A2 = 3

A1 = −4A2 = −12

A0 = −2A1 = 24.

Therefore, xp(t) = 3t2 − 12t+ 24.

14. The auxiliary equation, r2 +1 = 0, has imaginary solutions r = ±i, and the nonhomoge-

neous term can be written as 2x = e(ln 2)x. Therefore, we take the form (14) with m = 0,

r = ln 2, and s = 0.

yp = A02
x ⇒ y′p = A0(ln 2)2x ⇒ y′′p = A0(ln 2)22x .

Substitution into the original equation yields

y′′p + yp = A0(ln 2)22x + A02
x = A0

[
(ln 2)2 + 1

]
2x = 2x .

Thus, A0 = [(ln 2)2 + 1]
−1

, and so yp(x) = [(ln 2)2 + 1]
−1

2x.

16. The corresponding homogeneous equation has the auxiliary equation r2 − 1 = 0, whose

roots are r = ±1. Thus, in the expression θp(t) = (A1t+A0) cos t+(B1t+B0) sin t none

of the terms is a solution to the homogeneous equation. We find

θp(t) = (A1t+ A0) cos t+ (B1t+B0) sin t

⇒ θ′p(t) = A1 cos t− (A1t+ A0) sin t+B1 sin t+ (B1t+B0) cos t

= (B1t+ A1 +B0) cos t+ (−A1t− A0 +B1) sin t

⇒ θ′′p(t) = B1 cos t− (B1t+B0 + A1) sin t− A1 sin t+ (−A1t− A0 +B1) cos t
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= (−A1t− A0 +B1) cos t+ (−B1t−B0 − 2A1) sin t.

Substituting these expressions into the original differential equation, we get

θ′′p − θp = (−A1t− A0 + 2B1) cos t+ (−B1t−B0 − 2A1) sin t

− (A1t+ A0) cos t− (B1t+B0) sin t

= −2A1t cos t+ (−2A0 + 2B1) cos t− 2B1t sin t+ (−2A1 − 2B0) sin t = t sin t.

Equating the coefficients, we see that

−2A1 = 0

−2A0 + 2B1 = 0

−2B1 = 1

−2A1 − 2B0 = 0

⇒

A1 = 0

A0 = B1 = −1/2

B1 = −1/2

B0 = −A1 = 0.

Therefore, a particular solution of the nonhomogeneous equation θ′′− θ = t sin t is given

by θp(t) = −(t sin t+ cos t)/2 .

18. Solving the auxiliary equation, r2+4 = 0, yields r = ±2i. Therefore, we seek a particular

solution of the form (15) with m = 0, α = 0, β = 2, and take s = 1 since α + iβ = 2i is

a root of the auxiliary equation. Hence,

yp = A0t cos 2t+B0t sin 2t ,

y′p = (2B0t+ A0) cos 2t+ (−2A0t+B0) sin 2t ,

y′′p = (−4A0t+ 4B0) cos 2t+ (−4B0t− 4A0) sin 2t ;

y′′p + 4yp = 4B0 cos 2t− 4A0 sin 2t = 8 sin 2t .

Equating coefficients yields A0 = −2, B0 = 0. Hence, yp(t) = −2t cos 2t.

20. Similarly to Problem 18, we seek a particular solution of the form

yp = t (A1t+ A0) cos 2t+ t (B1t+B0) sin 2t

=
(
A1t

2 + A0t
)
cos 2t+

(
B1t

2 +B0t
)
sin 2t .

Differentiating, we get

y′p =
[
2B1t

2 + (2A1 + 2B0) t+ A0

]
cos 2t+

[
−2A1t

2 + (−2A0 + 2B1) t+B0

]
sin 2t ,

y′′p =
[
−4A1t

2 + (−4A0 + 8B1) t+ (2A1 + 4B0)
]
cos 2t
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+
[
−4B1t

2 + (−8A1 − 4B0) t+ (−4A0 + 2B1)
]
sin 2t.

We now substitute yp and y′′p into the given equation and simplify.

y′′p + 4yp = [8B1t+ (2A1 + 4B0)] cos 2t+ [−8A1t+ (−4A0 + 2B1)] sin 2t = 16t sin 2t.

Therefore,

8B1 = 0

2A1 + 4B0 = 0

−8A1 = 16

−4A0 + 2B1 = 0

⇒

B1 = 0

B0 = −A1/2 = 1

A1 = −2

A0 = B1/2 = 0

and yp = −2t2 cos 2t+ t sin 2t.

22. The nonhomogeneous term of the original equation is 24t2et. Therefore, a particular

solution has the form xp(t) = ts (A2t
2 + A1t+ A0) e

t. The corresponding homogeneous

differential equation has the auxiliary equation r2 − 2r + 1 = (r − 1)2 = 0. Since r = 1

is its double root, s is chosen to be 2, and a particular solution to the nonhomogeneous

equation has the form

xp(t) = t2
(
A2t

2 + A1t+ A0

)
et =

(
A2t

4 + A1t3 + A0t
2
)
et.

We compute

x′p =
[
A2t

4 + (4A2 + A1) t
3 + (3A1 + A0) t

2 + 2A0t
]
et,

x′′p =
[
A2t

4 + (8A2 + A1) t
3 + (12A2 + 6A1 + A0) t

2 + (6A1 + 4A0) t+ 2A0

]
et.

Substituting these expressions into the original differential equation yields

x′′p − 2x′p + xp =
[
12A2t

2 + 6A1t+ 2A0

]
et = 24t2et.

Equating coefficients yields A1 = A0 = 0 and A2 = 2. Therefore, xp(t) = 2t4et.

24. In (15), we take s = 1 since α+ iβ = i is a root of auxiliary equation. Thus,

yp =
(
A1x

2 + A0x
)
cosx+

(
B1x

2 +B0x
)
sin x,

y′p =
[
B1x

2 + (B0 + 2A1)x+ A0

]
cosx+

[
−A1x

2 + (2B1 − A0)x+B0

]
sin x,

y′′p =
[
−A1x

2 + (4B1 − A0)x+ 2 (B0 + A1)
]
cosx

+
[
−B1x

2 + (−4A1 −B0)x+ 2 (B1 − A0)
]
sin x.
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Substitution yields

y′′ + y = [4B1x+ 2 (B0 + A1)] cos x+ [−4A1x+ 2 (B1 − A0)] sinx = 4x cosx.

So,

4B1 = 4

2 (B0 + A1) = 0

−A1 = 0

2 (B1 − A0) = 0

⇒

B1 = 1

B0 = −A1 = 0

A1 = 0

A0 = B1 = 1

and

yp(x) = x cosx+ x2 sin x.

26. In the nonhomogeneous term, 4te−t cos t, α = −1, β = 1, and m = 1. We choose s = 1

in (15) since α+ iβ = −1 + i is a root of the auxiliary equation. Thus, yp has the form

yp(t) = t [(A1t+ A0) cos t+ (B1t+B0) sin t] e−t

=
[(
A1t

2 + A0t
)
cos t+

(
B1t

2 +B0t
)
sin t

]
e−t

If we compute now y′p, y
′′
p , substitute into the given equation, we will find unknown

coefficients. A technical difficulty, that one faces, is time consuming differentiation. To

simplify this procedure, we employ complex numbers noting that yp is the real part

of zp = (C1t
2 + C0t) e

(−1+i)t, where C1 = A1 − B1i and C0 = A0 − B0i. Since the

differentiation operator is linear and our equation has real coefficients, zp must satisfy

Re
(
z′′p + 2z′p + 2zp

)
= 4te−t cos t .

Differentiating, we get

z′p =
[
C1(−1 + i)t2 + (2C1 + C0(−1 + i)) t+ C0

]
e(−1+i)t,

z′′p =
[
C1(−1 + i)2t2 +

(
4C1(−1 + i) + C0(−1 + i)2

)
t+ 2C1 + 2C0(−1 + i)

]
e(−1+i)t.

Substitution yields

Re
(
z′′p + 2z′p + 2zp

)
= Re

[
(4C1ti+ 2C1 + 2C0i) e

(−1+i)t
]

= 4te−t cos t

⇒ Re
[
(4C1ti+ 2C1 + 2C0i) e

it
]

= 4t cos t

⇒ (4B1t+ 2A1 + 2B0) cos t− (4A1t− 2B1 + 2A0) sin t = 4t cos t.
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Thus,

4B1 = 4

2A1 + 2B0 = 0

4A1 = 0

2A0 − 2B1 = 0

⇒

B1 = 1

B0 = −A1 = 0

A1 = 0

A0 = B1 = 1

and yp = (t cos t+ t2 sin t) e−t.

28. The right-hand side of this equation suggests that

yp(t) = ts
(
A4t

4 + A3t
3 + A2t

2 + A1t+ A0

)
et.

Since r = 1 is not a root of the auxiliary equation, r2 + 3r− 7 = 0, we take s = 0. Thus

yp(t) =
(
A4t

4 + A3t
3 + A2t

2 + A1t+ A0

)
et.

30. Here, α+ iβ = 1 + i is not a root of the associated equation, r2− 2r+ 1 = (r− 1)2 = 0.

Therefore, a particular solution has the form

yp(t) = (A0 cos t+B0 sin t) et.

32. From the form of the right-hand side, we conclude that a particular solution should be

of the form

yp(t) = ts
(
A6t

6 + A5t
5 + A4t

4 + A3t
3 + A2t

2 + A1t+ A0

)
e−3t.

Since r = −3 is a simple root of the auxiliary equation, we take s = 1. Therefore,

yp(t) =
(
A6t

7 + A5t
6 + A4t

5 + A3t
4 + A2t

3 + A1t
2 + A0t

)
e−3t.

34. The right-hand side of the equation suggests that yp(t) = A0t
se−t. By inspection, we see

that r = −1 is not a root of the corresponding auxiliary equation, 2r3 + 3r2 + r− 4 = 0.

Thus, with s = 0,

yp = A0e
−t ⇒ y′p = −A0e

−t ⇒ y′′p = A0e
−t ⇒ y′′′p = −A0e

−t

⇒ 2y′′′p + 3y′′p + y′p − 4yp = −4A0e
−t = e−t.

Therefore, A0 = −1/4 and yp(t) = −e−t/4.
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36. We look for a particular solution of the form yp(t) = ts(A0 cos t + B0 sin t), and choose

s = 0, because i is not a root of the auxiliary equation, r4 − 3r2 − 8 = 0. Hence,

yp(t) = A0 cos t+B0 sin t

⇒ y′p(t) = B0 cos t− A0 sin t

⇒ y′′p(t) = −A0 cos t−B0 sin t

⇒ y′′′p (t) = −B0 cos t+ A0 sin t

⇒ y(4)
p (t) = A0 cos t+B0 sin t .

Hence,

y(4)
p − 3y′′p − 8yp = −4A0 cos t− 4B0 sin t = sin t

⇒ A0 = 0, B0 = −1

4
⇒ yp(t) = −sin t

4
.

EXERCISES 4.5: The Superposition Principle and Undetermined Coefficients

Revisited

2. Let g1(t) := cos 2t and g2(t) := t. Then y1(t) = (1/4) sin 2t is a solution to

y′′ + 2y′ + 4y = g1(t)

and y2(t) = t/4− 1/8 is a solution to

y′′ + 2y′ + 4y = g2(t).

(a) The right-hand side of the given equation equals g2(t) + g1(t). Therefore, the

function y(t) = y2(t) + y1(t) = t/4− 1/8 + (1/4) sin 2t is a solution to the equation

y′′ + 2y′ + 4y = t+ cos 2t.

(b) We can express 2t − 3 cos 2t = 2g2(t) − 3g1(t). So, by the superposition principle,

the desired solution is y(t) = 2y2(t)− 3y1(t) = t/2− 1/4− (3/4) sin 2t.

(c) Since 11t− 12 cos 2t = 11g2(t)− 12g1(t), the function

y(t) = 11y2(t)− 12y1(t) = 11t/4− 11/8− 3 sin 2t

is a solution to the given equation.
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4. The corresponding homogeneous equation, y′′ + y′ = 0, has the associated auxiliary

equation r2 + r = r(r + 1) = 0. This gives r = 0, −1, and a general solution to the

homogeneous equation is yh(t) = c1 + c2e
−t. Combining this solution with the particular

solution, yp(t) = t, we find that a general solution is given by

y(t) = yp(t) + yh(t) = t+ c1 + c2e
−t .

6. The corresponding auxiliary equation, r2 + 5r + 6 = 0, has the roots r = −3, −2.

Therefore, a general solution to the corresponding homogeneous equation has the form

yh(x) = c1e
−2x+c2e

−3x. By the superposition principle, a general solution to the original

nonhomogeneous equation is

y(x) = yp(x) + yh(x) = ex + x2 + c1e
−2x + c2e

−3x.

8. First, we rewrite the equation in standard form, that is,

y′′ − 2y = 2 tan3 x .

The corresponding homogeneous equation, y′′ − 2y = 0, has the associated auxiliary

equation r2 − 2 = 0. Thus r = ±
√

2, and a general solution to the homogeneous

equation is

yh(x) = c1e
√

2x + c2e
−
√

2x.

Combining this with the particular solution, yp(x) = tan x, we find that a general solution

is given by

y(x) = yp(x) + yh(x) = tan x+ c1e
√

2x + c2e
−
√

2x .

10. We can write the nonhomogeneous term as a difference(
et + t

)2
= e2t + 2tet + t2 = g1(t) + g2(t) + g3(t).

The functions g1(t), g2(t), and g3(t) have a form suitable for the method of undetermined

coefficients. Therefore, we can apply this method to find particular solutions yp,1(t),

yp,2(t), and yp,3(t) to

y′′ − y′ + y = gk(t), k = 1, 2, 3,

respectively. Then, by the superposition principle, yp(t) = yp,1(t) + yp,2(t) + yp,3(t) is a

particular solution to the given equation.
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12. This equation is not an equation with constant coefficients. The method of undetermined

coefficients cannot be applied because of ty term.

14. Since, by the definition of cosh t,

cosh t =
et + e−t

2
=

1

2
et +

1

2
e−t,

and the method of undetermined coefficients can be applied to each term in this sum,

by the superposition principle, the answer is “yes”.

16. The first two terms in the right-hand side fit the form, for which (14) applies. The last

term, 10t = e(ln 10)t, is of the form, for which (13) can be used. Thus, the answer is “yes”.

18. The auxiliary equation in this problem is r2 − 2r − 3 = 0 with roots r = 3, −1. Hence,

yh(t) = c1e
3t + c2e

−t

is a general solution to the corresponding homogeneous equation. We now find a particu-

lar solution yp(t) to the original nonhomogeneous equation. The method of undetermined

coefficients yields

yp(t) = A2t
2 + A1t+ A0 ⇒ y′p(t) = 2A2t+ A1 ⇒ y′′p(t) = 2A2;

y′′p − 2y′p − 3yp = (2A2)− 2 (2A2t+ A1)− 3
(
A2t

2 + A1t+ A0

)
= 3t2 − 5

⇒ −3A2t
2 + (−4A2 − 3A1) t+ (2A2 − 2A1 − 3A0) = 3t2 − 5

⇒ A2 = −1, A1 = −4A2/3 = 4/3, A0 = (5 + 2A2 − 2A1) /3 = 1/9.

By the superposition principle, a general solution is given by

y(t) = yp(t) + yh(t) = −t2 +
4t

3
+

1

9
+ c1e

3t + c2e
−t .

20. Solving the auxiliary equation, r2 + 4 = 0, we find that r = ±2i. Therefore, a general

solution to the homogeneous equation, y′′ + 4y = 0, is

yh(θ) = c1 cos 2θ + c2 sin 2θ .

By the method of undetermined coefficients, a particular solution yp(θ) to the original

equation has the form yp(θ) = θs(A0 cos θ + B0 sin θ). We choose s = 0 because r = i is

not a root of the auxiliary equation. So,

yp(θ) = A0 cos θ +B0 sin θ
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⇒ y′p(θ) = B0 cos θ − A0 sin θ

⇒ y′′p(θ) = −A0 cos θ −B0 sin θ .

Substituting these expressions into the equation, we compare the corresponding coeffi-

cients and find A0 and B0.

y′′p + 4yp = 3A0 cos θ + 3B0 sin θ = sin θ − cos θ

⇒ A0 = −1

3
, B0 =

1

3
⇒ yp(θ) =

sin θ − cos θ

3
.

Therefore,

y(θ) =
sin θ − cos θ

3
+ c1 cos 2θ + c2 sin 2θ

is a general solution to the given nonhomogeneous equation.

22. Since the roots of the auxiliary equation, which is r2 + 6r + 10 = 0, are r = −3± i, we

have a general solution to the corresponding homogeneous equation

yh(x) = c1e
−3x cosx+ c2e

−3x sin x = (c1 cosx+ c2 sin x) e−3x ,

and look for a particular solution of the form

yp(x) = A4x
4 + A3x

3 + A2x
2 + A1x+ A0 .

Differentiating yp(x), we get

y′p(x) = 4A4x
3 + 3A3x

2 + 2A2x+ A1 ,

y′′p(x) = 12A4x
2 + 6A3x+ 2A2 .

Therefore,

y′′p + 6y′p + 10yp = 10A4x
4 + (10A3 + 24A4)x

3 + (10A2 + 18A3 + 12A4)x
2

+ (10A1 + 12A2 + 6A3)x+ (10A0 + 6A1 + 2A2)

= 10x4 + 24x3 + 2x2 − 12x+ 18 .

Hence, A4 = 1, A3 = 0, A2 = −1, A1 = 0, and A0 = 2. A general solution is given by

y(x) = yp(x) + yh(x) = x4 − x2 + 2 + (c1 cosx+ c2 sin x) e−3x .
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24. The auxiliary equation, r2 = 0, has a double root r = 0. Therefore,

yh(t) = c1 + c2t ,

and a particular solution to the given equation has the form yp = t2 (A1t+ A0). Differ-

entiating twice, we obtain

y′′p = 6A1t+ 2A0 = 6t ⇒ A1 = 1, A0 = 0,

and a general solution to the given equation is

y = c1 + c2t+ t3 .

From the initial conditions, we determine constants c1 and c2.

y(0) = c1 = 3

y′(0) = c2 = −1.

Hence, y = 3− t+ t3 is the solution to the given initial value problem.

26. The auxiliary equation, r2 + 9 = 0, has roots r = ±3i. Therefore, a general solution to

the corresponding homogeneous equation is yh(t) = c1 cos 3t+ c2 sin 3t, and a particular

solution to the original equation has the form yp(t) = A0. Substituting this function

into the given equation, we find the constant A0.

y′′p + 9yp = 9A0 = 27 ⇒ A0 = 3,

and a general solution to the given nonhomogeneous equation is

y(t) = 3 + c1 cos 3t+ c2 sin 3t .

Next, since y′(t) = −3c1 sin 3t + 3c2 cos 3t, from the initial conditions we get a system

for determining constants c1 and c2.

4 = y(0) = 3 + c1

6 = y′(0) = 3c2
⇒

c1 = 1

c2 = 2
⇒ y(t) = 3 + cos 3t+ 2 sin 3t .

28. The roots of the auxiliary equation, r2 + r − 12 = 0, are r = −4 and r = 3. This

gives a general solution to the corresponding homogeneous equation of the form yh(t) =
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c1e
−4t + c2e

3t. We use the superposition principle to find a particular solution to the

given nonhomogeneous equation.

yp = A0e
t +B0e

2t + C0 ⇒ y′p = A0e
t + 2B0e

2t ⇒ y′′p = A0e
t + 4B0e

2t;

y′′p + y′p − 12yp = −10A0e
t − 6B0e

2t − 12C0 = et + e2t − 1.

Therefore, A0 = −1/10, B0 = −1/6, C0 = 1/12, and a general solution to the original

equation is

y(t) = − et

10
− e2t

6
+

1

12
+ c1e

−4t + c2e
3t.

Next, we find c1 and c2 such that the initial conditions are satisfied. Since

y′(t) = − et

10
− e2t

3
− 4c1e

−4t + 3c2e
3t,

we have

1 = y(0) = −1/10− 1/6 + 1/12 + c1 + c2

3 = y′(0) = −1/10− 1/3− 4c1 + 3c2
⇒

c1 + c2 = 71/60

−4c1 + 3c2 = 103/30.

Solving yields c1 = 1/60, c2 = 7/6. With these constants, the solution becomes

y(t) = − et

10
− e2t

6
+

1

12
+
e−4t

60
+

7e3t

6
.

30. The auxiliary equation, r2 + 2r + 1 = 0 has a double root r = −1. Therefore, a general

solution to the corresponding homogeneous equation is

yh(t) = c1e
−t + c2te

−t.

By the superposition principle, a particular solution to the original nonhomogeneous

equation has the form

yp = A2t
2+A1t+A0+B0e

t ⇒ y′p = 2A2t+A1+B0e
t ⇒ y′′p = 2A2+B0e

t.

Therefore,

y′′p + 2y′p + yp = A2t
2 + (A1 + 4A2) t+ (A0 + 2A1 + 2A2) + 4B0e

t

= t2 + 1− et.

Matching coefficients yields

A2 = 1, A1 = −4A2 = −4, A0 = 1− 2A1 − 2A2 = 7, B0 = −1

4
,
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and a general solution is

y(t) = yp(t) + yh(t) = t2 − 4t+ 7− et

4
+ c1e

−t + c2te
−t .

Next, we satisfy the initial conditions.

0 = y(0) = 7− 1/4 + c1

2 = y′(0) = −4− 1/4− c1 + c2
⇒

c1 = −27/4

c2 = 25/4 + c1 = −1/2.

Therefore, the solution to the given initial value problem is

y(t) = t2 − 4t+ 7− et

4
− 27e−t

4
− te−t

2
.

32. For the nonhomogeneous term,

e2t + te2t + t2e2t =
(
1 + t+ t2

)
e2t,

a particular solution has the form

yp(t) = ts
(
A0 + A1t+ A2t

2
)
e2t.

Since r = 2 is not a root of the auxiliary equation, r2 − 1 = 0, we choose s = 0.

34. Neither r = i nor r = 2i is a root of the auxiliary equation, which is r2 + 5r + 6 = 0.

Thus, by the superposition principle,

yp(t) = A cos t+B sin t+ C cos 2t+D sin 2t .

36. Since the auxiliary equation, r2− 4r+ 4 = (r− 2)2 = 0 has a double root r = 2 and the

nonhomogeneous term can be written as

t2e2t − e2t =
(
t2 − 1

)
e2t,

a particular solution to the given equation has the form

yp(t) = t2
(
A2t

2 + A1t+ A0

)
e2t.

38. Since, by inspection, r = i is not a root of the auxiliary equation, which is r4−5r2+4 = 0,

we look for a particular solution of the form

yp(t) = A cos t+B sin t.

131



Chapter 4

Differentiating yp(t) four times, we get

y′p(t) = −A sin t+B cos t ,

y′′p(t) = −A cos t−B sin t ,

y′′′p (t) = A sin t−B cos t ,

y(4)
p (t) = A cos t+B sin t .

Therefore,

y(4)
p − 5y′′p + 4yp = 10A cos t+ 10B sin t = 10 cos t− 20 sin t .

So, A = 1, B = −2, and a particular solution to the given equation is

y(t) = cos t− 2 sin t .

40. Since r = 0 is a simple root of the auxiliary equation, r4− 3r3 +3r2− r = r(r− 1)3 = 0,

a particular solution to the given nonhomogeneous equation has the form

yp(t) = t (A1t+ A0) = A1t
2 + A0t.

Substituting this function into the given equation, we find that

y(4)
p − 3y′′′p + 3y′′p − y′p = 3 (2A1)− (2A1t+ A0) = 6t− 20.

Thus, A1 = −3, A0 = 6A1 + 20 = 2, and a particular solution to the given equation is

y(t) = −3t2 + 2t .

42. (a) The auxiliary equation in this problem is

mr2 + br + k = 0 ⇒ r2 + (b/m)r + (k/m) = 0,

which has roots

r = − b

2m
±

√(
b

2m

)2

− k

m
= − b

2m
±

√
k

m
−
(

b

2m

)2

i .

(Recall that b2 < 4mk.) Denoting

ω :=

√
k

m
−
(

b

2m

)2

,

132



Exercises 4.5

we obtain a general solution

yh(t) = (c1 cosωt+ c2 sinωt) e−bt/(2m)

to the corresponding homogeneous equation. Since b > 0, r = βi is not a root of

the auxiliary equation. Therefore, a particular solution to (15) has the form

yp(t) = A cos βt+B sin βt

⇒ y′p(t) = Bβ cos βt− Aβ sin βt

⇒ y′′p(t) = −Aβ2 cos βt−Bβ2 sin βt .

Thus,

my′′p + by′p + kyp =
(
−Aβ2m+Bβb+ Ak

)
cos βt

+
(
−Bβ2m− Aβb+Bk

)
sin βt = sin βt .

Matching coefficients yields

A (k − β2m) +Bβb = 0

B (k − β2m)− Aβb = 1.

Solving, we obtain

A = − βb

(k − β2m)2 + (βb)2
, B =

k − β2m

(k − β2m)2 + (βb)2
.

Therefore, a general solution to (15) is

y(t) = − βb

(k − β2m)2 + (βb)2
cos βt+

k − β2m

(k − β2m)2 + (βb)2
sin βt

+ (c1 cosωt+ c2 sinωt) e−bt/(2m).

(b) The solution in part (a) consists of two terms. The second term, yh, represents

damped oscillation, depends on the parameters of the system and initial conditions.

Because of the exponential factor, e−bt/(2m), this term will die off, as t → ∞.

Thus, the first term, yp caused by the external force will eventually dominate and

essentially govern the motion of the system. With time, the motion will look more

and more like a sinusoidal one with angular frequency β.
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44. Substituting the mass m = 1, damping coefficient b = 2, spring constant k = 5, and

external force g(t) = 2 sin 3t + 10 cos 3t into (15) and taking into account the initial

conditions, we get an initial value problem

y′′ + 2y′ + 5y = 2 sin 3t+ 10 cos 3t; y(0) = −1 , y′(0) = 5.

The roots of the auxiliary equation, r2 + 2r + 5 = 0, are r = −1 ± 2i, and a general

solution to the corresponding homogeneous equation is

yh(t) = (c1 cos 2t+ c2 sin 2t) e−t .

We look for a particular solution to the original equation of the form

yp(t) = A0 cos 3t+B0 sin 3t.

Substituting this function into the equation, we get

y′′p + 2y′p + 5yp = (−9A0 cos 3t− 9B0 sin 3t) + 2 (−3A0 sin 3t+ 3B0 cos t)

+5 (A0 cos 3t+B0 sin 3t)

= (−4A0 + 6B0) cos 3t+ (−6A0 − 4B0) sin 3t = 2 sin 3t+ 10 cos 3t

⇒
−4A0 + 6B0 = 10

−6A0 − 4B0 = 2
⇒

A0 = −1

B0 = 1.

Thus, a general solution to the equation describing the motion is

y(t) = − cos 3t+ sin 3t+ (c1 cos 2t+ c2 sin 2t) e−t .

Differentiating, we find

y(t) = 3 sin 3t+ 3 cos 3t+ [(−c1 + 2c2) cos 2t+ (−c2 − 2c1) sin 2t] e−t .

Initial conditions give a system

y(0) = −1 + c1 = −1

y′(0) = 3− c1 + 2c2 = 5
⇒

c1 = 0

c2 = 1.

Hence, the equation of motion is

y(t) = − cos 3t+ sin 3t+ e−t sin 2t .
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46. The auxiliary equation in this problem is r2 + λ2 = 0, which has the roots r = ±λi.
Therefore, a general solution to the corresponding homogeneous equation is given by

yh = c1 cosλt+ c2 sinλt.

For a particular solution to the nonhomogeneous equation, we distinguish two cases.

(i) λ 6= ±1. In this case, a particular solution has the form

yp = A0 cos t+B0 sin t ⇒ y′′p = −A0 cos t−B0 sin t ,

and so

y′′p + λ2yp =
(
λ2 − 1

)
(A0 cos t+B0 sin t) = sin t .

Therefore, A0 = 0, B0 = 1/(λ2− 1), and a general solution to the given equation is

y(t) =
1

λ2 − 1
sin t+ c1 cosλt+ c2 sinλt.

The first boundary condition yields

y(0) = c1 = 0 ⇒ y =
1

λ2 − 1
sin t+ c2 sinλt.

Now, if λ is an integer, then

y(π) =
1

λ2 − 1
sin t+ c2 sinλt

∣∣∣∣
t=π

= 0

for any constant c2. Hence, the second boundary condition cannot be satisfied. If

λ is not an integer, then sinλπ 6= 0,

y(π) =
1

λ2 − 1
sin t+ c2 sinλt

∣∣∣∣
t=π

= c2 sinλπ = 1

for c2 = 1/ sinλπ, and the boundary value problem has a unique solution

y(t) =
1

λ2 − 1
sin t+

1

sinλπ
sinλt.

(ii) λ = ±1. Here, a particular solution has the form

yp = t (A0 cos t+B0 sin t) ⇒ y′′p = A0(−2 sin t− t cos t) +B0(2 cos t− t sin t) ,

Substituting yp into the original equation (with λ = ±1), we get

y′′p + yp = 2B0 cos t− 2A0 sin t = sin t ⇒ A0 = −1

2
, B0 = 0,
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and a general solution is given by

y(t) = −t cos t

2
+ c1 cos t+ c2 sin t.

The first boundary condition, y(0) = 0, yields c1 = 0. But this implies that

y(π) = −t cos t

2
+ c2 sin t

∣∣∣∣
t=π

=
π

2
6= 1,

for any constant c2 .

48. (a) Using the superposition principle (Theorem 3), we conclude that the functions

y1(t) =
(
t2 + 1 + et cos t+ et sin t

)
−
(
t2 + 1 + et cos t

)
= et sin t ,

y2(t) =
(
t2 + 1 + et cos t+ et sin t

)
−
(
t2 + 1 + et sin t

)
= et cos t

are solutions to the corresponding homogeneous equation. These two functions are

linearly independent on (−∞,∞) since neither one is a constant multiple of the

other.

(b) Substituting, say, y1(t) into the corresponding homogeneous equation yields(
et sin t

)′′
+ p

(
et sin t

)′
+ q

(
et sin t

)
= (2 + p)et cos t+ (p+ q)et sin t = 0 .

Therefore, p = −2, q = −p = 2, and so the equation becomes

y′′ − 2y′ + 2y = g(t) . (4.3)

Another way to recover p and q is to use the results of Section 4.3. The functions

y1(t) and y2(t) fit the form of two linearly independent solutions in the case when

the auxiliary equation has complex roots α ± βi. Here, α = β = 1. Thus, the

auxiliary equation must be

[r − (1 + i)] · [r − (1− i)] = (r − 1)2 + 1 = r2 − 2r + 2 ,

leading to the same conclusion about p and q.

To find g(t), one can just substitute either of three given functions into (4.3). But

we can simplify computations noting that, say,

y = t2 + 1 + et cos t− y2(t) = t2 + 1

is a solution to the given equation (by the superposition principle). Thus, we have

g(t) =
(
t2 + 1

)′′ − 2
(
t2 + 1

)′
+ 2

(
t2 + 1

)
= 2t2 − 4t+ 4 .
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EXERCISES 4.6: Variation of Parameters

2. From Example 1 in the text, we know that functions y1(t) = cos t and y2(t) = sin t are

two linearly independent solutions to the corresponding homogeneous equation, and so

its general solution is given by

yh(t) = c1 cos t+ c2 sin t.

Now we apply the method of variation of parameters to find a particular solution to the

original equation. By the formula (3) in the text, yp(t) has the form

yp(t) = v1(t)y1(t) + v2(t)y2(t).

Since

y′1(t) = (cos t)′ = − sin t, y′2(t) = (sin t)′ = cos t,

the system (9) becomes

v′1(t) cos t+ v′2(t) sin t = 0

−v′1(t) sin t+ v′2(t) cos t = sec t.

Multiplying the first equation by sin t and the second equation by cos t yields

v′1(t) sin t cos t+ v′2(t) sin2 t = 0

−v′1(t) sin t cos t+ v′2(t) cos2 t = 1.

Adding these equations together, we obtain

v′2(t)
(
cos2 t+ sin2 t

)
= 1 or v′2(t) = 1.

From the first equation in the system, we can now find v′1(t).

v′1(t) = −v′2(t)
sin t

cos t
= − tan t.

So,

v′1(t) = − tan t

v′2(t) = 1
⇒

v1(t) = −
∫

tan t dt = ln | cos t|+ c3

v2(t) =
∫
dt = t+ c4 .

Since we are looking for a particular solution, we can take c3 = c4 = 0 and get

yp(t) = (cos t) ln | cos t|+ t sin t.

Thus, a general solution to the given equation is

y(t) = yp(t) + yh(t) = (cos t) ln | cos t|+ t sin t+ c1 cos t+ c2 sin t.
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4. This equation has associated homogeneous equation y′′ − y = 0. The roots of the

associated auxiliary equation, r2 − 1 = 0, are r = ±1. Therefore, a general solution to

this equation is

yh(t) = c1e
t + c2e

−t.

For the variation of parameters method, we let

yp(t) = v1(t)y1(t) + v2(t)y2(t) , where y1(t) = et and y2(t) = e−t .

Thus, y′1(t) = et and y′2(t) = −e−t. This means that we have to solve the system

etv′1 + e−tv′2 = 0

etv′1 − e−tv′2 = 2t+ 4.

Adding these two equations yields

2etv′1 = 2t+ 4 ⇒ v′1 = (t+ 2)e−t.

Integration yields

v1(t) =

∫
(t+ 2)e−tdt = −(t+ 3)e−t.

Substututing v′1 into the first equation, we get

v′2 = −v′1e2t = −(t+ 2)et ⇒ v2(t) = −
∫

(t+ 2)etdt = −(t+ 1)et.

Therefore,

yp(t) = −(t+ 3)e−tet − (t+ 1)ete−t = −(2t+ 4),

and a general solution is

y(t) = −(2t+ 4) + c1e
t + c2e

−t.

6. This equation has associated homogeneous equation y′′ + 2y′ + y = 0. Its auxiliary

equation, r2 + 2r + 1 = 0, has a double root r = −1. Thus, a general solution to the

homogeneous equation is yh(t) = c1e
−t+c2te

−t . For the variation of parameters method,

we let

yp(t) = v1(t)y1(t) + v2(t)y2(t) , where y1(t) = e−t and y2(t) = te−t .
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Thus, y′1(t) = −e−t and y′2(t) = (1− t)e−t. This means that we have to solve the system

(see system (9) in text)

e−tv′1 + te−tv′2 = 0

−e−tv′1 + (1− t) e−tv′2 = e−t.

Adding these two equations yields

e−tv′2 = e−t ⇒ v′2 = 1 ⇒ v2 =

∫
(1)dt = t.

Also, from the first equation of the system we have

v′1 = −tv′2 = −t ⇒ v1 = −
∫
t dt = −t

2

2
.

Therefore,

yp(t) = −t
2

2
e−t + t · te−t =

t2

2
e−t

⇒ y(t) = yp(t) + yh(t) =
t2

2
e−t + c1e

−t + c2te
−t.

8. In this problem, the corresponding homogeneous equation is r2 + 9 = 0 with roots

r = ±3i. Hence, y1(t) = cos 3t and y2(t) = sin 3t are two linearly independent solutions,

and a general solution to the corresponding homogeneous equation is given by

yh(t) = c1 cos 3t+ c2 sin 3t,

and, in the method of variation of parameters, a particular solution has the form

yp(t) = v1(t) cos 3t+ v2(t) sin 3t,

where v′1(t), v
′
2(t) satisfy the system

v′1(t) cos 3t+ v′2(t) sin 3t = 0

−3v′1(t) sin 3t+ 3v′2(t) cos 3t = sec2 3t.

Multiplying the first equation by 3 sin 3t and the second equation by cos 3t, and adding

the resulting equations, we get

3v′2
(
sin2 3t+ cos2 3t

)
= sec 3t ⇒ v′2 =

1

3
sec 3t
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⇒ v2 =
1

3

∫
sec 3t dt =

1

9
ln | sec 3t+ tan 3t| .

From the first equation in the system we also find that

v′1(t) = −v′2(t) tan 3t = −1

3
sec 3t tan 3t

⇒ v1(t) = −1

3

∫
sec 3t tan 3t dt = −1

9
sec 3t .

Therefore,

yp(t) = −1

9
sec 3t cos 3t+

1

9
sin 3t ln | sec 3t+ tan 3t|

= −1

9
+

1

9
sin 3t ln | sec 3t+ tan 3t|

and

y(t) = −1

9
+

1

9
sin 3t ln | sec 3t+ tan 3t|+ c1 cos 3t+ c2 sin 3t

is a general solution to the given equation.

10. This equation has associated homogeneous equation y′′ + 4y′ + 4y = 0. Its auxiliary

equation, r2 + 4r + 4 = 0, has a double root r = −2. Thus, a general solution to the

homogeneous equation is

yh(t) = c1e
−2t + c2te

−2t.

We look for a particular solution to the given equation in the form

yp(t) = v1(t)y1(t) + v2(t)y2(t) , where y1(t) = e−2t and y2(t) = te−2t .

Since y′1 = −2e−2t and y′2 = (1− 2t)e−2t, v′1 and v′2 satisfy the system

e−2tv′1 + te−2tv′2 = 0

−2e−2tv′1 + (1− 2t) e−2tv′2 = e−2t ln t.

Multiplying the first equation by 2 and then adding them together yields

e−2tv′2 = e−2t ln t ⇒ v′2 = ln t ⇒ v2 =

∫
ln t dt = t(ln t− 1).

Since v′1 = −tv′2 = −t ln t, we find that

v1 = −
∫
t ln t dt = −

(
1

2
t2 ln t− 1

4
t2
)
.

140



Exercises 4.6

So,

yp(t) = −
(

1

2
t2 ln t− 1

4
t2
)
e−2t + t(ln t− 1) · te−2t =

2 ln t− 3

4
t2e−2t,

and a general solution is given by

y(t) =
2 ln t− 3

4
t2e−2t + c1e

−2t + c2te
−2t.

12. The corresponding homogeneous equation is y′′ + y = 0. Its auxiliary equation has the

roots r = ±i. Hence, a general solution to the homogeneous corresponding problem is

given by

yh = c1 cos t+ c2 sin t.

We will find a particular solution to the original equation by representing the right-hand

side as a sum

tan t+ e3t − 1 = g1(t) + g2(t),

where g1(t) = tan t and g2(t) = e3t − 1.

A particular solution to

y′′ + y = g1(t)

was found in Example 1, namely,

yp,1 = −(cos t) ln | sec t+ tan t|.

A particular solution to

y′′ + y = g2(t)

can be found using the method of undetermined coefficients. We let

yp,2 = A0e
3t +B0 ⇒ y′′p,2 = 9A0e

3t.

Substituting these functions yields

y′′p,2 + yp,2 =
(
9A0e

3t
)

+
(
A0e

3t +B0

)
= 10A0e

3t +B0 = e3t − 1.

Hence, A0 = 1/10, B0 = −1, and yp,2 = (1/10)e3t − 1.

By the superposition principle,

y = yp,1 + yp,2 + yh = −(cos t) ln | sec t+ tan t|+ (1/10)e3t − 1 + c1 cos t+ c2 sin t

gives a general solution to the original equation.
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14. A fundamental solution set for the corresponding homogeneous equation is y1(θ) = cos θ

and y2(θ) = sin θ (see Example 1 in the text or Problem 12). Applying the method of

variation of parameters, we seek a particular solution to the given equation in the form

yp = v1y1 + v2y2, where v1 and v2 satisfy

v′1(θ) cos θ + v′2(θ) sin θ = 0

−v′1(θ) sin θ + v′2(θ) cos θ = sec3 θ.

Multiplying the first equation by sin θ and the second equation by cos θ, and adding

them together yields

v′2(θ) = sec2 θ ⇒ v′1(θ) = −v′2(θ) tan θ = − tan θ sec2 θ.

Integrating, we get

v1(θ) = −
∫

tan θ sec2 θ dθ = −1

2
tan2 θ,

v2(θ) =

∫
sec2 θ dθ = tan θ,

where we have taken zero integration constants. Therefore,

yp(θ) = −1

2
tan2 θ cos t+ tan θ sin θ =

1

2
tan θ sin θ ,

and a general solution is given by

y(θ) = yp(θ) + yh(θ) =
tan θ sin θ

2
+ c1 cos θ + c2 sin θ.

16. The corresponding homogeneous equation is y′′ + 5y′ + 6y = 0. Its auxiliary equation

has the roots r = −2, −3. Hence, a general solution to the homogeneous problem is

given by

yh = c1e
−2t + c2e

−3t.

In this problem, we can apply the method of undetermined coefficients to find a particular

solution to the given nonhomogeneous equation.

yp = A2t
2 + A1t+ A0 ⇒ y′p = 2A2t+ A1 ⇒ y′′p = 2A2 .

Substituting these functions into the original equation yields

6A2t
2 + (10A2 + 6A1) t+ (2A2 + 5A1 + 6A0) = 18t2.
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Therefore,

A2 = 3, A1 = −10A2/6 = −5, A0 = −(2A2 + 5A1)/6 = 19/6

⇒ yp = 3t2 − 5t+
19

6
,

and

y = yp + yh = 3t2 − 5t+
19

6
+ c1e

−2t + c2e
−3t

is a general solution.

18. The auxiliary equation in this problem, r2 − 6r + 9 = (r − 3)2 = 0, has a double root

r = 3. Therefore, a fundamental solution set for corresponding homogeneous equation

is y1(t) = e3t and y2(t) = te3t. We now set

yp(t) = v1(t)y1(t) + v2(t)y2(t),

where v1 and v2 satisfy

e3tv′1 + te3tv′2 = 0,

3e3tv′1 + (1 + 3t)e3tv′2 = t−3e3t.

Subtracting the first equation multiplied by 3 from the second one, we get

e3tv′2 = t−3e3t ⇒ v′2 = t−3 ⇒ v2(t) = − 1

2t2
.

Substituting v′2 into the first equation yields

v′1 = −tv′2 = −t−2 ⇒ v1(t) =
1

t
.

Thus,

yp(t) =
1

t
e3t − 1

2t2
te3t =

e3t

2t
,

y(t) = yp(t) + c1y1(t) + c2y2(t) =
e3t

2t
+ c1e

3t + c2te
3t.

20. Since yh(t) = c1 cos t + c2 sin t is a general solution to the corresponding homogeneous

equation, we have to verify that the integral part of y(t) is a particular solution to the

original nonhomogeneous problem. Applying the method of variation of parameters, we

form the system (9).

v′1 cos t+ v′2 sin t = 0

−v′1 sin t+ v′2 cos t = f(t).
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Multiplying the first equation by sin t, the second equation by cos t, and adding them

yields

v′2 = f(t) cos t ⇒ v′1 = −v′2 sin t/ cos t = −f(t) sin t.

Integrating, we obtain

v1(t) = −
t∫

0

f(s) sin s ds , v2(t) =

t∫
0

f(s) cos s ds .

Hence, a particular solution to the given equation is

yp(t) = y2(t)v2(t) + y1(t)v1(t)

= sin t

t∫
0

f(s) cos s ds− cos t

t∫
0

f(s) sin s ds

=

t∫
0

f(s) sin t cos s ds−
t∫

0

f(s) cos t sin s ds

=

t∫
0

f(s) (sin t cos s− cos t sin s) ds =

t∫
0

f(s) sin(t− s) ds.

EXERCISES 4.7: Variable-Coefficient Equations

2. Writing the equation in standard form,

y′′ +
2

t− 3
y′ − 1

t(t− 3)
y =

t

t− 3
,

we see that the coefficients p(t) = 2/(t− 3) and q(t) = 1/[t(t− 3)], and g(t) = t/(t− 3)

are simultaneously continuous on (−∞, 0), (0, 3), and 3,∞). Since the initial value of t

belongs to (0, 3), Theorem 5 applies, and so there exists a unique solution to the given

initial value problem on (0, 3) (with any choice of Y0 and Y1).

4. The standard form for this equation is

y′′ +
1

t2
y =

cos t

t2
.

The function p(t) ≡ 0 is continuous everywhere, q(t) = t−2, and g(t) = t−2 cos t are

simultaneously continuous on (−∞, 0) and (0,∞). Thus, the given initial value problem

has a unique solution on (0,∞).
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6. Theorem 5 does not apply to this initial value problem since the initial point, t = 0, is a

point of discontinuity of (say) p(t) = t−1 (actually, q(t) and g(t) are also discontinuous

at this point).

8. Theorem 5 does not apply because the given problem is not an initial value problem.

10. In this a homogeneous Cauchy-Euler equation with

a = 1, b = 2, c = −6.

Thus, substituting y = tr, we get its characteristic equation (see (7))

ar2 + (b− a)r + c = r2 + r − 6 = 0 ⇒ r = −3, 2 .

Therefore, y1(t) = t−3 and y2(t) = t2 are two linearly independent solutions to the given

differential equation, and a general solution has the form

y(t) = c1t
−3 + c2t

2 .

12. Comparing this equation with (6), we see that a = 1, b = 5, and c = 4. Therefore, the

corresponding auxiliary equation,

ar2 + (b− a)r + c = r2 + 4r + 4 = (r + 2)2 = 0

has a double root r = −2. Therefore, y1(t) = t−2 and y2(t) = t−2 ln t represent two

linearly independent solutions, and so

y(t) = c1t
−2 + c2t

−2 ln t

is a general solution to the given equation.

14. In this homogeneous Cauchy-Euler equation a = 1, b = −3, and c = 4. Therefore, the

corresponding auxiliary equation,

ar2 + (b− a)r + c = r2 − 4r + 4 = (r − 2)2 = 0

has a double root r = 2. Therefore, y1(t) = t2 and y2(t) = t2 ln t are two linearly

independent solutions. Hence, a general solution is

y(t) = c1t
2 + c2t

2 ln t .
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16. In this homogeneous Cauchy-Euler equation a = 1, b = −3, and c = 6. Therefore, the

corresponding auxiliary equation,

ar2 + (b− a)r + c = r2 − 4r + 6 = (r − 2)2 + 2 = 0

has complex roots r = 2 ±
√

2i with α = 2, β =
√

2. According to (8) in the text, the

functions

y1(t) = t2 cos
(√

2 ln t
)
, y2(t) = t2 sin

(√
2 ln t

)
are two linearly independent solutions to the given homogeneous equation. Thus, a

general solution is given by

y = c1y1 + c2y2 = t2
[
c1 cos

(√
2 ln t

)
+ c2 sin

(√
2 ln t

)]
.

18. The substitution y = tr leads the characteristic equation (see (7))

r(r − 1) + 3r + 5 = 0 ⇒ r2 + 2r + 5 = (r + 1)2 + 4 = 0 .

Solving yields

r = −1± 2i .

Thus, the roots are complex numbers α ± βi with α = −1, β = 2. According to (8) in

the text, the functions

y1(t) = t−1 cos(2 ln t), y2(t) = t−1 sin(2 ln t)

are two linearly independent solutions to the given homogeneous equation. Thus, a

general solution is given by

y = c1y1 + c2y2 = t−1 [c1 cos(2 ln t) + c2 sin(2 ln t)] .

20. First, we find a general solution to the given Cauchy-Euler equation. Substitution y = tr

leads to the characteristic equation

r(r − 1) + 7r + 5 = r2 + 6r + 5 = 0 ⇒ r = −1,−5 .

Thus, y = c1t
−1 + c2t

−5 is a general solution. We now find constants c1 and c2 such that

the initial conditions are satisfied.

−1 = y(1) = c1 + c2 ,

13 = y′(1) = −c1 − 5c2
⇒

c1 = 2 ,

c2 = −3

and, therefore, y = 2t−1 − 3t−5 is the solution to the given initial value problem.
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22. We will look for solutions to the given equation of the form

y(t) = (t+ 1)r ⇒ y′(t) = r(t+ 1)r−1 ⇒ y′′(t) = r(r − 1)(t+ 1)r−2 .

Substituting these formulas into the differential equation yields

[r(r − 1) + 10r + 14] (t+ 1)r = 0 ⇒ r2 + 9r + 14 = 0 ⇒ r = −2,−7 .

Therefore, y1 = (t + 1)−2 and y2 = (t + 1)−7 are two linearly independent solutions on

(−1,∞). Taking their linear combination, we obtain a general solution of the form

y = c1(t+ 1)−2 + c2(t+ 1)−7 .

24. According to Problem 23, the substitution t = ex transforms a Cauchy-Euler equation

(6) into the constant-coefficient equation (20) in Y (x) = y(ex). In (a)–(d) below, we

write (20) for the given equation, apply methods of solving linear equations with con-

stant coefficients developed in Sections 4.2–4.6 to find Y (x), and then make the back

substitution ex = t or x = ln t, t > 0.

(a) Y ′′ − 9Y = 0 has an auxiliary equation r2 − 9 = 0 with two distinct real roots

r = ±3. Thus, a general solution is

Y (x) = c1e
−3x + c2e

3x = c1 (ex)−3 + c2 (ex)3 .

Therefore,

y(t) = c1t
−3 + c2t

3 .

(b) y′′ + 2Y ′ + 10Y = 0. The auxiliary equation r2 + 2r + 10 = 0 has complex roots

r = −1± 3i. Hence,

Y (x) = e−x (c1 cos 3x+ c2 sin 3x) = (ex)−1 (c1 cos 3x+ c2 sin 3x)

⇒ y(t) = t−1 [c1 cos(3 ln t) + c2 sin(3 ln t)] .

(c) Y ′′ + 2Y ′ +Y = ex + (ex)−1 = ex + e−x. This is a nonhomogeneous equation. First,

we find a general solution Yh to the corresponding homogeneous equation.

r2 + 2r + 1 = (r + 1)2 = 0 ⇒ r = −1
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is a double root of the auxiliary equation. Therefore,

Yh(x) = c1e
−x + c2xe

−x .

By the superposition principle, a particular solution to the nonhomogeneous equa-

tion has the form

Yp(x) = Aex +Bx2e−x

Y ′
p(x) = Aex +B

(
2x− x2

)
e−x

Y ′′
p (x) = Aex +B

(
x2 − 4x+ 2

)
e−x .

Substitution yields[
Aex +B

(
x2 − 4x+ 2

)
e−x
]
+ 2

[
Aex +B

(
2x− x2

)
e−x
]

+
[
Aex +Bx2e−x

]
= ex + e−x

⇒ 4Aex + 2Be−x = ex + e−x ⇒ A =
1

4
, B =

1

2

⇒ Yp(x) =
1

4
ex +

1

2
x2e−x.

Thus,

Y (x) = Yp(x) + Yh(x) =
1

4
ex +

1

2
x2e−x + c1e

−x + c2xe
−x .

The back substitution yields

y(t) =
1

4
t+

1

2
t−1 ln2 t+ c1t

−1 + c2t
−1 ln t .

(d) Y ′′ + 9Y = − tan 3x. The auxiliary equation has roots r = ±3i. Therefore, the

functions Y1(x) = cos 3x and Y2(x) = sin 3x form a fundamental solution set, and

Yh(x) = c1 cos 3x+ c2 sin 3x

is a general solution to the corresponding homogeneous equation. To find a partic-

ular solution to the nonhomogeneous equation, we use the variation of parameters

method. We look for Yp(x) of the form

Yp(x) = v1(x)Y1(x) + v2(x)Y2(x),

where v1 and v2 satisfy equations (12) of the text. We find

W [Y1, Y2] (x) = Y1Y
′
2 − Y ′

1Y2 = (cos 3x)(3 cos 3x)− (−3 sin 3x)(sin 3x) = 3
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and apply formulas (12).

v1(x) =

∫
tan 3x sin 3x

3
dx = −1

9
sin 3x+

1

9
ln | sec 3x+ tan 3x| ,

v2(x) = −
∫

tan 3x cos 3x

3
dx =

1

9
cos 3x .

Hence,

Yp =

[
−1

9
sin 3x+

1

9
ln | sec 3x+ tan 3x|

]
cos 3x+

[
1

9
cos 3x

]
sin 3x

=
1

9
cos 3x ln | sec 3x+ tan 3x|

and so

Y (x) =
1

9
cos 3x ln | sec 3x+ tan 3x|+ c1 cos 3x+ c2 sin 3x

is a general solution. After back substitution we obtain a general solution

y(t) =
1

9
cos(3 ln t) ln | sec(3 ln t) + tan(3 ln t)|+ c1 cos(3 ln t) + c2 sin(3 ln t)

to the original equation.

26. (a) On [0,∞), y2(t) = t3 = y1(t). Thus, they are linearly dependent.

(b) On (−∞, 0], y2(t) = −t3 = −y1(t). So, they are linearly dependent.

(c) If c1y1 + c2y2 ≡ 0 on (−∞,∞) for some constants c1 and c2, then, evaluating this

linear combination at t = ±1, we obtain a system{
c1 + c2 = 0

−c1 + c2 = 0
⇒ c1 = c2 = 0 .

Therefore, these two functions are linearly independent on (−∞,∞).

(d) To compute the Wronskian, we need derivatives of y1 and y2.

y′1(t) = 3t2 , −∞ < t <∞ ;

y′2(t) =

{
(t3)′ = 3t2 , t > 0

(−t3)′ = −3t2 , t < 0
= 3t|t| .

Since

lim
t→0+

y′2(t) = lim
t→0−

y′2(t) = 0 ,

we conclude that y′2(0) = 0 so that y′2(t) = 3t|t| for all t. Thus,

W [y1, y2] (t) =
(
t3
)
(3t|t|)−

(
3t2
) ∣∣t3∣∣ ≡ 0 .
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28. (a) Dependent on [0,∞) because y2(t) = 2t2 = 2y1(t).

(b) Dependent on (−∞, 0] because y2(t) = −2t2 = −2y1(t).

(c) If c1y1 + c2y2 ≡ 0 on (−∞,∞) for some constants c1 and c2, then, evaluating this

linear combination at t = ±1, we obtain a system{
c1 + 2c2 = 0

c1 − 2c2 = 0
⇒ c1 = c2 = 0 .

Therefore, these two functions are linearly independent on (−∞,∞).

(d) To compute the Wronskian, we need derivatives of y1 and y2.

y′1(t) = 2t , −∞ < t <∞ ;

y′2(t) =

{
(2t2)′ = 4t , t > 0

(−2t2)′ = −4t , t < 0
= 4|t| .

Since

lim
t→0+

y′2(t) = lim
t→0−

y′2(t) = 0 ,

we conclude that y′2(0) = 0 so that y′2(t) = 4|t| for all t. Thus,

W [y1, y2] (t) =
(
t2
)
(4|t|)− (2t) 2t|t| ≡ 0 .

30. We have

(c1y1 + c2y2)
′ = c1y

′
1 + c2y

′
2 ,

(c1y1 + c2y2)
′′ = c1y

′′
1 + c2y

′′
2 .

Thus,

(c1y1 + c2y2)
′′ + p (c1y1 + c2y2)

′ + q (c1y1 + c2y2)

= (c1y
′′
1 + pc1y

′
1 + qc1y1) + (c2y

′′
2 + pc2y

′
2 + qc2y2)

= c1 (y′′1 + py′1 + qy1) + c2 (y′′2 + py′2 + qy2) = c1g1 + c2g2 .

32. (a) Differentiating (18), Section 4.2, yields

W ′ = (y1y
′
2 − y′1y2)

′
= (y′1y

′
2 + y1y

′′
2)− (y′′1y2 + y′1y

′
2) = y1y

′′
2 − y′′1y2 .

Therefore,

W ′ + pW = (y1y
′′
2 − y′′1y2) + p (y1y

′
2 − y′1y2)

= y1 (y′′2 + py′2)− y2 (y′′1 + py′1) = y1 (−qy2)− y2 (−qy1) = 0 .
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(b) Separating variables and integrating from t0 to t yields

dW

W
= −p dt ⇒

t∫
t0

dW

W
= −

t∫
t0

p(τ) dτ (4.4)

⇒ ln

∣∣∣∣ W (t)

W (t0)

∣∣∣∣ = −
t∫

t0

p(τ) dτ

⇒ |W (t)| = |W (t0)| exp

−
t∫

t0

p(τ) dτ

 .

Since the integral on the right-hand side is continuous (even differentiable) on (a, b),

the exponential function does not vanish on (a, b). Therefore, W (t) has a constant

sign on (a, b) (by the intermediate value theorem), and so we can drop the absolute

value signs and obtain

W (t) = W (t0) exp

−
t∫

t0

p(τ) dτ

 . (4.5)

The constant

C := W (t0) = y1 (t0) y
′
2 (t0)− y′1 (t0) y2 (t0)

depends on y1 and y2 (and t0). Thus, the Abel’s formula is proved.

(c) If, at some point t0 in (a, b), W (t0) = 0, then (4.5) implies that W (t) ≡ 0.

34. Using the superposition principle (see Problem 30), we conclude the following.

(a) y1(t) = t2 − t and y2(t) = t3 − t are solutions to the corresponding homogeneous

equation. These two functions are linearly independent on any interval because

their nontrivial linear combination

c1y1 + c2y2 = c2t
3 + c1t

2 − (c1 + c2) t

is a non-zero polynomial of degree at most three, which cannot have more than

three zeros.

(b) A general solution to the given equation is a sum of a general solution yh to the cor-

responding homogeneous equation and a particular solution to the nonhomogeneous

equation, say, t. Hence,

y = t+ c1
(
t2 − t

)
+ c2

(
t3 − t

)
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⇒ y′ = 1 + c1 (2t− 1) + c2
(
3t2 − 1

)
.

We now use the initial conditions to find c1 and c2 .{
2 = y(2) = 2 + 2c1 + 6c2

5 = y′(2) = 1 + 3c1 + 11c2
⇒

{
c1 + 3c2 = 0

3c1 + 11c2 = 4 .

Solving this system yields c1 = −6, c2 = 2. Therefore, the answer is

y = t− 6
(
t2 − t

)
+ 2

(
t3 − t

)
= 2t3 − 6t2 + 5t .

(c) From Abel’s formula (or see (4.4) in Problem 32) we have W ′/W = −p, where

W = W [y1, y2] (t). In this problem,

W [y1, y2] (t) =
(
t2 − t

) (
t3 − t

)′ − (t2 − t
)′ (

t3 − t
)

= t4 − 2t3 + t2 = t2(t− 1)2 .

Therefore, W ′ = 4t3 − 6t2 + 2t = 2t(t− 1)(2t− 1) and

p(t) = −2t(t− 1)(2t− 1)

t2(t− 1)2
=

2− 4t

t(t− 1)
.

We remark that one can now easily recover the “mysterious” equation. Indeed,

substituting y1(t) into the corresponding homogeneos equation yields

q(t) =
6t2 − 6t+ 2

t2(t− 1)2
.

Finally, the substitution y = t into the original nonhomogeneous equation gives

g(t) =
2t

(t− 1)2
.

36. Clearly, y1(t) and y2(t are linearly independent since one of them is an exponential

function and the other one is a polynomial. We now check if they satisfy the given

equation.

t
(
et
)′′ − (t+ 2)

(
et
)′

+ 2
(
et
)

= tet − (t+ 2)et + 2et = 0

t
(
t2 + 2t+ 2

)′′ − (t+ 2)
(
t2 + 2t+ 2

)′
+ 2

(
t2 + 2t+ 2

)
= t(2)− (t+ 2)(2t+ 2) + 2

(
t2 + 2t+ 2

)
= 0.

Therefore, a general solution has the form

y(t) = c1e
t + c2

(
t2 + 2t+ 2

)
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⇒ y′(t) = c1e
t + c2 (2t+ 2) .

For c1 and c2 we obtain the system of linear equations{
0 = y(1) = c1e+ 5c2

1 = y′(1) = c1e+ 4c2 .

Solving yields c1 = 5/e, c2 = −1. Thus, the answer is

y = 5et−1 − t2 − 2t− 2 .

38. In standard form, the equation becomes

y′′ − 4

t
y′ +

6

t2
y = t+ t−2 .

Thus, g(t) = t+ t−2. We are also given two linearly independent solutions to the corre-

sponding homogeneous equation, y1(t) = t2 and y2(t) = t3. Computing their Wronskian

W [y1, y2] (t) = t2
(
3t2
)
− (2t) t3 = t4 ,

we can use Theorem 7 to find v1(t) and v2(t).

v1(t) =

∫
−(t+ t−2)t3

t4
dt = −

∫ (
1 + t−3

)
dt =

1

2
t−2 − t ,

v2(t) =

∫
(t+ t−2)t2

t4
dt =

∫ (
t−1 + t−4

)
dt = ln t− 1

3
t−3 .

Therefore,

yp = v1y1 + v2y2 =

(
1

2
t−2 − t

)
t2 +

(
ln t− 1

3
t−3

)
t3 = t3 ln t− t3 +

1

6

is a particular solution to the given equation. By the superposition principle, a general

solution to the given equation is

y(t) = t3 ln t− t3 +
1

6
+ c1t

2 + c2t
3 = t3 ln t+

1

6
+ c1t

2 + c3t
3 ,

where c3 = c2 − 1.

40. Writing the equation in standard form,

y′′ +
1− 2t

t
y′ +

t− 1

t
y = et ,
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we see that g(t) = et. We also have two linearly independent solutions to the correspond-

ing homogeneous equation, y1(t) = et and y2(t) = et ln t. Computing their Wronskian

W [y1, y2] (t) = et
(
et ln t

)′ − (et
)′
et ln t = t−1e2t ,

we use Theorem 7 to find v1(t) and v2(t).

v1(t) = −
∫
etet ln t

t−1e2t
dt = −

∫
t ln t dt = −1

2
t2 ln t+

1

4
t2 ,

v2(t) =

∫
etet

t−1e2t
dt =

∫
t dt =

1

2
t2 .

Therefore,

yp =

(
−1

2
t2 ln t+

1

4
t2
)
et +

1

2
t2et ln t =

1

4
t2et

is a particular solution to the given equation. By the superposition principle, a general

solution to the given equation is

y(t) =
1

4
t2et + c1e

t + c2e
t ln t .

42. In notation of Definition 2, a = 1, b = 3, c = 1. Therefore, the auxiliary equation (7)

becomes

r2 + 2r + 1 = 0 ⇒ r = −1

is a double root. Hence, y1(t) = t−1 and y2(t) = t−1 ln t are two linearly independent so-

lutions to the corresponding homogeneous equation. Computing their Wronskian yields

W [y1, y2] (t) =

∣∣∣∣∣ t−1 t−1 ln t

−t−2 t−2(1− ln t)

∣∣∣∣∣ = t−3 .

The standard form of the given equation,

z′′ − t−1z′ + t−2z = t−1

(
1 +

3

ln t

)
,

shows that g(t) = t−3. We now apply formulas (12) to find a particular solution.

v1(t) =

∫
−t−3t−1 ln t

t−3
dt = −

∫
ln t

t
dt = −1

2
ln2 t,

v2(t) =

∫
t−3t−1

t−3
dt =

∫
dt

t
= ln t .

Thus,

yp = v1y1 + v2y2 =

(
−1

2
ln2 t

)
t−1 + (ln t) t−1 ln t =

1

2
t−1 ln2 t ,
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and a general solution to the given equation is given by

y = yp + yh =
1

2
t−1 ln2 t+ c1t

−1 + c2t
−1 ln t .

44. Since y1(t) = t−1/2 cos t and y2(t) = t−1/2 sin t are two linearly independent solutions to

the homogeneous Bessel equation of order one-half, its general solution is given by

yh = t−1/2 (c1 cos t+ c2 sin t) .

The given equation is not in standard form. Dividing it by t2, we find that g(t) = t1/2.

To find a particular solution, we use variation of parameters. First of all,

y′1(t) =
(
t−1/2 cos t

)′
= −1

2
t−3/2 cos t− t−1/2 sin t ,

y′2(t) =
(
t−1/2 sin t

)′
= −1

2
t−3/2 sin t+ t−1/2 cos t

and so

W [y1, y2] (t) = t−1/2 cos t

(
−1

2
t−3/2 sin t+ t−1/2 cos t

)
−
(
−1

2
t−3/2 cos t− t−1/2 sin t

)
t−1/2 sin t = t−1 .

We now involve Theorem 7 to find v1 and v2.

v1 =

∫
−t1/2t−1/2 sin t

t−1
dt = −

∫
t sin t dt = t cos t− sin t ,

v2 =

∫
t1/2t−1/2 cos t

t−1
dt =

∫
t cos t dt = t sin t+ cos t ,

where we have used integration by parts and chose zero integration constants. Therefore,

yp = (t cos t− sin t) t−1/2 cos t+ (t sin t+ cos t) t−1/2 sin t = t1/2

and y = t1/2 + t−1/2 (c1 cos t+ c2 sin t) is a general solution to the given nonhomogeneous

Bessel’s equation.

46. In standard form, the equation becomes

y′′ +
6

t
y′ +

6

t2
y = 0 .

Thus, p(t) = 6/t. We also have a nontrivial solution y1(t) = t−2. To apply the reduction

of order formula (13), we compute

exp

{
−
∫
p(t) dt

}
= exp

{
−
∫

6dt

t

}
= exp (−6 ln t) = t−6 .
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Hence, a second linearly independent solution is

y2(t) = t−2

∫
t−6dt

(t−2)2 = t−2

∫
t−2dt = −t−3 .

One can also take y2(t) = t−3, because the given equation is linear and homogeneous.

48. Putting the equation in standard form yields p(t) = t−1 − 2. Hence,

exp

{
−
∫
p(t) dt

}
= exp

{∫ (
2− t−1

)
dt

}
= e2t−ln t = t−1e2t .

Therefore, by Theorem 8, a second linearly independent solution is

y2(t) = et

∫
t−1e2t

(et)2 dt = et

∫
t−1 dt = et ln t .

50. Separation variables in (16) yields

w′

w
= −2y′1 + py1

y1

= −
(

2
y′1
y1

+ p

)
.

Integrating, we obtain∫
w′

w
dt = −

∫ (
2
y′1
y1

+ p

)
dt = −2

∫
y′1
y1

dt−
∫
p dt

⇒ ln |w| = −2 ln |y1| −
∫
p dt ⇒ |w| = y−2

1 exp

{
−
∫
p dt

}
.

Obviously, w(t) does not change its sign on I (the right-hand side does not vanish on

I). Without loss of generality, we can assume that w > 0 on I and so

v′ = w = y−2
1 exp

{
−
∫
p dt

}
⇒ v =

∫
exp

{
−
∫
p dt
}

y2
1

dt ⇒ y2 = y1v = y1

∫
exp

{
−
∫
p dt
}

y2
1

dt .

52. For y(t) = v(t)f(t) = tv(t), we find

y′ = tv′ + v ,

y′′ = tv′′ + 2v′ ,

y′′′ = tv′′′ + 3v′′ .

Substituting y and its derivatives into the given equation, we get

t (tv′′′ + 3v′′) + (1− t) (tv′′ + 2v′) + t (tv′ + v)− tv
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= t2v′′′ − (t2 − 4t)v′′ + (t2 − 2t+ 2)v′ = 0 .

Hence, denoting v′ = w (so that v′′ = w′ and v′′′ = w′′) yields

t2w′′ − (t2 − 4t)w′ + (t2 − 2t+ 2)w = 0 ,

which is a second order linear homogeneous equation in w.

54. The quotient rule, the definition of the Wronskian (see Problem 34, Section 4.2), and

Abel’s formula (Problem 32) give us(
y

f

)′
=
fy′ − f ′y

f 2
=
W [f, y]

f 2
=
C exp

{
−
∫ t

t0
p(τ)dτ

}
f 2

.

Integrating yields∫ (
y

f

)′
dt = C

∫ exp
{
−
∫ t

t0
p(τ)dτ

}
f 2

dt

⇒ y

f
= C

∫ exp
{
−
∫ t

t0
p(τ)dτ

}
f 2

dt

⇒ y = Cf

∫ exp
{
−
∫ t

t0
p(τ)dτ

}
f 2

dt = C1f

∫
exp

{
−
∫
p(τ)dτ

}
f 2

dt ,

where C1 depends on C and the constant of integration. Since the given differential

equation is linear and homogeneous,

y2 :=
y

C1

= f

∫
exp

{
−
∫
p(τ)dτ

}
f 2

dt

is also a solution. Clearly, f and y2 are linearly independent because f and y are and

y2 is a constant multiple of y.

EXERCISES 4.8: Qualitative Considerations for Variable-Coefficient and

Nonlinear Equations

2. Comparing the given equation with (13), we conclude that

“inertia” = 1 , “damping” = 0 , “stiffness” = −6y .

If y > 0, then the stiffness is negative. Negative stiffness tends to reinforce the displace-

ment with the force Fspring = 6y that intensifies as the displacement increases. Thus,

the solutions must increase unboundedly.
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4. Assuming that a linear combination

c1
(1− t)2

+
c2

(2− t)2
+

c3
(3− t)2

= 0 on (−1, 1) ,

we multiply this equality by (1− t)2(2− t)2(3− t)2 and conclude that

c1(2− t)2(3− t)2 + c2(1− t)2(3− t)2 + c3(1− t)2(2− t)2 = 0 on (−1, 1) .

The left-hand side of the above equation is a polynomial of degree at most four, which

can have four zeros at most, unless it is the zero polynomial. Equating the first three

coefficients to zero yields the following homogeneous system of linear equations

c1 + c2 + c3 = 0

10c1 + 8c2 + 6c3 = 0

17c1 + 10c2 + 5c3 = 0

for c1, c2, and c3 , which has the unique trivial solution c1 = c2 = c3 = 0. Thus, the

given three functions are linearly independent.

6. Writing the given mass-spring equation in the form (7), we conclude that f(y) = −ky
so that

F (y) =

∫
(−ky) = −ky

2

2
.

Therefore, the energy equation (8) becomes

E(t) =
1

2
y′(t)2 −

(
−ky(t)

2

2

)
= C1 ⇒ y′(t)2 + ky(t)2 = C .

8. In this problem, the dependent variable is θ and the independent variable is t. From the

pendulum equation (21), we find that f(θ) = −(g/`) sin θ. Thus,

F (θ) =

∫ (
−g
`

sin θ
)
dθ =

g

`
cos θ ,

and the energy equation (8) becomes

E(t) =
1

2
θ′(t)2 − g

`
cos θ(t) = C . (4.6)

10. Substituting t = 0 into (4.6) and using the initial conditions

θ(0) = α , θ′(0) = 0
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yields

C =
1

2
θ′(0)2 − g

`
cos θ(0) = −g

`
cosα .

Writing now (4.6) as
g

`
cos θ(t)− 1

2
θ′(t)2 =

g

`
cosα ,

we see that, for all t,

cos θ(t) ≥ cosα

since θ′(t)2 is nonnegative. Solving this inequality on [−π, π] yields

|θ(t)| ≤ cos−1(cosα) = α .

12. Writing the Legendre’s equation (2) in standard form

y′′ − 2t

1− t2
y′ +

2

1− t2
y = 0

yields

p(t) =
2t

t2 − 1
⇒

∫
p(t) dt = ln

(
1− t2

)
, −1 < t < 1 .

Therefore, with y1(t) = t,∫
exp

{
−
∫
p(t) dt

}
y1(t)2

dt =

∫
dt

t2 (1− t2)
=

∫
(1− t2 + t2) dt

t2 (1− t2)

=

∫
dt

t2
+

∫
dt

1− t2
= −1

t
+

1

2
ln

(
1 + t

1− t

)
,

and the reduction of order formula (13), Section 4.7, gives

y2(t) = y1(t)

∫
exp

{
−
∫
p(t) dt

}
y1(t)2

dt = t

[
−1

t
+

1

2
ln

(
1 + t

1− t

)]
=
t

2
ln

(
1 + t

1− t

)
− 1 .

14. With n = 1/2, the Bessel’s equation(16) reads

y′′ +
1

t
y′ +

(
1− 1

4t2

)
y = 0 . (4.7)

Since the Bessel’s equation is linear and homogeneous, we will check whether or not

y1(t) := t−1/2 sin t and y2(t) := t−1/2 cos t

are solutions. If they are, then J1/2(t) and Y1/2(t) are solutions as well. For y1(t), we

have

y′1(t) = t−1/2 cos t− 1

2
t−3/2 sin t ,
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y′′1(t) = −t−1/2 sin t− t−3/2 cos t+
3

4
t−5/2 sin t .

Substituting these expressions into (4.7) and collecting similar terms yields(
−t−1/2 sin t− t−3/2 cos t+

3

4
t−5/2 sin t

)
+

(
t−3/2 cos t− 1

2
t−5/2 sin t

)
+

(
t−1/2 sin t− 1

4
t−5/2 sin t

)
= 0 .

Similarly, for y2(t), we have

y′2(t) = −t−1/2 sin t− 1

2
t−3/2 cos t ,

y′′2(t) = −t−1/2 cos t+ t−3/2 sin t+
3

4
t−5/2 cos t .

Substituting these expressions into (4.7) and collecting similar terms, we get(
−t−1/2 cos t+ t−3/2 sin t+

3

4
t−5/2 cos t

)
+

(
−t−3/2 sin t− 1

2
t−5/2 cos t

)
+

(
t−1/2 cos t− 1

4
t−5/2 cos t

)
= 0 .

Hence, y1(t) and y2(t) are solutions to (4.7).

16. For the Duffing equation (18), f(y) = − (y + y3) in the energy lemma so that

F (y) = −
∫ (

y + y3
)
dy = −

(
y2

2
+
y4

4

)
⇒ E(t) =

1

2
y′(t)2 +

y(t)2

2
+
y(t)4

4
= C .

Therefore, since (1/2)y′(t)2 + (1/4)y(t)4 ≥ 0,

y(t)2 ≤ 2C ⇒ |y(t)| ≤
√

2C =: M .

EXERCISES 4.9: A Closer Look at Free Mechanical Vibrations

2. In this problem, we have undamped free vibration case governed by equation (2) in the

text. With m = 2 and k = 50, the equation becomes

2y′′ + 50y = 0

with the initial conditions y(0) = −1/4, y′(0) = −1.

The angular velocity of the motion is

ω =

√
k

m
=

√
50

2
= 5 .
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It follows that

period =
2π

ω
=

2π

5

natural frequency =
ω

2π
=

5

2π
.

A general solution, given in (4) in the text, becomes

y(t) = C1 cosωt+ C2 sinωt = C1 cos 5t+ C2 sin 5t.

We find C1 and C2 from the initial conditions.

y(0) = (C1 cos 5t+ C2 sin 5t)
∣∣
t=0

= C1 = −1/4

y′(0) = (−5C1 sin 5t+ 5C2 cos 5t)
∣∣
t=0

= 5C2 = −1
⇒

C1 = −1/4

C2 = −1/5.

Thus, the solution to the initial value problem is

y(t) = −1

4
cos 5t− 1

5
sin 5t.

The amplitude of the motion therefore is

A =
√
C2

1 + C2
2 =

√
1

16
+

1

25
=

√
41

20
.

Setting y = 0 in the above solution, we find values of t when the mass passes through

the point of equilibrium.

−1

4
cos 5t− 1

5
sin 5t = 0 ⇒ tan 5t = −5

4

⇒ t =
πk − arctan(5/4)

5
, k = 1, 2, . . . .

(Time t is nonnegative.) The first moment when this happens, i.e., the smallest value

of t, corresponds to k = 1. So,

t =
π − arctan(5/4)

5
≈ 0.45 (sec) .

4. The characteristic equation in this problem, r2 + br + 64 = 0, has the roots

r =
−b±

√
b2 − 256

2
.

Substituting given particular values of b, we find the roots of the characteristic equation

and solutions to the initial value problems in each case.
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b = 0b = 0b = 0.

r =
±
√
−256

2
= ±8i.

A general solution has the form y = C1 cos 8t+C2 sin 8t. Constants C1 and C2 can

be found from the initial conditions.

y(0) = (C1 cos 8t+ C2 sin 8t)
∣∣
t=0

= C1 = 1

y′(0) = (−8C1 sin 8t+ 8C2 cos 8t)
∣∣
t=0

= 8C2 = 0
⇒

C1 = 1

C2 = 0

and so y(t) = cos 8t.

b = 10b = 10b = 10.

r =
−10±

√
100− 256

2
= −5±

√
39i.

A general solution has the form y = (C1 cos
√

39t+C2 sin
√

39t)e−5t. For constants

C1 and C2, we have the system

y(0) =
(
C1 cos

√
39t+ C2 sin

√
39t
)
e−5t

∣∣
t=0

= C1 = 1

y′(0) =
[
(
√

39C2 − 5C1) cos
√

39t− (
√

39C1 + 5C2) sin
√

39t
]
e−5t

∣∣
t=0

=
√

39C2 − 5C1 = 0

⇒
C1 = 1

C2 = 5/
√

39 ,

and so

y(t) =

[
cos

√
39t+

5√
39

sin
√

39t

]
e−5t =

8√
39
e−5t sin

(√
39t+ φ

)
,

where φ = arctan(
√

39/5) ≈ 0.896 .

b = 16b = 16b = 16.

r =
−16±

√
256− 256

2
= −8.

Thus, r = −8 is a double root of the characteristic equation. So, a general solution

has the form y = (C1t+ C0)e
−8t. For constants C1 and C2, we obtain the system

y(0) = (C1t+ C0) e
−4t
∣∣
t=0

= C0 = 1

y′(0) = (−8C1t− 8C0 + C1) e
−8t
∣∣
t=0

= C1 − 8C0 = 0
⇒

C0 = 1,

C1 = 8,

and so y(t) = (8t+ 1)e−8t.
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b = 20b = 20b = 20.

r =
−20±

√
400− 256

2
= −10± 6.

Thus, r = −4, −16, and a general solution is given by y = C1e
−4t + C2e

−16t. The

initial conditions give the system

y(0) = (C1e
−4t + C2e

−16t)
∣∣
t=0

= C1 + C2 = 1

y′(0) = (−4C1e
−4t − 16C2e

−16t)
∣∣
t=0

= −4C1 − 16C2 = 0
⇒

C1 = 4/3

C2 = −1/3,

and, therefore, y(t) = (4/3)e−4t − (1/3)e−16t is the solution.

The graphs of the solutions are depicted in Fig. 4–D and Fig. 4–E, page 174.

6. The auxiliary equation associated with given differential equation is r2 +4r+k = 0, and

its roots are r = −2±
√

4− k.

k = 2k = 2k = 2. In this case, r = −2±
√

4− 2 = −2±
√

2. Thus, a general solution is given

by y = C1e
(−2+

√
2)t + C2e

(−2−
√

2)t. The initial conditions imply that

y(0) =
[
C1e

(−2+
√

2)t + C2e
(−2−

√
2)t
]∣∣∣

t=0
= C1 + C2 = 1

y′(0) =
[
(−2 +

√
2)C1e

(−2+
√

2)t + (−2−
√

2)C2e
(−2−

√
2)t
]∣∣∣

t=0

= (−2 +
√

2)C1 + (−2−
√

2)C2 = 0

⇒ C1 =
(
1 +

√
2
)
/2 , C2 =

(
1−

√
2
)
/2

and, therefore,

y(t) =
1 +

√
2

2
e(−2+

√
2)t +

1−
√

2

2
e(−2−

√
2)t

is the solution to the initial value problem.

k = 4k = 4k = 4. Then r = −2 ±
√

4− 4 = −2. Thus, r = −2 is a double root of the

characteristic equation. So, a general solution has the form y = (C1t+C0)e
−2t. For

constants C1 and C2, using the initial conditions, we obtain the system

y(0) = (C1t+ C0) e
−2t
∣∣
t=0

= C0 = 1

y′(0) = (−2C1t− 2C0 + C1) e
−2t
∣∣
t=0

= C1 − 2C0 = 0
⇒ C0 = 1 , C1 = 2

and so y(t) = (2t+ 1)e−2t.

k = 6k = 6k = 6. In this case, r = −2±
√

4− 6 = −2±
√

2i. A general solution has the form

y = (C1 cos
√

2t+ C2 sin
√

2t)e−2t
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⇒ y′ =
[
(
√

2C2 − 2C1) cos
√

2t− (
√

2C1 + 2C2) sin
√

2t
]
e−2t .

For constants C1 and C2, we have the system

y(0) = (C1 cos 0 + C2 sin 0) e0 = C1 = 1

y′(0) =
[
(
√

2C2 − 2C1) cos 0− (
√

2C1 + 2C2) sin 0
]
e0 =

√
2C2 − 2C1 = 0

⇒ C1 = 1 , C2 =
√

2 ,

and so

y(t) =
[
cos

√
2t+

√
2 sin

√
2t
]
e−2t =

√
3e−2t sin

(√
2t+ φ

)
,

where φ = arctan(1/
√

2) ≈ 0.615 .

Graphs of the solutions for k = 2, 4, and 6 are shown in Fig. 4–F on page 175.

8. The motion of this mass-spring system is governed by equation (12) in the text. With

m = 20, b = 140, and k = 200 this equation becomes

20y′′ + 140y′ + 200y = 0 ⇒ y′′ + 7y′ + 10y = 0,

and the initial conditions are y(0) = 1/4, y′(0) = −1. Since

b2 − 4mk = 49− 4 · 10 = 9 > 0,

we have a case of overdamped motion.

The characteristic equation, r2 + 7r + 10 = 0 has roots r = −2, −5. Thus, a general

solution is given by

y(t) = C1e
−2t + C2e

−5t.

To satisfy the initial conditions, we solve the system

y(0) = C1 + C2 = 1/4

y′(0) = −2C1 − 5C2 = −1
⇒

C1 = 1/12

C2 = 1/6.

Therefore, the equation of motion is

y(t) =
1

12
e−2t +

1

6
e−5t,

which says that, theoretically, the mass will never return to its equilibrium.
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10. This motion is governed by the equation

1

4

d2y

dt2
+

1

4

dy

dt
+ 8y = 0 ⇒ d2y

dt2
+
dy

dt
+ 32y = 0,

with initial conditions y(0) = −1, y′(0) = 0. The auxiliary equation, r2 + r + 32 = 0,

has roots

r =
−1±

√
127i

2
.

Therefore, the equation of motion has the form

y(t) = e−t/2

[
C1 cos

(√
127

2
t

)
+ C2 sin

(√
127

2
t

)]
.

To find the constants C1 and C2, we use the initial conditions y(0) = −1 and y′(0) = 0.

Since

y′(t) = e−t/2

[(√
127

2
C2 −

1

2
C1

)
cos

(√
127

2
t

)
−

(√
127

2
C1 +

1

2
C2

)
sin

(√
127

2
t

)]
,

we obtain the system

y(0) = C1 = −1

y′(0) =
(√

127/2
)
C2 − (1/2)C1 = 0

⇒
C1 = −1

C2 = −1/
√

127 .

Therefore,

y(t) = −e−t/2

[
cos

(√
127

2
t

)
+

1√
127

sin

(√
127

2
t

)]
.

The maximum displacement to the right of the mass is found by determining the first

time t∗ > 0 the velocity of the mass becomes zero. Since

y′(t) =
64√
127

e−t/2 sin

(√
127

2
t

)
,

we have √
127

2
t∗ = π ⇒ t∗ =

2π√
127

.

Substituting this value into y(t) yields the maximal displacement

y(t∗) = e−π/
√

127 ≈ 0.757 (m) .
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12. The equation of the motion of this mass-spring system is

(1/4)y′′ + 2y′ + 8y = 0, y(0) = −1/2, y′(0) = −2.

Clearly, this is an underdamped motion because

b2 − 4mk = (2)2 − 4(1/4)(8) = −4 < 0.

So, we use equation (16) in the text for a general solution. With

α = − b

2m
= −2

(
1/2) = −4 and β =

1

2m

√
4mk − b2 = 2

√
4 = 4 ,

equation (16) becomes y(t) = (C1 cos 4t+ C2 sin 4t) e−4t . From the initial condiions,

y(0) = (C1 cos 4t+ C2 sin 4t) e−4t
∣∣
t=0

= C1 = −1/2

y′(0) = [(4 (C2 − C1) cos 4t− 4(C1 + C2) sin 4t] e−4t
∣∣
t=0

= 4 (C2 − C1) = −2

⇒ C1 = −1/2 , C2 = −1,

and so

y(t) = −
(

1

2
cos 4t+ sin 4t

)
e−4t .

The maximum displacement to the left occurs at the first point t∗ of local minimum of

y(t). The critical points of y(t) are solutions to

y′(t) = −2e−4t (cos 4t− 3 sin 4t) = 0.

Solving for t, we conclude that the first point of local minimum is at

t∗ =
arctan(1/3)

4
≈ 0.08 (sec).

14. For the damping factor, Ae−(b/2m)t,

lim
b→0

Ae−(b/2m)t = Ae−(0/2m)t = Ae0 = A

since the exponential function is continuous on (−∞,∞).

For the quasifrequency, we have

lim
b→0

√
4mk − b2

4mπ
=

√
4mk

4mπ
=

√
(4mk)/(2m)2

2π
=

√
k/m

2π
.
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16. Since the period P = 2π/ω = 2π
√
m/k , we have a system of two equations to determine

m (and k). 
2π

√
m

k
= 3

2π

√
m+ 2

k
= 4 .

Dividing the second equation by the first one, we eliminate k and get√
m+ 2

m
=

4

3
⇒ m+ 2

m
=

16

9
⇒ 9m+ 18 = 16m ⇒ m =

18

7
(kg).

18. As it was noticed in the discussion concerning an overdamped motion, a general solution

to the equation my′′ + by′ + ky = 0 has the form

y(t) = C1e
r1t + C2e

r2t (r2 < r1 < 0) ⇒ y′(t) = C1r1e
r1t + C2r2e

r2t .

From the initial conditions, we have a system of linear inequalities{
y(0) = C1 + C2 > 0 ,

y′(0) = C1r1 + C2r2 > 0 .
(4.8)

Multiplying the first inequality in (4.8) by r1 and subtracting the result from the second

one, we obtain

C2 (r2 − r1) > 0 ⇒ C2 < 0 ⇒ C1 > −C2 > 0 .

Moreover, the first inequality in (4.8) now implies that

−C2

C1

< 1 . (4.9)

If the mass is in the equilibrium position, then

y(t) = C1e
r1t + C2e

r2t = 0 ⇔ C1e
(r1−r2)t + C2 = 0 ⇔ e(r1−r2)t =

−C2

C1

.

Since r1 − r2 > 0, this equation has no solutions for t > 0 thanks to (4.9).

EXERCISES 4.10: A Closer Look at Forced Mechanical Vibrations

2. The frequency response curve (13), with m = 2, k = 3, and b = 3, becomes

M(γ) =
1√

(k −mγ2)2 + b2γ2
=

1√
(3− 2γ2)2 + 9γ2

.

The graph of this function is shown in Fig. 4–G, page 175.
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4. The auxiliary equation in this problem is r2 + 1 = 0, which has roots r = ±i. Thus, a

general solution to the corresponding homogeneous equation has the form

yh(t) = C1 cos t+ C2 sin t .

We look for a particular solution to the original nonhomogeneous equation of the form

yp(t) = ts(A cos t+B sin t),

where we take s = 1 because r = i is a simple root of the auxiliary equation. Computing

the derivatives

y′(t) = A cos t+B sin t+ t(−A sin t+B cos t),

y′′(t) = 2B cos t− 2A sin t+ t(−A cos t−B sin t),

and substituting y(t) and y′′(t) into the original equation, we get

2B cos t− 2A sin t+ t(−A cos t−B sin t) + t(A cos t+B sin t) = 5 cos t

⇒ 2B cos t− 2A sin t = 5 cos t ⇒
A = 0,

B = 5/2 .

So, yp(t) = (5/2)t sin t and y(t) = C1 cos t + C2 sin t + (5/2)t sin t is a general solution.

To satisfy the initial conditions, we compute

y(0) = C1 = 0 ,

y′(0) = C2 = 1 .

Therefore, the solution to the given initial value problem is

y(t) = sin t+
5

2
t sin t .

The graph of y(t) is depicted in Fig. 4–H on page 175.

6. Differentiating yp(t) given by (20) in the text yields

y′p(t) = A1 cosωt+ A2 sinωt+ ωt (−A1 sinωt+ A2 cosωt) ,

y′′p(t) = −2A1ω sinωt+ 2A2ω cosωt+ ω2t (−A1 cosωt− A2 sinωt) .

Substituting yp(t) and y′′(t) (with γ = ω =
√
k/m) into (18), we obtain

m
[
−2A1ω sinωt+ 2A2ω cosωt+ ω2t (−A1 cosωt− A2 sinωt)

]
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+kt (A1 cosωt+ A2 sinωt) = F0 cosωt

⇒
(
2mωA2 −mω2A1t+ kA1t

)
cosωt+

(
−2mωA1 +mω2A2t+ kA2t

)
sinωt

= F0 cosωt

⇒ 2mωA2 cosωt− 2mωA1 sinωt = F0 cosωt .

Equating coefficients, we find that

A1 = 0 , A2 =
F0

2mω
.

Therefore,

yp(t) =
F0

2mω
t sinωt .

8. With the given values of parameters, the equation (1) becomes

2y′′ + 8y′ + 6y = 18 ⇒ y′′ + 4y′ + 3y = 9 . (4.10)

Solving the characteristic equation yields

r2 + 4r + 3 = 0 ⇒ r = −3,−1 .

Thus, yh(t) = c1e
−3t + c2e

−t is a general solution to the corresponding homogeneous

equation. Applying the method of undetermined coefficients (Section 4.4), we seek a

particular solution of the form yp(t) = A. From (4.10) one easily gets A = 3. Thus,

y(t) = c1e
−3t + c2e

−t + 3

is a general solution. We now satisfy the initial conditions.

0 = y(0) = c1 + c2 + 3

0 = y′(0) = −3c1 − c2
⇒

−3 = c1 + c2

0 = −3c1 − c2
⇒ c1 =

3

2
, c2 = −9

2
.

Hence, y(t) = (3/2)e−3t− (9/2)e−t + 3 is the solution to the given initial value problem.

The graph of y(t) is depicted in Fig. 4–I on page 176. Clearly,

lim
t→∞

y(t) = lim
t→∞

(
3

2
e−3t − 9

2
e−t + 3

)
= 3 . (4.11)

From the physics point of view, the graph of y(t) and (4.11) mean that the external force

Fext = 18 steadily stretches the spring to the length at equilibrium, which is y(∞) = 3

beyond its natural length.
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10. If, at equilibrium, a mass of m kg stretches a spring by ` m beyond its natural length,

then the Hook’s law states that

mg = k` ⇒ k =
mg

`
.

Therefore, ω =
√
k/m =

√
g/` so that the period

T =
2π

ω
= 2π

√
`

g
.

12. First, we find the spring constant. Since, at equilibrium, the spring is stretched ` = 0.2 m

from its natural length by the mass of m = 2 kg, we have

mg = k` ⇒ k =
mg

`
⇒ k =

mg

`
= 10g (N/m) .

Thus, with b = 5 N-sec/m and Fext(t) = 0.3 cos t N, the equation, governing the motion,

becomes

2y′′ + 5y′ + 10gy = 0.3 cos t . (4.12)

In addition, we have initial conditions y(0) = 0.05, y′(0) = 0.

The auxiliary equation for the corresponding homogeneous equation is 2r2+5r+10g = 0,

which has roots

r =
−5±

√
25− 80g

4
= −1.25± βi , β =

√
80g − 25

4
≈ 6.89 .

Therefore, yh(t) = e−1.25t (c1 cos βt+ c2 sin βt). The steady-state solution has the form

yp(t) = A cos t+B sin t .

Substituting yp(t) into (4.12) and collecting similar terms yields

2y′′p + 5y′p + 10gyp = [(10g − 2)A+ 5B] cos t+ [−5A+ (10g − 2)B] sin t = 0.3 cos t

⇒
(10g − 2)A+ 5B = 0.3

−5A(10g − 2)B = 0 .

Solving for A and B, we obtain

A =
0.3(10g − 2)

(10g − 2)2 + 25
≈ 0.00311 ,

B =
1.5

(10g − 2)2 + 25
≈ 0.00016 .
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Thus, a general solution is given by

y(t) = e−1.25t (c1 cos βt+ c2 sin βt) + A cos t+B sin t

≈ e−1.25t (c1 cos βt+ c2 sin βt) + 0.00311 cos t+ 0.00016 sin t .

We now find constants c1 and c2 such that y(t) satisfies the initial conditions.

0.05 = y(0) = c1 + A

0 = y′(0) = −1.25c1 + βc2 +B

⇒ c1 = 0.05− A ≈ 0.04689 , c2 =
1.25c1 −B

β
≈ 0.00848 .

Hence,

y(t) ≈ e−1.25t (0.04689 cos βt+ 0.00848 sin βt) + 0.00311 cos t+ 0.00016 sin t .

To find the resonance frequency, we use the formula (15) in the text.

1

2π
γr =

1

2π

√
k

m
− b2

2m2
=

1

2π

√
5g − 25

8
≈ 1.0786

(
sec−1

)
.

14. In the equation, governing this motion, my′′ + by′ + ky = Fext, we have m = 8, b = 3,

k = 40, and Fext(t) = 2 sin(2t+ π/4). Thus, the equation becomes

8y′′ + 3y′ + 40y = 2 sin(2t+ π/4) =
√

2 (sin 2t+ cos 2t) .

Clearly, this is an underdamped motion, and the steady-state solution has the form

yp(t) = A sin 2t+B cos 2t

⇒ y′p(t) = 2A cos 2t− 2B sin 2t

⇒ y′′p(t) = −4Asin2t− 4B cos 2t .

Substituting these formulas into the equation and collecting similar terms yields

(8A− 6B) sin 2t+ (6A+ 8B) cos 2t =
√

2 (sin 2t+ cos 2t)

⇒
8A− 6B =

√
2 ,

6A+ 8B =
√

2 .

Solving this system, we get A = 7
√

2/50, B =
√

2/50. So, the steady-state solution is

y(t) =
7
√

2

50
sin 2t+

√
2

50
cos 2t .
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This function has the amplitude

√
A2 +B2 =

√√√√(7
√

2

50

)2

+

(√
2

50

)2

=
1

5
(m)

and the frequency 2/(2π) = 1/π (sec−1).

REVIEW PROBLEMS

2. c1e
−t/7 + c2te

−t/7

4. c1e
5t/3 + c2te

5t/3

6. c1e
(−4+

√
30)t + c2e

(−4−
√

30)t

8. c1e
−2t/5 + c2te

−2t/5

10. c1 cos(
√

11 t) + c2 sin(
√

11 t)

12. c1e
−5t/2 + c2e

2t + c3te
2t

14. c1e
2t cos(

√
3 t) + c2e

2t sin(
√

3 t)

16. e−t
[
c1 + c2 cos(

√
2 t) + c3 sin(

√
2 t)
]

18. c1t
3 + c2t

2 + c3t+ c4 + t5

20. c1e
t/
√

2 + c2e
−t/

√
2 −

(
4

9

)
cos t−

(
1

3

)
t sin t

22. c1e
11t + c2e

−3t +

(
1092

305

)
cos t−

(
4641

305

)
sin t

24. c1e
t/2 + c2e

−3t/5 −
(

1

3

)
t−
(

1

9

)
−
(

1

11

)
tet/2

26. c1e
−3t cos(

√
6 t) + c2e

−3t sin(
√

6 t) +

(
1

31

)
e2t + 5

28. c1x
3 cos(2 lnx) + c2x

3 sin(2 ln x)

30. 3e−θ + 2θe−θ + sin θ

32. et/2 cos t− 6et/2 sin t
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Figures

34. e−7t + 4e2t

36. −3e−2t/3 + te−2t/3

38. y(t) =

(
−1

4

)
cos 5t+

(
1

5

)
sin 5t, amplitude ≈ 0.320 m, period =

2π

5
, frequency=

5

2π

tequilib =

(
1

5

)
arctan

(
5

4

)
≈ 0.179 sec.
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Figure 4–A: The graphs of A(Ω) and B(Ω) in Problem 10(b).
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Figure 4–B: The graphs of A(Ω) and B(Ω) Problem 10(c).
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Figure 4–C: The graphs of solutions in Problem 28 for b = 5, 4, and 2.
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Figure 4–D: The graphs of the solutions in Problem 4 for b = 0, 10.
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Figure 4–E: The graphs of the solutions in Problem 4 for b = 16, 20.

174



Figures

 
2.5 5.0 7.5

 

0

0.5

1.0

k=2k=4k=6

Figure 4–F: The graphs of the solutions in Problem 6 for k = 2, 4, and 6.
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Figure 4–G: The frequency response curve in Problem 2.
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Figure 4–H: The solution curve in Problem 4.
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−
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Figure 4–I: The solution curve in Problem 8.
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CHAPTER 5: Introduction to Systems and

Phase Plane Analysis

EXERCISES 5.2: Elimination Method for Systems with Constant Coefficients

2. x =

(
3

2

)
c1e

2t − c2e
−3t;

y = c1e
2t + c2e

−3t

4. x = −
(

1

2

)
c1e

3t +

(
1

2

)
c2e

−t;

y = c1e
3t + c2e

−t

6. x =

(
c1 + c2

2

)
et cos 2t+

(
c2 − c1

2

)
et sin 2t+

(
7

10

)
cos t−

(
1

10

)
sin t;

y = c1e
t cos 2t+ c2e

t sin 2t+

(
11

10

)
cos t+

(
7

10

)
sin t

8. x = −
(

5c1
4

)
e11t −

(
4

11

)
t−
(

26

121

)
;

y = c1e
11t +

(
1

11

)
t+

(
45

121

)
10. x = c1 cos t+ c2 sin t;

y =

(
c2 − 3c1

2

)
cos t−

(
c1 + 3c2

2

)
sin t+

(
1

2

)
et −

(
1

2

)
e−t

12. u = c1e
2t + c2e

−2t + 1;

v = −2c1e
2t + 2c2e

−2t + 2t+ c3

14. x = −c1 sin t+ c2 cos t+ 2t− 1;

y = c1 cos t+ c2 sin t+ t2 − 2

16. x = c1e
t + c2e

−2t +

(
2

9

)
e4t;

y = −2c1e
t −
(

1

2

)
c2e

−2t + c3 −
(

1

36

)
e4t
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18. x(t) = −t2 − 4t− 3 + c3 + c4e
t − c1te

t −
(

1

2

)
c2e

−t;

y(t) = −t2 − 2t− c1e
t + c2e

−t + c3

20. x(t) =

(
3

2

)
et −

(
1

2

)
e3t;

y(t) = −
(

3

2

)
et −

(
1

2

)
e3t + e2t

22. x(t) = 1 +

(
9

4

)
e3t − 5

4
e−t;

y(t) = 1 +

(
3

2

)
e3t −

(
5

2

)
e−t

24. No solution

26. x =

(
1

2

)
et [(c1 − c2) cos t+ (c1 + c2) sin t] + c3e

2t;

y = et(c1 cos t+ c2 sin t);

z =

(
3

2

)
et [(c1 − c2) cos t+ (c1 + c2) sin t] + c3e

2t

28. x(t) = c1 + c2e
−4t + 2c3e

3t;

y(t) = 6c1 − 2c2e
−4t + 3c3e

3t;

z(t) = −13c1 − c2e
−4t − 2c3e

3t

30. λ ≤ 1

32. x =

(
20− 10

√
19√

19

)
e(−7+

√
19)t/100 +

(
−20− 10

√
19√

19

)
e(−7−

√
19)t/100 + 20;

y =

(
−50√

19

)
e(−7+

√
19)t/100 +

(
50√
19

)
e(−7−

√
19)t/100 + 20

34. (b) V1 =

(
3

2
c2 −

1

2
c1

)
e−t cos 3t−

(
1

2
c2 +

3

2
c1

)
e−t sin 3t+ 5L;

V2 = c1e
−t cos 3t+ c2e

−t sin 3t+ 18L

(c) As t→ +∞, V1 → 5L and V2 → 18L

36.
400

11
≈ 36.4◦F

38. A runaway arms race

178



Exercises 5.3

40. (a) 3x2 = x3

(b) 6x+ 3x2 − 2x3

(c) 3x2 + 2x3;

(d) 6x+ 3x2 − 2x3

(e) D2 +D − 2;

(f) 6x+ 3x2 − 2x3

EXERCISES 5.3: Solving Systems and Higher–Order Equations Numerically

2. x′1 = x2,

x′2 = x2
1 + cos(t− x1);

x1(0) = 1, x2(0) = 0

4. x′1 = x2,

x′2 = x3,

x′3 = x4,

x′4 = x5,

x′5 = x6,

x′6 = x2
2 − sin x1 + e2t;

x1(0) = . . . = x6(0) = 0

6. Setting x1 = x, x2 = x′, x3 = y, x4 = y′, we obtain

x′1 = x2,

x′2 = −
(

5

3

)
x1 +

(
2

3

)
x3,

x′3 = x4,

x′4 =

(
3

2

)
x1 −

(
1

2

)
x3

8. x1(0) = a; x2(0) = p(0)b

10. See Table 5-A on page 185

12. See Table 5-B on page 185
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14. y(8) ≈ 24.01531

16. x(1) ≈ 127.773; y(1) ≈ −423.476

18. Conventional troops

20. (a) period ≈ 2(3.14)

(b) period ≈ 2(3.20)

(c) period ≈ 2(3.34)

24. Yes; Yes

26. x(1) ≈ 0.80300; y(1) ≈ 0.59598; z(1) ≈ 0.82316

28. (a) x′1 = x2, x1(0) = 1

x′2 =
−x1

(x2
1 + x2

3)
3/2

, x2(0) = 0

x′3 = x4, x3(0) = 0

x′4 =
−x3

(x2
1 + x2

3)
3/2

, x4(0) = 1

(b) See Table 5-C on page 185

30. (a) See Table 5-D on page 186

(b) See Table 5-E on page 186

EXERCISES 5.4: Introduction to the Phase Plane

2. See Fig. 5–A on page 187

4. x = −6; y = 1

6. The line y = 2 and the point (1, 1)

8. x3 − x2y − y−2 = c

10. Critical points are (1, 0) and (−1, 0). Integral curves:

for y > 0, |x| > 1, y = c
√
x2 − 1;

for y > 0, |x| < 1, y = c
√

1− x2;
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for y < 0, |x| > 1, y = −c
√
x2 − 1;

for y < 0, |x| < 1, y = −c
√

1− x2; all with c ≥ 0

If c = 1, y = ±
√

1− x2 are semicircles ending at (1, 0) and (−1, 0)

12. 9x2 + 4y2 = c. See Fig. 5–B on page 187

14. y = cx2/3 See Fig. 5–C on page 187

16. (0, 0) is a stable node. See Fig. 5–D on page 188

18. (0, 0) is an unstable node;

(0, 5) is a stable node;

(7, 0) is a stable node;

(3, 2) is a saddle point;

See Fig. 5–E on page 188

20.

{
y′ = v

v′ = −y
(0, 0) is a center. See Fig. 5–F on page 189

22.

{
y′ = v

v′ = −y3

(0, 0) is a center. See Fig. 5–G on page 189

24.

{
y′ = v

v′ = −y + y3

(0, 0) is a center; (−1, 0) is a saddle point; (1, 0) is a saddle point. See Fig. 5–H on

page 190

26.
x2

2
+
x4

4
+
y2

2
= c; all solutions are bounded. See Fig. 5–I on page 190

28. (0, 0) is a center; (1, 0) is a saddle point

30. (a) x → x∗, y → y∗, f and g are continuous implies x′(t) ≡ f(x(t), y(t)) → f (x∗, y∗)

and y′(t) ≡ g(x(t), y(t)) → g (x,y∗)

(b) x(t) =

t∫
T

x′(τ)dτ + t(T ) >
f (x∗, y∗)

2
(t− T ) + x(T ) ≡ f (x∗, y∗)

t

2
+ C
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(c) If f (x∗, y∗) > 0, f(x∗, y∗)t→∞ implying x(t) →∞

(d) Similar

(e) Similar

32.
(y′)2

2
+
y4

4
= c by Problem 30. Thus,

y4

4
= c− (y′)2

2
≤ c, so |y| ≤ 4

√
4c

34. See Fig. 5–J on page 191

36. (a)
d

dt

[
x2 + y2 + z2

]
= 0; the magnitude of the angular velocity is constant

(b) All points on the axes are critical points: (x, 0, 0), (0, y, 0), (0, 0, z)

(c) From (a), x2 + y2 + z2 = K (sphere). Also
dy

dx
=
−2x

y
, so x2 +

y2

2
= c (cylinder)

(d) The solutions are periodic

(e) The critical point on the y-axis is unstable. The other two are stable

EXERCISES 5.5: Applications to Biomathematics: Epidemic and Tumor

Growth Models

2. 79.95mCi

EXERCISES 5.6: Coupled Mass–Spring Systems

2. x(t) =

(√
10

20

)[(
1−

√
10
)
cos r1t−

(
1 +

√
10
)
cos r2t

]
;

y(t) =

(
3
√

10

20

)
(cos r1t− cos r2t), where r1 =

√
4 +

√
10 and r2 =

√
4−

√
10

4. m1x
′′ = −k1x+ k2 (y − x);

m2y
′′ = −k2 (y − x)− by′

6. (b) x(t) = c1 cos t+ c2 sin t+ c3 cos 2t+ c4 sin 2t+

(
37

40

)
cos 3t

(c) y(t) = 2c1 cos t+ 2c2 sin t− c3 cos 2t− c4 sin 2t−
(

111

20

)
cos 3t

(d) x(t) =

(
23

8

)
cos t−

(
9

5

)
cos 2t+

(
37

40

)
cos 3t;

y(t) =

(
23

4

)
cos t+

(
9

5

)
cos 2t−

(
111

20

)
cos 3t
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8. θ1 (t) =
π

12
cos

(√
9.8

5 +
√

10
t

)
+

π

12
cos

(√
9.8

5−
√

10
t

)
;

θ2 (t) =
π
√

10

24
cos

(√
9.8

5 +
√

10
t

)
− π

√
10

24
cos

(√
9.8

5−
√

10
t

)

EXERCISES 5.7: Electrical Systems

2. q (t) =

(
1

2

)
e−4t cos 6t+ 3 cos 2t+ sin 2t coulombs

4. I (t) =

(
10

33

)
cos 5t−

(
10

33

)
cos 50t amps

8. L = 0.01 henrys, R = 0.2 ohms, C =
25

32
farads, and E (t) =

(
2

5

)
cos 8t volts

10. I1 = −
(

1

4

)
e−2t −

(
9

4

)
e−2t/3 +

5

2
;

I2 =

(
1

4

)
e−2t −

(
3

4

)
e−2t/3 +

1

2
;

I3 = −
(

1

2

)
e−2t −

(
3

2

)
e−2t/3 + 2

12. I1 = 1− e−900t; I2 =

(
5

9

)
−
(

5

9

)
e−900t; I3 =

(
4

9

)
−
(

4

9

)
e−900t

EXERCISES 5.8: Dynamical Systems, Poincarè Maps, and Chaos

2. (x0, v0) = (−1.5, 0.5774)

(x1, v1) = (−1.9671,−0.5105)

(x2, v2) = (−0.6740, 0.3254)

...

(x20, v20) = (−1.7911,−0.5524)

The limit set is the ellipse (x+ 1.5)2 + 3v2 = 1

4. (x0, v0) = (0, 10.9987)

(x1, v1) = (−0.00574, 10.7298)

(x2, v2) = (−0.00838, 10.5332)
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...

(x20, v20) = (−0.00029, 10.0019)

The attractor is the point (0, 10)

12. For F = 0.2, the attractor is the point (−0.319,−0.335). For F = 0.28, the attractor is

the point (−0.783, 0.026)

14. The attractor consists of two points: (−1.51, 0.06) and (−0.22,−0.99). See Fig. 5–K on

page 191

REVIEW PROBLEMS

2. x = − (c1 + c2) e
−t cos 2t+ (c1 − c2) e

−t sin 2t;

y = 2c1e
−t cos 2t+ 2c2e

−t sin 2t

4. x = c1t+ c2 + e−t; y =

(
1

6

)
c1t

3 +

(
1

2

)
c2t

2 + c3t+ c4

6. x = e2t + e−t; y = e2t + e−t; z = e2t − 2e−t

8. With x1 = y, x2 = y′, we obtain x′1 = x2, x
′
2 =

1

2
(sin t− 8x1 + tx2)

10. With x1 = x, x2 = x′, x3 = y, x4 = y′, we get x′1 = x2, x
′
2 = x1 − x3, x

′
3 = x4,

x′4 = −x2 + x3

12. Solutions to the phase plane equation
dy

dx
=

2− x

y − 2
are given implicitly by the equation

(x− 2)2 + (y − 2)2 = const. Critical point is at (2, 2), which is a stable center. See

Fig. 5–L on page 192

14. Critical points are (mπ, nπ) (m,n integers) and

(
(2j + 1) π

2
,
(2k + 1) π

2

)
(j, k integers).

Equation for integral curves is
dy

dx
=

cosx sin y

sin x cos y
=

tan y

tan x
, with solutions sin y = C sin x

16. Origin is a saddle(unstable) See Fig. 5–M on page 192

18. Natural angular frequencies are
√

2, 2
√

3.

General solution is x(t) = c1 cos
(
2
√

3t
)

+ c2 sin
(
2
√

3t
)

+ c3 cos
(√

2t
)

+ c4 sin
(√

2t
)
;

y(t) = −
(

1

3

)
c1 cos

(
2
√

3t
)
−
(

1

3

)
c2 sin

(
2
√

3t
)

+ 3c3 cos
(√

2t
)

+ 3c4 sin
(√

2t
)
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Tables

TABLES

i ti y(ti)

1 0.250 0.96924
2 0.500 0.88251
3 0.750 0.75486
4 1.000 0.60656

Table 5–A: Approximations to the solution in Problem 10.

i ti y(ti)

1 1.250 0.80761
2 1.500 0.71351
3 1.750 0.69724
4 2.000 0.74357

Table 5–B: Approximations to the solution in Problem 12.

i ti x1(ti) ≈ x(ti) x3(ti) ≈ y(ti)

10 0.628 0.80902 0.58778
20 1.257 0.30902 0.95106
30 1.885 −0.30902 0.95106
40 2.513 0.80902 0.58779
50 3.142 −1.00000 0.00000
60 3.770 −0.80902 −0.58778
70 4.398 −0.30903 −0.95106
80 5.027 0.30901 −0.95106
90 5.655 0.80901 −0.58780
100 6.283 1.00000 −0.00001

Table 5–C: Approximations to the solution in Problem 28.
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ti li θi

1.0 5.27015 0.0
2.0 4.79193 0.0
3.0 4.50500 0.0
4.0 4.67318 0.0
5.0 5.14183 0.0
6.0 5.48008 0.0
7.0 5.37695 0.0
8.0 4.92725 0.0
9.0 4.54444 0.0
10.0 4.58046 0.0

Table 5–D: Approximations to the solution in Problem 30(a).

ti li θi

1.0 5.13916 0.45454
2.0 4.10579 0.28930
3.0 2.89358 −0.10506
4.0 2.11863 −0.83585
5.0 2.13296 −1.51111
6.0 3.18065 −1.64163
7.0 5.10863 −1.49843
8.0 6.94525 −1.29488
9.0 7.76451 −1.04062

10.0 7.68681 −0.69607

Table 5–E: Approximations to the solution in Problem 30(b).
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CHAPTER 6: Theory of Higher-Order Linear

Differential Equations

EXERCISES 6.1: Basic Theory of Linear Differential Equations

2. (0,∞)

4. (−1, 0)

6. (0, 1)

8. Linearly dependent; 0

10. Linearly independent; −2 tan3 x− sin x cosx− sin2 x tan x− 2 tanx

12. Linearly dependent; 0

14. Linearly independent; (x+ 2)ex

16. c1e
x + c2 cos 2x+ c3 sin 2x

18. c1e
x + c2e

−x + c3 cosx+ c4 sin x

20. (a) c1 + c2x+ c3x
3 + x2

(b) 2− x3 + x2

22. (a) c1e
x cosx+ c2e

x sin x+ c3e
−x cosx+ c4e

−x sin x+ cosx

(b) ex cosx+ cosx

24. (a) 7 cos 2x+ 1

(b) −6 cos 2x− (11/3)

26. y(x) =
∑n+1

j=1 γj−1yj(x)

34. The coefficient is the Wronskian W [f1, f2, f3] (x)

193



Chapter 6

EXERCISES 6.2: Homogeneous Linear Equations with Constant Coefficients

2. c1e
x + c2e

−x + c3e
3x

4. c1e
−x + c2e

−5x + c3e
4x

6. c1e
−x + c2e

x cosx+ c3e
x sin x

8. c1e
x + c2xe

x + c3e
−7x

10. c1e
−x + c2e

(−1+
√

7)x + c3e
(−1−

√
7)x

12. c1e
x + c2e

−3x + c3xe
−3x

14. c1 sin x+ c2 cosx+ c3e
−x + c4xe

−x

16. (c1 + c2x) e
−x + (c3 + c4x+ c5x

2) e6x + c6e
−5x + c7 cosx+ c8 sin x+ c9 cos 2x+ c10 sin 2x

18. (c1 + c2x+ c3x
2) ex + c4e

2x + c5e
−x/2 cos

(√
3x/2

)
+ c6e

−x/2 sin
(√

3x/2
)

+ (c7 + c8x+ c9x
2) e−3x cosx+ (c10 + c11x+ c12x

2) e−3x sin x

20. e−x − e−2x + e−4x

22. x(t) = c1e
√

3t + c2e
−
√

3t + c3 cos 2t+ c4 sin 2t,

y(t) = − (2c1/5) e
√

3t − (2c2/5) e−
√

3t + c3 cos 2t+ c4 sin 2t

28. c1e
1.879x + c2e

−1.532x + c3e
−0.347x

34. x(t) =

(
5−

√
10

10

)
cos

√
4 +

√
10 t+

(
5 +

√
10

10

)
cos

√
4−

√
10 t,

y(t) =

(
5− 2

√
10

10

)
cos

√
4 +

√
10 t+

(
5 + 2

√
10

10

)
cos

√
4−

√
10 t

EXERCISES 6.3: Undetermined Coefficients and the Annihilator Method

2. c1e
−x + c2 cosx+ c3 sin x

4. c1 + c2xe
x + c3x

2ex

6. c1e
x + c2xe

x + c3e
−3x + (1/8)e−x + (3/20) cos x+ (1/20) sinx

8. c1e
x + c2e

−x cosx+ c3e
−x sin x− (1/2)− (4/25)xex + (1/10)x2ex
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10. c1e
2x + c2e

−3x cos 2x+ c3e
−3x sin 2x+ (5/116)xe−3x cos 2x− (1/58)xe−3x sin 2x

− (1/26)x− (1/676)

12. D3

14. D − 5

16. D3(D − 1)

18. [(D − 3)2 + 25]
2

20. D4(D − 1)3 (D2 + 16)
2

22. c1e
3x + c2 cosx+ c3 sin x

24. c1xe
x + c2x

2ex

26. c1x
2 + c2x+ c3

28. c1e
3x + c2 + c3x

30. c1xe
x + c2

32. 5 + ex sin 2x− e3x

38. x(t) = {c1 + (1/2) + (1/4)t} et −
{
(3/2)c2 +

(√
7/2
)
c3
}
e−t/2 cos

(√
7 t/2

)
+
{(√

7/2
)
c2 − (3/2)c3

}
e−t/2 sin

(√
7 t/2

)
+ t+ 1,

y(t) = {c1 + (1/4)t} et + c2e
−t/2 cos

(√
7 t/2

)
+ c3e

−t/2 sin
(√

7 t/2
)

+ (1/2)

40. I1(t) = (2187/40) sin(t/8)− (3/40) sin(t/72)− 18 sin(t/24),

I2(t) = (243/40) sin(t/8)− (27/40) sin(t/72),

I3(t) = (243/5) sin(t/8) + (3/5) sin(t/72)− 18 sin(t/24)

EXERCISES 6.4: Method of Variation of Parameters

2. (1/2)x2 + 2x

4. (1/6)x3ex

6. sec θ − sin θ tan θ + θ sin θ + (cos θ) ln(cos θ)
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8. c1x+ c2x lnx+ c3x
3 − x2

10. 1/(10x)
∫
g(x)dx+ (x4/15)

∫
x−5g(x)dx− (x/6)

∫
x−2g(x)dx

REVIEW PROBLEMS

2. (a) Linearly independent.

(b) Linearly independent.

(c) Linearly dependent.

4. (a) c1e
−3x + c2e

−x + c3e
x + c4xe

x

(b) c1e
x + c2e

(−2+
√

5)x + c3e
(−2−

√
5)x

(c) c1e
x + c2 cosx+ c3 sin x+ c4x cosx+ c5x sin x

(d) c1e
x + c2e

−x + c3e
2x − (x/2)ex + (x/2) + (1/4)

6. c1e
−x/

√
2 cos

(
x/
√

2
)

+ c2e
−x/

√
2 sin

(
x/
√

2
)

+ c3e
x/
√

2 cos
(
x/
√

2
)

+ c4e
x/
√

2 sin
(
x/
√

2
)

+ sin (x2)

8. (a) c1xe
−x + c2 + c3x+ c4x

2

(b) c1xe
−x + c2x

2e−x

(c) c1 + c2x+ c3x
2 + c4 cos 3x+ c5 sin 3x

(d) c1 cosx+ c2 sin x+ c3x cosx+ c4x sin x

10. (a) c1x
1/2 + c2x

−1/2 + c3x

(b) c1x
−1 + c2x cos

(√
3 ln x

)
+ c3x sin

(√
3 ln x

)
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CHAPTER 7: Laplace Transforms

EXERCISES 7.2: Definition of the Laplace Transform

2. For s > 0, using Definition and integration by parts twice, we compute

L
{
t2
}

(s) =

∞∫
0

e−stt2 dt = lim
N→∞

N∫
0

e−stt2 dt

= lim
N→∞

−t2e−st

s

∣∣∣N
0

+
2

s

N∫
0

te−st dt

 = lim
N→∞

(
−t

2

s
− 2t

s2
− 2

s3

)
e−st

∣∣∣N
0

= lim
N→∞

[
2

s3
−
(
N2

s
+

2N

s2
+

2

s3

)
e−sN

]
=

2

s3
,

because, for s > 0 and any k, Nke−sN → 0 as N →∞.

4. For s > 3, we have

L
{
te3t
}

(s) =

∞∫
0

e−stte3t dt =

∞∫
0

te(3−s)t dt = lim
N→∞

N∫
0

te(3−s)t dt

= lim
N→∞

(
t

3− s
− 1

(3− s)2

)
e(3−s)t

∣∣∣N
0

= lim
N→∞

[
1

(3− s)2
+

(
N

3− s
− 1

(3− s)2

)
e(3−s)N

]
=

1

(s− 3)2
.

6. Referring to the table of integrals on the inside front cover, we see that, for s > 0,

L{cos bt} (s) =

∞∫
0

e−st cos bt dt = lim
N→∞

N∫
0

e−st cos bt dt

= lim
N→∞

e−st (−s cos bt+ b sin bt)

s2 + b2

∣∣∣N
0

= lim
N→∞

[
e−sN (−s cos bN + b sin bN)

s2 + b2
− −s
s2 + b2

]
=

s

s2 + b2
,

where we have used integration by parts to find an antiderivative of e−st cos 2t.
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8. For s > −1,

L
{
e−t sin 2t

}
(s) =

∞∫
0

e−ste−t sin 2t dt =

∞∫
0

e−(s+1)t sin 2t dt

= lim
N→∞

e−(s+1)t (−(s+ 1) sin 2t− 2 cos 2t)

(s+ 1)2 + 4

∣∣∣N
0

= lim
N→∞

e−(s+1)N [−(s+ 1) sin 2N − 2 cos 2N ] + 2)

(s+ 1)2 + 4
=

2

(s+ 1)2 + 4
.

10. In this problem, f(t) is also a piecewise defined function. So, we split the integral and

obtain

L{f(t)} (s) =

∞∫
0

e−stf(t) dt =

1∫
0

e−st(1− t) dt+

∞∫
1

e−st · 0 dt =

1∫
0

(1− t)e−st dt

=

(
−1− t

s
+

1

s2

)
e−st

∣∣∣1
0
=
e−s

s2
+

1

s
− 1

s2
,

which is valid for all s.

12. Splitting the integral in the definition of Laplace transform, we get

L{f(t)} (s) =

∞∫
0

e−stf(t) dt =

3∫
0

e−ste2t dt+

∞∫
3

e−st · 1 dt

=
e(2−s)t

2− s

∣∣∣3
0
−e

−st

s

∣∣∣∞
3

=
1− e−3(s−2)

s− 2
+
e−3s

s
,

which is valid for all s > 2.

14. By the linearity of the Laplace transform,

L
{
5− e2t + 6t2

}
(s) = 5L{1} (s)− L

{
e2t
}

(s) + 6L
{
t2
}

(s).

From Table 7.1 in the text, we see that

L{1} (s) =
1

s
, s > 0,

L
{
e2t
}

(s) =
1

s− 2
, s > 2,

L
{
t2
}

(s) =
2!

s2+1
=

2

s3
, s > 0.

Thus, the formula

L
{
5− e2t + 6t2

}
(s) =

5

s
− 1

s− 2
+

12

s3

is valid for s in the intersection of the sets s > 2 and s > 0, which is s > 2.
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16. Using the linearity of Laplace transform and Table 7.1 in the text, we get

L
{
t2 − 3t− 2e−t sin 3t

}
(s) = L

{
t2
}

(s)− 3L{t} (s)− 2L
{
e−t sin 3t

}
(s)

=
2!

s2+1
− 3

1!

s1+1
− 2

3

(s+ 1)2 + 32

=
2

s3
− 3

s2
− 6

(s+ 1)2 + 9
,

valid for s > 0.

18. Using the linearity of Laplace transform and Table 7.1, we get

L
{
t4 − t2 − t+ sin

√
2t
}

= L
{
t4
}
− L

{
t2
}
− L{t}+ L

{
sin
√

2t
}

=
4!

s4+1
− 2!

s2+1
− 1!

s1+1
+

√
2

s2 +
(√

2
)2

=
24

s5
− 2

s3
− 1

s2
+

√
2

s2 + 2
,

valid for s > 0.

20. For s > −2, we have

L
{
e−2t cos

√
3t− t2e−2t

}
(s) = L

{
e−2t cos

√
3t
}

(s)− L
{
t2e−2t

}
(s)

=
s+ 2

(s+ 2)2 + (
√

3)2
− 2!

(s+ 2)2+1

=
s+ 2

(s+ 2)2 + 3
− 2

(s+ 2)3
.

22. Since the function g1(t) ≡ 0 is continuous on (−∞,∞) and f(t) = g1(t) for t in [0, 2),

we conclude that f(t) is continuous on [0, 2) and continuous from the left at t = 1. The

function g2(t) ≡ t is also continuous on (−∞,∞), and so f(t) (which is the same as

g2(t) on [2, 10]) is continuous on (2, 10]. Since

lim
t→2−

f(t) = 0 6= 2 lim
t→2+

f(t),

f(t) has a jump discontinuity at t = 2. Thus f(t) is piecewise continuous on [0, 10]. The

graph of f(t) is depicted in Fig. 7–A on page 263.

24. Given function is a rational function and, therefore, continuous on its domain, which

is all reals except zeros of the denominator. Solving t2 − 4 = 0, we conclude that the
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points of discontinuity of f(t) are t = ±2. The point t = −2 is not in [0, 10], and

lim
t→2

f(t) = lim
t→2

t2 − 3t+ 2

t2 − 4
= lim

t→2

(t− 2)(t− 1)

(t− 2)(t+ 2)
= lim

t→2

t− 1

t+ 2
=

1

4
.

Therefore, f(t) has a removable singularity at t = 2, and it is piecewise continuous on

[0, 10]. The graph of f(t) is shown in Fig. 7–B on page 263.

26. Since

lim
t→1+

f(t) = lim
t→1+

t

t2 − 1
= +∞,

f(t) has an infinite discontinuity at t = 1, and it is so neither continuous nor piecewise

continuous [0, 10]. The graph of f(t) is depicted in Fig. 7–C on page 263.

28. This function is continuous everywhere except, possibly, t = 0. Using L’Hospital’s rule,

we see that

lim
t→0

f(t) = lim
t→0

sin t

t
= lim

t→0

cos t

1
= 1 = f(1).

Therefore, f(t) is continuous at t = 0 as well, and so it is continuous on (−∞,∞). The

graph of f(t) is given in Fig. 7–D on page 264.

30. All the Laplace transforms F (s) in Table 7.1 are proper rational functions, that is, the

degree of the numerator is less than the degree of the denominator. Therefore,

lim
s→∞

F (s) = 0.

32. This statement is a consequence of the following more general result.

If limt→∞ f(t) = 0 and, for some T , |g(t)| ≤M for t ≥ T , then limt→∞ f(t)g(t) = 0.

Indeed, for t ≥ T , one has

0 ≤ |f(t)g(t)| ≤M |f(t)| → 0, as t→∞.

Therefore, by the squeeze theorem,

lim
t→∞

|f(t)g(t)| = 0 ⇔ lim
t→∞

f(t)g(t) = 0.

In the given problem, we take f(t) = e−st and g(t) = s sin bt + b cos bt. Then f(t) → 0,

as t→∞, because s > 0 and g(t) is bounded (by s+ |b|).
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EXERCISES 7.3: Properties of the Laplace Transform

2. Using the linearity of the Laplace transform, we get

L
{
3t2 − e2t

}
(s) = 3L

{
t2
}

(s)− L
{
e2t
}

(s).

From Table 7.1 in Section 7.2 we know that

L
{
t2
}

(s) =
2!

s3
=

2

s3
, L

{
e2t
}

(s) =
1

s− 2
.

Thus

L
{
3t2 − e2t

}
(s) = 3

2

s3
− 1

s− 2
=

6

s3
− 1

s− 2
.

4. By the linearity of the Laplace transform,

L
{
3t4 − 2t2 + 1

}
(s) = 3L

{
t4
}

(s)− 2L
{
t2
}

(s) + L{1} (s).

From Table 7.1 of the text we see that

L
{
t4
}

(s) =
4!

s5
, L

{
t2
}

(s) =
2!

s3
, L{1} (s) =

1

s
, s > 0.

Therefore,

L
{
3t4 − 2t2 + 1

}
(s) = 3

4!

s5
− 2

2!

s3
+

1

s
=

72

s5
− 4

s3
+

1

s
,

is valid for s > 0.

6. We use the linearity of the Laplace transform and Table 7.1 to get

L
{
e−2t sin 2t+ e3tt2

}
(s) = L

{
e−2t sin 2t

}
(s) + L

{
e3tt2

}
(s)

=
2

(s+ 2)2 + 4
+

2

(s− 3)3
, s > 3.

8. Since (1 + e−t)2 = 1 + 2e−t + e−2t, we have from the linearity of the Laplace transform

that

L
{
(1 + e−t)2

}
(s) = L{1} (s) + 2L

{
e−t
}

(s) + L
{
e−2t

}
(s).

From Table 7.1 of the text, we get

L{1} (s) =
1

s
, L

{
e−t
}

(s) =
1

s+ 1
, L

{
e−2t

}
(s) =

1

s+ 2
.

Thus

L
{
(1 + e−t)2

}
(s) =

1

s
+

2

s+ 1
+

1

s+ 2
, s > 0.
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10. Since

L
{
e2t cos 5t

}
(s) =

s− 2

(s− 2)2 + 25
,

we use Theorem 6 to get

L
{
te2t cos 5t

}
(s) = L

{
t
(
e2t cos 5t

)}
(s) = −

[
L
{
e2t cos 5t

}
(s)
]′

= −
[

s− 2

(s− 2)2 + 25

]′
= − [(s− 2)2 + 25]− (s− 2) · 2(s− 2)

[(s− 2)2 + 25]2
=

(s− 2)2 − 25

[(s− 2)2 + 25]2
.

12. Since sin 3t cos 3t = (1/2) sin 6t, we obtain

L{sin 3t cos 3t} (s) =
1

2
L{sin 6t} (s) =

1

2

6

s2 + 62
=

3

s2 + 36
.

14. In this problem, we need the trigonometric identity sin2 t = (1 − cos 2t)/2 and the

linearity of the Laplace transform.

L
{
e7t sin2 t

}
(s) = L

{
e7t 1− cos 2t

2

}
(s) =

1

2

[
L
{
e7t
}

(s)− L
{
e7t cos 2t

}
(s)
]

=
1

2

[
1

s− 7
− s− 7

(s− 7)2 + 4

]
=

2

(s− 7)[(s− 7)2 + 4]
.

16. Since

t sin2 t =
t(1− cos 2t)

2
,

we write

L
{
t sin2 t

}
(s) =

1

2
[L{t} (s)− L{t cos 2t} (s)]

=
1

2

[
1

s2
+

(
s

s2 + 4

)′]
=

1

2

[
1

s2
+

4− s2

(s2 + 4)2

]
,

which holds for s > 0.

18. Since cosA cosB = [cos(A−B) + cos(A+B)]/2, we get

L{cosnt cosmt} (s) = L
{

cos(n−m)t+ cos(n+m)t

2

}
(s)

=
1

2
[L{cos(n−m)t} (s) + L{cos(n+m)t} (s)]

=
1

2

[
s

s2 + (n−m)2
+

s

s2 + (n+m)2

]
=

s(s2 + n2 +m2)

[s2 + (n−m)2][s2 + (n+m)2]
.
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20. Since sinA sinB = [cos(A − B) − cos(A + B)]/2, using the linearity of the Laplace

transform and Theorem 6, we get

L{t sin 2t sin 5t} (s) = − d

ds
L
{

cos 3t− cos 7t

2

}
(s) = −1

2

d

ds

(
s

s2 + 9
− s

s2 + 49

)
= −20

[
s

(s2 + 9)(s2 + 49)

]′
=

20(3s4 + 58s2 − 441)

(s2 + 9)2(s2 + 49)2
.

22. We represent tn = tn · 1 and apply (6) to get

L{tn} (s) = L{tn · 1} (s) = (−1)n d
n

dsn
[L{1} (s)] = (−1)nd

n (s−1)

dsn

= (−1)n(−1)(−2) · · · (−n)s−1−n =
(−1)n(−1)n1 · 2 · · ·n

sn+1
=

n!

sn+1
.

24. (a) Applying (1), the “translation in s” property of the Laplace transform, to f(t) = tn

yields

L
{
eattn

}
(s) = L{tn} (s− a) =

n!

(s− a)n+1
, s > a .

(b) We apply (6) to the Laplace transform of f(t) = eat, which is of exponential order

a.

L
{
tneat

}
(s) = (−1)n d

n

dsn

[
L
{
eat
}

(s)
]

= (−1)nd
n [(s− a)−1]

dsn

= (−1)n(−1)(−2) · · · (−n)(s− a)−1−n =
n!

(s− a)n+1
, s > a .

26. (a) By Definition 3, there exist constants M , T , and α such that

|f(t)| ≤Meαt for t ≥ T.

Since f(t) is piecewise continuous on [0, T ], there exists a finite number of points

0 = t0 < t1 < · · · < tn = T

such that f(t) is continuous on each (tj, tj+1) and has finite one-sided limits at

endpoints. This implies that f(t) is bounded on any closed subinterval of (tj−1, tj),

and bounded near the endpoints. Thus,

|f(t)| ≤Mj on (tj, tj+1) , j = 0, 1, . . . n− 1.

Therefore,

|f(t)| ≤ N = max
0≤j<n

{Mj, f (tj)} 0 ≤ t < T,
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and so

|f(t)| ≤
(
Ne−αt

)
eαt ≤ sup

0≤t≤T

(
Ne−αt

)
eαt = Leαt

on [0, T ).

Hence, on [0,∞),

|f(t)| ≤ max{L,M}eαt = Keαt .

(b) For s > α, we have

0 ≤ |L{f(t)} (s)| =

∣∣∣∣∣∣
∞∫

0

f(t)e−stdt

∣∣∣∣∣∣ ≤
∞∫

0

|f(t)|e−stdt

≤
∞∫

0

Keαte−stdt = K

∞∫
0

e(α−s)tdt =
K

α− s
e(α−s)t

∣∣∣∣t=∞
t=0

=
K

s− α
.

Since

lim
s→∞

K

s− α
= 0,

by the squeeze theorem

lim
s→∞

|L {f(t)} (s)| = 0,

which is equivalent to

lim
s→∞

L{f(t)} (s) = 0.

28. First observe that since both functions f(t) are continuous on [0,∞), of exponential

order α for any α > 0, and f(t)/t → 0 as t → 0+. Thus, the formula in Problem 27

applies.

(a) From Table 1,

F (s) = L
{
t5
}

(s) =
5!

s6
= 5!s−6

⇒
∞∫

s

F (u)du = 5!

∞∫
s

u−6du =
5!

−5
u−5

∣∣∣∣∞
s

=
4!

s5
= L

{
t4
}

(s) = L
{
t5

t

}
(s) .

(b) Here, we use (21) on the inside back cover with n = 2 to conclude that

F (s) = L
{
t3/2
}

(s) =
3
√
π

4s5/2
=

3
√
π

4
s−5/2

⇒
∞∫

s

F (u)du =
3
√
π

4

∞∫
s

u−5/2du =
3
√
π

4
· −2

3
u−3/2

∣∣∣∣∞
s
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=

√
π

2s3/2
= L

{
t1/2
}

(s) = L
{
t3/2

t

}
(s) .

30. From the linearity properties (2) and (3) of the text we have

L{g} (s) = L{y′′ + 5y′ + 6y} (s) = L{y′′} (s) + 5L{y′} (s) + 6L{y} (s).

Next, applying properties (2) and (4) yields

L{g} (s) =
[
s2L{y} (s)− sy(0)− y′(0)

]
+ 5 [sL{y} (s)− y(0)] + 6L{y} (s).

Keeping in mind the fact that both initial values are zero, we get

G(s) =
(
s2 + 6s+ 10

)
Y (s), where G(s) = L{g} (s), Y (s) = L{y} (s).

Therefore, the transfer function H(s) is given by

H(s) =
Y (s)

G(s)
=

1

s2 + 5s+ 6
.

32. The graphs of the function f(t) = 1 and its translation g(t) to the right by c = 2 are

shown in Fig. 7–E(a), page 264.

We use the result of Problem 31 to find L{g(t)}.

L{g(t)} (s) = e−(2)sL{1} (s) =
e−2s

s
.

34. The graphs of the function f(t) = sin t and its translation g(t) to the right by c = π

units are shown in Fig. 7–E(b).

We use the formula in Problem 31 to find L{g(t)}.

L{g(t)} (s) = e−πsL{sin t} (s) =
e−πs

s2 + 1
.

36. We prove the formula by induction.

(i) Since 0! = 1 and

L
{
t0
}

(s) = L{1} (s) =
1

s
=

0!

s0+1
,

the formula is correct for n = 0.
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(ii) We now assume that the formula is valid for n = k and show that it is valid then

for n = k + 1. Indeed, since

tk+1 = (k + 1)

t∫
0

τ k dτ ,

applying (5), we conclude that

L
{
tk+1

}
(s) = L

(k + 1)

t∫
0

τ k dτ

 (s)

= (k + 1)
1

s
L
{
tk
}

(s) = (k + 1)
1

s

k!

sk+1
=

(k + 1)!

s(k+1)+1
.

Therefore, the formula is valid for any n ≥ 0.

38. We have

(a) lim
s→∞

sL{1} (s) = lim
s→∞

s · 1

s
= 1 ;

(b) lim
s→∞

sL
{
et
}

(s) = lim
s→∞

s

s− 1
= 1 = et

∣∣∣
t=0

;

(c) lim
s→∞

sL
{
e−t
}

(s) = lim
s→∞

s

s+ 1
= 1 = e−t

∣∣∣
t=0

;

(d) lim
s→∞

sL{cos t} (s) = lim
s→∞

s2

s2 + 1
= 1 = cos t

∣∣∣
t=0

;

(e) lim
s→∞

sL{sin t} (s) = lim
s→∞

s

s2 + 1
= 0 = sin t

∣∣∣
t=0

;

(f) lim
s→∞

sL
{
t2
}

(s) = lim
s→∞

s2!

s3
= 0 = t2

∣∣∣
t=0

;

(g) lim
s→∞

sL{t cos t} (s) = lim
s→∞

s(s2 − 1)

(s2 + 1)2
= 0 = t cos t

∣∣∣
t=0

.

EXERCISES 7.4: Inverse Laplace Transform

2. Writing 2/ (s2 + 4) = 2/ (s2 + 22), from Table 7.1 (Section 7.2) we get

L−1

{
2

s2 + 4

}
(t) = L−1

{
2

s2 + 22

}
(t) = sin 2t .

4. We use the linearity of the inverse Laplace transform and Table 7.1 to conclude that

L−1

{
4

s2 + 9

}
(t) =

4

3
L−1

{
3

s2 + 32

}
(t) =

4

3
sin 3t .
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6. The linearity of the inverse Laplace transform and Table 7.1 yields

L−1

{
3

(2s+ 5)3

}
(t) =

3

8
L−1

{
1

(s+ 5/2)3

}
(t) =

3

16
t2e−5t/2 .

8. From Table 7.1, the function 4!/s5 is the Laplace transform of t4. Therefore,

L−1

{
1

s5

}
(t) =

1

4!
L−1

{
4!

s5

}
(t) =

1

24
t4 .

10. By completing the square in the denominator, we get

s− 1

2s2 + s+ 3
=

1

2

s− 1

(s+ 1/4)2 + (
√

47/4)2

=
1

2

[
s+ (1/4)

(s+ 1/4)2 + (
√

47/4)2
− 5√

47

√
47/4

(s+ 1/4)2 + (
√

47/4)2

]

so that

L−1

{
s− 1

2s2 + s+ 3

}
(t) =

1

2
e−t/4 cos

(√
47t

4

)
− 5

2
√

47
e−t/4 sin

(√
47t

4

)
.

(See the Laplace transforms for eαt sin bt and eαt cos bt in Table 7.1).

12. In this problem, we use the partial fractions decomposition method. Since the denomi-

nator, (s + 1)(s− 2), is a product of two nonrepeated linear factors, the expansion has

the form
−s− 7

(s+ 1)(s− 2)
=

A

s+ 1
+

B

s− 2
=
A(s− 2) +B(s+ 1)

(s+ 1)(s− 2)
.

Therefore,

−s− 7 = A(s− 2) +B(s+ 1). (7.1)

Evaluating both sides of (7.1) at s = −1 and s = 2, we find constants A and B.

s = −1 : −6 = −3A ⇒ A = 2 ,

s = 2 : −9 = 3B ⇒ B = −3 .

Hence,
−s− 7

(s+ 1)(s− 2)
=

2

s+ 1
− 3

s− 2
.

14. First, we factor the denominator completely. Since s2− 3s+ 2 = (s− 1)(s− 2), we have

−8s2 − 5s+ 9

(s+ 1)(s2 − 3s+ 2)
=

−8s2 − 5s+ 9

(s+ 1)(s− 1)(s− 2)
.
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Since the denominator has only nonrepeated linear factors, we can write

−8s2 − 5s+ 9

(s+ 1)(s− 1)(s− 2)
=

A

s+ 1
+

B

s− 1
+

C

s− 2
.

for some A, B and C. Clearing fractions gives us

−8s2 − 5s+ 9 = A(s− 1)(s− 2) +B(s+ 1)(s− 2) + C(s+ 1)(s− 1).

With s = −1, this yields 6 = A(−2)(−3) so that A = 1. Substituting s = 1, we get

−4 = B(2)(−1) so that B = 2. Finally, s = 2 yields −33 = C(3)(1) so that C = −11.

Thus,
−8s2 − 5s+ 9

(s+ 1)(s2 − 3s+ 2)
=

1

s+ 1
+

2

s− 1
− 11

s− 2
.

16. Since the denominator has one linear and one irreducible quadratic factors, we have

−5s− 36

(s+ 2)(s2 + 9)
=

A

s+ 2
+
Bs+ C(3)

s2 + 32
=
A (s2 + 9) + (Bs+ 3C) (s+ 2)

(s+ 2) [s2 + 9]
,

which implies that

−5s− 36 = A
(
s2 + 9

)
+ (Bs+ 3C) (s+ 2).

Taking s = −2, s = 0, and s = 1, we find A, C, and B, respectively.

s = −2 : −26 = 13A ⇒ A = −2,

s = 0 : −36 = 9A+ 6C ⇒ C = −3,

s = 1 : −41 = 10A+ 3 (B + 3C) ⇒ B = 2,

and so
−5s− 36

(s+ 2)(s2 + 9)
= −2

1

s+ 2
+ 2

s

s2 + 9
− 3

3

s2 + 9
.

18. We have
3s2 + 5s+ 3

s4 + s3
=

3s2 + 5s+ 3

s3(s+ 1)
=
A

s3
+
B

s2
+
C

s
+

D

s+ 1
. (7.2)

Multiplying this equation by s+ 1 and evaluating the result at s = −1 yields

3s2 + 5s+ 3

s3

∣∣∣∣
s=−1

= (s+ 1)

(
A

s3
+
B

s2
+
C

s

)
+D

∣∣∣∣
s=−1

⇒ D = −1 .

We can find A by multiplying (7.2) by s3 and substituting s = 0.

3s2 + 5s+ 3

s+ 1

∣∣∣∣
s=0

= A+Bs+ Cs2 +
Ds3

s+ 1

∣∣∣∣
s=0

⇒ A = 3 .
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Thus,

3s2 + 5s+ 3

s3(s+ 1)
=

3

s3
+
B

s2
+
C

s
− 1

s+ 1

⇒ 3s2 + 5s+ 3 = 3(s+ 1) +Bs(s+ 1) + Cs2(s+ 1)− s3 . (7.3)

One can now compare the coefficients at s3 and s to find B and C. Alternatively,

differentiating (7.3) and evaluating the derivatives at s = 0 yields

6s+ 5|s=0 = 5 = 3 +B(2s+ 1)|s=0 = 3 +B ⇒ B = 2 .

(The last two terms in the right-hand side of (7.3) have zero derivative at s = 0.)

Similarly, evaluating the second derivative in (7.3) at s = 0, we find that

6 = 2B + C(6s+ 2)|s=0 = 4 + 2C ⇒ C = 1 .

Therefore,
3s2 + 5s+ 3

s4 + s3
=

3

s3
+

2

s2
+

1

s
− 1

s+ 1
.

20. Factoring the denominator completely yields

s

(s− 1) (s2 − 1)
=

s

(s− 1)2(s+ 1)
=

A

(s− 1)2
+

B

s− 1
+

C

s+ 1

=
A(s+ 1) +B (s2 − 1) + C(s− 1)2

(s− 1)2(s+ 1)
.

Thus,

s = A(s+ 1) +B
(
s2 − 1

)
+ C(s− 1)2 . (7.4)

Evaluating this equality at s = 1 and s = −1, we find A and C, respectively.

s = 1 : 1 = 2A ⇒ A = 1/2,

s = −1 : −1 = 4C ⇒ C = −1/4.

To find B, we evaluate both sides of (7.4) at, say, s = 0.

0 = A−B + C ⇒ B = A+ C = 1/4 .

Hence,
s

(s− 1) (s2 − 1)
=

1

2

1

(s− 1)2
+

1

4

1

s− 1
− 1

4

1

s+ 1
.
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22. Since the denominator contains only nonrepeated linear factors, the partial fractions

decomposition has the form

s+ 11

(s− 1)(s+ 3)
=

A

s− 1
+

B

s+ 3
=
A(s+ 3) +B(s− 1)

(s− 1)(s+ 3)

⇒ s+ 11 = A(s+ 3) +B(s− 1) .

At s = 1, this yields A = 3, and we find that B = −2 substituting s = −3. Therefore,

s+ 11

(s− 1)(s+ 3)
= 3

1

s− 1
− 2

1

s+ 3
,

and the linear property of the inverse Laplace transform yields

L−1

{
s+ 11

(s− 1)(s+ 3)

}
= 3L−1

{
1

s− 1

}
− 2L−1

{
1

s+ 3

}
= 3et − 2e−3t .

24. Observing that the quadratic s2 − 4s + 13 = (s − 2)2 + 32 is irreducible, the partial

fractions decomposition for F (s) has the form

7s2 − 41s+ 84

(s− 1)(s2 − 4s+ 13)
=

A

s− 1
+
B(s− 2) + C(3)

(s− 2)2 + 32
.

Clearing fractions gives us

7s2 − 41s+ 84 = A
[
(s− 2)2 + 9

]
+ [B(s− 2) + C(3)] (s− 1).

With s = 1, this yields 50 = 10A so that A = 5; s = 2 gives 30 = A(9) + C(3), or

C = −5. Finally, the coefficient A+B at s2 in the right-hand side must match the one

in the left-hand side, which is 7. So B = 7− A = 2. Therefore,

7s2 − 41s+ 84

(s− 1)(s2 − 4s+ 13)
= 5

1

s− 1
+ 2

s− 2

(s− 2)2 + 32
− 5

3

(s− 2)2 + 32
,

which yields

L−1

{
7s2 − 41s+ 84

(s− 1)(s2 − 4s+ 13)

}
= 5L−1

{
1

s− 1

}
+ 2L−1

{
s− 2

(s− 2)2 + 32

}
−5L−1

{
3

(s− 2)2 + 32

}
= 5et + 2e2t cos 3t− 5e2t sin 3t .

26. The partial fractions decomposition has the form

F (s) =
A

s3
+
B

s2
+
C

s
+

D

s− 2
. (7.5)
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Multiplying (7.5) by s3 and substituting s = 0 yields

7s3 − 2s2 − 3s+ 6

s− 2

∣∣∣∣
s=0

= −3 = A+Bs+ Cs2 +
Ds3

s− 2

∣∣∣∣
s=0

= A .

Thus, A = −3. Multiplying (7.5) by s− 2 and evaluating the result at s− 2, we get

7s3 − 2s2 − 3s+ 6

s3

∣∣∣∣
s=2

= 6 = (s− 2)

[
− 3

s3
+
B

s2
+
C

s

]
+D

∣∣∣∣
s=2

= D .

So, D = 6 and (7.5) becomes

7s3 − 2s2 − 3s+ 6

s3(s− 2)
= − 3

s3
+
B

s2
+
C

s
+

6

s− 2
.

Clearing the fractions yields

7s3 − 2s2 − 3s+ 6 = −3(s− 2) +Bs(s− 2) + Cs2(s− 2) + 6s3 .

Matching the coefficients at s3, we obtain C + 6 = 7 or C = 1. Finally, the coefficients

at s2 lead to B − 2C = −2 or B = 0. Therefore,

F (s) =
7s3 − 2s2 − 3s+ 6

s3(s− 2)
= − 3

s3
+

1

s
+

6

s− 2

and

L−1 {F (s)} (t) = −3

2
t2 + 1 + 6e2t .

28. First, we find F (s).

F (s)
(
s2 + s− 6

)
=
s2 + 4

s2 + s

⇒ F (s) =
s2 + 4

s(s+ 1)(s2 + s− 6)
=

s2 + 4

s(s+ 1)(s+ 3)(s− 2)
.

The partial fractions expansion yields

s2 + 4

s(s+ 1)(s+ 3)(s− 2)
=
A

s
+

B

s+ 1
+

C

s+ 3
+

D

s− 2
.

Clearing fractions gives us

s2 + 4 = A(s+ 1)(s+ 3)(s− 2) +Bs(s+ 3)(s− 2) +Cs(s+ 1)(s− 2) +Ds(s+ 1)(s+ 3).

With s = 0, s = −1, s = −3, and s = 2 this yields A = −2/3, B = 5/6, C = −13/30,

and D = 4/15. So,

L−1 {F (s)} (t) = −2

3
L−1

{
1

s

}
(t) +

5

6
L−1

{
1

s+ 1

}
(t)
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−13

30
L−1

{
1

s+ 3

}
(t) +

4

15
L−1

{
1

s− 2

}
(t)

= −2

3
+

5

6
e−t − 13

30
e−3t +

4

15
e2t .

30. Solving for F (s) yields

F (s) =
2s+ 5

(s− 1)(s2 + 2s+ 1)
=

A

(s+ 1)2
+

B

s+ 1
+

C

s− 1
. (7.6)

Thus, clearing fractions, we conclude that

2s+ 5 = A(s− 1) +B
(
s2 − 1

)
+ C(s+ 1)2 .

Substitution s = 1 into this equation yields C = 7/4. With s = −1, we get A = −3/2.

Finally, substitution s = 0 results 5 = −A− B + C or B = −A + C − 5 = −7/4. Now

we use the linearity of the inverse Laplace transform and obtain

L−1 {F (s)} (t) = −3

2
L−1

{
1

(s+ 1)2

}
(t)− 7

4
L−1

{
1

s+ 1

}
(t) +

7

4
L−1

{
1

s− 1

}
(t)

= −3

2
te−t − 7

4
e−t +

7

4
et .

32. Functions f1(t), f2(t), and f3(t) coincide for all t in [0,∞) except for a discrete set of

points. Since the Laplace transform of a function is a definite integral, it does not depend

on values of the function at these points. Therefore, in (a), (b), and (c) we have one and

the same Laplace transform, that is

L{f1(t)} (s) = L{f2(t)} (s) = L{f3(t)} (s) = L
{
et
}

(s) =
1

s− 1
.

f3(t) = et is continuous on [0,∞] while f1(t) and f2(t) have (removable) discontinuities

at t = 1, 2, . . . and t = 5, 8, respectively. By Definition 4, then

L−1

{
1

s− 1

}
(t) = f3(t) = et .

34. We are looking for L−1 {F (s)} (t) = f(t). According to the formula given just before

this problem (with n = 1),

f(t) =
−1

t
L−1

{
dF

ds

}
(t)

Since

F (s) = ln

(
s− 4

s− 3

)
= ln(s− 4)− ln(s− 3),
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we have

dF (s)

ds
=

d

ds
[ln(s− 4)− ln(s− 3)] =

1

s− 4
− 1

s− 3

⇒ L−1

{
dF

ds

}
(t) = L−1

{
1

s− 4
− 1

s− 3

}
(t) = e4t − e3t

⇒ L−1 {F (s)} (t) =
−1

t

(
e4t − e3t

)
=
e3t − e4t

t
.

36. Taking the derivative of F (s), we get

dF (s)

ds
=

d

ds
arctan

(
1

s

)
=

1

1 + (1/s)2

d

ds

(
1

s

)
= − 1

s2 + 1
.

So, from Table 7.1, Section 7.2, we have

L−1

{
dF (s)

ds

}
(t) = − sin t.

Thus,

L−1 {F (s)} (t) =
−1

t
L−1

{
dF (s)

ds

}
(t) =

sin t

t
.

38. Since s = r is a simple root of Q(s), we can write Q(s) = (s− r)Q̃(s), where Q̃(r) 6= 0.

Therefore,

lim
s→r

(s− r)P (s)

Q(s)
= lim

s→r

(s− r)P (s)

(s− r)Q̃(s)
=
P (r)

Q̃(r)
=: A .

Thus, the function (s− r)P (s)/Q(s)− A is a rational function satisfying

lim
s→r

[
(s− r)P (s)

Q(s)
− A

]
= 0 .

Therefore,
(s− r)P (s)

Q(s)
− A = (s− r)R̃(s) ,

where R̃(s) has a finite limit at s = r meaning that its denominator, which is (in the

reduced form) Q̃(s) is not zero at s = r. Thus,

P (s)

Q(s)
=
A+ (s− r)R̃(s)

s− r
=

A

s− r
+ R̃(s) .

It is worth mentioning that

A = lim
s→r

(s− r)P (s)

Q(s)
= lim

s→r

P (s)

Q(s)/(s− r)
=
P (r)

Q′(r)
. (7.7)
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40. Since s − rj, j = 1, 2, . . . , n, are simple linear factors of Q(s), applying Problem 38

repeatedly, we conclude that the partial fractions decomposition of P (s)/Q(s) has the

form
P (s)

Q(s)
=

n∑
j=1

Aj

s− rj

.

Multiplying this equation by s− ri and taking the limit, as s→ ri , yields

lim
s→ri

(s− ri)P (s)

Q(s)
= lim

s→ri

[
(s− ri)

n∑
j=1

Aj

s− rj

]
= lim

s→ri

[
Ai + (s− ri)

∑
j 6=i

Aj

s− rj

]
= Ai .

Similarly to (7.7), we conclude that

Ai =
P (ri)

Q′ (ri)

so that
P (s)

Q(s)
=

n∑
i=1

P (ri)

Q′ (ri)

1

s− ri

.

Using now the linearity of the inverse Laplace transform, we get

L−1

{
P (s)

Q(s)

}
(t) =

n∑
i=1

P (ri)

Q′ (ri)
L−1

{
1

s− ri

}
(t) =

n∑
i=1

P (ri)

Q′ (ri)
erit .

42. Similarly to Problem 38, we conclude that

lim
s→α+iβ

[(s− α)2 + β2]P (s)

Q(s)
= A+ iB

so that

lim
s→α−iβ

[(s− α)2 + β2]P (s)

Q(s)
= lim

s→α+iβ

[(s− α)2 + β2]P (s)

Q(s)
= A− iB

since P (s) and Q(s) are polynomial with real coefficients. Therefore,

P (s)

Q(s)
=

A+ iB

s− (α+ iβ)
+

A− iB

s− (α− iβ)
+ R̃(s) ,

where R̃(s) has finite limits as s→ α± iβ. Simplifying yields

P (s)

Q(s)
=

(A+ iB) [s− (α− iβ)] + (A− iB) [s− (α+ iβ)]

(s− α)2 + β2
+ R̃(s)

=
2A(s− α)− 2Bβ

(s− α)2 + β2
+ R̃(s) .
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Re-denoting 2A by A and −2B by B, we get the required formula

P (s)

Q(s)
=
A(s− α) +Bβ

(s− α)2 + β2
+ R̃(s) .

Multiplying this representation by (s− α)2 + β2 and taking the limit yields

lim
s→α+iβ

[(s− α)2 + β2]P (s)

Q(s)

= lim
s→α+iβ

{
A(s− α) +Bβ +

[
(s− α)2 + β2

]
R̃(s)

}
= Bβ + iAβ .

EXERCISES 7.5: Solving Initial Value Problems

2. Let Y = Y (s) := L{y(t)} (s).1 Applying the Laplace transform to both sides of the

given equation and using Theorem 5 in Section 7.3 to express L{y′′} and L{y′} in

terms of Y , we obtain(
s2Y + 2s− 5

)
− (sY + 2)− 2Y = 0

⇒ Y =
1

s2 − s− 2
(7− 2s) =

7− 2s

(s− 2)(s+ 1)
=

1

s− 2
− 3

s+ 1
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

y(t) = L−1

{
1

s− 2
− 3

s+ 1

}
(t) = e2t − 3e−t .

4. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y + s− 7

)
+ 6 (sY + 1) + 5Y =

12

s− 1

⇒ Y =
1

s2 + 6s+ 5

(
1− s+

12

s− 1

)
=

−s2 + 2s+ 11

(s+ 1)(s+ 5)(s− 1)
=

1

s− 1
− 1

s+ 5
− 1

s+ 1
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

y(t) = L−1

{
1

s− 1
− 1

s+ 5
− 1

s+ 1

}
(t) = et − e−5t − e−t .

1We will use this notation in all solutions in Section 7.5 .
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6. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y − 2s− 7

)
− 4 (sY − 2) + 5Y =

4

s− 3

⇒ Y =
1

s2 − 4s+ 5

(
2s− 1 +

4

s− 3

)
=

2s2 − 7s+ 7

(s− 3) [(s− 2)2 + 12]
=

2

s− 3
+

1

(s− 2)2 + 12
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

y(t) = L−1

{
2

s− 3
+

1

(s− 2)2 + 12

}
(t) = 2e3t + e2t sin t .

8. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y − 3

)
+ 4Y =

8

s3
− 4

s2
+

10

s

⇒ Y =
1

s2 + 4

(
3 +

8

s3
− 4

s2
+

10

s

)
=

3s3 + 10s2 − 4s+ 8

s3 (s2 + 22)
=

2

s3
− 1

s2
+

2

s
− 2

s

s2 + 22
+ 2

2

s2 + 22
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

y(t) = L−1

{
2

s3
− 1

s2
+

2

s
− 2

s

s2 + 22
+ 2

2

s2 + 22

}
(t) = t2 − t+ 2− 2 cos 2t+ 2 sin 2t .

10. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y − 5

)
− 4Y =

4

s2
− 8

s+ 2

⇒ Y =
1

s2 − 4

(
5 +

4

s2
− 8

s+ 2

)
=

5s3 + 2s2 + 4s+ 8

s2(s+ 2)2(s− 2)
=

2

(s+ 2)2
− 1

s+ 2
− 1

s2
+

1

s− 2
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

y(t) = L−1

{
2

(s+ 2)2
− 1

s+ 2
− 1

s2
+

1

s− 2

}
(t) = 2te−2t − e−2t − t+ e2t .
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12. Since the Laplace transform approach requires that initial conditions are given at the

origin, we make a shift in argument. Namely, let y(t) := w(t− 1). Then

y′(t) = w′(t− 1)(t− 1)′ = w′(t− 1) ,

y′′(t) = w′′(t− 1)(t− 1)′ = w′′(t− 1) .

Thus, replacing t by t− 1 in the given equation yields

y′′ − 2y′ + y = 6(t− 1)− 2 = 6t− 8

with the initial conditions y(0) = w(−1) = 3, y′(0) = w′(−1) = 7.

Applying the Laplace transform to both sides of this equation and using Theorem 5 in

Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y − 3s− 7

)
− 2(sY − 3) + Y =

6

s2
− 8

s

⇒ Y =
1

s2 − 2s+ 1

(
3s+ 1 +

6

s2
− 8

s

)
=

3s3 + s2 − 8s+ 6

s2(s− 1)2
=

6

s2
+

4

s
− 1

s− 1
+

2

(s− 1)2
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

y(t) = L−1

{
6

s2
+

4

s
− 1

s− 1
+

2

(s− 1)2

}
(t) = 6t+ 4− et + 2tet .

Finally, shifting the argument back, we get

w(t) = y(t+ 1) = 6t+ 10− et+1 + 2(t+ 1)et+1 = 6t+ 10 + et+1 + 2tet+1 .

14. Similarly to Problem 12, we make a shift in argument first. Let w(t) := y(t+ π). Then

w′(t) = y′(t+ π)(t+ π)′ = y′(t+ π) ,

w′′(t) = y′′(t+ π)(t+ π)′ = y′′(t+ π) .

Thus, replacing t by t+ π in the given equation yields

w′′ + w = t+ π

with the initial conditions w(0) = y(π) = 0, w′(0) = y′(π) = 0.
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Applying the Laplace transform to both sides of this equation and using Theorem 5 in

Section 7.3 to express L{w′′} in terms of W := L{w}, we obtain

s2W +W =
1

s2
+
π

s

⇒ W =
1

s2 + 1

(
1

s2
+
π

s

)
=

1 + πs

s2 (s2 + 1)
=

1

s2
+
π

s
− πs

s2 + 1
− 1

s2 + 1
.

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from

Section 7.2 yields

w(t) = L−1

{
1

s2
+
π

s
− πs

s2 + 1
− 1

s2 + 1

}
(t) = t+ π − π cos t− sin t .

Shifting the argument back, we finally get

y(t) = w(t− π) = (t− π) + π − π cos(t− π)− sin(t− π) = t+ π cos t+ sin t .

16. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} in terms of Y , we obtain(
s2Y + 1

)
+ 6Y =

2

s3
− 1

s

⇒ Y =
1

s2 + 6

(
−1 +

2

s3
− 1

s

)
=
−s3 − s2 + 2

s3 (s2 + 6)
.

18. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y − s− 3

)
− 2(sY − 1)− Y =

1

s− 2
− 1

s− 1
=

1

(s− 1)(s− 2)

⇒ Y =
1

s2 − 2s− 1

[
s+ 1 +

1

(s− 1)(s− 2)

]
=

s3 − 2s2 − s+ 3

(s− 1)(s− 2) (s2 − 2s− 1)
.

20. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} in terms of Y , we obtain

s2Y + 3Y =
3!

s4
=

6

s4
⇒ Y =

6

s4 (s2 + 3)
.

22. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} and L{y′} in terms of Y , we obtain(
s2Y − 2s+ 1

)
− 6(sY − 2) + 5Y =

1

(s− 1)2
.
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Solving for Y (s) yields

Y (s) =
1

s2 − 6s+ 5

[
2s− 13 +

1

(s− 1)2

]
=

2s3 − 17s2 + 28s− 12

(s− 1)2 (s2 − 6s+ 5)
=

2s3 − 17s2 + 28s− 12

(s− 1)3(s− 5)
.

24. Let us find the Laplace transform of g(t). (In Section 7.6 we will find a simple way to get

the Laplace transform of piecewise defined functions using the unit step function u(t),

but here we should follow the definition of the Laplace transform given in Section 7.2.)

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

3∫
0

e−stdt+

∞∫
3

te−stdt

= − e−st

s

∣∣∣∣3
t=0

− te−st

s

∣∣∣∣∞
t=3

+
1

s

∞∫
3

e−stdt =
1− e−3s

s
+

3e−3s

s
− e−st

s2

∣∣∣∣∞
t=3

=
1 + 2e−3s

s
+
e−3s

s2
=
s+ 2se−3s + e−3s

s2
.

Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′} in terms of Y , we obtain(
s2Y − s− 2

)
− Y =

s+ 2se−3s + e−3s

s2
.

Solving for Y (s) yields

Y (s) =
1

s2 − 1

(
s+ 2 +

s+ 2se−3s + e−3s

s2

)
=
s3 + 2s2 + s+ 2se−3s + e−3s

s3(s− 1)(s+ 1)
.

26. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′′}, L{y′′} and L{y′} in terms of Y , we obtain(
s3Y − s2 − 4s+ 2

)
+ 4

(
s2Y − s− 4

)
+ (sY − 1) + Y = −12

s
.

Solving for Y (s) yields

Y (s) =
1

s3 + 4s2 + s− 6

(
s2 + 8s+ 15− 12

s

)
=
s3 + 8s2 + 15s− 12

s (s3 + 4s2 + s− 6)
=

s3 + 8s2 + 15s− 12

s(s− 1)(s+ 2)(s+ 3)

=
1

s− 1
+

1

s+ 3
− 3

s+ 2
+

2

s
.

Taking now the inverse Laplace transform leads to the solution

y(t) = et + e−3t − 3e−2t + 2 .
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28. Applying the Laplace transform to both sides of the given equation and using Theorem 5

in Section 7.3 to express L{y′′′}, L{y′′} and L{y′} in terms of Y , we obtain(
s3Y − 2s+ 4

)
+
(
s2Y − 2

)
+ 3(sY )− 5Y = − 16

s+ 1
.

Solving for Y (s) yields

Y (s) =
1

s3 + s2 + 3s− 5

(
2s− 2 +

16

s+ 1

)
=

2s2 + 14

(s+ 1) (s3 + s2 + 3s− 5)
=

2s2 + 14

(s+ 1)(s− 1) [(s+ 1)2 + 22]

= − 2

s+ 1
+

1

s− 1
+

s+ 1

(s+ 1)2 + 22
.

Taking now the inverse Laplace transform we get

y(t) = −2e−t + et + e−t cos 2t .

30. Using the initial conditions, y(0) = a and y′(0) = b, and the formula (4) of Section 7.3,

we conclude that

L{y′} (s) = sY (s)− y(0) = sY (s)− a ,

L{y′′} (s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− as− b .
(7.8)

Applying the Laplace transform to the given equation yields[
s2Y (s)− as− b

]
+ 6 [sY (s)− a] + 5Y (s) = L{t} (s) =

1

s2

⇒
(
s2 + 6s+ 5

)
Y (s) = as+ b+ 6a+

1

s2
=
as3 + (6a+ b)s2 + 1

s2

⇒ Y (s) =
as3 + (6a+ b)s2 + 1

s2 (s2 + 6s+ 5)

=
as3 + (6a+ b)s2 + 1

s2(s+ 1)(s+ 5)
=
A

s2
+
B

s
+

C

s+ 1
+

D

s+ 5
.

Solving for A, B, C, and D, we find that

A =
1

5
, B = − 6

25
, C =

5a+ b+ 1

4
, D = −25a+ 25b+ 1

100
.

Hence,

Y (s) =

(
1

5

)
1

s2
−
(

6

25

)
1

s
+

(
5a+ b+ 1

4

)
1

s+ 1
−
(

25a+ 25b+ 1

100

)
1

s+ 5

⇒ y(t) =
t

5
− 6

25
+

5a+ b+ 1

4
e−t − 25a+ 25b+ 1

100
e−5t .
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32. Applying the Laplace transform to both sides the given equation yields[
s2Y (s)− as− b

]
− 5 [sY (s)− a] + 6Y (s) = L

{
−6te2t

}
(s) = − 6

(s− 2)2

⇒
(
s2 − 5s+ 6

)
Y (s) = as+ b− 5a− 6

(s− 2)2

=
as3 + (b− 9a)s2 + (24a− 4b)s+ (4b− 20a− 6)

(s− 2)2

⇒ Y (s) =
as3 + (b− 9a)s2 + (24a− 4b)s+ (4b− 20a− 6)

(s− 2)2 (s2 − 5s+ 6)

=
as3 + (b− 9a)s2 + (24a− 4b)s+ (4b− 20a− 6)

(s− 2)3(s− 3)

=
A

(s− 2)3
+

B

(s− 2)2
+

C

s− 2
+

D

s− 3
.

(For the Laplace transforms of y′ and y′′ we have used equations (7.8).) Solving for A,

B, C, and D, we find that

A = 6 , B = 6 , C = 3a− b+ 6 , D = b− 2a− 6 .

Hence,

Y (s) =
6

(s− 2)3
+

6

(s− 2)2
+

3a− b+ 6

s− 2
+
b− 2a− 6

s− 3

⇒ y(t) = 3t2e2t + 6te2t + (3a− b+ 6)e2t + (b− 2a− 6)e3t .

34. By Theorem 6 in Section 7.3,

L
{
t2y′′(t)

}
(s) = (−1)2 d

2

ds2
[L{y′′(t)} (s)] =

d2

ds2
[L{y′′(t)} (s)] . (7.9)

Theorem 5 in Section 7.3 says that

L{y′′(t)} (s) = s2Y (s)− y(0)s− y′(0) .

Substituting this equation into (7.9) yields

L
{
t2y′(t)

}
(s) =

d2

ds2

[
s2Y (s)− y(0)s− y′(0)

]
=

d2

ds2

[
s2Y (s)

]
=

d

ds

[
s2Y ′(s) + 2sY (s)

]
= s2Y ′′(s) + 4sY ′(s) + 2Y (s) .

36. We apply the Laplace transform to the given equation and obtain

L{ty′′} (s)− L{ty′} (s) + L{y} (s) = L{2} (s) =
2

s
. (7.10)
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Using Theorem 5 in Section 7.3 and the initial conditions, we express L{y′′} and L{y′}
in terms of Y .

L{y′} (s) = sY (s)− y(0) = sY (s)− 2,

L{y′′} (s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 2s+ 1 .

We now involve Theorem 6 in Section 7.3 to get

L{ty′} (s) = − d

ds
[L{y′} (s)] = − d

ds
[sY (s)− 2] = −sY ′(s)− Y (s) , (7.11)

L{ty′′} (s) = − d

ds
[L{y′′} (s)] = − d

ds

[
s2Y (s)− 2s+ 1

]
= −s2Y ′(s)− 2sY (s) + 2 .

Substituting these equations into (7.10), we obtain(
−s2Y ′ − 2sY + 2

)
− (−sY ′ − Y ] + Y =

2

s

⇒ s(1− s)Y ′ + 2(1− s)Y =
2(1− s)

s

⇒ Y ′ +
2

s
Y (s) =

2

s2
.

The integrating factor of this first order linear differential equation is

µ(s) = exp

(∫
2

s
ds

)
= e2 ln|s| = s2 .

Hence,

Y (s) =
1

µ(s)

∫
µ(s)

(
2

s2

)
ds =

1

s2

∫
2 ds =

2

s
+
C

s2
,

where C is an arbitrary constant. Therefore,

y(t) = L−1 {Y } (t) = L−1

{
2

s
+
C

s2

}
(t) = 2 + Ct .

From the initial condition y′(0) = −1 we find that C = −1 so that the solution to the

given initial value problem is y(t) = 2− t,

38. Taking the Laplace transform of both sides of y′′ + ty′ − y = 0, we conclude that

L{y′′} (s) + L{ty′} (s)− L{y} (s) = 0 .

Since, similarly to (7.10),

L{ty′} (s) = −sY ′(s)− Y (s) ,
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we get (
s2Y − 3

)
+ (−sY ′ − Y )− Y = 0

⇒ −sY ′ +
(
s2 − 2

)
Y = 3 ⇒ Y ′ +

(
2

s
− s

)
Y = −3

s
.

This is a first order linear differential equation in Y (s), which can be solved by methods

of Section 2.3. Namely, it has an integrating factor

µ(s) = exp

[ ∫ (
2

s
− s

)
ds

]
= exp

(
2 ln |s| − s2

2

)
= s2e−s2/2 .

Thus,

Y (s) =
1

µ(s)

∫
µ(s)

(
−3

s

)
ds = − 3

s2e−s2/2

∫
se−s2/2 ds

=
3

s2e−s2/2

(
e−s2/2 + C

)
=

3

s2

(
1 + Ces2/2

)
.

The constant C must be zero in order to ensure that Y (s) → 0 as s → ∞. Therefore,

Y (s) = 3/s2, and from Table 7.1 we get

y(t) = L−1

{
3

s2

}
(t) = 3t .

40. This additional assumption makes the total fed back torque to the steering shaft equal

to −ke(t) − µe′(t), where k > 0 and µ > 0 are proportionality constants. Thus, the

Newton’s second law

(moment of inertia)× (angular acceleration) = total torque

yields

Iy′′(t) = −ke(t)− µe′(t) . (7.12)

Since

y(t) = e(t) + g(t) = e(t) + a , y′(t) = e′(t) , and y′′(t) = e′′(t) ,

the equation (7.12) becomes

Ie′′ + µe′ + ke = 0 (7.13)

with the initial conditions e(0) = y(0)− a = −a, e′(0) = y′(0) = 0 .

Let E = E(s) := L{e(t)} (s). Taking the Laplace transform of (7.13), we obtain

I
(
s2E + as

)
+ µ (sE + a) + kE = 0 ⇒ E = − a(Is+ µ)

Is2 + µs+ k
= − a (s+ µ/I)

s2 + (µ/I)s+ (k/I)
.
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Assuming a mild damping (that is, µ < 2
√
Ik), we have (µ/I)2− (4k/I) < 0 so that the

quadratic s2 + (µ/I)s+ (k/I) is irreducible and, therefore,

E = −a
{

s+ µ/I

[s+ µ/(2I)]2 + [(k/I)− µ2/(4I2)]

}
= −a

{
s+ µ/(2I)

[s+ µ/(2I)]2 + [(k/I)− µ2/(4I2)]

+
µ/(2I)√

(k/I)− µ2/(4I2)
·

√
(k/I)− µ2/(4I2)

[s+ µ/(2I)]2 + [(k/I)− µ2/(4I2)]

}
.

Taking the inverse Laplace transform and simplifying yields

e(t) = −ae−µt/(2I)

[
cos

(√
4Ik − µ2

2I
t

)
+

µ√
4Ik − µ2

sin

(√
4Ik − µ2

2I
t

)]
.

EXERCISES 7.6: Transforms of Discontinuous and Periodic Functions

2. To find the Laplace transform of g(t) = u(t− 1)− u(t− 4), we apply the linearity of the

Laplace transform and formula (4) of the text. This yields

L{u(t− 1)− u(t− 4)} (s) =
e−s

s
− e−4s

s
=
e−s − e−4s

s
.

The graph of g(t) is shown in Fig. 7–F, page 264.

4. The graph of the function y(t) = tu(t− 1) is shown in Fig. 7–G on page 265. For this

function, formula (8) is more convenient. To apply the shifting property, we observe

that g(t) = t and a = 1. Hence,

g(t+ a) = g(t+ 1) = t+ 1 .

Now the Laplace transform of g(t+ 1) is

L{t+ 1} (s) =
1

s2
+

1

s
.

Hence, by formula (8), we have

L{tu(t− 1)} (s) = e−sL{g(t+ 1)} (s) = e−s

(
1

s2
+

1

s

)
=
e−s(s+ 1)

s2
.

6. The function g(t) equals zero until t reaches 2, at which point g(t) jumps to t + 1. We

can express this jump by (t+ 1)u(t− 2). Hence,

g(t) = (t+ 1)u(t− 2)

224



Exercises 7.6

and, by formula (8),

L{g(t)} (s) = e−2sL{u [(t+ 1) + 2]} (s) = e−2s

(
1

s2
+

3

s

)
=
e−2s(3s+ 1)

s2
.

8. Observe from the graph that g(t) is given by{
0, t < π/2,

sin t, t > π/2.

The function g(t) equals zero until t reaches the point π/2, at which g(t) jumps to the

function sin t. We can express this jump by (sin t)u(t− 1). Hence

g(t) = (sin t)u
(
t− π

2

)
.

Taking the Laplace transform of both sides and using formula (8), we find that the

Laplace transform of the function g(t) is given by

L{g(t)} (s) = L
{

(sin t)u
(
t− π

2

)}
(s)

= e−πs/2L
{

sin
(
t+

π

2

)}
(s) = e−πs/2L{cos t} (s) =

e−πs/2s

s2 + 1
.

10. Observe from the graph that g(t) is given by

g(t) =

{
0, t < 1,

(t− 1)2, t > 1.
= (t− 1)2u(t− 1) .

Thus, by formula (5), we find that

L{g(t)} (s) = L
{
(t− 1)2u(t− 1)

}
(s) = e−sL

{
t2
}

(s) =
2e−s

s3
.

12. We use formula (6) of the text with a = 3 and F (s) = 1/s2. Since

f(t) = L−1 {F (s)} (t) = L−1

{
1

s2

}
(t) = t ,

we get

L−1

{
e−3s

s2

}
(t) = f(t− 3)u(t− 3) = (t− 3)u(t− 3).

14. Here, F (s) = 1/ (s2 + 9) so that f(t) = L−1 {F (s)} (t) = (sin 3t)/3. Thus, applying

Theorem 8 we get

L−1

{
e−3s

s2 + 9

}
(t) = f(t− 3)u(t− 3) =

sin(3t− 9)

3
u(t− 3).

225



Chapter 7

16. We apply formula (6) (Theorem 8) with F (s) = 1/ (s2 + 4) and a = 1.

L−1

{
e−s

s2 + 4

}
(t) = L−1

{
1

s2 + 4

}
(t− 1)u(t− 1) =

sin(2t− 2)

2
u(t− 1) ..

18. By partial fractions decomposition,

3s2 − s+ 2

(s− 1) (s2 + 1)
= − 2

s− 1
+

s

s2 + 1

so that

L−1

{
e−s(3s2 − s+ 2)

(s− 1) (s2 + 1)

}
(t) = L−1

{
2e−s

s− 1

}
(t) + L−1

{
e−ss

s2 + 1

}
(t)

=

[
2L−1

{
1

s− 1

}
(t− 1) + L−1

{
s

s2 + 1

}
(t− 1)

]
u(t− 1)

=
[
2et−1 + cos(t− 1)

]
u(t− 1) .

20. In this problem, we apply methods of Section 7.5 of solving initial value problems using

the Laplace transform. Taking the Laplace transform of both sides of the given equation

and using the linear property of the Laplace transform, we get

L{I ′′ + 4I} (s) = L{I ′′} (s) + 4L{I} (s) = L{g(t)} (s). (7.14)

Let us denote I(s) := L{I} (s). By Theorem 5, Section 7.3,

L{I ′′} (s) = s2I(s)− sI(0)− I ′(0) = s2I(s)− s− 3 .

Thus,

L{I ′′ + 4I} (s) =
(
s2I(s)− s− 3

)
+ 4I(s) =

(
s2 + 4

)
I(s)− (s+ 3) . (7.15)

To find the Laplace transform of g(t), we express this function using the unit step

function u(t). Since g(t) identically equals to 3 sin t for 0 < t < 2π and jumps to 0 at

t = 2π, we can write

g(t) = (3 sin t) [1− u(t− 2π)] = 3 [sin t− (sin t)u(t− 2π)] .

Therefore,

L{g(t)} (s) = 3

[
1

s2 + 1
− e−2πs

s2 + 1

]
=

3 (1− e−2πs)

s2 + 1
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Substituting this equation and (7.15) into (7.14) and solving for I(s) yields

I(s) =
s

s2 + 4
+

3

s2 + 4
+

3 (1− e−2πs)

(s2 + 1) (s2 + 4)
.

Since
3

(s2 + 1) (s2 + 4)
=

1

s2 + 1
− 1

s2 + 4
,

we obtain

I(s) =
s

s2 + 4
+

3

s2 + 4
+
(
1− e−2πs

)( 1

s2 + 1
− 1

s2 + 4

)
. (7.16)

Applying the inverse Laplace transform to both sides of (7.16) yields

I(t) = cos 2t+
3

2
sin 2t+ sin t− 1

2
sin 2t−

[
sin(t− 2π)− 1

2
sin 2(t− 2π)

]
u(t− 2π)

= sin t+ sin 2t+ cos 2t+

(
1

2
sin 2t− sin t

)
u(t− 2π) .

22. In the windowed version (11) of f(t), fT (t) = et and T = 1. Thus,

FT (s) :=

∞∫
0

e−stfT (t) dt =

1∫
0

e−stet dt =

1∫
0

e(1−s)t dt =
e1−s − 1

1− s
.

From Theorem 9, we obtain

L{f(t)} (s) =
FT (s)

1− e−s
=

1− e1−s

(s− 1) (1− e−s)
.

The graph of the function y = f(t) is given in Fig. 7–H, page 265.

24. We use formula (12) of the text. With the period T = 2, the windowed version fT (t) of

f(t) is

fT (t) =

{
f(t), 0 < t < 2,

0, t > 2
=


t, 0 < t < 1,

1− t, 1 < t < 2,

0, t > 2.

Therefore,

FT (s) =

∞∫
0

e−stfT (t) dt =

1∫
0

e−stt dt+

2∫
1

e−st(1− t) dt .

Integration by parts yields

FT (s) =
1− 2e−s − se−s + e−2s + se−2s

s2
.
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Therefore, by formula (12),

L{f(t)} (s) =
FT (s)

1− e−sT
=

1− 2e−s − se−s + e−2s + se−2s

s2 (1− e−2s)
.

The graph of f(t) is shown in Fig. 7–I on page 265.

26. Similarly to Example 6 of the text, we conclude that f(t) is a periodic function with

period T = a, whose windowed version has the form

fT (t) =
t

a
, 0 < t < a .

Thus, we have

FT (s) = L{fT (t)} (s) =

a∫
0

e−st(t/a) dt =
1

a

a∫
0

te−st dt =
1− e−as − ase−as

as2
.

Applying now Theorem 9 yields

L{f(t)} (s) =
1− e−as − ase−as

as2 (1− e−as)
.

28. Observe that f(t) is periodic with period T = 2π and

fT (t) =

{
sin t, 0 < t < π ,

0, π < t < 2π .

By formula (12) of the text we have

L{f(t)} (s) =
L{fT (t)} (s)

1− e−2πs
=

π∫
0

sin te−st dt

1− e−2πs

=
1 + e−πs

(s2 + 1) (1− e−2πs)
=

1

(s2 + 1) (1− e−πs)
,

where we have used integration by parts to evaluate the integral. (One can also use the

table of integrals in the text.)

30. Applying the Laplace transform to both sides of the given differential equation and using

formulas (4), Section 7.3, and (4) in this section, we obtain

L{w′′ + w} (s) = L{w′′} (s) + L{w} (s)
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= L{u(t− 2)− u(t− 4)} (s) = L{u(t− 2)} (s)− L{u(t− 4)} (s)

⇒ s2W (s)− s+W (s) =
e−2s − e−4s

s
⇒ W (s) =

s

s2 + 1
+
e−2s − e−4s

s (s2 + 1)

⇒ W (s) =
s

s2 + 1
+
(
e−2s − e−4s

)(1

s
− s

s2 + 1

)
.

Thus,

w(t) = L−1 {W (s)} (t) = cos t+ [1− cos(t− 2)]u(t− 2)− [1− cos(t− 4)]u(t− 4) .

The graph of the solution is shown in Fig. 7–J, page 265.

32. We apply the Laplace transform to both sides of the differential equation and get

L{y′′} (s) + L{y} (s) = 3 [L{sin 2t} (s)− L{(sin 2t)u(t− 2π)} (s)]

⇒
[
s2Y (s)− s+ 2

]
+ Y (s) = 3

[
2

s2 + 4
− e−2πsL{sin 2(t+ 2π)} (s)

]
=

6 (1− e−2πs)

s2 + 4

⇒ Y (s) =
s− 2

s2 + 1
+

6 (1− e−2πs)

(s2 + 1)(s2 + 4)
=

s

s2 + 1
− 2

s2 + 4
−
(

2

s2 + 1
− 2

s2 + 4

)
e−2πs .

Therefore,

y(t) = L−1 {Y (s)} (t) = L−1

{
s

s2 + 1
− 2

s2 + 4
−
(

2

s2 + 1
− 2

s2 + 4

)
e−2πs

}
(t)

= L−1

{
s

s2 + 1

}
(t)− L−1

{
2

s2 + 4

}
(t)−

[
2L−1

{
1

s2 + 1

}
(t− 2π)

−L−1

{
2

s2 + 4

}
(t− 2π)

]
u(t− 2π)

= cos t− sin 2t− 2(sin t)u(t− 2π) + (sin 2t)u(t− 2π) .

The graph of the solution is shown in Fig. 7–K on page 266.

34. By formula (4) of the text and the linearity of the Laplace transform,

L{u(t− π)− u(t− 2π)} (s) =
e−πs − e−2πs

s
.

Thus, taking the Laplace transform of both sides of the given equation and using the

initial conditions, y(0) = y′(0) = 0 (see (4) in Section 7.3) gives us[
s2Y (s) + 4

]
sY (s) + 4Y (s) =

e−πs − e−2πs

s
,

where Y (s) is the Laplace transform of y(t). Solving for Y (s) yields

Y (s) =
e−πs − e−2πs

s (s2 + 4s+ 4)
=
e−πs − e−2πs

s(s+ 2)2
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=
(
e−πs − e−2πs

) [ 1

4s
− 1

4(s+ 2)
− 1

2(s+ 2)2

]
=

1

4

(
e−πs − e−2πs

) [1

s
− 1

s+ 2
− 2

1

(s+ 2)2

]
.

Therefore, by Theorem 8,

y(t) = L−1 {Y (s)} (t) =
1

4

[
1− e−2(t−π) − 2(t− π)e−2(t−π)

]
u(t− π)

− 1

4

[
1− e−2(t−2π) − 2(t− 2π)e−2(t−2π)

]
u(t− 2π) .

36. We take the Laplace transform of the both sides of the given equation and use the initial

conditions, y(0) = 0 and y′(0) = 1 to obtain

[
s2Y (s)− 1

]
+ 5sY (s) + 6Y (s) = L{tu(t− 2)} (s)

= L{(t− 2)u(t− 2)} (s) + 2L{u(t− 2)} (s)

=
e−2s

s2
+ 2

e−2s

s
=
e−2s(2s+ 1)

s2

Therefore,

(
s2 + 5s+ 6

)
Y (s) = 1 +

e−2s(2s+ 1)

s2

⇒ Y (s) =
1

(s+ 2)(s+ 3)
+

e−2s(2s+ 1)

s2(s+ 2)(s+ 3)
.

Using partial fractions decomposition yields

Y (s) =
1

s+ 2
− 1

s+ 3
+ e−2s

[
1

6s2
+

7

36s
− 3

4(s+ 2)
+

5

9(s+ 3)

]
⇒ y(t) = L−1

{
1

s+ 2
− 1

s+ 3
+ e−2s

[
1

6s2
+

7

36s
− 3

4(s+ 2)
+

5

9(s+ 3)

]}
(t)

= e−2t − e−3t +

[
7

36
+
t− 2

6
− 3e−2(t−2)

4
+

5e−3(t−2)

9

]
u(t− 2) .

38. We can express g(t) using the unit step function as

g(t) = 10 + 10u(t− 10)− 20u(t− 20) .

Thus, formula (8) of the text yields

L{g(t)} (s) =
10

s
+

10e−10s

s
− 20e−20s

s
=

10

s

(
1 + e−10s − 2e−20s

)
.
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Let Y (s) = L{y} (s). Applying the Laplace transform to the given equation and using

the initial conditions, we obtain

L{y′′} (s) + 2L{y′} (s) + 10Y (s) = L{g(t)} (s)

⇒
[
s2Y (s) + s

]
+ 2 [sY (s) + 1] + 10Y (s) =

10

s

(
1 + e−10s − 2e−20s

)
⇒ Y (s) = − s+ 2

(s+ 1)2 + 9
+

10

s[(s+ 1)2 + 9]

(
1 + e−10s − 2e−20s

)
.

Using partial fractions decomposition, we can write

Y (s) = − s+ 2

(s+ 1)2 + 9
+

[
1

s
− s+ 2

(s+ 1)2 + 9

] (
1 + e−10s − 2e−20s

)
=

1

s
− 2(s+ 2)

(s+ 1)2 + 9
+

[
1

s
− s+ 2

(s+ 1)2 + 9

] (
e−10s − 2e−20s

)
=

1

s
− 2

s+ 1

(s+ 1)2 + 9
− 2

3

3

(s+ 1)2 + 9

+

[
1

s
− s+ 1

(s+ 1)2 + 9
− 1

3

3

(s+ 1)2 + 9

] (
e−10s − 2e−20s

)
.

Therefore, taking the inverse Laplace transform, we finally obtain

y(t) = 1− 2 cos 3te−t − 2

3
sin 3te−t

+

[
1− e−(t−10) cos 3(t− 10)− 1

3
e−(t−10) sin 3(t− 10)

]
u(t− 10)

−2

[
1− e−(t−20) cos 3(t− 20)− 1

3
e−(t−20) sin 3(t− 20)

]
u(t− 20).

40. We can express g(t) using the unit step function as

g(t) = e−t +
(
1− e−t

)
u(t− 3) .

Thus, taking the Laplace transform yields

L{g(t)} (s) =
1

s+ 1
+

(
1

s
− e−3

s+ 1

)
e−3s

so that

L{y′′ + 3y′ + 2y} (s) =
[
s2Y (s)− 2s+ 1

]
+ 3 [sY (s)− 2] + 2Y (s)

=
1

s+ 1
+

(
1

s
− e−3

s+ 1

)
e−3s ,

where Y (s) = L{y} (s). Solving for Y (s), we obtain(
s2 + 3s+ 2

)
Y (s) = 2s+ 5 +

1

s+ 1
+

(
1

s
− e−3

s+ 1

)
e−3s
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=
2s2 + 7s+ 6

s+ 1
+

(
1

s
− e−3

s+ 1

)
e−3s

⇒ Y (s) =
2s2 + 7s+ 6

(s+ 1)2(s+ 2)
+

s (1− e−3) + 1

s(s+ 1)2(s+ 2)
e−3s

=
2

s+ 1
+

1

(s+ 1)2
+ e−3s

[
1

2s
− e−3

(s+ 1)2
− 1− e−3

s+ 1
+

1− 2e−3

2(s+ 2)

]
.

Therefore,

y(t) = L−1 {Y (s)} (t) = 2e−t + te−t

+

[
1

2
− e−3(t− 3)e−(t−3) −

(
1− e−3

)
e−(t−3) +

1− 2e−3

2
e−2(t−3)

]
u(t− 3)

= 2e−t + te−t +

[
1

2
− e−3(t− 4e3)e−t +

e6 − 2e3

2
e−2t

]
u(t− 3) .

42. (a) For nT < t < (n+ 1)T ,

u(t− kT ) =

{
1, 0 ≤ k ≤ n

0, k ≥ n+ 1 .

Thus, (18) reduces to

g(t) = e−αt + e−α(t−T ) + · · ·+ e−α(t−nT )

= e−αt
(
1 + eαT + · · ·+ eαnT

)
= e−αt

[
1 + eαT +

(
eαT
)2

+ · · ·+
(
eαT
)n]

.

We can now apply the Hint formula with x = eaT to get the required.

(b) Let nT < t < (n + 1)T . Subtracting (n + 1)T from this inequality, we conclude

that

nT − (n+1)T < t− (n+1)T =: v < (n+1)T − (n+1)T ⇒ −T < v < 0 .

Using the formula from part (a), we get

g(t) = e−αt e
(n+1)αT − 1

eαT − 1
=
e−αte(n+1)αT

eαT − 1
− e−αt

eαT − 1

= =
e−α[t−(n+1)T ]

eαT − 1
− e−αt

eαT − 1
=

e−αv

eαT − 1
− e−αt

eαT − 1
.

(c) With α = 1 and T = 2, we have

g(t) =
e−v − e−t

e2 − 1
, v = t− 2(n+ 1), 2n < t < 2(n+ 1) .

The graph of g(t) is depicted in Fig. 7–L on page 266.
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44. We apply the formula given in Problem 43 with β = 1 and T = π.

g(t) = sin t+ sin(t− π)u(t− π) + sin(t− 2π)u(t− 2π) + · · ·

= sin t [1− u(t− π)] + sin t [u(t− 2π)− u(t− 3π)] + · · ·

= sin t
∞∑

k=0

{u(t− 2kπ)− u[t− (2k + 1)π]} = sin t
∞∑

k=0

hk(t) ,

wherethe functions

hk(t) := u(t− 2kπ)− u[t− (2k + 1)π] =


0, t < 2kπ

1, 2kπ < t < (2k + 1)π

0, t > (2k + 1)π ,

k = 0, 1, . . . .

Therefore,

∞∑
k=0

hk(t) =

{
1, 2nπ < t < (2n+ 1)π

0, (2n+ 1)π < t < 2(n+ 1)π ,
n = 0, 1, . . . ,

which is periodic with period 2π. Thus,

g(t) = sin t
∞∑

k=0

hk(t) =

{
sin t, 2nπ < t < (2n+ 1)π

0, (2n+ 1)π < t < 2(n+ 1)π ,
n = 0, 1, . . . ,

is also periodic with period 2π.

46. Note that f(t) is periodic with period T = 2a = 2. In order to apply the method of

Laplace transform to given initial value problem, let us find L{f} (s) first. Since the

period of f(t) is T = 2 and f(t) = 1 on (0, 1), the windowed version of f(t) is

fT (t) =

{
1, 0 < t < 1,

0, otherwise,

and so

FT (s) =

∞∫
0

e−stfT (t) dt =

1∫
0

e−st dt =
1− e−s

s
.

Hence, Theorem 9 yields the following formula for L{f} (s):

L{f} (s) =
1− e−s

s (1− e−2s)
=

1

s (1 + e−s)
.

We can now apply the Laplace transform to the given differential equation and obtain

L{y′′} (s) + 3L{y′} (s) + 2L{y} (s) = (s2 + 3s+ 2)Y (s) =
1

s (1 + e−s)
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⇒ Y (s) =
1

1 + e−s

1

s(s+ 1)(s+ 2)
=

1

1 + e−s

[
1

2s
− 1

s+ 1
+

1

2(s+ 2)

]
.

Since
1

1 + e−s
=

∞∑
k=0

(−1)ke−ks ,

similarly to (18) we obtain

y(t) =
∞∑

k=0

(−1)k

[
1

2
− e−(t−k) +

1

2
e−2(t−k)

]
u(t− k) .

For n < t < n+ 1, this yields

y(t) =
n∑

k=0

(−1)k

[
1

2
− e−(t−k) +

1

2
e−2(t−k)

]
=

1− (−1)n+1

4
+ e−t (−1)n+1en+1 − 1

e+ 1
− e−2t (−1)n+1e2(n+1) − 1

2 (e2 + 1)
.

48. Since

sin t =
∞∑

k=0

(−1)kt2k+1

(2k + 1)!
(7.17)

and

L
{
t2k+1

}
(s) =

(2k + 1)!

s2k+2
,

using the linearity of the Laplace transform we have

L{sin t} (s) = L

{
∞∑

k=0

(−1)kt2k+1

(2k + 1)!

}
(s) =

∞∑
k=0

(−1)k(2k + 1)!/s2k+2

(2k + 1)!
=

1

s2

∞∑
k=0

(
− 1

s2

)k

.

We can apply now the summation formula for geometric series, that is,

1 + x+ x2 + · · · = 1

1− x
,

which is valid for |x| < 1. Taking x = −1/s2, s > 1, yields

L{sin t} (s) =
1

s2
· 1

1− (−1/s2)
=

1

s2 + 1
.

50. Recall that the Taylor’s series for ex about x = 0 is

ex =
∞∑

k=0

xk

k!
(7.18)
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so that

e−t2 =
∞∑

k=0

(−1)kt2k

k!

Therefore,

L
{
e−t2

}
(s) =

∞∑
k=0

(−1)k

k!
L
{
t2k
}

(s) =
∞∑

k=0

(−1)k

k!

(2k)!

s2k+1
=

∞∑
k=0

(−1)k(2k)!

k!

(
1

s

)2k+1

.

52. The given relation is equivalent to

L
{
tn−1/2

}
(s) =

1 · 3 · · · (2n− 1)
√
π

2n

1

sn+1/2
. (7.19)

From formula (17) of the text,

L
{
tn−1/2

}
(s) =

Γ [(n− 1/2) + 1]

s(n−1/2)+1
=

Γ(n+ 1/2)

sn+1/2
.

The recursive formula (16) then yields

Γ

(
n+

1

2

)
= Γ

(
2n− 1

2
+ 1

)
=

2n− 1

2
Γ

(
2n− 3

2
+ 1

)
= · · ·

=
2n− 1

2

2n− 3

2
· · · 1

2
Γ

(
1

2

)
=

(2n− 1)(2n− 3) · · · 1
2n

√
π ,

and (7.19) follows.

54. Since

arctanx =
∞∑

n=0

(−1)n x2n+1

2n+ 1
= x− x3

3
+
x5

5
− · · · ,

letting x = 1/s, we obtain

arctan

(
1

s

)
=

1

s
− 1

3s3
+

1

5s5
− · · · .

56. Substituting −1/s for x into the Taylor’s series (7.18) yields

e−1/s = 1− 1

s
+

1

2!s2
− 1

3!s3
+ · · ·+ (−1)n

n!sn
+ · · · .

Thus, we have

s−3/2e−1/s =
1

s3/2
− 1

s5/2
+

1

2!s7/2
+ · · ·+ (−1)n

n!sn+3/2
+ · · · =

∞∑
n=0

(−1)n

n!sn+3/2
.
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Replacing in Problem 52 of this section n by n+ 1 yields

L−1

{
1

sn+(3/2)

}
(t) =

2n+1tn+(1/2)

1 · 3 · 5 · · · (2n+ 1)
√
π
,

so that

L−1
{
s−3/2e−1/s

}
= L−1

{
∞∑

n=0

(−1)n

n!sn+3/2

}

=
∞∑

n=0

(−1)n

n!
L−1

{
1

sn+(3/2)

}
=

∞∑
n=0

(−1)n

n!

2n+1tn+(1/2)

1 · 3 · 5 · · · (2n+ 1)
√
π
.

Multiplying the numerator and denominator of the nth term by 2 · 4 · · · (2n) = 2nn!, we

obtain

L−1
{
s−3/2e−1/s

}
(t) =

∞∑
n=0

(−1)n2n+12ntn+(1/2)

(2n+ 1)!
√
π

=
∞∑

n=0

(−1)n22n+1

(2n+ 1)!
√
π
t(2n+1)/2

=
1√
π

∞∑
n=0

(−1)n(2
√
t)2n+1

(2n+ 1)!
=

1√
π

sin
(
2
√
t
)
.

(See (7.17).)

58. (a) Since

u(t− a) =

{
0, t < a

1, t > a ,

we have

(i) for t < 0,

u(t)− u(t− a) = 0− 0 = 0;

(ii) for 0 < t < a,

u(t)− u(t− a) = 1− 0 = 1;

(iii) for t > a,

u(t)− u(t− a) = 1− 1 = 0.

Thus, u(t)− u(t− a) = Ga(t).

(b) We use now formula (4) from the text to get

L{Ga} (s) = L{u(t)− u(t− a)} (s)

= L{u(t)} (s)− L{u(t− a)} (s) =
1

s
− e−as

s
=

1− e−as

s
.
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(c) Since

Ga(t− b) = u(t− b)− u[(t− b)− a] = u(t− b)− u[t− (a+ b)] ,

similarly to part (b) we have

L{Ga(t− b)} (s) = L{u(t− b)− u[t− (a+ b)]} (s)

= L{u(t− b)} (s)− L{u[t− (a+ b)]} (s)

=
e−bs

s
− e−(a+b)s

s
=
e−bs − e−(a+b)s

s
.

60. Applying the Laplace transform to both sides of the original equation and using its

linearity, we obtain

L{y′′} (s)− L{y} (s) = L{G4(t− 3)} (s). (7.20)

Initial conditions, y(0) = 1 and y′(0) = −1, and Theorem 5 in Section 7.3 imply that

L{y′′} (s) = s2L{y} (s)− sy(0)− y′(0) = s2L{y} (s)− s+ 1 .

In the right-hand side of (7.20), we can apply the result of Problem 58(c) with a = 4

and b = 3 to get

L{G4(t− 3)} (s) =
e−3s − e−7s

s
.

Thus, (7.20) becomes

[
s2L{y} (s)− s+ 1

]
− L{y} (s) =

e−3s − e−7s

s

⇒ L{y} (s) =
1

s+ 1
+
e−3s − e−7s

s(s2 − 1)
.

Substituting partial fractions decomposition

1

s(s2 − 1)
=

(1/2)

s− 1
+

(1/2)

s+ 1
− 1

s

yields

L{y} (s) =
1

s+ 1
+ e−3s

[
(1/2)

s− 1
+

(1/2)

s+ 1
− 1

s

]
− e−7s

[
(1/2)

s− 1
+

(1/2)

s+ 1
− 1

s

]
.

Since

L−1

{
1/2

s− 1
+

1/2

s+ 1
− 1

s

}
(t) =

et + e−t − 2

2
,
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formula (6) of the text gives us

L−1

{
e−3s

[
(1/2)

s− 1
+

(1/2)

s+ 1
− 1

s

]}
(t) =

et−3 + e3−t − 2

2
u(t− 3),

L−1

{
e−7s

[
(1/2)

s− 1
+

(1/2)

s+ 1
− 1

s

]}
(t) =

et−7 + e7−t − 2

2
u(t− 7),

so that

y(t) = e−t +
et−3 + e3−t − 2

2
u(t− 3)− et−7 + e7−t − 2

2
u(t− 7) .

62. In this problem, we use the method of solving “mixing problems” discussed in Section 3.2.

So, let x(t) denote the mass of salt in the tank at time t with t = 0 denoting the moment

when mixing started. Thus, using the formula

mass = volume × concentration ,

we have the initial condition

x(0) = 500 (L) × 0.2 (kg/L) = 100 (kg).

For the rate of change of x(t), that is, x′(t), we use then relation

x′(t) = input rate− output rate . (7.21)

While the output rate (through the exit valve C) can be computed as

output rate =
x(t)

500
(kg/L)× 12 (L/min) =

3x(t)

125
(kg/min)

for all t, the input rate has different formulas for different time intervals. Namely,

0 < t < 10 (valve B) : input rate = 12 (L/min)× 0.6 (kg/L) = 7.2 (kg/min)

10 < t < 20 (valve A) : input rate = 12 (L/min)× 0.4 (kg/L) = 4.8 (kg/min);

t > 20 (valve B) : input rate = 12 (L/min)× 0.6 (kg/L) = 7.2 (kg/min).

In other words, the input rate is a function of t, which can be written as

input rate = g(t) =


7.2, 0 < t < 10

4.8, 10 < t < 20

7.2, t > 20.
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Using the unit step function, we can express

g(t) = 7.2− 2.4u(t− 10) + 2.4u(t− 20) (kg/min).

Therefore, (7.21) becomes

x′(t) = g(t)− 3x(t)

125
⇒ x′(t) +

3

125
x(t) = 7.2− 2.4u(t− 10) + 2.4u(t− 20)

with the initial condition x(0) = 100. Taking the Laplace transform of both sides yields

L{x′} (s) +
3

125
L{x} (s) = L{7.2− 2.4u(t− 10) + 2.4u(t− 20)} (s)

⇒ [sX(s)− 100] +
3

125
X(s) =

7.2

s
− 2.4e−10s

s
+

2.4e−20s

s

⇒ X(s) =
100s+ 7.2

s[s+ (3/125)]
− 2.4e−10s

s[s+ (3/125)]
+

2.4e−20s

s[s+ (3/125)]
. (7.22)

Since

100s+ 7.2

s[s+ (3/125)]
= 100

[
3

s
− 2

s+ (3/125)

]
,

2.4

s[s+ (3/125)]
= 100

[
1

s
− 1

s+ (3/125)

]
,

applying the inverse Laplace transform in (7.22), we get

x(t) = 100
{[

3− 2e−3t/125
]
−
[
1− e−3(t−10)/125

]
u(t− 10)+

[
1− e−3(t−20)/125

]
u(t− 20)

}
.

Finally, dividing by the volume of the solution in the tank, which constantly equals to

500L, we conclude that the concentration C is given by

C=
[
0.6− 0.4e−3t/125

]
− 0.2

[
1− e−3(t−10)/125

]
u(t− 10) + 0.2

[
1− e−3(t−20)/125

]
u(t− 20).

EXERCISES 7.7: Convolution

2. Let Y (s) := L{y} (s), G(s) := L{g} (s). Taking the Laplace transform of both sides of

the given differential equation and using the linear property of the Laplace transform,

we obtain

[
s2Y (s)− s

]
+ 9Y (s) = G(s) ⇒

(
s2 + 9

)
Y (s) = s+G(s)

⇒ Y (s) =
s

s2 + 32
+

G(s)

s2 + 32
.
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Taking now the inverse Laplace transform, we obtain

y(t) = L−1

{
s

s2 + 32

}
(t) +

1

3
L−1

{
3

s2 + 32
G(s)

}
(t) = cos 3t+

1

3
sin(3t) ∗ g(t) .

Thus,

y(t) = cos 3t+
1

3

t∫
0

sin [3(t− v)] g(v) dv.

4. Let Y (s) := L{y} (s), G(s) := L{g} (s). Taking the Laplace transform of both sides of

the given differential equation and using the linear property of the Laplace transform,

we obtain [
s2Y (s)− 1

]
+ Y (s) = G(s) ⇒

(
s2 + 1

)
Y (s) = 1 +G(s)

⇒ Y (s) =
1

s2 + 1
+

G(s)

s2 + 1
.

Taking now the inverse Laplace transform, we obtain

y(t) = L−1

{
1

s2 + 1

}
(t) + L−1

{
1

s2 + 1
G(s)

}
(t)

= sin t+ sin t ∗ g(t) = sin t+

t∫
0

sin(t− v)g(v) dv .

6. From Table 7.1, Section 7.2, L−1 {1/(s− a)} (t) = eat. Therefore, using the linearity of

the inverse Laplace transform and the convolution theorem, we have

L−1

{
1

(s+ 1)(s+ 2)

}
(t) = L−1

{
1

s+ 1
· 1

s+ 2

}
(t) = e−t ∗ e−2t

=

t∫
0

e−(t−v)e−2v dve−t

t∫
0

e−v dv = e−t
(
1− e−t

)
= e−t − e−2t .

8. Since 1/(s2 + 4)2 = (1/4) [2/ (s2 + 22)] · [2/ (s2 + 22)], the convolution theorem tells us

L−1

{
1

(s2 + 4)2

}
(t) =

1

4
L−1

{
2

s2 + 4
· 2

s2 + 4

}
(t)

=
1

4
sin(2t) ∗ sin(2t) =

1

4

t∫
0

sin [2(t− v)] sin(2v) dv.

Using the identity sinα sin β = [cos(α− β)− cos(α+ β)]/2, we get

L−1

{
1

(s2 + 4)2

}
(t) =

1

8

t∫
0

[cos(2t− 4v)− cos 2t] dv
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=
1

8

[
sin(4v − 2t)

4
− v cos 2t

]∣∣∣∣t
0

=
sin 2t

16
− t cos 2t

8
.

10. We have

L−1

{
1

s3 (s2 + 1)

}
= L−1

{
1

s3

}
∗ L−1

{
1

s2 + 1

}
=
t2

2
∗ sin t =

1

2

t∫
0

(t− v)2 sin v dv

=
1

2

−(v − t)2 cos v
∣∣t
0
+ 2

t∫
0

(v − t) cos v dv


=

1

2

t2 + 2(v − t) sin v
∣∣t
0
−2

t∫
0

sin v dv

 =
t2

2
+ cos t− 1 .

12. By the linearity of the inverse Laplace transform,

L−1

{
s+ 1

(s2 + 1)2

}
(t) = L−1

{
s

(s2 + 1)2

}
(t) + L−1

{
1

(s2 + 1)2

}
(t) .

The second term can be evaluated similarly to that in Problem 8. (See also Example 2.)

L−1

{
1

(s2 + 1)2

}
(t) =

sin t− t cos t

2
. (7.23)

For the first term, we notice that s/(s2 + 1)2 = [s/(s2 + 1)] · [1/(s2 + 1)] and apply the

convolution theorem.

L−1

{
s

(s2 + 1)2

}
(t) = L−1

{
s

s2 + 1
· 1

s2 + 1

}
(t) = cos t ∗ sin t =

t∫
0

cos(t− v) sin v dv.

Using the identity sinα cos β = [sin(α+ β) + sin(α− β)]/2, we get

L−1

{
s

(s2 + 1)2

}
(t) =

1

2

t∫
0

[sin t+ sin(t− 2v)] dv

=
1

2

[
v sin t+

cos(t− 2v)

2

]∣∣∣∣v=t

v=0

=
t sin t

2
. (7.24)

Combining (7.23) and (7.24) yields

L−1

{
s+ 1

(s2 + 1)2

}
(t) =

t sin t

2
+

sin t− t cos t

2
=
t sin t+ sin t− t cos t

2
.
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14. Note that f(t) = et ∗ sin t. Hence, by formula (8) of the text,

L{f(t)} (s) = L
{
et
}

(s) · L {sin t} (s) =
1

s− 1
· 1

s2 + 1
=

1

(s− 1) (s2 + 1)
.

16. Note that
t∫

0

et−vy(v) dv = et ∗ y(t).

Let Y (s) := L{y} (s). Taking the Laplace transform of the original equation and using

Theorem 11, we obtain

Y (s) + L
{
et ∗ y(t)

}
(s) = Y (s) +

1

s− 1
Y (s) = L{sin t} (s) =

1

s2 + 1

⇒
(

1 +
1

s− 1

)
Y (s) =

1

s2 + 1

⇒ Y (s) =
s− 1

s (s2 + 1)
=

s

s2 + 1
+

1

s2 + 1
− 1

s

⇒ y(t) = L−1

{
s

s2 + 1
+

1

s2 + 1
− 1

s

}
(t) = cos t+ sin t− 1 .

18. We use the convolution Theorem 11 to find the Laplace transform of the integral term.

L


t∫

0

(t− v)y(v) dv

 (s) = L{t ∗ y(t)} (s) = L{t} (s)L{y(t)} (s) =
Y (s)

s2
, (7.25)

where Y (s) denotes the Laplace transform of y(t). Thus taking the Laplace transform

of both sides of the given equation yields

Y (s) +
Y (s)

s2
=

2

s3
⇒ Y (s) =

2

s (s2 + 1)
= 2

(
1

s
− s

s2 + 1

)
⇒ y(t) = L−1

{
2

(
1

s
− s

s2 + 1

)}
(t) = 2 (1− cos t) .

20. The Laplace transform of the integral term is found in Problem 18 (see (7.25)). Since

L{y′(t)} (s) = sY (s)− y(0) = sY (s) ,

taking the Laplace transform of both sides of the given equation yields

sY (s) +
Y (s)

s2
=
s3 + 1

s2
Y (s) = L{t} (s) =

1

s2

⇒ Y (s) =
1

s3 + 1
=

1

(s+ 1)(s2 + s+ 1)
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=
1

3

1

s+ 1
− 1

3

s− (1/2)

[s− (1/2)]2 +
(√

3/2
)2 +

1√
3

(√
3/2
)

[s− (1/2)]2 +
(√

3/2
)2 .

Therefore,

y(t) = L−1

{
1

3

1

s+ 1
− 1

3

s− (1/2)

[s− (1/2)]2 +
(√

3/2
)2 +

1√
3

(√
3/2
)

[s− (1/2)]2 +
(√

3/2
)2
}

(t)

=
1

3
e−t − 1

3
et/2 cos

(√
3 t

2

)
+

1√
3
et/2 sin

(√
3 t

2

)
.

22. We rewrite the given integro-differential equation in the form

y′(t)− 2et ∗ y(t) = t

and take the Laplace transform of both sides using Theorem 11.

[sY (s)− y(0)]− 2

s− 1
Y (s) =

(
s− 2

s− 1

)
Y (s)− 2 =

1

s2

⇒ Y (s) =
(2s2 + 1) (s− 1)

s2(s+ 1)(s− 2)
=

(
1

2

)
1

s2
−
(

3

4

)
1

s
+ (2)

1

s+ 1
+

(
3

4

)
1

s− 2
,

where Y (s) = L{y} (s). Thus, taking the inverse Laplace transform yields

y(t) = L−1

{(
1

2

)
1

s2
−
(

3

4

)
1

s
+ (2)

1

s+ 1
+

(
3

4

)
1

s− 2

}
(t)

=
t

2
− 3

4
+ 2e−t +

3e2t

4
.

24. Taking the Laplace transform of the differential equation, and assuming zero initial

conditions, we obtain

s2Y (s)− 9Y (s) =
(
s2 − 9

)
Y (s) = G(s),

where Y = L{y}, G = L{g}. Thus, the transfer function

H(s) =
Y (s)

G(s)
=

1

s2 − 9
.

The impulse response function is then

h(t) = L−1 {H(s)} (t) = L−1

{
1

s2 − 9

}
(t)

= L−1

{
1

6

(
1

s− 3
− 1

s+ 3

)}
(t) =

e3t − e−3t

6
=

sinh 3t

3
.
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Next, we find the solution yk(t) to the corresponding homogeneous equation that satisfies

the initial conditions. Since the characteristic equation, r2 − 9 = 0, has roots r = ±3,

we have

yk(t) = C1e
3t + C2e

−3t ⇒
yk(0) = C1 + C2 = 2

y′k(0) = 3C1 − 3C2 = 0
⇒ C1 = C2 = 1.

Therefore, yk(t) = e3t + e−3t = 2 cosh 3t and

y(t) = (h ∗ g)(t) + yk(t) =
1

3

∫ t

0

sinh[3(t− v)]g(v) dv + 2 cosh 3t .

26. Taking the Laplace transform of both sides of the given equation and assuming zero

initial conditions, we get

L{y′′ + 2y′ − 15y} (s) = L{g(t)} (s) ⇒ s2Y (s) + 2sY (s)− 15Y (s) = G(s).

Thus,

H(s) =
Y (s)

G(s)
=

1

s2 + 2s− 15
=

1

(s− 3)(s+ 5)

is the transfer function. The impulse response function h(t) is then given by

h(t) = L−1

{
1

(s− 3)(s+ 5)

}
(t) = e3t ∗ e−5t

=

t∫
0

e3(t−v)e−5v dv = e3t

(
−e

−8v

8

∣∣∣∣t
0

)
=
e3t − e−5t

8
.

To solve the given initial value problem, we use Theorem 12. To this end, we need the

solution yk(t) to the corresponding initial value problem for the homogeneous equation.

That is,

y′′ + 2y′ − 15y = 0, y(0) = 0, y′(0) = 8 .

Applying the Laplace transform yields[
s2Yk(s)− 8

]
+ 2 [sYk(s)]− 15Yk(s) = 0

⇒ Yk(s) =
8

s2 + 2s− 15
=

8

(s− 3)(s+ 5)
=

1

s− 3
− 1

s+ 5

⇒ yk(t) = L−1

{
1

s− 3
− 1

s+ 5

}
(t) = e3t − e−5t .

So,

y(t) = (h ∗ g)(t) + yk(t) =
1

8

t∫
0

[
e3(t−v) − e−5(t−v)

]
g(v) dv + e3t − e−5t .
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28. Taking the Laplace transform and assuming zero initial conditions, we find the transfer

function H(s).

s2Y (s)− 4sY (s) + 5Y (s) = G(s) ⇒ H(s) =
Y (s)

G(s)
=

1

s2 − 4s+ 5
=

1

(s− 2)2 + 1
.

Therefore, the impulse response function is

h(t) = L−1 {H(s)} (t) = L−1

{
1

(s− 2)2 + 1

}
(t) = e2t sin t .

Next, we find the solution yk(t) to the corresponding initial value problem for the ho-

mogeneous equation,

y′′ − 4y′ + 5y = 0, y(0) = 0, y′(0) = 1.

Since the associated equation, r2− 4r+ 5 = 0, has roots r = 2± i, a general solution to

the homogeneous equations is

yh(t) = e2t (C1 cos t+ C2 sin t) .

We satisfy the initial conditions by solving

0 = y(0) = C1

1 = y′(0) = 2C1 + C2

⇒
C1 = 0,

C2 = 1.

Hence, yk(t) = e2t sin t and

y(t) = (h ∗ g)(t) + yk(t) =

t∫
0

e2(t−v) [sin(t− v)] g(v) dv + e2t sin t

is the desired solution.

30. With given data, the initial value problem becomes

10I ′′(t) + 80I ′(t) + 410I(t) = e(t) ⇒ I ′′(t) + 8I ′(t) + 41I(t) =
e(t)

10
,

I(0) = 2, I ′(0) = −8. Using formula (15) of the text, we find the transfer function

H(s) =
1

s2 + 8s+ 41
=

1

(s+ 4)2 + 52
.

Therefore,

h(t) = L−1

{
1

(s+ 4)2 + 52

}
(t) =

1

5
e−4t sin 5t .
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Next, we consider the initial value problem

I ′′(t) + 8I ′(t) + 41I(t) = 0, I(0) = 2, I ′(0) = −8

for the corresponding homogeneous equation. Its characteristic equation, r2+8r+41 = 0,

has roots r = −4± 5i, which give a general solution

Ih(t) = e−4t (C1 cos 5t+ C2 sin 5t) .

Next, we find constants C1 and C2 so that the solution satisfies the initial conditions.

Thus, we have

2 = I(0) = C1 ,

−8 = I ′(0) = −4C1 + 5C2

⇒
C1 = 2 ,

C2 = 0 ,

and so Ik(t) = 2e−4t cos 5t. Finally,

I(t) = [h ∗ (e/10)] (t) + Ik(t) =
1

50

t∫
0

e−4(t−v) sin [5(t− v)] e(v) dv + 2e−4t cos 5t .

32. By the convolution theorem, we get

L
{
1 ∗ t ∗ t2

}
(s) = L{1} (s)L{t} (s)L

{
t2
}

(s) =
1

s
· 1

s2
· 2

s3
=

2

s6
.

Therefore,

1 ∗ t ∗ t2 = L−1

{
2

s6

}
(t) =

1

60
L−1

{
5!

s6

}
(t) =

t5

60
.

34. Using the commutative property (4) of the convolution and Fubini’s theorem yields

(f ∗ g) ∗ h = (g ∗ f) ∗ h =

t∫
0

(g ∗ f)(t− v)h(v) dv

=

t∫
0

 t−v∫
0

g(t− v − u)f(u) du

h(v) dv =

t∫
0

t−v∫
0

g(t− v − u)f(u)h(v) du dv

=

t∫
0

 t−u∫
0

g(t− u− v)h(v) dv

f(u) du =

t∫
0

(g ∗ h)(t− u)f(u) du

= (g ∗ h) ∗ f = f ∗ (g ∗ h) .
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36. Let

G(t) :=

t∫
0

v∫
0

f(z) dz dv .

Clearly, G(0) = 0. By the fundamental theorem of calculus,

G′(t) =

t∫
0

f(z) dz , G′(0) = 0 , G′′(t) = f(t) .

Therefore, by Theorem 5 in Section 7.3, we get

F (s) = L{G′′(t)} (s) = s2L{G(t)} (s)− sG(0)−G′(0) = s2L{G(t)} (s)

⇒ L{G(t)} (s) =
F (s)

s2
⇒ G(t) = L−1

{
F (s)

s2

}
(t) .

We now apply Theorem 11 to conclude that

L−1

{
1

s2
F (s)

}
(t) =

(
L−1

{
1

s2

}
∗ L−1 {F (s)}

)
(t) = t ∗ f(t)

=

t∫
0

(t− v)f(v) dv = t

t∫
0

f(v) dv −
t∫

0

vf(v) dv

EXERCISES 7.8: Impulses and the Dirac Delta Function

2. By equation (2) of the text,

∞∫
−∞

e3tδ(t) dt = e3t
∣∣
t=0

= 1 .

4. By equation (3),
∞∫

−∞

e−2tδ (t+ 1) dt = e−2t
∣∣
t=−1

= e2 .

6. Since δ(t) = 0 for t 6= 0,

1∫
−1

(cos 2t)δ(t) dt =

∞∫
−∞

(cos 2t)δ(t) dt = cos 2t|t=0 = 1 .

8. Using the linearity of the Laplace transform and formula (6), we get

L{3δ(t− 1)} (s) = 3L{δ(t− 1)} (s) = 3e−s .
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10. Since δ(t− 3) = 0 for t 6= 3,

L
{
t3δ(t− 3)

}
(s) :=

∞∫
0

e−stt3δ(t− 3) dt =

∞∫
−∞

e−stt3δ(t− 3) dt = e−stt3
∣∣
t=3

= 27e−3s

by equation (3) of the text.

Another way to solve this problem is to use Theorem 6 in Section 7.3. This yields

L
{
t3δ(t− 3)

}
(s) = (−1)3 d

3

ds3
L{δ(t− 3)} (s) = −d

3 (e−3s)

ds3
= 27e−3s .

12. The translation property of the Laplace transform (Theorem 3, Section 7.3) yields

L
{
etδ(t− 3)

}
(s) = L{δ(t− 3)} (s− 1) = e−3(s−1) = e3(1−s).

14. Let Y (s) := L{y(t)} (s). Applying the Laplace transform to both sides of the given

equation, using Theorem 5 in Section 7.3 and the initial conditions, we find that[
s2Y (s)− s− 1

]
+ 2 [sY (s)− 1] + 2Y (s) = L{δ(t− π)} (s) = e−πs .

Solving for Y (s) yields

Y (s) = e−πs 1

s2 + 2s+ 2
+

s+ 3

s2 + 2s+ 2
= e−πs 1

(s+ 1)2 + 1
+

s+ 1

(s+ 1)2 + 1
+2

1

(s+ 1)2 + 1

Thus, by Theorem 8, Section 7.6 and Table 7.1 in Section 7.2,

y(t) =
[
e−(t−π) sin(t− π)

]
u(t− π) + e−t cos t+ 2e−t sin t

= −eπ−t (sin t)u(t− π) + e−t cos t+ 2e−t sin t .

16. Let Y := L{y}. Taking the Laplace transform of y′′ − 2y′ − 3y = 2δ(t − 1) − δ(t − 3)

and applying the initial conditions y(0) = 2, y′(0) = 2, we obtain(
s2Y − 2s− 2

)
− 2 (sY − 2)− 3Y = L{2δ(t− 1)− δ(t− 3)} = 2e−s − e−3s

⇒ Y (s) =
2s− 2 + 2e−s − e−3s

s2 − 2s− 3
=

2s− 2 + e−s + e−3s

(s− 3)(s+ 1)

=
1

s− 3
+

1

s+ 1
+
e−s

2

(
1

s− 3
− 1

s+ 1

)
− e−3s

4

(
1

s− 3
− 1

s+ 1

)
,

so that by Theorem 8, Section 7.6, we get

y(t) = e3t + e−t +
1

2

[
e3(t−1) − e−(t−1)

]
u(t− 1)− 1

4

[
e3(t−3) − e−(t−3)

]
u(t− 3).
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18. Let Y := L{y}. Taking the Laplace transform of y′′ − y′ − 2y = 3δ(t − 1) + et and

applying the initial conditions y(0) = 0, y′(0) = 3, we obtain(
s2Y − 3

)
− (sY )− 2Y = L

{
3δ(t− 1) + et

}
=

1

s− 1
+ 3e−s

⇒ Y (s) =
3s− 2

(s− 1) (s2 − s− 2)
+ e−s 3

s2 − s− 2

=
3s− 2

(s− 1)(s− 2)(s+ 1)
+ e−s 3

(s− 2)(s+ 1)
.

Taking the partial fractions decompositions yields

Y (s) =
4

3

1

s− 2
− 1

2

1

s− 1
− 5

6

1

s+ 1
+ e−s

(
1

s− 2
− 1

s+ 1

)
so that from Table 7.1 in Section 7.2 and Theorem 8, Section 7.6, we get

y(t) =
4

3
e2t − 1

2
et − 5

6
e−t +

[
e2(t−1) − e−(t−1)

]
u(t− 1).

20. By the translation property of the Laplace transform,

L
{
e−tδ(t− 2)

}
(s) = L{δ(t− 2)} (s+ 1) = e−2(s+1) .

Thus, the Laplace transform of the given equation yields

L{y′′ + 5y′ + 6y} =
(
s2Y − 2s+ 5

)
+ 5(sY − 2) + 6Y = e−2(s+1)

or, solving for Y := L{y(t)} (s),

Y =
2s+ 5 + e−2(s+1)

s2 + 5s+ 6

2s+ 5 + e−2(s+1)

(s+ 2)(s+ 3)

=
1

s+ 2
+

1

s+ 3
+ e−2e−2s

(
1

s+ 2
− 1

s+ 3

)
.

Applying now the inverse Laplace transform, we get

y(t) = e−2t + e−3t + e−2
(
e−2x − e−3x

)∣∣
x=t−2

u(t− 2)

= e−2t + e−3t + e−2
[
e−2(t−2) − e−3(t−2)

]
u(t− 2) .

22. We apply the Laplace transform to the given equation, solve the resulting equation for

Y = L{y} (s), and then use the inverse Laplace transform. This yields

L{y′′} (s) + L{y} (s) = L
{

δ
(
t− π

2

)}
(s)
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⇒
[
s2Y (s)− 1

]
+ Y (s) = e−πs/2

⇒ Y (s) =
1

s2 + 1
+ e−πs/2 1

s2 + 1

⇒ y(t) = sin t+
[
sin
(
t− π

2

)]
u
(
t− π

2

)
= sin t+ (cos t)u

(
t− π

2

)
.

The graph of the solution is shown in Fig. 7–M on page 266.

24. Similarly to Problem 22, we get

[
s2Y (s)− 1

]
+ Y (s) = e−πs − e−2πs

⇒ Y (s) =
1

s2 + 1
+
(
e−πs − e−2πs

) 1

s2 + 1
⇒ y(t) = sin t+ [sin (t− π)]u (t− π)− [sin (t− 2π)]u (t− 2π)

= (sin t) [1− u(t− π)− u(t− 2π)] .

The graph of the solution is shown in Fig. 7–N on page 266.

26. The Laplace transform of both sides of the given equation (with zero initial conditions)

yields

s2Y (s)− 6sY (s) + 13Y (s) = L{δ(t)} (s) = 1 .

Thus,

Y (s) =
1

s2 − 6s+ 13
=

1

(s− 3)2 + 22
=

1

2

2

(s− 3)2 + 22
.

Therefore, the impulse response function is

h(t) = L−1 {Y (s)} (t) =
1

2
e3t sin 2t .

28. The Laplace transform of both sides of the given equation (with zero initial conditions)

yields

s2Y (s)− Y (s) = L{δ(t)} (s) = 1 .

Thus,

Y (s) =
1

s2 − 1
=

1

(s− 1)(s+ 1)
=

1

2

(
1

s− 1
− 1

s+ 1

)
.

Therefore, the impulse response function is

h(t) = L−1 {Y (s)} (t) =
1

2

(
et − e−t

)
= sinh t .
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30. Let Y := L{y(t)}. The Laplace transform of the left-hand side of the given equation

(with the imposed initial conditions) is (s2 + 1)Y (s) For the right-hand side, one has

L

{
∞∑

k=1

δ(t− 2kπ)

}
(s) =

∞∑
k=1

e−2kπs .

Hence,

Y (s) =
1

s2 + 1

∞∑
k=1

e−2kπs .

Taking the inverse Laplace transform in this equation yields the following sum y(t) of

the series of impulse response functions hk(t):

y(t) =
∞∑

k=1

hk(t) :=
∞∑

k=1

sin (t− 2kπ)u(t− 2kπ)

=
∞∑

k=1

(sin t)u(t− 2kπ) = (sin t)
∞∑

k=1

u(t− 2kπ) .

Evaluating y(t) at, say, tn = (π/2) + 2nπ for n = 1, 2, . . . we see that

y (tn) =
[
sin
(π

2
+ 2nπ

)] ∞∑
k=1

u (t− 2kπ) =
n∑

k=1

(1) = n→∞

with tn →∞, meaning that the bridge will eventually collapse.

32. By taking the Laplace transform of

ay′′ + by′ + cy = δ(t), y(0) = y′(0) = 0,

and solving for Y := L{y}, we find that the transfer function is given by

H(s) =
1

as2 + bs+ c
.

We consider the following possibilities.

(i) If the roots of the polynomial as2 + bs+ c are real and distinct, say r1, r2, then

H(s) =
1

a(s− r1)(s− r2)
=

1

a(r1 − r2)

(
1

s− r1
− 1

s− r2

)
.

Thus,

h(t) = L−1 {H(s)} (t) =
1

a (r1 − r2)

(
er1t − er2t

)
and, clearly, h(t) has zero limit as t→∞ if and only if r1 and r2 are negative.
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(ii) If the roots of as2 + bs + c are complex, then they are α ± iβ, where α and β 6= 0

satisfy

H(s) =
1

a [(x− α)2 + β2]

so that

h(t) = L−1 {H(s)} (t) =
1

aβ
eαt sin βt ,

and, again, it is clear that h(t) → 0 as t→∞ if and only if the real part α of the

roots is negative.

(iii) Finally, if the characteristic equation has a double real root r0, then

H(s) =
1

a (r − r0)
2 ,

implying that

h(t) = L−1 {H(s)} (t) =
1

a
ter0t ,

which, again, vanishes at infinity if and only if r0 < 0.

34. Let a function f(t) be defined and n times continuously differentiable in a neighborhood

[−ε, ε] of the origin. Since, for t 6= 0, δ(t) and all its derivatives equal zero, we can

(formally) consider the improper integral
∫∞
−∞ f(t)δ(n)(t)dt assuming that the integrand

vanishes outside of [−ε, ε]. Then, applying integration by parts n times yields

∞∫
−∞

f(t)δ(n)(t) dt =

ε∫
−ε

f(t)δ(n)(t) dt = f(t)δ(n−1)(t)
∣∣∣ε
−ε
−

ε∫
−ε

f ′(t)δ(n−1)(t) dt

= −
ε∫

−ε

f ′(t)δ(n−1)(t) dt = · · · = (−1)n

ε∫
−ε

f (n)(t)δ(t) dt

= (−1)n

∞∫
−∞

f (n)(t)δ(t) dt = (−1)nf (n)(0)

by equation (2) of the text.

EXERCISES 7.9: Solving Linear Systems with Laplace Transforms

2. Let X = L{x}, Y = L{y}. Applying the Laplace transform to both sides of the given

equations and using Theorem 4, Section 7.3, for evaluating Laplace transforms of the
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derivatives yields

sX(s) + 1 = X(s)− Y (s)

sY (s) = 2X(s) + 4Y (s)
⇒

(s− 1)X(s) + Y (s) = −1

−2X(s) + (s− 4)Y (s) = 0 .

Solving this system for, say, Y (s), we obtain

Y (s) = − 2

s2 − 5s+ 6
= − 2

(s− 2)(s− 3)
=

2

s− 2
− 2

s− 3
.

Therefore,

y(t) = L−1

{
2

s− 2
− 2

s− 3

}
(t) = 2e2t − 2e3t .

From the second equation in the given system we find that

x(t) =
1

2
(y′ − 4y) =

1

2

[(
4e2t − 6e3t

)
− 4

(
2e2t − 2e3t

)]
= −2e2t + e3t .

4. Let X = L{x}, Y = L{y}. Applying the Laplace transform to both sides of the given

equations and using Theorem 4, Section 7.3, for evaluating Laplace transforms of the

derivatives yields

sX(s)− 3X(s) + 2Y (s) = 1/ (s2 + 1)

4X(s)− sY (s)− Y (s) = s/ (s2 + 1)
⇒

(s− 3)X(s) + 2Y (s) = 1/ (s2 + 1)

4X(s)− (s+ 1)Y (s) = s/ (s2 + 1) .

Solving this system for X(s), we obtain

X(s) =
3s+ 1

(s2 + 1) (s2 − 2s+ 5)
=

3s+ 1

(s2 + 1) [(s− 1)2 + 22]
.

The partial fractions decomposition for X(s) is

X(s) =
7

10

s

s2 + 1
− 1

10

1

s2 + 1
− 7

10

s− 1

(s− 1)2 + 22
+

2

5

2

(s− 1)2 + 22
.

Hence, the inverse Laplace transform gives us

x(t) =

(
7

10

)
cos t−

(
1

10

)
sin t−

(
7

10

)
et cos 2t+

(
2

5

)
et sin 2t .

From the first equation in the system,

y(t) =
sin t− x′(t) + 3x(t)

2
.

Substituting the solution x(t) and collecting similar terms yields

y(t) =

(
11

10

)
cos t+

(
7

10

)
sin t−

(
11

10

)
et cos 2t−

(
3

5

)
et sin 2t .
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6. Denote X = L{x}, Y = L{y}. The Laplace transform of the given equations yields

sX(s)−X(s)− Y (s) = 1/s

−X(s) + sY (s) + (5/2)− Y (s) = 0
⇒

(s− 1)X(s)− Y (s) = 1/s

−X(s) + (s− 1)Y (s) = −(5/2) .

We multiply the first equation by (s− 1) and add to the second equation.[
(s− 1)2 − 1

]
X(s) =

s− 1

s
− 5

2
= −3s+ 2

2s

⇒ X(s) = − 3s+ 2

2s [(s− 1)2 − 1]
= −1

2

3s+ 2

s2(s+ 2)
=

1

2s2
+

1

s
− 1

s− 2
.

Taking the inverse Laplace transform we find

x(t) =
t

2
+ 1− e2t .

From the first equation in the given system,

y(t) = x′(t)− x(t)− 1 = − t
2
− 3

2
− e2t .

8. By taking the Laplace transform of both sides of these differential equations and using

the linearity of the Laplace transform, we obtain

L{D[x]} (s) + L{y} (s) = L{0} (s) = 0

4L{x} (s) + L{D[y]} (s) = L{3} (s) = 3/s
⇒

sX(s)− (7/4) + Y (s) = 0

4X(s) + sY (s)− 4 = 3/s

or, equivalently,

sX(s) + Y (s) = (7/4)

4X(s) + sY (s) = (4s+ 3)/s ,

where X(s) and Y (s) are the Laplace transforms of x(t) and y(t), respectively. Solving

this system for X(s) yields

X(s) =
7s2 − 16s− 12

4s (s2 − 4)
=

(
3

4

)
1

s
+

(
3

2

)
1

s+ 2
−
(

1

2

)
1

s− 2
.

The inverse Laplace transform leads now to

x(t) = L−1

{(
3

4

)
1

s
+

(
3

2

)
1

s+ 2
−
(

1

2

)
1

s− 2

}
(t) =

3

4
+

(
3

2

)
e−2t −

(
1

2

)
e2t .

Differentiating x(t), we find y(t). (See the first equation in the given system.)

y(t) = −x′(t) = 3e−2t + e2t .
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10. Denote X = L{x}, Y = L{y}. The Laplace transform of the given equations (for the

given initial conditions) yields

s2X(s)− s− 1 + Y (s) = 1/s

X(s) + s2Y (s)− s+ 1 = −1/s
⇒

s2X(s) + Y (s) = s+ 1 + (1/s)

X(s) + s2Y (s) = s− 1− (1/s) .

If we multiply the first equation by s2 and subtract the second equation from the result,

we get (
s4 − 1

)
X(s) = s3 + s2 + 1 +

1

s
=
s4 + s3 + s+ 1

s

⇒ X(s) =
s4 + s3 + s+ 1

s (s4 − 1)
=

s4 + s3 + s+ 1

s(s− 1)(s+ 1) (s2 + 1)
,

which, using partial fractions, can be written as

X(s) =
s

s2 + 1
+

1

s− 1
− 1

s
.

Taking the inverse Laplace transform, we find that

x(t) = cos t+ et − 1 .

From the first equation in the given system,

y(t) = 1− x′′(t) = cos t− et + 1 .

12. Since

L{x′} (s) = sX(s)− x(0) = sX(s) ,

L{y′′} (s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− s+ 1 ,

applying the Laplace transform to the given equations yields

sX(s) + Y (s) = X(s)

2sX(s) + s2Y (s)− s+ 1 = e−3s/s
⇒

(s− 1)X(s) + Y (s) = 0

2sX(s) + s2Y (s) = s− 1 + e−3s/s .

Solving for X(s) yields

X(s) =
1− s− e−3s

s (s2 − s− 2)
=

1− s

s(s+ 1)(s− 2)
− e−3s 1

s2(s+ 1)(s− 2)

= − 1

2s
+

(2/3)

s+ 1
− (1/6)

s− 2
− e−3s

[
1

4s
− 1

2s2
− (1/3)

s+ 1
+

(1/12)

s− 2

]
.
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Using linearity of the inverse Laplace transform and formula (6) in Section 7.6, we get

x(t) = −1

2
+

(
2

3

)
e−t −

(
1

6

)
e2t −

[
1

4
− x

2
−
(

1

3

)
e−x +

(
1

12

)
e2x

]∣∣∣∣
x=t−3

u(t− 3)

= −1

2
+

2e−t

3
− e2t

6
−
(

1

4
− t− 3

2
− e3−t

3
+
e2t−6

12

)
u(t− 3) .

Since y = x− x′ (see the first equation in the given system), we obtain

y(t) = −1

2
+

4e−t

3
+
e2t

6
−
(

3

4
− t− 3

2
− 2e3−t

3
− e2t−6

12

)
u(t− 3) .

14. Since

L{x′′} (s) = s2X(s)− sx(0)− x′(0) = s2X(s)− s ,

L{y′′} (s) = s2Y (s)− sy(0)− y′(0) = s2Y (s) ,

applying the Laplace transform to the given equations yields

s2X(s)− s = Y (s) + e−s/s

s2Y (s) = X(s) + (1/s)− e−s/s
⇒

s2X(s)− Y (s) = s+ (e−s/s)

−X(s) + s2Y (s) = (1/s)− (e−3s/s) .

Solving for X(s) yields

X(s) =
s4 + 1

s (s4 − 1)
+

s2 − 1

s (s4 − 1)
e−s =

s4 + 1

s (s4 − 1)
+

1

s (s2 + 1)
e−s

= −1

s
+

(
1

2

)
1

s+ 1
+

(
1

2

)
1

s− 1
+

s

s2 + 1
+

(
1

s
− s

s2 + 1

)
e−s .

Using linearity of the inverse Laplace transform and formula (6) in Section 7.6, we get

x(t) = −1 +
e−t

2
+
et

2
+ cos t+ [1− cos(t− 1)]u(t− 1)

= cosh t+ cos t− 1 + [1− cos(t− 1)]u(t− 1) .

Since y = x′′ − u(t − 1) (see the first equation in the system), after some algebra we

obtain

y(t) = cosh t− cos t− [1− cos(t− 1)]u(t− 1) .

16. First, note that the initial conditions are given at the point t = π. Thus, for the Laplace

transform method, we have to shift the argument to get zero initial point. Let us denote

w(t) := x(t+ 1) and v(t) := y(t+ π).
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The chain rule yields

w′(t) = x′(t+ π)(t+ π)′ = x′(t+ π), v′(t) = y′(t+ π)(t+ π)′ = y′(t+ π).

In the original system, we substitute t+ π for t to get

w′(t)− 2w(t) + v′(t) = − [cos(t+ π) + 4 sin(t+ π)] = cos t+ 4 sin t

2w(t) + v′(t) + v(t) = sin(t+ π) + 3 cos(t+ π) = − sin t− 3 cos t

with initial conditions w(0) = x(π) = 0, v(0) = y(π) = 3. Taking the Laplace transform

and using Theorem 4, Section 7.3, we obtain the system

sW (s)− 2W (s) + sV (s)− 3 =
s+ 4

s2 + 1

2W (s) + sV (s)− 3 + V (s) =
−3s− 1

s2 + 1

or, after collecting similar terms,

(s− 2)W (s) + sV (s) =
3s2 + s+ 7

s2 + 1

2W (s) + (s+ 1)V (s) =
3s2 − 3s+ 2

s2 + 1
.

Solving this system for V (s) yields

V (s) =
3s3 − 15s2 + 6s− 18

(s2 + 1) (s2 − 3s− 2)
=

3s3 − 15s2 + 6s− 18

(s2 + 1)
[
s− (3 +

√
17)/2

] [
s− (3−

√
17)/2

]
= − s

s2 + 1
+

(
2
√

17− 12√
17

)
1

s− (3 +
√

17)/2
+

(
2
√

17 + 12√
17

)
1

s− (3−
√

17)/2
.

Therefore, taking the inverse Laplace transform, we obtain

v(t) = − cos t+

(
2
√

17− 12√
17

)
e(3+

√
17)t/2 +

(
2
√

17 + 12√
17

)
e(3−

√
17)t/2 .

Shifting the argument back gives

y(t) = v(t− π) = cos t+

(
2
√

17− 12√
17

)
e(3+

√
17)(t−π)/2 +

(
2
√

17 + 12√
17

)
e(3−

√
17)(t−π)/2 .

We can now find x(t) by substituting y(t) into the second equation of the original system.

x(t) =
sin t+ 3 cos t− y′(t)− y(t)

2

= cos t+ sin t+

(√
17 + 13

2
√

17

)
e(3+

√
17)(t−π)/2 +

(√
17− 13

2
√

17

)
e(3−

√
17)(t−π)/2 .
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18. We first take the Laplace transform of both sides of all three of these equations and use

the initial conditions to obtain a system of equations for the Laplace transforms of the

solution functions.

sX(s)− 2Y (s) = 0

sX(s)− [sZ(s) + 2] = 0

X(s) + sY (s)− Z(s) = 3/s

⇒
sX(s)− 2Y (s) = 0

sX(s)− sZ(s) = 2

X(s) + sY (s)− Z(s) = 3/s .

Solving this system yields

X(s) =
2

s3
, Y (s) =

1

s2
, Z(s) =

2

s3
− 2

s
.

Taking the inverse Laplace transforms, we get

x(t) = L−1 {X(s)} (t) = t2 , y(t) = L−1 {Y (s)} (t) = t , z(t) = L−1 {Z(s)} (t) = t2 − 2 .

20. Taking the Laplace transforms of the given equations yields

s2X(s)− 3s+ sY (s)− y(0) = 2/s

4X(s) + sY (s)− y(0) = 6/s
⇒

s2X(s) + sY (s)− y(0) = 2/s+ 3s

4X(s) + sY (s)− y(0) = 6/s .

Subtracting the second equation from the first one, we get(
s2 − 4

)
X(s) =

3s2 − 4

s
⇒ X(s) =

3s2 − 4

s (s2 − 4)
=

1

s
+

1

s− 2
+

1

s+ 2
.

We now take the inverse Laplace transform and conclude that

x(t) = L−1 {X(s)} (t) = 1 + e2t + e−2t = 1 + 2 cosh 2t .

From the second equation in the original system,

y′(t) = 6− 4x(t) = 2− 8 cosh 2t .

Integrating y′(s) from s = 1 (due to the initial condition) to s = t we obtain

y(t) =

t∫
1

(2− 8 cosh 2s)ds+ 4 = (2s− 4 sinh 2s)
∣∣t
1

+4 = 2t− 4 sinh 2t+ 2 + 4 sinh 2 .

22. For the mass m1 there is only one force acting on it, that is, the force due to the spring

with the spring constant k1; so, it equals to −k1(x− y). Hence, we get

m1x
′′ = −k1(x− y).
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For the mass m2, there are two forces: the force due to the spring with the spring

constant k2, which is −k2y; and the force due to the spring with the spring constant k1,

which is k1(y − x). Thus, we get

m2y
′′ = k1(x− y)− k2y.

Therefore, the system governing the motion is

m1x
′′ = k1(y − x)

m2y
′′ = −k1(y − x)− k2y .

With m1 = 1, m2 = 2, k1 = 4, and k2 = 10/3 the system becomes

x′′ + 4x− 4y = 0

−4x+ 2y′′ + (22/3) y = 0
(7.26)

with initial conditions

x(0) = −1, x′(0) = 0, y(0) = 0, y′(0) = 0 .

The Laplace transform of this system yields

[s2X(s) + s] + 4X(s)− 4Y (s) = 0

−4X(s) + 2 [s2Y (s)] + (22/3)Y (s) = 0
⇒

(s2 + 4)X(s)− 4Y (s) = −s
−2X(s) + (s2 + (11/3))Y (s) = 0 .

Multiplying the first equation by 2, the second equation – by s2 + 4 and adding the

results together, we obtain[(
s2 +

11

3

)(
s2 + 4

)
− 8

]
Y (s) = −2s

⇒ Y (s) = − 6s

3s4 + 23s2 + 20
= −

(
6

17

)
s

s2 + 1
+

(
6

17

)
s

s2 + (20/3)
.

Therefore,

y(t) = L−1 {Y (s)} (t) = −
(

6

17

)
cos t+

(
6

17

)
cos

(√
20

3
t

)
.

From the second equation in (7.26), we have

x(t) =
y′′(t) + (11/3)y(t)

2
= −

(
8

17

)
cos t−

(
9

17

)
cos

(√
20

3
t

)
.
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24. Recall that Kirchhoff’s voltage law says that, in an electrical circuit consisting of an

inductor of L (H), a resistor of R (Ω), a capacitor of C (F), and a voltage source of

E (V),

EL + ER + EC = E, (7.27)

where EL, ER, and EC denote the voltage drops across the inductor, resistor, and ca-

pacitor, respectively. These voltage grops are given by

EL = L
dI

dt
, ER := RI, EC :=

q

C
, (7.28)

where I denotes the current passing through the correspondent element.

Also, Kirchhoff’s current law states that the algebraic sum of currents passing through

any point in an electrical network is zero.

The electrical network shown in Figure 7.29 consists of three closed circuits: loop 1

through the battery B = 50 (V), L1 = 0.005 (H) inductor, and R1 = 10 (Ω) resistor;

loop 2 through the resistor R1, the inductor L2 = 0.01 (H), and the resistor R2 = 20 (Ω);

loop 3 through the battery B, the inductors L1 and L2, and the resistor R2. We apply

Kirchhoff’s voltage law (7.27) to two of these loops, say, the loop 1 and the loop 2 (since

the equation obtained from Kirchhoff’s voltage law for the loop 3 is a linear combination

of the other two), and Kirchhoff’s current law to one of the junction points, say, the upper

one. Thus, choosing the clockwise direction in the loops and using formulas (7.28), we

obtain

Loop 1:

EL1 + ER1 = E ⇒ 0.005I ′1 + 10I2 = 50;

Loop 2:

ER1 + EL2 + ER2 = 0 ⇒ 0.01I ′3 + 10 (−I2 + 2I3) = 0

with the negative sign at I2 due to the opposite direction of the current in this loop

versus to that in Loop 1;

Upper junction point:

I1 − I2 − I3 = 0 .
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Therefore, we have the following system for the currents I1, I2, and I3 :

0.005I ′1 + 10I2 = 50

0.01I ′3 + 10 (−I2 + 2I3) = 0

I1 − I2 − I3 = 0

(7.29)

with initial conditions I1(0) = I2(0) = I3(0) = 0.

Let I1(s) := L{I1} (s), I2(s) := L{I2} (s), and I3(s) := L{I3} (s). Using the initial

conditions, we conclude that

L{I ′1} (s) = sI1(s)− I1(0) = sI1(s),

L{I ′3} (s) = sI3(s)− I3(0) = sI3(s).

Using these equations and taking the Laplace transform of the equations in (7.29), we

come up with

0.005sI1(s) + 10I2(s) =
50

s
−10I2(s) + (0.01s+ 20) I3(s) = 0

I1(s)− I2(s)− I3(s) = 0 .

Expressing I2(s) = I1(s) − I3(s) from the last equation and substituting this into the

the first two equations, we get

(0.005s+ 10) I1(s)− 10I3(s) =
50

s
−10I1(s) + (0.01s+ 30) I3(s) = 0 .

Solving this system for, say, I3(s), we obtain

I3(s) =
107

s (s2 + 5 · 103s+ 4 · 106)
=

5

2s
− 10

3(s+ 1000)
+

5

6(s+ 4000)
.

The inverse Laplace transform then yields

I3(t) =
5

2
−
(

10

3

)
e−1000t +

(
5

6

)
e−4000t .

From the second equation in (7.29), we find

I2(t) =
0.01I ′3(t) + 20I3(t)

10
= 5−

(
10

3

)
e−1000t −

(
5

3

)
e−4000t .

Finally, the last equation in (7.29) yields

I1(t) = I2(t) + I3(t) =
15

2
−
(

20

3

)
e−1000t −

(
5

6

)
e−4000t .
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REVIEW PROBLEMS

2.
1− e−5(s+1)

s+ 1
− e−5s

s

4.
4

(s− 3)2 + 16

6.
7(s− 2)

(s− 2)2 + 9
− 70

(s− 7)2 + 25

8. 2s−3 + 6s−2 − (s− 2)−1 − 6(s− 1)−1

10.
s

s2 + 1
+

e−πs/2

(1 + s2)(1− e−πs)

12. 2e2t cos(
√

2 t) +

(
3√
2

)
e2t sin(

√
2 t)

14. e−t − 3e−3t + 3e2t

16.
sin 3t− 3t cos 3t

54

18. f(t) =
∞∑

n=0

(−1)nt2n

n!
; F (s) =

∞∑
n=0

(−1)n(2n)!

n!

1

s2n+1

20. (t− 3)e−3t

22.

(
10

13

)
e2t −

(
23

13

)
cos 3t+

(
15

13

)
sin 3t

24. 6et + 4tet + t2et + 2te2t − 6e2t

26.
(
1 + Ct3

)
e−t, where C is an arbitrary constant

28.

(
3

2
√

7

)
e−t/2 sin

(√
7 t

2

)
−
(

1

2

)
e−t/2 cos

(√
7 t

2

)
− 1

2

30.

(
1

2

){
sin 2t+

[
sin 2

(
t− π

2

)]
u
(
t− π

2

)}
32. x = −1

2
+

(
1

6

)
e2t +

(
4

3

)
e−t +

[
−1

4
+

(
1

2

)
(t− 3)−

(
1

12

)
e2t−6 −

(
2

3

)
e−t+3

]
u(t−3)

y = −1

2
−
(

1

6

)
e2t +

(
2

3

)
e−t +

[
1

4
+

(
1

2

)
(t− 3) +

(
1

12

)
e2t−6 −

(
1

3

)
e−t+3

]
u(t− 3)
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Figure 7–A: The graph of f(t) in Problem 22.
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Figure 7–B: The graph of f(t) in Problem 24.
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Figure 7–C: The graph of f(t) in Problem 26.

263



Chapter 7

105

 

0

 

1

0

y=

{

sin t/t, t 6= 0

1, t = 0

Figure 7–D: The graph of f(t) in Problem 28.
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Figure 7–E: Graphs of functions f(t) and g(t) in Problems 32 and 34.
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Figure 7–F: The graph of the function in Problem 2.
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Figure 7–G: The graph of the function in Problem 4.
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Figure 7–H: The graph of f(t) in Problem 22.
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Figure 7–I: The graph of f(t) in Problem 24.
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Figure 7–J: The graph of w(t) in Problem 30.
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Figure 7–K: The graph of y(t) in Problem 32.
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Figure 7–L: The graph of g(t) in Problem 42.
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Figure 7–M: The graph of y(t) in Problem 22.
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Figure 7–N: The graph of y(t) in Problem 24.
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CHAPTER 8: Series Solutions of Differential

Equations

EXERCISES 8.1: Introduction: The Taylor Polynomial Approximation

2. 2 + 4x+ 8x2 + · · ·

4.

(
1

2

)
x2 +

(
1

6

)
x3 −

(
1

20

)
x5 + · · ·

6. x−
(

1

6

)
x3 +

(
1

120

)
x5 + · · ·

8. 1−
(

sin 1

2

)
x2 +

(
(cos 1)(sin 1)

24

)
x4 + · · ·

10. (a) p3(x) =
1

2
+
x

4
+
x2

8
+
x3

16

(b) ε3 =
1

4!

24

(2− ξ)5

(
1

2

)4

≤ 1

(3/2)5

1

24
=

2

35
≈ 0.00823

(c)

∣∣∣∣23 − p3

(
1

2

)∣∣∣∣ =
1

384
≈ 0.00260

(d) See Fig. 8–A on page 276

12. The differential equation implies that the functions y(x), y′(x), and y′′(x) exist and

continuous. Furthermore, y′′′(x) can be obtained by differentiating the other terms:

y′′′ = −py′′ − p′y′ − qy′ − q′y + g′. Since p, q, and g have derivatives of all orders,

subsequent differentiations display the fact that, in turn, y′′′, y(4), y(5), etc. all exist.

14. (a) t+
t2

2
− t3

6
+ · · ·

(b) For r = 1, y(t) = 1− (1/2)t2 − 4t4 + · · · ;
For r = −1, y(t) = 1 + (1/2)t2 − (49/12)t4 + · · ·

(c) For small t in part (b), the hard spring recoils but the soft spring extends.

16. 1− t2

2
+
t4

4
+ · · ·
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EXERCISES 8.2: Power Series and Analytic Functions

2. (−∞,∞)

4. [2, 4]

6. (−3,−1)

8. (a)

(
−1

2
,
1

2

)
(b)

(
−1

2
,
1

2

)
(c) (−∞,∞)

(d) (−∞,∞)

(e) (−∞,∞)

(f)

(
− 1√

2
,

1√
2

)

10.
∞∑

n=0

[
2n+3

(n+ 3)!
+

(n+ 2)2

2n+1

]
(x− 1)n

12. x−
(

2

3

)
x3 +

(
2

15

)
x5 + · · ·

14. 1

16. 1−
(

1

2

)
x+

(
1

4

)
x2 −

(
1

24

)
x3 + · · ·

18.
∞∑

k=0

(−1)k

(2k)!
x2k = cos x

20.
∞∑

n=2

n(n− 1)anx
n−2

22.
∞∑

k=0

(−1)k

(2k + 1)(2k + 1)!
x2k+1 = x− x3

18
+

x5

600
− · · ·

24.
∞∑

k=4

(k − 2)(k − 3)ak−2x
k

26.
∞∑

k=4

ak−3

k
xk
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30.
∞∑

n=0

(−1)n(x− 1)n

32.
∞∑

n=1

(−1)n+1

n
xn

34. 1 +

(
1

2

)
(x− 1)−

(
1

8

)
(x− 1)2 +

(
1

16

)
(x− 1)3 −

(
5

128

)
(x− 1)4 + · · ·

36. (a) Always true

(b) Sometimes false

(c) Always true

(d) Always true

38.
∞∑

n=0

(−1)n

n+ 1
x2n+2 = x2 − x4

2
+
x6

3
− · · ·

EXERCISES 8.3: Power Series Solutions to Linear Differential Equations

2. 0

4. −1, 0

6. −1

8. No singular points

10. x ≤ 1 and x = 2

12. y = a0

(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)
= a0

∞∑
n=0

xn

n!
= a0e

x

14. a0

(
1− x2

2
+ · · ·

)
+ a1

(
x− x3

6
+ · · ·

)

16. a0

(
1− x2

2
− x3

3
+ · · ·

)
+ a1

(
x+ x2 +

x3

2
+ · · ·

)
= a0e

x + (a1 − a0)xe
x

18. a0

(
1 +

x2

6
+ · · ·

)
+ a1

(
x+

x3

27
+ · · ·

)

20. a0

∞∑
k=0

(−1)k x2k

(2k)!
+ a1

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
= a0 cosx+ a1 sin x
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22. a3k+2 = 0, k = 0, 1, . . .

a0

(
1 +

∞∑
k=1

(−1)k 1 · 4 · · · (3k − 5)(3k − 2)

(3k)!
x3k

)

+a1

(
x+

∞∑
k=1

(−1)k 2 · 5 · · · (3k − 4)(3k − 1)

(3k + 1)!
x3k+1

)

24. a0

[
1− x2

2
+
x4

24
+

∞∑
k=3

(−1)k(2k − 3)2(2k − 5)2 · · · 32

(2k)!
x2k

]
+ a1x

26. x+
x2

2
+
x3

2
+
x4

3
+ · · ·

28. −1− x2

2
− x3

3
− x4

8
+ · · ·

30. −1 + x+
5x2

2
− x3

6

32. (a) If a1 = 0, then y(x) is an even function;

(d) a0 = 0, a1 > 0

36. 3− 9t2

2
+ t3 + t4 + · · ·

EXERCISES 8.4: Equations with Analytic Coefficients

2. Infinite

4. 2

6. 1

8. a0

[
1− 2(x+ 1) + 3(x+ 1)2 − 10

3
(x+ 1)3 + · · ·

]

10. a0

[
1− 1

4
(x− 2)2 − 1

24
(x− 2)3 + · · ·

]
+ a1

[
(x− 2) +

1

4
(x− 2)2 − 1

12
(x− 2)3 + · · ·

]

12. a0

[
1 +

1

2
(x+ 1)2 +

2

3
(x+ 1)3 + · · ·

]
+ a1

[
(x+ 1) + 2(x+ 1)2 +

7

3
(x+ 1)3 + · · ·

]

14. 1 + x+ x2 +
5x3

6
+ · · ·

16. −t+
t3

3
+
t4

12
+
t5

24
+ · · ·
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18. 1 +
(
x− π

2

)
+

1

2

(
x− π

2

)2

− 1

24

(
x− π

2

)4

+ · · ·

22. a0

(
1− x2

2
+ · · ·

)
+

(
x+

x2

2
− x3

6
+ · · ·

)

24. a0

(
1− 3x2

2
+ · · ·

)
+ a1

(
x− x3

6
+ · · ·

)
+

(
2

3
− x2

)

26. a0

(
1− x2

)
+ a1

(
x− x3

6
+ · · ·

)
+

(
x2

2
+ · · ·

)

28. a0

(
1 +

x3

6
+ · · ·

)
+ a1 (x+ · · ·) +

(
x2

2
+ · · ·

)

30. 1− t2

2
+
t3

2
− t4

4
+ · · ·

EXERCISES 8.5: Cauchy-Euler (Equidimensional) Equations Revisited

2. c1x
−5/2 + c2x

−3

4. c1x
−(1+

√
13)/2 + c2x

−(1−
√

13)/2

6. c1x cos
(√

3 ln x
)

+ c2x sin
(√

3 ln x
)

8. c1 + c2x
−1/2 cos

(√
5

2
lnx

)
+ c3x

−1/2 sin

(√
5

2
lnx

)

10. c1x
−2 + c2x

−2 lnx+ c3x
−2 (lnx)2

12. c1(x+ 2)1/2 cos [ln(x+ 2)] + c2(x+ 2)1/2 sin [ln(x+ 2)]

14. c1x+ c2x
−1/2 + x lnx− 2x−2 lnx

16. 3x−2 + 13x−2 lnx

EXERCISES 8.6: Method of Frobenius

2. 0 is regular

4. 0 is regular

6. ±2 are regular
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8. 0, 1 are regular

10. 0, 1 are regular

12. r2 + 3r + 2 = 0; r1 = −1, r2 = −2

14. r2 − r = 0; r1 = 1, r2 = 0

16. r2 − 5r

4
− 3

4
= 0; r1 =

5 +
√

73

8
, r2 =

5−
√

73

8

18. r2 − r − 3

4
= 0; r1 =

3

2
, r2 = −1

2

20. a0

(
1− x

3
− x2

15
− x3

35
+ · · ·

)

22. a0

(
1 + 4x+ 4x2 +

16x3

9
+ · · ·

)

24. a0

(
x1/3 +

x4/3

3
+
x7/3

18
+
x10/3

162
+ · · ·

)

26. a0

∞∑
n=0

(−1)nxn+1

n!
= a0xe

−x

28. a0

[
x1/3 +

∞∑
n=1

(−1)nxn+1/3

n! · 10 · 13 · · · (3n+ 7)

]

30. a0

(
1 +

4x

5
+
x2

5

)

32. a0

∞∑
n=0

xn+1

n!
= a0xe

x; yes, a0 < 0

34. a0

(
1 +

x

2

)
; yes, a0 < 0

36. a0

(
x+

x2

20
+

x3

1960
+

x4

529200
+ · · ·

)

38. a0

(
x5/6 +

31x11/6

726
+

2821x17/6

2517768
+

629083x23/6

23974186896
+ · · ·

)
40. a0 (1 + 2x+ 2x2)
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42. The transformed equation is

18z(4z − 1)2(6z − 1)
d2y

dz2
+ 9(4z − 1)

(
96z2 − 40z + 3

) dy
dz

+ 32y = 0, so that

zp(z) =
96z2 − 40z + 3

2(4z − 1)(6z − 1)
and z2q(z) =

16z

9(4z − 1)2(6z − 1)

are analytic at z = 0. Hence, z = 0 is a regular singular point.

y1(x) = a0

(
1 +

32

27
x−1 +

1600

243
x−2 +

241664

6561
x−3 + · · ·

)

EXERCISES 8.7: Finding a Second Linearly Independent Solution

2. c1y1(x) + c2y2(x), where y1(x) = 1− x

3
− x2

15
+ · · · and y2(x) = x−1/2 − x1/2

4. c1y1(x) + c2y2(x), where

y1(x) = 1 + 4x+ 4x2 + · · · and y2(x) = y1(x) ln x− 8x− 12x2 − 176x3

27
+ · · ·

6. c1

(
x1/3 +

x4/3

3
+
x7/3

18
+ · · ·

)
+ c2

(
1 +

x

2
+
x2

10
+ · · ·

)
8. c1y1(x) + c2y2(x), where

y1(x) = x− x2 +
x3

2
+ · · · and y2(x) = y1(x) ln x+ x2 − 3x3

4
− 11x4

36
+ · · ·

10. c1

(
x1/3 − x4/3

10
+
x7/3

260
+ · · ·

)
+ c2

(
1

x2
+

1

4x
+

1

8
+ · · ·

)

12. c1y1(x) + c2y2(x), where y1(x) = 1 +
4x

5
+
x2

5
and y2(x) = x−4 + 4x−3 + 5x−2

14. c1y1(x) + c2y2(x), where

y1(x) = x+ x2 +
x3

2
+ · · · and y2(x) = y1(x) ln x− x2 − 3x3

4
− 11x4

36
+ · · ·

16. c1

(
1 +

x

2

)
+c2

(
−1

x
− x lnx− 2 ln x− 1

2
+

9x

4
+ · · ·

)
; has a bounded solution near the

origin, but not all solutions are bounded near the origin

18. c1y1(x) + c2y2(x) + c3y3(x), where

y1(x) = x+
x2

20
+

x3

1960
+ · · · , y2(x) = x2/3 +

3x5/3

26
+

9x8/3

4940
+ · · · and

y3(x) = x−1/2 + 2x1/2 +
2x3/2

5
+ · · ·
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20. c1y1(x) + c2y2(x) + c3y3(x), where

y1(x) = x5/6 +
31x11/6

726
+

2821x17/6

2517768
+ · · · , y2(x) = 1 + x+

x2

28
+ · · · and

y3(x) = y2 lnx− 9x− 3x2

98
+

437x3

383292
+ · · ·

22. c1y1(x) + c2y2(x), where

y1(x) = x− α2x2

2
+
α4x3

12
− α6x4

144
+ · · · and

y2(x) = −α2y1(x) ln x+ 1 + α2x− 5α4x2

4
+

5α6x3

18
+ · · ·

26. (d) a1 = −2 + i

5
, a2 =

2 + i

20

EXERCISES 8.8: Special Functions

2. c1F

(
3, 5 ;

1

3
;x

)
+ c2x

2/3F

(
11

3
,
17

3
;
5

3
;x

)
4. c1F

(
1, 3 ;

3

2
;x

)
+ c2x

−1/2F

(
1

2
,
5

2
;
1

2
;x

)

6. F (α, β; β ;x) =
∞∑

n=0

(α)n

xn

n!
= (1− x)−α

8. F

(
1

2
, 1 ;

3

2
;−x2

)
=

∞∑
n=0

(−1)n x2n

2n+ 1
= x−1 arctanx

10. y1(x) = F

(
1

2
,
1

2
; 2 ;x

)
= 1 +

x

8
+

3x2

64
+

25x3

1024
+ · · · and

y2(x) = y1(x) ln x+
4

x
+

5x

16
+
x2

8
+ · · ·

14. c1J4/3(x) + c2J−4/3(x)

16. c1J0(x) + c2Y0(x)

18. c1J4(x) + c2Y4(x)

20. J2(x) ln x− 2

x2
− 1

2
− 3x2

16
+

17x4

1152
+ · · ·

26. J−3/2(x) = −x−1J−1/2(x)− J1/2(x) = −
√

2

π
x−3/2 cosx−

√
2

π
x−1/2 sin x

J5/2(x) =
3− x2

x2
J1/2(x)−

3

x
J−1/2(x) = 3

√
2

π
x−5/2 sin x−3

√
2

π
x−3/2 cosx−

√
2

π
x−1/2 sinx
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36. y1(x) = x and y2(x) = 1−
∞∑

k=1

x2k

2k − 1

38. 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1

40. c1J1/(n+2)

(
2
√
c

n+ 2
x(n/2)+1

)
+ c2Y1/(n+2)

(
2
√
c

n+ 2
x(n/2)+1

)
REVIEW PROBLEMS

2. (a) ±2 are irregular singular points

(b) nπ, where n is an integer, are regular singular points

4. (a) a0

(
1 +

∞∑
k=1

(−3)(−1)(1) · · · (2k − 5)

2kk!
x2k

)
+ a1

(
x− 2x3

3

)

(b) a0

(
1 +

∞∑
k=1

3 · 5 · 15 · · · (4k2 − 10k + 9)

2k(2k)!
x2k

)

+a1

(
x+

∞∑
k=1

3 · 9 · 23 · · · (4k2 − 6k + 5)

2k(2k + 1)!
x2k+1

)

6. (a) c1x
(−3+

√
105)/4 + c2x

(−3−
√

105)/4

(b) c1x
−1 + c2x

−1 lnx+ c3x
2

8. (a) y1(x) =
∞∑

n=0

anx
n+2 and y2(x) = y1(x) ln x+

∞∑
n=0

bnx
n−2

(b) y1(x) =
∞∑

n=0

anx
n and y2(x) =

∞∑
n=0

bnx
n−(3/2)

(c) y1(x) =
∞∑

n=0

anx
n and y2(x) = y1(x) ln x+

∞∑
n=1

bnx
n

10. (a) c1F

(
3, 2 ;

1

2
;x

)
+ c2x

1/2F

(
7

2
,
5

2
;
3

2
;x

)
(b) c1J1/3(θ) + c2J−1/3(θ)
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FIGURES

 
K2 K1 0 1 2

 5

10

Figure 8–A: The graphs of f(x) = 1/(2− x) and its Taylor polynomial p3(x)
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CHAPTER 9: MatrixMethods for Linear Systems

EXERCISES 9.1: Introduction

2.

[
x

y

]′
=

[
0 1

−1 0

][
x

y

]

4.


x1

x2

x3

x4


′

=


1 −1 1 −1

1 0 0 1
√
π 0 −1 0

0 0 0 0



x1

x2

x3

x4



6.


x1

x2

x3


′

=


cos 2t 0 0

0 sin 2t 0

1 −1 0



x1

x2

x3


8.

[
x1

x2

]′
=

[
0 1

−2/(1− t2) 2t/(1− t2)

][
x1

x2

]

10.

[
x1

x2

]′
=

[
0 1

−1 + n2/t2 −1/t

][
x1

x2

]

12.


x1

x2

x3

x4


′

=


0 1 0 0

0 −3 −2 1

0 0 0 1

0 −1 −1 −3



x1

x2

x3

x4


EXERCISES 9.2: Review 1: Linear Algebraic Equations

2. x1 = 0, x2 =
1

3
, x3 =

2

3
, x4 = 0

4. x1 =
1

3
, x2 =

2

3
, x3 = 0 , x4 = 0

6. x1 = −s
4
, x2 =

s

4
, x3 = s (−∞ < s <∞)
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8. x1 = −s+ t, x2 = s, x3 = t (−∞ < s, t <∞)

10. x1 =
−2 + i

5
, x2 = 0, x3 =

2 + 4i

5

12. (a) The equation produce the format

x1 −
1

2
x2 = 0,

0 = 1

(b) The equation produce the format

x1 +
1

2
x3 = 0,

x2 +
11

3x3 = 0,

0 = 1

14. For r = −1, the unique solution is x1 = x2 = x3 = 0.

For r = 2, the solutions are x1 = −s
2
, x2 =

s

4
, x3 = s (−∞ < s <∞).

EXERCISES 9.3: Review 2: Matrices and Vectors

2. (a) A + B =

[
3 −1 7

2 4 −1

]

(b) 7A− 4B =

[
10 4 27

14 −5 15

]

4. (a) AB =


2 5 −1

0 12 4

−1 8 4


(b) BA =

[
3 2

−1 15

]

6. (a) AB =

[
2 7

1 5

]

(b) (AB)C =

[
9 −1

6 1

]

(c) (A + B)C =

[
6 1

5 −5

]
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10.


9

31
− 1

31

− 5

31

4

31



12.


1 0 −1

1 −1 2

1 −1 1



14.



1
1

2
−1

2

1

3
−1

2

1

6

−1

3
0

1

3



16. (c) x =


2

1

0

+ c


−1

−1

1

, with c arbitrary

18.


sin 2t

1

2
cos 2t

cos 2t −1

2
sin 2t



20.



0 0

(
1

9

)
e−3t

1 −t
(

1

3

)
t− 1

9

0 1 −1

3


22. 0

24. 11

26. 54

28. 1, 6
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30. (b) 0

(c) x = c


1

1

−1


(d) c1 = c2 = c3 = −1

32.

[
3e−t cos 3t− e−t sin 3t

−3e−t cos 3t+ e−t sin 3t

]

34.


2 cos 2t −2 sin 2t −2e−2t

−2 cos 2t −4 sin 2t −6e−2t

6 cos 2t −2 sin 2t −2e−2t



40. (a)


t −

(
1

2

)
e−2t

3t −
(

1

2

)
e−2t

+

[
c11 c12

c21 c22

]

(b)

[
−e−1 + 1 −e−1 + 1

e−1 − 1 −3e−1 + 3

]

(c)

[
−e−t + 3e−3t −3e−t − 9e−3t

−3e−t + 3e−3t −3e−t − 9e−3t

]

42. In general, (AB)T = BTAT . Thus, (ATA)T = AT (AT )T = ATA, so ATA is symmetric.

Similarly, one shows that AAT is symmetric

EXERCISES 9.4: Linear Systems in Normal Form

2.

[
r′(t)

θ′(t)

]
=

[
2 0

1 −1

][
r(t)

θ(t)

]
+

[
sin t

1

]

4.



dx

dt

dy

dt

dz

dt


=


1 1 1

2 −1 3

1 0 5



x

y

z
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6.

[
x′1(t)

x′2(t)

]
=

[
0 1

−1 0

][
x1(t)

x2(t)

]
+

[
0

t2

]

8.


x′1(t)

x′2(t)

x′3(t)

 =


0 1 0

0 0 1

−1 1 0



x1(t)

x2(t)

x3(t)

+


0

0

cos t


10. x′1(t) = 2x1(t) + x2(t) + tet;

x′2(t) = −x1(t) + 3x2(t) + et

12. x′1(t) = x2(t) + t+ 3;

x′2(t) = x3(t)− t+ 1;

x′3(t) = −x1(t) + x2(t) + 2x3(t) + 2t

14. Linearly independent

16. Linearly dependent

18. Linearly independent

20. Yes.

[
3e−t e4t

2e−t −e4t

]
; c1

[
3e−t

2e−t

]
+ c2

[
e4t

−e4t

]

22. Linearly independent; fundamental matrix is
et sin t − cos t

et cos t sin t

et − sin t cos t


The general solution is

c1


et

et

et

+ c2


sin t

cos t

− sin t

+ c3


− cos t

sin t

cos t



24. c1


e3t

0

e3t

+ c2


−e3t

e3t

0

+ c3


−e−3t

−e−3t

e−3t

+


5t+ 1

2t

4t+ 2
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28. X−1(t) =


(

1

2

)
et −

(
1

2

)
et

(
1

2

)
e−5t

(
1

2

)
e−5t

;

x(t) =

[
2e−t + e5t

−2e−t + e5t

]

32. Choosing x0= col(1, 0, 0, . . . , 0), then x0 = col(0, 1, 0, . . . , 0), and so on, the correspond-

ing solutions x1,x2, . . . ,xn will have a nonvanishing Wronskian at the initial point t0.

Hence, {x1,x2, . . . ,xn} is a fundamental solution set

EXERCISES 9.5: Homogeneous Linear Systems with Constant Coefficients

2. Eigenvalues are r1 = 3 and r2 = 4 with associated eigenvectors

u1 = s

[
1

1

]
and u2 = s

[
3

2

]

4. Eigenvalues are r1 = −4 and r2 = 2 with associated eigenvectors

u1 = s

[
1

−1

]
and u2 = s

[
5

1

]

6. Eigenvalues are r1 = r2 = −1 and r3 = 2 with associated eigenvectors

u1 = s


−1

1

0

, u2 = ν


−1

0

1

, and u3 = s


1

1

1


8. Eigenvalues are r1 = −1 and r2 = −2 with associated eigenvectors

u1 = s


1

2

4

 and u2 = s


1

1

1


10. Eigenvalues are r1 = 1, r2 = 1 + i, and r3 = 1− i with associated eigenvectors

u1 = s


1

0

0

, u2 = s


−1− 2i

1

i

, and u3 = s


−1 + 2i

1

−i

,

where s is any complex constant

282



Exercises 9.5

12. c1e
7t

[
1

2

]
+ c2e

−5t

[
1

−2

]

14. c1e
−t


−1

0

1

+ c2e
−2t


1

−1

3

+ c3e
3t


1

4

3



16. c1e
−10t


2

0

−1

+ c2e
5t


0

1

0

+ c3e
5t


1

0

2


18. (a) Eigenvalues are r1 = −1 and r2 = −3 with associated eigenvectors

u1 = s

[
1

1

]
and u2 = s

[
1

−1

]

(b)

{
x1 = e−t

x2 = e−t
(c)

{
x1 = −e−3t

x2 = e−3t
(d)

{
x1 = e−t − e−3t

x2 = e−t + e−3t

See Figures 9–A, 9–B, and 9–C on page 290.

20.

[
et 4e4t

−et −e4t

]

22.


e2t −e2t et

0 e2t et

e2t 0 3et



24.


1 e4t 0 0

4 0 0 0

0 0 3et e−t

0 0 et e−t


26. x(t) = c1e

−5t + 2c2e
t;

y(t) = 2c1e
−5t + c2e

t

28.


−0.2931e0.4679t 0.4491e3.8794t −0.6527e1.6527t

−0.5509e0.4679t −0.1560e3.8794t e1.6527t

e0.4679t e3.8794t −0.7733e1.6527t
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30.


e0.6180t −0.6180e−1.6180t 0 0

−0.6180e0.6180t e−1.6180t 0 0

0 0 e0.5858t 0.2929e3.4142t

0 0 0.5858e0.5858t e3.4142t



32.

[
2e3t − 12e4t

2e3t − 8e4t

]

34.


e2t − 2e−t

e2t + 3e−t

e2t − e−t



36. c1e
2t

[
1

1

]
+ c2

{
te2t

[
1

1

]
+ e2t

[
4/3

1

]}

38. c1e
t


1

1

0

+ c2

tet


1

1

0

+ et


0

0

1


+ c3


t2et

2


1

1

0

+ tet


0

0

1

+ et


−1/4

0

1/2




40. c1e
t


1

0

0

+ c2e
t


0

2

3

+ c3

tet


1

2

3

+ et


0

1

1




44. c1

[
1

2

]
+ c2t

−5

[
−2

1

]

46. x1(t) =
e−3t

10
kg, x2(t) =

3− α

10α
(eαt − 1)e−3t kg

The mass of salt in tank A is independent of α. The maximum mass of salt in tank B

is 0.1

(
3− α

3

)3/α

kg

50. (b) x(t) = 1 +
3

2
e−t +

1

2
e−3t;

y(t) = 1− e−3t;

z(t) = 1− 3

2
e−t +

1

2
e−3t
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EXERCISES 9.6: Complex Eigenvalues

2. c1

[
−5 cos t

2 cos t− sin t

]
+ c2

[
−5 sin t

2 sin t+ cos t

]

4. c1


5e2t cos t

−2e2t cos t+ e2t sin t

5e2t cos t

+ c2


5e2t sin t

−2e2t sin t− e2t cos t

5e2t sin t

+ c3


0

e2t

−e2t


6.

[
cos 2t sin 2t

sin 2t− cos 2t − sin 2t− cos 2t

]

8.


et e−t 0 0

et e−t 0 0

0 0 e2t cos 3t e2t sin 3t

0 0 e2t(2 cos 3t− 3 sin 3t) e2t(2 sin 3t+ 3 cos 3t)



10.


−0.0209e2t cos 3t+ 0.0041e2t sin 3t −0.0209e2t sin 3t− 0.0041e2t cos 3t −e−t et

−0.0296e2t cos 3t+ 0.0710e2t sin 3t −0.0296e2t sin 3t− 0.0710e2t cos 3t e−t et

0.1538e2t cos 3t+ 0.2308e2t sin 3t 0.1538e2t sin 3t− 0.2308e2t cos 3t −e−t et

e2t cos 3t e2t sin 3t −e−t et



12.



0 0 0 0 et

0 0 e−t et 0

0 0 −e−t et 0

−0.07e−2t cos 5t+ 0.17e−2t sin 5t −0.067e−2t sin 5t− 0.17e−2t cos 5t 0 0 0

e−2t cos 5t e−2t sin 5t 0 0 0



14. (a)


et sin t− 2et cos t

2e2t

−et cos t− 2et sin t



(b)


et+π sin t

e2(t+π)

−et+π cos t


18. c1t

−1

[
cos(3 ln t)

3 sin(3 ln t)

]
+ c2t

−1

[
sin(3 ln t)

−3 cos(3 ln t)

]
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20. x1(t) = cos t− cos
√

3 t;

x2(t) = cos t+ cos
√

3 t

22. I1(t) =

(
16

5

)
e−2t −

(
1

5

)
e−8t + 2;

I2(t) = 4e−2t − e−8t + 2;

I3(t) = −
(

4

5

)
e−2t +

(
4

5

)
e−8t

EXERCISES 9.7: Nonhomogeneous Linear Systems

2. c1

[
e3t

2e3t

]
+ c2

[
e−t

−2e−t

]
+

[
t

2

]

4. c1

[
1

−1

]
+ c2

[
e4t

e4t

]
+

[
−2 sin t

2 sin t+ cos t

]

6. xp = ta + b + e3tc

8. xp = t2a + tb + c

10. xp = e−ta + te−tb

12. c1e
4t

[
2

3

]
+ c2e

−t

[
1

−1

]
+

[
1

−1

]

14. c1

[
cos t

sin t

]
+ c2

[
− sin t

cos t

]
+

[
2t− 1

t2 − 2

]

16. c1

[
cos t

− sin t

]
+ c2

[
sin t

cos t

]
+

[
4t sin t

4t cos t− 4 sin t

]

18. c1e
t


1

0

0

+ c2e
t


0

1

1

+ c3e
t


t

t

t+ 1

+


−tet − et

0

−et



20.


−c1 sin 2t+ c2 cos 2t− c3e

−2t + 8c4e
t + (8/15) tet + (17/225) et − (1/8)

−2c1 cos 2t− 2c2 sin 2t+ 2c3e
−2t + 8c4e

t + (8/15) tet − (88/225) et

4c1 sin 2t− 4c2 cos 2t− 4c3e
−2t + 8c4e

t + (8/15) tet + (32/225) et

8c1 cos 2t+ 8c2 sin 2t+ 8c3e
−2t + 8c4e

t + (8/15) tet + (152/225) et − 1
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22. (a)

[
3e−4t + e2t

−6e−4t + e2t − 2t

]

(b)

[
− (4/3) e−4(t−2) + (7/3) e2(t−2)

(8/3) e−4(t−2) + (7/3) e2(t−2) − 2t

]
24. x(t) = 3e−4t + e2t;

y(t) = −6e−4t + e2t − 2t;

26. (a)

[
et

−2et

]
(b)

[
tet

tet

]

28.

[
−t+ 1

−t− 1

]

30. c1t
−2

[
1

2

]
+ c2

[
3

4

]
+ t

[
1/3

2/3

]
34. (a) Neither wins.

(b) The x1 force wins.

(c) The x2 force wins.

EXERCISES 9.8: The Matrix Exponential Function

2. (a) r = 2; k = 2 (b) e2t

[
1− t −t

t 1 + t

]
4. (a) r = 2; k = 3

(b) e2t


1 t 3t− t2

2
0 1 −t
0 0 1


6. (a) r = −1; k = 3

(b) e−t



1 + t+
t2

2
t+ t2

t2

2

−t
2

2
1 + t− t2 t− t2

2

−t+
t2

2
−3t+ t2 1− 2t+

t2

2
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8.

[
(1/2) e3t + (1/2) e−t (1/4) e3t − (1/4) e−t

e3t − e−t (1/2) e3t + (1/2) e−t

]

10.
1

3


e4t + 2e−2t e4t − e−2t e4t − e−2t

e4t − e−2t e4t + 2e−2t e4t − e−2t

e4t − e−2t e4t − e−2t e4t + 2e−2t



12.
1

9


3e−t + 6e2t −3e−t + 3e2t −3e−t + 3e2t

−4e−t + 4e2t + 6te2t 4e−t + 5e2t + 3te2t 4e−t − 4e2t + 3te2t

−2e−t + 2e2t − 6te2t 2e−t − 2e2t − 3te2t 2e−t + 7e2t − 3te2t



14.



et 0 0 0 0

0 et + te−t te−t 0 0

0 −te−t e−t − te−t 0 0

0 0 0 cos t sin t

0 0 0 − sin t cos t



16.



e−t 0 0 0 0

0 e−t + te−t te−t 0 0

0 −te−t e−t − te−t 0 0

0 0 0 e−2t + 2te−2t te−t

0 0 0 −4te−2t e−2t − 2te−2t



18. c1


1

0

0

+ c2e
t


0

1

0

+ c3e
t


1

2t

1



20. c1e
t


−4

1

0

+ c2e
t


3− 4t

t

2

+ c3e
t


1− 2t+ 4t2

−t− t2

−4t



22.


− (4/3) e−t + (1/3) e2t

(16/9) e−t − (16/9) e2t + (1/3) te2t

(8/9) e−t + (19/9) e2t − (1/3) te2t



24.


et + cos t− sin t− 1− t

et − sin t− cos t− 1

et − cos t+ sin t
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REVIEW PROBLEMS

2. c1e
2t

[
−2 cos 3t

cos 3t+ 3 sin 3t

]
+ c2e

2t

[
−2 sin 3t

sin 3t− 3 cos 3t

]

4. c1e
2t


0

0

1

+ c2e
t


1

0

0

+ c3


t

1

0



6.


0 e5t 0

3e−5t 0 e5t

−e−5t 0 3e5t


8. c1

[
1

2

]
+ c2

[
2e−5t

−e−5t

]
+ e4t

[
11/36

13/18

]

10. c1e
2t


1

0

0

+ c2

e5t/2 cos

(√
7 t

2

)
11

−2

4

− e5t/2 sin

(√
7 t

2

)
−3
√

7

−2
√

7

0




+c3

e5t/2 sin

(√
7 t

2

)
11

−2

4

+ e5t/2 cos

(√
7 t

2

)
−3
√

7

−2
√

7

0


+


− (1/3) e−t + 11/16

−1/4

−5/8


12.

[
e2t sin 2t+ (3/2) e2t cos 2t+ (1/2) e2t

2e2t cos 2t− 3e2t sin 2t− te2t

]

14. c1t


−1

1

2

+ c2t
3


1

1

0

+ c3t
−2


1

−1

1



16.


1 t 4t+ t2

0 1 2t

0 0 1
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FIGURES

x
1

0 1 2

x
2 1

2

Figure 9–A: Problem 18(b), Section 9.5

x
1

K2 K1 0

x
2 1

2

Figure 9–B: Problem 18(c), Section 9.5

x
1

0 1

x
2 1

2

Figure 9–C: Problem 18(d), Section 9.5
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CHAPTER 10: Partial Differential Equations

EXERCISES 10.2: Method of Separation of Variables

2. y =
(e10 − 1) ex + (1− e2) e5x

e10 − e2

4. y = 2 sin 3x

6. No solution

8. y = ex−1 + xex−1

10. λn =
(2n− 1)2

4
and yn = cn cos

(
2n− 1

2
x

)
, where n = 1, 2, 3, . . . and cn’s are arbitrary

12. λn = 4n2 and yn = cn cos(2nx), where n = 0, 1, 2, . . . and cn’s are arbitrary

14. λn = n2 + 1 and yn = cne
x sin(nx), where n = 1, 2, 3, . . . and cn’s are arbitrary

16. u(x, t) = e−27t sin 3x+ 5e−147t sin 7x− 2e−507t sin 13x

18. u(x, t) = e−48t sin 4x+ 3e−108t sin 6x− e−300t sin 10x

20. u(x, t) = −
(

2

9

)
sin 9t sin 3x+

(
3

7

)
sin 21t sin 7x−

(
1

30

)
sin 30t sin 10x

22. u(x, t) = cos 3t sin x−cos 6t sin 2x+cos 9t sin 3x+

(
2

3

)
sin 9t sin 3x−

(
7

15

)
sin 15t sin 5x

24. u(x, t) =
∞∑

n=1

[
1

n2
cos 4nt+

(−1)n+1

4n2
sin 4nt

]
sinnx

EXERCISES 10.3: Fourier Series

2. Even

4. Neither

6. Odd
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10. f(x) ∼ π

2
− 4

π

∞∑
k=0

1

(2k + 1)2
cos(2k + 1)x

12. f(x) ∼ π2

6
+

∞∑
n=1

[
2(−1)n

n2
cosnx+

(−1)n (2− n2π2)− 2

πn3
sinnx

]

14. f(x) ∼ π

2
+

∞∑
n=1

1

n
sin 2nx

16. f(x) ∼
∞∑

n=1

2 [1− cos (πn/2)]

πn
sinnx

18. The 2π-periodic function g(x), where g(x) = |x| on −π ≤ x ≤ π

20. The 2π-periodic function g(x), where g(x) =


0, −π < x ≤ 0

x2, 0 < x < π

π2/2, x = ±π

22. The 2π-periodic function g(x), where g(x) =


x+ π, −π < x < 0

x, 0 < x < π

π/2, x = 0,±π

24. The 2π-periodic function g(x), where g(x) =



0, −π ≤ x < −π/2
−1/2, x = −π/2
−1, −π/2 < x < 0

0, x = 0

1, 0 < x < π/2

1/2, x = π/2

0, π/2 < x ≤ π

30. a0 =
1

2
, a1 = 0, a2 =

5

8

EXERCISES 10.4: Fourier Cosine and Sine Series

2. (a) The π-periodic function f̃(x) = sin 2x for x 6= kπ, where k is an integer

(b) The 2π-periodic function fo(x) = sin 2x for x 6= kπ, where k is an integer

(c) The 2π-periodic function fe(x), where fe(x) =

{
− sin 2x, −π < x < 0

sin 2x, 0 < x < π
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4. (a) The π-periodic function f̃(x), where f̃(x) = π − x, 0 < x < π

(b) The 2π-periodic function fo(x), where fo(x) =

{
−π − x, −π < x < 0

π − x, 0 < x < π

(c) The 2π-periodic function fe(x), where fe(x) =

{
π + x, −π < x < 0

π − x, 0 < x < π

6. f(x) ∼ 8

π

∞∑
k=1

k

4k2 − 1
sin(2kx)

8. f(x) ∼ 2
∞∑

n=1

1

n
sin(nx)

10. f(x) ∼ 2π
∞∑

n=1

n [1− e(−1)n]

1 + π2n2
sin(πnx)

12. f(x) ∼ 1 +
π

2
− 4

π

∞∑
k=0

1

(2k + 1)2
cos [(2k + 1)x]

14. f(x) ∼ 1− 1

e
+ 2

∞∑
n=1

1− (−1)ne−1

1 + π2n2
cos (πnx)

16. f(x) ∼ 1

6
− 1

π2

∞∑
k=1

1

k2
cos (2πkx)

18. u(x, t) =
8

π

∞∑
k=0

1

(2k + 1)3
e−5(2k+1)2t sin [(2k + 1)x]

EXERCISES 10.5: The Heat Equation

2. u(x, t) =
∞∑

n=1

[
2π(−1)n+1

n
+

4 [(−1)n − 1]

πn3

]
e−n2t sin (nx)

4. u(x, t) =
1

6
− 1

π2

∞∑
k=1

1

k2
e−8π2k2t cos (2πkx)

6. u(x, t) = 1− 2

π
+ 2e−7t cosx+

4

π

∞∑
k=1

1

4k2 − 1
e−28k2t cos (2kx)

8. u(x, t) = 3x+ 6
∞∑

n=1

(−1)n

n
e−n2t sin (nx)
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10. u(x, t) =

(
π2

18

)
x−

(
1

18

)
x3 +

(
1

3

)
e−3t sin x+

2

3

∞∑
n=2

(−1)n

n3
e−3n2t sin (nx)

12. u(x, t) =
∞∑

n=1

ane
−µ2

nt sin (µnx), where {µn}∞n=1 is the increasing sequence of positive real

numbers that are solutions to tan (µnπ) = −µn, and

an =

[
π

2
− sin(2πµn)

4

]−1
π∫

0

f(x) sin (µnx) dx

14. u(x, t) = 1 +

(
5π

6

)
x−

(
5

6

)
x2 − 20

3π

∞∑
k=0

1

(2k + 1)3
e−3(2k+1)2t sin [(2k + 1)x]

16. u(x, y, t) = e−2t cosx sin y + 4e−5t cos 2x sin y − 3e−25t cos 3x sin 4y

18. u(x, y, t) =
(π

2

)
e−t sin y − 4

π

∞∑
k=0

1

(2k + 1)2
e−[(2k+1)2+1]t cos [(2k + 1)x] sin y

EXERCISES 10.6: The Wave Equation

2. u(x, t) =
∞∑

n=1

(an cos 4nt+ bn sin 4nt) sinnx, where

an =

{
0, n even

(2/π) [n/ (n2 − 4)− 1/n] , n odd

and

bn =

{
−1/ [4π (n2 − 1)] , n even

1/(πn2), n odd

4. u(x, t) = sin 4x cos 12t+7 sin 5x cos 15t+
4

3π

∞∑
k=0

(−1)k

(2k + 1)3
sin [(2k + 1)x] sin [3(2k + 1)t]

6. u(x, t) =
2ν0L

3

π3αa(L− a)

∞∑
n=1

1

n3
sin
(nπa
L

)
sin
(nπx
L

)
sin

(
nπαt

L

)

8. u(x, t) = sin x (sin t− t cos t) + 2
∞∑

n=2

(−1)n

n2 (n2 − 1)
(sinnt− n sin t) sinnx

10. u(x, t) = U1 +
(x
L

)
(U2 − U1) +

∞∑
n=1

[
an cos

(
παnt

L

)
+ bn sin

(
παnt

L

)]
sin
(πnx
L

)
,

where an’s and bn’s are chosen that
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f(x) =
∞∑

n=1

an sin
(πnx
L

)
+ U1 +

(x
L

)
(U2 − U1)

g(x) =
∞∑

n=1

bn

(παn
L

)
sin
(πnx
L

)
14. u(x, t) = x2 + α2t2

16. u(x, t) = sin 3x cos 3αt+ t

18. u(x, t) = cos 2x cos 2αt+ t− xt

EXERCISES 10.7: Laplace’s Equation

2. u(x, y) =
cosx sinh(y − π)

sinh(−π)
− 2 cos 4x sinh(4y − 4π)

sinh(−4π)

4. u(x, y) =
sin x sinh(y − π)

sinh(−π)
+

sin 4x sinh(4y − 4π)

sinh(−4π)

8. u(r, θ) =
1

2
+
r2

8
cos 2θ

12. u(r, θ) =
33

36 − 1

(
r3 − r−3

)
cos 3θ +

35

310 − 1

(
r5 − r−5

)
cos 5θ

14. u(r, θ) = C +
∞∑

n=1

r−n (an cosnθ + bn sinnθ),

where C is arbitrary and, for n = 1, 2, . . . ,

an = − 1

πn

π∫
−π

f(θ) cosnθ dθ ,

bn = − 1

πn

π∫
−π

f(θ) sinnθ dθ

16. u(r, θ) =
∞∑

n=1

an sinh

[
π(θ − π)n

ln 2

]
sin

[
π(ln r − ln π)n

ln 2

]
, where

an = − 2

(ln 2) sinh (nπ2/ ln 2)

2π∫
π

(sin r) sin

[
π(ln r − ln π)n

ln 2

]
dr

r
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24. u(x, y) =
∞∑

n=1

Ane
−ny sinnx,

where An =
2

π

π∫
0

f(x) sinnx dx
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CHAPTER 11: Eigenvalue Problems and

Sturm-Liouville Equations

EXERCISES 11.2: Eigenvalues and Eigenfunctions

2. sin x− cosx+ x+ 1

4. ce−2x (sin 2x+ cos 2x)

6. 2ex + e−x − x

8. c1 sin 2x+ c2 cos 2x+ 1

10. No solution

12. No solution

14. λn =
π2n2

9
; yn(x) = bn sin

(πnx
3

)
+ cn cos

(πnx
3

)
, n = 0, 1, 2, . . .

16. λn = 2 +
(2n+ 1)2

4
; yn(x) = cn sin

[
(2n+ 1) x

2

]
, n = 0, 1, 2, . . .

18. λ0 = −µ2
0, where tanh (µ0π) = 2µ0; y0 (x) = c0 sinh (µ0x);

λn = µ2
n, where tan (µnπ) = 2µn; yn (x) = cn sin (µnx), n = 1, 2, 3, . . .

20. λn = π2n2, yn (x) = cn cos (πn lnx), n = 0, 1, 2, . . .

22. λ1 = 4.116, λ2 = 24.139, λ3 = 63.659

24. No nontrivial solutions

26. λn = µ2
n, where cot (µnπ) = µn for µn > 0; yn (x) = cn sin (µnx), n = 1, 2, 3, . . .

28. λn = −µ4
n, µn > 0 and cos (µnL) cosh (µnL) = −1;

yn = cn

[
sin (µnx)− sinh (µnx)−

(
sin (µnL) + sinh (µnL)

cos (µnL) + cosh (µnL)

)
(cos (µnx)− cosh (µnx))

]
,

n = 1, 2, 3, . . .
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34. (b) λ0 = −1, X0 (x) = c and λn = −1 + n2π2, Xn (x) = c cos (πnx)

EXERCISES 11.3: Regular Sturm-Liouville Boundary Value Problems

2. y′′ + λx−1y = 0

4. (xy′)′ + xy − λx−1y = 0

6. [(1− x2) y′]
′
+ λy = 0

8. Yes

10. No

18. (a)
1√
6
,

(
1√
3

)
sin
(nπx

3

)
,

(
1√
3

)
cos
(nπx

3

)
, n = 1, 2, 3, . . .

(b)
∞∑

n=1

(−1)n+1 6

πn
sin
(nπx

3

)

20. (a)

√
2

π
sin

[(
n+

1

2

)
x

]
, n = 0, 1, 2, . . .

(b)
∞∑

n=0

(−1)n 8

π (2n+ 1)2 sin

[(
n+

1

2

)
x

]

22. (a) 2

√
µ0

sinh (2µ0π)− 2µ0π
sinh (µ0x), where tanh (µ0π) = 2µ0;

2

√
µn

2µnπ − sin (2µnπ)
sin (µnx), where tan (µnπ) = 2µn, n = 1, 2, 3, . . .

(b)
4 (π − 2) cosh (µ0π)

sinh (2µ0π)− 2µ0π
sinh (µ0π) +

∞∑
n=1

4(2− π) cos (µnπ)

2µnπ − sin (2µnπ)
sin (µnx)

24. (a) y0 (x) =
1√
e− 1

; yn (x) =
√

2 cos (πn lnx), n = 1, 2, 3, . . .

(b) 1 +
∞∑

n=1

2 [(−1)n e− 1]

1 + π2n2
cos (πn lnx)

EXERCISES 11.4: Nonhomogeneous Boundary Value Problems and the

Fredholm Alternative

2. L+ [y] = x2y′′ + (4x− sin x) y′ + (2x+ 2− cosx) y
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4. L+ [y] = x2y′′ + 6xy′ + 7y

6. L+ [y] = (sinx) y′′ + (2 cosx+ ex) y′ + (− sin x+ ex + 1)y

8. L+ [y] = y′′ + 4y′ + 5y;

D (L+) = {y ∈ C2 [0, 2π] : y(0) = y(2π) = 0}

10. L+ [y] = x2y′′ + 2xy′ +

(
5

4

)
y;

D (L+) = {y ∈ C2 [1, eπ] : y(1) = y(eπ) = 0}

12. y′′ − y′ + y = 0; y(0) = y(π), y′(0) = y′(π)

14. y′′ = 0; y(0) = y
(π

2

)
, y′(0) = y′

(π
2

)
16. x2y′′ + 2xy′ = 0; y(1) = 4y(2), y′(1) = 4y′(2)

18.

2π∫
0

h(x)e−2x sinx dx = 0

20.

eπ∫
1

h(x)x−1/2 sin(lnx) dx = 0

22. Unique solution for each h

24.

π/2∫
0

h(x) dx = 0

26.

2∫
1

h(x)

(
1− 3

x

)
dx = 0

EXERCISES 11.5: Solution by Eigenfunction Expansion

2.

(
1

122

)
sin 11x−

(
1

17

)
sin 4x

4.

(
1

π − 49

)
cos 7x+

(
5

π − 100

)
cos 10x

6.

(
1

19

)
cos 5x−

(
1

10

)
cos 4x
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8.
∞∑

n=0

−8

π(2n+ 1)3(4n2 + 4n− 1)
sin[(2n+ 1)x]

10.
∞∑

n=0

γn

7−
(
n+

1

2

)2 sin

[(
n+

1

2

)
x

]
, where γn =

2

π

π∫
0

f(x) sin

[(
n+

1

2

)
x

]
dx

12. Let γn =
2

π

eπ∫
1

f(x) sin(n lnx) dx.

If γ1 6= 0, there is no solution.

If γ1 = 0, then

c sin(lnx) +
∞∑

n=2

γn

1− n2
sin(n lnx) is a solution

14.
∞∑

n=0

γn

−1− π2n2
cos(πn lnx), where γn =

e∫
1

f(x) cos(πn lnx) dx

e∫
1

x−1 cos2(πn lnx) dx

EXERCISES 11.6: Green’s Functions

2. G(x, s) =


−sinh s sinh(x− 1)

sinh 1
, 0 ≤ s ≤ x

−sinh x sinh(s− 1)

sinh 1
, x ≤ s ≤ 1

4. G(x, s) =

{
− cos s sin x , 0 ≤ s ≤ x

− cosx sin s , x ≤ s ≤ π

6. G(x, s) =

{
(sin s− cos s) sinx , 0 ≤ s ≤ x

(sinx− cosx) sin s , x ≤ s ≤ π

8. G(x, s) =


−(s2 + s−2) (x2 − 16x−2)

68
, 0 ≤ s ≤ x

−(x2 + x−2) (s2 − 16s−2)

68
, x ≤ s ≤ 2
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10. G(x, s) =


(e5s − e−s) (5e6−x + e5x)

30e6 + 6
, 0 ≤ s ≤ x

(e5x − e−x) (5e6−s + e5s)

30e6 + 6
, x ≤ s ≤ 1

12. G(x, s) =


−s(x− π)

π
, 0 ≤ s ≤ x

−x(s− π)

π
, x ≤ s ≤ π

y =
x4 − π3x

12

14. G(x, s) =

{
s , 0 ≤ s ≤ x

x , x ≤ s ≤ π

y =
4π3x− x4

12

16. G(x, s) =


−sin s sin(x− 2)

sin 2
, 0 ≤ s ≤ x

−sin x sin(s− 2)

sin 2
, x ≤ s ≤ 2

y =
12

sin 2
[sin x− sin(x− 2)− sin 2]

18. G(x, s) =


cosh s cosh(x− 1)

sinh 1
, 0 ≤ s ≤ x

coshx cosh(s− 1)

sinh 1
, x ≤ s ≤ 1

y = −24

20. G(x, s) =


−
(

1− 1

s

)(
1− 2

x

)
, 1 ≤ s ≤ x

−
(

1− 1

x

)(
1− 2

s

)
, x ≤ s ≤ 2

y =
2 ln 2

x
+ ln

(x
4

)
24. (a) K(x, s) =

{
ex−ss(1− x) , 0 ≤ s ≤ x

ex−sx(1− s) , x ≤ s ≤ 1

(b) y = (x− 1)ex − xex−1 + 1
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26. (a) K(x, s) =


(s2 − s−2) (3x+ 16x−3)

76
, 1 ≤ s ≤ x

(x− x−3) (3s2 + 16s−2)

76
, x ≤ s ≤ 2

(b) y =

(
1

4

)
x lnx+

4(1 + ln 2)

19
(x−3 − x)

28. H(x, s) =


x(π − s)(s2 − 2πs+ x2

6π
, 0 ≤ s ≤ x

s(π − x)(x2 − 2πx+ s2)

6π
, x ≤ s ≤ π

30. H(x, s) =


x2[(x− 3π)(s3 − 3πs2) + 2π3(x− 3s)]

12π3
, 0 ≤ s ≤ x

s2[(s− 3π)(x3 − 3πx2) + 2π3(s− 3x)]

12π3
, x ≤ s ≤ π

EXERCISES 11.7: Singular Sturm-Liouville Boundary Value Problems

2.
∞∑

n=1

bnJ3(α3nx), where {α3n} is the increasing sequence of real zeros of J3 and

bn =

1∫
0

f(x)J3(α3nx) dx

(µ− α2
3n)

1∫
0

J2
3 (α3nx)x dx

4.
∞∑

n=0

bnPn(x), where

bn =

1∫
−1

f(x)Pn(x) dx

[µ− n(n+ 1)]
1∫
−1

P 2
n(x) dx

6.
∞∑

n=0

bnP2n(x), where

bn =

1∫
0

f(x)P2n(x) dx

[µ− 2n(2n+ 1)]
1∫
0

P 2
2n(x) dx
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16. (c)
∞∑

n=0

bnLn(x), where

bn =

∞∫
0

f(x)Ln(x) dx

(µ− n)
∞∫
0

L2
n(x)e−x dx

EXERCISES 11.8: Oscillation and Comparison Theory

2. No; sin x has a finite number of zeros on any closed bounded interval.

4. No; it has an infinite number of zeros on the interval

[
−1

2
,
1

2

]
8.

π

3

10. Between π

√
e−25

λ+ 1
and π

√
26

λ+ 26 sin 5

REVIEW PROBLEMS

2. (a) (e7xy′)
′
+ λe7xy = 0

(b)
(
e−3x2/2y′

)′
+ λe−3x2/2y = 0

(c) (xe−xy′)
′
+ λe−xy = 0

4. (a) y′′ − xy′ = 0; y′(0) = 0, y′(1) = 0

(b) x2y′′ + 2xy′ − 3y = 0; y(1) = 0, y′(e) = 0

6.
π

6
+ 4 cos 2x+

2

π

∞∑
k=0

1

(2k2 + 2k − 1) (2k + 1)2
cos[(2k + 1)x]

8. (a)
∞∑

n=1

bnJ7(α7nx), where {α7n} is the increasing sequence of real zeros of J7 and

bn =

1∫
0

f(x)J7(α7nx) dx

(µ− α2
7n)

1∫
0

J2
7 (α7nx)x dx

(b)
∞∑

n=0

bnPn(x), where
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bn =

1∫
−1

f(x)Pn(x) dx

[µ− n(n+ 1)]
1∫
−1

P 2
n(x) dx

10. Between
π√
6

and π

√
3

5
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CHAPTER 12: Stability of Autonomous Systems

EXERCISES 12.2: Linear Systems in the Plane

2. Unstable proper node

4. Unstable improper node

6. Stable center

8. (−1,−1) is an asymptotically stable spiral point

10. (2,−2) is an unstable spiral point

12. (5, 1) is an asymptotically stable improper node

14. Unstable proper node. See Fig. 12–A on page 309.

16. Asymptotically stable spiral point. See Fig. 12–B on page 309.

18. Unstable improper node. See Fig. 12–C on page 309.

20. Stable center. See Fig. 12–D on page 310.

EXERCISES 12.3: Almost Linear Systems

2. Asymptotically stable improper node

4. Asymptotically stable spiral point

6. Unstable saddle point

8. Asymptotically stable improper node

10. (0, 0) is indeterminant; (−1, 1) is an unstable saddle point

12. (2, 2) is an asymptotically stable spiral point; (−2,−2) is an unstable saddle point
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14. (3, 3) is an unstable saddle point; (−2,−2) is an asymptotically stable spiral point. See

Fig. 12–E on page 310.

16. (0, 0) is an unstable saddle point; (−4,−2) is an asymptotically stable spiral point. See

Fig. 12–F on page 310.

EXERCISES 12.4: Energy Methods

2. G(x) = sinx+ C; E(x, v) =

(
1

2

)
v2 + sinx

4. G(x) =

(
1

2

)
x2 −

(
1

24

)
x4 +

(
1

720

)
x6 + C;

E(x, v) =

(
1

2

)
v2 +

(
1

2

)
x2 −

(
1

24

)
x4 +

(
1

720

)
x6

6. G(x) = ex − x+ C; E(x, v) =

(
1

2

)
v2 + ex − x− 1

8. See Fig. 12–G on page 311.

10. See Fig. 12–H on page 311.

12. See Fig. 12–I on page 312.

14. vh(x, v) = v2, so energy decreasing along a trajectory. See Fig. 12–A on page 312.

16. vh(x, v) = v2, so energy decreasing along a trajectory. See Fig. 12–B on page 313.

18. See Fig. 12–C on page 313.

EXERCISES 12.5: Lyapunov’s Direct Method

2. Asymptotically stable

4. Stable

6. Unstable

8. Asymptotically stable

10. Stable
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12. Stable

14. Stable

EXERCISES 12.6: Limit Cycles and Periodic Solutions

4. (b) Clockwise

6. r = 0 is an unstable spiral point; r = 2 is a stable limit cycle; r = 5 is an unstable limit

cycle. See Fig. 12–M on page 314.

8. r = 0 is an unstable spiral point. See Fig. 12–N on page 314.

10. r = 0 is an unstable spiral point; r = 2 is a stable limit cycle; r = 3 is a unstable limit

cycle. See Fig. 12–O on page 314.

12. r = 0 is an unstable spiral point; r = nπ is limit cycle that is stable for n odd and

unstable for n even. See Fig. 12–P on page 315.

EXERCISES 12.7: Stability of Higher-Dimensional Systems

2. Asymptotically stable

4. Unstable

6. Asymptotically stable

8. (a) x(t) =

[
c1

c2

]

(b) x(t) = c1

[
1

0

]
+ c2

[
t

1

]
10. Stable

12. Asymptotically stable

14. Asymptotically stable

16. The equilibrium solution corresponding to the critical point (−3, 0, 1) is unstable

18. The equilibrium solutions corresponding to the critical points (0, 0, 0) and (0, 0, 1) are

unstable
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REVIEW PROBLEMS

2. (0, 0) is an unstable saddle point. See Fig. 12–Q on page 315.

4. (0, 0) is a stable center. See Fig. 12–R on page 315.

6. (0, 0) is an unstable improper node. See Fig. 12–S on page 316.

8. See Fig. 12–T on page 316.

10. Unstable

12. Asymptotically stable

14. r = 0 is an asymptotically stable spiral point; r = 2 is an unstable limit cycle; r = 3 is

a stable limit cycle; r = 4 is an unstable limit cycle. See Fig. 12–U on page 316.

16. No

18. Asymptotically stable
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Figure 12–A: Phase plane diagram in Problem 14, Section 12.2
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Figure 12–B: Phase plane diagram in Problem 16, Section 12.2
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Figure 12–C: Phase plane diagram in Problem 18, Section 12.2
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Figure 12–D: Phase plane diagram in Problem 20, Section 12.2
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Figure 12–E: Phase plane diagram in Problem 14, Section 12.3

 
K6 K4 K2 0 2 4 6

 

K6

K4

K2

2

4

6

Figure 12–F: Phase plane diagram in Problem 16, Section 12.3
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Figure 12–G: Potential and Phase plane diagrams in Problem 8, Section 12.4
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Figure 12–H: Potential and Phase plane diagrams in Problem 10, Section 12.4
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Figure 12–I: Potential and Phase plane diagrams in Problem 12, Section 12.4
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Figure 12–J: Phase plane diagram in Problem 14, Section 12.4
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Figure 12–K: Phase plane diagram in Problem 16, Section 12.4
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Figure 12–L: Potential and Phase plane diagrams in Problem 18, Section 12.4
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Figure 12–M: Phase plane diagram in Problem 6, Section 12.6
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Figure 12–N: Phase plane diagram in Problem 8, Section 12.6
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Figure 12–O: Phase plane diagram in Problem 10, Section 12.6
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Figure 12–P: Phase plane diagram in Problem 12, Section 12.6

 
K6 K4 K2 0 2 4 6

 

K6

K4

K2

2

4

6

Figure 12–Q: Phase plane diagram in Problem 2, Review Section
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Figure 12–R: Phase plane diagram in Problem 4, Review Section
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Figure 12–S: Phase plane diagram in Problem 6, Review Section
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Figure 12–T: Potential and Phase plane diagrams in Problem 8, Review Section
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Figure 12–U: Phase plane diagram in Problem 14, Review Section
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CHAPTER 13: Existence and Uniqueness Theory

EXERCISES 13.1: Introduction: Successive Approximations

2. y(x) =
x∫
π

sin[t+ y(t)] dt

4. y(x) = 1 +
x∫
0

ey(t) dt

6. 0.3775396

8. 2.2360680

10. 1.9345632

12. y1(x) = 1 + x; y2(x) = 1 + x+ x2 +

(
1

3

)
x3

14. y1(x) = y2(x) = sin x

16. y1(x) =

(
3

2

)
− x+

(
1

2

)
x2;

y2(x) =

(
5

3

)
−
(

3

2

)
x+ x2 −

(
1

6

)
x3

EXERCISES 13.2: Picard’s Existence and Uniqueness Theorem

2. No

4. Yes

6. Yes

14. No. Let yn(x) =


n2x , 0 ≤ x ≤ (1/n)

2n− n2x , (1/n) ≤ x ≤ (2/n)

0 , 2/n ≤ x ≤ 1 .

Then

lim
n→∞

yn(x) = 0 ,
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but

lim
n→∞

1∫
0

yn(x) dx = 1 6= 0 .

EXERCISES 13.3: Existence of Solutions of Linear Equations

2. [−2, 1)

4. (0, 3]

6. (−∞,∞)

EXERCISES 13.4: Continuous Dependence of Solutions

2. 10−2e

4. 10−2e
√

2 e−1/2

6. 10−2e

8.

(
1

24

)
esin 1

10.
e

6

REVIEW PROBLEMS

2. 0.7390851

4. 9 +

x∫
0

[t2y3(t)− y2(t)] dt

6. y1(x) = −1 + 2x; y2(x) = −1 + 2x− 2x2

8. No

10.
(
−π

2
,
π

2

)
12.

e

6
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