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Some Physical Constants
Quantity Symbol Valuea

Atomic mass unit u 1.660 538 782 (83) 3 10227 kg
931.494 028 (23) MeV/c 2

Avogadro’s number NA 6.022 141 79 (30) 3 1023 particles/mol

Bohr magneton mB 5
e U

2me
9.274 009 15 (23) 3 10224 J/T

Bohr radius a0 5
U2

mee
2ke

5.291 772 085 9 (36) 3 10211 m

Boltzmann’s constant kB 5
R
NA

1.380 650 4 (24) 3 10223 J/K

Compton wavelength lC 5
h

mec
 2.426 310 217 5 (33) 3 10212 m

Coulomb constant ke 5
1

4pP0
8.987 551 788 . . . 3 109 N ? m2/C2 (exact)

Deuteron mass md 3.343 583 20 (17) 3 10227 kg
2.013 553 212 724 (78) u

Electron mass me 9.109 382 15 (45) 3 10231 kg
5.485 799 094 3 (23) 3 1024 u
0.510 998 910 (13) MeV/c 2

Electron volt eV 1.602 176 487 (40) 3 10219 J

Elementary charge e 1.602 176 487 (40) 3 10219 C

Gas constant R 8.314 472 (15) J/mol ? K

Gravitational constant G 6.674 28 (67) 3 10211 N ? m2/kg2

Neutron mass mn 1.674 927 211 (84) 3 10227 kg
1.008 664 915 97 (43) u
939.565 346 (23) MeV/c 2

Nuclear magneton mn 5
e U

2mp
5.050 783 24 (13) 3 10227 J/T

Permeability of free space m0 4p 3 1027 T ? m/A (exact)

Permittivity of free space P0 5
1

m0c
2 8.854 187 817 . . . 3 10212 C2/N ? m2 (exact)

Planck’s constant h 6.626 068 96 (33) 3 10234 J ? s

U 5
h

2p
1.054 571 628 (53) 3 10234 J ? s

Proton mass mp 1.672 621 637 (83) 3 10227 kg
1.007 276 466 77 (10) u
938.272 013 (23) MeV/c 2

Rydberg constant RH 1.097 373 156 852 7 (73) 3 107 m21

Speed of light in vacuum c 2.997 924 58 3 108 m/s (exact)

Note: These constants are the values recommended in 2006 by CODATA, based on a least-squares adjustment of data from different measurements. For a more 
complete list, see P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2006.” Rev. Mod. Phys. 80:2, 
633–730, 2008.

aThe numbers in parentheses for the values represent the uncertainties of the last two digits.



Solar System Data
Mean Radius Mean Distance from

Body Mass (kg) (m) Period (s) the Sun (m)

Mercury 3.30 3 1023 2.44 3 106 7.60 3 106 5.79 3 1010

Venus 4.87 3 1024 6.05 3 106 1.94 3 107 1.08 3 1011

Earth 5.97 3 1024 6.37 3 106 3.156 3 107 1.496 3 1011

Mars 6.42 3 1023 3.39 3 106 5.94 3 107 2.28 3 1011

Jupiter 1.90 3 1027 6.99 3 107 3.74 3 108 7.78 3 1011

Saturn 5.68 3 1026 5.82 3 107 9.29 3 108 1.43 3 1012

Uranus 8.68 3 1025 2.54 3 107 2.65 3 109 2.87 3 1012

Neptune 1.02 3 1026 2.46 3 107 5.18 3 109 4.50 3 1012

Plutoa 1.25 3 1022 1.20 3 106 7.82 3 109 5.91 3 1012

Moon 7.35 3 1022 1.74 3 106 — —
Sun 1.989 3 1030 6.96 3 108 — —

aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is 
now defined as a “dwarf planet” (like the asteroid Ceres).

Physical Data Often Used
Average Earth–Moon distance 3.84 3 108 m

Average Earth–Sun distance 1.496 3 1011 m

Average radius of the Earth 6.37 3 106 m

Density of air (208C and 1 atm) 1.20 kg/m3

Density of air (0°C and 1 atm) 1.29 kg/m3

Density of water (208C and 1 atm) 1.00 3 103 kg/m3

Free-fall acceleration 9.80 m/s2

Mass of the Earth 5.97 3 1024 kg

Mass of the Moon 7.35 3 1022 kg

Mass of the Sun 1.99 3 1030 kg

Standard atmospheric pressure 1.013 3 105 Pa

Note: These values are the ones used in the text.

Some Prefixes for Powers of Ten
Power Prefix Abbreviation Power Prefix Abbreviation

 10224 yocto y 101 deka da

 10221 zepto z 102 hecto h

 10218 atto a 103 kilo k

 10215 femto f 106 mega M

 10212 pico p 109 giga G

 1029 nano n 1012 tera T

 1026 micro m 1015 peta P

 1023 milli m 1018 exa E

 1022 centi c 1021 zetta Z

 1021 deci d 1024 yotta Y
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Preface

In writing this Ninth Edition of Physics for Scientists and Engineers, we continue our ongoing efforts to improve the 
clarity of presentation and include new pedagogical features that help support the learning and teaching processes. 
Drawing on positive feedback from users of the Eighth Edition, data gathered from both professors and students 
who use Enhanced WebAssign, as well as reviewers’ suggestions, we have refined the text to better meet the needs 
of students and teachers.
 This textbook is intended for a course in introductory physics for students majoring in science or engineering. 
The entire contents of the book in its extended version could be covered in a three-semester course, but it is pos-
sible to use the material in shorter sequences with the omission of selected chapters and sections. The mathematical 
background of the student taking this course should ideally include one semester of calculus. If that is not possible, 
the student should be enrolled in a concurrent course in introductory calculus.

Content
The material in this book covers fundamental topics in classical physics and provides an introduction to modern phys-
ics. The book is divided into six parts. Part 1 (Chapters 1 to 14) deals with the fundamentals of Newtonian mechanics 
and the physics of fluids; Part 2 (Chapters 15 to 18) covers oscillations, mechanical waves, and sound; Part 3 (Chap-
ters 19 to 22) addresses heat and thermodynamics; Part 4 (Chapters 23 to 34) treats electricity and magnetism; Part 
5 (Chapters 35 to 38) covers light and optics; and Part 6 (Chapters 39 to 46) deals with relativity and modern physics.

Objectives
This introductory physics textbook has three main objectives: to provide the student with a clear and logical presen-
tation of the basic concepts and principles of physics, to strengthen an understanding of the concepts and principles 
through a broad range of interesting real-world applications, and to develop strong problem-solving skills through 
an effectively organized approach. To meet these objectives, we emphasize well-organized physical arguments and a 
focused problem-solving strategy. At the same time, we attempt to motivate the student through practical examples 
that demonstrate the role of physics in other disciplines, including engineering, chemistry, and medicine.

Changes in the Ninth Edition
A large number of changes and improvements were made for the Ninth Edition of this text. Some of the new fea-
tures are based on our experiences and on current trends in science education. Other changes were incorporated 
in response to comments and suggestions offered by users of the Eighth Edition and by reviewers of the manuscript. 
The features listed here represent the major changes in the Ninth Edition.

Enhanced Integration of the Analysis Model Approach to Problem Solving. Students are faced with hundreds of problems 
during their physics courses. A relatively small number of fundamental principles form the basis of these problems. 
When faced with a new problem, a physicist forms a model of the problem that can be solved in a simple way by iden-
tifying the fundamental principle that is applicable in the problem. For example, many problems involve conserva-
tion of energy, Newton’s second law, or kinematic equations. Because the physicist has studied these principles and 
their applications extensively, he or she can apply this knowledge as a model for solving a new problem. Although 
it would be ideal for students to follow this same process, most students have difficulty becoming familiar with the 
entire palette of fundamental principles that are available. It is easier for students to identify a situation rather than 
a fundamental principle. 
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 The Analysis Model approach we focus on in this revision lays out a standard set of situations that appear in most 
physics problems. These situations are based on an entity in one of four simplification models: particle, system, 
rigid object, and wave. Once the simplification model is identified, the student thinks about what the entity is 
doing or how it interacts with its environment. This leads the student to identify a particular Analysis Model for the 
problem. For example, if an object is falling, the object is recognized as a particle experiencing an acceleration due 
to gravity that is constant. The student has learned that the Analysis Model of a particle under constant acceleration 
describes this situation. Furthermore, this model has a small number of equations associated with it for use in start-
ing problems, the kinematic equations presented in Chapter 2. Therefore, an understanding of the situation has led 
to an Analysis Model, which then identifies a very small number of equations to start the problem, rather than the 
myriad equations that students see in the text. In this way, the use of Analysis Models leads the student to identify 
the fundamental principle. As the student gains more experience, he or she will lean less on the Analysis Model 
approach and begin to identify fundamental principles directly.
 To better integrate the Analysis Model approach for this edition, Analysis Model descriptive boxes have been 
added at the end of any section that introduces a new Analysis Model. This feature recaps the Analysis Model intro-
duced in the section and provides examples of the types of problems that a student could solve using the Analysis 
Model. These boxes function as a “refresher” before students see the Analysis Models in use in the worked examples 
for a given section. 
 Worked examples in the text that utilize Analysis Models are now designated with an AM  icon for ease of refer-
ence. The solutions of these examples integrate the Analysis Model approach to problem solving. The approach is 
further reinforced in the end-of-chapter summary under the heading Analysis Models for Problem Solving, and through 
the new Analysis Model Tutorials that are based on selected end-of-chapter problems and appear in Enhanced 
WebAssign.

Analysis Model Tutorials. John Jewett developed 165 tutorials (indicated in each chapter’s problem set with an AMT  
icon) that strengthen students’ problem-solving skills by guiding them through the steps in the problem-solving pro-
cess. Important first steps include making predictions and focusing on physics concepts before solving the problem 
quantitatively. A critical component of these tutorials is the selection of an appropriate Analysis Model to describe 
what is going on in the problem. This step allows students to make the important link between the situation in 
the problem and the mathematical representation of the situation. Analysis Model tutorials include meaningful 
feedback at each step to help students practice the problem-solving process and improve their skills. In addition, 
the feedback addresses student misconceptions and helps them to catch algebraic and other mathematical errors. 
Solutions are carried out symbolically as long as possible, with numerical values substituted at the end. This feature 
helps students understand the effects of changing the values of each variable in the problem, avoids unnecessary 
repetitive substitution of the same numbers, and eliminates round-off errors. Feedback at the end of the tutorial 
encourages students to compare the final answer with their original predictions.

Annotated Instructor’s Edition. New for this edition, the Annotated Instructor’s Edition provides instructors with 
teaching tips and other notes on how to utilize the textbook in the classroom, via cyan annotations. Additionally, 
the full complement of icons describing the various types of problems will be included in the questions/problems 
sets (the Student Edition contains only those icons needed by students).

PreLecture Explorations. The Active Figure questions in WebAssign from the Eighth Edition have been completely 
revised. The simulations have been updated, with additional parameters to enhance investigation of a physical phe-
nomenon. Students can make predictions, change the parameters, and then observe the results. Each new PreLecture 
Exploration comes with conceptual and analytical questions that guide students to a deeper understanding and help 
promote a robust physical intuition.

New Master Its Added in Enhanced WebAssign. Approximately 50 new Master Its in Enhanced WebAssign have been 
added for this edition to the end-of-chapter problem sets.

 Chapter-by-Chapter Changes
The list below highlights some of the major changes for the Ninth Edition.
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Chapter 1
• Two new Master Its were added to the end-of-chapter

problems set.
• Three new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 2
• A new introduction to the concept of Analysis Models

has been included in Section 2.3.
• Three Analysis Model descriptive boxes have been

added, in Sections 2.3 and 2.6.
• Several textual sections have been revised to make more

explicit references to analysis models.
• Three new Master Its were added to the end-of-chapter

problems set.
• Five new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 3
• Three new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 4
• An Analysis Model descriptive box has been added, in

Section 4.6.
• Several textual sections have been revised to make more

explicit references to analysis models.
• Three new Master Its were added to the end-of-chapter

problems set.
• Five new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 5
• Two Analysis Model descriptive boxes have been added,

in Section 5.7.
• Several examples have been modified so that numerical

values are put in only at the end of the solution.
• Several textual sections have been revised to make more

explicit references to analysis models.
• Four new Master Its were added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 6
• An Analysis Model descriptive box has been added, in

Section 6.1.
• Several examples have been modified so that numerical

values are put in only at the end of the solution.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 7
• The notation for work done on a system externally and

internally within a system has been clarified.
• The equations and discussions in several sections have

been modified to more clearly show the comparisons 
of similar potential energy equations among different 
situations.

• One new Master It was added to the end-of-chapter
problems set.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 8
• Two Analysis Model descriptive boxes have been added,

in Sections 8.1 and 8.2.
• The problem-solving strategy in Section 8.2 has been

reworded to account for a more general application to 
both isolated and nonisolated systems.

• As a result of a suggestion from a PER team at Univer-
sity of Washington and Pennsylvania State University, 
Example 8.1 has been rewritten to demonstrate to 
students the effect of choosing different systems on the 
development of the solution.

• All examples in the chapter have been rewritten to
begin with Equation 8.2 directly rather than beginning 
with the format Ei 5 Ef .

• Several examples have been modified so that numerical
values are put in only at the end of the solution.

• The problem-solving strategy in Section 8.4 has been
deleted and the text material revised to incorporate 
these ideas on handling energy changes when noncon-
servative forces act.

• Several textual sections have been revised to make more
explicit references to analysis models.

• One new Master It was added to the end-of-chapter
problems set.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 9
• Two Analysis Model descriptive boxes have been added,

in Section 9.3.
• Several examples have been modified so that numerical

values are put in only at the end of the solution.
• Five new Master Its were added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 10
• The order of four sections (10.4–10.7) has been modified

so as to introduce moment of inertia through torque 
(rather than energy) and to place the two sections on 
energy together. The sections have been revised accord-
ingly to account for the revised development of con-
cepts. This revision makes the order of approach similar 
to the order of approach students have already seen in 
translational motion.

• New introductory paragraphs have been added to sev-
eral sections to show how the development of our analy-
sis of rotational motion parallels that followed earlier 
for translational motion.

• Two Analysis Model descriptive boxes have been added,
in Sections 10.2 and 10.5.

• Several textual sections have been revised to make more
explicit references to analysis models.
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• Two new Master Its were added to the end-of-chapter
problems set.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 11
• Two Analysis Model descriptive boxes have been added,

in Sections 11.2 and 11.4.
• Angular momentum conservation equations have been

revised so as to be presented as DL 5 (0 or tdt) in order 
to be consistent with the approach in Chapter 8 for 
energy conservation and Chapter 9 for linear momen-
tum conservation.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 12
• One Analysis Model descriptive box has been added, in

Section 12.1.
• Several examples have been modified so that numerical

values are put in only at the end of the solution.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 13
• Sections 13.3 and 13.4 have been interchanged to pro-

vide a better flow of concepts.
• A new analysis model has been introduced: Particle in a

Field (Gravitational). This model is introduced because 
it represents a physical situation that occurs often.  
In addition, the model is introduced to anticipate the 
importance of versions of this model later in electric-
ity and magnetism, where it is even more critical. An 
Analysis Model descriptive box has been added in 
Section 13.3. In addition, a new summary flash card 
has been added at the end of the chapter, and textual 
material has been revised to make reference to the 
new model.

• The description of the historical goals of the Cavendish
experiment in 1798 has been revised to be more consis-
tent with Cavendish’s original intent and the knowledge 
available at the time of the experiment.

• Newly discovered Kuiper belt objects have been added,
in Section 13.4.

• Textual material has been modified to make a stronger
tie-in to Analysis Models, especially in the energy sec-
tions 13.5 and 13.6.

• All conservation equations have been revised so as to be
presented with the change in the system on the left and 
the transfer across the boundary of the system on the 
right, in order to be consistent with the approach in ear-
lier chapters for energy conservation, linear momentum 
conservation, and angular momentum conservation.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 14
• Several textual sections have been revised to make more

explicit references to Analysis Models.
• Several examples have been modified so that numerical

values are put in only at the end of the solution.

• One new Master It was added to the end-of-chapter
problems set.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 15
• An Analysis Model descriptive box has been added, in

Section 15.2.
• Several textual sections have been revised to make more

explicit references to Analysis Models.
• Four new Master Its were added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 16
• A new Analysis Model descriptive box has been added,

in Section 16.2.
• Section 16.3, on the derivation of the speed of a wave on

a string, has been completely rewritten to improve the 
logical development.

• Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 17
• One new Master It was added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 18
• Two Analysis Model descriptive boxes have been added,

in Sections 18.1 and 18.3.
• Two new Master Its were added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 19
• Several examples have been modified so that numerical

values are put in only at the end of the solution.
• One new Master It was added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 20
• Section 20.3 was revised to emphasize the focus on

systems.
• Five new Master Its were added to the end-of-chapter

problems set.
• Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 21
• A new introduction to Section 21.1 sets up the notion

of structural models to be used in this chapter and future 
chapters for describing systems that are too large or too 
small to observe directly.

• Fifteen new equations have been numbered, and all
equations in the chapter have been renumbered. This 
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new program of equation numbers allows easier and 
more efficient referencing to equations in the develop-
ment of kinetic theory.

•	 The order of Sections 21.3 and 21.4 has been reversed to 
provide a more continuous discussion of specific heats  
of gases.

•	 One new Master It was added to the end-of-chapter 
problems set.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 22
•	 In Section 22.4, the discussion of Carnot’s theorem has 

been rewritten and expanded, with a new figure added 
that is connected to the proof of the theorem.

•	 The material in Sections 22.6, 22.7, and 22.8 has been 
completely reorganized, reordered, and rewritten.  The 
notion of entropy as a measure of disorder has been 
removed in favor of more contemporary ideas from the 
physics education literature on entropy and its relation-
ship to notions such as uncertainty, missing informa-
tion, and energy spreading.

•	 Two new Pitfall Preventions have been added in Section 
22.6 to help students with their understanding of entropy.

•	 There is a newly added argument for the equivalence of 
the entropy statement of the second law and the Clau-
sius and Kelvin–Planck statements in Section 22.8.

•	 Two new summary flashcards have been added relating 
to the revised entropy discussion.

•	 Three new Master Its were added to the end-of-chapter 
problems set.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 23
•	 A new analysis model has been introduced: Particle in a 

Field (Electrical). This model follows on the introduction 
of the Particle in a Field (Gravitational) model intro-
duced in Chapter 13. An Analysis Model descriptive 
box has been added, in Section 23.4. In addition, a new 
summary flash card has been added at the end of the 
chapter, and textual material has been revised to make 
reference to the new model.

•	 A new What If? has been added to Example 23.9 in 
order to make a connection to infinite planes of charge, 
to be further studied in later chapters.

•	 Several textual sections and worked examples have  
been revised to make more explicit references to analy-
sis models.

•	 One new Master It was added to the end-of-chapter 
problems set.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 24
•	 Section 24.1 has been significantly revised to clarify 

the geometry of area elements through which electric 
field lines pass to generate an electric flux.

•	 Two new figures have been added to Example 24.5 to 
further explore the electric fields due to single and 
paired infinite planes of charge.

•	 Two new Master Its were added to the end-of-chapter 
problems set.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 25
•	 Sections 25.1 and 25.2 have been significantly revised to 

make connections to the new particle in a field analysis 
models introduced in Chapters 13 and 23.

•	 Example 25.4 has been moved so as to appear after  
the Problem-Solving Strategy in Section 25.5,  
allowing students to compare electric fields due to 
a small number of charges and a continuous charge 
distribution.

•	 Two new Master Its were added to the end-of-chapter 
problems set.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 26
•	 The discussion of series and parallel capacitors in Sec-

tion 26.3 has been revised for clarity.
•	 The discussion of potential energy associated with an 

electric dipole in an electric field in Section 26.6 has 
been revised for clarity.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 27
•	 The discussion of the Drude model for electrical  

conduction in Section 27.3 has been revised to follow 
the outline of structural models introduced in  
Chapter 21.

•	 Several textual sections have been revised to make more 
explicit references to analysis models.

•	 Five new Master Its were added to the end-of-chapter 
problems set.

•	 Four new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 28
•	 The discussion of series and parallel resistors in Section 

28.2 has been revised for clarity.
•	 Time-varying charge, current, and voltage have been 

represented with lowercase letters for clarity in distin-
guishing them from constant values.

•	 Five new Master Its were added to the end-of-chapter 
problems set.

•	 Two new Analysis Model Tutorials were added for this 
chapter in Enhanced WebAssign.

Chapter 29
•	 A new analysis model has been introduced: Particle in a 

Field (Magnetic). This model follows on the introduction 
of the Particle in a Field (Gravitational) model intro-
duced in Chapter 13 and the Particle in a Field (Electri-
cal) model in Chapter 23. An Analysis Model descriptive 
box has been added, in Section 29.1. In addition, a new 
summary flash card has been added at the end of the 
chapter, and textual material has been revised to make 
reference to the new model.
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•	 One new Master It was added to the end-of-chapter
problems set.

•	 Six new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 30
•	 Several textual sections have been revised to make more

explicit references to analysis models.
•	 One new Master It was added to the end-of-chapter

problems set.
•	 Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 31
•	 Several textual sections have been revised to make more

explicit references to analysis models.
•	 One new Master It was added to the end-of-chapter

problems set.
•	 Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 32
•	 Several textual sections have been revised to make more

explicit references to analysis models.
•		Time-varying charge, current, and voltage have been

represented with lowercase letters for clarity in distin-
guishing them from constant values.

•	 Two new Master Its were added to the end-of-chapter
problems set.

•	 Three new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 33
•	 Phasor colors have been revised in many figures to

improve clarity of presentation.
•	 Three new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 34
•	 Several textual sections have been revised to make more

explicit references to analysis models.
•	 The status of spacecraft related to solar sailing has been

updated in Section 34.5.
•	 Six new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 35
•	 Two new Analysis Model descriptive boxes have been

added, in Sections 35.4 and 35.5.
•	 Several textual sections and worked examples have

been revised to make more explicit references to  
analysis models.

•	 Five new Master Its were added to the end-of-chapter
problems set.

•	 Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 36
•	 The discussion of the Keck Telescope in Section 36.10

has been updated, and a new figure from the Keck has 

been included, representing the first-ever direct optical 
image of a solar system beyond ours.

•	 Five new Master Its were added to the end-of-chapter
problems set.

•	 Three new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 37
•	 An Analysis Model descriptive box has been added, in

Section 37.2.
•	 The discussion of the Laser Interferometer Gravitational-

Wave Observatory (LIGO) in Section 37.6 has been 
updated.

•	 Three new Master Its were added to the end-of-chapter
problems set.

•	 Four new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 38
•	 Four new Master Its were added to the end-of-chapter

problems set.
•	 Three new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 39
•	 Several textual sections have been revised to make more

explicit references to analysis models.
•	 Sections 39.8 and 39.9 from the Eighth Edition have

been combined into one section.
•	 Five new Master Its were added to the end-of-chapter

problems set.
•	 Four new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 40
•	 The discussion of the Planck model for blackbody radia-

tion in Section 40.1 has been revised to follow the out-
line of structural models introduced in Chapter 21.

•	 The discussion of the Einstein model for the photoelec-
tric effect in Section 40.2 has been revised to follow the 
outline of structural models introduced in Chapter 21.

•	 Several textual sections have been revised to make more
explicit references to analysis models.

•	 Two new Master Its were added to the end-of-chapter
problems set.

•	 Two new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 41
•	 An Analysis Model descriptive box has been added, in

Section 41.2.
•	 One new Analysis Model Tutorial was added for this

chapter in Enhanced WebAssign.

Chapter 42
•	 The discussion of the Bohr model for the hydrogen

atom in Section 42.3 has been revised to follow the out-
line of structural models introduced in Chapter 21.

•	 In Section 42.7, the tendency for atomic systems to drop
to their lowest energy levels is related to the new discus-



Preface xv

sion of the second law of thermodynamics appearing in 
Chapter 22.

•	 The discussion of the applications of lasers in Section
42.10 has been updated to include laser diodes, carbon 
dioxide lasers, and excimer lasers.

•	 Several textual sections have been revised to make more
explicit references to analysis models.

•	 Five new Master Its were added to the end-of-chapter
problems set.

•	 Three new Analysis Model Tutorials were added for this
chapter in Enhanced WebAssign.

Chapter 43
•	 A new discussion of the contribution of carbon dioxide

molecules in the atmosphere to global warming has 
been added to Section 43.2. A new figure has been 
added, showing the increasing concentration of carbon 
dioxide in the past decades.

•	 A new discussion of graphene (Nobel Prize in
Physics, 2010) and its properties has been added to 
Section 43.4.

•	 The discussion of worldwide photovoltaic power plants
in Section 43.7 has been updated.

•	 The discussion of transistor density on microchips in
Section 43.7 has been updated.

•	 Several textual sections and worked examples have
been revised to make more explicit references to analy-
sis models.

•	 One new Analysis Model Tutorial was added for this
chapter in Enhanced WebAssign.

Chapter 44
•	 Data for the helium-4 atom were added to Table 44.1.
•	 Several textual sections have been revised to make more

explicit references to analysis models.
•	 Three new Master Its were added to the end-of-chapter

problems set.
•	 Two new Analysis Model Tutorials were added for this

chapter in Enhanced WebAssign.

Chapter 45
•	 Discussion of the March 2011 nuclear disaster after

the earthquake and tsunami in Japan was added to  
Section 45.3.

•	 The discussion of the International Thermonuclear
Experimental Reactor (ITER) in Section 45.4 has been 
updated.

•	 The discussion of the National Ignition Facility (NIF)
in Section 45.4 has been updated.

•	 The discussion of radiation dosage in Section 45.5 has
been cast in terms of SI units grays and sieverts.

•	 Section 45.6 from the Eighth Edition has been deleted.
•	 Four new Master Its were added to the end-of-chapter

problems set.
•	 One new Analysis Model Tutorial was added for this

chapter in Enhanced WebAssign.

Chapter 46
•	 A discussion of the ALICE (A Large Ion Collider Exper-

iment) project searching for a quark–gluon plasma at 
the Large Hadron Collider (LHC) has been added to 
Section 46.9.

•	 A discussion of the July 2012 announcement of the
discovery of a Higgs-like particle from the ATLAS (A 
Toroidal LHC Apparatus) and CMS (Compact Muon 
Solenoid) projects at the Large Hadron Collider (LHC) 
has been added to Section 46.10.

•	 A discussion of closures of colliders due to the begin-
ning of operations at the Large Hadron Collider (LHC) 
has been added to Section 46.10.

•	 A discussion of recent missions and the new Planck mis-
sion to study the cosmic background radiation has been 
added to Section 46.11.

•	 Several textual sections have been revised to make more
explicit references to analysis models.

•	 One new Master It was added to the end-of-chapter
problems set.

•	 One new Analysis Model Tutorial was added for this
chapter in Enhanced WebAssign.

Text Features
Most instructors believe that the textbook selected for a course should be the stu-
dent’s primary guide for understanding and learning the subject matter. Further-
more, the textbook should be easily accessible and should be styled and written to 
facilitate instruction and learning. With these points in mind, we have included 
many pedagogical features, listed below, that are intended to enhance its useful-
ness to both students and instructors.

Problem Solving and Conceptual Understanding
General Problem-Solving Strategy. A general strategy outlined at the end of Chapter 
2 (pages 45–47) provides students with a structured process for solving problems. 
In all remaining chapters, the strategy is employed explicitly in every example so 
that students learn how it is applied. Students are encouraged to follow this strategy 
when working end-of-chapter problems.

Worked Examples. All in-text worked examples are presented in a two-column format  
to better reinforce physical concepts. The left column shows textual information 
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that describes the steps for solving the problem. The right column shows the math-
ematical manipulations and results of taking these steps. This layout facilitates 
matching the concept with its mathematical execution and helps students orga-
nize their work. The examples closely follow the General Problem- Solving Strategy 
introduced in Chapter 2 to reinforce effective problem-solving habits. All worked 
examples in the text may be assigned for homework in Enhanced WebAssign. A 
sample of a worked example can be found on the next page. 
 Examples consist of two types. The first (and most common) example type pre-
sents a problem and numerical answer. The second type of example is conceptual 
in nature. To accommodate increased emphasis on understanding physical con-
cepts, the many conceptual examples are labeled as such and are designed to help 
students focus on the physical situation in the problem. Worked examples in the 
text that utilize Analysis Models are now designated with an AM  icon for ease of 
reference, and the solutions of these examples now more thoroughly integrate the 
Analysis Model approach to problem solving.
 Based on reviewer feedback from the Eighth Edition, we have made careful revi-
sions to the worked examples so that the solutions are presented symbolically as 
far as possible, with numerical values substituted at the end. This approach will 
help students think symbolically when they solve problems instead of unnecessarily 
inserting numbers into intermediate equations.

What If? Approximately one-third of the worked examples in the text contain a 
What If? feature. At the completion of the example solution, a What If? question 
offers a variation on the situation posed in the text of the example. This feature 
encourages students to think about the results of the example, and it also assists in 
conceptual understanding of the principles. What If? questions also prepare stu-
dents to encounter novel problems that may be included on exams. Some of the 
end-of-chapter problems also include this feature.

Quick Quizzes. Students are provided an opportunity to test their understanding of 
the physical concepts presented through Quick Quizzes. The questions require stu-
dents to make decisions on the basis of sound reasoning, and some of the questions 
have been written to help students overcome common misconceptions. Quick Quiz-
zes have been cast in an objective format, including multiple-choice, true–false, 
and ranking. Answers to all Quick Quiz questions are found at the end of the text. 
Many instructors choose to use such questions in a “peer instruction” teaching style 
or with the use of personal response system “clickers,” but they can be used in stan-
dard quiz format as well. An example of a Quick Quiz follows below.

Q uick Quiz 7.5  A dart is inserted into a spring-loaded dart gun by pushing the 
spring in by a distance x. For the next loading, the spring is compressed a dis-
tance 2x. How much faster does the second dart leave the gun compared with 
the first? (a) four times as fast (b) two times as fast (c) the same (d) half as fast 
(e) one-fourth as fast

Pitfall Preventions. More than two hundred Pitfall Preventions (such as the one to 
the left) are provided to help students avoid common mistakes and misunderstand-
ings. These features, which are placed in the margins of the text, address both  
common student misconceptions and situations in which students often follow 
unproductive paths.

Summaries. Each chapter contains a summary that reviews the important concepts 
and equations discussed in that chapter. The summary is divided into three sections: 
Definitions, Concepts and Principles, and Analysis Models for Problem Solving.  
In each section, flash card–type boxes focus on each separate definition, concept, 
principle, or analysis model.

Pitfall Prevention 16.2
two Kinds of Speed/Velocity  
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.
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1.1 First-Level Head

Example 3.2 A Vacation Trip

A car travels 20.0 km due north and then 35.0 km 
in a direction 60.0° west of north as shown in Fig-
ure 3.11a. Find the magnitude and direction of 
the car’s resultant displacement.

Conceptualize The vectors and  drawn in 
Figure 3.11a help us conceptualize the problem. 
The resultant vector  has also been drawn. We 
expect its magnitude to be a few tens of kilome-
ters. The angle  that the resultant vector makes 
with the  axis is expected to be less than 60°, the 
angle that vector  makes with the  axis.

Categorize  We can categorize this example as a simple analysis problem in vector addition. The displacement is the 
resultant when the two individual displacements and  are added. We can further categorize it as a problem about 
the analysis of triangles, so we appeal to our expertise in geometry and trigonometry.

Analyze In this example, we show two ways to analyze the problem of finding the resultant of two vectors. The first way is 
to solve the problem geometrically, using graph paper and a protractor to measure the magnitude of and its direction 
in Figure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors 
to check your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit but not to 
three-digit precision. Try using these tools on in Figure 3.11a and compare to the trigonometric analysis below!
 The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of  can be 
obtained from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

S o l u t i o n

Use  cos  from the law of cosines to 
find 

 cos 

Figure 3.11 (Example 3.2) (a) Graphical method for finding the resul
tant displacement vector  (b) Adding the vectors in reverse 
order  gives the same result for 

Substitute numerical values, noting that  
 180°  60°  120°:

20.0 km 35.0 km 20.0 km 2 135.0 km  cos 120

   48.2 km

Use the law of sines (Appendix B.4) to find the direction 
 measured from the northerly direction:

sin sin 

sin b 5   sin u 5
35.0 km
48.2 km

 sin 1208 5 0.629

   38.9°

The resultant displacement of the car is 48.2 km in a direction 38.9° west of north.

Finalize Does the angle  that we calculated agree with an 
estimate made by looking at Figure 3.11a or with an actual 
angle measured from the diagram using the graphical 
method? Is it reasonable that the magnitude of is larg-
er than that of both and ? Are the units of correct?
 Although the head to tail method of adding vectors 
works well, it suffers from two disadvantages. First, some 

people find using the laws of cosines and sines to be awk-
ward. Second, a triangle only results if you are adding 
two vectors. If you are adding three or more vectors, the 
resulting geometric shape is usually not a triangle. In Sec-
tion 3.4, we explore a new method of adding vectors that 
will address both of these disadvantages.

Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.0° west of north first and 
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an 
addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same 
resultant vector.

What 

What If? statements appear in about one-third of the worked examples and offer a variation on the situation 
posed in the text of the example. For instance, this feature might explore the effects of changing the conditions of 
the situation, determine what happens when a quantity is taken to a particular limiting value, or question whether 
additional information can be determined about the problem situation. This feature encourages students to think 
about the results of the example and assists in conceptual understanding of the principles.

Each solution has 
been written to 
closely follow the 
General Problem-
Solving Strategy as 
outlined on pages 
45–47 in Chapter 
2, so as to reinforce 
good problem-
solving habits.

Each step of the 
solution is detailed 
in a two-column 
format. The left 
column provides 
an explanation for 
each mathematical 
step in the right 
column, to better 
reinforce the physi
cal concepts.

 All worked examples are also available 
to be assigned as interactive examples in the Enhanced 
WebAssign homework management system.
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Questions and Problems Sets. For the Ninth Edition, the authors reviewed each ques
tion and problem and incorporated revisions designed to improve both readability 
and assignability. More than 10% of the problems are new to this edition.

Questions. The Questions section is divided into two sections: Objective Questions
and Conceptual Questions. The instructor may select items to assign as homework or 
use in the classroom, possibly with “peer instruction” methods and possibly with 
personal response systems. More than 900 Objective and Conceptual Questions are 
included in this edition. Answers for selected questions are included in the Student 
Solutions Manual/Study Guide, and answers for all questions are found in the Instruc
tor’s Solutions Manual.

Objective Questions are multiple-choice, true–false, ranking, or other multiple 
guess–type questions. Some require calculations designed to facilitate students’ 
familiarity with the equations, the variables used, the concepts the variables rep
resent, and the relationships between the concepts. Others are more conceptual in 
nature and are designed to encourage conceptual thinking. Objective Questions 
are also written with the personal response system user in mind, and most of the 
questions could easily be used in these systems.

Conceptual Questions are more traditional short-answer and essay-type questions 
that require students to think conceptually about a physical situation.

Problems. An extensive set of problems is included at the end of each chapter; in 
all, this edition contains more than 3 700 problems. Answers for odd-numbered 
problems are provided at the end of the book. Full solutions for approximately 20% 
of the problems are included in the Student Solutions Manual/Study Guide, and solu
tions for all problems are found in the Instructor’s Solutions Manual.

The end-of-chapter problems are organized by the sections in each chapter 
(about two-thirds of the problems are keyed to specific sections of the chapter). 
Within each section, the problems now “platform” students to higher-order think
ing by presenting all the straightforward problems in the section first, followed 
by the intermediate problems. (The problem numbers for straightforward prob
lems are printed in black; intermediate-level problems are in blue.) The Additional 
Problems section contains problems that are not keyed to specific sections. At the 
end of each chapter is the Challenge Problems section, which gathers the most diffi
cult problems for a given chapter in one place. (Challenge Problems have problem 
numbers marked in red.

There are several kinds of problems featured in this text:

Quantitative/Conceptual problems (indicated in the Annotated Instructor’s Edi
tion) contain parts that ask students to think both quantitatively and conceptually. 
An example of a Quantitative/Conceptual problem appears here:

242 Chapter Conservation of Energy

load a distance /2 in time interval /2, then 
(4) /2 will move /2 the given distance in the 
given time interval 

(a) Show that Aristotle’s proportions are included in 
the equation bwd, where is a proportionality 
constant. (b) Show that our theory of motion includes 
this part of Aristotle’s theory as one special case. In 
particular, describe a situation in which it is true, 
derive the equation representing Aristotle’s propor
tions, and determine the proportionality constant.

61. A child’s pogo stick (Fig. P8.61)
stores energy in a spring with a
force constant of 2.50 

N/m. At position 
0.100  m), the spring com

pression is a maximum and the
child is momentarily at rest. At
position  0), the spring
is relaxed and the child is mov
ing upward. At position , the
child is again momentarily at
rest at the top of the jump. The
combined mass of child and
pogo stick is 25.0 kg. Although
the boy must lean forward to
remain balanced, the angle is small, so let’s assume the
pogo stick is vertical. Also assume the boy does not
bend his legs during the motion. (a) Calculate the total
energy of the child–stick–Earth system, taking both
gravitational and elastic potential energies as zero for

0. (b) Determine . (c) Calculate the speed of the
child at 0. (d) Determine the value of  for which
the kinetic energy of the system is a maximum. (e) Cal
culate the child’s maximum upward speed.

62. A 1.00-kg object slides
to the right on a sur
face having a coeffi
cient of kinetic friction
0.250 (Fig. P8.62a).
The object has a speed
of  3.00 m/s when
it makes contact with
a light spring (Fig.
P8.62b) that has a force
constant of 50.0  N/m.
The object comes to
rest after the spring
has been compressed
a distance (Fig.
P8.62c). The object is
then forced toward the
left by the spring (Fig.
P8.62d) and continues
to move in that direc
tion beyond the spring’s unstretched position. Finally,
the object comes to rest a distance  to the left of the
unstretched spring (Fig. P8.62e). Find (a) the distance of
compression , (b) the speed  at the unstretched posi
tion when the object is moving to the left (Fig. P8.62d),
and (c) the distance  where the object comes to rest.

Figure P8.61

Figure P8.62

(a) After the spring is compressed and the popgun 
fired, to what height does the projectile rise above 
point ? (b) Draw four energy bar charts for this situa
tion, analogous to those in Figures 8.6c–d.

57. As the driver steps on the gas pedal, a car of mass 
1 160 kg accelerates from rest. During the first few sec-
onds of motion, the car’s acceleration increases with 
time according to the expression

1.16 0.210 0.240

where is in seconds and  is in m/s . (a) What is the 
change in kinetic energy of the car during the interval 
from  0 to  2.50 s? (b) What is the minimum aver
age power output of the engine over this time interval?
(c) Why is the value in part (b) described as the mini
mum value?

58. Review. Why is the following situation impossible? A new 
high-speed roller coaster is claimed to be so safe that 
the passengers do not need to wear seat belts or any 
other restraining device. The coaster is designed with 
a vertical circular section over which the coaster trav-
els on the inside of the circle so that the passengers 
are upside down for a short time interval. The radius 
of the circular section is 12.0 m, and the coaster 
enters the bottom of the circular section at a speed of 
22.0 m/s. Assume the coaster moves without friction 
on the track and model the coaster as a particle.

59. A horizontal spring attached to a wall has a force con-
stant of  850 N/m. A block of mass  1.00 kg 
is attached to the spring and rests on a frictionless, 
horizontal surface as in Figure P8.59. (a) The block 
is pulled to a position  6.00 cm from equilibrium 
and released. Find the elastic potential energy stored 
in the spring when the block is 6.00 cm from equilib-
rium and when the block passes through equilibrium. 
(b) Find the speed of the block as it passes through the 
equilibrium point. (c) What is the speed of the block 
when it is at a position /2  3.00 cm? (d) Why isn’t 
the answer to part (c) half the answer to part (b)?

Figure P8.59

60. More than 2 300 years ago, the Greek teacher Aristo-
tle wrote the first book called Physics. Put into more 
precise terminology, this passage is from the end of its 
Section Eta:

Let be the power of an agent causing motion; 
the load moved; , the distance covered; and 

, the time interval required. Then (1) a power 
equal to will in an interval of time equal to 
move /2 a distance 2 or (2) it will move /2
the given distance in the time interval /2.
Also, if (3) the given power moves the given 

242 Chapter Conservation of Energy

load a distance /2 in time interval /2, then 
(4) /2 will move /2 the given distance in the 
given time interval 

(a) Show that Aristotle’s proportions are included in 
the equation bwd, where is a proportionality 
constant. (b) Show that our theory of motion includes 
this part of Aristotle’s theory as one special case. In 
particular, describe a situation in which it is true, 
derive the equation representing Aristotle’s propor
tions, and determine the proportionality constant.

61. A child’s pogo stick (Fig. P8.61)
stores energy in a spring with a
force constant of 2.50 

N/m. At position 
0.100  m), the spring com

pression is a maximum and the
child is momentarily at rest. At
position  0), the spring
is relaxed and the child is mov
ing upward. At position , the
child is again momentarily at
rest at the top of the jump. The
combined mass of child and
pogo stick is 25.0 kg. Although
the boy must lean forward to
remain balanced, the angle is small, so let’s assume the
pogo stick is vertical. Also assume the boy does not
bend his legs during the motion. (a) Calculate the total
energy of the child–stick–Earth system, taking both
gravitational and elastic potential energies as zero for

0. (b) Determine . (c) Calculate the speed of the
child at 0. (d) Determine the value of  for which
the kinetic energy of the system is a maximum. (e) Cal
culate the child’s maximum upward speed.

62. A 1.00-kg object slides
to the right on a sur
face having a coeffi
cient of kinetic friction
0.250 (Fig. P8.62a).
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of  3.00 m/s when
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constant of 50.0  N/m.
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rest after the spring
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P8.62c). The object is
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left by the spring (Fig.
P8.62d) and continues
to move in that direc
tion beyond the spring’s unstretched position. Finally,
the object comes to rest a distance  to the left of the
unstretched spring (Fig. P8.62e). Find (a) the distance of
compression , (b) the speed  at the unstretched posi
tion when the object is moving to the left (Fig. P8.62d),
and (c) the distance  where the object comes to rest.

Figure P8.61

Figure P8.62

(a) After the spring is compressed and the popgun 
fired, to what height does the projectile rise above 
point ? (b) Draw four energy bar charts for this situa
tion, analogous to those in Figures 8.6c–d.

57. As the driver steps on the gas pedal, a car of mass 
1 160 kg accelerates from rest. During the first few sec-
onds of motion, the car’s acceleration increases with 
time according to the expression

1.16 0.210 0.240

where is in seconds and  is in m/s . (a) What is the 
change in kinetic energy of the car during the interval 
from  0 to  2.50 s? (b) What is the minimum aver
age power output of the engine over this time interval?
(c) Why is the value in part (b) described as the mini
mum value?

58. Review. Why is the following situation impossible? A new 
high-speed roller coaster is claimed to be so safe that 
the passengers do not need to wear seat belts or any 
other restraining device. The coaster is designed with 
a vertical circular section over which the coaster trav-
els on the inside of the circle so that the passengers 
are upside down for a short time interval. The radius 
of the circular section is 12.0 m, and the coaster 
enters the bottom of the circular section at a speed of 
22.0 m/s. Assume the coaster moves without friction 
on the track and model the coaster as a particle.

59. A horizontal spring attached to a wall has a force con-
stant of 850 N/m. A block of mass 1.00 kg 
is attached to the spring and rests on a frictionless, 
horizontal surface as in Figure P8.59. (a) The block 
is pulled to a position 6.00 cm from equilibrium 
and released. Find the elastic potential energy stored 
in the spring when the block is 6.00 cm from equilib-
rium and when the block passes through equilibrium. 
(b) Find the speed of the block as it passes through the 
equilibrium point. (c) What is the speed of the block 
when it is at a position /2 3.00 cm? (d) Why isn’t 
the answer to part (c) half the answer to part (b)?

Figure P8.59

60. More than 2 300 years ago, the Greek teacher Aristo-
tle wrote the first book called Physics. Put into more 
precise terminology, this passage is from the end of its 
Section Eta:

Let be the power of an agent causing motion; 
the load moved; , the distance covered; and 

, the time interval required. Then (1) a power 
equal to will in an interval of time equal to 
move /2 a distance 2 or (2) it will move /2
the given distance in the time interval /2.
Also, if (3) the given power moves the given 

The problem is identified 
in the Annotated 
Instructor’s Edition with a 

 icon.

Parts (a)–(c) of the problem ask 
for quantitative calculations.

Part (d) asks a conceptual 
question about the situation.
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Symbolic problems (indicated in the Annotated Instructor’s Edition) ask students 
to solve a problem using only symbolic manipulation. Reviewers of the Eighth Edi
tion (as well as the majority of respondents to a large survey) asked specifically for 
an increase in the number of symbolic problems found in the text because it better 
reflects the way instructors want their students to think when solving physics prob
lems. An example of a Symbolic problem appears here:

174 Chapter Circular Motion and Other Applications of Newton’s Laws

in part (d) depend on the numerical values given in 
this problem, or is it true in general? Explain.

54. A puck of mass  is tied
to a string and allowed
to revolve in a circle of
radius  on a friction
less, horizontal table.
The other end of the
string passes through a
small hole in the cen
ter of the table, and
an object of mass is 
tied to it (Fig. P6.54).
The suspended object
remains in equilibrium while the puck on the tabletop
revolves. Find symbolic expressions for (a) the tension in
the string, (b) the radial force acting on the puck, and
(c) the speed of the puck. (d) Qualitatively describe what
will happen in the motion of the puck if the value of 
is increased by placing a small additional load on the
puck. (e) Qualitatively describe what will happen in the
motion of the puck if the value of  is instead decreased
by removing a part of the hanging load.

55. Because the Earth rotates about its axis, a point on 
the equator experiences a centripetal acceleration of
0.0337 m/s , whereas a point at the poles experiences 
no centripetal acceleration. If a person at the equator 
has a mass of 75.0  kg, calculate (a) the gravitational 
force (true weight) on the person and (b) the normal 
force (apparent weight) on the person. (c) Which force 
is greater? Assume the Earth is a uniform sphere and 
take  9.800 m/s

Galileo thought about whether acceleration should be 
defined as the rate of change of velocity over time or as 
the rate of change in velocity over distance. He chose 
the former, so let’s use the name “vroomosity” for the 
rate of change of velocity over distance. For motion of 
a particle on a straight line with constant acceleration,
the equation  gives its velocity  as a function
of time. Similarly, for a particle’s linear motion with 
constant vroomosity , the equation gives
the velocity as a function of the position  if the parti
cle’s speed is  at  0. (a) Find the law describing the
total force acting on this object of mass . (b) Describe 
an example of such a motion or explain why it is unre
alistic. Consider (c) the possibility of positive and 
(d) the possibility of negative.

57. Figure P6.57 shows
a photo of a swing
ride at an amusement
park. The structure
consists of a horizon
tal, rotating, circular
platform of diameter 

 from which seats
of mass  are sus
pended at the end 
of massless chains 
of length . When 
the system rotates at

Figure P6.54

Figure P6.57
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separation from the line of best fit. Express this scatter
as a percentage. (e) In a short paragraph, state what 
the graph demonstrates and compare it with the the-
oretical prediction. You will need to make reference 
to the quantities plotted on the axes, to the shape of 
the graph line, to the data points, and to the results of 
parts (c) and (d).

50. A basin surrounding a drain has the shape of a circular
cone opening upward, having everywhere an angle of
35.0° with the horizontal. A 25.0-g ice cube is set slid
ing around the cone without friction in a horizontal
circle of radius . (a) Find the speed the ice cube must
have as a function of . (b) Is any piece of data unnec
essary for the solution? Suppose  is made two times
larger. (c) Will the required speed increase, decrease,
or stay constant? If it changes, by what factor? (d) Will
the time required for each revolution increase,
decrease, or stay constant? If it changes, by what factor?
(e) Do the answers to parts (c) and (d) seem contradic
tory? Explain.

51. A truck is moving with 
constant acceleration 
 up a hill that makes 
an angle  with the 
horizontal as in Figure 
P6.51. A small sphere 
of mass  is suspended 
from the ceiling of the 
truck by a light cord. If 
the pendulum makes a 
constant angle  with the perpendicular to the ceiling, 
what is 

52. The pilot of an airplane executes a loop-the-loop 
maneuver in a vertical circle. The speed of the airplane 
is 300 mi/h at the top of the loop and 450 mi/h at the 
bottom, and the radius of the circle is 1 200 ft. (a) What 
is the pilot’s apparent weight at the lowest point if his
true weight is 160 lb? (b) What is his apparent weight
at the highest point? (c)  What If? Describe how the
pilot could experience weightlessness if both the
radius and the speed can be varied. Note: His apparent
weight is equal to the magnitude of the force exerted
by the seat on his body.

53. Review. While learning to drive, you are in a 1 200-kg 
car moving at 20.0 m/s across a large, vacant, level 
parking lot. Suddenly you realize you are heading 
straight toward the brick sidewall of a large supermar-
ket and are in danger of running into it. The pavement 
can exert a maximum horizontal force of 7 000 N on 
the car. (a) Explain why you should expect the force to 
have a well-defined maximum value. (b) Suppose you 
apply the brakes and do not turn the steering wheel. 
Find the minimum distance you must be from the wall 
to avoid a collision. (c) If you do not brake but instead 
maintain constant speed and turn the steering wheel, 
what is the minimum distance you must be from the 
wall to avoid a collision? (d) Of the two methods in 
parts (b) and (c), which is better for avoiding a colli-
sion? Or should you use both the brakes and the steer-
ing wheel, or neither? Explain. (e) Does the conclusion 

Figure P6.51No numbers appear in 
the problem statement.

The answer to the problem 
is purely symbolic.

51. (cos  tan  sin 

The figure shows only 
symbolic quantities.

The problem is identified 
in the Annotated 
Instructor’s Edition with a 

 icon.

Guided Problems help students break problems into steps. A physics problem 
typically asks for one physical quantity in a given context. Often, however, several 
concepts must be used and a number of calculations are required to obtain that 
final answer. Many students are not accustomed to this level of complexity and 
often don’t know where to start. A Guided Problem breaks a standard problem into 
smaller steps, enabling students to grasp all the concepts and strategies required 
to arrive at a correct solution. Unlike standard physics problems, guidance is often 
built into the problem statement. Guided Problems are reminiscent of how a stu
dent might interact with a professor in an office visit. These problems (there is one 
in every chapter of the text) help train students to break down complex problems 
into a series of simpler problems, an essential problem-solving skill. An example of 
a Guided Problem appears here:

Problems 383

end exerts a normal force  on the beam, and the sec
ond pivot located a distance  4.00 m from the left 
end exerts a normal force . A woman of mass   
55.0 kg steps onto the left end of the beam and begins 
walking to the right as in Figure P12.38. The goal is to 
find the woman’s position when the beam begins to tip. 
(a) What is the appropriate analysis model for the beam 
before it begins to tip? (b) Sketch a force diagram for 
the beam, labeling the gravitational and normal forces 
acting on the beam and placing the woman a distance 
 to the right of the first pivot, which is the origin. 

(c) Where is the woman when the normal force  is the 
greatest? (d) What is  when the beam is about to 
tip? (e) Use Equation 12.1 to find the value of  when 
the beam is about to tip. (f) Using the result of part 
(d) and Equation 12.2, with torques computed around 
the second pivot, find the woman’s position  when the 
beam is about to tip. (g) Check the answer to part (e) by 
computing torques around the first pivot point.

Figure P12.38

39. In exercise physiology studies, it is sometimes impor
tant to determine the location of a person’s center 
of mass. This determination can be done with the 
arrangement shown in Figure P12.39. A light plank 
rests on two scales, which read 380 N and 
320 N. A distance of 1.65 m separates the scales. How 
far from the woman’s feet is her center of mass?

Figure P12.39

40. The lintel of prestressed reinforced concrete in Fig-
ure  P12.40 is 1.50 m long. The concrete encloses 
one steel reinforcing rod with cross-sectional area 
1.50 cm . The rod joins two strong end plates. The 
cross-sectional area of the concrete perpendicular to 
the rod is 50.0 cm . Young’s modulus for the concrete 
is 30.0 10 N/m . After the concrete cures and the 
original tension  in the rod is released, the con
crete is to be under compres-
sive stress 8.00 10 N/m . 
(a) By what distance will the 
rod compress the concrete
when the original tension in 
the rod is released? (b) What 

30. Evaluate Young’s modulus for the material whose 
stress–strain curve is shown in Figure 12.12.

31. Assume if the shear stress in steel exceeds about 4.00 
N/m , the steel ruptures. Determine the shear-

ing force necessary to (a) shear a steel bolt 1.00 cm in 
diameter and (b) punch a 1.00-cm-diameter hole in a 
steel plate 0.500 cm thick.

32. When water freezes, it expands by about 9.00%. What 
pressure increase would occur inside your automobile 
engine block if the water in it froze? (The bulk modu-
lus of ice is 2.00 10 N/m

33. A 200-kg load is hung on a wire of length 4.00 m, cross-
sectional area 0.200 10 , and Young’s modulus 
8.00 10 N/m . What is its increase in length?

34. A walkway suspended across a hotel lobby is supported at
numerous points along its edges by a vertical cable above
each point and a vertical column underneath. The steel
cable is 1.27 cm in diameter and is 5.75 m long before
loading. The aluminum column is a hollow cylinder
with an inside diameter of 16.14 cm, an outside diameter
of 16.24 cm, and an unloaded length of 3.25 m. When
the walkway exerts a load force of 8 500 N on one of the
support points, how much does the point move down?

35. Review. A 2.00-m-long cylindrical
steel wire with a cross-sectional diam
eter of 4.00 mm is placed over a light, 
frictionless pulley. An object of mass 

 5.00 kg is hung from one end of
the wire and an object of mass 
3.00 kg from the other end as shown 
in Figure P12.35. The objects are 
released and allowed to move freely. 
Compared with its length before the 
objects were attached, by how much 
has the wire stretched while the objects are in motion?

36. Review. A 30.0-kg hammer, moving with speed 20.0 m/s,
strikes a steel spike 2.30 cm in diameter. The hammer 
rebounds with speed 10.0 m/s after 0.110 s. What is the 
average strain in the spike during the impact?

Additional Problems

37. A bridge of length 50.0 m and mass 8.00 10 kg is 
supported on a smooth pier at each end as shown in 
Figure P12.37. A truck of mass 3.00 10 kg is located 
15.0 m from one end. What are the forces on the bridge 
at the points of support?

Figure P12.37

38. A uniform beam resting on two pivots has a length 
6.00 m and mass 90.0 kg. The pivot under the left

AMT

Figure P12.35

Figure P12.40
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end exerts a normal force on the beam, and the sec
ond pivot located a distance  4.00 m from the left
end exerts a normal force . A woman of mass 
55.0 kg steps onto the left end of the beam and begins
walking to the right as in Figure P12.38. The goal is to
find the woman’s position when the beam begins to tip.
(a) What is the appropriate analysis model for the beam
before it begins to tip? (b) Sketch a force diagram for
the beam, labeling the gravitational and normal forces
acting on the beam and placing the woman a distance

to the right of the first pivot, which is the origin.
(c) Where is the woman when the normal force  is the
greatest? (d) What is  when the beam is about to
tip? (e) Use Equation 12.1 to find the value of when
the beam is about to tip. (f) Using the result of part
(d) and Equation 12.2, with torques computed around
the second pivot, find the woman’s position when the
beam is about to tip. (g) Check the answer to part (e) by
computing torques around the first pivot point.

Figure P12.38
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original tension  in the rod is released, the con
crete is to be under compres-
sive stress 8.00 10 N/m . 
(a) By what distance will the 
rod compress the concrete
when the original tension in 
the rod is released? (b) What 

30. Evaluate Young’s modulus for the material whose 
stress–strain curve is shown in Figure 12.12.

31. Assume if the shear stress in steel exceeds about 4.00 
N/m , the steel ruptures. Determine the shear-

ing force necessary to (a) shear a steel bolt 1.00 cm in 
diameter and (b) punch a 1.00-cm-diameter hole in a 
steel plate 0.500 cm thick.

32. When water freezes, it expands by about 9.00%. What 
pressure increase would occur inside your automobile 
engine block if the water in it froze? (The bulk modu-
lus of ice is 2.00 10 N/m

33. A 200-kg load is hung on a wire of length 4.00 m, cross-
sectional area 0.200 10 , and Young’s modulus 
8.00 10 N/m . What is its increase in length?

34. A walkway suspended across a hotel lobby is supported at
numerous points along its edges by a vertical cable above
each point and a vertical column underneath. The steel
cable is 1.27 cm in diameter and is 5.75 m long before
loading. The aluminum column is a hollow cylinder
with an inside diameter of 16.14 cm, an outside diameter
of 16.24 cm, and an unloaded length of 3.25 m. When
the walkway exerts a load force of 8 500 N on one of the
support points, how much does the point move down?

35. Review. A 2.00-m-long cylindrical
steel wire with a cross-sectional diam
eter of 4.00 mm is placed over a light, 
frictionless pulley. An object of mass 

 5.00 kg is hung from one end of
the wire and an object of mass 
3.00 kg from the other end as shown 
in Figure P12.35. The objects are 
released and allowed to move freely. 
Compared with its length before the 
objects were attached, by how much 
has the wire stretched while the objects are in motion?

36. Review. A 30.0-kg hammer, moving with speed 20.0 m/s,
strikes a steel spike 2.30 cm in diameter. The hammer 
rebounds with speed 10.0 m/s after 0.110 s. What is the 
average strain in the spike during the impact?

Additional Problems

37. A bridge of length 50.0 m and mass 8.00 10 kg is 
supported on a smooth pier at each end as shown in 
Figure P12.37. A truck of mass 3.00 10 kg is located 
15.0 m from one end. What are the forces on the bridge 
at the points of support?
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38. A uniform beam resting on two pivots has a length 
6.00 m and mass  90.0 kg. The pivot under the left 

AMT
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The goal of the problem 
is identified.

Analysis begins by identifying 
the appropriate analysis model.

Students are provided 
with suggestions for steps 
to solve the problem.

The problem is identified 
with a icon.

The calculation 
associated with the  
goal is requested.
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Impossibility problems. Physics education research has focused heavily on the 
problem-solving skills of students. Although most problems in this text are struc
tured in the form of providing data and asking for a result of computation, two 
problems in each chapter, on average, are structured as impossibility problems. 
They begin with the phrase Why is the following situation impossible? That is followed 
by the description of a situation. The striking aspect of these problems is that no 
question is asked of the students, other than that in the initial italics. The student 
must determine what questions need to be asked and what calculations need to be 
performed. Based on the results of these calculations, the student must determine 
why the situation described is not possible. This determination may require infor
mation from personal experience, common sense, Internet or print research, mea
surement, mathematical skills, knowledge of human norms, or scientific thinking.

These problems can be assigned to build critical thinking skills in students. 
They are also fun, having the aspect of physics “mysteries” to be solved by students 
individually or in groups. An example of an impossibility problem appears here:

Paired problems. These problems are otherwise identical, one asking for a numeri
cal solution and one asking for a symbolic derivation. There are now three pairs of 
these problems in most chapters, indicated in the Annotated Instructor’s Edition 
by cyan shading in the end-of-chapter problems set.

Biomedical problems. These problems (indicated in the Annotated Instructor’s Edi
tion with a  icon) highlight the relevance of physics principles to those students 
taking this course who are majoring in one of the life sciences.

Review problems. Many chapters include review problems requiring the student to 
combine concepts covered in the chapter with those discussed in previous chapters. 
These problems (marked Review) reflect the cohesive nature of the principles in 
the text and verify that physics is not a scattered set of ideas. When facing a real-
world issue such as global warming or nuclear weapons, it may be necessary to call 
on ideas in physics from several parts of a textbook such as this one.

“Fermi problems.” One or more problems in most chapters ask the student to reason 
in order-of-magnitude terms.

Design problems. Several chapters contain problems that ask the student to deter
mine design parameters for a practical device so that it can function as required.

Calculus-based problems. Every chapter contains at least one problem applying ideas 
and methods from differential calculus and one problem using integral calculus.

The initial phrase in italics signals 
an impossibility problem.

A situation 
is described.

Problems 107

leave simultaneously and drive for 2.50 h in the direc-
tions shown. Car 1 has a speed of 90.0 km/h. If the 
cars arrive simultaneously at the lake, what is the speed 
of car 2?

Figure P4.64

65. A catapult launches a rocket at an angle of 53.0° above 
the horizontal with an initial speed of 100 m/s. The 
rocket engine immediately starts a burn, and for 3.00 s 
the rocket moves along its initial line of motion with 
an acceleration of 30.0 m/s . Then its engine fails, and 
the rocket proceeds to move in free fall. Find (a) the 
maximum altitude reached by the rocket, (b) its total 
time of flight, and (c) its horizontal range.

66. A cannon with a muzzle speed of 1 000 m/s is used to 
start an avalanche on a mountain slope. The target 
is 2 000 m from the cannon horizontally and 800 m 
above the cannon. At what angle, above the horizontal, 
should the cannon be fired?

67. Why is the following situation impossible? Albert Pujols hits
a home run so that the baseball just clears the top row 
of bleachers, 24.0 m high, located 130 m from home 
plate. The ball is hit at 41.7 m/s at an angle of 35.0° to 
the horizontal, and air resistance is negligible.

68. As some molten metal splashes, one droplet flies off to 
the east with initial velocity at angle  above the hor
izontal, and another droplet flies off to the west with
the same speed at the same angle above the horizontal
as shown in Figure P4.68. In terms of and , find
the distance between the two droplets as a function of
time.

Figure P4.68

69. An astronaut on the surface of the Moon fires a can-
non to launch an experiment package, which leaves 
the barrel moving horizontally. Assume the free-fall 
acceleration on the Moon is one-sixth of that on the 

it enters a parabolic path with a velocity of 143 m/s 
nose high at 45.0° and exits with velocity 143 m/s at 
45.0° nose low. During this portion of the flight, the 
aircraft and objects inside its padded cabin are in free 
fall; astronauts and equipment float freely as if there 
were no gravity. What are the aircraft’s (a) speed and 
(b) altitude at the top of the maneuver? (c) What is the
time interval spent in microgravity?

60. A basketball player is standing on the floor 10.0 m from
the basket as in Figure P4.60. The height of the basket 
is 3.05 m, and he shoots the ball at a 40.0 angle with 
the horizontal from a height of 2.00 m. (a) What is the 
acceleration of the basketball at the highest point in 
its trajectory? (b) At what speed must the player throw 
the basketball so that the ball goes through the hoop 
without striking the backboard?

Figure P4.60

61. Lisa in her Lamborghini accelerates at the rate of
3.00 2.00 m/s , while Jill in her Jaguar acceler

ates at 1.00 3.00 m/s . They both start from rest
at the origin of an  coordinate system. After 5.00 s,
(a) what is Lisa’s speed with respect to Jill, (b) how far
apart are they, and (c) what is Lisa’s acceleration relative
to Jill?

62. A boy throws a stone horizontally from the top of a cliff 
of height toward the ocean below. The stone strikes 
the ocean at distance from the base of the cliff. In 
terms of h, d, and , find expressions for (a) the time 
at which the stone lands in the ocean, (b) the initial 

speed of the stone, (c) the speed of the stone immedi-
ately before it reaches the ocean, and (d) the direction 
of the stone’s velocity immediately before it reaches the 
ocean.

63. A flea is at point  on a horizontal turntable, 10.0 cm
from the center. The turntable is rotating at 33.3 rev/min
in the clockwise direction. The flea jumps straight up 
to a height of 5.00 cm. At takeoff, it gives itself no hori-
zontal velocity relative to the turntable. The flea lands 
on the turntable at point . Choose the origin of coor
dinates to be at the center of the turntable and the posi
tive  axis passing through  at the moment of takeoff.
Then the original position of the flea is 10.0 cm.
(a) Find the position of point  when the flea lands.
(b) Find the position of point  when the flea lands.

64. Towns A and B in Figure P4.64 are 80.0 km apart. A 
couple arranges to drive from town A and meet a cou-
ple driving from town B at the lake, L. The two couples 

No question is asked. The student 
must determine what needs to be 
calculated and why the situation 
is impossible.
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Integration with Enhanced WebAssign. The textbook’s tight integration with Enhanced 
WebAssign content facilitates an online learning environment that helps students 
improve their problem-solving skills and gives them a variety of tools to meet their 
individual learning styles. Extensive user data gathered by WebAssign  were used to 
ensure that the problems most often assigned were retained for this new edition. 
In each chapter’s problems set, the top quartile of problems assigned in Enhanced 
WebAssign have cyan-shaded problem numbers in the Annotated Instructor’s Edi
tion for easy identification, allowing professors to quickly and easily find the most 
popular problems assigned in Enhanced WebAssign. New Analysis Model tutorials 
added for this edition have already been discussed (see page x). Master It tutorials 
help students solve problems by having them work through a stepped-out solution. 
Problems with Master It tutorials are indicated in each chapter’s problem set with a 

icon. In addition, Watch It solution videos are indicated in each chapter’s prob
lem set with a  icon and explain fundamental problem-solving strategies to help 
students step through the problem. 

Artwork. Every piece of artwork in the Ninth Edition is in a modern style that helps 
express the physics principles at work in a clear and precise fashion. Focus pointers
are included with many figures in the text; these either point out important aspects 
of a figure or guide students through a process illustrated by the artwork or photo. 
This format helps those students who are more visual learners. An example of a 
figure with a focus pointer appears below.

���

Direction of  at 

line tangent to the curve at     .

corresponding time intervals 
become smaller and smaller.

� �

Figure 4.2 As a particle moves
between two points, its average 
velocity is in the direction of the 
displacement vector . By defini-
tion, the instantaneous velocity at 
is directed along the line tangent to 
the curve at 

Math Appendix. The math appendix (Appendix B), a valuable tool for students, 
shows the math tools in a physics context. This resource is ideal for students who 
need a quick review on topics such as algebra, trigonometry, and calculus.

Helpful Features
Style. To facilitate rapid comprehension, we have written the book in a clear, logi
cal, and engaging style. We have chosen a writing style that is somewhat informal 
and relaxed so that students will find the text appealing and enjoyable to read. New 
terms are carefully defined, and we have avoided the use of jargon.



xxii Preface

Important Definitions and Equations. Most important definitions are set in bold-
face or are highlighted with a  background screen  for added emphasis and ease 
of review. Similarly, important equations are also highlighted with a background 
screen to facilitate location.

Marginal Notes. Comments and notes appearing in the margin with a  icon can 
be used to locate important statements, equations, and concepts in the text.

Pedagogical Use of Color. Readers should consult the pedagogical color chart (inside 
the front cover) for a listing of the color-coded symbols used in the text diagrams. 
This system is followed consistently throughout the text.

Mathematical Level. We have introduced calculus gradually, keeping in mind that 
students often take introductory courses in calculus and physics concurrently. Most 
steps are shown when basic equations are developed, and reference is often made 
to mathematical appendices near the end of the textbook. Although vectors are 
discussed in detail in Chapter 3, vector products are introduced later in the text, 
where they are needed in physical applications. The dot product is introduced in 
Chapter 7, which addresses energy of a system; the cross product is introduced in 
Chapter 11, which deals with angular momentum.

Significant Figures. In both worked examples and end-of-chapter problems, signifi-
cant figures have been handled with care. Most numerical examples are worked 
to either two or three significant figures, depending on the precision of the data 
provided. End-of-chapter problems regularly state data and answers to three-digit 
precision. When carrying out estimation calculations, we shall typically work with 
a single significant figure. (More discussion of significant figures can be found in 
Chapter 1, pages 11–13.)

Units. The international system of units (SI) is used throughout the text. The 
U.S. customary system of units is used only to a limited extent in the chapters on 
mechanics and thermodynamics.

Appendices and Endpapers. Several appendices are provided near the end of the 
textbook. Most of the appendix material represents a review of mathematical con-
cepts and techniques used in the text, including scientific notation, algebra, geom-
etry, trigonometry, differential calculus, and integral calculus. Reference to these 
appendices is made throughout the text. Most mathematical review sections in the 
appendices include worked examples and exercises with answers. In addition to the 
mathematical reviews, the appendices contain tables of physical data, conversion 
factors, and the SI units of physical quantities as well as a periodic table of the ele-
ments. Other useful information—fundamental constants and physical data, plan-
etary data, a list of standard prefixes, mathematical symbols, the Greek alphabet, 
and standard abbreviations of units of measure—appears on the endpapers.

 CengageCompose Options for Physics for 
Scientists and Engineers

Would you like to easily create your own personalized text, selecting the elements 
that meet your specific learning objectives?
     CengageCompose puts the power of the vast Cengage Learning library of learn-
ing content at your fingertips to create exactly the text you need. The all-new, Web-
based CengageCompose site lets you quickly scan content and review materials to 
pick what you need for your text. Site tools let you easily assemble the modular learn-
ing units into the order you want and immediately provide you with an online copy 
for review. Add enrichment content like case studies, exercises, and lab materials to 
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further build your ideal learning materials. Even choose from hundreds of vivid, art-
rich, customizable, full-color covers.  

Cengage Learning offers the fastest and easiest way to create unique customized 
learning materials delivered the way you want. For more information about custom 
publishing options, visit www.cengage.com/custom or contact your local Cengage 
Learning representative.

Course Solutions That Fit Your Teaching Goals  
and Your Students’ Learning Needs

Recent advances in educational technology have made homework management sys
tems and audience response systems powerful and affordable tools to enhance the 
way you teach your course. Whether you offer a more traditional text-based course, 
are interested in using or are currently using an online homework management sys
tem such as Enhanced WebAssign, or are ready to turn your lecture into an interac
tive learning environment with JoinIn, you can be confident that the text’s proven 
content provides the foundation for each and every component of our technology 
and ancillary package.

Homework Management Systems
Enhanced WebAssign for Physics for Scientists and Engineers, Ninth Edition. Exclu
sively from Cengage Learning, Enhanced WebAssign offers an extensive online 
program for physics to encourage the practice that’s so critical for concept mastery. 
The meticulously crafted pedagogy and exercises in our proven texts become even 
more effective in Enhanced WebAssign. Enhanced WebAssign includes the Cen
gage YouBook, a highly customizable, interactive eBook. WebAssign includes:

All of the quantitative end-of-chapter problems
Selected problems enhanced with targeted feedback. An example of tar-
geted feedback appears below:

Selected problems include 
feedback to address common 
mistakes that students make. 
This feedback was developed 
by professors with years of 
classroom experience.

Master It tutorials (indicated in the text by a  icon), to help students work 
through the problem one step at a time. An example of a Master It tutorial 
appears on page xxiv:
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Watch It solution videos (indicated in the text by a  icon) that explain 
fundamental problem-solving strategies, to help students step through the 
problem. In addition, instructors can choose to include video hints of problem-
solving strategies. A screen shot from a Watch It solution video appears below:

Master It tutorials
help students 
organize what 
they need to solve 
a problem with 
Conceptualize and 
Categorize sections 
before they work 
through each step.

Master It tutorials help students work 
through each step of the problem.

Watch It solution videos help stu-
dents visualize the steps needed  
to solve a problem.

Concept Checks
PhET simulations
Most worked examples, enhanced with hints and feedback, to help 
strengthen students’ problem-solving skills
Every Quick Quiz, giving your students ample opportunity to test their con-
ceptual understanding
PreLecture Explorations. The Active Figure questions in WebAssign have 
been completely revised. The simulations have been updated, with additional 
parameters to enhance investigation of a physical phenomenon. Students can 
make predictions, change the parameters, and then observe the results. Each 
new PreLecture Exploration comes with conceptual and analytical questions, 
which guide students to a deeper understanding and help promote a robust 
physical intuition.
Analysis Model tutorials. John Jewett developed 165 tutorials (indicated in 
each chapter’s problem set with an AMT  icon) that strengthen students’ problem-
solving skills by guiding them through the steps in the problem-solving process. 
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Important first steps include making predictions and focusing strategy on 
physics concepts before starting to solve the problem quantitatively. A critical 
component of these tutorials is the selection of an appropriate Analysis Model 
to describe what is going on in the problem. This step allows students to make 
the important link between the situation in the problem and the mathematical 
representation of the situation. Analysis Model tutorials include meaningful 
feedback at each step to help students practice the problem-solving process and 
improve their skills. In addition, the feedback addresses student misconceptions 
and helps them to catch algebraic and other mathematical errors. Solutions are 
carried out symbolically as long as possible, with numerical values substituted at 
the end. This feature helps students to understand the effects of changing the 
values of each variable in the problem, avoids unnecessary repetitive substitu-
tion of the same numbers, and eliminates round-off errors. Feedback at the end 
of the tutorial encourages students to think about how the final answer com-
pares to their original predictions.

•	Personalized Study Plan. The Personal Study Plan in Enhanced WebAssign 
provides chapter and section assessments that show students what material 
they know and what areas require more work. For items that they answer 
incorrectly, students can click on links to related study resources such as vid-
eos, tutorials, or reading materials. Color-coded progress indicators let them 
see how well they are doing on different topics. You decide what chapters 
and sections to include—and whether to include the plan as part of the final 
grade or as a study guide with no scoring involved.

•	The Cengage YouBook. WebAssign has a customizable and interactive eBook, 
the Cengage YouBook, that lets you tailor the textbook to fit your course 
and connect with your students. You can remove and rearrange chapters in 
the table of contents and tailor assigned readings that match your syllabus 
exactly. Powerful editing tools let you change as much as you’d like—or leave 
it just like it is. You can highlight key passages or add sticky notes to pages to 
comment on a concept in the reading, and then share any of these individual 
notes and highlights with your students, or keep them personal. You can 
also edit narrative content in the textbook by adding a text box or striking 
out text. With a handy link tool, you can drop in an icon at any point in the 
eBook that lets you link to your own lecture notes, audio summaries, video 
lectures, or other files on a personal Web site or anywhere on the Web. A 
simple YouTube widget lets you easily find and embed videos from YouTube 
directly into eBook pages. The Cengage YouBook helps students go beyond 
just reading the textbook. Students can also highlight the text, add their own 
notes, and bookmark the text. Animations play right on the page at the point 
of learning so that they’re not speed bumps to reading but true enhance-
ments. Please visit www.webassign.net/brookscole to view an interactive dem-
onstration of Enhanced WebAssign.

•	Offered exclusively in WebAssign, Quick Prep for physics is algebra and trigo-
nometry math remediation within the context of physics applications and 
principles. Quick Prep helps students succeed by using narratives illustrated 
throughout with video examples. The Master It tutorial problems allow stu-
dents to assess and retune their understanding of the material. The Practice 
Problems that go along with each tutorial allow both the student and the 
instructor to test the student’s understanding of the material.

  Quick Prep includes the following features:

•	 67 interactive tutorials
•	 67 additional practice problems
•	A thorough overview of each topic, including video examples
•	Can be taken before the semester begins or during the first few weeks of 

the course
•	Can also be assigned alongside each chapter for “ just in time” remediation
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Topics include units, scientific notation, and significant figures; the motion of 
objects along a line; functions; approximation and graphing; probability and 
error; vectors, displacement, and velocity; spheres; force and vector projections.

MindTap™: The Personal Learning Experience
MindTap for Serway and Jewett Physics for Scientists and Engineers is a personalized, 
fully online digital learning platform of authoritative textbook content, assignments, 
and services that engages your students with interactivity while also offering you 
choice in the configuration of coursework and enhancement of the curriculum via 
complimentary Web-apps known as MindApps. MindApps range from ReadSpeaker 
(which reads the text out loud to students), to Kaltura (allowing you to insert inline 
video and audio into your curriculum), to ConnectYard (allowing you to create digi-
tal “yards” through social media—all without “friending” your students). MindTap 
is well beyond an eBook, a homework solution or digital supplement, a resource 
center Web site, a course delivery platform, or a Learning Management System. It is 
the first in a new category—the Personal Learning Experience.

CengageBrain.com
On CengageBrain.com students will be able to save up to 60% on their course mate-
rials through our full spectrum of options. Students will have the option to rent 
their textbooks, purchase print textbooks, e-textbooks, or individual e-chapters and 
audio books all for substantial savings over average retail prices. CengageBrain.com 
also includes access to Cengage Learning’s broad range of homework and study 
tools and features a selection of free content.

Lecture Presentation Resources
PowerLecture with ExamView® and JoinIn for Physics for Scientists and Engineers, 
Ninth  Edition. Bringing physics principles and concepts to life in your lectures 
has never been easier! The full-featured, two-volume PowerLecture Instructor’s 
Resource DVD-ROM (Volume 1: Chapters 1–22; Volume 2: Chapters 23–46) pro-
vides everything you need for Physics for Scientists and Engineers, Ninth Edition. Key 
content includes the Instructor’s Solutions Manual, art and images from the text, pre-
made chapter-specific PowerPoint lectures, ExamView test generator software with 
pre-loaded test questions, JoinIn response-system “clickers,” Active Figures anima-
tions, and a physics movie library.

JoinIn. Assessing to Learn in the Classroom questions developed at the University of 
 Massachusetts Amherst. This collection of 250 advanced conceptual questions has 
been tested in the classroom for more than ten years and takes peer learning to 
a new level. JoinIn helps you turn your lectures into an interactive learning envi-
ronment that  promotes conceptual understanding. Available exclusively for higher 
education from our partnership with Turning Technologies, JoinIn™ is the easiest 
way to turn your lecture hall into a personal, fully interactive experience for your 
students! 

Assessment and Course Preparation Resources
A number of resources listed below will assist with your assessment and preparation 
processes.

Instructor’s Solutions Manual by Vahé Peroomian (University of California at Los 
 Angeles). Thoroughly revised for this edition, the Instructor’s Solutions Manual contains 
 complete worked solutions to all end-of-chapter problems in the textbook as well as 
answers to the even- numbered problems and all the questions. The solutions to prob-
lems new to the Ninth Edition are marked for easy identification. Volume 1 contains 
Chapters 1 through 22; Volume 2 contains Chapters 23 through 46. Electronic files of 
the Instructor’s Solutions Manual are available on the PowerLecture™ DVD-ROM.
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Test Bank by Ed Oberhofer (University of North Carolina at Charlotte and Lake Sumter 
Community College). The test bank is available on the two-volume PowerLecture™ 
DVD-ROM via the ExamView® test software. This two-volume test bank contains 
approximately 2 000 multiple-choice questions. Instructors may print and duplicate 
pages for distribution to students. Volume 1 contains Chapters 1 through 22, and 
Volume 2 contains Chapters 23 through 46. WebCT and Blackboard versions of the 
test bank are available on the instructor’s companion site at www.CengageBrain.com.

Instructor’s Companion Web Site. Consult the instructor’s site by pointing your browser 
to www.CengageBrain.com for a problem correlation guide,  PowerPoint lectures, 
and JoinIn audience response content. Instructors adopting the Ninth Edition of 
Physics for Scientists and Engineers may download these materials after securing the 
appropriate password from their local sales representative.

Supporting Materials for the Instructor
Supporting instructor materials are available to qualified adopters. Please con-
sult your local Cengage Learning, Brooks/Cole representative for details. Visit  
www.CengageBrain.com to

•	 request a desk copy
•	 locate your local representative
•	 download electronic files of select support materials

Student Resources
Visit the Physics for Scientists and Engineers Web site at www.cengagebrain.com/ 
shop/ISBN/9781133954156 to see samples of select student supplements. Go to 
CengageBrain.com to purchase and access this product at Cengage Learning’s pre-
ferred online store.

Student Solutions Manual/Study Guide by John R. Gordon, Vahé Peroomian,  Raymond 
A. Serway, and John W. Jewett, Jr. This two-volume manual features detailed solu-
tions to 20% of the end-of-chapter problems from the text. The manual also fea-
tures a list of important equations, concepts, and notes from key sections of the 
text in addition to answers to selected end-of-chapter questions. Volume 1 contains 
Chapters 1 through 22; and Volume 2 contains Chapters 23 through 46.

Physics Laboratory Manual, Third Edition by David Loyd (Angelo State University) 
supplements the learning of basic physical principles while introducing laboratory 
procedures and equipment. Each chapter includes a prelaboratory assignment, 
objectives, an equipment list, the theory behind the experiment, experimental pro-
cedures, graphing exercises, and questions. A laboratory report form is included 
with each experiment so that the student can record data, calculations, and experi-
mental results. Students are encouraged to apply statistical analysis to their data. 
A complete Instructor’s Manual is also available to facilitate use of this lab manual.

Physics Laboratory Experiments, Seventh Edition by Jerry D. Wilson (Lander College) 
and Cecilia A. Hernández (American River College). This market-leading manual 
for the first-year physics laboratory course offers a wide range of class-tested 
experiments designed specifically for use in small to midsize lab programs. A series 
of integrated experiments emphasizes the use of computerized instrumentation and 
includes a set of “computer-assisted experiments” to allow students and instructors 
to gain experience with modern equipment. This option also enables instructors 
to determine the appropriate balance between traditional and computer-based 
experiments for their courses. By analyzing data through two different methods, 
students gain a greater understanding of the concepts behind the experiments. 
The Seventh Edition is updated with the latest information and techniques 
involving state-of-the-art equipment and a new Guided Learning feature addresses 
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the growing interest in guided-inquiry pedagogy. Fourteen additional experiments 
are also available through custom printing.

 Teaching Options
The topics in this textbook are presented in the following sequence: classical mechan-
ics, oscillations and mechanical waves, and heat and thermodynamics, followed by 
electricity and magnetism, electromagnetic waves, optics, relativity, and modern phys-
ics. This presentation represents a traditional sequence, with the subject of mechani-
cal waves being presented before electricity and magnetism. Some instructors may 
prefer to discuss both mechanical and electromagnetic waves together after complet-
ing electricity and magnetism. In this case, Chapters 16 through 18 could be covered 
along with Chapter 34. The chapter on relativity is placed near the end of the text 
because this topic often is treated as an introduction to the era of “modern physics.” If 
time permits, instructors may choose to cover Chapter 39 after completing Chapter 13 
as a conclusion to the material on Newtonian mechanics. For those instructors teach-
ing a two-semester sequence, some sections and chapters could be deleted without any 
loss of continuity. The following sections can be considered optional for this purpose:

 2.8 Kinematic Equations Derived from Calculus
 4.6 Relative Velocity and Relative Acceleration
 6.3 Motion in Accelerated Frames
 6.4 Motion in the Presence of Resistive Forces
 7.9 Energy Diagrams and Equilibrium of a System
 9.9 Rocket Propulsion
 11.5 The Motion of Gyroscopes and Tops
 14.7 Other Applications of Fluid Dynamics
 15.6 Damped Oscillations
 15.7 Forced Oscillations
 18.6 Standing Waves in Rods and Membranes
 18.8 Nonsinusoidal Wave Patterns
 25.7 The Millikan Oil-Drop Experiment
 25.8 Applications of Electrostatics
 26.7 An Atomic Description of Dielectrics
 27.5 Superconductors
 28.5 Household Wiring and Electrical Safety
 29.3  Applications Involving Charged Particles  

Moving in a Magnetic Field
 29.6 The Hall Effect
 30.6 Magnetism in Matter

 31.6 Eddy Currents
 33.9 Rectifiers and Filters
 34.6 Production of Electromagnetic Waves 

by an Antenna
 36.5 Lens Aberrations
 36.6 The Camera
 36.7 The Eye
 36.8 The Simple Magnifier
 36.9 The Compound Microscope
 36.10 The Telescope
 38.5 Diffraction of X-Rays by Crystals
 39.9 The General Theory of Relativity
 41.6 Applications of Tunneling
 42.9 Spontaneous and Stimulated Transitions
 42.10 Lasers
 43.7 Semiconductor Devices
 43.8 Superconductivity
 44.8 Nuclear Magnetic Resonance and  

Magnetic Resonance Imaging
 45.5 Radiation Damage
 45.6 Uses of Radiation
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To the Student

It is appropriate to offer some words of advice that should be of benefit to you, the 
student. Before doing so, we assume you have read the Preface, which describes the 
various features of the text and support materials that will help you through the course.

How to Study
Instructors are often asked, “How should I study physics and prepare for examina-
tions?” There is no simple answer to this question, but we can offer some suggestions  
based on our own experiences in learning and teaching over the years.
 First and foremost, maintain a positive attitude toward the subject matter, keep-
ing in mind that physics is the most fundamental of all natural sciences. Other  
science courses that follow will use the same physical principles, so it is important 
that you understand and are able to apply the various concepts and theories dis-
cussed in the text.

Concepts and Principles
It is essential that you understand the basic concepts and principles before attempt-
ing to solve assigned problems. You can best accomplish this goal by carefully read-
ing the textbook before you attend your lecture on the covered material. When 
reading the text, you should jot down those points that are not clear to you. Also 
be sure to make a diligent attempt at answering the questions in the Quick Quizzes 
as you come to them in your reading. We have worked hard to prepare questions 
that help you judge for yourself how well you understand the material. Study the 
What If? features that appear in many of the worked examples carefully. They will 
help you extend your understanding beyond the simple act of arriving at a numeri-
cal result. The Pitfall Preventions will also help guide you away from common mis-
understandings about physics. During class, take careful notes and ask questions 
about those ideas that are unclear to you. Keep in mind that few people are able to 
absorb the full meaning of scientific material after only one reading; several read-
ings of the text and your notes may be necessary. Your lectures and laboratory work 
supplement the textbook and should clarify some of the more difficult material. 
You should minimize your memorization of material. Successful memorization of 
passages from the text, equations, and derivations does not necessarily indicate that 
you understand the material. Your understanding of the material will be enhanced 
through a combination of efficient study habits, discussions with other students and 
with instructors, and your ability to solve the problems presented in the textbook. 
Ask questions whenever you believe that clarification of a concept is necessary.

Study Schedule
It is important that you set up a regular study schedule, preferably a daily one. Make 
sure that you read the syllabus for the course and adhere to the schedule set by your 
instructor. The lectures will make much more sense if you read the corresponding 
text material before attending them. As a general rule, you should devote about two 
hours of study time for each hour you are in class. If you are having trouble with the 
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course, seek the advice of the instructor or other students who have taken the course. 
You may find it necessary to seek further instruction from experienced students. Very 
often, instructors offer review sessions in addition to regular class periods. Avoid the 
practice of delaying study until a day or two before an exam. More often than not, 
this approach has disastrous results. Rather than undertake an all-night study ses-
sion before a test, briefly review the basic concepts and equations, and then get a 
good night’s rest. If you believe that you need additional help in understanding the 
concepts, in preparing for exams, or in problem solving, we suggest that you acquire 
a copy of the Student Solutions Manual/Study Guide that accompanies this textbook.
 Visit the Physics for Scientists and Engineers Web site at www.cengagebrain.com/
shop/ISBN/9781133954156 to see samples of select student supplements. You can 
purchase any Cengage Learning product at your local college store or at our pre-
ferred online store CengageBrain.com.

Use the Features
You should make full use of the various features of the text discussed in the Pref-
ace. For example, marginal notes are useful for locating and describing important 
equations and concepts, and boldface indicates important definitions. Many useful 
tables are contained in the appendices, but most are incorporated in the text where 
they are most often referenced. Appendix B is a convenient review of mathematical 
tools used in the text.
 Answers to Quick Quizzes and odd-numbered problems are given at the end of 
the textbook, and solutions to selected end-of-chapter questions and problems are 
provided in the Student Solutions Manual/Study Guide. The table of contents provides 
an overview of the entire text, and the index enables you to locate specific material 
quickly. Footnotes are sometimes used to supplement the text or to cite other refer-
ences on the subject discussed.
 After reading a chapter, you should be able to define any new quantities intro-
duced in that chapter and discuss the principles and assumptions that were used to 
arrive at certain key relations. The chapter summaries and the review sections of the 
Student Solutions Manual/Study Guide should help you in this regard. In some cases, 
you may find it necessary to refer to the textbook’s index to locate certain topics. You 
should be able to associate with each physical quantity the correct symbol used to rep-
resent that quantity and the unit in which the quantity is specified. Furthermore, you 
should be able to express each important equation in concise and accurate prose.

Problem Solving
R. P. Feynman, Nobel laureate in physics, once said, “You do not know anything 
until you have practiced.” In keeping with this statement, we strongly advise you to 
develop the skills necessary to solve a wide range of problems. Your ability to solve 
problems will be one of the main tests of your knowledge of physics; therefore, you 
should try to solve as many problems as possible. It is essential that you understand 
basic concepts and principles before attempting to solve problems. It is good prac-
tice to try to find alternate solutions to the same problem. For example, you can solve 
problems in mechanics using Newton’s laws, but very often an alternative method 
that draws on energy considerations is more direct. You should not deceive yourself 
into thinking that you understand a problem merely because you have seen it solved 
in class. You must be able to solve the problem and similar problems on your own.
 The approach to solving problems should be carefully planned. A systematic plan 
is especially important when a problem involves several concepts. First, read the 
problem several times until you are confident you understand what is being asked. 
Look for any key words that will help you interpret the problem and perhaps allow 
you to make certain assumptions. Your ability to interpret a question properly is 
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an integral part of problem solving. Second, you should acquire the habit of writ-
ing down the information given in a problem and those quantities that need to be 
found; for example, you might construct a table listing both the quantities given and 
the quantities to be found. This procedure is sometimes used in the worked exam-
ples of the textbook. Finally, after you have decided on the method you believe is 
appropriate for a given problem, proceed with your solution. The General Problem-
Solving Strategy will guide you through complex problems. If you follow the steps 
of this procedure (Conceptualize, Categorize, Analyze, Finalize), you will find it easier to 
come up with a solution and gain more from your efforts. This strategy, located at 
the end of Chapter 2 (pages 45–47), is used in all worked examples in the remaining 
chapters so that you can learn how to apply it. Specific problem-solving strategies for 
certain types of situations are included in the text and appear with a special heading. 
These specific strategies follow the outline of the General Problem-Solving Strategy.
 Often, students fail to recognize the limitations of certain equations or physical 
laws in a particular situation. It is very important that you understand and remem-
ber the assumptions that underlie a particular theory or formalism. For example, 
certain equations in kinematics apply only to a particle moving with constant accel-
eration. These equations are not valid for describing motion whose acceleration is 
not constant, such as the motion of an object connected to a spring or the motion 
of an object through a fluid. Study the Analysis Models for Problem Solving in the 
chapter summaries carefully so that you know how each model can be applied to a 
specific situation. The analysis models provide you with a logical structure for solv-
ing problems and help you develop your thinking skills to become more like those 
of a physicist. Use the analysis model approach to save you hours of looking for the 
correct equation and to make you a faster and more efficient problem solver.

 Experiments
Physics is a science based on experimental observations. Therefore, we recommend 
that you try to supplement the text by performing various types of “hands-on” 
experiments either at home or in the laboratory. These experiments can be used 
to test ideas and models discussed in class or in the textbook. For example, the 
common Slinky toy is excellent for studying traveling waves, a ball swinging on the 
end of a long string can be used to investigate pendulum motion, various masses 
attached to the end of a vertical spring or rubber band can be used to determine 
its elastic nature, an old pair of polarized sunglasses and some discarded lenses 
and a magnifying glass are the components of various experiments in optics, and 
an approximate measure of the free-fall acceleration can be determined simply by 
measuring with a stopwatch the time interval required for a ball to drop from a 
known height. The list of such experiments is endless. When physical models are 
not available, be imaginative and try to develop models of your own.

 New Media
If available, we strongly encourage you to use the Enhanced WebAssign product 
that is available with this textbook. It is far easier to understand physics if you see 
it in action, and the materials available in Enhanced WebAssign will enable you to 
become a part of that action. 
 It is our sincere hope that you will find physics an exciting and enjoyable experi-
ence and that you will benefit from this experience, regardless of your chosen pro-
fession. Welcome to the exciting world of physics!

The scientist does not study nature because it is useful; he studies it because he delights in it, and 
he delights in it because it is beautiful. If nature were not beautiful, it would not be worth know-
ing, and if nature were not worth knowing, life would not be worth living.

—Henri Poincaré
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Mechanics p a r t 

1
the Honda FCX Clarity, a fuel-cell-
powered automobile available to the 
public, albeit in limited quantities.  
a fuel cell converts hydrogen fuel  
into electricity to drive the motor 
attached to the wheels of the car. 
automobiles, whether powered 
by fuel cells, gasoline engines, or 
batteries, use many of the concepts 
and principles of mechanics that 
we will study in this first part of the 
book. Quantities that we can use to 
describe the operation of vehicles 
include position, velocity, acceleration, 
force, energy, and momentum. 
(PRNewsFoto/American Honda)

Physics, the most fundamental physical science, is concerned with the fundamental 
principles of the Universe. It is the foundation upon which the other sciences—astronomy, 
biology, chemistry, and geology—are based. It is also the basis of a large number of engineer-
ing applications. the beauty of physics lies in the simplicity of its fundamental principles and in the 
manner in which just a small number of concepts and models can alter and expand our view of the 
world around us.
 the study of physics can be divided into six main areas:

1.  classical mechanics, concerning the motion of objects that are large relative to atoms and
move at speeds much slower than the speed of light

2.  relativity, a theory describing objects moving at any speed, even speeds approaching the
speed of light

3.  thermodynamics, dealing with heat, work, temperature, and the statistical behavior of sys-
tems with large numbers of particles

4.  electromagnetism, concerning electricity, magnetism, and electromagnetic fields
5.  optics, the study of the behavior of light and its interaction with materials
6.  quantum mechanics, a collection of theories connecting the behavior of matter at the submi-

croscopic level to macroscopic observations

the disciplines of mechanics and electromagnetism are basic to all other branches of classical physics 
(developed before 1900) and modern physics (c. 1900–present). the first part of this textbook deals 
with classical mechanics, sometimes referred to as Newtonian mechanics or simply mechanics. Many 
principles and models used to understand mechanical systems retain their importance in the theories 
of other areas of physics and can later be used to describe many natural phenomena. therefore, 
classical mechanics is of vital importance to students from all disciplines. ■
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 Interactive content 
from this and other chapters may 
be assigned online in Enhanced 
Webassign.

c h a p t e r 

1
1.1 Standards of Length, Mass, 

and time

1.2 Matter and Model Building

1.3 Dimensional analysis

1.4 Conversion of Units

1.5 Estimates and Order-of-
Magnitude Calculations

1.6 Significant Figures

physics and 
Measurement

Like all other sciences, physics is based on experimental observations and quantitative 
measurements. the main objectives of physics are to identify a limited number of funda-
mental laws that govern natural phenomena and use them to develop theories that can pre-
dict the results of future experiments. the fundamental laws used in developing theories are 
expressed in the language of mathematics, the tool that provides a bridge between theory 
and experiment.
 When there is a discrepancy between the prediction of a theory and experimental 
results, new or modified theories must be formulated to remove the discrepancy. Many 
times a theory is satisfactory only under limited conditions; a more general theory might be 
satisfactory without such limitations. For example, the laws of motion discovered by Isaac 
Newton (1642–1727) accurately describe the motion of objects moving at normal speeds but 
do not apply to objects moving at speeds comparable to the speed of light. In contrast, the 
special theory of relativity developed later by albert Einstein (1879–1955) gives the same 
results as Newton’s laws at low speeds but also correctly describes the motion of objects at 
speeds approaching the speed of light. Hence, Einstein’s special theory of relativity is a more 
general theory of motion than that formed from Newton’s laws.
 Classical physics includes the principles of classical mechanics, thermodynamics, optics, 
and electromagnetism developed before 1900. Important contributions to classical physics 

Stonehenge, in southern England, 
was built thousands of years ago. 
Various theories have been proposed 
about its function, including a 
burial ground, a healing site, and 
a place for ancestor worship. One 
of the more intriguing theories 
suggests that Stonehenge was an 
observatory, allowing measurements 
of some of the quantities discussed 
in this chapter, such as position of 
objects in space and time intervals 
between repeating celestial events. 
(Stephen Inglis/Shutterstock.com)
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were provided by Newton, who was also one of the originators of calculus as a mathemati-
cal tool. Major developments in mechanics continued in the 18th century, but the fields of 
thermodynamics and electromagnetism were not developed until the latter part of the 19th 
century, principally because before that time the apparatus for controlled experiments in 
these disciplines was either too crude or unavailable.
 a major revolution in physics, usually referred to as modern physics, began near the end 
of the 19th century. Modern physics developed mainly because many physical phenomena 
could not be explained by classical physics. the two most important developments in this 
modern era were the theories of relativity and quantum mechanics. Einstein’s special the-
ory of relativity not only correctly describes the motion of objects moving at speeds com-
parable to the speed of light; it also completely modifies the traditional concepts of space, 
time, and energy. the theory also shows that the speed of light is the upper limit of the 
speed of an object and that mass and energy are related. Quantum mechanics was formu-
lated by a number of distinguished scientists to provide descriptions of physical phenomena 
at the atomic level. Many practical devices have been developed using the principles of 
quantum mechanics.
 Scientists continually work at improving our understanding of fundamental laws. 
Numerous technological advances in recent times are the result of the efforts of many 
scientists, engineers, and technicians, such as unmanned planetary explorations, a vari-
ety of developments and potential applications in nanotechnology, microcircuitry and 
high-speed computers, sophisticated imaging techniques used in scientific research and 
medicine, and several remarkable results in genetic engineering. the effects of such devel-
opments and discoveries on our society have indeed been great, and it is very likely that 
future discoveries and developments will be exciting, challenging, and of great benefit to 
humanity.

1.1 Standards of Length, Mass, and Time
To describe natural phenomena, we must make measurements of various aspects 
of nature. Each measurement is associated with a physical quantity, such as the 
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the 
book. In mechanics, the three fundamental quantities are length, mass, and time. 
All other quantities in mechanics can be expressed in terms of these three.
 If we are to report the results of a measurement to someone who wishes to repro-
duce this measurement, a standard must be defined. It would be meaningless if a 
visitor from another planet were to talk to us about a length of 8 “glitches” if we do 
not know the meaning of the unit glitch. On the other hand, if someone familiar 
with our system of measurement reports that a wall is 2 meters high and our unit 
of length is defined to be 1 meter, we know that the height of the wall is twice our 
basic length unit. Whatever is chosen as a standard must be readily accessible and 
must possess some property that can be measured reliably. Measurement standards 
used by different people in different places—throughout the Universe—must yield 
the same result. In addition, standards used for measurements must not change 
with time.
 In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Système International), and its 
fundamental units of length, mass, and time are the meter, kilogram, and second, 
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kelvin), electric current (the ampere), luminous 
intensity (the candela), and the amount of substance (the mole).
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Length
We can identify length as the distance between two points in space. In 1120, the 
king of England decreed that the standard of length in his country would be named 
the yard and would be precisely equal to the distance from the tip of his nose to the 
end of his outstretched arm. Similarly, the original standard for the foot adopted 
by the French was the length of the royal foot of King Louis XIV. Neither of these 
standards is constant in time; when a new king took the throne, length measure-
ments changed! The French standard prevailed until 1799, when the legal standard 
of length in France became the meter (m), defined as one ten-millionth of the 
distance from the equator to the North Pole along one particular longitudinal line 
that passes through Paris. Notice that this value is an Earth-based standard that 
does not satisfy the requirement that it can be used throughout the Universe.
 As recently as 1960, the length of the meter was defined as the distance between 
two lines on a specific platinum–iridium bar stored under controlled conditions 
in France. Current requirements of science and technology, however, necessitate 
more accuracy than that with which the separation between the lines on the bar 
can be determined. In the 1960s and 1970s, the meter was defined as 1 650 763.73 
wavelengths1 of orange-red light emitted from a krypton-86 lamp. In October 1983, 
however, the meter was redefined as the distance traveled by light in vacuum dur-
ing a time of 1/299 792 458 second. In effect, this latest definition establishes that 
the speed of light in vacuum is precisely 299 792 458 meters per second. This defi-
nition of the meter is valid throughout the Universe based on our assumption that 
light is the same everywhere.
 Table 1.1 lists approximate values of some measured lengths. You should study 
this table as well as the next two tables and begin to generate an intuition for what 
is meant by, for example, a length of 20 centimeters, a mass of 100 kilograms, or a 
time interval of 3.2 3 107 seconds.

Mass
The SI fundamental unit of mass, the kilogram (kg), is defined as the mass of a spe-
cific platinum–iridium alloy cylinder kept at the International Bureau of Weights 
and Measures at Sèvres, France. This mass standard was established in 1887 and 

Pitfall Prevention 1.1
Reasonable Values Generating 
intuition about typical values of 
quantities when solving problems 
is important because you must 
think about your end result and 
determine if it seems reasonable. 
For example, if you are calculating 
the mass of a housefly and arrive 
at a value of 100 kg, this answer is 
unreasonable and there is an error 
somewhere.

1We will use the standard international notation for numbers with more than three digits, in which groups of three 
digits are separated by spaces rather than commas. Therefore, 10 000 is the same as the common American notation 
of 10,000. Similarly, p 5 3.14159265 is written as 3.141 592 65.

 Approximate Values of Some Measured Lengths
Length (m)

Distance from the Earth to the most remote known quasar 1.4 3 1026

Distance from the Earth to the most remote normal galaxies 9 3 1025

Distance from the Earth to the nearest large galaxy (Andromeda) 2 3 1022

Distance from the Sun to the nearest star (Proxima Centauri) 4 3 1016

One light-year 9.46 3 1015

Mean orbit radius of the Earth about the Sun 1.50 3 1011

Mean distance from the Earth to the Moon 3.84 3 108

Distance from the equator to the North Pole 1.00 3 107

Mean radius of the Earth 6.37 3 106

Typical altitude (above the surface) of a satellite orbiting the Earth 2 3 105

Length of a football field 9.1 3 101

Length of a housefly 5 3 1023

Size of smallest dust particles , 1024

Size of cells of most living organisms , 1025

Diameter of a hydrogen atom , 10210

Diameter of an atomic nucleus , 10214

Diameter of a proton , 10215

Table 1.1
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has not been changed since that time because platinum–iridium is an unusually 
stable alloy. A duplicate of the Sèvres cylinder is kept at the National Institute of 
Standards and Technology (NIST) in Gaithersburg, Maryland (Fig. 1.1a). Table 1.2 
lists approximate values of the masses of various objects.

Time
Before 1967, the standard of time was defined in terms of the mean solar day. (A solar 
day is the time interval between successive appearances of the Sun at the highest point 
it reaches in the sky each day.) The fundamental unit of a second (s) was defined as 
1 1

60 2 1 1
60 2 1 1

24 2  of a mean solar day. This definition is based on the rotation of one planet, 
the Earth. Therefore, this motion does not provide a time standard that is universal.
 In 1967, the second was redefined to take advantage of the high precision attain-
able in a device known as an atomic clock (Fig. 1.1b), which measures vibrations of 
cesium atoms. One second is now defined as 9 192 631 770 times the period of 
vibration of radiation from the cesium-133 atom.2 Approximate values of time 
intervals are presented in Table 1.3.
 In addition to SI, another system of units, the U.S. customary system, is still used in 
the United States despite acceptance of SI by the rest of the world. In this system, 
the units of length, mass, and time are the foot (ft), slug, and second, respectively. 
In this book, we shall use SI units because they are almost universally accepted in 
science and industry. We shall make some limited use of U.S. customary units in 
the study of classical mechanics.
 In addition to the fundamental SI units of meter, kilogram, and second, we can 
also use other units, such as millimeters and nanoseconds, where the prefixes milli- 
and nano- denote multipliers of the basic units based on various powers of ten. 
Prefixes for the various powers of ten and their abbreviations are listed in Table 1.4 
(page 6). For example, 1023 m is equivalent to 1 millimeter (mm), and 103 m corre-
sponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 103 grams (g), and 1 mega 
volt (MV) is 106 volts (V).
 The variables length, time, and mass are examples of fundamental quantities. Most 
other variables are derived quantities, those that can be expressed as a mathematical 
combination of fundamental quantities. Common examples are area (a product of 
two lengths) and speed (a ratio of a length to a time interval).

2Period is defined as the time interval needed for one complete vibration.

 
Approximate Masses of 
Various Objects

Mass (kg)

Observable
 Universe , 1052

Milky Way
 galaxy , 1042

Sun 1.99 3 1030

Earth 5.98 3 1024

Moon 7.36 3 1022

Shark , 103

Human , 102

Frog , 1021

Mosquito , 1025

Bacterium , 1 3 10215

Hydrogen atom 1.67 3 10227

Electron 9.11 3 10231

Table 1.2  Approximate Values of 
Some Time Intervals

Time Interval (s)

Age of the Universe 4 3 1017

Age of the Earth 1.3 3 1017

Average age of a college student 6.3 3 108

One year 3.2 3 107

One day 8.6 3 104

One class period 3.0 3 103

Time interval between normal 
 heartbeats 8 3 1021

Period of audible sound waves , 1023

Period of typical radio waves , 1026

Period of vibration of an atom  
 in a solid , 10213

Period of visible light waves , 10215

Duration of a nuclear collision , 10222

Time interval for light to cross  
 a proton , 10224

Table 1.3

Figure 1.1 (a) The National
Standard Kilogram No. 20, an 
accurate copy of the International 
Standard Kilogram kept at Sèvres, 
France, is housed under a double 
bell jar in a vault at the National 
Institute of Standards and Tech-
nology. (b) A cesium fountain 
atomic clock. The clock will nei-
ther gain nor lose a second in 20 
million years.
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 Another example of a derived quantity is density. The density r (Greek letter 
rho) of any substance is defined as its mass per unit volume:

r ;
m
V

(1.1)

In terms of fundamental quantities, density is a ratio of a mass to a product of three 
lengths. Aluminum, for example, has a density of 2.70 3 103 kg/m3, and iron has a 
density of 7.86 3 103 kg/m3. An extreme difference in density can be imagined by 
thinking about holding a 10-centimeter (cm) cube of Styrofoam in one hand and a 
10-cm cube of lead in the other. See Table 14.1 in Chapter 14 for densities of several 
materials.

Q uick Quiz 1.1 In a machine shop, two cams are produced, one of aluminum 
and one of iron. Both cams have the same mass. Which cam is larger? (a) The 
aluminum cam is larger. (b) The iron cam is larger. (c) Both cams have the 
same size.

1.2 Matter and Model Building
If physicists cannot interact with some phenomenon directly, they often imagine 
a model for a physical system that is related to the phenomenon. For example, we 
cannot interact directly with atoms because they are too small. Therefore, we build 
a mental model of an atom based on a system of a nucleus and one or more elec-
trons outside the nucleus. Once we have identified the physical components of the 
model, we make predictions about its behavior based on the interactions among 
the components of the system or the interaction between the system and the envi-
ronment outside the system.
 As an example, consider the behavior of matter. A sample of solid gold is shown 
at the top of Figure 1.2. Is this sample nothing but wall-to-wall gold, with no empty 
space? If the sample is cut in half, the two pieces still retain their chemical iden-
tity as solid gold. What if the pieces are cut again and again, indefinitely? Will the 
smaller and smaller pieces always be gold? Such questions can be traced to early 
Greek philosophers. Two of them—Leucippus and his student Democritus—could 
not accept the idea that such cuttings could go on forever. They developed a model 
for matter by speculating that the process ultimately must end when it produces a 
particle that can no longer be cut. In Greek, atomos means “not sliceable.” From this 
Greek term comes our English word atom.
 The Greek model of the structure of matter was that all ordinary matter consists 
of atoms, as suggested in the middle of Figure 1.2. Beyond that, no additional struc-
ture was specified in the model; atoms acted as small particles that interacted with 
one another, but internal structure of the atom was not a part of the model.

A table of the letters in the  
Greek alphabet is provided  

on the back endpaper  
of this book.

 Prefixes for Powers of Ten
 Power Prefix Abbreviation Power Prefix Abbreviation

 10224 yocto y 103   kilo k
 10221 zepto z 106   mega M
 10218 atto a 109   giga G
 10215 femto f 1012 tera T
 10212 pico p 1015 peta P
 1029   nano n 1018 exa E
 1026   micro m 1021 zetta Z
 1023   milli m 1024 yotta Y
 1022   centi c
 1021   deci d

Table 1.4

Figure 1.2 Levels of organization
in matter.

A piece of 
gold consists 
of gold atoms.

At the center 
of each atom 
is a nucleus.

Inside the 
nucleus are 
protons 
(orange) and 
neutrons 
(gray).

Protons and 
neutrons are 
composed of 
quarks. The 
quark 
composition 
of a proton is 
shown here.
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1.3 Dimensional analysis 7

 In 1897, J. J. Thomson identified the electron as a charged particle and as a 
constituent of the atom. This led to the first atomic model that contained internal 
structure. We shall discuss this model in Chapter 42.
 Following the discovery of the nucleus in 1911, an atomic model was developed in 
which each atom is made up of electrons surrounding a central nucleus. A nucleus 
of gold is shown in Figure 1.2. This model leads, however, to a new question: Does 
the nucleus have structure? That is, is the nucleus a single particle or a collection of 
particles? By the early 1930s, a model evolved that described two basic entities in the 
nucleus: protons and neutrons. The proton carries a positive electric charge, and a 
specific chemical element is identified by the number of protons in its nucleus. This 
number is called the atomic number of the element. For instance, the nucleus of a 
hydrogen atom contains one proton (so the atomic number of hydrogen is 1), the 
nucleus of a helium atom contains two protons (atomic number 2), and the nucleus 
of a uranium atom contains 92 protons (atomic number 92). In addition to atomic 
number, a second number—mass number, defined as the number of protons plus 
neutrons in a nucleus—characterizes atoms. The atomic number of a specific ele-
ment never varies (i.e., the number of protons does not vary), but the mass number 
can vary (i.e., the number of neutrons varies).
 Is that, however, where the process of breaking down stops? Protons, neutrons, 
and a host of other exotic particles are now known to be composed of six different 
varieties of particles called quarks, which have been given the names of up, down, 
strange, charmed, bottom, and top. The up, charmed, and top quarks have electric 
charges of 12

3 that of the proton, whereas the down, strange, and bottom quarks 
have charges of 21

3 that of the proton. The proton consists of two up quarks and 
one down quark as shown at the bottom of Figure 1.2 and labeled u and d. This 
structure predicts the correct charge for the proton. Likewise, the neutron consists 
of two down quarks and one up quark, giving a net charge of zero.
 You should develop a process of building models as you study physics. In this 
study, you will be challenged with many mathematical problems to solve. One of 
the most important problem-solving techniques is to build a model for the prob-
lem: identify a system of physical components for the problem and make predic-
tions of the behavior of the system based on the interactions among its components 
or the interaction between the system and its surrounding environment.

1.3 Dimensional Analysis
In physics, the word dimension denotes the physical nature of a quantity. The dis-
tance between two points, for example, can be measured in feet, meters, or fur-
longs, which are all different ways of expressing the dimension of length.
 The symbols we use in this book to specify the dimensions of length, mass, and time 
are L, M, and T, respectively.3 We shall often use brackets [ ] to denote the dimensions 
of a physical quantity. For example, the symbol we use for speed in this book is v, and 
in our notation, the dimensions of speed are written [v] 5 L/T. As another example, 
the dimensions of area A are [A] 5 L2. The dimensions and units of area, volume, 
speed, and acceleration are listed in Table 1.5. The dimensions of other quantities, 
such as force and energy, will be described as they are introduced in the text.

3The dimensions of a quantity will be symbolized by a capitalized, nonitalic letter such as L or T. The algebraic symbol 
for the quantity itself will be an italicized letter such as L for the length of an object or t  for time.

Table 1.5 Dimensions and Units of Four Derived Quantities

Quantity Area (A) Volume (V ) Speed (v) Acceleration (a)

Dimensions L2 L3 L/T L/T2

SI units m2 m3 m/s m/s2

U.S. customary units ft2 ft3 ft/s ft/s2
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 In many situations, you may have to check a specific equation to see if it matches 
your expectations. A useful procedure for doing that, called dimensional analysis, 
can be used because dimensions can be treated as algebraic quantities. For exam-
ple, quantities can be added or subtracted only if they have the same dimensions. 
Furthermore, the terms on both sides of an equation must have the same dimen-
sions. By following these simple rules, you can use dimensional analysis to deter-
mine whether an expression has the correct form. Any relationship can be correct 
only if the dimensions on both sides of the equation are the same.
 To illustrate this procedure, suppose you are interested in an equation for the 
position x of a car at a time t if the car starts from rest at x 5 0 and moves with con-
stant acceleration a. The correct expression for this situation is x 5 1

2 at 2 as we show 
in Chapter 2. The quantity x on the left side has the dimension of length. For the 
equation to be dimensionally correct, the quantity on the right side must also have 
the dimension of length. We can perform a dimensional check by substituting the 
dimensions for acceleration, L/T2 (Table 1.5), and time, T, into the equation. That 
is, the dimensional form of the equation x 5 1

2 at 2 is

L 5
L
T2

# T2 5 L

The dimensions of time cancel as shown, leaving the dimension of length on the 
right-hand side to match that on the left.
 A more general procedure using dimensional analysis is to set up an expression 
of the form

x ~ ant m

where n and m are exponents that must be determined and the symbol ~ indicates 
a proportionality. This relationship is correct only if the dimensions of both sides 
are the same. Because the dimension of the left side is length, the dimension of the 
right side must also be length. That is,

3ant m 4 5 L 5 L1T0

Because the dimensions of acceleration are L/T2 and the dimension of time is T, 
we have

1L/T2 2nTm 5 L1T0  S   1LnTm22n 2 5 L1T0

The exponents of L and T must be the same on both sides of the equation. From 
the exponents of L, we see immediately that n 5 1. From the exponents of T, we see 
that m 2 2n 5 0, which, once we substitute for n, gives us m 5 2. Returning to our 
original expression x ~ ant m, we conclude that x ~ at2 .

Q uick Quiz 1.2 True or False: Dimensional analysis can give you the numerical 
value of constants of proportionality that may appear in an algebraic expression.

Pitfall Prevention 1.2
Symbols for Quantities Some 
quantities have a small number 
of symbols that represent them. 
For example, the symbol for time 
is almost always t. Other quanti-
ties might have various symbols 
depending on the usage. Length 
may be described with symbols 
such as x, y, and z (for position); 
r (for radius); a, b, and c (for the 
legs of a right triangle); , (for the 
length of an object); d (for a dis-
tance); h (for a height); and  
so forth.

Identify the dimensions of v from Table 1.5: 3v 4 5
L
T

Example 1.1   Analysis of an Equation

Show that the expression v 5 at, where v represents speed, a acceleration, and t   an instant of time, is dimensionally correct.

S o L u t i o n
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1.4 Conversion of Units
Sometimes it is necessary to convert units from one measurement system to another 
or convert within a system (for example, from kilometers to meters). Conversion 
factors between SI and U.S. customary units of length are as follows:

1 mile 5 1 609 m 5 1.609 km 1 ft 5 0.304 8 m 5 30.48 cm
1 m 5 39.37 in. 5 3.281 ft 1 in. 5 0.025 4 m 5 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.
 Like dimensions, units can be treated as algebraic quantities that can can-
cel each other. For example, suppose we wish to convert 15.0 in. to centimeters. 
Because 1 in. is defined as exactly 2.54 cm, we find that

15.0 in. 5 115.0 in. 2 a2.54 cm
1 in.

 b 5 38.1 cm

where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather 
than 1 in./2.54 cm) so that the unit “inch” in the denominator cancels with the unit 
in the original quantity. The remaining unit is the centimeter, our desired result.

1.4 Pitfall Prevention 1.3
Always include units When per-
forming calculations with numeri-
cal values, include the units for 
every quantity and carry the units 
through the entire calculation. 
Avoid the temptation to drop the 
units early and then attach the 
expected units once you have an 
answer. By including the units in 
every step, you can detect errors if 
the units for the answer turn out 
to be incorrect.

Write an expression for a with a dimensionless constant 
of proportionality k:

a 5 krnvm

Substitute the dimensions of a, r, and v:
L
T2 5 Ln aL

T
b

m

5
Ln1m

Tm

Equate the exponents of L and T so that the dimen-
sional equation is balanced:

n 1 m 5 1 and m 5 2

Solve the two equations for n: n 5 21

Write the acceleration expression: a 5 kr21 v 2 5 k 
v 2

r

In Section 4.4 on uniform circular motion, we show that k 5 1 if a consistent set of units is used. The constant k would 
not equal 1 if, for example, v were in km/h and you wanted a in m/s2 .

Example 1.2   Analysis of a Power Law

Suppose we are told that the acceleration a of a particle moving with uniform speed v in a circle of radius r is propor-
tional to some power of r, say rn, and some power of v, say v m. Determine the values of n and m and write the simplest 
form of an equation for the acceleration.

S o L u t i o n

Identify the dimensions of a from Table 1.5 and multiply 
by the dimensions of t :

3at 4 5
L
T2  T 5

L
T

Therefore, v 5 at is dimensionally correct because we have the same dimensions on both sides. (If the expression were 
given as v 5 at2, it would be dimensionally incorrect. Try it and see!)

▸ 1.1 c o n t i n u e d
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1.5 Estimates and Order-of-Magnitude Calculations
Suppose someone asks you the number of bits of data on a typical musical com-
pact disc. In response, it is not generally expected that you would provide the exact 
number but rather an estimate, which may be expressed in scientific notation. The 
estimate may be made even more approximate by expressing it as an order of magni-
tude, which is a power of ten determined as follows:

1. Express the number in scientific notation, with the multiplier of the power
of ten between 1 and 10 and a unit.

2. If the multiplier is less than 3.162 (the square root of 10), the order of mag-
nitude of the number is the power of 10 in the scientific notation. If the 
multiplier is greater than 3.162, the order of magnitude is one larger than 
the power of 10 in the scientific notation.

 We use the symbol , for “is on the order of.” Use the procedure above to verify 
the orders of magnitude for the following lengths:

0.008 6 m , 1022 m  0.002 1 m , 1023 m  720 m , 103 m

Q uick Quiz 1.3 The distance between two cities is 100 mi. What is the number  
of kilometers between the two cities? (a) smaller than 100 (b) larger than 100  
(c) equal to 100

Convert meters in the speed to miles: 138.0 m/s 2  a 1 mi
1 609 m

b 5 2.36 3 1022 mi/s

Convert seconds to hours: 12.36 3 1022 mi/s 2  a 60 s
1 min

 b a60 min
1 h

 b 5 85.0 mi/h

The driver is indeed exceeding the speed limit and should slow down.

What if the driver were from outside the United States and is 
familiar with speeds measured in kilometers per hour? What is the speed of 
the car in km/h?

Answer We can convert our final answer to the appropriate units:

185.0 mi/h 2  a1.609 km
1 mi

 b 5 137 km/h

Figure 1.3 shows an automobile speedometer displaying speeds in both 
mi/h and km/h. Can you check the conversion we just performed using this 
photograph?

WhAt iF ?

Figure 1.3 The speedometer of a vehicle
that shows speeds in both miles per hour 
and kilometers per hour.
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Example 1.3   Is He Speeding?

On an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding 
the speed limit of 75.0 mi/h?

S o L u t i o n
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Usually, when an order-of-magnitude estimate is made, the results are reliable to 
within about a factor of 10. If a quantity increases in value by three orders of magni-
tude, its value increases by a factor of about 103 5 1 000.
 Inaccuracies caused by guessing too low for one number are often canceled 
by other guesses that are too high. You will find that with practice your guessti-
mates become better and better. Estimation problems can be fun to work because 
you freely drop digits, venture reasonable approximations for unknown numbers, 
make simplifying assumptions, and turn the question around into something you 
can answer in your head or with minimal mathematical manipulation on paper. 
Because of the simplicity of these types of calculations, they can be performed on a 
small scrap of paper and are often called “back-of-the-envelope calculations.”

1.6 Significant Figures
When certain quantities are measured, the measured values are known only to 
within the limits of the experimental uncertainty. The value of this uncertainty 
can depend on various factors, such as the quality of the apparatus, the skill of 
the experimenter, and the number of measurements performed. The number of 
significant figures in a measurement can be used to express something about the 
uncertainty. The number of significant figures is related to the number of numeri-
cal digits used to express the measurement, as we discuss below.
 As an example of significant figures, suppose we are asked to measure the radius 
of a compact disc using a meterstick as a measuring instrument. Let us assume the 
accuracy to which we can measure the radius of the disc is 60.1 cm. Because of 
the uncertainty of 60.1 cm, if the radius is measured to be 6.0 cm, we can claim 
only that its radius lies somewhere between 5.9 cm and 6.1 cm. In this case, we 
say that the measured value of 6.0 cm has two significant figures. Note that the  

1 yr  a400 days 

1 yr 
 b a 25 h 

1 day 
 b a60 min

1 h 
 b 5 6 3 105 minFind the approximate number of minutes in a year:

Find the approximate number of minutes in a 70-year 
lifetime:

number of minutes 5 (70 yr)(6 3 105 min/yr)
	 5 4 3 107 min

Find the approximate number of breaths in a lifetime: number of breaths  5 (10 breaths/min)(4 3 107 min)

  5 4 3 108 breaths

Therefore, a person takes on the order of 109 breaths in a lifetime. Notice how much simpler it is in the first calculation 
above to multiply 400 3 25 than it is to work with the more accurate 365 3 24.

What if the average lifetime were estimated as 80 years instead of 70? Would that change our final estimate?

Answer We could claim that (80 yr)(6 3 105 min/yr) 5 5 3 107 min, so our final estimate should be 5 3 108 breaths. 
This answer is still on the order of 109 breaths, so an order-of-magnitude estimate would be unchanged.

WhAt iF ?

 

Example 1.4   Breaths in a Lifetime

Estimate the number of breaths taken during an average human lifetime.

We start by guessing that the typical human lifetime is about 70 years. Think about the average number of breaths that 
a person takes in 1 min. This number varies depending on whether the person is exercising, sleeping, angry, serene, 
and so forth. To the nearest order of magnitude, we shall choose 10 breaths per minute as our estimate. (This estimate 
is certainly closer to the true average value than an estimate of 1 breath per minute or 100 breaths per minute.)

S o L u t i o n
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significant figures include the first estimated digit. Therefore, we could write the radius as  
(6.0 6 0.1) cm.
 Zeros may or may not be significant figures. Those used to position the decimal 
point in such numbers as 0.03 and 0.007 5 are not significant. Therefore, there are 
one and two significant figures, respectively, in these two values. When the zeros 
come after other digits, however, there is the possibility of misinterpretation. For 
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate the 
decimal point or whether they represent significant figures in the measurement. To 
remove this ambiguity, it is common to use scientific notation to indicate the number 
of significant figures. In this case, we would express the mass as 1.5 3 103 g if there 
are two significant figures in the measured value, 1.50 3 103 g if there are three sig-
nificant figures, and 1.500 3 103 g if there are four. The same rule holds for numbers 
less than 1, so 2.3 3 1024 has two significant figures (and therefore could be written 
0.000 23) and 2.30 3 1024 has three significant figures (also written as 0.000 230).
 In problem solving, we often combine quantities mathematically through mul-
tiplication, division, addition, subtraction, and so forth. When doing so, you must 
make sure that the result has the appropriate number of significant figures. A good 
rule of thumb to use in determining the number of significant figures that can be 
claimed in a multiplication or a division is as follows:

When multiplying several quantities, the number of significant figures in the 
final answer is the same as the number of significant figures in the quantity hav-
ing the smallest number of significant figures. The same rule applies to division.

 Let’s apply this rule to find the area of the compact disc whose radius we mea-
sured above. Using the equation for the area of a circle,

A 5 pr 2 5 p 16.0 cm 2 2 5 1.1 3 102 cm2

 If you perform this calculation on your calculator, you will likely see 
113.097 335 5. It should be clear that you don’t want to keep all of these digits, but 
you might be tempted to report the result as 113 cm2. This result is not justified 
because it has three significant figures, whereas the radius only has two. Therefore, 
we must report the result with only two significant figures as shown above.
 For addition and subtraction, you must consider the number of decimal places 
when you are determining how many significant figures to report:

When numbers are added or subtracted, the number of decimal places in the 
result should equal the smallest number of decimal places of any term in the 
sum or difference.

As an example of this rule, consider the sum

23.2 1 5.174 5 28.4

Notice that we do not report the answer as 28.374 because the lowest number of 
decimal places is one, for 23.2. Therefore, our answer must have only one decimal 
place.
 The rule for addition and subtraction can often result in answers that have a dif-
ferent number of significant figures than the quantities with which you start. For 
example, consider these operations that satisfy the rule:

1.000 1 1 0.000 3 5 1.000 4

1.002 2 0.998 5 0.004

 In the first example, the result has five significant figures even though one of 
the terms, 0.000 3, has only one significant figure. Similarly, in the second calcu-
lation, the result has only one significant figure even though the numbers being 
subtracted have four and three, respectively.

Pitfall Prevention 1.4
Read Carefully Notice that the 
rule for addition and subtraction 
is different from that for multipli-
cation and division. For addition 
and subtraction, the important 
consideration is the number of 
decimal places, not the number of 
significant figures.
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In this book, most of the numerical examples and end-of-chapter problems 
will yield answers having three significant figures. When carrying out estima-
tion calculations, we shall typically work with a single significant figure.

 If the number of significant figures in the result of a calculation must be reduced, 
there is a general rule for rounding numbers: the last digit retained is increased by 
1 if the last digit dropped is greater than 5. (For example, 1.346 becomes 1.35.) 
If the last digit dropped is less than 5, the last digit retained remains as it is. (For 
example, 1.343 becomes 1.34.) If the last digit dropped is equal to 5, the remaining 
digit should be rounded to the nearest even number. (This rule helps avoid accu-
mulation of errors in long arithmetic processes.)
 A technique for avoiding error accumulation is to delay the rounding of num-
bers in a long calculation until you have the final result. Wait until you are ready to 
copy the final answer from your calculator before rounding to the correct number 
of significant figures. In this book, we display numerical values rounded off to two 
or three significant figures. This occasionally makes some mathematical manipula-
tions look odd or incorrect. For instance, looking ahead to Example 3.5 on page 69, 
you will see the operation 217.7 km 1 34.6 km 5 17.0 km. This looks like an incor-
rect subtraction, but that is only because we have rounded the numbers 17.7 km and 
34.6 km for display. If all digits in these two intermediate numbers are retained and 
the rounding is only performed on the final number, the correct three-digit result 
of 17.0 km is obtained.

WW  Significant figure guidelines 
used in this book

Pitfall Prevention 1.5
Symbolic Solutions When solving 
problems, it is very useful to per-
form the solution completely in 
algebraic form and wait until the 
very end to enter numerical values 
into the final symbolic expres-
sion. This method will save many 
calculator keystrokes, especially if 
some quantities cancel so that you 
never have to enter their values 
into your calculator! In addition, 
you will only need to round once, 
on the final result.

Summary

Definitions

 The three fundamental physical quantities of 
mechanics are length, mass, and time, which in the SI 
system have the units meter (m), kilogram (kg), and 
second (s), respectively. These fundamental quantities 
cannot be defined in terms of more basic quantities.

 The density of a substance is defined as its mass per 
unit volume:

r ;
m
V

(1.1)

Example 1.5   Installing a Carpet

A carpet is to be installed in a rectangular room whose length is measured to be 12.71 m and whose width is measured 
to be 3.46 m. Find the area of the room.

If you multiply 12.71 m by 3.46 m on your calculator, you will see an answer of 43.976 6 m2. How many of these num-
bers should you claim? Our rule of thumb for multiplication tells us that you can claim only the number of significant 
figures in your answer as are present in the measured quantity having the lowest number of significant figures. In this 
example, the lowest number of significant figures is three in 3.46 m, so we should express our final answer as 44.0 m2.

S o L u t i o n

continued



14 chapter 1 physics and Measurement

 1. One student uses a meterstick to measure the thick-
ness of a textbook and obtains 4.3 cm 6 0.1 cm. Other 
students measure the thickness with vernier calipers 
and obtain four different measurements: (a) 4.32 cm  
6 0.01 cm, (b) 4.31 cm 6 0.01 cm, (c) 4.24 cm 6 0.01 cm,  
and (d) 4.43 cm 6 0.01 cm. Which of these four mea-
surements, if any, agree with that obtained by the first 
student?

 2. A house is advertised as having 1 420 square feet under 
its roof. What is its area in square meters? (a) 4 660 m2 
(b) 432 m2 (c) 158 m2 (d) 132 m2 (e) 40.2 m2

 3. Answer each question yes or no. Must two quantities 
have the same dimensions (a) if you are adding them? 
(b) If you are multiplying them? (c) If you are subtract-
ing them? (d) If you are dividing them? (e) If you are 
equating them?

 4. The price of gasoline at a particular station is 1.5 euros 
per liter. An American student can use 33 euros to buy 
gasoline. Knowing that 4 quarts make a gallon and that  
1 liter is close to 1 quart, she quickly reasons that she 
can buy how many gallons of gasoline? (a) less than  
1 gallon (b) about 5 gallons (c) about 8 gallons (d) more  
than 10 gallons

 5. Rank the following five quantities in order from the 
largest to the smallest. If two of the quantities are equal, 

give them equal rank in your list. (a) 0.032 kg (b) 15 g  
(c) 2.7 3 105 mg (d) 4.1 3 1028 Gg (e) 2.7 3 108 mg

 6. What is the sum of the measured values 21.4 s 1 15 s 1  
17.17 s 1 4.00 3 s? (a) 57.573 s (b) 57.57 s (c) 57.6 s  
(d) 58 s (e) 60 s

 7. Which of the following is the best estimate for the mass 
of all the people living on the Earth? (a) 2 3 108 kg  
(b) 1 3 109 kg (c) 2 3 1010 kg (d) 3 3 1011 kg  
(e) 4 3 1012 kg

 8. (a) If an equation is dimensionally correct, does that 
mean that the equation must be true? (b) If an equa-
tion is not dimensionally correct, does that mean that 
the equation cannot be true?

 9. Newton’s second law of motion (Chapter 5) says that the 
mass of an object times its acceleration is equal to the 
net force on the object. Which of the following gives 
the correct units for force? (a) kg ? m/s2 (b) kg ? m2/s2 
(c) kg/m ? s2 (d) kg ? m2/s (e) none of those answers

 10. A calculator displays a result as 1.365 248 0 3 107 kg. 
The estimated uncertainty in the result is 62%. How 
many digits should be included as significant when the 
result is written down? (a) zero (b) one (c) two (d) three 
(e) four

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Suppose the three fundamental standards of the met-
ric system were length, density, and time rather than 
length, mass, and time. The standard of density in this 
system is to be defined as that of water. What consid-
erations about water would you need to address to 
make sure that the standard of density is as accurate as 
possible?

 2. Why is the metric system of units considered superior 
to most other systems of units?

 3. What natural phenomena could serve as alternative 
time standards?

 4. Express the following quantities using the prefixes given 
in Table 1.4. (a) 3 3 1024 m (b) 5 3 1025 s (c) 72 3 102 g

Concepts and Principles

 When you compute a result from several measured 
numbers, each of which has a certain accuracy, you 
should give the result with the correct number of sig-
nificant figures.

When multiplying several quantities, the number of 
significant  figures in the final answer is the same as the 
number of significant figures in the quantity having 
the smallest number of significant figures. The same 
rule applies to division.

When numbers are added or subtracted, the number 
of decimal places in the result should equal the small-
est number of decimal places of any term in the sum or 
difference.

 The method of dimensional analysis is very power-
ful in solving physics problems. Dimensions can be 
treated as algebraic quantities. By making estimates 
and performing order-of-magnitude calculations, you 
should be able to approximate the answer to a prob-
lem when there is not enough information available to 
specify an exact solution completely.
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Section 1.1 Standards of Length, Mass, and time

Note: Consult the endpapers, appendices, and tables in 
the text whenever necessary in solving problems. For 
this chapter, Table 14.1 and Appendix B.3 may be par-
ticularly useful. Answers to odd-numbered problems 
appear in the back of the book.

 1. (a) Use information on the endpapers of this book to 
calculate the average density of the Earth. (b) Where 
does the value fit among those listed in Table 14.1 in 
Chapter 14? Look up the density of a typical surface 
rock like granite in another source and compare it 
with the density of the Earth.

 2. The standard kilogram (Fig. 1.1a) is a platinum–iridium 
cylinder 39.0 mm in height and 39.0 mm in diameter. 
What is the density of the material?

 3. An automobile company displays a die-cast model of 
its first car, made from 9.35 kg of iron. To celebrate 
its hundredth year in business, a worker will recast the 
model in solid gold from the original dies. What mass 
of gold is needed to make the new model?

 4. A proton, which is the nucleus of a hydrogen atom, can 
be modeled as a sphere with a diameter of 2.4 fm and 
a mass of 1.67 3 10227 kg. (a) Determine the density of 
the proton. (b) State how your answer to part (a) com-
pares with the density of osmium, given in Table 14.1 
in Chapter 14.

 5. Two spheres are cut from a certain uniform rock. One 
has radius 4.50 cm. The mass of the other is five times 
greater. Find its radius.

 6. What mass of a material with density r is required to 
make a hollow spherical shell having inner radius r1 
and outer radius r2?

Section 1.2 Matter and Model Building
 7. A crystalline solid consists of atoms stacked up in a 

repeating lattice structure. Consider a crystal as shown 
in Figure P1.7a. The atoms reside at the corners of 
cubes of side L 5 0.200 nm. One piece of evidence for 
the regular arrangement of atoms comes from the flat 
surfaces along which a crystal separates, or cleaves, 
when it is broken. Suppose this crystal cleaves along a 
face diagonal as shown in Figure P1.7b. Calculate the 
spacing d between two adjacent atomic planes that sep-
arate when the crystal cleaves.
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 8. The mass of a copper atom is 1.06 3 10225 kg, and the 
density of copper is 8 920 kg/m3 . (a) Determine the 
number of atoms in 1 cm3 of copper. (b) Visualize the 
one cubic centimeter as formed by stacking up identi-
cal cubes, with one copper atom at the center of each. 
Determine the volume of each cube. (c) Find the edge 
dimension of each cube, which represents an estimate 
for the spacing between atoms.

Section 1.3 Dimensional Analysis
 9. Which of the following equations are dimensionally 

correct? (a) vf 5 vi 1 ax (b) y 5 (2 m) cos (kx), where 
k 5 2 m21

 10. Figure P1.10 shows a frustum  
of a cone. Match each of the 
expressions 

  (a) p(r1 1 r2)[h2 1 (r2 2 r1)2]1/2,  
(b) 2p(r1 1 r2), and  
(c) ph(r1

2 1 r1r2 1 r2
2)/3 

  with the quantity it describes: 
(d) the total circumference of 
the flat circular faces, (e) the 
volume, or (f)  the area of the 
curved surface.

 11. Kinetic energy K (Chapter 7) has dimensions kg ? m2/s2.  
It can be written in terms of the momentum p (Chap-
ter 9) and mass m as

K 5
p2

2m

h

r1

r2

Figure P1.10
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the problems found in this  

 chapter may be assigned 
online in Enhanced Webassign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   analysis Model tutorial available in 
Enhanced Webassign

 GP  Guided problem

 M   Master It tutorial available in Enhanced 
Webassign

 W   Watch It video solution available in 
Enhanced Webassign
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 22. Assume it takes 7.00 min to fill a 30.0-gal gasoline tank. 
(a) Calculate the rate at which the tank is filled in gal-
lons per second. (b) Calculate the rate at which the 
tank is filled in cubic meters per second. (c) Determine 
the time interval, in hours, required to fill a 1.00-m3 
volume at the same rate. (1 U.S. gal 5 231 in.3)

 23. A section of land has an area of 1 square mile and 
contains 640 acres. Determine the number of square 
meters in 1 acre.

 24. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-
high ceilings. What is the volume of the interior of the 
house in cubic meters and in cubic centimeters?

 25. One cubic meter (1.00 m3) of aluminum has a mass of 
2.70 3 103 kg, and the same volume of iron has a mass 
of 7.86 3 103 kg. Find the radius of a solid aluminum 
sphere that will balance a solid iron sphere of radius 
2.00 cm on an equal-arm balance.

 26. Let rAl represent the density of aluminum and rFe that 
of iron. Find the radius of a solid aluminum sphere 
that balances a solid iron sphere of radius rFe on an 
equal-arm balance.

 27. One gallon of paint (volume 5 3.78 3 10–3 m3) covers 
an area of 25.0 m2. What is the thickness of the fresh 
paint on the wall?

 28. An auditorium measures 40.0 m 3 20.0 m 3 12.0 m. 
The density of air is 1.20 kg/m3. What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air 
in the room in pounds?

 29. (a) At the time of this book’s printing, the U.S. 
national debt is about $16 trillion. If payments were 
made at the rate of $1 000 per second, how many years 
would it take to pay off the debt, assuming no interest 
were charged? (b) A dollar bill is about 15.5 cm long. 
How many dollar bills attached end to end would it 
take to reach the Moon? The front endpapers give the 
Earth–Moon distance. Note: Before doing these calcu-
lations, try to guess at the answers. You may be very 
surprised.

 30. A hydrogen atom has a diameter of 1.06 3 10210 m.  
The nucleus of the hydrogen atom has a diameter of 
approximately 2.40 3 10215 m. (a) For a scale model, 
represent the diameter of the hydrogen atom by 
the playing length of an American football field  
(100 yards 5 300 ft) and determine the diameter of 
the nucleus in millimeters. (b) Find the ratio of the vol-
ume of the hydrogen atom to the volume of its nucleus.
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  (a) Determine the proper units for momentum using 
dimensional analysis. (b) The unit of force is the new-
ton N, where 1 N 5 1 kg ? m/s2 . What are the units of 
momentum p in terms of a newton and another funda-
mental SI unit?

 12. Newton’s law of universal gravitation is represented by

F 5
GMm

r 2

  where F is the magnitude of the gravitational force 
exerted by one small object on another, M and m are 
the masses of the objects, and r is a distance. Force has 
the SI units kg ? m/s2. What are the SI units of the pro-
portionality constant G?

 13. The position of a particle moving under uniform accel-
eration is some function of time and the acceleration. 
Suppose we write this position as x 5 kamtn, where k is a 
dimensionless constant. Show by dimensional analysis 
that this expression is satisfied if m 5 1 and n 5 2. Can 
this analysis give the value of k?

 14. (a) Assume the equation x 5 At 3 1 Bt describes the 
motion of a particular object, with x having the dimen-
sion of length and t having the dimension of time. 
Determine the dimensions of the constants A and B. 
(b) Determine the dimensions of the derivative dx/dt 5 
3At2 1 B.

Section 1.4 Conversion of units

 15. A solid piece of lead has a mass of 23.94 g and a volume 
of 2.10 cm3. From these data, calculate the density of 
lead in SI units (kilograms per cubic meter).

 16. An ore loader moves 1 200 tons/h from a mine to the 
surface. Convert this rate to pounds per second, using 
1 ton 5 2 000 lb.

 17. A rectangular building lot has a width of 75.0 ft and 
a length of 125 ft. Determine the area of this lot in 
square meters.

 18. Suppose your hair grows at the rate 1/32 in. per day. 
Find the rate at which it grows in nanometers per sec-
ond. Because the distance between atoms in a mole-
cule is on the order of 0.1 nm, your answer suggests 
how rapidly layers of atoms are assembled in this pro-
tein synthesis.

 19. Why is the following situation impossible? A student’s dor-
mitory room measures 3.8 m by 3.6 m, and its ceiling 
is 2.5 m high. After the student completes his physics 
course, he displays his dedication by completely wall-
papering the walls of the room with the pages from his 
copy of volume 1 (Chapters 1–22) of this textbook. He 
even covers the door and window.

 20. A pyramid has a height of 481 ft, and its base covers an 
area of 13.0 acres (Fig. P1.20). The volume of a pyra-
mid is given by the expression V 5 1

3Bh, where B is the 
area of the base and h is the height. Find the volume of 
this pyramid in cubic meters. (1 acre 5 43 560 ft2)

 21. The pyramid described in Problem 20 contains 
approximately 2 million stone blocks that average 2.50 
tons each. Find the weight of this pyramid in pounds.

W
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W

Figure P1.20 Problems 20 and 21.
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that of Uranus is 1.19. The ratio of the radius of Nep-
tune to that of Uranus is 0.969. Find the average den-
sity of Neptune.

 43. Review. The ratio of the number of sparrows visiting a 
bird feeder to the number of more interesting birds is 
2.25. On a morning when altogether 91 birds visit the 
feeder, what is the number of sparrows?

 44. Review. Find every angle u between 0 and 360° for 
which the ratio of sin u to cos u is 23.00.

 45. Review. For the right tri-
angle shown in Figure 
P1.45, what are (a) the 
length of the unknown 
side, (b) the tangent of u, 
and (c)  the sine of f?

 46. Review. Prove that one 
solution of the equation

2.00x4 2 3.00x3 1 5.00x 5 70.0

  is x 5 22.22.

 47. Review. A pet lamb grows rapidly, with its mass pro-
portional to the cube of its length. When the lamb’s 
length changes by 15.8%, its mass increases by 17.3 kg. 
Find the lamb’s mass at the end of this process.

 48. Review. A highway curve forms a section of a circle. A 
car goes around the curve as shown in the helicopter 
view of Figure P1.48. Its dashboard compass shows that 
the car is initially heading due east. After it travels d 5 
840 m, it is heading u 5 35.0° south of east. Find the 
radius of curvature of its path. Suggestion: You may find 
it useful to learn a geometric theorem stated in Appen-
dix B.3.
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Figure P1.48

49.  Review. From the set of equations

p 5 3q

pr 5 qs
1
2pr 2 1 1

2qs 2 5 1
2qt 2

  involving the unknowns p, q, r, s, and t, find the value 
of the ratio of t to r.

 50. Review. Figure P1.50 on page 18 shows students study-
ing the thermal conduction of energy into cylindrical 
blocks of ice. As we will see in Chapter 20, this process 
is described by the equation

Q

Dt
5

kpd 2 1Th 2 Tc 2
4L

  For experimental control, in one set of trials all quanti-
ties except d and Dt are constant. (a) If d is made three 

6.00 m
9.00 m

φ

θ

Figure P1.45
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Section 1.5 Estimates and order-of-Magnitude Calculations

Note: In your solutions to Problems 31 through 34, state 
the quantities you measure or estimate and the values 
you take for them.

 31. Find the order of magnitude of the number of table-
tennis balls that would fit into a typical-size room 
(without being crushed).

 32. (a) Compute the order of magnitude of the mass of a 
bathtub half full of water. (b) Compute the order of 
magnitude of the mass of a bathtub half full of copper 
coins.

 33. To an order of magnitude, how many piano tuners 
reside in New York City? The physicist Enrico Fermi 
was famous for asking questions like this one on oral 
Ph.D. qualifying examinations.

 34. An automobile tire is rated to last for 50 000 miles. To 
an order of magnitude, through how many revolutions 
will it turn over its lifetime?

Section 1.6 Significant Figures

Note: Appendix B.8 on propagation of uncertainty may 
be useful in solving some problems in this section.

 35. A rectangular plate has a length of (21.3 6 0.2) cm 
and a width of (9.8 6 0.1) cm. Calculate the area of the 
plate, including its uncertainty.

 36. How many significant figures are in the following num-
bers? (a) 78.9 6 0.2 (b) 3.788 3 109 (c) 2.46 3 1026 
(d) 0.005 3

 37. The tropical year, the time interval from one vernal 
equinox to the next vernal equinox, is the basis for our 
calendar. It contains 365.242 199 days. Find the num-
ber of seconds in a tropical year.

 38. Carry out the arithmetic operations (a) the sum of the 
measured values 756, 37.2, 0.83, and 2; (b) the product 
0.003 2 3 356.3; and (c) the product 5.620 3 p.

Note: The next 13 problems call on mathematical skills 
from your prior education that will be useful through-
out this course.

 39. Review. In a community college parking lot, the num-
ber of ordinary cars is larger than the number of sport 
utility vehicles by 94.7%. The difference between the 
number of cars and the number of SUVs is 18. Find the 
number of SUVs in the lot.

40. Review. While you are on a trip to Europe, you must 
purchase hazelnut chocolate bars for your grand-
mother. Eating just one square each day, she makes 
each large bar last for one and one-third months. How 
many bars will constitute a year’s supply for her?

 41. Review. A child is surprised that because of sales tax 
she must pay $1.36 for a toy marked $1.25. What is 
the effective tax rate on this purchase, expressed as a 
percentage?

 42. Review. The average density of the planet Uranus is 
1.27 3 103 kg/m3. The ratio of the mass of Neptune to 
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If the sidewalk is to measure (1.00 6 0.01) m wide by  
(9.0 6 0.1) cm thick, what volume of concrete is needed 
and what is the approximate uncertainty of this volume?

Additional Problems

 54. Collectible coins are sometimes plated with gold to 
enhance their beauty and value. Consider a commemo-
rative quarter-dollar advertised for sale at $4.98. It has 
a diameter of 24.1 mm and a thickness of 1.78 mm, 
and it is completely covered with a layer of pure gold  
0.180 mm thick. The volume of the plating is equal 
to the thickness of the layer multiplied by the area to 
which it is applied. The patterns on the faces of the 
coin and the grooves on its edge have a negligible effect 
on its area. Assume the price of gold is $25.0 per gram. 
(a) Find the cost of the gold added to the coin. (b) Does 
the cost of the gold significantly enhance the value of 
the coin? Explain your answer.

 55. In a situation in which data are known to three signifi-
cant digits, we write 6.379 m 5 6.38 m and 6.374 m 5 
6.37 m. When a number ends in 5, we arbitrarily choose 
to write 6.375 m 5 6.38 m. We could equally well write 
6.375 m 5 6.37 m, “rounding down” instead of “round-
ing up,” because we would change the number 6.375 by 
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which factors of change 
rather than increments are important. We write 500 m 
, 103 m because 500 differs from 100 by a factor of 5 
while it differs from 1 000 by only a factor of 2. We write 
437 m , 103 m and 305 m , 102 m. What distance dif-
fers from 100 m and from 1 000 m by equal factors so 
that we could equally well choose to represent its order 
of magnitude as , 102 m or as , 103 m?

 56. (a) What is the order of magnitude of the number of 
microorganisms in the human intestinal tract? A typi-
cal bacterial length scale is 1026 m. Estimate the intes-
tinal volume and assume 1% of it is occupied by bacte-
ria. (b) Does the number of bacteria suggest whether 
the bacteria are beneficial, dangerous, or neutral for 
the human body? What functions could they serve?

 57. The diameter of our disk-shaped galaxy, the Milky Way, 
is about 1.0 3 105 light-years (ly). The distance to the 
Andromeda galaxy (Fig. P1.57), which is the spiral gal-
axy nearest to the Milky Way, is about 2.0 million ly. If a 
scale model represents the Milky Way and Andromeda 
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times larger, does the equation predict that Dt will get 
larger or get smaller? By what factor? (b) What pattern 
of proportionality of Dt to d does the equation predict? 
(c) To display this proportionality as a straight line on 
a graph, what quantities should you plot on the hori-
zontal and vertical axes? (d) What expression repre-
sents the theoretical slope of this graph?

Figure P1.50
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 51. Review. A student is supplied with a stack of copy 
paper, ruler, compass, scissors, and a sensitive bal-
ance. He cuts out various shapes in various sizes, 
calculates their areas, measures their masses, and 
prepares the graph of Figure P1.51. (a) Consider the 
fourth experimental point from the top. How far is 
it from the best-fit straight line? Express your answer 
as a difference in vertical-axis coordinate. (b) Express 
your answer as a percentage. (c) Calculate the slope of 
the line. (d) State what the graph demonstrates, refer-
ring to the shape of the graph and the results of parts 
(b) and (c). (e) Describe whether this result should 
be expected theoretically. (f) Describe the physical 
meaning of the slope.
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Figure P1.51

 52. The radius of a uniform solid sphere is measured to 
be (6.50 6 0.20) cm, and its mass is measured to be 
(1.85 6 0.02) kg. Determine the density of the sphere 
in kilograms per cubic meter and the uncertainty in 
the density.

 53. A sidewalk is to be constructed around a swimming 
pool that measures (10.0 6 0.1) m by (17.0 6 0.1) m. 

Q/C

Figure P1.57 The Andromeda galaxy.
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a disk of diameter , 1021 m and thickness , 1019 m. 
Find the order of magnitude of the number of stars in 
the Milky Way. Assume the distance between the Sun 
and our nearest neighbor is typical.

 63. Assume there are 100 million passenger cars in the 
United States and the average fuel efficiency is 20 mi/gal  
of gasoline. If the average distance traveled by each car 
is 10 000 mi/yr, how much gasoline would be saved per 
year if the average fuel efficiency could be increased to  
25 mi/gal?

 64. A spherical shell has an outside radius of 2.60 cm and 
an inside radius of a. The shell wall has uniform thick-
ness and is made of a material with density 4.70 g/cm3. 
The space inside the shell is filled with a liquid having a 
density of 1.23 g/cm3. (a) Find the mass m of the sphere, 
including its contents, as a function of a. (b) For what 
value of the variable a does m have its maximum possi-
ble value? (c) What is this maximum mass? (d) Explain 
whether the value from part (c) agrees with the result 
of a direct calculation of the mass of a solid sphere of 
uniform density made of the same material as the shell. 
(e) What If? Would the answer to part (a) change if the 
inner wall were not concentric with the outer wall?

 65. Bacteria and other prokaryotes are found deep under-
ground, in water, and in the air. One micron (1026 m) 
is a typical length scale associated with these microbes. 
(a)  Estimate the total number of bacteria and other 
prokaryotes on the Earth. (b) Estimate the total mass 
of all such microbes.

 66. Air is blown into a spherical balloon so that, when its 
radius is 6.50 cm, its radius is increasing at the rate 
0.900 cm/s. (a) Find the rate at which the volume of 
the balloon is increasing. (b) If this volume flow rate 
of air entering the balloon is constant, at what rate will 
the radius be increasing when the radius is 13.0 cm?  
(c) Explain physically why the answer to part (b) is 
larger or smaller than 0.9  cm/s, if it is different.

 67. A rod extending between x 5 0 and x 5 14.0 cm has 
uniform cross-sectional area A 5 9.00 cm2. Its density 
increases steadily between its ends from 2.70 g/cm3 to 
19.3 g/cm3. (a) Identify the constants B and C required 
in the expression r 5 B 1 Cx to describe the variable 
density. (b) The mass of the rod is given by

m 5 3
all material

 r dV 5 3
all x

 rA dx 5 3
14.0 cm

0
 1B 1 Cx 2 19.00 cm2 2dx

  Carry out the integration to find the mass of the rod.

 68. In physics, it is important to use mathematical approxi-
mations. (a) Demonstrate that for small angles (, 20°)

tan a < sin a < a 5
pa r
1808

  where a is in radians and a9 is in degrees. (b) Use a 
calculator to find the largest angle for which tan a may 
be approximated by a with an error less than 10.0%.

 69. The consumption of natural gas by a company satisfies 
the empirical equation V 5 1.50t 1 0.008 00t2, where V 
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galaxies as dinner plates 25 cm in diameter, determine 
the distance between the centers of the two plates.

 58. Why is the following situation impossible? In an effort to 
boost interest in a television game show, each weekly 
winner is offered an additional $1 million bonus prize 
if he or she can personally count out that exact amount 
from a supply of one-dollar bills. The winner must do 
this task under supervision by television show execu-
tives and within one 40-hour work week. To the dismay 
of the show’s producers, most contestants succeed at 
the challenge.

 59. A high fountain of water 
is located at the center 
of a circular pool as 
shown in Figure P1.59. 
A student walks around 
the pool and measures 
its circumference to be 
15.0 m. Next, the stu-
dent stands at the edge 
of the pool and uses a 
protractor to gauge the 
angle of elevation of the top of the fountain to be f 5	
55.0°. How high is the fountain?

 60. A water fountain is at the center of a circular pool 
as shown in Figure P1.59. A student walks around 
the pool and measures its circumference C. Next, he 
stands at the edge of the pool and uses a protractor to 
measure the angle of elevation f of his sightline to the 
top of the water jet. How high is the fountain?

 61. The data in the following table represent measurements 
of the masses and dimensions of solid cylinders of alu-
minum, copper, brass, tin, and iron. (a) Use these data 
to calculate the densities of these substances. (b) State 
how your results compare with those given in Table 14.1.

 Mass Diameter Length
Substance (g) (cm) (cm)

Aluminum  51.5 2.52 3.75
Copper  56.3 1.23 5.06
Brass  94.4 1.54 5.69
Tin  69.1 1.75 3.74
Iron 216.1 1.89 9.77

 62. The distance from the Sun to the nearest star is about 
4 3 1016 m. The Milky Way galaxy (Fig. P1.62) is roughly 

f

Figure P1.59  
Problems 59 and 60.
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Figure P1.62 The Milky Way galaxy.
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Challenge Problems

 72. A woman stands at a horizontal distance x from a 
mountain and measures the angle of elevation of the 
mountaintop above the horizontal as u. After walking 
a distance d closer to the mountain on level ground, 
she finds the angle to be f. Find a general equation 
for the height y of the mountain in terms of d, f, and u, 
neglecting the height of her eyes above the ground.

 73. You stand in a flat meadow and observe two cows 
(Fig. P1.73). Cow A is due north of you and 15.0 m from 
your position. Cow B is 25.0 m from your position. From 
your point of view, the angle between cow A and cow 
B is 20.0°, with cow B appearing to the right of cow A.  
(a) How far apart are cow A and cow B? (b) Consider 
the view seen by cow A. According to this cow, what 
is the angle between you and cow B? (c) Consider 
the view seen by cow B. According to this cow, what 
is the angle between you and cow A? Hint: What does 
the situation look like to a hummingbird hovering 
above the meadow? (d) Two stars in the sky appear to 
be 20.0° apart. Star A is 15.0 ly from the Earth, and 
star B, appearing to the right of star A, is 25.0 ly from 
the Earth. To an inhabitant of a planet orbiting star 
A, what is the angle in the sky between star B and our 
Sun?

Cow A Cow B

Figure P1.73 Your view of two cows in 
a meadow. Cow A is due north of you. You 
must rotate your eyes through an angle of 
20.0° to look from cow A to cow B.

S

is the volume of gas in millions of cubic feet and t is the 
time in months. Express this equation in units of cubic 
feet and seconds. Assume a month is 30.0 days.

 70. A woman wishing to know the height of a mountain 
measures the angle of elevation of the mountaintop as 
12.0°. After walking 1.00 km closer to the mountain on 
level ground, she finds the angle to be 14.0°. (a) Draw 
a picture of the problem, neglecting the height of the 
woman’s eyes above the ground. Hint: Use two tri-
angles. (b) Using the symbol y to represent the moun-
tain height and the symbol x to represent the woman’s 
original distance from the mountain, label the picture. 
(c) Using the labeled picture, write two trigonometric 
equations relating the two selected variables. (d) Find 
the height y.

 71. A child loves to watch as you fill a transparent plastic 
bottle with shampoo (Fig P1.71). Every horizontal cross 
section of the bottle is circular, but the diameters of 
the circles have different values. You pour the brightly 
colored shampoo into the bottle at a constant rate of 
16.5 cm3/s. At what rate is its level in the bottle rising  
(a) at a point where the diameter of the bottle is 6.30 cm  
and (b) at a point where the diameter is 1.35 cm?

GP

AMT

6.30 cm
1.35 cm

Figure P1.71
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2.1 Position, Velocity, and Speed

2.2 Instantaneous Velocity and 
Speed

2.3 Analysis Model: Particle 
Under Constant Velocity

2.4 Acceleration

2.5 Motion Diagrams

2.6 Analysis Model: Particle 
Under Constant Acceleration

2.7 Freely Falling Objects

2.8 Kinematic Equations Derived 
from Calculus

 General Problem-Solving 
Strategy

c h a p t e r  

2

As a first step in studying classical mechanics, we describe the motion of an object 
while ignoring the interactions with external agents that might be affecting or modifying 
that motion. This portion of classical mechanics is called kinematics. (The word kinematics 
has the same root as cinema.) In this chapter, we consider only motion in one dimension, 
that is, motion of an object along a straight line.
 From everyday experience, we recognize that motion of an object represents a continu-
ous change in the object’s position. In physics, we can categorize motion into three types: 
translational, rotational, and vibrational. A car traveling on a highway is an example of 
translational motion, the Earth’s spin on its axis is an example of rotational motion, and the 
back-and-forth movement of a pendulum is an example of vibrational motion. In this and 
the next few chapters, we are concerned only with translational motion. (Later in the book 
we shall discuss rotational and vibrational motions.)
 In our study of translational motion, we use what is called the particle model and describe 
the moving object as a particle regardless of its size. Remember our discussion of making 
models for physical situations in Section 1.2. In general, a particle is a point-like object, 
that is, an object that has mass but is of infinitesimal size. For example, if we wish to 
describe the motion of the Earth around the Sun, we can treat the Earth as a particle and 

Motion in One 
Dimension

In drag racing, a driver wants as 
large an acceleration as possible. 
In a distance of one-quarter mile, 
a vehicle reaches speeds of more 
than 320 mi/h, covering the entire 
distance in under 5 s. (George Lepp/

Stone/Getty Images)
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obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position A to position B. After B, 
the position values begin to decrease, suggesting the car is backing up from position 
B through position F. In fact, at D, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-

Position 

 Position of 
the Car at Various Times

Position t (s) x (m)

A  0 30
B 10 52
C 20 38
D 30 0
E 40 237
F 50 253

Table 2.1

�60 �50 �40 �30 �20 �10 0 10 20 30 40 50 60
x (m)

A B

The car moves to 
the right between 
positions A and B.

�60 �50 �40 �30 �20 �10 0 10 20 30 40 50 60
x (m)

D CEF

The car moves to 
the left between 
positions C and F.

a

A

10 20 30 40 500

�40

�60

�20

0

20

40

60

�t

�x

x (m)

t (s)

B

C

D

E

F

b

Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.
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ematical representation, which can be analyzed to solve for some requested piece of 
information.
 Given the data in Table 2.1, we can easily determine the change in position of 
the car for various time intervals. The displacement Dx of a particle is defined as 
its change in position in some time interval. As the particle moves from an initial 
position xi to a final position xf , its displacement is given by

 Dx ; xf 2 xi (2.1)

We use the capital Greek letter delta (D) to denote the change in a quantity. From 
this definition, we see that Dx is positive if xf is greater than xi and negative if xf is 
less than xi.
 It is very important to recognize the difference between displacement and dis-
tance traveled. Distance is the length of a path followed by a particle. Consider, for 
example, the basketball players in Figure 2.2. If a player runs from his own team’s 
basket down the court to the other team’s basket and then returns to his own bas-
ket, the displacement of the player during this time interval is zero because he ended 
up at the same point as he started: xf 5 xi, so Dx 5 0. During this time interval, 
however, he moved through a distance of twice the length of the basketball court. 
Distance is always represented as a positive number, whereas displacement can be 
either positive or negative.
 Displacement is an example of a vector quantity. Many other physical quantities, 
including position, velocity, and acceleration, also are vectors. In general, a vector 
quantity requires the specification of both direction and magnitude. By contrast, a 
scalar quantity has a numerical value and no direction. In this chapter, we use posi-
tive (1) and negative (2) signs to indicate vector direction. For example, for hori-
zontal motion let us arbitrarily specify to the right as being the positive direction. 
It follows that any object always moving to the right undergoes a positive displace-
ment Dx . 0, and any object moving to the left undergoes a negative displacement 
so that Dx , 0. We shall treat vector quantities in greater detail in Chapter 3.
 One very important point has not yet been mentioned. Notice that the data in 
Table 2.1 result only in the six data points in the graph in Figure 2.1b. Therefore, 
the motion of the particle is not completely known because we don’t know its posi-
tion at all times. The smooth curve drawn through the six points in the graph is  
only a possibility of the actual motion of the car. We only have information about six  
instants of time; we have no idea what happened between the data points. The smooth  
curve is a guess as to what happened, but keep in mind that it is only a guess. If 
the smooth curve does represent the actual motion of the car, the graph contains 
complete information about the entire 50-s interval during which we watch the car 
move.
 It is much easier to see changes in position from the graph than from a verbal 
description or even a table of numbers. For example, it is clear that the car covers 
more ground during the middle of the 50-s interval than at the end. Between posi-
tions C and D, the car travels almost 40 m, but during the last 10 s, between posi-
tions E and F, it moves less than half that far. A common way of comparing these 
different motions is to divide the displacement Dx that occurs between two clock 
readings by the value of that particular time interval Dt. The result turns out to be 
a very useful ratio, one that we shall use many times. This ratio has been given a 
special name: the average velocity. The average velocity vx,avg of a particle is defined 
as the particle’s displacement Dx divided by the time interval Dt during which that 
displacement occurs:

 vx,avg ;
Dx
Dt

 (2.2)

where the subscript x indicates motion along the x axis. From this definition we see 
that average velocity has dimensions of length divided by time (L/T), or meters per 
second in SI units.

WW Displacement

WW Average velocity

Figure 2.2 On this basketball 
court, players run back and forth 
for the entire game. The distance 
that the players run over the 
duration of the game is nonzero. 
The displacement of the players 
over the duration of the game is 
approximately zero because they 
keep returning to the same point 
over and over again.
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 The average velocity of a particle moving in one dimension can be positive or 
negative, depending on the sign of the displacement. (The time interval Dt is always 
positive.) If the coordinate of the particle increases in time (that is, if xf . xi), Dx 
is positive and vx,avg 5 Dx/Dt is positive. This case corresponds to a particle mov-
ing in the positive x direction, that is, toward larger values of x. If the coordinate 
decreases in time (that is, if xf , xi), Dx is negative and hence vx,avg is negative. This 
case corresponds to a particle moving in the negative x direction.
 We can interpret average velocity geometrically by drawing a straight line 
between any two points on the position–time graph in Figure 2.1b. This line 
forms the hypotenuse of a right triangle of height Dx and base Dt. The slope of 
this line is the ratio Dx/Dt, which is what we have defined as average velocity in 
Equation 2.2. For example, the line between positions A and B in Figure 2.1b 
has a slope equal to the average velocity of the car between those two times,  
(52 m 2 30 m)/(10 s 2 0) 5 2.2 m/s.
 In everyday usage, the terms speed and velocity are interchangeable. In physics, 
however, there is a clear distinction between these two quantities. Consider a mara-
thon runner who runs a distance d of more than 40 km and yet ends up at her 
starting point. Her total displacement is zero, so her average velocity is zero! None-
theless, we need to be able to quantify how fast she was running. A slightly differ-
ent ratio accomplishes that for us. The average speed vavg of a particle, a scalar 
quantity, is defined as the total distance d traveled divided by the total time interval 
required to travel that distance:

 vavg ;
d

Dt
 (2.3)

The SI unit of average speed is the same as the unit of average velocity: meters 
per second. Unlike average velocity, however, average speed has no direction and 
is always expressed as a positive number. Notice the clear distinction between the 
definitions of average velocity and average speed: average velocity (Eq. 2.2) is the 
displacement divided by the time interval, whereas average speed (Eq. 2.3) is the dis-
tance divided by the time interval.
 Knowledge of the average velocity or average speed of a particle does not provide 
information about the details of the trip. For example, suppose it takes you 45.0 s 
to travel 100 m down a long, straight hallway toward your departure gate at an 
airport. At the 100-m mark, you realize you missed the restroom, and you return 
back 25.0 m along the same hallway, taking 10.0 s to make the return trip. The 
magnitude of your average velocity is 175.0 m/55.0 s 5 11.36 m/s. The average speed 
for your trip is 125 m/55.0 s 5 2.27 m/s. You may have traveled at various speeds 
during the walk and, of course, you changed direction. Neither average velocity nor 
average speed provides information about these details.

Q uick Quiz 2.1 Under which of the following conditions is the magnitude of the 
average velocity of a particle moving in one dimension smaller than the average 
speed over some time interval? (a) A particle moves in the 1x direction without 
reversing. (b) A particle moves in the 2x direction without reversing. (c) A par-
ticle moves in the 1x direction and then reverses the direction of its motion.  
(d) There are no conditions for which this is true.

Average speed 

Pitfall Prevention 2.1
Average Speed and Average 
Velocity The magnitude of the 
average velocity is not the aver-
age speed. For example, consider 
the marathon runner discussed 
before Equation 2.3. The mag-
nitude of her average velocity 
is zero, but her average speed is 
clearly not zero.

Example 2.1    Calculating the Average Velocity and Speed

Find the displacement, average velocity, and average speed of the car in Figure 2.1a between positions A and F.
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2.2 Instantaneous Velocity and Speed
Often we need to know the velocity of a particle at a particular instant in time t 
rather than the average velocity over a finite time interval Dt. In other words, you 
would like to be able to specify your velocity just as precisely as you can specify your 
position by noting what is happening at a specific clock reading, that is, at some 
specific instant. What does it mean to talk about how quickly something is mov-
ing if we “freeze time” and talk only about an individual instant? In the late 1600s, 
with the invention of calculus, scientists began to understand how to describe an 
object’s motion at any moment in time.
 To see how that is done, consider Figure 2.3a (page 26), which is a reproduction 
of the graph in Figure 2.1b. What is the particle’s velocity at t 5 0? We have already 
discussed the average velocity for the interval during which the car moved from 
position A to position B (given by the slope of the blue line) and for the interval 
during which it moved from A to F (represented by the slope of the longer blue 
line and calculated in Example 2.1). The car starts out by moving to the right, which 
we defined to be the positive direction. Therefore, being positive, the value of the 
average velocity during the interval from A to B is more representative of the ini-
tial velocity than is the value of the average velocity during the interval from A to 
F, which we determined to be negative in Example 2.1. Now let us focus on the 
short blue line and slide point B to the left along the curve, toward point A, as in 
Figure 2.3b. The line between the points becomes steeper and steeper, and as the 
two points become extremely close together, the line becomes a tangent line to the 
curve, indicated by the green line in Figure 2.3b. The slope of this tangent line  

Use Equation 2.1 to find the displacement of the car: Dx 5 xF 2 xA 5 253 m 2 30 m 5  283 m

This result means that the car ends up 83 m in the negative direction (to the left, in this case) from where it started. 
This number has the correct units and is of the same order of magnitude as the supplied data. A quick look at Fig-
ure 2.1a indicates that it is the correct answer.

Use Equation 2.2 to find the car’s average velocity: vx,avg 5
x F 

2 x A

t F 
2 t A

5
253 m 2 30 m

50 s 2 0 s
5

283 m
50 s

5  21.7 m/s

We cannot unambiguously find the average speed of the car from the data in Table 2.1 because we do not have infor-
mation about the positions of the car between the data points. If we adopt the assumption that the details of the car’s 
position are described by the curve in Figure 2.1b, the distance traveled is 22 m (from A to B) plus 105 m (from B to 
F), for a total of 127 m.

Use Equation 2.3 to find the car’s average speed: vavg 5
127 m
50 s

5   2.5 m/s

Notice that the average speed is positive, as it must be. Suppose the red-brown curve in Figure 2.1b were different so 
that between 0 s and 10 s it went from A up to 100 m and then came back down to B. The average speed of the car 
would change because the distance is different, but the average velocity would not change.

▸ 2.1 c o n t i n u e d

 

Consult Figure 2.1 to form a mental image of the car and its motion. We model the car as a particle. From the position–
time graph given in Figure 2.1b, notice that xA 5 30 m at tA 5 0 s and that xF 5 253 m at tF 5 50 s.

S o l u t i o n
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Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point A. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point B, vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point B, the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?

instantaneous velocity 

x (m)

t (s)
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The blue line between 
positions A and B 
approaches the green 
tangent line as point B is 
moved closer to point A.

ba

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
instantaneous Speed and instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.
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(A) The average velocity for the thrown ball is zero because the ball returns to the starting point; therefore, its displace-
ment is zero. There is one point at which the instantaneous velocity is zero: at the top of the motion.

(B) The car’s average velocity cannot be evaluated unambiguously with the information given, but it must have some 
value between 0 and 100 m/s. Because the car will have every instantaneous velocity between 0 and 100 m/s at some 
time during the interval, there must be some instant at which the instantaneous velocity is equal to the average veloc-
ity over the entire motion.

(C) Because the spacecraft’s instantaneous velocity is constant, its instantaneous velocity at any time and its average 
velocity over any time interval are the same.

S o l u t i o n

3Simply to make it easier to read, we write the expression as x 5 24t 1 2t2 rather than as x 5 (24.00 m/s)t 1 (2.00 m/s2)t2.00. When an equation summarizes mea-
surements, consider its coefficients and exponents to have as many significant figures as other data quoted in a problem. Consider its coefficients to have the units 
required for dimensional consistency. When we start our clocks at t 5 0, we usually do not mean to limit the precision to a single digit. Consider any zero value in 
this book to have as many significant figures as you need.

In the first time interval, set ti 5 tA 5 0 and tf 5 tB 5 1 s 
and use Equation 2.1 to find the displacement:

DxASB 5 xf 2 xi 5 xB 2 xA

5 [24(1) 1 2(1)2] 2 [24(0) 1 2(0)2] 5  22 m

For the second time interval (t 5 1 s to t 5 3 s), set ti 5  
tB 5 1 s and tf 5 tD 5 3 s:

DxBSD 5 xf 2 xi 5 xD 2 xB

5 [24(3) 1 2(3)2] 2 [24(1) 1 2(1)2] 5  18 m

These displacements can also be read directly from the position–time graph.

(B) Calculate the average velocity during these two time intervals.

▸ 2.2 c o n t i n u e d

 

Example 2.3   Average and Instantaneous Velocity

A particle moves along the x axis. Its position varies with time according to 
the expression x 5 24t 1 2t 2, where x is in meters and t is in seconds.3 The 
position–time graph for this motion is shown in Figure 2.4a. Because the 
position of the particle is given by a mathematical function, the motion of 
the particle is completely known, unlike that of the car in Figure 2.1. Notice 
that the particle moves in the negative x direction for the first second of 
motion, is momentarily at rest at the moment t 5 1 s, and moves in the posi-
tive x direction at times t . 1 s.

(A) Determine the displacement of the particle in the time intervals t 5 0 
to t 5 1 s and t 5 1 s to t 5 3 s.

From the graph in Figure 2.4a, form a mental representation of the par-
ticle’s motion. Keep in mind that the particle does not move in a curved 
path in space such as that shown by the red-brown curve in the graphical 
representation. The particle moves only along the x axis in one dimension as 
shown in Figure 2.4b. At t 5 0, is it moving to the right or to the left?
 During the first time interval, the slope is negative and hence the aver-
age velocity is negative. Therefore, we know that the displacement between 
A and B must be a negative number having units of meters. Similarly, we 
expect the displacement between B and D to be positive.

S o l u t i o n

continued

Figure 2.4 (Example 2.3) (a)  Position–
time graph for a particle having an x coor-
dinate that varies in time according to the 
expression x 5 24t 1 2t 2. (b) The particle 
moves in one dimension along the x axis.
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2.3 Analysis Model: Particle Under Constant Velocity
In Section 1.2 we discussed the importance of making models. A particularly 
important model used in the solution to physics problems is an analysis model. An 
analysis model is a common situation that occurs time and again when solving 
physics problems. Because it represents a common situation, it also represents a 
common type of problem that we have solved before. When you identify an analy-
sis model in a new problem, the solution to the new problem can be modeled 
after that of the previously-solved problem. Analysis models help us to recognize 
those common situations and guide us toward a solution to the problem. The form 
that an analysis model takes is a description of either (1) the behavior of some 
physical entity or (2) the interaction between that entity and the environment. 
When you encounter a new problem, you should identify the fundamental details 
of the problem and attempt to recognize which of the situations you have already 
seen that might be used as a model for the new problem. For example, suppose an 
automobile is moving along a straight freeway at a constant speed. Is it important 
that it is an automobile? Is it important that it is a freeway? If the answers to both 
questions are no, but the car moves in a straight line at constant speed, we model 
the automobile as a particle under constant velocity, which we will discuss in this sec-
tion. Once the problem has been modeled, it is no longer about an automobile.  
It is about a particle undergoing a certain type of motion, a motion that we have 
studied before.
 This method is somewhat similar to the common practice in the legal profession 
of finding “legal precedents.” If a previously resolved case can be found that is very 
similar legally to the current one, it is used as a model and an argument is made in 
court to link them logically. The finding in the previous case can then be used to 
sway the finding in the current case. We will do something similar in physics. For 
a given problem, we search for a “physics precedent,” a model with which we are 
already familiar and that can be applied to the current problem.
 All of the analysis models that we will develop are based on four fundamental 
simplification models. The first of the four is the particle model discussed in the 
introduction to this chapter. We will look at a particle under various behaviors 
and environmental interactions. Further analysis models are introduced in later 
chapters based on simplification models of a system, a rigid object, and a wave. Once 

Analysis model 

These values are the same as the slopes of the blue lines joining these points in Figure 2.4a.

(C) Find the instantaneous velocity of the particle at t 5 2.5 s.

S o l u t i o n

In the second time interval, Dt 5 2 s:  vx,avg 1B S D 2 5
DxB S D

Dt
5

8 m
2 s

5   14 m/s

Measure the slope of the green line at t 5 2.5 s (point 
C) in Figure 2.4a:

vx 5
10 m 2 124 m 2

3.8 s 2 1.5 s
5   16 m/s

Notice that this instantaneous velocity is on the same order of magnitude as our previous results, that is, a few meters 
per second. Is that what you would have expected?

▸ 2.3 c o n t i n u e d

 

In the first time interval, use Equation 2.2 with Dt 5  
tf 2 ti 5 tB 2 tA 5 1 s: vx,avg 1A S B 2 5

DxA S B

Dt
5

22 m
1 s

5   22 m/s

S o l u t i o n
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we have introduced these analysis models, we shall see that they appear again and 
again in different problem situations.
 When solving a problem, you should avoid browsing through the chapter looking 
for an equation that contains the unknown variable that is requested in the problem. 
In many cases, the equation you find may have nothing to do with the problem you 
are attempting to solve. It is much better to take this first step: Identify the analysis 
model that is appropriate for the problem. To do so, think carefully about what is 
going on in the problem and match it to a situation you have seen before. Once the 
analysis model is identified, there are a small number of equations from which to 
choose that are appropriate for that model, sometimes only one equation. Therefore, 
the model tells you which equation(s) to use for the mathematical representation.
 Let us use Equation 2.2 to build our first analysis model for solving problems. 
We imagine a particle moving with a constant velocity. The model of a particle 
under constant velocity can be applied in any situation in which an entity that can 
be modeled as a particle is moving with constant velocity. This situation occurs fre-
quently, so this model is important.
 If the velocity of a particle is constant, its instantaneous velocity at any instant 
during a time interval is the same as the average velocity over the interval. That 
is, vx 5 vx,avg. Therefore, Equation 2.2 gives us an equation to be used in the math-
ematical representation of this situation:

 vx 5
Dx
Dt

 (2.6)

Remembering that Dx 5 xf 2 xi, we see that vx 5 (xf 2 xi)/Dt, or

xf 5 xi 1 vx  Dt

This equation tells us that the position of the particle is given by the sum of its origi-
nal position xi at time t 5 0 plus the displacement vx Dt that occurs during the time 
interval Dt. In practice, we usually choose the time at the beginning of the interval to 
be ti 5 0 and the time at the end of the interval to be tf 5 t, so our equation becomes

 xf 5 xi 1 vxt (for constant vx) (2.7)

Equations 2.6 and 2.7 are the primary equations used in the model of a particle under 
constant velocity. Whenever you have identified the analysis model in a problem to 
be the particle under constant velocity, you can immediately turn to these equations.
 Figure 2.5 is a graphical representation of the particle under constant velocity. 
On this position–time graph, the slope of the line representing the motion is con-
stant and equal to the magnitude of the velocity. Equation 2.7, which is the equation 
of a straight line, is the mathematical representation of the particle under constant 
velocity model. The slope of the straight line is vx and the y intercept is xi in both 
representations.
 Example 2.4 below shows an application of the particle under constant velocity 
model. Notice the analysis model icon AM, which will be used to identify examples 
in which analysis models are employed in the solution. Because of the widespread 
benefits of using the analysis model approach, you will notice that a large number 
of the examples in the book will carry such an icon.

WW  Position as a function ofW
time for the particle under 
 constant velocity model

xi

x

t

Slope � � vx
�x
�t

Figure 2.5 Position–time graph 
for a particle under constant 
velocity. The value of the constant 
velocity is the slope of the line.

Example 2.4   Modeling a Runner as a Particle

A kinesiologist is studying the biomechanics of the human body. (Kinesiology is the study of the movement of the human 
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs 
along a straight line at a constant rate. The kinesiologist starts the stopwatch at the moment the runner passes a given point 
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s.

(A) What is the runner’s velocity?

AM

continued
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 The mathematical manipulations for the particle under constant velocity stem 
from Equation 2.6 and its descendent, Equation 2.7. These equations can be used 
to solve for any variable in the equations that happens to be unknown if the other 
variables are known. For example, in part (B) of Example 2.4, we find the position 
when the velocity and the time are known. Similarly, if we know the velocity and the 
final position, we could use Equation 2.7 to find the time at which the runner is at 
this position.
 A particle under constant velocity moves with a constant speed along a straight 
line. Now consider a particle moving with a constant speed through a distance d 
along a curved path. This situation can be represented with the model of a particle 
under constant speed. The primary equation for this model is Equation 2.3, with 
the average speed vavg replaced by the constant speed v:

 v 5
d

Dt
 (2.8)

As an example, imagine a particle moving at a constant speed in a circular path. If 
the speed is 5.00 m/s and the radius of the path is 10.0 m, we can calculate the time 
interval required to complete one trip around the circle:

v 5
d
Dt

 S Dt 5
d
v

5
2pr

v
5

2p 110.0 m 2
5.00 m/s

5 12.6 s

▸ 2.4 c o n t i n u e d

 

Use Equation 2.7 and the velocity found in part (A) to 
find the position of the particle at time t 5 10 s:

xf 5 xi 1 vxt 5 0 1 (5.0 m/s)(10 s) 5   50 m

Is the result for part (A) a reasonable speed for a human? How does it compare to world-record speeds in 100-m and 
200-m sprints? Notice the value in part (B) is more than twice that of the 20-m position at which the stopwatch was 
stopped. Is this value consistent with the time of 10 s being more than twice the time of 4.0 s?

Having identified the model, we can use Equation 2.6 to 
find the constant velocity of the runner:

vx 5
Dx
Dt

5
xf 2 xi

Dt
5

20 m 2 0
4.0 s

5   5.0 m/s

(B) If the runner continues his motion after the stopwatch is stopped, what is his position after 10 s have passed?

S o l u t i o n

We model the moving runner as a particle because the size of the runner and the movement of arms and legs are 
unnecessary details. Because the problem states that the subject runs at a constant rate, we can model him as a particle 
under constant velocity.

S o l u t i o n

Analysis Model   Particle Under Constant Velocity
Examples:

•	 a	meteoroid	traveling	through	gravity-free	
space

•	 a	car	traveling	at	a	constant	speed	on	a	straight	
highway

•	 a	runner	traveling	at	constant	speed	on	a	per-
fectly straight path

•	 an	object	moving	at	terminal	speed	through	a	
viscous medium (Chapter 6)

Imagine a moving object that can be modeled as a particle.  
If it moves at a constant speed through a displacement Dx in a 
straight line in a time interval Dt, its constant velocity is 

 vx 5
Dx
Dt

 (2.6)

The position of the particle as a function of time is given by 

 xf 5 xi 1 vxt (2.7)

v



 2.4 acceleration 31

2.4 Acceleration
In Example 2.3, we worked with a common situation in which the velocity of a par-
ticle changes while the particle is moving. When the velocity of a particle changes 
with time, the particle is said to be accelerating. For example, the magnitude of a 
car’s velocity increases when you step on the gas and decreases when you apply the 
brakes. Let us see how to quantify acceleration.
 Suppose an object that can be modeled as a particle moving along the x axis has 
an initial velocity vxi at time ti at position A and a final velocity vxf at time tf at position 
B as in Figure 2.6a. The red-brown curve in Figure 2.6b shows how the velocity var-
ies with time. The average acceleration ax,avg of the particle is defined as the change 
in velocity Dvx divided by the time interval Dt during which that change occurs:

 ax,avg ;
Dvx

Dt
5

vxf 2 vxi

tf 2 ti
 (2.9)

 As with velocity, when the motion being analyzed is one dimensional, we can use 
positive and negative signs to indicate the direction of the acceleration. Because 
the dimensions of velocity are L/T and the dimension of time is T, acceleration 
has dimensions of length divided by time squared, or L/T2. The SI unit of accel-
eration is meters per second squared (m/s2). It might be easier to interpret these 
units if you think of them as meters per second per second. For example, suppose 
an object has an acceleration of 12 m/s2. You can interpret this value by forming 
a mental image of the object having a velocity that is along a straight line and is 
increasing by 2 m/s during every time interval of 1 s. If the object starts from rest, 

WW Average acceleration

Analysis Model   Particle Under Constant Speed
Examples: 

•	 a	planet	traveling	around	a	perfectly	circular	orbit
•	 a	car	traveling	at	a	constant	speed	on	a	curved	

racetrack
•	 a	runner	traveling	at	constant	speed	on	a	curved	path
•	 a	charged	particle	moving	through	a	uniform	mag-

netic field (Chapter 29)

Imagine a moving object that can be modeled as a par-
ticle. If it moves at a constant speed through a distance d 
along a straight line or a curved path in a time interval 
Dt, its constant speed is 

 v 5
d

Dt
 (2.8)

v

Figure 2.6 (a) A car, modeled 
as a particle, moving along the 
x axis from A to B, has velocity 
vxi at t 5 ti and velocity vxf at t 5 
tf . (b) Velocity–time graph (red-
brown) for the particle moving in 
a straight line.

A

B

A

t ft i

vxi

vxf

vx  

�t

�vx

t
ti tf

x

v � vxi v �vxf

B

The car moves with 
different velocities at 
points A and B.

The slope of the green line is 
the instantaneous acceleration 
of the car at point B (Eq. 2.10).

The slope of the blue 
line connecting A and 
B is the average 
acceleration of the car 
during the time interval 
�t � tf � ti (Eq. 2.9).

ba
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you should be able to picture it moving at a velocity of 12 m/s after 1 s, at 14 m/s 
after 2 s, and so on.
 In some situations, the value of the average acceleration may be different over 
different time intervals. It is therefore useful to define the instantaneous accelera-
tion as the limit of the average acceleration as Dt approaches zero. This concept is 
analogous to the definition of instantaneous velocity discussed in Section 2.2. If we 
imagine that point A is brought closer and closer to point B in Figure 2.6a and we 
take the limit of Dvx/Dt as Dt approaches zero, we obtain the instantaneous accel-
eration at point B:

 ax ; lim
Dt S 0

 Dvx

Dt
5

dvx

dt
 (2.10)

That is, the instantaneous acceleration equals the derivative of the velocity with 
respect to time, which by definition is the slope of the velocity–time graph. The 
slope of the green line in Figure 2.6b is equal to the instantaneous acceleration at 
point B. Notice that Figure 2.6b is a velocity–time graph, not a position–time graph 
like Figures 2.1b, 2.3, 2.4, and 2.5. Therefore, we see that just as the velocity of a 
moving particle is the slope at a point on the particle’s x–t graph, the acceleration 
of a particle is the slope at a point on the particle’s vx–t graph. One can interpret 
the derivative of the velocity with respect to time as the time rate of change of veloc-
ity. If ax is positive, the acceleration is in the positive x direction; if ax is negative, the 
acceleration is in the negative x direction.
 Figure 2.7 illustrates how an acceleration–time graph is related to a velocity– 
time graph. The acceleration at any time is the slope of the velocity–time graph at 
that time. Positive values of acceleration correspond to those points in Figure 2.7a 
where the velocity is increasing in the positive x direction. The acceleration reaches 
a maximum at time tA, when the slope of the velocity–time graph is a maximum. 
The acceleration then goes to zero at time tB, when the velocity is a maximum (that 
is, when the slope of the vx–t graph is zero). The acceleration is negative when the 
velocity is decreasing in the positive x direction, and it reaches its most negative 
value at time tC.

Q uick Quiz 2.3 Make a velocity–time graph for the car in Figure 2.1a. Suppose the 
speed limit for the road on which the car is driving is 30 km/h. True or False? 
The car exceeds the speed limit at some time within the time interval 0 2 50 s.

instantaneous acceleration 

t

ax

tA tB

tC

tA tB tC

vx

t

The acceleration at any time 
equals the slope of the line 
tangent to the curve of vx 
versus t at that time.

b

a

Figure 2.7 (a) The velocity–time 
graph for a particle moving along 
the x axis. (b) The instantaneous 
acceleration can be obtained from 
the velocity–time graph.

 For the case of motion in a straight line, the direction of the velocity of an object 
and the direction of its acceleration are related as follows. When the object’s veloc-
ity and acceleration are in the same direction, the object is speeding up. On the 
other hand, when the object’s velocity and acceleration are in opposite directions, 
the object is slowing down.
 To help with this discussion of the signs of velocity and acceleration, we can 
relate the acceleration of an object to the total force exerted on the object. In Chap-
ter 5, we formally establish that the force on an object is proportional to the accel-
eration of the object:

 Fx ~ ax (2.11)

 This proportionality indicates that acceleration is caused by force. Further-
more, force and acceleration are both vectors, and the vectors are in the same 
direction. Therefore, let us think about the signs of velocity and acceleration by 
imagining a force applied to an object and causing it to accelerate. Let us assume 
the velocity and acceleration are in the same direction. This situation corresponds 
to an object that experiences a force acting in the same direction as its velocity. 
In this case, the object speeds up! Now suppose the velocity and acceleration are 
in opposite directions. In this situation, the object moves in some direction and 
experiences a force acting in the opposite direction. Therefore, the object slows 
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Conceptual Example 2.5    Graphical Relationships Between x, vx, and ax

The position of an object moving along the x axis varies with time as in Figure 2.8a. Graph the velocity versus time and 
the acceleration versus time for the object.

The velocity at any instant is the slope of the tangent 
to the x–t graph at that instant. Between t 5 0 and t 5 
tA, the slope of the x–t graph increases uniformly, so 
the velocity increases linearly as shown in Figure 2.8b. 
Between tA and tB, the slope of the x–t graph is con-
stant, so the velocity remains constant. Between tB and 
tD, the slope of the x–t graph decreases, so the value of 
the velocity in the vx–t graph decreases. At tD, the slope 
of the x–t graph is zero, so the velocity is zero at that 
instant. Between tD and tE, the slope of the x–t graph 
and therefore the velocity are negative and decrease uni-
formly in this interval. In the interval tE to tF, the slope 
of the x–t graph is still negative, and at tF it goes to zero. 
Finally, after tF, the slope of the x–t graph is zero, mean-
ing that the object is at rest for t . tF.
 The acceleration at any instant is the slope of the tan-
gent to the vx–t graph at that instant. The graph of accel-
eration versus time for this object is shown in Figure 2.8c. 
The acceleration is constant and positive between 0 and 
tA, where the slope of the vx–t graph is positive. It is zero 
between tA and tB and for t . tF because the slope of the 
vx–t graph is zero at these times. It is negative between 
tB and tE because the slope of the vx–t graph is negative 
during this interval. Between tE and tF, the acceleration 
is positive like it is between 0 and tA, but higher in value 
because the slope of the vx–t graph is steeper.
 Notice that the sudden changes in acceleration shown in Figure 2.8c are unphysical. Such instantaneous changes 
cannot occur in reality.

S o l u t i o n
x

tFtEtDtCtBtA

tFtEtDtCtB
t

tA

t

t
tFtEtBtA

vx

ax

a

b

c

Figure 2.8 (Conceptual Example 2.5) (a) Position–time graph 
for an object moving along the x axis. (b) The velocity–time graph 
for the object is obtained by measuring the slope of the position–
time graph at each instant. (c) The acceleration–time graph for 
the object is obtained by measuring the slope of the velocity–time 
graph at each instant.

Pitfall Prevention 2.4
negative Acceleration Keep in 
mind that negative acceleration does 
not necessarily mean that an object is 
slowing down. If the acceleration is 
negative and the velocity is nega-
tive, the object is speeding up!

Pitfall Prevention 2.5
Deceleration The word deceleration 
has the common popular connota-
tion of slowing down. We will not 
use this word in this book because 
it confuses the definition we have 
given for negative acceleration.

down! It is very useful to equate the direction of the acceleration to the direction 
of a force because it is easier from our everyday experience to think about what 
effect a force will have on an object than to think only in terms of the direction of 
the acceleration.

Q uick Quiz 2.4 If a car is traveling eastward and slowing down, what is the direc-
tion of the force on the car that causes it to slow down? (a) eastward (b) west-
ward (c) neither eastward nor westward

 From now on, we shall use the term acceleration to mean instantaneous accelera-
tion. When we mean average acceleration, we shall always use the adjective average.
Because vx 5 dx/dt, the acceleration can also be written as

 ax 5
dvx

dt
5

d
dt
adx

dt
b 5

d2x
dt 2  (2.12)

That is, in one-dimensional motion, the acceleration equals the second derivative of 
x with respect to time.
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 So far, we have evaluated the derivatives of a function by starting with the def-
inition of the function and then taking the limit of a specific ratio. If you are 
familiar with calculus, you should recognize that there are specific rules for taking 

Example 2.6   Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies according to the expres-
sion vx 5 40 2 5t 2, where vx is in meters per second and t is in seconds.

(A) Find the average acceleration in the time interval t 5 0 to t 5 2.0 s.

Think about what the particle is doing from the 
mathematical representation. Is it moving at t 5 
0? In which direction? Does it speed up or slow 
down? Figure 2.9 is a vx–t graph that was created 
from the velocity versus time expression given in 
the problem statement. Because the slope of the 
entire vx–t curve is negative, we expect the accel-
eration to be negative.

S o l u t i o n

Find the velocities at ti 5 tA 5 0 and tf 5 tB 5 2.0 s by 
substituting these values of t into the expression for the 
velocity:

vx A 5 40 2 5tA
2 5 40 2 5(0)2 5 140 m/s

vx B 5 40 2 5tB
2 5 40 2 5(2.0)2 5 120 m/s

Find the average acceleration in the specified time inter-
val Dt 5 tB 2 tA 5 2.0 s:

 ax,avg 5
vxf 2 vxi

tf 2 ti
5

vx B 2 vx A

t B 2 t A

5
20 m/s 2 40 m/s

2.0 s 2 0 s

5   210 m/s2

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue 
line joining the initial and final points on the velocity–time graph, is negative.

(B) Determine the acceleration at t 5 2.0 s.

S o l u t i o n

Knowing that the initial velocity at any time t is  
vxi 5 40 2 5t 2, find the velocity at any later time t 1 Dt:

  vxf 5 40 2 5(t 1 Dt)2 5 40 2 5t 2 2 10t Dt 2 5(Dt)2

Find the change in velocity over the time interval Dt: Dvx 5 vxf 2 vxi 5 210t Dt 2 5(Dt)2

To find the acceleration at any time t, divide this 
expression by Dt and take the limit of the result as Dt 
approaches zero:

   ax 5 lim
Dt S 0

 
Dvx

Dt
5 lim

Dt S 0
1210t 2 5 Dt 2 5 210t

Substitute t 5 2.0 s:    ax 5 (210)(2.0) m/s2 5   220 m/s2

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing 
down.
 Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the 
blue line in Figure 2.9 connecting points A and B. The instantaneous acceleration in part (B) is the slope of the green 
line tangent to the curve at point B. Notice also that the acceleration is not constant in this example. Situations involv-
ing constant acceleration are treated in Section 2.6.

 

Figure 2.9 (Example 2.6) 
The velocity–time graph for a 
particle moving along the x axis 
according to the expression  
vx 5 40 2 5t 2.
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The acceleration at B is equal to 
the slope of the green tangent 
line at t � 2 s, which is �20 m/s2.
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derivatives. These rules, which are listed in Appendix B.6, enable us to evaluate 
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of t 
such as in the expression

x 5 At n

where A and n are constants. (This expression is a very common functional form.) 
The derivative of x with respect to t is

dx
dt

5 nAt n21

Applying this rule to Example 2.6, in which vx 5 40 2 5t 2, we quickly find that the 
acceleration is ax 5 dvx/dt 5 210t, as we found in part (B) of the example.

2.5 Motion Diagrams
The concepts of velocity and acceleration are often confused with each other, but 
in fact they are quite different quantities. In forming a mental representation of a 
moving object, a pictorial representation called a motion diagram is sometimes use-
ful to describe the velocity and acceleration while an object is in motion.
 A motion diagram can be formed by imagining a stroboscopic photograph of a 
moving object, which shows several images of the object taken as the strobe light 
flashes at a constant rate. Figure 2.1a is a motion diagram for the car studied in 
Section 2.1. Figure 2.10 represents three sets of strobe photographs of cars moving 
along a straight roadway in a single direction, from left to right. The time intervals 
between flashes of the stroboscope are equal in each part of the diagram. So as 
to not confuse the two vector quantities, we use red arrows for velocity and purple 
arrows for acceleration in Figure 2.10. The arrows are shown at several instants dur-
ing the motion of the object. Let us describe the motion of the car in each diagram.
 In Figure 2.10a, the images of the car are equally spaced, showing us that the car 
moves through the same displacement in each time interval. This equal spacing is 
consistent with the car moving with constant positive velocity and zero acceleration. We 
could model the car as a particle and describe it with the particle under constant 
velocity model.
 In Figure 2.10b, the images become farther apart as time progresses. In this 
case, the velocity arrow increases in length with time because the car’s displace-
ment between adjacent positions increases in time. These features suggest the car is 
moving with a positive velocity and a positive acceleration. The velocity and acceleration 
are in the same direction. In terms of our earlier force discussion, imagine a force 
pulling on the car in the same direction it is moving: it speeds up.

Figure 2.10 Motion diagrams 
of a car moving along a straight 
roadway in a single direction. 
The velocity at each instant is 
indicated by a red arrow, and the 
constant acceleration is indicated 
by a purple arrow.

v

v

v

a

a

This car moves at 
constant velocity (zero 
acceleration). 

This car has a constant 
acceleration in the 
direction of its velocity. 

This car has a 
constant acceleration 
in the direction 
opposite its velocity.

a

b

c
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 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis 
model: the particle under constant acceleration. In the discussion that follows, we 
generate several equations that describe the motion of a particle for this model.
 If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax) (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (constant) 
slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the 
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a 
slope of zero.
 Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
  1 for constant ax 2  (2.14)

vx

vxi vxf

t

vxi

axt

t

t

Slope �  ax

ax

t

Slope � 0

x

t

xi

Slope � vxi

t

Slope � vxf

ax

a

b

c

Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.
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Notice that this expression for average velocity applies only in situations in which 
the acceleration is constant.
 We can now use Equations 2.1, 2.2, and 2.14 to obtain the position of an object as 
a function of time. Recalling that Dx in Equation 2.2 represents xf 2 xi and recog-
nizing that Dt 5 tf 2 ti 5 t 2 0 5 t, we find that

 xf 2 xi 5 vx,avg t 5 1
2 1vxi 1 vxf 2 t 

 xf 5 xi 1 1
2 1vxi 1 vxf 2 t 1 for constant ax 2  (2.15)

This equation provides the final position of the particle at time t in terms of the 
initial and final velocities.
 We can obtain another useful expression for the position of a particle under 
constant acceleration by substituting Equation 2.13 into Equation 2.15:

xf 5 xi 1 1
2 3vxi 1 1vxi 1 axt 2 4t

 xf 5 xi 1 vxit 1 1
2axt

2 1 for constant ax 2   (2.16)

This equation provides the final position of the particle at time t in terms of the 
initial position, the initial velocity, and the constant acceleration.
 The position–time graph for motion at constant (positive) acceleration shown 
in Figure 2.11a is obtained from Equation 2.16. Notice that the curve is a parab-
ola. The slope of the tangent line to this curve at t 5 0 equals the initial velocity 
vxi , and the slope of the tangent line at any later time t equals the velocity vxf at 
that time.
 Finally, we can obtain an expression for the final velocity that does not contain 
time as a variable by substituting the value of t from Equation 2.13 into Equation 2.15:

xf 5 xi 1 1
2 1vxi 1 vxf 2 a

vxf 2 vxi

ax
b 5 xi 1

vxf
2 2 vxi

2

2ax

 vxf
2 5 vxi

2 1 2ax(xf 2 xi) (for constant ax) (2.17)

This equation provides the final velocity in terms of the initial velocity, the constant 
acceleration, and the position of the particle.
 For motion at zero acceleration, we see from Equations 2.13 and 2.16 that

vxf 5 vxi 5 vx

xf 5 xi 1 vxt
f     when ax 5 0

That is, when the acceleration of a particle is zero, its velocity is constant and its 
position changes linearly with time. In terms of models, when the acceleration of a 
particle is zero, the particle under constant acceleration model reduces to the par-
ticle under constant velocity model (Section 2.3).
 Equations 2.13 through 2.17 are kinematic equations that may be used to solve 
any problem involving a particle under constant acceleration in one dimension. 
These equations are listed together for convenience on page 38. The choice of 
which equation you use in a given situation depends on what you know beforehand. 
Sometimes it is necessary to use two of these equations to solve for two unknowns. 
You should recognize that the quantities that vary during the motion are position 
xf , velocity vxf , and time t.
 You will gain a great deal of experience in the use of these equations by solving 
a number of exercises and problems. Many times you will discover that more than 
one method can be used to obtain a solution. Remember that these equations of 
kinematics cannot be used in a situation in which the acceleration varies with time. 
They can be used only when the acceleration is constant.

WW  Position as a function of 
velocity and time for the 
particle under constant 
acceleration model

WW  Position as a function of time 
for the particle under con-
stant acceleration model

WW   Velocity as a function  
of position for the  
particle under constant 
acceleration model
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Q uick Quiz 2.6 In Figure 2.12, match each vx–t graph on the top with the ax–t 
graph on the bottom that best describes the motion.

Example 2.7   Carrier Landing 

A jet lands on an aircraft carrier at a speed of 140 mi/h (< 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and 
brings it to a stop?

You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest sur-
prisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial 
speed of 63 m/s, we also know that the final speed is zero. Because the acceleration of the jet is assumed constant, we 
model it as a particle under constant acceleration. We define our x axis as the direction of motion of the jet. Notice that we 
have no information about the change in position of the jet while it is slowing down.

AM

S o l u t i o n

Analysis Model   Particle Under Constant Acceleration
Examples

•	 a	car	accelerating	at	a	constant	rate	
along a straight freeway

•	 a	dropped	object	in	the	absence	of	air	
resistance (Section 2.7)

•	 an	object	on	which	a	constant	net	force	
acts (Chapter 5)

•	 a	charged	particle	in	a	uniform	electric	
field (Chapter 23)

Imagine a moving object that can be modeled as a particle. If it 
begins from position xi and initial velocity vxi and moves in a straight 
line with a constant acceleration ax, its subsequent position and 
velocity are described by the following kinematic equations: 

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2 1vxi 1 vxf 2 t (2.15)

 xf 5 xi 1 vxit 1 1
2axt

2 (2.16)

 vxf
2 5 vxi

21 2ax(xf 2 xi) (2.17)

v

a

t

vx

t

ax

t

vx

t

ax

t

vx

t

ax

a b c

d e f

Figure 2.12 (Quick Quiz 2.6)  
Parts (a), (b), and (c) are vx–t graphs 
of objects in one-dimensional 
motion. The possible accelerations 
of each object as a function of time 
are shown in scrambled order in (d), 
(e), and (f).



Equation 2.13 is the only equation in the particle 
under constant acceleration model that does not 
involve position, so we use it to find the acceleration of 
the jet, modeled as a particle:

ax 5
vxf 2 vxi

t
<

0 2 63 m/s
2.0 s

5  232 m/s2

(B) If the jet touches down at position xi 5 0, what is its final position?

S o l u t i o n

Use Equation 2.15 to solve for the final position: xf 5 xi 1 1
2 1vxi 1 vxf 2 t 5 0 1 1

2 163 m/s 1 0 2 12.0 s 2 5   63 m

Given the size of aircraft carriers, a length of 63 m seems reasonable for stopping the jet. The idea of using arresting 
cables to slow down landing aircraft and enable them to land safely on ships originated at about the time of World War I. 
The cables are still a vital part of the operation of modern aircraft carriers.

Suppose the jet lands on the deck of the aircraft carrier with a speed faster than 63 m/s but has the same 
acceleration due to the cable as that calculated in part (A). How will that change the answer to part (B)?

Answer If the jet is traveling faster at the beginning, it will stop farther away from its starting point, so the answer to 
part (B) should be larger. Mathematically, we see in Equation 2.15 that if vxi is larger, then xf will be larger.

WhAt iF ?
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Example 2.8   Watch Out for the Speed Limit!

A car traveling at a constant speed of 45.0 m/s passes a 
trooper on a motorcycle hidden behind a billboard. One sec-
ond after the speeding car passes the billboard, the trooper 
sets out from the billboard to catch the car, accelerating at a 
constant rate of 3.00 m/s2. How long does it take the trooper 
to overtake the car?

A pictorial representation (Fig. 2.13) helps clarify the 
sequence of events. The car is modeled as a particle under con-
stant velocity, and the trooper is modeled as a particle under 
constant acceleration.
 First, we write expressions for the position of each vehicle as a function of time. It is convenient to choose the posi-
tion of the billboard as the origin and to set tB 5 0 as the time the trooper begins moving. At that instant, the car has 
already traveled a distance of 45.0 m from the billboard because it has traveled at a constant speed of vx 5 45.0 m/s for 
1 s. Therefore, the initial position of the speeding car is xB 5 45.0 m.

AM

S o l u t i o n

Figure 2.13 (Example 2.8) A speeding car passes a hid-
den trooper.

tC � ?tB � 0tA � �1.00 s

A B C

Using the particle under constant velocity model, apply 
Equation 2.7 to give the car’s position at any time t :

xcar 5 xB 1 vx cart

A quick check shows that at t 5 0, this expression gives the car’s correct initial position when the trooper begins to 
move: xcar 5 xB 5 45.0 m.

The trooper starts from rest at tB 5 0 and accelerates at 
ax 5 3.00 m/s2 away from the origin. Use Equation 2.16 
to give her position at any time t :

         xf 5 xi 1 vxit 1 1
2axt

2

 x trooper 5 0 1 10 2 t 1 1
2axt

2 5 1
2axt

2

Set the positions of the car and trooper equal to repre-
sent the trooper overtaking the car at position C:

x trooper 5 xcar

   1
2axt

2 5 x B 1 vx cart

 

▸ 2.7 c o n t i n u e d

continued
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2.7 Freely Falling Objects
It is well known that, in the absence of air resistance, all objects dropped near the 
Earth’s surface fall toward the Earth with the same constant acceleration under 
the influence of the Earth’s gravity. It was not until about 1600 that this conclusion 
was accepted. Before that time, the teachings of the Greek philosopher Aristotle 
(384–322 BC) had held that heavier objects fall faster than lighter ones.
 The Italian Galileo Galilei (1564–1642) originated our present-day ideas con-
cerning falling objects. There is a legend that he demonstrated the behavior of fall-
ing objects by observing that two different weights dropped simultaneously from 
the Leaning Tower of Pisa hit the ground at approximately the same time. Although 
there is some doubt that he carried out this particular experiment, it is well estab-
lished that Galileo performed many experiments on objects moving on inclined 
planes. In his experiments, he rolled balls down a slight incline and measured the 
distances they covered in successive time intervals. The purpose of the incline was 
to reduce the acceleration, which made it possible for him to make accurate mea-
surements of the time intervals. By gradually increasing the slope of the incline, 
he was finally able to draw conclusions about freely falling objects because a freely 
falling ball is equivalent to a ball moving down a vertical incline.
 You might want to try the following experiment. Simultaneously drop a coin and 
a crumpled-up piece of paper from the same height. If the effects of air resistance 
are negligible, both will have the same motion and will hit the floor at the same 
time. In the idealized case, in which air resistance is absent, such motion is referred 

Galileo Galilei
Italian physicist and astronomer 
(1564–1642)
Galileo formulated the laws that govern 
the motion of objects in free fall and 
made many other significant discover-
ies in physics and astronomy. Galileo 
publicly defended Nicolaus Copernicus’s 
assertion that the Sun is at the center of 
the Universe (the heliocentric system). 
He published Dialogue Concerning Two 
New World Systems to support the 
Copernican model, a view that the Cath-
olic Church declared to be heretical.
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Why didn’t we choose t 5 0 as the time at which the car passes the trooper? If we did so, we would not be able to use 
the particle under constant acceleration model for the trooper. Her acceleration would be zero for the first second and 
then 3.00 m/s2 for the remaining time. By defining the time t 5 0 as when the trooper begins moving, we can use the 
particle under constant acceleration model for her movement for all positive times.

What if the trooper had a more powerful motorcycle with a larger acceleration? How would that change 
the time at which the trooper catches the car? 

Answer If the motorcycle has a larger acceleration, the trooper should catch up to the car sooner, so the answer for 
the time should be less than 31 s. Because all terms on the right side of Equation (1) have the acceleration ax in the 
denominator, we see symbolically that increasing the acceleration will decrease the time at which the trooper catches 
the car.

WhAt iF ?

Evaluate the solution, choosing the positive root because 
that is the only choice consistent with a time t . 0:

t 5
45.0 m/s
3.00 m/s2 1 Å

145.0 m/s 22

13.00 m/s2 22 1
2 145.0 m 2
3.00 m/s2 5   31.0 s

 

▸ 2.8 c o n t i n u e d

Rearrange to give a quadratic equation: 1
2axt

2 2 vx cart 2 xB 5 0

Solve the quadratic equation for the time at which the 
trooper catches the car (for help in solving quadratic 
equations, see Appendix B.2.):

t 5
vx car 6 "v 2

x car 1 2axx B

ax

(1)   t 5
vx car

ax
6 Å

v2
x car

ax
2 1

2x B

ax



 2.7 Freely Falling Objects 41

Conceptual Example 2.9   The Daring Skydivers

A skydiver jumps out of a hovering helicopter. A few seconds later, another skydiver jumps out, and they both fall along 
the same vertical line. Ignore air resistance so that both skydivers fall with the same acceleration. Does the difference 
in their speeds stay the same throughout the fall? Does the vertical distance between them stay the same throughout 
the fall?

S o l u t i o n

At any given instant, the speeds of the skydivers are dif-
ferent because one had a head start. In any time interval 
Dt after this instant, however, the two skydivers increase 
their speeds by the same amount because they have the 
same acceleration. Therefore, the difference in their 
speeds remains the same throughout the fall.

Pitfall Prevention 2.6
g and g Be sure not to confuse 
the italic symbol g for free-fall 
acceleration with the nonitalic 
symbol g used as the abbreviation 
for the unit gram.

Pitfall Prevention 2.7
the Sign of g Keep in mind that 
g is a positive number. It is tempt-
ing to substitute 29.80 m/s2 for g, 
but resist the temptation. Down-
ward gravitational acceleration is 
indicated explicitly by stating the 
acceleration as ay 5 2g.

Pitfall Prevention 2.8
Acceleration at the top of the 
Motion A common misconcep-
tion is that the acceleration of a 
projectile at the top of its trajec-
tory is zero. Although the velocity 
at the top of the motion of an 
object thrown upward momen-
tarily goes to zero, the acceleration 
is still that due to gravity at this 
point. If the velocity and accelera-
tion were both zero, the projectile 
would stay at the top.

to as free-fall motion. If this same experiment could be conducted in a vacuum, in 
which air resistance is truly negligible, the paper and the coin would fall with the 
same acceleration even when the paper is not crumpled. On August 2, 1971, astro-
naut David Scott conducted such a demonstration on the Moon. He simultaneously 
released a hammer and a feather, and the two objects fell together to the lunar sur-
face. This simple demonstration surely would have pleased Galileo!
 When we use the expression freely falling object, we do not necessarily refer to an 
object dropped from rest. A freely falling object is any object moving freely under 
the influence of gravity alone, regardless of its initial motion. Objects thrown 
upward or downward and those released from rest are all falling freely once they 
are released. Any freely falling object experiences an acceleration directed down-
ward, regardless of its initial motion.
 We shall denote the magnitude of the free-fall acceleration, also called the accelera-
tion due to gravity, by the symbol g. The value of g decreases with increasing altitude 
above the Earth’s surface. Furthermore, slight variations in g occur with changes 
in latitude. At the Earth’s surface, the value of g is approximately 9.80 m/s2. Unless 
stated otherwise, we shall use this value for g when performing calculations. For 
making quick estimates, use g 5 10 m/s2.
 If we neglect air resistance and assume the free-fall acceleration does not vary 
with altitude over short vertical distances, the motion of a freely falling object mov-
ing vertically is equivalent to the motion of a particle under constant acceleration in 
one dimension. Therefore, the equations developed in Section 2.6 for the particle 
under constant acceleration model can be applied. The only modification for freely 
falling objects that we need to make in these equations is to note that the motion 
is in the vertical direction (the y direction) rather than in the horizontal direc-
tion (x) and that the acceleration is downward and has a magnitude of 9.80 m/s2. 
Therefore, we choose ay 5 2g 5 29.80 m/s2, where the negative sign means that 
the acceleration of a freely falling object is downward. In Chapter 13, we shall study 
how to deal with variations in g with altitude.

Q uick Quiz 2.7 Consider the following choices: (a) increases, (b) decreases,  
(c) increases and then decreases, (d) decreases and then increases, (e) remains 
the same. From these choices, select what happens to (i) the acceleration and 
(ii) the speed of a ball after it is thrown upward into the air.

 

 The first jumper always has a greater speed than the 
second. Therefore, in a given time interval, the first sky-
diver covers a greater distance than the second. Conse-
quently, the separation distance between them increases.
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Use Equation 2.13 to calculate the time at which the 
stone reaches its maximum height:

vyf 5 vyi 1 ayt S t 5
vyf 2 vyi

ay

Substitute numerical values:    t 5 t B 5
0 2 20.0 m/s
29.80 m/s2 5   2.04 s

(B) Find the maximum height of the stone.

 

As in part (A), choose the initial and final points at the beginning and the end of the upward flight. 

S o l u t i o n

Set yA 5 0 and substitute the time from part 
(A) into Equation 2.16 to find the maximum 
height:

 ymax 5 yB 5 yA 1 vx A t 1 1
2ayt

2

   yB 5 0 1 120.0 m/s 2 12.04 s 2 1 1
2 129.80 m/s2 2 12.04 s 22 5   20.4 m

(C) Determine the velocity of the stone when it returns to the height from which it was thrown.

Choose the initial point where the stone is launched and the final point when it passes this position coming down.

S o l u t i o n

Substitute known values into Equation 2.17: vyC
2 5 vyA

2 1 2ay(yC 2 yA)

vyC
2 5 (20.0 m/s)2 1 2(29.80 m/s2)(0 2 0) 5 400 m2/s2

vyC 5   220.0 m/s

Example 2.10   Not a Bad Throw for a Rookie! AM

E

D

C

B

t D � 5.00 s
y D � �22.5 m

vy D � �29.0 m/s
ay D � �9.80 m/s2

t C � 4.08 s
y C � 0

vy C � �20.0 m/s
ay C � �9.80 m/s2

t B � 2.04 s
y B � 20.4 m

vy B � 0
ay B � �9.80 m/s2

50.0 m

t E � 5.83 s
y E � �50.0 m

vy E � �37.1 m/s
ay E � �9.80 m/s2

tA � 0
yA � 0

vy A � 20.0 m/s
ay A � �9.80 m/s2

A

A stone thrown from the top of a building is given an initial velocity 
of 20.0 m/s straight upward. The stone is launched 50.0 m above the 
ground, and the stone just misses the edge of the roof on its way down 
as shown in Figure 2.14.

(A) Using tA 5 0 as the time the stone leaves the thrower’s hand at 
position A, determine the time at which the stone reaches its maxi-
mum height.

You most likely have experience 
with dropping objects or throw-
ing them upward and watching 
them fall, so this problem should 
describe a familiar experience. 
To simulate this situation, toss a 
small object upward and notice 
the time interval required for it 
to fall to the floor. Now imagine 
throwing that object upward from the roof of a building. Because the 
stone is in free fall, it is modeled as a particle under constant acceleration 
due to gravity.
 Recognize that the initial velocity is positive because the stone 
is launched upward. The velocity will change sign after the stone 
reaches its highest point, but the acceleration of the stone will always 
be downward so that it will always have a negative value. Choose an 
initial point just after the stone leaves the person’s hand and a final 
point at the top of its flight.

S o l u t i o n

Figure 2.14 (Example 2.10) Position, 
velocity, and acceleration values at 
various times for a freely falling stone 
thrown initially upward with a velocity 
vyi 5 20.0 m/s. Many of the quantities 
in the labels for points in the motion 
of the stone are calculated in the 
example. Can you verify the other val-
ues that are not?



When taking the square root, we could choose either a positive or a negative root. We choose the negative root because 
we know that the stone is moving downward at point C. The velocity of the stone when it arrives back at its original 
height is equal in magnitude to its initial velocity but is opposite in direction.

(D) Find the velocity and position of the stone at t 5 5.00 s.

Choose the initial point just after the throw and the final point 5.00 s later.

S o l u t i o n

Calculate the velocity at D from Equation 2.13: vyD5 vyA 1 ayt 5 20.0 m/s 1 (29.80 m/s2)(5.00 s) 5   229.0 m/s

Use Equation 2.16 to find the position of the 
stone at tD 5 5.00 s:

yD 5 yA 1 vy A t 1 1
2ayt

2

5 0 1 (20.0 m/s)(5.00 s) 1 12(29.80 m/s2)(5.00 s)2

5   222.5 m
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2.8 Kinematic Equations Derived from Calculus
This section assumes the reader is familiar with the techniques of integral calculus. 
If you have not yet studied integration in your calculus course, you should skip this 
section or cover it after you become familiar with integration.
 The velocity of a particle moving in a straight line can be obtained if its position 
as a function of time is known. Mathematically, the velocity equals the derivative of 
the position with respect to time. It is also possible to find the position of a particle 
if its velocity is known as a function of time. In calculus, the procedure used to 
perform this task is referred to either as integration or as finding the antiderivative. 
Graphically, it is equivalent to finding the area under a curve.
 Suppose the vx–t graph for a particle moving along the x axis is as shown in 
Figure 2.15 on page 44. Let us divide the time interval tf 2 ti into many small inter-
vals, each of duration Dtn. From the definition of average velocity, we see that the 
displacement of the particle during any small interval, such as the one shaded in 
Figure 2.15, is given by Dxn 5 vxn,avg Dtn, where vxn,avg is the average velocity in that 
interval. Therefore, the displacement during this small interval is simply the area of 
the shaded rectangle in Figure 2.15. The total displacement for the interval tf 2 ti is 
the sum of the areas of all the rectangles from ti to tf :

Dx 5 a
n

 vxn,avg Dtn

where the symbol o (uppercase Greek sigma) signifies a sum over all terms, that is, 
over all values of n. Now, as the intervals are made smaller and smaller, the num-
ber of terms in the sum increases and the sum approaches a value equal to the area 

▸ 2.10 c o n t i n u e d

The choice of the time defined as t 5 0 is arbitrary and up to you to select as the problem solver. As an example of this 
arbitrariness, choose t 5 0 as the time at which the stone is at the highest point in its motion. Then solve parts (C) and 
(D) again using this new initial instant and notice that your answers are the same as those above.

What if the throw were from 30.0 m above the ground instead of 50.0 m? Which answers in parts (A) to 
(D) would change?

Answer None of the answers would change. All the motion takes place in the air during the first 5.00 s. (Notice that 
even for a throw from 30.0 m, the stone is above the ground at t 5 5.00 s.) Therefore, the height of the throw is not an 
issue. Mathematically, if we look back over our calculations, we see that we never entered the height of the throw into 
any equation.

WhAt iF ?
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under the curve in the velocity–time graph. Therefore, in the limit n S ,̀ or Dtn S 0, 
the displacement is

 Dx 5 lim
Dtn S 0an

 vxn,avg Dtn (2.18)

If we know the vx–t graph for motion along a straight line, we can obtain the dis-
placement during any time interval by measuring the area under the curve corre-
sponding to that time interval.
 The limit of the sum shown in Equation 2.18 is called a definite integral and is 
written

  lim
Dtn S 0an

 vxn,avg Dtn 5 3
tf

ti

 vx 1 t 2  dt (2.19)

where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) 
is known and the limits are given, the integral can be evaluated. Sometimes the 
vx–t graph for a moving particle has a shape much simpler than that shown in Fig-
ure 2.15. For example, suppose an object is described with the particle under con-
stant velocity model. In this case, the vx–t graph is a horizontal line as in Figure 2.16 
and the displacement of the particle during the time interval Dt is simply the area 
of the shaded rectangle:

Dx 5 vxi Dt (when vx 5 vxi 5 constant)

Kinematic Equations
We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.
 The defining equation for acceleration (Eq. 2.10),

ax 5
dvx

dt

may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as

vxf 2 vxi 5 3
t

0
 ax dt

For the special case in which the acceleration is constant, ax can be removed from 
the integral to give

 vxf 2 vxi 5 ax 3
t

0
 dt 5 ax 1 t 2 0 2 5 axt (2.20)

which is Equation 2.13 in the particle under constant acceleration model.
 Now let us consider the defining equation for velocity (Eq. 2.5):

vx 5
dx
dt

Definite integral 

Figure 2.16  The velocity–time 
curve for a particle moving with 
constant velocity vxi. The displace-
ment of the particle during the 
time interval tf 2 ti is equal to the 
area of the shaded rectangle.

vx � vxi � constant

tf

vxi

t

�t

ti

vx

vxi

vx

t

�t n

t i t f

vxn,avg

The area of the shaded rectangle 
is equal to the displacement in 
the time interval �tn.

Figure 2.15 Velocity versus time 
for a particle moving along the 
x axis. The total area under the 
curve is the total displacement of 
the particle.
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Conceptualize

•	 	The	first	things	to	do	when	approaching	a	problem	
are to think about and understand the situation. Study 
carefully any representations of the information (for 
example, diagrams, graphs, tables, or photographs) 
that accompany the problem. Imagine a movie, run-
ning in your mind, of what happens in the problem.

•	 	If	a	pictorial	representation	is	not	provided,	you	
should almost always make a quick drawing of the 
situation. Indicate any known values, perhaps in a 
table or directly on your sketch.

•	 	Now	focus	on	what	algebraic	or	numerical	informa-
tion is given in the problem. Carefully read the prob-
lem statement, looking for key phrases such as “starts 
from rest” (vi 5 0), “stops” (vf 5 0), or “falls freely”  
(ay 5 2g 5 29.80 m/s2).

•	 	Now	focus	on	the	expected	result	of	solving	the	prob-
lem. Exactly what is the question asking? Will the 
final result be numerical or algebraic? Do you know 
what units to expect?

•	 	Don’t	forget	to	incorporate	information	from	your	
own experiences and common sense. What should 
a reasonable answer look like? For example, you 
wouldn’t expect to calculate the speed of an automo-
bile to be 5 3 106 m/s.

Categorize

•	 	Once	you	have	a	good	idea	of	what	the	problem	is	
about, you need to simplify the problem. Remove 

the details that are not important to the solution. 
For example, model a moving object as a particle. If 
appropriate, ignore air resistance or friction between 
a sliding object and a surface.

•	 	Once	the	problem	is	simplified,	it	is	important	to	cat-
egorize the problem. Is it a simple substitution problem 
such that numbers can be substituted into a simple 
equation or a definition? If so, the problem is likely 
to be finished when this substitution is done. If not, 
you face what we call an analysis problem: the situation 
must be analyzed more deeply to generate an appro-
priate equation and reach a solution.

•	 	If	it	is	an	analysis	problem,	it	needs	to	be	categorized	
further. Have you seen this type of problem before? 
Does it fall into the growing list of types of problems 
that you have solved previously? If so, identify any 
analysis model(s) appropriate for the problem to pre-
pare for the Analyze step below. We saw the first three 
analysis models in this chapter: the particle under 
constant velocity, the particle under constant speed, 
and the particle under constant acceleration. Being 
able to classify a problem with an analysis model can 
make it much easier to lay out a plan to solve it. For 
example, if your simplification shows that the prob-
lem can be treated as a particle under constant accel-
eration and you have already solved such a problem 
(such as the examples in Section 2.6), the solution to 
the present problem follows a similar pattern.

We can write this equation as dx 5 vx dt or in integral form as

xf 2 xi 5 3
t

0
 vx dt

Because vx 5 vxf 5 vxi 1 axt, this expression becomes

    xf 2 xi 5 3
t

0
1vxi 1 axt 2  dt 5 3

t

0
 vxi dt 1 ax 3

t

0
 t dt 5 vxi 1 t 2 0 2 1 ax a t 2

2
2 0b  

 xf 2 xi 5 vxit 1 1
2axt

2

which is Equation 2.16 in the particle under constant acceleration model.

 Besides what you might expect to learn about physics concepts, a very valu-
able skill you should hope to take away from your physics course is the ability to 
solve complicated problems. The way physicists approach complex situations and 
break them into manageable pieces is extremely useful. The following is a general 
problem-solving strategy to guide you through the steps. To help you remember 
the steps of the strategy, they are Conceptualize, Categorize, Analyze, and Finalize.

GEnErAl PrOblEM-SOlVInG StrAtEGy

continued
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Analyze

•	 	Now	you	must	analyze	the	problem	and	strive	for	a	
mathematical solution. Because you have already 
categorized the problem and identified an analysis 
model, it should not be too difficult to select relevant 
equations that apply to the type of situation in the 
problem. For example, if the problem involves a par-
ticle under constant acceleration, Equations 2.13 to 
2.17 are relevant.

•	 	Use	algebra	(and	calculus,	if	necessary)	to	solve	sym-
bolically for the unknown variable in terms of what is 
given. Finally, substitute in the appropriate numbers, 
calculate the result, and round it to the proper num-
ber of significant figures.

Finalize

•	 	Examine	your	numerical	answer.	Does	it	have	the	
correct units? Does it meet your expectations from 
your conceptualization of the problem? What about 
the algebraic form of the result? Does it make sense? 
Examine the variables in the problem to see whether 
the answer would change in a physically meaning-
ful way if the variables were drastically increased or 
decreased or even became zero. Looking at limiting 
cases to see whether they yield expected values is a 
very useful way to make sure that you are obtaining 
reasonable results.

•	 	Think	about	how	this	problem	compared	with	others	
you have solved. How was it similar? In what critical 
ways did it differ? Why was this problem assigned? 
Can you figure out what you have learned by doing 
it? If it is a new category of problem, be sure you 
understand it so that you can use it as a model for 
solving similar problems in the future.

 When solving complex problems, you may need to 
identify a series of subproblems and apply the problem-
solving strategy to each. For simple problems, you prob-
ably don’t need this strategy. When you are trying to 
solve a problem and you don’t know what to do next, 
however, remember the steps in the strategy and use 
them as a guide.
 For practice, it would be useful for you to revisit 
the worked examples in this chapter and identify the 
Conceptualize, Categorize, Analyze, and Finalize steps. In 
the rest of this book, we will label these steps explicitly 
in the worked examples. Many chapters in this book 
include a section labeled Problem-Solving Strategy that 
should help you through the rough spots. These sec-
tions are organized according to the General Problem-
Solving Strategy outlined above and are tailored to the 
specific types of problems addressed in that chapter.
 To clarify how this Strategy works, we repeat Exam-
ple 2.7 below with the particular steps of the Strategy 
identified.

Example 2.7   Carrier Landing 

A jet lands on an aircraft carrier at a speed of 140 mi/h (< 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and brings 
it to a stop?

Conceptualize
You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest surpris-
ingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial speed 
of 63 m/s, we also know that the final speed is zero.

Categorize
Because the acceleration of the jet is assumed constant, we model it as a particle under constant acceleration.

AM

S o l u t i o n

When you Conceptualize a problem, try to under-
stand the situation that is presented in the prob-
lem statement. Study carefully any representa-
tions of the information (for example, diagrams, 
graphs, tables, or photographs) that accompany 
the problem. Imagine a movie, running in your 
mind, of what happens in the problem.

Simplify the problem. Remove the details that 
are not important to the solution. Then Catego-
rize the problem. Is it a simple substitution prob-
lem such that numbers can be substituted into a 
simple equation or a definition?  If not, you face 
an analysis problem.  In this case, identify the 
appropriate analysis model.
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Equation 2.13 is the only equation in the particle under 
constant acceleration model that does not involve position, 
so we use it to find the acceleration of the jet, modeled as 
a particle:

  ax 5
vxf 2 vxi

t
5

0 2 63 m/s
2.0 s

5   232 m/s2

Use Equation 2.15 to solve for the final position: xf 5 xi 1 1
2 1vxi 1 vxf 2 t 5 0 1 1

2 163 m/s 1 0 2 12.0 s 2 5 63 m

(B) If the jet touches down at position xi 5 0, what is its final position?

S o l u t i o n

Finalize
Given the size of aircraft carriers, a length of 63 m seems reasonable for stopping the jet. The idea of using arresting 
cables to slow down landing aircraft and enable them to land safely on ships originated at about the time of World War I.  
The cables are still a vital part of the operation of modern aircraft carriers.

Suppose the jet lands on the deck of the aircraft carrier with a speed higher than 63 m/s but has the same 
acceleration due to the cable as that calculated in part (A). How will that change the answer to part (B)?

Answer If the jet is traveling faster at the beginning, it will stop farther away from its starting point, so the answer to part 
(B) should be larger. Mathematically, we see in Equation 2.15 that if vxi is larger, xf will be larger.

What if ?

Finalize the problem.  Examine the numerical 
answer. Does it have the correct units? Does it 
meet your expectations from your conceptual-
ization of the problem? Does the answer make 
sense? What about the algebraic form of the 
result? Examine the variables in the problem to 
see whether the answer would change in a physi-
cally meaningful way if the variables were drasti-
cally increased or decreased or even became zero. 

Now Analyze the problem.  Select 
relevant equations from the analysis 
model. Solve symbolically for the 
unknown variable in terms of what is 
given. Substitute in the appropriate 
numbers, calculate the result, and 
round it to the proper number of 
significant figures.

What If? questions will appear in 
many examples in the text, and 
offer a variation on the situation just 
explored. This feature encourages 
you to think about the results of the 
example and assists in conceptual 
understanding of the principles.

▸ 2.7 c o n t i n u e d

 

Analyze
We define our x axis as the direction of motion of the jet. Notice that we have no information about the change in posi-
tion of the jet while it is slowing down.

Summary

Definitions

 When a particle moves 
along the x axis from 
some initial position xi to 
some final position xf , its 
displacement is

	 Dx ;	xf	2 xi (2.1)

 The average velocity of a particle during some time interval is the displacement 
Dx divided by the time interval Dt during which that displacement occurs:

 vx,avg ;
Dx
Dt

 (2.2)

The average speed of a particle is equal to the ratio of the total distance it travels to 
the total time interval during which it travels that distance:

 vavg ;
d

Dt
 (2.3)

continued
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 The instantaneous velocity of a particle 
is defined as the limit of the ratio Dx/Dt as 
Dt approaches zero. By definition, this limit 
equals the derivative of x with respect to t, 
or the time rate of change of the position:

 vx ; lim
Dt S 0

 
Dx
Dt

5
dx
dt

 (2.5)

The instantaneous speed of a particle is 
equal to the magnitude of its instantaneous 
velocity.

 The average acceleration of a particle is defined as the ratio of 
the change in its velocity Dvx divided by the time interval Dt dur-
ing which that change occurs:

 ax,avg ;
Dvx

Dt
5

vxf 2 vxi

tf 2 ti
 (2.9)

The instantaneous acceleration is equal to the limit of the ratio  
Dvx/Dt as Dt approaches 0. By definition, this limit equals the deriva-
tive of vx with respect to t, or the time rate of change of the velocity:

 ax ; lim
Dt S 0

 
Dvx

Dt
5

dvx

dt
 (2.10)

Concepts and Principles

 When an object’s velocity and acceleration are 
in the same direction, the object is speeding up. 
On the other hand, when the object’s velocity and 
acceleration are in opposite directions, the object is 
slowing down. Remembering that Fx ~ ax is a useful 
way to identify the direction of the acceleration by 
associating it with a force.

 An object falling freely in the presence of the Earth’s 
gravity experiences free-fall acceleration directed toward 
the center of the Earth. If air resistance is neglected, if the 
motion occurs near the surface of the Earth, and if the 
range of the motion is small compared with the Earth’s 
radius, the free-fall acceleration ay 5 2g is constant over 
the range of motion, where g is equal to 9.80 m/s2.

 Complicated problems are best 
approached in an organized man-
ner. Recall and apply the Conceptu-
alize, Categorize, Analyze, and Finalize 
steps of the General Problem- 
Solving Strategy when you need 
them.

 An important aid to problem solving is the use of analysis models.  
Analysis models are situations that we have seen in previous problems. 
Each analysis model has one or more equations associated with it. When 
solving a new problem, identify the analysis model that corresponds to the 
problem. The model will tell you which equations to use. The first three 
analysis models introduced in this chapter are summarized below.

Analysis Models for Problem-Solving

 Particle Under Constant Velocity. If a particle moves 
in a straight line with a constant speed vx, its constant 
velocity is given by

 vx 5
Dx
Dt

 (2.6)

and its position is given by

 xf 5 xi 1 vxt (2.7)

v

 Particle Under Constant Speed. If a particle moves 
a distance d along a curved or straight path with a con-
stant speed, its constant speed is given by

 v 5
d

Dt
 (2.8)

v

 Particle Under Constant Acceleration. If a particle 
moves in a straight line with a constant acceleration ax, 
its motion is described by the kinematic equations:

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2 1vxi 1 vxf 2 t (2.15)

 xf 5 xi 1 vxit 1 1
2axt

2 (2.16)

 vxf
2 5 vxi

21 2ax(xf 2 xi) (2.17)

v

a
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 1. One drop of oil falls straight down onto the road from 
the engine of a moving car every 5 s. Figure OQ2.1 
shows the pattern of the drops left behind on the pave-
ment. What is the average speed of the car over this 
section of its motion? (a) 20 m/s (b) 24 m/s (c) 30 m/s 
(d) 100 m/s (e) 120 m/s

600 m

Figure oQ2.1

 2. A racing car starts from rest at t 5 0 and reaches a 
final speed v at time t. If the acceleration of the car 
is constant during this time, which of the following 
statements are true? (a) The car travels a distance vt.  
(b) The average speed of the car is v/2. (c) The magni-
tude of the acceleration of the car is v/t. (d) The veloc-
ity of the car remains constant. (e) None of statements 
(a) through (d) is true.

 3. A juggler throws a bowling pin straight up in the air. 
After the pin leaves his hand and while it is in the air, 
which statement is true? (a) The velocity of the pin is 
always in the same direction as its acceleration. (b) The 
velocity of the pin is never in the same direction as its 
acceleration. (c) The acceleration of the pin is zero.  
(d) The velocity of the pin is opposite its acceleration 
on the way up. (e) The velocity of the pin is in the same 
direction as its acceleration on the way up.

 4. When applying the equations of kinematics for an 
object moving in one dimension, which of the follow-
ing statements must be true? (a) The velocity of the 
object must remain constant. (b) The acceleration of 
the object must remain constant. (c) The velocity of the  
object must increase with time. (d) The position of 
the object must increase with time. (e) The velocity of 
the object must always be in the same direction as its 
acceleration.

 5. A cannon shell is fired straight up from the ground at an 
initial speed of 225 m/s. After how much time is the shell 
at a height of 6.20 3 102 m above the ground and mov-
ing downward? (a) 2.96 s (b) 17.3 s (c) 25.4 s (d) 33.6 s  
(e) 43.0 s

 6. An arrow is shot straight up in the air at an initial speed 
of 15.0 m/s. After how much time is the arrow moving 
downward at a speed of 8.00 m/s? (a) 0.714 s (b) 1.24 s 
(c) 1.87 s (d) 2.35 s (e) 3.22 s

 7. When the pilot reverses the propeller in a boat moving 
north, the boat moves with an acceleration directed 
south. Assume the acceleration of the boat remains 
constant in magnitude and direction. What hap-
pens to the boat? (a)  It eventually stops and remains 
stopped. (b) It eventually stops and then speeds up in 
the forward direction. (c) It eventually stops and then 
speeds up in the reverse direction. (d) It never stops 

but loses speed more and more slowly forever. (e) It 
never stops but continues to speed up in the forward 
direction.

 8. A rock is thrown downward from the top of a 40.0-m-tall 
tower with an initial speed of 12 m/s. Assuming negligi-
ble air resistance, what is the speed of the rock just before 
hitting the ground? (a) 28 m/s (b) 30 m/s (c) 56 m/s  
(d) 784 m/s (e) More information is needed.

 9. A skateboarder starts from rest and moves down a hill 
with constant acceleration in a straight line, traveling 
for 6 s. In a second trial, he starts from rest and moves 
along the same straight line with the same acceleration 
for only 2 s. How does his displacement from his starting 
point in this second trial compare with that from the 
first trial? (a) one-third as large (b) three times larger 
(c) one-ninth as large (d) nine times larger (e) 1/!3 
times as large

 10. On another planet, a marble is released from rest at the 
top of a high cliff. It falls 4.00 m in the first 1 s of its 
motion. Through what additional distance does it fall in 
the next 1 s? (a) 4.00 m (b) 8.00 m (c) 12.0 m (d) 16.0 m 
(e) 20.0 m

 11. As an object moves along the x axis, many measure-
ments are made of its position, enough to generate 
a smooth, accurate graph of x versus t. Which of the 
following quantities for the object cannot be obtained 
from this graph alone? (a) the velocity at any instant 
(b) the acceleration at any instant (c) the displacement 
during some time interval (d) the average velocity dur-
ing some time interval (e) the speed at any instant

 12. A pebble is dropped from rest from the top of a tall cliff 
and falls 4.9 m after 1.0 s has elapsed. How much far-
ther does it drop in the next 2.0 s? (a) 9.8 m (b) 19.6 m  
(c) 39 m (d) 44 m (e) none of the above

 13. A student at the top of a building of height h throws 
one ball upward with a speed of vi and then throws a 
second ball downward with the same initial speed vi. 
Just before it reaches the ground, is the final speed 
of the ball thrown upward (a) larger, (b) smaller, or  
(c) the same in magnitude, compared with the final 
speed of the ball thrown downward?

 14. You drop a ball from a window located on an upper 
floor of a building. It strikes the ground with speed v. 
You now repeat the drop, but your friend down on the 
ground throws another ball upward at the same speed 
v, releasing her ball at the same moment that you drop 
yours from the window. At some location, the balls 
pass each other. Is this location (a) at the halfway point 
between window and ground, (b) above this point, or 
(c) below this point?

 15. A pebble is released from rest at a certain height and 
falls freely, reaching an impact speed of 4 m/s at the 
floor. Next, the pebble is thrown down with an initial 
speed of 3 m/s from the same height. What is its speed 
at the floor? (a) 4 m/s (b) 5 m/s (c) 6 m/s (d) 7 m/s  
(e) 8 m/s

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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 18. Each of the strobe photographs (a), (b), and (c) in Fig-
ure OQ2.18 was taken of a single disk moving toward 
the right, which we take as the positive direction. 
Within each photograph, the time interval between 
images is constant. (i)  Which photograph shows 
motion with zero acceleration? (ii) Which photograph 
shows motion with positive acceleration? (iii) Which 
photograph shows motion with negative acceleration?
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Figure oQ2.18 Objective Question 18 and Problem 23.
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 16. A ball is thrown straight up in the air. For which situa-
tion are both the instantaneous velocity and the accel-
eration zero? (a) on the way up (b) at the top of its 
flight path (c)  on the way down (d) halfway up and 
halfway down (e) none of the above

 17. A hard rubber ball, 
not affected by air 
resistance in its mo- 
tion, is tossed upward 
from shoulder height, 
falls to the sidewalk, 
rebounds to a smaller 
maximum height, and 
is caught on its way 
down again. This mo-
tion is represented in 
Figure OQ2.17, where 
the successive positions of the ball A through E are not 
equally spaced in time. At point D the center of the ball 
is at its lowest point in the motion. The motion of the 
ball is along a straight, vertical line, but the diagram 
shows successive positions offset to the right to avoid 
overlapping. Choose the positive y direction to be up-
ward. (a) Rank the situations A through E according 
to the speed of the ball uvy u at each point, with the larg-
est speed first. (b) Rank the same situations according 
to the acceleration ay of the ball at each point. (In both 
rankings, remember that zero is greater than a negative 
value. If two values are equal, show that they are equal 
in your ranking.)

A C

E

D

B

Figure oQ2.17

 1. If the average velocity of an object is zero in some time 
interval, what can you say about the displacement of 
the object for that interval?

 2. Try the following experiment away from traffic where 
you can do it safely. With the car you are driving mov-
ing slowly on a straight, level road, shift the transmis-
sion into neutral and let the car coast. At the moment 
the car comes to a complete stop, step hard on the 
brake and notice what you feel. Now repeat the same 
experiment on a fairly gentle, uphill slope. Explain the 
difference in what a person riding in the car feels in 
the two cases. (Brian Popp suggested the idea for this 
question.)

 3. If a car is traveling eastward, can its acceleration be 
westward? Explain.

 4. If the velocity of a particle is zero, can the particle’s 
acceleration be zero? Explain.

 5. If the velocity of a particle is nonzero, can the particle’s 
acceleration be zero? Explain.

 6. You throw a ball vertically upward so that it leaves the 
ground with velocity 15.00 m/s. (a) What is its velocity 
when it reaches its maximum altitude? (b) What is its 
acceleration at this point? (c) What is the velocity with 
which it returns to ground level? (d) What is its accel-
eration at this point?

 7. (a) Can the equations of kinematics (Eqs. 2.13–2.17) 
be used in a situation in which the acceleration varies 
in time? (b) Can they be used when the acceleration is 
zero?

 8. (a) Can the velocity of an object at an instant of time 
be greater in magnitude than the average velocity over 
a time interval containing the instant? (b) Can it be 
less?

 9. Two cars are moving in the same direction in paral-
lel lanes along a highway. At some instant, the velocity 
of car A exceeds the velocity of car B. Does that mean 
that the acceleration of car A is greater than that of car 
B? Explain.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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 7. A position–time graph for a particle moving along 
the x axis is shown in Figure P2.7. (a) Find the aver-
age velocity in the time interval t 5 1.50 s to t 5 4.00 s.  
(b) Determine the instantaneous velocity at t 5 2.00 s  
by measuring the slope of the tangent line shown in 
the graph. (c) At what value of t is the velocity zero?
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x (m)

1 2 3 4 5 6

Figure P2.7

 8. An athlete leaves one end of a pool of length L at t 5 0 
and arrives at the other end at time t1. She swims back 
and arrives at the starting position at time t2. If she is 
swimming initially in the positive x direction, deter-
mine her average velocities symbolically in (a) the first 
half of the swim, (b) the second half of the swim, and 
(c) the round trip. (d) What is her average speed for 
the round trip?

 9. Find the instantaneous velocity of the particle 
described in Figure P2.1 at the following times: (a) t 5 
1.0 s, (b) t 5 3.0 s, (c) t 5 4.5 s, and (d) t 5 7.5 s.

Section 2.3 Analysis Model: Particle  
under Constant Velocity

 10. Review. The North American and European plates 
of the Earth’s crust are drifting apart with a relative 
speed of about 25 mm/yr. Take the speed as constant 
and find when the rift between them started to open, 
to reach a current width of 2.9 3 103 mi.

 11. A hare and a tortoise compete in a race over a straight 
course 1.00 km long. The tortoise crawls at a speed of 
0.200 m/s toward the finish line. The hare runs at a 
speed of 8.00 m/s toward the finish line for 0.800 km 
and then stops to tease the slow-moving tortoise as the 
tortoise eventually passes by. The hare waits for a while 
after the tortoise passes and then runs toward the 
finish line again at 8.00  m/s. Both the hare and the 
tortoise cross the finish line at the exact same instant. 
Assume both animals, when moving, move steadily at 

S

W

Section 2.1 Position, Velocity, and Speed

 1. The position versus time for a certain particle moving 
along the x axis is shown in Figure P2.1. Find the aver-
age velocity in the time intervals (a) 0 to 2 s, (b) 0 to 4 s,  
(c) 2 s to 4 s, (d) 4 s to 7 s, and (e) 0 to 8 s.

x (m)

1 2 3 4 5 6 7 8
t (s)

–6
–4
–2
0
2
4
6
8

10

Figure P2.1 Problems 1 and 9.

 2. The speed of a nerve impulse in the human body is 
about 100 m/s. If you accidentally stub your toe in the 
dark, estimate the time it takes the nerve impulse to 
travel to your brain.

 3. A person walks first at a constant speed of 5.00 m/s 
along a straight line from point A to point B and then 
back along the line from B to A at a constant speed of 
3.00 m/s. (a) What is her average speed over the entire 
trip? (b) What is her average velocity over the entire trip?

 4. A particle moves according to the equation x 5 10t 2, 
where x is in meters and t is in seconds. (a) Find the 
average velocity for the time interval from 2.00 s to 
3.00 s. (b) Find the average velocity for the time inter-
val from 2.00 to 2.10 s.

 5. The position of a pinewood derby car was observed at 
various times; the results are summarized in the fol-
lowing table. Find the average velocity of the car for 
(a) the first second, (b) the last 3 s, and (c) the entire 
period of observation.

t (s) 0 1.0 2.0 3.0 4.0 5.0 
x (m) 0 2.3 9.2 20.7 36.8 57.5

Section 2.2 instantaneous Velocity and Speed

 6. The position of a particle moving along the x axis var-
ies in time according to the expression x 5 3t 2, where 
x is in meters and t is in seconds. Evaluate its position 
(a) at t 5 3.00 s and (b) at 3.00 s 1 Dt. (c) Evaluate the 
limit of Dx/Dt as Dt approaches zero to find the velocity 
at t 5 3.00 s.
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The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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52 chapter 2 Motion in One Dimension

horizontal axis or on the velocity or acceleration axes, 
but show the correct graph shapes.

vS

20 cm

40 cm 60 cm

100 cm

0

Figure P2.16

 17. Figure P2.17 shows a graph of vx versus t for the motion 
of a motorcyclist as he starts from rest and moves along 
the road in a straight line. (a) Find the average accel-
eration for the time interval t 5 0 to t 5 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest 
positive value and the value of the acceleration at that 
instant. (c) When is the acceleration zero? (d) Estimate 
the maximum negative value of the acceleration and 
the time at which it occurs.
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Figure P2.17

 18. (a) Use the data in Problem 5 to construct a smooth 
graph of position versus time. (b) By constructing tan-
gents to the x(t) curve, find the instantaneous velocity 
of the car at several instants. (c) Plot the instantaneous 
velocity versus time and, from this information, deter-
mine the average acceleration of the car. (d) What was 
the initial velocity of the car?

 19. A particle starts from rest 
and accelerates as shown 
in Figure P2.19. Deter-
mine (a)  the particle’s 
speed at t 5 10.0 s and at 
t 5 20.0 s, and (b) the dis-
tance traveled in the first 
20.0 s.

 20. An object moves along 
the x axis according to 
the equation x 5 3.00t 2 2 2.00t 1 3.00, where x is in 
meters and t is in seconds. Determine (a) the average 
speed between t 5 2.00 s and t 5 3.00 s, (b) the instan-
taneous speed at t 5 2.00 s and at t 5 3.00 s, (c) the 
average acceleration between t 5 2.00 s and t 5 3.00 s,  
and (d) the instantaneous acceleration at t 5 2.00 s 
and t 5 3.00 s. (e) At what time is the object at rest?

 21. A particle moves along the x axis according to the 
equation x 5 2.00 1 3.00t 2 1.00t 2, where x is in meters 
and t is in seconds. At t 5 3.00 s, find (a) the position of 
the particle, (b) its velocity, and (c) its acceleration.
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their respective speeds. (a) How far is the tortoise from 
the finish line when the hare resumes the race? (b) For 
how long in time was the hare stationary?

 12. A car travels along a straight line at a constant speed of 
60.0 mi/h for a distance d and then another distance d 
in the same direction at another constant speed. The 
average velocity for the entire trip is 30.0 mi/h. (a) What 
is the constant speed with which the car moved during 
the second distance d ? (b) What If? Suppose the second 
distance d were traveled in the opposite direction; you 
forgot something and had to return home at the same 
constant speed as found in part (a). What is the average 
velocity for this trip? (c) What is the average speed for 
this new trip?

 13. A person takes a trip, driving with a constant speed of 
89.5 km/h, except for a 22.0-min rest stop. If the per-
son’s average speed is 77.8 km/h, (a) how much time is 
spent on the trip and (b) how far does the person travel?

Section 2.4 Acceleration

 14. Review. A 50.0-g Super Ball traveling at 25.0 m/s bounces 
off a brick wall and rebounds at 22.0 m/s. A high-speed 
camera records this event. If the ball is in contact with 
the wall for 3.50 ms, what is the magnitude of the aver-
age acceleration of the ball during this time interval?

 15. A velocity–time graph for an object moving along the 
x axis is shown in Figure P2.15. (a) Plot a graph of the 
acceleration versus time. Determine the average accel-
eration of the object (b) in the time interval t 5 5.00 s to 
t 5 15.0 s and (c) in the time interval t 5 0 to t 5 20.0 s.
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Figure P2.15

 16. A child rolls a marble on a bent track that is 100 cm 
long as shown in Figure P2.16. We use x to represent 
the position of the marble along the track. On the hor-
izontal sections from x 5 0 to x 5 20 cm and from x 5  
40 cm to x 5 60  cm, the marble rolls with constant 
speed. On the sloping sections, the marble’s speed 
changes steadily. At the places where the slope changes, 
the marble stays on the track and does not undergo any 
sudden changes in speed. The child gives the marble 
some initial speed at x 5 0 and t 5 0 and then watches 
it roll to x 5 90 cm, where it turns around, eventually 
returning to x 5 0 with the same speed with which the 
child released it. Prepare graphs of x versus t, vx versus 
t, and ax versus t, vertically aligned with their time axes 
identical, to show the motion of the marble. You will 
not be able to place numbers other than zero on the 
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of 5.00 m/s2 as it comes to rest. (a) From the instant 
the jet touches the runway, what is the minimum time 
interval needed before it can come to rest? (b) Can 
this jet land at a small tropical island airport where the 
runway is 0.800 km long? (c) Explain your answer.

 31. Review. Colonel John P. Stapp, USAF, participated in 
studying whether a jet pilot could survive emergency 
ejection. On March 19, 1954, he rode a rocket-propelled 
sled that moved down a track at a speed of 632 mi/h. 
He and the sled were safely brought to rest in 1.40 s 
(Fig. P2.31). Determine (a) the negative acceleration 
he experienced and (b) the distance he traveled during 
this negative acceleration.

Figure P2.31 (left) Col. John Stapp and his rocket sled are 
brought to rest in a very short time interval. (right) Stapp’s face is 
contorted by the stress of rapid negative acceleration.
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 32. Solve Example 2.8 by a graphical method. On the same 
graph, plot position versus time for the car and the 
trooper. From the intersection of the two curves, read 
the time at which the trooper overtakes the car.

 33. A truck on a straight road starts from rest, accelerat-
ing at 2.00 m/s2 until it reaches a speed of 20.0 m/s. 
Then the truck travels for 20.0 s at constant speed until 
the brakes are applied, stopping the truck in a uniform 
manner in an additional 5.00 s. (a) How long is the 
truck in motion? (b) What is the average velocity of the 
truck for the motion described?

 34. Why is the following situation impossible? Starting from 
rest, a charging rhinoceros moves 50.0 m in a straight 
line in 10.0 s. Her acceleration is constant during the 
entire motion, and her final speed is 8.00 m/s.

 35. The driver of a car slams on the brakes when he sees 
a tree blocking the road. The car slows uniformly 
with an acceleration of 25.60 m/s2 for 4.20 s, making 
straight skid marks 62.4 m long, all the way to the tree. 
With what speed does the car then strike the tree?

 36. In the particle under constant acceleration model, 
we identify the variables and parameters vxi, vxf , ax, t, 
and xf  2 xi. Of the equations in the model, Equations 
2.13–2.17, the first does not involve xf  2 xi, the sec-
ond and third do not contain ax, the fourth omits vxf , 
and the last leaves out t. So, to complete the set, there 
should be an equation not involving vxi. (a) Derive it 
from the others. (b) Use the equation in part (a) to 
solve Problem 35 in one step.

 37. A speedboat travels in a straight line and increases in 
speed uniformly from vi 5 20.0 m/s to vf 5 30.0 m/s in 
a displacement ∆x of 200 m. We wish to find the time 
interval required for the boat to move through this  
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Section 2.5 Motion Diagrams

 22. Draw motion diagrams for (a) an object moving to the 
right at constant speed, (b) an object moving to the 
right and speeding up at a constant rate, (c) an object 
moving to the right and slowing down at a constant 
rate, (d) an object moving to the left and speeding up 
at a constant rate, and (e) an object moving to the left 
and slowing down at a constant rate. (f) How would 
your drawings change if the changes in speed were not 
uniform, that is, if the speed were not changing at a 
constant rate?

 23. Each of the strobe photographs (a), (b), and (c) in Fig-
ure OQ2.18 was taken of a single disk moving toward 
the right, which we take as the positive direction. 
Within each photograph the time interval between 
images is constant. For each photograph, prepare 
graphs of x versus t, vx versus t, and ax versus t, verti-
cally aligned with their time axes identical, to show the 
motion of the disk. You will not be able to place num-
bers other than zero on the axes, but show the correct 
shapes for the graph lines.

Section 2.6 Analysis Model: Particle  
under Constant Acceleration

 24. The minimum distance required to stop a car moving 
at 35.0 mi/h is 40.0 ft. What is the minimum stopping 
distance for the same car moving at 70.0 mi/h, assum-
ing the same rate of acceleration?

 25. An electron in a cathode-ray tube accelerates uniformly 
from 2.00 3 104 m/s to 6.00 3 106 m/s over 1.50 cm.  
(a) In what time interval does the electron travel this 
1.50 cm? (b) What is its acceleration?

 26. A speedboat moving at 30.0 m/s approaches a no-wake 
buoy marker 100 m ahead. The pilot slows the boat 
with a constant acceleration of 23.50 m/s2 by reducing 
the throttle. (a) How long does it take the boat to reach 
the buoy? (b) What is the velocity of the boat when it 
reaches the buoy? 

 27. A parcel of air moving in a straight tube with a constant 
acceleration of 24.00 m/s2 has a velocity of 13.0 m/s at 
10:05:00 a.m. (a) What is its velocity at 10:05:01 a.m.? 
(b) At 10:05:04 a.m.? (c) At 10:04:59 a.m.? (d) Describe 
the shape of a graph of velocity versus time for this par-
cel of air. (e) Argue for or against the following state-
ment: “Knowing the single value of an object’s constant 
acceleration is like knowing a whole list of values for its 
velocity.”

 28. A truck covers 40.0 m in 8.50 s while smoothly slowing 
down to a final speed of 2.80 m/s. (a) Find its original 
speed. (b) Find its acceleration.

 29. An object moving with uniform acceleration has a 
velocity of 12.0 cm/s in the positive x direction when its 
x coordinate is 3.00 cm. If its x coordinate 2.00 s later is 
25.00 cm, what is its acceleration?

 30. In Example 2.7, we investigated a jet landing on an 
aircraft carrier. In a later maneuver, the jet comes in 
for a landing on solid ground with a speed of 100 m/s, 
and its acceleration can have a maximum magnitude 
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54 chapter 2 Motion in One Dimension

displacement. (a) Draw a coordinate system for this  
situation. (b) What analysis model is most appropri-
ate for describing this situation? (c) From the analysis 
model, what equation is most appropriate for finding 
the acceleration of the speedboat? (d) Solve the equa-
tion selected in part (c) symbolically for the boat’s 
acceleration in terms of vi , vf , and ∆x. (e) Substitute 
numerical values to obtain the acceleration numeri-
cally. (f) Find the time interval mentioned above.

 38. A particle moves along the x axis. Its position is given 
by the equation x 5 2 1 3t  2 4t 2, with x in meters and 
t in seconds. Determine (a) its position when it changes 
direction and (b) its velocity when it returns to the 
position it had at t 5 0.

 39. A glider of length , moves through a stationary pho-
togate on an air track. A photogate (Fig. P2.39) is 
a device that measures the time interval Dtd dur-
ing which the glider blocks a beam of infrared light 
passing across the photogate. The ratio vd 5 ,/Dtd is 
the average velocity of the glider over this part of its 
motion. Suppose the glider moves with constant accel-
eration. (a) Argue for or against the idea that vd is 
equal to the instantaneous velocity of the glider when 
it is halfway through the photogate in space. (b) Argue 
for or against the idea that vd is equal to the instanta-
neous velocity of the glider when it is halfway through 
the photogate in time.

Figure P2.39 Problems 39 and 40.

Ra
lp

h 
M

cG
re

w

 40. A glider of length 12.4 cm moves on an air track with 
constant acceleration (Fig P2.39). A time interval of 
0.628  s elapses between the moment when its front 
end passes a fixed point A along the track and the 
moment when its back end passes this point. Next, a 
time interval of 1.39  s elapses between the moment 
when the back end of the glider passes the point A and 
the moment when the front end of the glider passes 
a second point B farther down the track. After that, 
an additional 0.431 s elapses until the back end of the 
glider passes point B. (a) Find the average speed of the 
glider as it passes point A. (b) Find the acceleration of 
the glider. (c) Explain how you can compute the accel-
eration without knowing the distance between points 
A and B.

 41. An object moves with constant acceleration 4.00 m/s2  
and over a time interval reaches a final velocity of  
12.0 m/s. (a) If its initial velocity is 6.00 m/s, what is its 
displacement during the time interval? (b) What is the 
distance it travels during this interval? (c) If its initial 
velocity is 26.00 m/s, what is its displacement during 
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the time interval? (d) What is the total distance it trav-
els during the interval in part (c)?

 42. At t 5 0, one toy car is set rolling on a straight track 
with initial position 15.0 cm, initial velocity 23.50 cm/s,  
and constant acceleration 2.40 cm/s2. At the same 
moment, another toy car is set rolling on an adjacent 
track with initial position 10.0 cm, initial velocity 
15.50 cm/s, and constant acceleration zero. (a) At 
what time, if any, do the two cars have equal speeds? 
(b) What are their speeds at that time? (c) At what 
time(s), if any, do the cars pass each other? (d) What 
are their locations at that time? (e) Explain the differ-
ence between question (a) and question (c) as clearly 
as possible.

 43. Figure P2.43 represents part 
of the performance data 
of a car owned by a proud 
physics student. (a) Calcu-
late the total distance trav-
eled by computing the area 
under the red-brown graph 
line. (b) What distance does 
the car travel between the 
times t 5 10 s and t 5 40 s? 
(c) Draw a graph of its accel-
eration versus time between t 5 0 and t 5 50 s. (d) Write 
an equation for x as a function of time for each phase of 
the motion, represented by the segments 0a, ab, and bc. 
(e) What is the average velocity of the car between t 5 0 
and t 5 50 s?

 44. A hockey player is standing on his skates on a frozen 
pond when an opposing player, moving with a uni-
form speed of 12.0 m/s, skates by with the puck. After 
3.00 s, the first player makes up his mind to chase his 
opponent. If he accelerates uniformly at 4.00 m/s2,  
(a) how long does it take him to catch his opponent 
and (b) how far has he traveled in that time? (Assume 
the player with the puck remains in motion at constant 
speed.)

Section 2.7 Freely Falling objects

Note: In all problems in this section, ignore the effects 
of air resistance.

 45. In Chapter 9, we will define the center of mass of an 
object and prove that its motion is described by the 
particle under constant acceleration model when con-
stant forces act on the object. A gymnast jumps straight 
up, with her center of mass moving at 2.80 m/s as she 
leaves the ground. How high above this point is her 
center of mass (a) 0.100 s, (b) 0.200 s, (c) 0.300 s, and 
(d) 0.500 s thereafter?

 46. An attacker at the base of a castle wall 3.65 m high 
throws a rock straight up with speed 7.40 m/s from a 
height of 1.55 m above the ground. (a) Will the rock 
reach the top of the wall? (b) If so, what is its speed at 
the top? If not, what initial speed must it have to reach 
the top? (c) Find the change in speed of a rock thrown 
straight down from the top of the wall at an initial 
speed of 7.40 m/s and moving between the same two 
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  problems 55

 56. A package is dropped at time t 5 0 from a helicopter 
that is descending steadily at a speed vi. (a) What is the 
speed of the package in terms of vi, g, and t? (b) What 
vertical distance d is it from the helicopter in terms of 
g and t ? (c) What are the answers to parts (a) and (b) if 
the helicopter is rising steadily at the same speed?

Section 2.8 Kinematic Equations Derived from Calculus

 57. Automotive engineers refer to the time rate of change 
of acceleration as the “ jerk.” Assume an object moves in 
one dimension such that its jerk J is constant. (a) Deter-
mine expressions for its acceleration ax(t), velocity vx(t), 
and position x(t), given that its initial acceleration, 
velocity, and position are axi, vxi, and xi, respectively.  
(b) Show that ax

2 5 axi
2 1 2J(vx 2 vxi).

 58. A student drives a 
moped along a straight 
road as described 
by the  velocity–time 
graph in Figure P2.58. 
Sketch this graph 
in the middle of a 
sheet of graph paper. 
(a) Directly above your 
graph, sketch a graph 
of the position versus 
time, aligning the time coordinates of the two graphs. 
(b) Sketch a graph of the acceleration versus time 
directly below the velocity–time graph, again align-
ing the time coordinates. On each graph, show the 
numerical values of x and ax for all points of inflection. 
(c) What is the acceleration at t 5 6.00 s? (d) Find the 
position (relative to the starting point) at t 5 6.00 s.  
(e) What is the moped’s final position at t 5 9.00 s?

 59. The speed of a bullet as it travels down the barrel of a 
rifle toward the opening is given by

v 5 (25.00 3 107)t 2 1 (3.00 3 105)t

  where v is in meters per second and t is in seconds. 
The acceleration of the bullet just as it leaves the 
barrel is zero. (a) Determine the acceleration and 
position of the bullet as functions of time when the 
bullet is in the barrel. (b) Determine the time inter-
val over which the bullet is accelerated. (c) Find the 
speed at which the bullet leaves the barrel. (d) What 
is the length of the barrel?

Additional Problems

 60. A certain automobile manufacturer claims that its 
deluxe sports car will accelerate from rest to a speed 
of 42.0 m/s in 8.00 s. (a) Determine the average accel-
eration of the car. (b) Assume that the car moves with 
constant acceleration. Find the distance the car travels 
in the first 8.00 s. (c) What is the speed of the car 10.0 s 
after it begins its motion if it can continue to move with 
the same acceleration?

 61. The froghopper Philaenus spumarius is supposedly the 
best jumper in the animal kingdom. To start a jump, 
this insect can accelerate at 4.00 km/s2 over a dis-
tance of 2.00 mm as it straightens its specially adapted  
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points. (d) Does the change in speed of the downward-
moving rock agree with the magnitude of the speed 
change of the rock moving upward between the same 
elevations? (e) Explain physically why it does or does 
not agree.

 47. Why is the following situa-
tion impossible? Emily chal-
lenges David to catch a  
$1 bill as follows. She 
holds the bill vertically 
as shown in Figure P2.47, 
with the center of the bill 
between but not touching 
David’s index finger and 
thumb. Without warning, 
Emily releases the bill. 
David catches the bill without moving his hand down-
ward. David’s reaction time is equal to the average 
human reaction time.

 48. A baseball is hit so that it travels straight upward after 
being struck by the bat. A fan observes that it takes  
3.00 s for the ball to reach its maximum height. Find  
(a) the ball’s initial velocity and (b) the height it reaches.

 49. It is possible to shoot an arrow at a speed as high as  
100 m/s. (a) If friction can be ignored, how high would 
an arrow launched at this speed rise if shot straight up? 
(b) How long would the arrow be in the air?

 50. The height of a helicopter above the ground is given 
by h 5 3.00t 3, where h is in meters and t is in seconds. 
At t 5 2.00 s, the helicopter releases a small mailbag. 
How long after its release does the mailbag reach the 
ground?

 51. A ball is thrown directly downward with an initial 
speed of 8.00 m/s from a height of 30.0 m. After what 
time interval does it strike the ground?

 52. A ball is thrown upward from the ground with an ini-
tial speed of 25 m/s; at the same instant, another ball 
is dropped from a building 15 m high. After how long 
will the balls be at the same height above the ground?

 53. A student throws a set of keys vertically upward to her 
sorority sister, who is in a window 4.00 m above. The 
second student catches the keys 1.50 s later. (a) With 
what initial velocity were the keys thrown? (b) What was 
the velocity of the keys just before they were caught?

 54. At time t 5 0, a student throws a set of keys vertically 
upward to her sorority sister, who is in a window at 
distance h above. The second student catches the keys 
at time t. (a)  With what initial velocity were the keys 
thrown? (b) What was the velocity of the keys just 
before they were caught?

 55. A daring ranch hand sitting on a tree limb wishes 
to drop vertically onto a horse galloping under the 
tree. The constant speed of the horse is 10.0 m/s, and 
the distance from the limb to the level of the saddle 
is 3.00 m. (a) What must be the horizontal distance 
between the saddle and limb when the ranch hand 
makes his move? (b) For what time interval is he in 
the air?

Figure P2.47
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56 chapter 2 Motion in One Dimension

(a) the speed of the woman just before she collided 
with the ventilator and (b) her average acceleration 
while in contact with the box. (c) Modeling her accel-
eration as constant, calculate the time interval it took 
to crush the box.

 67. An elevator moves downward in a tall building at a 
constant speed of 5.00 m/s. Exactly 5.00 s after the 
top of the elevator car passes a bolt loosely attached to 
the wall of the elevator shaft, the bolt falls from rest. 
(a) At what time does the bolt hit the top of the still-
descending elevator? (b) In what way is this problem 
similar to Example 2.8? (c) Estimate the highest floor 
from which the bolt can fall if the elevator reaches 
the ground floor before the bolt hits the top of the 
elevator.

 68. Why is the following situation impossible? A freight train 
is lumbering along at a constant speed of 16.0 m/s. 
Behind the freight train on the same track is a passen-
ger train traveling in the same direction at 40.0 m/s. 
When the front of the passenger train is 58.5 m from 
the back of the freight train, the engineer on the pas-
senger train recognizes the danger and hits the brakes 
of his train, causing the train to move with accelera-
tion 23.00 m/s2. Because of the engineer’s action, the 
trains do not collide.

 69. The Acela is an electric train on the Washington–New 
York–Boston run, carrying passengers at 170 mi/h.  
A velocity–time graph for the Acela is shown in Fig-
ure P2.69. (a) Describe the train’s motion in each suc-
cessive time interval. (b) Find the train’s peak posi-
tive acceleration in the motion graphed. (c) Find the 
train’s displacement in miles between t 5 0 and t 5 
200 s.
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Figure P2.69 Velocity–time graph for the Acela.

 70. Two objects move with initial velocity 28.00 m/s, final 
velocity 16.0 m/s, and constant accelerations. (a) The 
first object has displacement 20.0 m. Find its accelera-
tion. (b) The second object travels a total distance of 
22.0 m. Find its acceleration.

 71. At t 5 0, one athlete in a race running on a long, 
straight track with a constant speed v1 is a distance d1 
behind a second athlete running with a constant speed 
v2. (a) Under what circumstances is the first athlete 
able to overtake the second athlete? (b) Find the time t 
at which the first athlete overtakes the second athlete, 
in terms of d1, v1, and v2. (c) At what minimum dis-
tance d2 from the leading athlete must the finish line 
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“ jumping legs.” Assume the acceleration is constant. 
(a) Find the upward velocity with which the insect takes 
off. (b) In what time interval does it reach this velocity? 
(c) How high would the insect jump if air resistance 
were negligible? The actual height it reaches is about 
70 cm, so air resistance must be a noticeable force on 
the leaping froghopper.

 62. An object is at x 5 0 at t 5 0 and moves along the x 
axis according to the velocity–time graph in Figure 
P2.62. (a) What is the object’s acceleration between 0 
and 4.0 s? (b) What is the object’s acceleration between 
4.0 s and 9.0  s? (c) What is the object’s acceleration 
between 13.0 s and 18.0 s? (d) At what time(s) is the 
object moving with the lowest speed? (e) At what time 
is the object farthest from x 5 0? (f) What is the final 
position x of the object at t 5 18.0 s? (g) Through what 
total distance has the object moved between t 5 0 and  
t 5 18.0 s?
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 63. An inquisitive physics student and mountain climber 
climbs a 50.0-m-high cliff that overhangs a calm pool of 
water. He throws two stones vertically downward, 1.00 s 
apart, and observes that they cause a single splash. The 
first stone has an initial speed of 2.00 m/s. (a) How long 
after release of the first stone do the two stones hit the 
water? (b) What initial velocity must the second stone 
have if the two stones are to hit the water simultane-
ously? (c) What is the speed of each stone at the instant 
the two stones hit the water?

 64. In Figure 2.11b, the area under the velocity–time 
graph and between the vertical axis and time t (ver-
tical dashed line) represents the displacement. As 
shown, this area consists of a rectangle and a triangle.  
(a) Compute their areas. (b) Explain how the sum of 
the two areas compares with the expression on the 
right-hand side of Equation 2.16.

 65. A ball starts from rest and accelerates at 0.500 m/s2  
while moving down an inclined plane 9.00 m long. 
When it reaches the bottom, the ball rolls up another 
plane, where it comes to rest after moving 15.0 m on 
that plane. (a) What is the speed of the ball at the bot-
tom of the first plane? (b) During what time interval 
does the ball roll down the first plane? (c) What is the 
acceleration along the second plane? (d) What is the 
ball’s speed 8.00 m along the second plane?

 66. A woman is reported to have fallen 144 ft from the 17th 
floor of a building, landing on a metal ventilator box 
that she crushed to a depth of 18.0 in. She suffered 
only minor injuries. Ignoring air resistance, calculate 

M

S
Q/C
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 Time (s) Height (m) Time (s) Height (m)

 0.00 5.00 2.75 7.62
 0.25 5.75 3.00 7.25
 0.50 6.40 3.25 6.77
 0.75 6.94 3.50 6.20
 1.00 7.38 3.75 5.52
 1.25 7.72 4.00 4.73
 1.50 7.96 4.25 3.85
 1.75 8.10 4.50 2.86
 2.00 8.13 4.75 1.77
 2.25 8.07 5.00 0.58
 2.50 7.90

 77. A motorist drives along a straight road at a constant 
speed of 15.0 m/s. Just as she passes a parked motor-
cycle police officer, the officer starts to accelerate at  
2.00 m/s2 to overtake her. Assuming that the officer 
maintains this acceleration, (a) determine the time 
interval required for the police officer to reach the 
motorist. Find (b) the speed and (c) the total displace-
ment of the officer as he overtakes the motorist.

 78. A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart, 
the train never reaches its maximum possible cruis-
ing speed. During rush hour the engineer minimizes 
the time interval ∆t between two stations by acceler-
ating at a rate a1 5 0.100 m/s2 for a time interval Dt1 
and then immediately braking with acceleration a2 5  
20.500 m/s2  for a time interval Dt2. Find the minimum 
time interval of travel Dt and the time interval Dt1. 

 79. Liz rushes down onto a subway platform to find her 
train already departing. She stops and watches the cars 
go by. Each car is 8.60 m long. The first moves past her 
in 1.50 s and the second in 1.10 s. Find the constant 
acceleration of the train.

 80. A hard rubber ball, released at chest height, falls to the 
pavement and bounces back to nearly the same height. 
When it is in contact with the pavement, the lower side 
of the ball is temporarily flattened. Suppose the maxi-
mum depth of the dent is on the order of 1 cm. Find 
the order of magnitude of the maximum acceleration 
of the ball while it is in contact with the pavement. 
State your assumptions, the quantities you estimate, 
and the values you estimate for them.

Challenge Problems

 81. A blue car of length 4.52 m is moving north on a road-
way that intersects another perpendicular roadway (Fig. 
P2.81, page 58). The width of the intersection from near 
edge to far edge is 28.0 m. The blue car has a constant 
acceleration of magnitude 2.10 m/s2 directed south. 
The time interval required for the nose of the blue car 
to move from the near (south) edge of the intersection 
to the north edge of the intersection is 3.10 s. (a) How 
far is the nose of the blue car from the south edge of 
the intersection when it stops? (b) For what time inter-
val is any part of the blue car within the boundaries of 
the intersection? (c) A red car is at rest on the perpen-
dicular intersecting roadway. As the nose of the blue car 

Q/C

be located so that the trailing athlete can at least tie for 
first place? Express d2 in terms of d1, v1, and v2 by using 
the result of part (b).

 72. A catapult launches a test rocket vertically upward from 
a well, giving the rocket an initial speed of 80.0 m/s at 
ground level. The engines then fire, and the rocket 
accelerates upward at 4.00 m/s2 until it reaches an 
altitude of 1 000 m. At that point, its engines fail and 
the rocket goes into free fall, with an acceleration of  
29.80 m/s2. (a) For what time interval is the rocket in 
motion above the ground? (b) What is its maximum 
altitude? (c) What is its velocity just before it hits the 
ground? (You will need to consider the motion while 
the engine is operating and the free-fall motion 
separately.)

 73. Kathy tests her new sports car by racing with Stan, 
an experienced racer. Both start from rest, but Kathy 
leaves the starting line 1.00 s after Stan does. Stan 
moves with a constant acceleration of 3.50 m/s2, while 
Kathy maintains an acceleration of 4.90 m/s2. Find  
(a) the time at which Kathy overtakes Stan, (b) the 
distance she travels before she catches him, and  
(c) the speeds of both cars at the instant Kathy over-
takes Stan.

 74. Two students are on a balcony a distance h above the 
street. One student throws a ball vertically downward 
at a speed vi ; at the same time, the other student throws 
a ball vertically upward at the same speed. Answer the 
following symbolically in terms of vi , g, h, and t.  
(a) What is the time interval between when the first 
ball strikes the ground and the second ball strikes the 
ground? (b) Find the velocity of each ball as it strikes 
the ground. (c) How far apart are the balls at a time t 
after they are thrown and before they strike the 
ground?

 75. Two objects, A and B, are con-
nected by hinges to a rigid 
rod that has a length L. The 
objects slide along perpen-
dicular guide rails as shown in 
Figure P2.75. Assume object A 
slides to the left with a constant 
speed v. (a) Find the velocity vB 
of object B as a function of the 
angle u. (b) Describe vB relative 
to v. Is vB always smaller than v, larger than v, or the 
same as v, or does it have some other relationship?

 76. Astronauts on a distant planet toss a rock into the 
air. With the aid of a camera that takes pictures at a 
steady rate, they record the rock’s height as a func-
tion of time as given in the following table. (a) Find 
the rock’s average velocity in the time interval between 
each measurement and the next. (b) Using these aver-
age velocities to approximate instantaneous velocities 
at the midpoints of the time intervals, make a graph of 
velocity as a function of time. (c) Does the rock move 
with constant acceleration? If so, plot a straight line of 
best fit on the graph and calculate its slope to find the 
acceleration.
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ahead at the 6.00-s mark, and by how much? (d) What 
is the maximum distance by which Healan is behind 
Laura, and at what time does that occur?

 84. Two thin rods are fastened 
to the inside of a circular 
ring as shown in Figure 
P2.84. One rod of length D 
is vertical, and the other of 
length L makes an angle u 
with the horizontal. The two 
rods and the ring lie in a ver-
tical plane. Two small beads 
are free to slide without fric-
tion along the rods. (a) If the 
two beads are released from 
rest simultaneously from the 
positions shown, use your intuition and guess which 
bead reaches the bottom first. (b) Find an expression 
for the time interval required for the red bead to fall 
from point A to point C in terms of g and D. (c) Find 
an expression for the time interval required for the 
blue bead to slide from point B to point C in terms of 
g, L, and u. (d) Show that the two time intervals found 
in parts (b) and (c) are equal. Hint: What is the angle 
between the chords of the circle A B and B C? (e) Do 
these results surprise you? Was your intuitive guess in 
part (a) correct? This problem was inspired by an arti-
cle by Thomas B. Greenslade, Jr., “Galileo’s Paradox,” 
Phys. Teach. 46, 294 (May 2008).

 85. A man drops a rock into a well. (a) The man hears the 
sound of the splash 2.40 s after he releases the rock 
from rest. The speed of sound in air (at the ambient 
temperature) is 336 m/s. How far below the top of 
the well is the surface of the water? (b) What If? If 
the travel time for the sound is ignored, what percent-
age error is introduced when the depth of the well is 
calculated?

A

C

B

u

D

L

Figure P2.84

enters the intersection, the red car starts from rest and 
accelerates east at 5.60 m/s2. What is the minimum dis-
tance from the near (west) edge of the intersection at 
which the nose of the red car can begin its motion if it 
is to enter the intersection after the blue car has entirely 
left the intersection? (d) If the red car begins its motion 
at the position given by the answer to part (c), with what 
speed does it enter the intersection?

28.0 m

aR vB

aB

E

N

S

W

Figure P2.81

 82. Review. As soon as a traffic light turns green, a car 
speeds up from rest to 50.0 mi/h with constant accel-
eration 9.00  mi/h/s. In the adjoining bicycle lane, a 
cyclist speeds up from rest to 20.0 mi/h with constant 
acceleration 13.0 mi/h/s. Each vehicle maintains con-
stant velocity after reaching its cruising speed. (a) For  
what time interval is the bicycle ahead of the car?  
(b) By what maximum distance does the bicycle lead 
the car?

 83. In a women’s 100-m race, accelerating uniformly, 
Laura takes 2.00 s and Healan 3.00 s to attain their 
maximum speeds, which they each maintain for the 
rest of the race. They cross the finish line simultane-
ously, both setting a world record of 10.4 s. (a) What is 
the acceleration of each sprinter? (b)  What are their 
respective maximum speeds? (c) Which sprinter is 
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A signpost in Saint Petersburg, 
Florida, shows the distance 
and direction to several cities. 
Quantities that are defined by 
both a magnitude and a direction 
are called vector quantities. 
(Raymond A. Serway)

In our study of physics, we often need to work with physical quantities that have both 
numerical and directional properties. As noted in Section 2.1, quantities of this nature are 
vector quantities. This chapter is primarily concerned with general properties of vector 
quantities. We discuss the addition and subtraction of vector quantities, together with some 
common applications to physical situations.
 Vector quantities are used throughout this text. Therefore, it is imperative that you mas-
ter the techniques discussed in this chapter.

3.1 Coordinate Systems
Many aspects of physics involve a description of a location in space. In Chapter 2, for 
example, we saw that the mathematical description of an object’s motion requires 
a method for describing the object’s position at various times. In two dimensions, 
this description is accomplished with the use of the Cartesian coordinate system, 
in which perpendicular axes intersect at a point defined as the origin O (Fig. 3.1). 
Cartesian coordinates are also called rectangular coordinates.
 Sometimes it is more convenient to represent a point in a plane by its plane polar 
coordinates (r, u) as shown in Figure 3.2a (page 60). In this polar coordinate system, r is 
the distance from the origin to the point having Cartesian coordinates (x, y) and u 
is the angle between a fixed axis and a line drawn from the origin to the point. The 
fixed axis is often the positive x axis, and u is usually measured counterclockwise 

3.1 Coordinate Systems

3.2 Vector and Scalar Quantities

3.3 Some Properties of Vectors

3.4 Components of a Vector and 
Unit Vectors

Vectors
c h a p t e r 

3

y

x

Q

(–3, 4) (5, 3)

(x, y)

P

5 10

5

10

O

Figure 3.1  Designation of points 
in a Cartesian coordinate system. 
Every point is labeled with coordi-
nates (x, y).
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Example 3.1   Polar Coordinates

The Cartesian coordinates of a point in the xy plane are (x, y) 5 (23.50, 22.50) m as shown in Figure 3.3. Find the 
polar coordinates of this point.

Conceptualize  The drawing in Figure 3.3 helps us conceptualize the problem. We wish to find r and u.  We expect r to 
be a few meters and u to be larger than 180°.

Categorize Based on the statement of the problem and 
the Conceptualize step, we recognize that we are simply 
converting from Cartesian coordinates to polar coordi-
nates. We therefore categorize this example as a substitu-
tion problem. Substitution problems generally do not have 
an extensive Analyze step other than the substitution of 
numbers into a given equation. Similarly, the Finalize step 

S o l u t I o n

from it. From the right triangle in Figure 3.2b, we find that sin u 5 y/r and that cos 
u 5 x/r. (A review of trigonometric functions is given in Appendix B.4.) Therefore, 
starting with the plane polar coordinates of any point, we can obtain the Cartesian 
coordinates by using the equations

 x 5 r cos u (3.1)
 y 5 r sin u (3.2)

Furthermore, if we know the Cartesian coordinates, the definitions of trigonom-
etry tell us that

 tan u 5
y
x

 (3.3)

 r 5 "x 2 1 y2 (3.4)

Equation 3.4 is the familiar Pythagorean theorem.
 These four expressions relating the coordinates (x, y) to the coordinates (r, u) 
apply only when u is defined as shown in Figure 3.2a—in other words, when posi-
tive u is an angle measured counterclockwise from the positive x axis. (Some sci-
entific calculators perform conversions between Cartesian and polar coordinates 
based on these standard conventions.) If the reference axis for the polar angle 
u is chosen to be one other than the positive x axis or if the sense of increasing 
u is chosen differently, the expressions relating the two sets of coordinates will 
change.

Cartesian coordinates 
in terms of polar  

coordinates

Polar coordinates in terms 
of Cartesian coordinates

Figure 3.2 (a) The plane polar coordinates of a point are represented by the distance r and the 
angle u, where u is measured counterclockwise from the positive x axis. (b) The right triangle used to 
relate (x, y) to (r, u).
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Figure 3.3 (Example 3.1) 
Finding polar coordinates when 
Cartesian coordinates are given.
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consists primarily of checking the units and making sure that the answer is reasonable and consistent with our expec-
tations. Therefore, for substitution problems, we will not label Analyze or Finalize steps.

Use Equation 3.4 to find r : r 5 "x2 1 y 2 5 "123.50 m 22 1 122.50 m 22 5   4.30 m

Use Equation 3.3 to find u: tan u 5
y
x

5
22.50 m
23.50 m

5 0.714

u 5   2168

3.2 Vector and Scalar Quantities
We now formally describe the difference between scalar quantities and vector quan-
tities. When you want to know the temperature outside so that you will know how 
to dress, the only information you need is a number and the unit “degrees C” or 
“degrees F.” Temperature is therefore an example of a scalar quantity:

A scalar quantity is completely specified by a single value with an appropriate 
unit and has no direction.

Other examples of scalar quantities are volume, mass, speed, time, and time inter-
vals. Some scalars are always positive, such as mass and speed. Others, such as 
temperature, can have either positive or negative values. The rules of ordinary 
arithmetic are used to manipulate scalar quantities.
 If you are preparing to pilot a small plane and need to know the wind velocity, 
you must know both the speed of the wind and its direction. Because direction is 
important for its complete specification, velocity is a vector quantity:

A vector quantity is completely specified by a number with an appropriate 
unit (the magnitude of the vector) plus a direction.

 Another example of a vector quantity is displacement, as you know from Chapter 
2. Suppose a particle moves from some point A to some point B along a straight 
path as shown in Figure 3.4. We represent this displacement by drawing an arrow 
from A to B, with the tip of the arrow pointing away from the starting point. The 
direction of the arrowhead represents the direction of the displacement, and the 
length of the arrow represents the magnitude of the displacement. If the particle 
travels along some other path from A to B such as shown by the broken line in 
Figure 3.4, its displacement is still the arrow drawn from A to B. Displacement 
depends only on the initial and final positions, so the displacement vector is inde-
pendent of the path taken by the particle between these two points.
 In this text, we use a boldface letter with an arrow over the letter, such as A

S
, to 

represent a vector. Another common notation for vectors with which you should be 
familiar is a simple boldface character: A. The magnitude of the vector A

S
 is writ-

ten either A or 0 AS 0 . The magnitude of a vector has physical units, such as meters for 
displacement or meters per second for velocity. The magnitude of a vector is always 
a positive number.

Notice that you must use the signs of x and y to find that the point lies in the third quadrant of the coordinate system. That 
is, u 5 216°, not 35.5°, whose tangent is also 0.714. Both answers agree with our expectations in the Conceptualize step.

A

B

Figure 3.4  As a particle moves 
from A to B along an arbitrary 
path represented by the broken 
line, its displacement is a vec-
tor quantity shown by the arrow 
drawn from A to B.

 

▸ 3.1 c o n t i n u e d
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Q uick Quiz 3.1  Which of the following are vector quantities and which are scalar 
quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

3.3 Some Properties of Vectors
In this section, we shall investigate general properties of vectors representing physi-
cal quantities. We also discuss how to add and subtract vectors using both algebraic 
and geometric methods.

Equality of Two Vectors
For many purposes, two vectors A

S
 and B

S
 may be defined to be equal if they have 

the same magnitude and if they point in the same direction. That is, A
S

5 B
S

 only if  
A 5 B and if A

S
 and B

S
 point in the same direction along parallel lines. For exam-

ple, all the vectors in Figure 3.5 are equal even though they have different starting 
points. This property allows us to move a vector to a position parallel to itself in a 
diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method. 
To add vector B

S
 to vector A

S
, first draw vector A

S
 on graph paper, with its magni-

tude represented by a convenient length scale, and then draw vector B
S

 to the same 
scale, with its tail starting from the tip of A

S
, as shown in Figure 3.6. The resultant 

vector R
S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip of B
S

.
 A geometric construction can also be used to add more than two vectors as  
shown in Figure 3.7 for the case of four vectors. The resultant vector R

S
 5 A

S
 1 B

S
 1  

C
S

 1 D
S

 is the vector that completes the polygon. In other words, R
S

 is the vector 
drawn from the tail of the first vector to the tip of the last vector. This technique for 
adding vectors is often called the “head to tail method.”
 When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is 
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and 11.) This property, which can be seen from the geometric 
construction in Figure 3.8, is known as the commutative law of addition:

 A
S

1 B
S

5 B
S

1 A
S

 (3.5)Commutative law of addition 

O

y

x

Figure 3.5  These four vectors 
are equal because they have equal 
lengths and point in the same 
direction.
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Figure 3.7 Geometric construc-
tion for summing four vectors. The  
resultant vector R

S
 is by definition 

the one that completes the polygon.
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Figure 3.8 This construction 
shows that A

S
1 B

S
5 B

S
1 A

S
 or, in 

other words, that vector addition is 
commutative.

Pitfall Prevention 3.1
Vector Addition Versus  
Scalar Addition Notice that 
A
S

1 B
S

5 C
S

 is very different 
from A 1 B 5 C. The first equa-
tion is a vector sum, which must 
be handled carefully, such as  
with the graphical method. The 
second equation is a simple alge-
braic addition of numbers that  
is handled with the normal rules 
of arithmetic.

Figure 3.6 When vector B
S

 is 
added to vector A

S
, the resultant R

S
 is 

the vector that runs from the tail of 
A
S

 to the tip of B
S

.

5
1

A
S

 

R
S A

S  B
S  

B
S
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 When three or more vectors are added, their sum is independent of the way in 
which the individual vectors are grouped together. A geometric proof of this rule 
for three vectors is given in Figure 3.9. This property is called the associative law of 
addition:

 A
S

1 1 B
S

1 C
S 2 5 1 A

S
1 B

S 2 1 C
S

 (3.6)

 In summary, a vector quantity has both magnitude and direction and also obeys 
the laws of vector addition as described in Figures 3.6 to 3.9. When two or more 
vectors are added together, they must all have the same units and they must all 
be the same type of quantity. It would be meaningless to add a velocity vector (for 
example, 60 km/h to the east) to a displacement vector (for example, 200 km to the 
north) because these vectors represent different physical quantities. The same rule 
also applies to scalars. For example, it would be meaningless to add time intervals 
to temperatures.

Negative of a Vector
The negative of the vector A

S
 is defined as the vector that when added to A

S
 gives 

zero for the vector sum. That is, A
S

1 12 A
S 2 5 0. The vectors A

S
 and 2 A

S
 have the 

same magnitude but point in opposite directions.

Subtracting Vectors
The operation of vector subtraction makes use of the definition of the negative of a 
vector. We define the operation A

S
2 B

S
 as vector 2 B

S
 added to vector A

S
:

 A
S

2 B
S

5 A
S

1 12 B
S 2  (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in 
Figure 3.10a.
 Another way of looking at vector subtraction is to notice that the difference 
A
S

2 B
S

 between two vectors A
S

 and B
S

 is what you have to add to the second vector  

WW Associative law of addition
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Figure 3.9  Geometric construc-
tions for verifying the associative 
law of addition.
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Figure 3.10   (a) Subtracting 
vector B

S
 from vector A

S
. The vec-

tor 2 B
S

 is equal in magnitude to 
vector B

S
 and points in the oppo-

site direction. (b) A second way of 
looking at vector subtraction.
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Example 3.2   A Vacation Trip

A car travels 20.0 km due north and then 35.0 km 
in a direction 60.0° west of north as shown in Fig-
ure 3.11a. Find the magnitude and direction of 
the car’s resultant displacement.

Conceptualize  The vectors A
S

 and B
S

 drawn in 
Figure 3.11a help us conceptualize the problem. 
The resultant vector R

S
 has also been drawn. We 

expect its magnitude to be a few tens of kilome-
ters. The angle b that the resultant vector makes 
with the y axis is expected to be less than 60°, the 
angle that vector B

S
 makes with the y axis.

Categorize  We can categorize this example as a simple analysis problem in vector addition. The displacement R
S

 is the 
resultant when the two individual displacements A

S
 and B

S
 are added. We can further categorize it as a problem about 

the analysis of triangles, so we appeal to our expertise in geometry and trigonometry.

Analyze  In this example, we show two ways to analyze the problem of finding the resultant of two vectors. The first way is 
to solve the problem geometrically, using graph paper and a protractor to measure the magnitude of R

S
 and its direction 

in Figure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors 
to check your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit but not to 
three-digit precision. Try using these tools on R

S
 in Figure 3.11a and compare to the trigonometric analysis below!

 The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of R
S

 can be 
obtained from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

S o l u t I o n

Use R2 5 A2 1 B2 2 2AB cos u from the law of cosines to 
find R :

R 5 "A2 1 B 2 2 2AB cos u

to obtain the first. In this case, as Figure 3.10b shows, the vector A
S

2 B
S

 points 
from the tip of the second vector to the tip of the first.

Multiplying a Vector by a Scalar
If vector A

S
 is multiplied by a positive scalar quantity m, the product m A

S
 is a vector 

that has the same direction as A
S

 and magnitude mA. If vector A
S

 is multiplied by  
a negative scalar quantity 2m, the product 2m A

S
 is directed opposite A

S
. For exam-

ple, the vector 5 A
S

 is five times as long as A
S

 and points in the same direction as A
S

;  
the vector 21

3 A
S

 is one-third the length of A
S

 and points in the direction oppo-
site A

S
.

Q uick Quiz 3.2 The magnitudes of two vectors A
S

 and B
S

 are A 5 12 units and  
B 5 8 units. Which pair of numbers represents the largest and smallest possible 
values for the magnitude of the resultant vector R

S
5 A

S
1 B

S
? (a) 14.4 units,  

4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers

Q uick Quiz 3.3 If vector B
S

 is added to vector A
S

, which two of the following 
choices must be true for the resultant vector to be equal to zero? (a) A

S
 and  

B
S

 are parallel and in the same direction. (b) A
S

 and B
S

 are parallel and in 
opposite directions. (c) A

S
 and B

S
 have the same magnitude. (d) A

S
 and B

S
  

are perpendicular.
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Figure 3.11  (Example 3.2) (a) Graphical method for finding the resul-
tant displacement vector R

S
5 A

S
1 B

S
. (b) Adding the vectors in reverse 

order 1BS 1 A
S 2  gives the same result for R

S
.

Substitute numerical values, noting that  
u 5 180° 2 60° 5 120°:

R 5 "120.0 km 22 1 135.0 km 22 2 2 120.0 km 2 135.0 km 2  cos 1208

5   48.2 km
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3.4 Components of a Vector and Unit Vectors
The graphical method of adding vectors is not recommended whenever high 
accuracy is required or in three-dimensional problems. In this section, we 
describe a method of adding vectors that makes use of the projections of vectors 
along coordinate axes. These projections are called the components of the vec-
tor or its rectangular components. Any vector can be completely described by its 
components.
 Consider a vector A

S
 lying in the xy plane and making an arbitrary angle u  

with the positive x axis as shown in Figure 3.12a. This vector can be expressed as the 
sum of two other component vectors A

S

x , which is parallel to the x axis, and A
S

y , which  
is parallel to the y axis. From Figure 3.12b, we see that the three vectors form a 
right triangle and that A

S
5 A

S

x 1 A
S

y. We shall often refer to the “components  
of a vector A

S
,” written Ax and Ay (without the boldface notation). The compo-

nent Ax represents the projection of A
S

 along the x axis, and the component Ay  
represents the projection of A

S
 along the y axis. These components can be positive 

or negative. The component Ax is positive if the component vector A
S

x points in 
the positive x direction and is negative if A

S

x points in the negative x direction. A 
similar statement is made for the component Ay.

Use the law of sines (Appendix B.4) to find the direction 
of R

S
 measured from the northerly direction:

sin b
B

5
sin u

R

sin b 5
B
R

  sin u 5
35.0 km
48.2 km

  sin 1208 5 0.629

b 5   38.9°

The resultant displacement of the car is 48.2 km in a direction 38.9° west of north.

Finalize Does the angle b that we calculated agree with an 
estimate made by looking at Figure 3.11a or with an actual 
angle measured from the diagram using the graphical 
method? Is it reasonable that the magnitude of R

S
 is larger 

than that of both A
S

 and B
S

? Are the units of R
S

 correct?
 Although the head to tail method of adding vectors 
works well, it suffers from two disadvantages. First, some 

people find using the laws of cosines and sines to be awk-
ward. Second, a triangle only results if you are adding 
two vectors. If you are adding three or more vectors, the 
resulting geometric shape is usually not a triangle. In Sec-
tion 3.4, we explore a new method of adding vectors that 
will address both of these disadvantages.

Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.0° west of north first and 
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an 
addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same 
resultant vector.

WhAt IF ?

Figure 3.12  (a) A vector A
S

  
lying in the xy plane can be rep-
resented by its component vectors 
A
S

x and A
S

y. (b) The y component 
vector A

S

y can be moved to the 
right so that it adds to A

S

x. The 
vector sum of the component 
vectors is A

S
. These three vectors 

form a right triangle.

y

x
O

y

x

y

x
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a b

▸ 3.2 c o n t i n u e d
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 From Figure 3.12 and the definition of sine and cosine, we see that cos u 5 Ax/A 
and that sin u 5 Ay/A. Hence, the components of A

S
 are

 Ax 5 A cos u (3.8)

 Ay 5 A sin u (3.9)

The magnitudes of these components are the lengths of the two sides of a right tri-
angle with a hypotenuse of length A. Therefore, the magnitude and direction of A

S
 

are related to its components through the expressions

 A 5 "Ax
2 1 Ay

2 (3.10)

 u 5 tan21a
Ay

Ax
b (3.11)

 Notice that the signs of the components Ax and Ay depend on the angle u. For 
example, if u 5 120°, Ax is negative and Ay is positive. If u 5 225°, both Ax and Ay are 
negative. Figure 3.13 summarizes the signs of the components when A

S
 lies in  

the various quadrants.
 When solving problems, you can specify a vector A

S
 either with its components 

Ax and Ay or with its magnitude and direction A and u.
 Suppose you are working a physics problem that requires resolving a vector into 
its components. In many applications, it is convenient to express the components 
in a coordinate system having axes that are not horizontal and vertical but that 
are still perpendicular to each other. For example, we will consider the motion of 
objects sliding down inclined planes. For these examples, it is often convenient to 
orient the x axis parallel to the plane and the y axis perpendicular to the plane.

Q uick Quiz 3.4  Choose the correct response to make the sentence true: A com-
ponent of a vector is (a) always, (b) never, or (c) sometimes larger than the mag-
nitude of the vector.

Unit Vectors
Vector quantities often are expressed in terms of unit vectors. A unit vector is a 
dimensionless vector having a magnitude of exactly 1. Unit vectors are used to spec-
ify a given direction and have no other physical significance. They are used solely  
as a bookkeeping convenience in describing a direction in space. We shall use the 
symbols î, ĵ, and k̂ to represent unit vectors pointing in the positive x, y, and z 
directions, respectively. (The “hats,” or circumflexes, on the symbols are a standard 
notation for unit vectors.) The unit vectors î, ĵ, and k̂ form a set of mutually perpen-
dicular vectors in a right-handed coordinate system as shown in Figure 3.14a. The 
magnitude of each unit vector equals 1; that is, 0 î 0 5 0 ĵ 0 5 0 k̂ 0 5 1.
 Consider a vector A

S
 lying in the xy plane as shown in Figure 3.14b. The product 

of the component Ax and the unit vector î is the component vector A
S

x 5 Ax î,  

y

Ax points
left and is 2

Ax points
right and is 1

Ay points
up and is 1

Ay points
up and is 1

Ax points
left and is 2

Ax points
right and is 1

Ay points
down and is 2

Ay points
down and is 2

x

Figure 3.13  The signs of the 
 components of a vector A

S
 depend  

on the quadrant in which the vec-
tor is located.

Figure 3.14 (a) The unit vectors 
î, ĵ, and k̂ are directed along the x, 
y, and z axes, respectively. (b) Vec-
tor A

S
5 Ax î 1 Ay ĵ lying in the xy 

plane has components Ax and Ay.
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Pitfall Prevention 3.2
x and y Components Equations 3.8  
and 3.9 associate the cosine of 
the angle with the x component 
and the sine of the angle with the 
y component. This association is 
true only because we measured the 
angle u with respect to the x axis, 
so do not memorize these equa-
tions. If u is measured with respect 
to the y axis (as in some problems), 
these equations will be incorrect. 
Think about which side of the tri-
angle containing the components 
is adjacent to the angle and which 
side is opposite and then assign the 
cosine and sine accordingly.
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which lies on the x axis and has magnitude 0Ax 0 . Likewise, A
S

y 5 Ay j
S

 is the com-
ponent vector of magnitude 0Ay 0  lying on the y axis. Therefore, the unit-vector 
 notation for the vector A

S
 is

 A
S

5 Ax î 1 Ay ĵ (3.12)

For example, consider a point lying in the xy plane and having Cartesian coordi-
nates (x, y) as in Figure 3.15. The point can be specified by the position vector rS, 
which in unit-vector form is given by

 rS 5 x î 1 y ĵ (3.13)

This notation tells us that the components of rS are the coordinates x and y.
 Now let us see how to use components to add vectors when the graphical method 
is not sufficiently accurate. Suppose we wish to add vector B

S
 to vector A

S
 in Equa-

tion 3.12, where vector B
S

 has components Bx and By. Because of the bookkeeping 
convenience of the unit vectors, all we do is add the x and y components separately. 
The resultant vector R

S
5 A

S
1 B

S
 is

R
S

5 1Ax î 1 Ay  ĵ 2 1 1Bx î 1 By  ĵ 2
or

 R
S

5 1Ax 1 Bx 2  î 1 1Ay 1 By 2  ĵ (3.14)

Because R
S

5 Rx  î 1 Ry  ĵ, we see that the components of the resultant vector are

Rx 5 Ax 1 Bx

 Ry 5 Ay 1 By 
(3.15)

Therefore, we see that in the component method of adding vectors, we add all the 
x components together to find the x component of the resultant vector and use the 
same process for the y components. We can check this addition by components with 
a geometric construction as shown in Figure 3.16.
 The magnitude of R

S
 and the angle it makes with the x axis are obtained from its 

components using the relationships

    R 5 "Rx
2 1 Ry

2 5 "1Ax 1 Bx 22 1 1Ay 1 By 22 (3.16)

 tan u 5
Ry

Rx
5

Ay 1 By

Ax 1 Bx
 (3.17)

 At times, we need to consider situations involving motion in three component 
directions. The extension of our methods to three-dimensional vectors is straight-
forward. If A

S
 and B

S
 both have x, y, and z components, they can be expressed in 

the form

 A
S

5 Ax î 1 Ay  ĵ 1 Az k̂ (3.18)

 B
S

5 Bx î 1 By  ĵ 1 Bz k̂ (3.19)

The sum of A
S

 and B
S

 is

 R
S

5 1Ax 1 Bx 2  î 1 1Ay 1 By 2  ĵ 1 1Az 1 Bz 2  k̂ (3.20)

Notice that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resul-
tant vector also has a z component Rz 5 Az 1 Bz. If a vector R

S
 has x, y, and z com-

ponents, the magnitude of the vector is R 5 !Rx
2 1 Ry

2 1 Rz
2. The angle ux  

that R
S

 makes with the x axis is found from the expression cos ux 5 Rx/R, with simi-
lar expressions for the angles with respect to the y and z axes.
 The extension of our method to adding more than two vectors is also straight-
forward. For example, A

S
1 B

S
1 C

S
5 1Ax 1 Bx 1 Cx 2  î 1 1Ay 1 By 1 Cy 2  ĵ 1

1Az 1 Bz 1 Cz 2  k̂. We have described adding displacement vectors in this section 
because these types of vectors are easy to visualize. We can also add other types of 

y

x
O

(x, y)

y

x

ĵ

î

rS 

Figure 3.15  The point whose 
Cartesian coordinates are (x, y) 
can be represented by the position 
vector rS 5 x  î 1 y  ĵ.
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By
Ry

A
S

 

B
S

 R
S

Figure 3.16 This geometric 
construction for the sum of two 
vectors shows the relationship 
between the components of the 
resultant R

S
 and the components 

of the individual vectors.

Pitfall Prevention 3.3
tangents on Calculators Equa-
tion 3.17 involves the calculation 
of an angle by means of a tangent 
function. Generally, the inverse 
tangent function on calculators 
provides an angle between 290° 
and 190°. As a consequence, if 
the vector you are studying lies in 
the second or third quadrant, the 
angle measured from the positive 
x axis will be the angle your calcu-
lator returns plus 180°.
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Example 3.3    The Sum of Two Vectors

Find the sum of two displacement vectors A
S

 and B
S

 lying in the xy plane and given by

A
S

5 12.0 î 1 2.0 ĵ 2  m and B
S

5 12.0 î 2 4.0 ĵ 2  m

Conceptualize You can conceptualize the situation by drawing the vectors on graph paper. Draw an approximation of 
the expected resultant vector.

Categorize We categorize this example as a simple substitution problem. Comparing this expression for A
S

 with  
the general expression A

S
5 Ax î 1 Ay  ĵ 1 Az k̂, we see that Ax 5 2.0 m, Ay 5 2.0 m, and Az 5 0. Likewise, Bx 5 2.0 m,  

By 5 24.0 m, and Bz 5 0. We can use a two-dimensional approach because there are no z components.

S o l u t I o n

Use Equation 3.14 to obtain the resultant vector R
S

:  R
S

5 A
S

1 B
S

5 12.0 1 2.0 2 î m 1 12.0 2 4.0 2 ĵ m

Evaluate the components of R
S

:  Rx 5 4.0 m  Ry 5 22.0 m

Use Equation 3.16 to find the magnitude of R
S

: R 5 "Rx
2 1 Ry

2 5 "14.0 m22 1 122.0 m22 5 "20 m 5   4.5 m

Find the direction of R
S

 from Equation 3.17: tan u 5
Ry

Rx
5

22.0 m
4.0 m

5 20.50

Your calculator likely gives the answer 227° for u 5 tan21(20.50). This answer is correct if we interpret it to mean 27° 
clockwise from the x axis. Our standard form has been to quote the angles measured counterclockwise from the 1x 
axis, and that angle for this vector is u 5   333°  .

Conceptualize Although x is sufficient to locate a point 
in one dimension, we need a vector rS to locate a point in 
two or three dimensions. The notation D rS is a generaliza-
tion of the one-dimensional displacement Dx in Equation 
2.1. Three-dimensional displacements are more difficult 
to conceptualize than those in two dimensions because 
they cannot be drawn on paper like the latter.
 For this problem, let us imagine that you start with your 
pencil at the origin of a piece of graph paper on which 
you have drawn x and y axes. Move your pencil 15 cm  
to the right along the x axis, then 30 cm upward along 
the y axis, and then 12 cm perpendicularly toward you away 

vectors, such as velocity, force, and electric field vectors, which we will do in later 
chapters.

Q uick Quiz 3.5  For which of the following vectors is the magnitude of the  vector 
equal to one of the components of the vector? (a) A

S
5 2 î 1 5 ĵ  

(b) B
S

5 23 ĵ  (c) C
S

5 15 k̂

Example 3.4   The Resultant Displacement

A particle undergoes three consecutive displacements: D rS1 5 115 î 1 30 ĵ 1 12 k̂ 2  cm, D rS2 5 123 î 2 14 ĵ 2  5.0 k̂ 2  cm, 
and D rS3 5 1213 î 1 15 ĵ 2  cm. Find unit-vector notation for the resultant displacement and its magnitude.

S o l u t I o n

 

from the graph paper. This procedure provides the dis-
placement described by D rS1. From this point, move your 
pencil 23 cm to the right parallel to the x axis, then 14 cm 
parallel to the graph paper in the 2y direction, and then 
5.0 cm perpendicularly away from you toward the graph 
paper. You are now at the displacement from the origin 
described by D rS1 1 D rS2. From this point, move your 
pencil 13 cm to the left in the 2x direction, and (finally!) 
15 cm parallel to the graph paper along the y axis. Your 
final position is at a displacement D rS1 1 D rS2 1 D rS3 
from the origin.
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Example 3.5   Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops 
and sets up her tent for the night. On the second day, she walks 40.0 km in a 
direction 60.0° north of east, at which point she discovers a forest ranger’s tower.

(A)  Determine the components of the hiker’s displacement for each day.

Conceptualize  We conceptualize the problem by drawing a sketch as in Figure 
3.17. If we denote the displacement vectors on the first and second days by A

S
 and 

B
S

, respectively, and use the car as the origin of coordinates, we obtain the vec-
tors shown in Figure 3.17. The sketch allows us to estimate the resultant vector as 
shown.

Categorize Having drawn the resultant R
S

, we can now categorize this problem 
as one we’ve solved before: an addition of two vectors. You should now have a 
hint of the power of categorization in that many new problems are very similar to 
problems we have already solved if we are careful to conceptualize them. Once 
we have drawn the displacement vectors and categorized the problem, this problem is no longer about a hiker, a walk, 
a car, a tent, or a tower. It is a problem about vector addition, one that we have already solved.

Analyze  Displacement A
S

 has a magnitude of 25.0 km and is directed 45.0° below the positive x axis.

S o l u t I o n

Categorize Despite the difficulty in conceptualizing in three dimensions, we can categorize this problem as a substitu-
tion problem because of the careful bookkeeping methods that we have developed for vectors. The mathematical manip-
ulation keeps track of this motion along the three perpendicular axes in an organized, compact way, as we see below.

To find the resultant displacement, 
add the three vectors:

D rS 5 D rS1 1 D rS2 1 D rS3

5 115 1 23 2 13 2  î cm 1 130 2 14 1 15 2  ĵ cm 1 112 2 5.0 1 0 2  k̂ cm

5 125 î 1 31 ĵ 1 7.0 k̂ 2  cm

Find the magnitude of the resultant 
vector:

 R 5 "R x
2 1 R y

2 1 R z
2

5 "125 cm 22 1 131 cm 22 1 17.0 cm 22 5   40 cm

y (km)

x (km)

60.0

45.0 20 30 40
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Car
0

20

10

210

220 Tent

E

N

S

W

R
S

A
S

 

B
S

 

Figure 3.17   (Example 3.5) The 
total displacement of the hiker is  
the vector R

S
5 A

S
1 B

S
.

Find the components of A
S

 using Equations 3.8 and 3.9: Ax 5 A cos 1245.08 2 5 125.0 km 2 10.707 2 5   17.7 km

Ay 5 A sin 1245.08 2 5 125.0 km 2 120.707 2 5   217.7 km

The negative value of Ay indicates that the hiker walks in the negative y direction on the first day. The signs of Ax and 
Ay also are evident from Figure 3.17.

Find the components of B
S

 using Equations 3.8 and 3.9: Bx 5 B cos 60.08 5 140.0 km 2 10.500 2 5   20.0 km

By 5 B sin 60.08 5 140.0 km 2 10.866 2 5   34.6 km

(B)  Determine the components of the hiker’s resultant displacement R
S

 for the trip. Find an expression for R
S

 in 
terms of unit vectors.

S o l u t I o n

Use Equation 3.15 to find the components of the resul-
tant displacement R

S
5 A

S
1 B

S
:

Rx 5 Ax 1 Bx 5 17.7 km 1 20.0 km 5   37.7 km

 Ry 5 Ay 1 By 5 217.7 km 1 34.6 km 5   17.0 km

 

▸ 3.4 c o n t i n u e d

continued
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▸ 3.5 c o n t i n u e d

 

Summary

Definitions

 Scalar quantities are those that have only a 
numerical value and no associated direction. 

 Vector quantities have both magnitude and direction and 
obey the laws of vector addition. The magnitude of a vector is 
always a positive number.

Concepts and Principles

 When two or more vectors are added together, they 
must all have the same units and they all must be the 
same type of quantity. We can add two vectors A

S
 and 

B
S

 graphically. In this method (Fig. 3.6), the resultant 
vector R

S
5 A

S
1 B

S
 runs from the tail of A

S
 to the  

tip of B
S

.

 If a vector A
S

 has an x component Ax and a y compo- 
nent Ay, the vector can be expressed in unit-vector form 
as A

S
5 Ax î 1 Ay  ĵ. In this notation, î is a unit vector 

pointing in the positive x direction and ĵ is a unit vec-
tor pointing in the positive y direction. Because î and ĵ 
are unit vectors, 0 î 0 5 0 ĵ 0 5 1.

 A second method of adding vectors involves com
ponents of the vectors. The x component Ax of the 
 vector A

S
 is equal to the projection of A

S
 along the  

x axis of a coordinate system, where Ax 5 A cos u.  
The y component Ay of A

S
 is the projection of A

S
 along 

the y axis, where Ay 5 A sin u.

 We can find the resultant of two or more vectors 
by resolving all vectors into their x and y components, 
adding their resultant x and y components, and then 
using the Pythagorean theorem to find the magnitude 
of the resultant vector. We can find the angle that the 
resultant vector makes with respect to the x axis by 
using a suitable trigonometric function.

Write the total displacement in unit-vector form: R
S

5   137.7 î 1 17.0 ĵ 2  km

Finalize  Looking at the graphical representation in Figure 3.17, we estimate the position of the tower to be about 
(38 km, 17 km), which is consistent with the components of R

S
 in our result for the final position of the hiker. Also, 

both components of R
S

 are positive, putting the final position in the first quadrant of the coordinate system, which is 
also consistent with Figure 3.17.

After reaching the tower, the hiker wishes to return to her car along a single straight line. What are the 
components of the vector representing this hike? What should the direction of the hike be?

Answer  The desired vector R
S

car is the negative of vector R
S

:

R
S

car 5 2 R
S

5 1237.7 î 2 17.0 ĵ 2  km

The direction is found by calculating the angle that the vector makes with the x axis:

tan u 5
R car,y

R car,x
5

217.0 km
237.7 km

5 0.450

which gives an angle of u 5 204.2°, or 24.2° south of west.

WhAt IF ?
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must be in which quadrant, (a) the first, (b) the sec-
ond, (c) the third, or (d) the fourth, or (e) is more than 
one answer possible?

 7. Yes or no: Is each of the following quantities a vector? 
(a)  force (b) temperature (c) the volume of water in 
a can (d) the ratings of a TV show (e) the height of a 
building (f) the velocity of a sports car (g) the age of 
the Universe

 8. What is the y component of the vector 13 î 2 8 k̂ 2  m/s? 
(a) 3 m/s (b) 28 m/s (c) 0 (d) 8 m/s (e) none of those 
answers

 9. What is the x component of the vector shown in Figure 
OQ3.9? (a) 3 cm (b) 6 cm (c) 24 cm (d) 26 cm (e) none 
of those answers

y (cm)

x (cm)

22

2

22224 0

Figure oQ3.9 Objective Questions 9 and 10.

 10. What is the y component of the vector shown in Figure 
OQ3.9? (a) 3 cm (b) 6 cm (c) 24 cm (d) 26 cm (e) none 
of those answers

 11. Vector A
S

 lies in the xy plane. Both of its components 
will be negative if it points from the origin into which 
quadrant? (a) the first quadrant (b) the second quad-
rant (c) the third quadrant (d) the fourth quadrant  
(e) the second or fourth quadrants

 12. A submarine dives from the water surface at an angle of 
30° below the horizontal, following a straight path 50 m  
long. How far is the submarine then below the water 
surface? (a) 50 m (b) (50 m)/sin 30° (c) (50 m) sin 30°  
(d) (50 m) cos 30° (e) none of those answers

 13. A vector points from the origin into the second quad-
rant of the xy plane. What can you conclude about 
its components? (a) Both components are positive.  
(b) The x component is positive, and the y component 
is negative. (c) The x component is negative, and the y 
component is positive. (d) Both components are nega-
tive. (e) More than one answer is possible.

 1. What is the magnitude of the vector 110 î 2 10 k̂ 2  m/s? 
(a) 0 (b) 10 m/s (c) 210 m/s (d) 10 (e) 14.1 m/s

 2. A vector lying in the xy plane has components of oppo-
site sign. The vector must lie in which quadrant? (a) the  
first quadrant (b) the second quadrant (c) the third 
quadrant (d) the fourth quadrant (e) either the second 
or the fourth quadrant

 3. Figure OQ3.3 shows two vectors D
S

1 and D
S

2. Which of the 
possibilities (a) through (d) is the vector D

S

2 2 2 D
S

1,  
or (e) is it none of them?

D1
S

 

D2
S

a b dc

Figure oQ3.3

 4. The cutting tool on a lathe is given two displacements, 
one of magnitude 4 cm and one of magnitude 3 cm, in 
each one of five situations (a) through (e) diagrammed 
in Figure OQ3.4. Rank these situations according to 
the magnitude of the total displacement of the tool, 
putting the situation with the greatest resultant magni-
tude first. If the total displacement is the same size in 
two situations, give those letters equal ranks.

a b c d e

Figure oQ3.4

 5. The magnitude of vector A
S

 is 8 km, and the magnitude 
of B

S
 is 6 km. Which of the following are possible val-

ues for the magnitude of A
S

1 B
S

? Choose all possible 
answers. (a) 10 km (b) 8 km (c) 2 km (d) 0 (e) 22 km

 6. Let vector A
S

 point from the origin into the second 
quadrant of the xy plane and vector B

S
 point from the 

origin into the fourth quadrant. The vector B
S

2 A
S

 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Is it possible to add a vector quantity to a scalar quan-
tity? Explain.

 2. Can the magnitude of a vector have a negative value? 
Explain.

 3. A book is moved once around the perimeter of a table-
top with the dimensions 1.0 m by 2.0 m. The book ends 
up at its initial position. (a) What is its displacement? 
(b) What is the distance traveled?

 4. If the component of vector A
S

 along the direction of vector  
B
S

 is zero, what can you conclude about the two vectors?

 5. On a certain calculator, the inverse tangent function 
returns a value between 290° and 190°. In what cases 
will this value correctly state the direction of a vector 
in the xy plane, by giving its angle measured counter-
clockwise from the positive x axis? In what cases will it 
be incorrect?

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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the resultant vector A
S

1 B
S

 points in the negative y 
direction with a magnitude of 14 units. Find the mag-
nitude and direction of B

S
.

 9. Why is the following situation impossible? A skater glides 
along a circular path. She defines a certain point on 
the circle as her origin. Later on, she passes through a 
point at which the distance she has traveled along the 
path from the origin is smaller than the magnitude of 
her displacement vector from the origin.

 10. A force F
S

1 of magnitude 6.00 
units acts on an object at the ori-
gin in a direction u 5 30.0° above 
the positive x axis (Fig. P3.10). A 
second force F

S

2 of magnitude 
5.00 units acts on the object in 
the direction of the positive  
y axis. Find graphically the mag-
nitude and direction of the resul-
tant force F

S

1 1 F
S

2.

 11. The displacement vectors A
S

 
and B

S
 shown in Figure P3.11 

both have magnitudes of 
3.00  m. The direction of vec-
tor A

S
 is u 5 30.0°. Find gra-

phically (a) A
S

1 B
S

, (b) A
S

2 B
S

,  
(c) B

S
2 A

S
, and (d) A

S
2 2 B

S
. 

(Report all angles counterclock-
wise from the positive x axis.)

 12. Three displacements are A
S

 5  
200 m due south, B

S
 5 250 m 

due west, and C
S

 5 150 m at 30.0° east of north. (a) Con-
struct a separate diagram for each of the following pos-
sible ways of adding these vectors: R

S

1 5 A
S

1 B
S

1 C
S

; 
R
S

2 5 B
S

1 C
S

1 A
S

;  R
S

3 5 C
S

1 B
S

1 A
S

. (b) Explain 
what you can conclude from comparing the diagrams.

 13. A roller-coaster car moves 200 ft horizontally and then 
rises 135 ft at an angle of 30.0° above the horizontal. It 
next travels 135 ft at an angle of 40.0° downward. What 
is its displacement from its starting point? Use graphi-
cal techniques.

 14. A plane flies from base camp to Lake A, 280 km away 
in the direction 20.0° north of east. After dropping off 
supplies, it flies to Lake B, which is 190 km at 30.0° west 
of north from Lake A. Graphically determine the dis-
tance and direction from Lake B to the base camp.

F2
S

F1
S

u

Figure P3.10

y

O
x

B
S

 

A
S

 

u

Figure P3.11  
Problems 11 and 22.
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Section 3.1 Coordinate Systems

 1. The polar coordinates of a point are r 5 5.50 m and 
u 5 240°. What are the Cartesian coordinates of this 
point?

 2. The rectangular coordinates of a point are given by 
(2, y), and its polar coordinates are (r, 30°). Determine  
(a) the value of y and (b) the value of r.

 3. Two points in the xy plane have Cartesian coordinates 
(2.00, 24.00) m and (23.00, 3.00) m. Determine (a) the  
distance between these points and (b) their polar 
coordinates.

 4. Two points in a plane have polar coordinates (2.50 m, 
30.0°) and (3.80 m, 120.0°). Determine (a) the Carte-
sian coordinates of these points and (b) the distance 
between them.

 5. The polar coordinates of a certain point are (r 5 4.30 cm,  
u 5 214°). (a) Find its Cartesian coordinates x and y. 
Find the polar coordinates of the points with Cartesian 
coordinates (b) (2x, y), (c) (22x, 22y), and (d) (3x, 23y).

 6. Let the polar coordinates of the point (x, y) be (r, u).  
Determine the polar coordinates for the points  
(a) (2x, y), (b) (22x, 22y), and (c) (3x, 23y).

Section 3.2 Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors

 7. A surveyor measures the distance across a straight river 
by the following method (Fig. P3.7). Starting directly 
across from a tree on the opposite bank, she walks  
d 5 100 m along the riverbank to establish a baseline. 
Then she sights across to the tree. The angle from 
her baseline to the tree is u 5 35.0°. How wide is the 
river?

u

d

Figure P3.7

 8. Vector A
S

 has a magnitude of 29 units and points in 
the positive y direction. When vector B

S
 is added to A

S
,  

W

W

S

W

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C
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Section 3.4 Components of a Vector and unit Vectors

 15. A vector has an x component of 225.0 units and a y 
component of 40.0 units. Find the magnitude and 
direction of this vector.

 16. Vector A
S

 has a magnitude of 35.0 units and points in 
the direction 325° counterclockwise from the positive  
x axis. Calculate the x and y components of this vector.

 17. A minivan travels straight north in the right lane of a 
divided highway at 28.0 m/s. A camper passes the mini-
van and then changes from the left lane into the right 
lane. As it does so, the camper’s path on the road is a 
straight displacement at 8.50° east of north. To avoid 
cutting off the minivan, the north–south distance 
between the camper’s back bumper and the minivan’s 
front bumper should not decrease. (a) Can the camper 
be driven to satisfy this requirement? (b) Explain your 
answer.

 18. A person walks 25.0° north of east for 3.10 km. How 
far would she have to walk due north and due east to 
arrive at the same location?

 19. Obtain expressions in component form for the posi-
tion vectors having the polar coordinates (a) 12.8 m, 
150°; (b) 3.30 cm, 60.0°; and (c) 22.0 in., 215°.

 20. A girl delivering newspapers covers her route by travel-
ing 3.00 blocks west, 4.00 blocks north, and then 6.00 
blocks east. (a) What is her resultant displacement?  
(b) What is the total distance she travels?

 21. While exploring a cave, a spelunker starts at the 
entrance and moves the following distances in a hori-
zontal plane. She goes 75.0 m north, 250 m east, 125 m  
at an angle u 5 30.0° north of east, and 150 m south. 
Find her resultant displacement from the cave 
entrance. Figure P3.21 suggests the situation but is not 
drawn to scale.

Cave
entrance

Final
position

u

E

N

S

W

Figure P3.21

 22. Use the component method to add the vectors A
S

  
and B

S
 shown in Figure P3.11. Both vectors have mag-

nitudes of 3.00 m and vector A
S

 makes an angle of  
u 5 30.0° with the x axis. Express the resultant A

S
1 B

S
 

in unit-vector notation.

 23. Consider the two vectors A
S

5 3 î 2 2 ĵ and B
S

 5 2 î 2  
4 ĵ. Calculate (a) A

S
1 B

S
, (b) A

S
2 B

S
 , (c) 0 AS 1 B

S 0 ,  
(d) 0 AS 2 B

S 0 , and (e) the directions of A
S

1 B
S

 and 
A
S

2 B
S

.

 24. A map suggests that Atlanta is 730 miles in a direction 
of 5.00° north of east from Dallas. The same map shows 
that Chicago is 560 miles in a direction of 21.0° west of 
north from Atlanta. Figure P3.24 shows the locations 
of these three cities. Modeling the Earth as flat, use 

W

Q/C

M

M

this information to find the displacement from Dallas 
to Chicago.

Chicago

Dallas

Atlanta

21.0

5.00

730 mi

560 mi

Figure P3.24

 25. Your dog is running around the grass in your back 
yard. He undergoes successive displacements 3.50 m 
south, 8.20 m northeast, and 15.0 m west. What is the 
resultant displacement?

 26. Given the vectors A
S

5 2.00 î 1 6.00 ĵ and B
S

 5
3.00 î 2 2.00 ĵ, (a) draw the vector sum C

S
5 A

S
1 B

S
  

and the vector dif ference D
S

5 A
S

2 B
S

. (b) Calculate  
C
S

 and D
S

, in terms of unit vectors. (c) Calculate C
S

 and 
D
S

 in terms of polar coordinates, with angles measured 
with respect to the positive x axis.

 27. A novice golfer on the green 
takes three strokes to sink 
the ball. The successive dis-
placements of the ball are 
4.00 m to the north, 2.00 m  
northeast, and 1.00 m at 
30.0° west of south (Fig. 
P3.27). Starting at the same 
initial point, an expert golfer 
could make the hole in what 
single displacement?

 28. A snow-covered ski slope makes an angle of 35.0° with 
the horizontal. When a ski jumper plummets onto the 
hill, a parcel of splashed snow is thrown up to a maxi-
mum displacement of 1.50 m at 16.0° from the verti-
cal in the uphill direction as shown in Figure P3.28. 
Find the components of its maximum displacement  
(a) parallel to the surface and (b) perpendicular to the 
surface.

35.0

16.0

Figure P3.28

 29. The helicopter view in Fig. P3.29 (page 74) shows two 
people pulling on a stubborn mule. The person on 
the right pulls with a force F

S

1  of magnitude 120  N  

M

W

1.00 m

30.0

2.00 m

4.00 m

E

N

S

W

Figure P3.27

W
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student has learned that a single equation cannot be 
solved to determine values for more than one unknown 
in it. How would you explain to him that both a and b 
can be determined from the single equation used in 
part (a)?

 38. Three displacement vectors of a cro -  
quet ball are shown in Figure 
P3.38, where 0 AS 0  5 20.0 units, 
0 BS 0  5 40.0 units, and 0 CS 0  5 30.0 
units. Find (a) the resultant in unit-
vector notation and (b) the magni-
tude and direction of the resultant 
displacement.

 39. A man pushing a mop across a floor 
causes it to undergo two displace-
ments. The first has a magnitude of 
150 cm and makes an angle of 120° with the positive x 
axis. The resultant displacement has a magnitude of 
140 cm and is directed at an angle of 35.0° to the posi-
tive x axis. Find the magnitude and direction of the 
second displacement.

 40. Figure P3.40 illustrates typical proportions of male (m)  
and female (f) anatomies. The displacements d

S

1m and 
d
S

1f from the soles of the feet to the navel have mag-
nitudes of 104 cm and 84.0 cm, respectively. The dis-
placements d

S

2m and d
S

2f from the navel to outstretched 
fingertips have magnitudes of 100 cm and 86.0 cm, 
respectively. Find the vector sum of these displacements 
d
S

3 5 d
S

1 1 d
S

2 for both people.

d1m
S

d1f
S

d2f
S

23.0

28.0

d2m
S

Figure P3.40

 41. Express in unit-vector notation the following vectors, 
each of which has magnitude 17.0 cm. (a) Vector E

S
 

is directed 27.0° counterclockwise from the positive x 
axis. (b) Vector F

S
 is directed 27.0° counterclockwise 

from the positive y axis. (c) Vector G
S

 is directed 27.0° 
clockwise from the negative y axis.

 42. A radar station locates a sinking ship at range 17.3 km 
and bearing 136° clockwise from north. From the same 
station, a rescue plane is at horizontal range 19.6 km, 
153° clockwise from north, with elevation 2.20 km.  
(a) Write the position vector for the ship relative to 
the plane, letting  î represent east,  ĵ north, and  k̂ up.  
(b) How far apart are the plane and ship?

 43. Review. As it passes over Grand Bahama Island, the 
eye of a hurricane is moving in a direction 60.08 north 
of west with a speed of 41.0 km/h. (a) What is the unit-
vector expression for the velocity of the hurricane?  

45.0

45.0

O
x

y

A
S

 
B
S

 

C
S

 

Figure P3.38M
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and direction of u1 5 60.0°. 
The person on the left pulls 
with a force F

S

2 of magni-
tude 80.0 N and direction of  
u2 5 75.0°. Find (a) the sin-
gle force that is equivalent 
to the two forces shown and 
(b) the force that a third per-
son would have to exert on 
the mule to make the resul-
tant force equal to zero. The 
forces are measured in units 
of newtons (symbolized N).

 30. In a game of American foot-
ball, a quarterback takes the 
ball from the line of scrim-
mage, runs backward a distance of 10.0 yards, and then 
runs sideways parallel to the line of scrimmage for  
15.0 yards. At this point, he throws a forward pass 
downfield 50.0 yards perpendicular to the line of 
scrimmage. What is the magnitude of the football’s 
resultant displacement?

 31. Consider the three displacement vectors A
S

 5
13 î 2 3 ĵ 2  m, B

S
5 1 î 2 4 ĵ 2  m, and C

S
5 122 î 1 5 ĵ 2  m. 

Use the component method to determine (a) the  
magnitude and direction of D

S
 5  A

S
 1  B

S
1 C

S
 and  

(b) the magnitude and direction of E
S

 5 2 A
S

2
B
S

1 C
S

.

 32. Vector A
S

 has x and y components of 28.70 cm and 
15.0  cm, respectively; vector B

S
 has x and y com-

ponents of 13.2  cm and 26.60 cm, respectively.  
If A

S
2 B

S
1 3 C

S
5 0, what are the components of C

S
?

 33. The vector A
S

 has x, y, and z components of 8.00, 
12.0, and 24.00 units, respectively. (a) Write a vector 
expression for A

S
 in unit-vector notation. (b) Obtain a  

unit-vector expression for a vector B
S

 one-fourth the 
length of A

S
 pointing in the same direction as A

S
.  

(c) Obtain a unit-vector expression for a vector C
S

 
three times the length of A

S
 pointing in the direction 

opposite the direction of A
S

.

 34. Vector B
S

 has x, y, and z components of 4.00, 6.00, and 
3.00 units, respectively. Calculate (a) the magnitude of 
B
S

 and (b) the angle that B
S

 makes with each coordi-
nate axis.

 35. Vector A
S

 has a negative x component 3.00 units in 
length and a positive y component 2.00 units in length. 
(a) Determine an expression for A

S
 in unit-vector nota-

tion. (b) Determine the magnitude and direction of A
S

.  
(c) What vector B

S
 when added to A

S
 gives a resultant 

vector with no x component and a negative y compo-
nent 4.00 units in length?

 36. Given the displacement vectors A
S

5 13 î 2 4 ĵ 1 4 k̂ 2  m  
and  B

S
5 12 î 1 3 ĵ 2 7 k̂ 2 m, find the magnitudes of 

the following vectors and express each in terms of its 
rectangular components. (a) C

S
5 A

S
1 B

S
 (b) D

S
 5 

 2 A
S

2 B
S

 37. (a) Taking A
S

5 16.00 î 2 8.00 ĵ 2  units, B
S

 5  128.00 î 1
3.00 ĵ 2  units, and C

S
5 126.0 î 1 19.0 ĵ 2  units, deter-

mine a and b such that a A
S

1 b B
S

1 C
S

5 0. (b) A  

W

W

M

M

W
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u2 u1

F1
S

F2
S

Figure P3.29

  2 A
S

2 B
S

1 C
S

.
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circle of radius 3.70 cm  
that lies in a north–
south vertical plane. Find  
(a) the magnitude of the 
total displacement of the 
object and (b)  the angle 
the total displacement 
makes with the vertical.

Additional Problems

 48. A fly lands on one wall 
of a room. The lower-
left corner of the wall is 
selected as the origin of a two-dimensional Cartesian 
coordinate system. If the fly is located at the point hav-
ing coordinates (2.00, 1.00) m, (a) how far is it from the 
origin? (b) What is its location in polar coordinates?

 49. As she picks up her riders, a bus driver traverses four 
successive displacements represented by the expression

126.30 b 2  î 2 14.00 b cos 408 2  î 2 14.00 b sin 408 2  ĵ

1 13.00 b cos 508 2  î 2 13.00 b sin 508 2  ĵ 2 15.00 b 2  ĵ

  Here b represents one city block, a convenient unit of 
distance of uniform size;  î is east; and  ĵ is north. The 
displacements at 40° and 50° represent travel on road-
ways in the city that are at these angles to the main 
east–west and north–south streets. (a) Draw a map of 
the successive displacements. (b) What total distance 
did she travel? (c) Compute the magnitude and direc-
tion of her total displacement. The logical structure of 
this problem and of several problems in later chapters 
was suggested by Alan Van Heuvelen and David Malo-
ney, American Journal of Physics 67(3) 252–256, March 
1999.

 50. A jet airliner, moving initially at 300 mi/h to the east, 
suddenly enters a region where the wind is blowing 
at 100 mi/h toward the direction 30.0° north of east. 
What are the new speed and direction of the aircraft 
relative to the ground?

 51. A person going for a walk follows the path shown in 
Figure P3.51. The total trip consists of four straight-
line paths. At the end of the walk, what is the person’s 
resultant displacement measured from the starting 
point?

End

x

y

200 m

60.0
30.0

150 m

300 m

100 mStart

Figure P3.51

 52. Find the horizontal and vertical components of the 
100-m displacement of a superhero who flies from the 

W

M

East

North

Figure P3.47

It maintains this velocity for 3.00 h, at which time the 
course of the hurricane suddenly shifts due north, 
and its speed slows to a constant 25.0 km/h. This new 
velocity is maintained for 1.50 h. (b) What is the unit-
vector expression for the new velocity of the hurricane?  
(c) What is the unit-vector expression for the dis-
placement of the hurricane during the first 3.00 h?  
(d) What is the unit-vector expression for the dis-
placement of the hurricane during the latter 1.50 h?  
(e) How far from Grand Bahama is the eye 4.50 h after 
it passes over the island?

 44. Why is the following situation impossible? A shopper push-
ing a cart through a market follows directions to the 
canned goods and moves through a displacement  
8.00 î m down one aisle. He then makes a 90.0° turn 
and moves 3.00 m along the y axis. He then makes 
another 90.0° turn and moves 4.00 m along the x axis. 
Every shopper who follows these directions correctly 
ends up 5.00 m from the starting point.

 45. Review. You are standing on the ground at the origin 
of a coordinate system. An airplane flies over you with 
constant velocity parallel to the x axis and at a fixed 
height of 7.60 3 103 m. At time t 5 0, the airplane is 
directly above you so that the vector leading from you 
to it is P

S

0 5 7.60 3 103
 ĵ m. At t 5 30.0 s, the position 

vector leading from you to the airplane is 
P
S

30 5 18.04 3 103
 î 1 7.60 3 103

 ĵ 2  m as suggested in 
Figure P3.45. Determine the magnitude and orienta-
tion of the airplane’s position vector at t 5 45.0 s.

P0
S

P30
S

Figure P3.45

 46. In Figure P3.46, the line seg-
ment represents a path from 
the point with position vector 
15 î 1 3 ĵ 2  m to the point with 
location (16 î 1 12 ĵ) m. Point 
A is along this path, a fraction f  
of the way to the destination.  
(a) Find the position vector of 
point A in terms of f. (b) Evalu-
ate the expression from part  
(a) for f 5 0. (c) Explain whether 
the result in part (b) is reason-
able. (d) Evaluate the expres-
sion for f 5 1. (e) Explain whether the result in part (d) 
is reasonable.

 47. In an assembly operation illustrated in Figure P3.47, a 
robot moves an object first straight upward and then 
also to the east, around an arc forming one-quarter 
of a circle of radius 4.80 cm that lies in an east–west 
vertical plane. The robot then moves the object 
upward and to the north, through one-quarter of a 

AMT

(5, 3)

(16, 12)

O
x

y

A

Figure P3.46 Point 
A is a fraction f of the 
distance from the ini-
tial point (5, 3) to the 
final point (16, 12).

Q/C
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 57. A vector is given by R
S

5 2 î 1  ĵ 1 3 k̂. Find (a) the 
magnitudes of the x, y, and z components; (b) the mag-
nitude of R

S
; and (c) the angles between R

S
 and  

the x, y, and z axes.

 58. A ferry transports tourists between three islands. It 
sails from the first island to the second island, 4.76 km 
away, in a direction 37.0° north of east. It then sails 
from the second island to the third island in a direc-
tion 69.0° west of north. Finally it returns to the first 
island, sailing in a direction 28.0° east of south. Cal-
culate the distance between (a)  the second and third 
islands and (b) the first and third islands.

 59. Two vectors A
S

 and B
S

 have precisely equal mag- 
nitudes. For the magnitude of A

S
1 B

S
 to be 100 times 

larger than the magnitude of A
S

2 B
S

, what must be 
the angle between them?

 60. Two vectors A
S

 and B
S

 have precisely equal magni-
tudes. For the magnitude of A

S
1 B

S
 to be larger than 

the magnitude of A
S

2 B
S

 by the factor n, what must  
be the angle between them?

 61. Let A
S

 5 60.0 cm at 270° measured from the hori-
zontal. Let B

S
 5 80.0 cm at some angle u. (a) Find the 

magnitude of A
S

1 B
S

 as a function of u. (b) From the 
answer to part (a), for what value of u does 0 AS 1 B

S 0  
take on its maximum value? What is this maximum 
value? (c) From the answer to part (a), for what value 
of u does 0 AS 1 B

S 0  take on its minimum value? What 
is this minimum value? (d)  Without reference to the 
answer to part (a), argue that the answers to each of 
parts (b) and (c) do or do not make sense.

 62. After a ball rolls off the edge of a horizontal table at time  
t 5 0, its velocity as a function of time is given by

 vS 5 1.2 î 2 9.8t  ĵ

  where vS is in meters per second and t is in seconds. 
The ball’s displacement away from the edge of the 
table, during the time interval of 0.380 s for which the 
ball is in flight, is given by

 D rS 5 3
0.380 s

0
 vS dt

  To perform the integral, you can use the calculus 
theorem

 3 3A 1 Bf 1x 2 4dx 5 3  A dx 1 B 3  f 1x 2  dx

  You can think of the units and unit vectors as con-
stants, represented by A and B. Perform the integra-
tion to calculate the displacement of the ball from the 
edge of the table at 0.380 s.

 63. Review. The instantaneous position of an object is 
specified by its position vector leading from a fixed 
origin to the location of the object, modeled as a par-
ticle. Suppose for a certain object the position vector is 
a function of time given by rS 5 4 î 1 3 ĵ 2 2t  k̂, where 
rS is in meters and t is in seconds. (a) Evaluate d rS/dt.  
(b) What physical quantity does d rS/dt represent about 
the object?

S
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top of a tall building fol-
lowing the path shown in 
Figure P3.52.

 53. Review. The biggest 
stuffed animal in the 
world is a snake 420 m 
long, constructed by Nor-
wegian children. Sup-
pose the snake is laid 
out in a park as shown 
in Figure P3.53, form-
ing two straight sides of a 
105° angle, with one side  
240 m long. Olaf and Inge 
run a race they invent. 
Inge runs directly from 
the tail of the snake to 
its head, and Olaf starts 
from the same place at 
the same moment but 
runs along the snake. 
(a) If both children run 
steadily at 12.0  km/h, Inge reaches the head of the 
snake how much earlier than Olaf? (b) If Inge runs the 
race again at a constant speed of 12.0 km/h, at what 
constant speed must Olaf run to reach the end of the 
snake at the same time as Inge?

 54. An air-traffic controller observes two aircraft on his 
radar screen. The first is at altitude 800 m, horizontal 
distance 19.2 km, and 25.0° south of west. The second 
aircraft is at altitude 1 100 m, horizontal distance  
17.6 km, and 20.0° south of west. What is the distance 
between the two aircraft? (Place the x axis west, the  
y axis south, and the z axis vertical.)

 55. In Figure P3.55, a spider is 
resting after starting to spin 
its web. The gravitational 
force on the spider makes it 
exert a downward force of 
0.150 N on the junction of 
the three strands of silk. The 
junction is supported by dif-
ferent tension forces in the 
two strands above it so that 
the resultant force on the junction is zero. The two 
sloping strands are perpendicular, and we have chosen 
the x and y directions to be along them. The tension  
Tx is 0.127 N. Find (a) the tension Ty, (b) the angle the 
x axis makes with the horizontal, and (c) the angle the 
y axis makes with the horizontal.

 56. The rectangle shown in Figure 
P3.56 has sides parallel to the x 
and y axes. The position vectors 
of two corners are A

S
 5 10.0 m 

at 50.0° and B
S

 5 12.0 m at 30.0°.  
(a) Find the perimeter of the rect-
angle. (b) Find the magnitude 
and direction of the vector from 
the origin to the upper-right cor-
ner of the rectangle.

Figure P3.53
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Challenge Problem

 67. A pirate has buried his treasure on an island with five 
trees located at the points (30.0 m, 220.0 m), (60.0 m, 
80.0 m), (210.0 m, 210.0 m), (40.0 m, 230.0 m), and 
(270.0 m, 60.0 m), all measured relative to some ori-
gin, as shown in Figure P3.67. His ship’s log instructs 
you to start at tree A and move toward tree B, but to 
cover only one-half the distance between A and B. 
Then move toward tree C, covering one-third the 
distance between your current location and C. Next 
move toward tree D, covering one-fourth the distance 
between where you are and D. Finally move toward 
tree E, covering one-fifth the distance between you 
and E, stop, and dig. (a) Assume you have correctly 
determined the order in which the pirate labeled the 
trees as A, B, C, D, and E as shown in the figure. What 
are the coordinates of the point where his treasure is 
buried? (b) What If? What if you do not really know 
the way the pirate labeled the trees? What would hap-
pen to the answer if you rearranged the order of the 
trees, for instance, to B (30 m, 220 m), A (60 m, 80 m), 
E (210 m, 210 m), C (40 m, 230 m), and D (270 m,  
60 m)? State reasoning to show that the answer does 
not depend on the order in which the trees are labeled.

Q/C

 64. Ecotourists use their global positioning system indica-
tor to determine their location inside a botanical gar-
den as latitude 0.002 43 degree south of the equator, 
longitude 75.642 38 degrees west. They wish to visit 
a tree at latitude 0.001 62 degree north, longitude 
75.644 26 degrees west. (a) Determine the straight-
line distance and the direction in which they can walk 
to reach the tree as follows. First model the Earth 
as a sphere of radius 6.37 3 106 m to determine the 
westward and northward displacement components 
required, in meters. Then model the Earth as a flat 
surface to complete the calculation. (b) Explain why 
it is possible to use these two geometrical models 
together to solve the problem.

 65. A rectangular parallelepiped has dimensions a, b, and 
c as shown in Figure P3.65. (a) Obtain a vector expres-
sion for the face diagonal vector R

S

1. (b) What is the 
magnitude of this vector? (c) Notice that R

S

1, c k̂, and 
R
S

2 make a right triangle. Obtain a vector expression 
for the body diagonal vector R

S

2.

y

c

b

z

a

x

O

R1
S

R2
S

Figure P3.65

 66. Vectors A
S

 and B
S

 have equal magnitudes of 5.00.  
The sum of A

S
 and B

S
 is the vector 6.00 ĵ. Determine 

the angle between A
S

 and B
S

.

Q/C

S

E

y

x

A

B

C

D

Figure P3.67
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Fireworks erupt from the Sydney 
Harbour Bridge in New South Wales, 
Australia. Notice the parabolic  
paths of embers projected into 
the air. All projectiles follow a 
parabolic path in the absence 
of air resistance. (Graham Monro/

Photolibrary/Jupiter Images)

4.1 The Position, Velocity, and 
Acceleration Vectors

4.2 Two-Dimensional Motion 
with Constant Acceleration

4.3 Projectile Motion

4.4 Analysis Model: Particle in 
Uniform Circular Motion

4.5 Tangential and Radial 
Acceleration

4.6 Relative Velocity and 
Relative Acceleration

c h a p t e r 

4 Motion in two 
Dimensions

In this chapter, we explore the kinematics of a particle moving in two dimensions. 
Knowing the basics of two-dimensional motion will allow us—in future chapters—to exam-
ine a variety of situations, ranging from the motion of satellites in orbit to the motion of 
electrons in a uniform electric field. We begin by studying in greater detail the vector nature 
of position, velocity, and acceleration. We then treat projectile motion and uniform circular 
motion as special cases of motion in two dimensions. We also discuss the concept of relative 
motion, which shows why observers in different frames of reference may measure different 
positions and velocities for a given particle.

4.1 The Position, Velocity, and Acceleration Vectors
In Chapter 2, we found that the motion of a particle along a straight line such as 
the x axis is completely known if its position is known as a function of time. Let 
us now extend this idea to two-dimensional motion of a particle in the xy plane. 
We begin by describing the position of the particle. In one dimension, a single 
numerical value describes a particle’s position, but in two dimensions, we indicate 
its position by its position vector rS, drawn from the origin of some coordinate sys-
tem to the location of the particle in the xy plane as in Figure 4.1. At time ti, the 
particle is at point A, described by position vector rSi. At some later time tf , it is at 
point B, described by position vector rSf . The path followed by the particle from 
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A to B is not necessarily a straight line. As the particle moves from A to B in the 
time interval Dt 5 tf 2 ti, its position vector changes from rSi to rSf . As we learned 
in Chapter 2, displacement is a vector, and the displacement of the particle is the 
difference between its final position and its initial position. We now define the dis-
placement vector D rS for a particle such as the one in Figure 4.1 as being the differ-
ence between its final position vector and its initial position vector:

 D rS ; rSf 2 rSi (4.1)

The direction of D rS is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of D rS is less than the distance traveled along the curved path followed by the 
particle.
 As we saw in Chapter 2, it is often useful to quantify motion by looking at the 
displacement divided by the time interval during which that displacement occurs, 
which gives the rate of change of position. Two-dimensional (or three-dimensional) 
kinematics is similar to one-dimensional kinematics, but we must now use full vector 
notation rather than positive and negative signs to indicate the direction of motion.
 We define the average velocity vSavg of a particle during the time interval Dt as 
the displacement of the particle divided by the time interval:

 vSavg ;
D rS

Dt
 (4.2)

Multiplying or dividing a vector quantity by a positive scalar quantity such as Dt 
changes only the magnitude of the vector, not its direction. Because displacement 
is a vector quantity and the time interval is a positive scalar quantity, we conclude 
that the average velocity is a vector quantity directed along D rS. Compare Equa-
tion 4.2 with its one-dimensional counterpart, Equation 2.2.
 The average velocity between points is independent of the path taken. That is 
because average velocity is proportional to displacement, which depends only 
on the initial and final position vectors and not on the path taken. As with one- 
dimensional motion, we conclude that if a particle starts its motion at some point and 
returns to this point via any path, its average velocity is zero for this trip because its 
displacement is zero. Consider again our basketball players on the court in Figure 2.2  
(page 23). We previously considered only their one-dimensional motion back and 
forth between the baskets. In reality, however, they move over a two-dimensional sur-
face, running back and forth between the baskets as well as left and right across the 
width of the court. Starting from one basket, a given player may follow a very compli-
cated two-dimensional path. Upon returning to the original basket, however, a play-
er’s average velocity is zero because the player’s displacement for the whole trip is zero.
 Consider again the motion of a particle between two points in the xy plane as 
shown in Figure 4.2 (page 80). The dashed curve shows the path of the particle. As 
the time interval over which we observe the motion becomes smaller and smaller—
that is, as B is moved to B9 and then to B0 and so on—the direction of the displace-
ment approaches that of the line tangent to the path at A. The instantaneous velocity  
vS is defined as the limit of the average velocity D rS/Dt as Dt approaches zero:

 vS ; lim
Dt S0

 
D rS

Dt
5

d rS

dt
 (4.3)

That is, the instantaneous velocity equals the derivative of the position vector with 
respect to time. The direction of the instantaneous velocity vector at any point in 
a particle’s path is along a line tangent to the path at that point and in the direc-
tion of motion. Compare Equation 4.3 with the corresponding one-dimensional 
version, Equation 2.5.
 The magnitude of the instantaneous velocity vector v 5 0 vS 0  of a particle is called 
the speed of the particle, which is a scalar quantity.

WW  Displacement vector

WW Average velocity

WW Instantaneous velocity

Path of
particle

x

y

 ti

i

�
 t f

f

O

rS 

rS 

rS 

�r.S 
The displacement of the 
particle is the vector

A
B

Figure 4.1  A particle moving 
in the xy plane is located with 
the position vector rS drawn from 
the origin to the particle. The 
displacement of the particle as it 
moves from A to B in the time 
interval Dt 5 tf 2 ti is equal to the 
vector D rS 5 rSf 2 rSi.
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 As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from vSi at time ti to vSf  at time tf . Knowing the velocity 
at these points allows us to determine the average acceleration of the particle. The 
average acceleration aSavg of a particle is defined as the change in its instantaneous 
velocity vector DvS divided by the time interval Dt during which that change occurs:

 aSavg ;
DvS

Dt
5

vSf 2 vSi

tf 2 ti
 (4.4)

Because aSavg is the ratio of a vector quantity DvS and a positive scalar quantity Dt, 
we conclude that average acceleration is a vector quantity directed along DvS. As 
indicated in Figure 4.3, the direction of DvS is found by adding the vector 2vSi (the 
negative of vSi) to the vector vSf  because, by definition, DvS 5 vSf 2 vSi. Compare 
Equation 4.4 with Equation 2.9.
 When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accel-
eration aS is defined as the limiting value of the ratio D vS/Dt as Dt approaches zero:

 aS ; lim
Dt S0

 
DvS

Dt
5

d vS

dt
 (4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity 
vector with respect to time. Compare Equation 4.5 with Equation 2.10.
 Various changes can occur when a particle accelerates. First, the magnitude 
of the velocity vector (the speed) may change with time as in straight-line (one- 
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Figure 4.3  A particle moves from position A to 
position B. Its velocity vector changes from vSi to vSf . 
The vector diagrams at the upper right show two 
ways of determining the vector DvS from the initial 
and final velocities.

Figure 4.2  As a particle moves 
between two points, its average 
velocity is in the direction of the 
displacement vector D rS. By defini-
tion, the instantaneous velocity at 
A is directed along the line tan-
gent to the curve at A.

Pitfall Prevention 4.1
Vector Addition Although the vec-
tor addition discussed in Chapter 
3 involves displacement vectors, vec-
tor addition can be applied to any 
type of vector quantity. Figure 4.3, 
for example, shows the addition of 
velocity vectors using the graphical 
approach.
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dimensional) motion. Second, the direction of the velocity vector may change with 
time even if its magnitude (speed) remains constant as in two-dimensional motion 
along a curved path. Finally, both the magnitude and the direction of the velocity 
vector may change simultaneously.

Q uick Quiz 4.1  Consider the following controls in an automobile in motion: gas 
pedal, brake, steering wheel. What are the controls in this list that cause an 
acceleration of the car? (a) all three controls (b) the gas pedal and the brake 
(c) only the brake (d) only the gas pedal (e) only the steering wheel

4.2  Two-Dimensional Motion  
with Constant Acceleration

In Section 2.5, we investigated one-dimensional motion of a particle under con-
stant acceleration and developed the particle under constant acceleration model. 
Let us now consider two-dimensional motion during which the acceleration of a 
particle remains constant in both magnitude and direction. As we shall see, this 
approach is useful for analyzing some common types of motion.
 Before embarking on this investigation, we need to emphasize an important 
point regarding two-dimensional motion. Imagine an air hockey puck moving in 
a straight line along a perfectly level, friction-free surface of an air hockey table. 
Figure 4.4a shows a motion diagram from an overhead point of view of this puck. 
Recall that in Section 2.4 we related the acceleration of an object to a force on the 
object. Because there are no forces on the puck in the horizontal plane, it moves 
with constant velocity in the x direction. Now suppose you blow a puff of air on 
the puck as it passes your position, with the force from your puff of air exactly in 
the y direction. Because the force from this puff of air has no component in the x 
direction, it causes no acceleration in the x direction. It only causes a momentary 
acceleration in the y direction, causing the puck to have a constant y component 
of velocity once the force from the puff of air is removed. After your puff of air on 
the puck, its velocity component in the x direction is unchanged as shown in Figure 
4.4b. The generalization of this simple experiment is that motion in two dimen-
sions can be modeled as two independent motions in each of the two perpendicular 
directions associated with the x and y axes. That is, any influence in the y direc-
tion does not affect the motion in the x direction and vice versa.
 The position vector for a particle moving in the xy plane can be written

 rS 5 x î 1 y ĵ (4.6)

where x, y, and rS change with time as the particle moves while the unit vectors î 
and ĵ remain constant. If the position vector is known, the velocity of the particle 
can be obtained from Equations 4.3 and 4.6, which give

 vS 5
d rS

dt
5

dx
dt

 î 1
dy

dt
 ĵ 5 vx î 1 vy ĵ (4.7)

The horizontal red vectors, 
representing the x 
component of the velocity, 
are the same length in 
both parts of the figure, 
which demonstrates that 
motion in two dimensions 
can be modeled as two 
independent motions in 
perpendicular directions.

x

y

x

y

a

b

Figure 4.4  (a) A puck moves 
across a horizontal air hockey 
table at constant velocity in the x 
direction. (b) After a puff of air 
in the y direction is applied to the 
puck, the puck has gained a y com-
ponent of velocity, but the x com-
ponent is unaffected by the force 
in the perpendicular direction.
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 Because the acceleration aS of the particle is assumed constant in this discussion, 
its components ax and ay also are constants. Therefore, we can model the particle as 
a particle under constant acceleration independently in each of the two directions 
and apply the equations of kinematics separately to the x and y components of the 
velocity vector. Substituting, from Equation 2.13, vxf 5 vxi 1 axt and vyf 5 vyi 1 ayt 
into Equation 4.7 to determine the final velocity at any time t, we obtain

vSf 5 1vxi 1 axt 2 î 1 1vyi 1 ayt 2 ĵ 5 1vxi î 1 vyi ĵ 2 1 1ax î 1 ay ĵ 2 t

 vSf 5 vSi 1 aSt (4.8)

This result states that the velocity of a particle at some time t equals the vector 
sum of its initial velocity vSi at time t 5 0 and the additional velocity aSt acquired 
at time t as a result of constant acceleration. Equation 4.8 is the vector version of 
Equation 2.13.
 Similarly, from Equation 2.16 we know that the x and y coordinates of a particle 
under constant acceleration are

xf 5 xi 1 vxit 1 1
2axt

2  yf 5 yi 1 vyit 1 1
2ayt

2

Substituting these expressions into Equation 4.6 (and labeling the final position 
vector rSf ) gives

 rSf 5 1xi 1 vxit 1 1
2axt

2 2 î 1 1yi 1 vyit 1 1
2ayt

2 2 ĵ
 5 1xi î 1 yi ĵ 2 1 1vxi î 1 vyi ĵ 2 t 1 1

2 1ax î 1 ay ĵ 2 t 2

 rSf 5 rSi 1 vSit 1 1
2 aSt 2 (4.9)

which is the vector version of Equation 2.16. Equation 4.9 tells us that the position 
vector rSf  of a particle is the vector sum of the original position rSi, a displacement 
vSi t arising from the initial velocity of the particle, and a displacement 1

2 aSt 2 result-
ing from the constant acceleration of the particle.
 We can consider Equations 4.8 and 4.9 to be the mathematical representation 
of a two-dimensional version of the particle under constant acceleration model. 
Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.5. The 
components of the position and velocity vectors are also illustrated in the figure. 
Notice from Figure 4.5a that vSf  is generally not along the direction of either vSi or 
aS because the relationship between these quantities is a vector expression. For the 
same reason, from Figure 4.5b we see that rSf  is generally not along the direction of 
rSi, vSi, or aS. Finally, notice that vSf  and rSf  are generally not in the same direction.

Velocity vector as W
a function of time for a  
particle under constant 

 acceleration in two 
dimensions

Position vector as 
a function of time for a  
particle under constant 

 acceleration in two 
dimensions

Figure 4.5 Vector representa-
tions and components of (a) the 
velocity and (b) the position of a 
particle under constant accelera-
tion in two dimensions.
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Example 4.1   Motion in a Plane 

A particle moves in the xy plane, starting from the origin at t 5 0 with an initial velocity having an x component of  
20 m/s and a y component of 215 m/s. The particle experiences an acceleration in the x direction, given by ax 5  
4.0 m/s2.

(A) Determine the total velocity vector at any time.

Conceptualize The components of the initial velocity tell 
us that the particle starts by moving toward the right and 
downward. The x component of velocity starts at 20 m/s and 
increases by 4.0 m/s every second. The y component of veloc-
ity never changes from its initial value of 215 m/s. We sketch 
a motion diagram of the situation in Figure 4.6. Because the 
particle is accelerating in the 1x direction, its velocity compo-
nent in this direction increases and the path curves as shown 
in the diagram. Notice that the spacing between successive 
images increases as time goes on because the speed is increas-
ing. The placement of the acceleration and velocity vectors in 
Figure 4.6 helps us further conceptualize the situation.

Categorize Because the initial velocity has components in both the x and y directions, we categorize this problem 
as one involving a particle moving in two dimensions. Because the particle only has an x component of accelera-
tion, we model it as a particle under constant acceleration in the x direction and a particle under constant velocity in the  
y direction.

Analyze To begin the mathematical analysis, we set vxi 5 20 m/s, vyi 5 215 m/s, ax 5 4.0 m/s2, and ay 5 0.

AM

S o l u t I o n

x

y

Figure 4.6  (Example 4.1) Motion diagram for the particle.

Use Equation 4.8 for the velocity vector:  vSf 5 vSi 1 aSt 5 1vxi 1 axt 2 î 1 1vyi 1 ayt 2 ĵ

Substitute numerical values with the velocity in meters 
per second and the time in seconds:

 vSf 5 320 1 14.0 2 t 4 î 1 3215 1 10 2 t 4 ĵ
(1)   vSf 5  3 120 1 4.0t 2 î 2 15 ĵ 4

Finalize Notice that the x component of velocity increases in time while the y component remains constant; this result 
is consistent with our prediction.

(B) Calculate the velocity and speed of the particle at t 5 5.0 s and the angle the velocity vector makes with the x axis.

Analyze

S o l u t I o n

Evaluate the result from Equation (1) at t 5 5.0 s: vSf 5 3 120 1 4.0 15.0 2 2 î 2 15 ĵ 4 5  140 î 2 15 ĵ 2  m/s

Determine the angle u that vSf  makes with the x axis 
at t 5 5.0 s:

 u 5 tan21a
vyf

vxf
b 5 tan21a215 m/s

40 m/s
b 5  2218

Evaluate the speed of the particle as the magnitude  
of vSf :

 vf 5 0 vSf 0 5"vx f
2 1 vyf

2 5"140 22 1 1215 22 m/s 5  43 m/s

Finalize The negative sign for the angle u indicates that the velocity vector is directed at an angle of 21° below the posi-
tive x axis. Notice that if we calculate vi from the x and y components of vSi, we find that vf . vi. Is that consistent with 
our prediction?

(C) Determine the x and y coordinates of the particle at any time t and its position vector at this time.

continued
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4.3  Projectile Motion
Anyone who has observed a baseball in motion has observed projectile motion. 
The ball moves in a curved path and returns to the ground. Projectile motion of 
an object is simple to analyze if we make two assumptions: (1) the free-fall accelera-
tion is constant over the range of motion and is directed downward,1 and (2) the 
effect of air resistance is negligible.2 With these assumptions, we find that the path 
of a projectile, which we call its trajectory, is always a parabola as shown in Figure 4.7.  
We use these assumptions throughout this chapter.
 The expression for the position vector of the projectile as a function of time 
follows directly from Equation 4.9, with its acceleration being that due to gravity, 
aS 5 gS:

 rSf 5 rSi 1 vSit 1 1
2gSt 2 (4.10)

where the initial x and y components of the velocity of the projectile are

 vxi 5 vi cos ui  vyi 5 vi sin ui (4.11)

The expression in Equation 4.10 is plotted in Figure 4.8 for a projectile launched 
from the origin, so that rSi 5 0. The final position of a particle can be considered to 
be the superposition of its initial position rSi ; the term vSit, which is its displacement 
if no acceleration were present; and the term 1

2gSt 2 that arises from its acceleration 
due to gravity. In other words, if there were no gravitational acceleration, the par-
ticle would continue to move along a straight path in the direction of vSi. Therefore, 
the vertical distance 1

2gSt 2 through which the particle “falls” off the straight-line 
path is the same distance that an object dropped from rest would fall during the 
same time interval.

Finalize Let us now consider a limiting case for very large values of t.

What if we wait a very long time and then observe the motion of the particle? How would we describe the 
motion of the particle for large values of the time?

Answer Looking at Figure 4.6, we see the path of the particle curving toward the x axis. There is no reason to assume 
this tendency will change, which suggests that the path will become more and more parallel to the x axis as time grows 
large. Mathematically, Equation (1) shows that the y component of the velocity remains constant while the x compo-
nent grows linearly with t. Therefore, when t is very large, the x component of the velocity will be much larger than 
the y component, suggesting that the velocity vector becomes more and more parallel to the x axis. The magnitudes of 
both xf and yf continue to grow with time, although xf grows much faster.

WhAt IF ?

1This assumption is reasonable as long as the range of motion is small compared with the radius of the Earth  
(6.4 3 106 m). In effect, this assumption is equivalent to assuming the Earth is flat over the range of motion considered.
2This assumption is often not justified, especially at high velocities. In addition, any spin imparted to a projectile, 
such as that applied when a pitcher throws a curve ball, can give rise to some very interesting effects associated with 
aerodynamic forces, which will be discussed in Chapter 14.

Use the components of Equation 4.9 with xi 5 yi 5 0 at  
t 5 0 and with x and y in meters and t in seconds:

 xf 5 vxi t 1 1
2 axt

2 5  20t 1 2.0t 2

 yf 5 vyit 5  215t

Express the position vector of the particle at any time t: rSf 5 xf î 1 yf ĵ 5  120t 1 2.0t 2 2 î 2 15t ĵ

Analyze

S o l u t I o n

▸ 4.1 c o n t i n u e d

 

A welder cuts holes through a heavy 
metal construction beam with a hot 
torch. The sparks generated in the 
process follow parabolic paths.
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Pitfall Prevention 4.2
Acceleration at the highest Point  
As discussed in Pitfall Prevention 
2.8, many people claim that the 
acceleration of a projectile at the 
topmost point of its trajectory is 
zero. This mistake arises from 
confusion between zero vertical 
velocity and zero acceleration. If 
the projectile were to experience 
zero acceleration at the highest 
point, its velocity at that point 
would not change; rather, the 
projectile would move horizontally 
at constant speed from then on! 
That does not happen, however, 
because the acceleration is not zero 
anywhere along the trajectory.
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.

f
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(x,y)
it

O

y

t21
2

gS 

rS 

vS

Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At A, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point A, 
which has Cartesian coordinates (R/2, h), and the point B, which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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 We can determine h by noting that at the peak vyA 5 0. Therefore, from the 
particle under constant acceleration model, we can use the y direction version of 
Equation 2.13 to determine the time tA at which the projectile reaches the peak:

 vyf 5 vyi 2 gt    S   0 5 vi sin ui 2 gt A

t A 5
vi sin ui

g

 Substituting this expression for tA into the y direction version of Equation 2.16 
and replacing yf 5 yA with h, we obtain an expression for h in terms of the magni-
tude and direction of the initial velocity vector:

yf 5 yi 1 vyit 2 12gt 2   S    h 5 1vi sin ui 2  
vi sin ui

g
2 1

2g a
vi sin ui

g b
2

  h 5
vi

2 sin2 ui

2g
 (4.12)

 The range R is the horizontal position of the projectile at a time that is twice the 
time at which it reaches its peak, that is, at time tB 5 2tA. Using the particle under 
constant velocity model, noting that vxi 5 vxB 5 vi cos ui, and setting xB 5 R at t 5 
2tA, we find that

xf 5 xi 1 vxit   S    R 5 vxit B 5 1vi cos ui 22t A

 5 1vi cos ui 2  
2vi sin ui

g
5

2vi
2 sin ui cos ui

g

Using the identity sin 2u 5 2 sin u cos u (see Appendix B.4), we can write R in the 
more compact form

 R 5
vi

2 sin 2ui

g
 (4.13)

 The maximum value of R from Equation 4.13 is Rmax 5 vi
2/g . This result makes 

sense because the maximum value of sin 2ui is 1, which occurs when 2ui 5 90°. 
Therefore, R is a maximum when ui 5 45°.
 Figure 4.10 illustrates various trajectories for a projectile having a given initial 
speed but launched at different angles. As you can see, the range is a maximum 
for ui 5 45°. In addition, for any ui other than 45°, a point having Cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of ui, 
such as 75° and 15°. Of course, the maximum height and time of flight for one of 
these values of ui are different from the maximum height and time of flight for the 
complementary value.

Q uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with 
respect to time of flight from the shortest time of flight to the longest.

50

100

150
y (m)

x (m)

75�

60�

45�

30�

15�

vi � 50 m/s

50 100 150 200 250

Complementary 
values of the initial 
angle ui result in the 
same value of R.

Figure 4.10 A projectile 
launched over a flat surface from 
the origin with an initial speed 
of 50 m/s at various angles of 
projection.

Pitfall Prevention 4.3
the Range Equation Equation 
4.13 is useful for calculating R only 
for a symmetric path as shown in 
Figure 4.10. If the path is not sym-
metric, do not use this equation. The 
particle under constant velocity 
and particle under constant accel-
eration models are the important 
starting points because they give 
the position and velocity compo-
nents of any projectile moving  
with constant acceleration in two 
dimensions at any time t.



 4.3 Projectile Motion 87

Problem-Solving Strategy   Projectile Motion

We suggest you use the following approach when solving projectile motion problems.

1. Conceptualize. Think about what is going on physically in the problem. Establish 
the mental representation by imagining the projectile moving along its trajectory.

2. Categorize. Confirm that the problem involves a particle in free fall and that air 
resistance is neglected. Select a coordinate system with x in the horizontal direction 
and y in the vertical direction. Use the particle under constant velocity model for the 
x component of the motion. Use the particle under constant acceleration model for 
the y direction. In the special case of the projectile returning to the same level from 
which it was launched, use Equations 4.12 and 4.13.

3. Analyze. If the initial velocity vector is given, resolve it into x and y components. 
Select the appropriate equation(s) from the particle under constant acceleration 
model for the vertical motion and use these along with Equation 2.7 for the horizontal 
motion to solve for the unknown(s). 

4. Finalize. Once you have determined your result, check to see if your answers are 
consistent with the mental and pictorial representations and your results are realistic.

Example 4.2   The Long Jump

A long jumper (Fig. 4.11) leaves the ground at an angle of 20.0° above the hori-
zontal and at a speed of 11.0 m/s.

(A) How far does he jump in the horizontal direction?

Conceptualize The arms and legs of a long jumper move in a complicated way, 
but we will ignore this motion. We conceptualize the motion of the long jumper 
as equivalent to that of a simple projectile.

Categorize We categorize this example as a projectile motion problem. 
Because the initial speed and launch angle are given and because the final 
height is the same as the initial height, we further categorize this problem as 
satisfying the conditions for which Equations 4.12 and 4.13 can be used. This 
approach is the most direct way to analyze this problem, although the general methods that have been described will 
always give the correct answer.

Analyze

S o l u t i o n

Use Equation 4.13 to find the range of the jumper: R 5
v 2

i  sin 2ui

g
5

111.0 m/s 22 sin 2 120.08 2
9.80 m/s2 5  7.94 m

(B) What is the maximum height reached?

Analyze

S o l u t i o n

Find the maximum height reached by using 
Equation 4.12:

h 5
v 2

i sin2ui

2g
5

111.0 m/s 22 1sin 20.08 22

2 19.80 m/s2 2 5  0.722 m

Finalize Find the answers to parts (A) and (B) using the general method. The results should agree. Treating the 
long jumper as a particle is an oversimplification. Nevertheless, the values obtained are consistent with experience in 
sports. We can model a complicated system such as a long jumper as a particle and still obtain reasonable results.

Figure 4.11 (Example 4.2) 
Romain Barras of France competes 
in the men’s decathlon long jump at 
the 2008 Beijing Olympic Games.
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The velocity of the projectile (red 
arrows) changes in direction and 
magnitude, but its acceleration 
(purple arrows) remains constant.
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Figure 4.12  (Example 4.3) (a) Multiflash photograph of the projectile–target demonstration. If the gun 
is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will 
hit the target. (b) Schematic diagram of the projectile–target demonstration.

 

Example 4.3   A Bull’s-Eye Every Time 

In a popular lecture demonstration, a projectile is fired at a target in such a way that the projectile leaves the gun at 
the same time the target is dropped from rest. Show that if the gun is initially aimed at the stationary target, the pro-
jectile hits the falling target as shown in Figure 4.12a.

Conceptualize We conceptualize the problem by studying Figure 4.12a. Notice that the problem does not ask for 
numerical values. The expected result must involve an algebraic argument.

AM

S o l u t I o n

Write an expression for the y coordinate 
of the target at any moment after release, 
noting that its initial velocity is zero:

(1)   yT 5 yi T 1 10 2 t 2 1
2gt 2 5 x T tan ui 2 1

2gt 2

Write an expression for the y coordinate 
of the projectile at any moment:

(2)   yP 5 yi P 1 vyi Pt 2 1
2gt 2 5 0 1 1vi P sin ui 2 t 2 1

2gt 2 5 1vi P sin ui 2 t 2 1
2gt 2

Write an expression for the x coordinate 
of the projectile at any moment:

 xP 5 xiP 1 vxi Pt 5 0 1 1vi P cos ui 2 t 5 1viP cos ui 2 t 

Solve this expression for time as a function 
of the horizontal position of the projectile:

t 5
xP

vi P cos ui

Substitute this expression into Equation (2): (3)   yP 5 1viP sin ui 2 a
xP

viP cos ui
b 2 1

2gt 2 5 xP tan ui 2 1
2gt 2

Finalize Compare Equations (1) and (3). We see that when the x coordinates of the projectile and target are the 
same—that is, when xT 5 xP—their y coordinates given by Equations (1) and (3) are the same and a collision results.

Categorize Because both objects are subject only to gravity, we categorize this problem as one involving two objects 
in free fall, the target moving in one dimension and the projectile moving in two. The target T is modeled as a particle 
under constant acceleration in one dimension. The projectile P is modeled as a particle under constant acceleration in the  
y direction and a particle under constant velocity in the x direction.

Analyze Figure 4.12b shows that the initial y coordinate yi T of the target is xT tan ui and its initial velocity is zero. It falls 
with acceleration ay 5 2g. 
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Example 4.4   That’s Quite an Arm! 

A stone is thrown from the top of a building upward at an angle of 30.0° to the horizontal with an initial speed of 
20.0 m/s as shown in Figure 4.13. The height from which the stone is thrown is 45.0 m above the ground.

(A) How long does it take the stone to reach the ground?

Conceptualize Study Figure 4.13, in which we have indi-
cated the trajectory and various parameters of the motion 
of the stone.

Categorize We categorize this problem as a projectile 
motion problem. The stone is modeled as a particle under con-
stant acceleration in the y direction and a particle under constant 
velocity in the x direction.

Analyze We have the information xi 5 yi 5 0, yf 5 245.0 m, 
ay 5 2g, and vi 5 20.0 m/s (the numerical value of yf is 
negative because we have chosen the point of the throw as  
the origin).

AM

S o l u t I o n

Find the initial x and y components of the stone’s 
velocity:

vxi 5 vi cos ui 5 120.0 m/s 2  cos 30.08 5 17.3 m/s

vyi 5 vi sin ui 5 120.0 m/s 2  sin 30.08 5 10.0 m/s

Express the vertical position of the stone from the particle 
under constant acceleration model:

yf 5 yi 1 vyi t 2 1
2gt 2

Substitute numerical values: 245.0 m 5 0 1 110.0 m/s 2 t 1 1
2 129.80 m/s2 2 t 2

Solve the quadratic equation for t : t 5 4.22 s

(B) What is the speed of the stone just before it strikes the ground?

S o l u t I o n

Analyze Use the velocity equation in the particle 
under constant acceleration model to obtain the y 
component of the velocity of the stone just before 
it strikes the ground:

vy f 5 vyi 2 gt

Use this component with the horizontal compo-
nent vxf 5 vxi 5 17.3 m/s to find the speed of the 
stone at t 5 4.22 s:

vf 5 "v 2
xf 1 v 2

yf 5"117.3 m/s 22 1 1231.3 m/s 22 5  35.8 m/s

vy f 5 10.0 m/s 1 129.80 m/s2 2 14.22 s 2 5 231.3 m/sSubstitute numerical values, using t 5 4.22 s:

Finalize Is it reasonable that the y component of the final velocity is negative? Is it reasonable that the final speed is 
larger than the initial speed of 20.0 m/s?

What if a horizontal wind is blowing in the same direction as the stone is thrown and it causes the stone 
to have a horizontal acceleration component ax 5 0.500 m/s2? Which part of this example, (A) or (B), will have a dif-
ferent answer?

Answer Recall that the motions in the x and y directions are independent. Therefore, the horizontal wind cannot 
affect the vertical motion. The vertical motion determines the time of the projectile in the air, so the answer to part 
(A) does not change. The wind causes the horizontal velocity component to increase with time, so the final speed will 
be larger in part (B). Taking ax 5 0.500 m/s2, we find vxf 5 19.4 m/s and vf 5 36.9 m/s.

WhAt IF ?

45.0 m

vi � 20.0 m/s

i � 30.0�u

y

xO

Figure 4.13  
(Example 4.4) A 
stone is thrown from 
the top of a building.



90 chapter 4 Motion in two Dimensions

Express the coordinates of the jumper as a function of 
time, using the particle under constant velocity model 
for x and the position equation from the particle under 
constant acceleration model for y:

(1)   xf 5 vxi t 

(2)   yf 5 vyit 2 1
2gt 2

(3)   d cos f 5 vxit

(4)   2d sin f 5 21
2gt 2

Solve Equation (3) for t and substitute the result into 
Equation (4):

 2d sin f 5 21
2g a

d cos f
vxi

b
2

Solve for d and substitute numerical values: d 5
2vxi

2 sin f
g cos2 f

5
2 125.0 m/s 22 sin 35.08

19.80 m/s2 2  cos2 35.08
5 109 m

Evaluate the x and y coordinates of the point at which 
the skier lands:

xf 5 d cos f 5 1109 m 2  cos 35.08 5  89.3 m

yf 5 2d sin f 5 2 1109 m 2  sin 35.08 5  262.5 m

Finalize Let us compare these results with our expectations. We expected the horizontal distance to be on the order of 
100 m, and our result of 89.3 m is indeed on this order of magnitude. It might be useful to calculate the time interval 
that the jumper is in the air and compare it with our estimate of about 4 s.

Suppose everything in this example is the same except the ski jump is curved so that the jumper is pro-
jected upward at an angle from the end of the track. Is this design better in terms of maximizing the length of the 
jump?

Answer If the initial velocity has an upward component, the skier will be in the air longer and should therefore travel 
farther. Tilting the initial velocity vector upward, however, will reduce the horizontal component of the initial veloc-
ity. Therefore, angling the end of the ski track upward at a large angle may actually reduce the distance. Consider the 
extreme case: the skier is projected at 90° to the horizontal and simply goes up and comes back down at the end of the 
ski track! This argument suggests that there must be an optimal angle between 0° and 90° that represents a balance 
between making the flight time longer and the horizontal velocity component smaller.
 Let us find this optimal angle mathematically. We modify Equations (1) through (4) in the following way, assum-
ing the skier is projected at an angle u with respect to the horizontal over a landing incline sloped with an arbitrary 
angle f:

(1) and (3) S xf 5 (vi cos u)t 5 d cos f

(2) and (4) S yf 5 (vi sin u)t 2 12gt 2 5 2d sin f

WhAt IF ?

Example 4.5   The End of the Ski Jump 

A ski jumper leaves the ski track moving in the horizontal direction with a speed of 25.0 m/s as shown in Figure 4.14. 
The landing incline below her falls off with a slope of 35.0°. Where does she land on the incline?

Conceptualize We can conceptualize this problem based on memories 
of observing winter Olympic ski competitions. We estimate the skier to 
be airborne for perhaps 4 s and to travel a distance of about 100 m hori-
zontally. We should expect the value of d, the distance traveled along 
the incline, to be of the same order of magnitude.

Categorize We categorize the problem as one of a particle in projectile 
motion. As with other projectile motion problems, we use the particle 
under constant velocity model for the horizontal motion and the particle 
under constant acceleration model for the vertical motion.

Analyze It is convenient to select the beginning of the jump as the ori-
gin. The initial velocity components are vxi 5 25.0 m/s and vyi 5 0. From 
the right triangle in Figure 4.14, we see that the jumper’s x and y coordi-
nates at the landing point are given by xf 5 d cos f and yf  5 2d sin f.

AM

S o l u t I o n

y d

25.0 m/s

O

x

f � 35.0�

Figure 4.14 (Example 4.5) A ski jumper leaves 
the track moving in a horizontal direction.
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▸ 4.5 c o n t i n u e d

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
(after several steps; see Problem 88) at the following equation for the angle u that gives the maximum value of d :

u 5 458 2
f

2

For the slope angle in Figure 4.14, f 5 35.0°; this equation results in an optimal launch angle of u 5 27.5°. For a slope 
angle of f 5 0°, which represents a horizontal plane, this equation gives an optimal launch angle of u 5 45°, as we 
would expect (see Figure 4.10).

 

Pitfall Prevention 4.4
Acceleration of a Particle  
in uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

4.4   Analysis Model: Particle  
in Uniform Circular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.
 It is often surprising to students to find that even though an object moves at a 
constant speed in a circular path, it still has an acceleration. To see why, consider the 
defining equation for acceleration, aS 5 d vS/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an 
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the 
magnitude of the velocity and by a change in the direction of the velocity. The latter 
situation occurs for an object moving with constant speed in a circular path. The 
constant-magnitude velocity vector is always tangent to the path of the object and 
perpendicular to the radius of the circular path. Therefore, the direction of the 
velocity vector is always changing.
 Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and always points toward the center of the circle. 
If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
the center of the circle.
 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from A to 
B, its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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curve. The particle is at A at time ti, and its velocity at that time is vSi; it is at B at 
some later time tf , and its velocity at that time is vSf . Let us also assume vSi and vSf  
differ only in direction; their magnitudes are the same (that is, vi 5 vf 5 v because 
it is uniform circular motion).
 In Figure 4.15c, the velocity vectors in Figure 4.15b have been redrawn tail to 
tail. The vector DvS connects the tips of the vectors, representing the vector addition 
vSf 5 vSi 1 DvS. In both Figures 4.15b and 4.15c, we can identify triangles that help 
us analyze the motion. The angle Du between the two position vectors in Figure 
4.15b is the same as the angle between the velocity vectors in Figure 4.15c because 
the velocity vector vS is always perpendicular to the position vector rS. Therefore, 
the two triangles are similar. (Two triangles are similar if the angle between any two 
sides is the same for both triangles and if the ratio of the lengths of these sides is 
the same.) We can now write a relationship between the lengths of the sides for the 
two triangles in Figures 4.15b and 4.15c:

0DvS 0
v

5
0D rS 0

r

where v 5 vi 5 vf and r 5 ri 5 rf . This equation can be solved for 0DvS 0 , and the 
expression obtained can be substituted into Equation 4.4, aSavg 5 DvS/Dt , to give 
the magnitude of the average acceleration over the time interval for the particle to 
move from A to B:

0 aSavg 0 5
0DvS 0
0Dt 0 5

v 0D rS 0
r Dt

 Now imagine that points A and B in Figure 4.15b become extremely close 
together. As A and B approach each other, Dt approaches zero, 0D rS 0  approaches 
the distance traveled by the particle along the circular path, and the ratio 0D rS 0 /Dt 
approaches the speed v. In addition, the average acceleration becomes the instan-
taneous acceleration at point A. Hence, in the limit Dt S 0, the magnitude of the 
acceleration is

 ac 5
v2

r
 (4.14)

An acceleration of this nature is called a centripetal acceleration (centripetal means 
center-seeking). The subscript on the acceleration symbol reminds us that the accel-
eration is centripetal.
 In many situations, it is convenient to describe the motion of a particle moving 
with constant speed in a circle of radius r in terms of the period T, which is defined 
as the time interval required for one complete revolution of the particle. In the time 
interval T, the particle moves a distance of 2pr, which is equal to the circumference 
of the particle’s circular path. Therefore, because its speed is equal to the circum-
ference of the circular path divided by the period, or v 5 2pr/T, it follows that

 T 5
2pr
v

 (4.15)

 The period of a particle in uniform circular motion is a measure of the num-
ber of seconds for one revolution of the particle around the circle. The inverse of 
the period is the rotation rate and is measured in revolutions per second. Because 
one full revolution of the particle around the circle corresponds to an angle of 2p 
radians, the product of 2p and the rotation rate gives the angular speed v of the 
particle, measured in radians/s or s21:

 v 5
2p

T
 (4.16)

Centripetal acceleration 
for a particle in uniform  

circular motion

Period of circular motion 
for a particle in uniform  

circular motion
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continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r
 S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r

 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

•	 a	rock	twirled	in	a	circle	on	a	string	
of constant length 

•	 a	planet	traveling	around	a	per-
fectly circular orbit (Chapter 13)

•	 a	charged	particle	moving	in	a	uni-
form magnetic field (Chapter 29)

•	 an	electron	in	orbit	around	a	
nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S o l u t I o n

Pitfall Prevention 4.5
Centripetal Acceleration  
Is not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.
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Path of
particle at

ar

at

ar at
araS 

aS 

aS A

B

C

Figure 4.16 The motion of a 
particle along an arbitrary curved 
path lying in the xy plane. If the 
velocity vector vS (always tangent 
to the path) changes in direction 
and magnitude, the components 
of the acceleration aS are a tan-
gential component at and a radial 
component ar.

(B) What is the angular speed of the Earth in its orbit around the Sun?

Analyze 

S o l u t I o n

Substitute numerical values: ac 5
4p2 11.496 3 1011 m 2

11 yr 22 a 1 yr

3.156 3 107 s
b

2

5  5.93 3 1023 m/s2

Finalize The acceleration in part (A) is much smaller than the free-fall acceleration on the surface of the Earth. An 
important technique we learned here is replacing the speed v in Equation 4.14 in terms of the period T of the motion. 
In many problems, it is more likely that T is known rather than v. In part (B), we see that the angular speed of the 
Earth is very small, which is to be expected because the Earth takes an entire year to go around the circular path once.

4.5 Tangential and Radial Acceleration
Let us consider a more general motion than that presented in Section 4.4. A parti-
cle moves to the right along a curved path, and its velocity changes both in direction 
and in magnitude as described in Figure 4.16. In this situation, the velocity vector 
is always tangent to the path; the acceleration vector aS, however, is at some angle 
to the path. At each of three points A, B, and C in Figure 4.16, the dashed blue 
circles represent the curvature of the actual path at each point. The radius of each 
circle is equal to the path’s radius of curvature at each point.
 As the particle moves along the curved path in Figure 4.16, the direction of the 
total acceleration vector aS changes from point to point. At any instant, this vec-
tor can be resolved into two components based on an origin at the center of the 
dashed circle corresponding to that instant: a radial component ar along the radius 
of the circle and a tangential component at perpendicular to this radius. The total 
acceleration vector aS can be written as the vector sum of the component vectors:

 aS 5 aSr 1 aSt (4.19)

The tangential acceleration component causes a change in the speed v of the particle. 
This component is parallel to the instantaneous velocity, and its magnitude is given by

 at 5 ` dv
dt

`  (4.20)

total acceleration 

tangential acceleration 

▸ 4.6 c o n t i n u e d

Combine Equations 4.14 and 4.15: ac 5
v2

r
5

a2pr
T

b
2

r
5

4p2r
T 2

 

Substitute numerical values into Equation 4.16: v 5
2p

1 yr
 a 1 yr

3.156 3  107
 s
b 5  1.99 3  1027

 s21
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The radial acceleration component arises from a change in direction of the velocity 
vector and is given by

 ar 5 2ac 5 2
v2

r
 (4.21)

where r is the radius of curvature of the path at the point in question. We recog-
nize the magnitude of the radial component of the acceleration as the centripetal 
acceleration discussed in Section 4.4 with regard to the particle in uniform circular 
motion model. Even in situations in which a particle moves along a curved path 
with a varying speed, however, Equation 4.14 can be used for the centripetal accel-
eration. In this situation, the equation gives the instantaneous centripetal accelera-
tion at any time. The negative sign in Equation 4.21 indicates that the direction 
of the centripetal acceleration is toward the center of the circle representing the 
radius of curvature. The direction is opposite that of the radial unit vector r̂, which 
always points away from the origin at the center of the circle.
 Because aSr and aSt are perpendicular component vectors of aS, it follows that  
the magnitude of aS is a 5 !ar

2 1 at
2. At a given speed, ar is large when the  

radius of curvature is small (as at points A and B in Fig. 4.16) and small when r is 
large (as at point C). The direction of aSt is either in the same direction as vS (if v is 
increasing) or opposite vS (if v is decreasing, as at point B).
 In uniform circular motion, where v is constant, at 5 0 and the acceleration is 
always completely radial as described in Section 4.4. In other words, uniform circu-
lar motion is a special case of motion along a general curved path. Furthermore, if 
the direction of vS does not change, there is no radial acceleration and the motion 
is one dimensional (in this case, ar 5 0, but at may not be zero).

Q uick Quiz 4.5  A particle moves along a path, and its speed increases with time. 
(i) In which of the following cases are its acceleration and velocity vectors paral-
lel? (a) when the path is circular (b) when the path is straight (c) when the path 
is a parabola (d) never (ii) From the same choices, in which case are its accelera-
tion and velocity vectors perpendicular everywhere along the path?

WW Radial acceleration

Example 4.7   Over the Rise

A car leaves a stop sign and exhibits a constant acceleration of 
0.300 m/s2 parallel to the roadway. The car passes over a rise 
in the roadway such that the top of the rise is shaped like an 
arc of a circle of radius 500 m. At the moment the car is at the 
top of the rise, its velocity vector is horizontal and has a mag-
nitude of 6.00 m/s. What are the magnitude and direction of 
the total acceleration vector for the car at this instant?

Conceptualize Conceptualize the situation using Figure 
4.17a and any experiences you have had in driving over rises 
on a roadway.

Categorize Because the accelerating car is moving along a 
curved path, we categorize this problem as one involving a 
particle experiencing both tangential and radial acceleration. 
We recognize that it is a relatively simple substitution problem.

The tangential acceleration vector has magnitude 0.300 m/s2 and is horizontal. The radial acceleration is given by 
Equation 4.21, with v 5 6.00 m/s and r 5 500 m. The radial acceleration vector is directed straight downward. 

S o l u t I o n

r

t

at � 0.300 m/s2

v � 6.00 m/s

t

f

vS

aS 
aS 

aS 

aS 

a

b

Figure 4.17 (Example 4.7) (a) A car passes over a rise that 
is shaped like an arc of a circle. (b) The total acceleration 
vector aS  is the sum of the tangential and radial acceleration 
vectors aSt and aSr .

continued
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4.6  Relative Velocity and Relative Acceleration
In this section, we describe how observations made by different observers in dif-
ferent frames of reference are related to one another. A frame of reference can be 
described by a Cartesian coordinate system for which an observer is at rest with 
respect to the origin.
 Let us conceptualize a sample situation in which there will be different observa-
tions for different observers. Consider the two observers A and B along the number 
line in Figure 4.18a. Observer A is located 5 units to the right of observer B. Both 
observers measure the position of point P, which is located 5 units to the right of 
observer A. Suppose each observer decides that he is located at the origin of an  
x axis as in Figure 4.18b. Notice that the two observers disagree on the value of the 
position of point P. Observer A claims point P is located at a position with a value 
of xA 5 15, whereas observer B claims it is located at a position with a value of xB 5 
110. Both observers are correct, even though they make different measurements. 
Their measurements differ because they are making the measurement from differ-
ent frames of reference.
 Imagine now that observer B in Figure 4.18b is moving to the right along the xB 
axis. Now the two measurements are even more different. Observer A claims point 
P remains at rest at a position with a value of 15, whereas observer B claims the 
position of P continuously changes with time, even passing him and moving behind 
him! Again, both observers are correct, with the difference in their measurements 
arising from their different frames of reference.
 We explore this phenomenon further by considering two observers watching a 
man walking on a moving beltway at an airport in Figure 4.19. The woman standing 
on the moving beltway sees the man moving at a normal walking speed. The woman 
observing from the stationary floor sees the man moving with a higher speed because 
the beltway speed combines with his walking speed. Both observers look at the same 
man and arrive at different values for his speed. Both are correct; the difference in 
their measurements results from the relative velocity of their frames of reference.
 In a more general situation, consider a particle located at point P in Figure 
4.20. Imagine that the motion of this particle is being described by two observers, 
observer A in a reference frame SA fixed relative to the Earth and a second observer 
B in a reference frame SB moving to the right relative to SA (and therefore rela-
tive to the Earth) with a constant velocity vSBA. In this discussion of relative veloc-
ity, we use a double-subscript notation; the first subscript represents what is being 
observed, and the second represents who is doing the observing. Therefore, the 
notation vSBA means the velocity of observer B (and the attached frame SB) as mea-
sured by observer A. With this notation, observer B measures A to be moving to the 
left with a velocity vSAB 5 2vSBA. For purposes of this discussion, let us place each 
observer at her or his respective origin.
 We define the time t 5 0 as the instant at which the origins of the two reference 
frames coincide in space. Therefore, at time t, the origins of the reference frames 

+5

x
B

B

A P

–5 0
x A

A P

+100 +5
x B

P

a

b

5

Figure 4.18 Different observers 
make different measurements. 
(a) Observer A is located 5 units 
to the right of Observer B. Both 
observers measure the position of 
a particle at P. (b) If both observ-
ers see themselves at the origin of 
their own coordinate system, they 
disagree on the value of the posi-
tion of the particle at P.

The woman standing on the 
beltway sees the man moving with 
a slower speed than does the 
woman observing the man from 
the stationary floor.

Figure 4.19 Two observers mea-
sure the speed of a man walking  
on a moving beltway. 

Evaluate the radial acceleration: ar 5 2
v2

r
5 2

16.00 m/s 22

500 m
5 20.072 0 m/s2

Find the magnitude of aS: "a 2
r 1 a 2

t 5 "120.072 0 m/s2 22 1 10.300 m/s2 22

5 0.309 m/s2

Find the angle f (see Fig. 4.17b) between aS and the 
horizontal:

f 5 tan21 
ar

at
5 tan21a20.072 0 m/s2

0.300 m/s2 b 5  213.58

▸ 4.7 c o n t i n u e d
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.

S o l u t I o n u
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.

SA SB

BA

P

x
BAt

BA

PB

PA

vS vS

rS 
rS 

Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.
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Conceptualize/Categorize This question is an extension of part (A), so we have already conceptualized and catego-
rized the problem. In this case, however, we must aim the boat upstream so as to go straight across the river.

Analyze The analysis now involves the new triangle shown in Figure 4.21b. As in part (A), we know vSrE and the mag-
nitude of the vector vSbr, and we want vSbE to be directed across the river. Notice the difference between the triangle in 
Figure 4.21a and the one in Figure 4.21b: the hypotenuse in Figure 4.21b is no longer vSbE.

Use the Pythagorean theorem to find vbE: vbE 5 "vbr
2 2 vrE

2 5 "110.0 km/h 22 2 15.00 km/h 22 5 8.66 km/h

Find the direction in which the boat is heading: u 5 tan21a vrE

vbE
b 5 tan21a5.00

8.66
b 5  30.08

Finalize The boat must head upstream so as to travel directly northward across the river. For the given situation, the 
boat must steer a course 30.0° west of north. For faster currents, the boat must be aimed upstream at larger angles.

Imagine that the two boats in parts (A) and (B) are racing across the river. Which boat arrives at the 
opposite bank first?

Answer In part (A), the velocity of 10 km/h is aimed directly across the river. In part (B), the velocity that is directed 
across the river has a magnitude of only 8.66 km/h. Therefore, the boat in part (A) has a larger velocity component 
directly across the river and arrives first.

WhAt IF ?

Find the speed vbE of the boat relative to the Earth using 
the Pythagorean theorem:

vbE 5 "v 2
br 1 v 2

rE 5 "110.0 km/h 22 1 15.00 km/h 22

5 11.2 km/h

Find the direction of vSbE: u 5 tan21avrE

vbr
b 5 tan21a5.00

10.0
b 5  26.68

Finalize The boat is moving at a speed of 11.2 km/h in the direction 26.6° east of north relative to the Earth. Notice 
that the speed of 11.2 km/h is faster than your boat speed of 10.0 km/h. The current velocity adds to yours to give you 
a higher speed. Notice in Figure 4.21a that your resultant velocity is at an angle to the direction straight across the 
river, so you will end up downstream, as we predicted.

(B) If the boat travels with the same speed of 10.0 km/h relative to the river and is to travel due north as shown in 
Figure 4.21b, what should its heading be?

S o l u t I o n
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Summary

Definitions

 The displacement vector DrS for a particle is the difference between its final position vector and its initial position 
vector:

 D rS ; rSf 2 rSi (4.1)

The average velocity of a particle during the time interval Dt is defined as the displacement of the particle divided by 
the time interval:

 vSavg ;
D rS

Dt
 (4.2)

The instantaneous velocity of a particle is defined as the limit of the average velocity as Dt approaches zero:

 vS ; lim
Dt S0

 
D rS

Dt
5

d rS

dt
 (4.3)
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 If a particle moves with constant acceleration aS and has velocity vSi and position rSi at t 5 0, its velocity and position 
vectors at some later time t are

 vSf 5 vSi 1 aSt (4.8)

 rSf 5 rSi 1 vSi t 1 1
2 a

St 2 (4.9)

For two-dimensional motion in the xy plane under constant acceleration, ea–ch of these vector expressions is equiva-
lent to two component expressions: one for the motion in the x direction and one for the motion in the y direction.

 The average acceleration of a particle is defined as the 
change in its instantaneous velocity vector divided by the 
time interval Dt during which that change occurs:

 aSavg ;
DvS

Dt
5

vSf 2 vSi

tf 2 ti
 (4.4)

The instantaneous acceleration of a particle is defined 
as the limiting value of the average acceleration as Dt 
approaches zero:

 aS ; lim
Dt S0

 
DvS

Dt
5

d vS

dt
 (4.5)

 It is useful to think of projectile motion in terms of a combi-
nation of two analysis models: (1) the particle under constant 
velocity model in the x direction and (2) the particle under 
constant acceleration model in the vertical direction with a 
constant downward acceleration of magnitude g 5 9.80 m/s2.

 If a particle moves along a curved path in such a way that 
both the magnitude and the direction of vS change in time, 
the particle has an acceleration vector that can be described by 
two component vectors: (1) a radial component vector aSr that 
causes the change in direction of vS and (2) a tangential com-
ponent vector aSt that causes the change in magnitude of vS. 
The magnitude of aSr is v2/r, and the magnitude of aSt is |dv/dt|.

 Projectile motion is one type of two- 
dimensional motion, exhibited by an object 
launched into the air near the Earth’s surface  
and experiencing free fall. This common motion 
can be analyzed by applying the particle under 
constant velocity model to the motion of the  
projectile in the x direction and the particle 
under constant acceleration model (ay 5 2g) in 
the y direction.
 A particle moving in a circular path with con-
stant speed is exhibiting uniform circular motion.

 A particle in uniform circular motion under-
goes a radial acceleration aSr because the direc-
tion of vS changes in time. This acceleration is 
called centripetal acceleration, and its direction 
is always toward the center of the circle.

 The velocity uSPA of a particle measured in a 
fixed frame of reference SA can be related to the 
velocity uSP B of the same particle measured in a 
moving frame of reference SB by

 uSP A 5 uSP B 1 vSBA (4.23)

where vSBA is the velocity of SB relative to SA.

Concepts and Principles

Analysis Model for Problem Solving

 Particle in Uniform Circular Motion If a particle moves in a circular path of radius r with a 
constant speed v, the magnitude of its centripetal acceleration is given by

 ac 5
v 2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

r

vSac
S
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projectile on the Moon compare with that of the pro-
jectile on the Earth? (a) It is one-sixth as large. (b) It 
is the same. (c) It is !6 times larger. (d) It is 6 times 
larger. (e) It is 36 times larger.

 5. Does a car moving around a circular track with constant 
speed have (a) zero acceleration, (b) an acceleration in 
the direction of its velocity, (c) an acceleration directed 
away from the center of its path, (d) an acceleration 
directed toward the center of its path, or (e) an acceler-
ation with a direction that cannot be determined from 
the given information?

 6. An astronaut hits a golf ball on the Moon. Which of the 
following quantities, if any, remain constant as a ball 
travels through the vacuum there? (a) speed (b) accel-
eration (c) horizontal component of velocity (d) verti-
cal component of velocity (e) velocity

 7. A projectile is launched on the Earth with a certain ini-
tial velocity and moves without air resistance. Another 
projectile is launched with the same initial velocity on 
the Moon, where the acceleration due to gravity is one-
sixth as large. How does the range of the projectile on 
the Moon compare with that of the projectile on the 
Earth? (a) It is one-sixth as large. (b) It is the same.  
(c) It is !6 times larger. (d) It is 6 times larger. (e) It is 
36 times larger.

 8. A girl, moving at 8 m/s on in-line skates, is overtaking 
a boy moving at 5 m/s as they both skate on a straight 
path. The boy tosses a ball backward toward the girl, 
giving it speed 12 m/s relative to him. What is the speed 
of the ball relative to the girl, who catches it? (a) (8 1 
5 1 12) m/s (b) (8 2 5 2 12) m/s (c) (8 1 5 2 12) m/s 
(d) (8 2 5 1 12) m/s (e) (28 1 5 1 12) m/s

 9. A sailor drops a wrench from the top of a sailboat’s ver-
tical mast while the boat is moving rapidly and steadily 
straight forward. Where will the wrench hit the deck? 
(a) ahead of the base of the mast (b) at the base of 
the mast (c) behind the base of the mast (d) on the 
windward side of the base of the mast (e) None of the 
choices (a) through (d) is true.

 10. A baseball is thrown from the outfield toward the 
catcher. When the ball reaches its highest point, which 
statement is true? (a) Its velocity and its acceleration 
are both zero. (b) Its velocity is not zero, but its accel-
eration is zero. (c)  Its velocity is perpendicular to its 
acceleration. (d) Its acceleration depends on the angle 
at which the ball was thrown. (e) None of statements 
(a) through (d) is true.

 11. A set of keys on the end of a string is swung steadily 
in a horizontal circle. In one trial, it moves at speed 
v in a circle of radius r. In a second trial, it moves at a 
higher speed 4v in a circle of radius 4r. In the second 
trial, how does the period of its motion compare with 
its period in the first trial? (a) It is the same as in the 
first trial. (b) It is 4 times larger. (c) It is one-fourth as 
large. (d) It is 16 times larger. (e) It is one-sixteenth as 
large.

 1. Figure OQ4.1 shows a bird’s-eye view of a car going 
around a highway curve. As the car moves from point 
1 to point 2, its speed doubles. Which of the vectors 
(a) through (e) shows the direction of the car’s average 
acceleration between these two points?

2

1

(a)

(b)

(c)

(d)

(e)

Figure oQ4.1

 2. Entering his dorm room, a student tosses his book bag 
to the right and upward at an angle of 45° with the hori-
zontal (Fig. OQ4.2). Air resistance does not affect the 
bag. The bag moves through point A immediately after 
it leaves the student’s hand, through point B at the top 
of its flight, and through point C immediately before it 
lands on the top bunk bed. (i) Rank the following hori-
zontal and vertical velocity components from the larg-
est to the smallest. (a) vAx (b) vAy (c) vBx (d) vBy (e) vCy. 
Note that zero is larger than a negative number. If two 
quantities are equal, show them as equal in your list. If 
any quantity is equal to zero, show that fact in your list. 
(ii) Similarly, rank the following acceleration compo-
nents. (a) aAx (b) aAy (c) aBx (d) aBy (e) aCy.

45�A

B

C

Figure oQ4.2

 3. A student throws a heavy red ball horizontally from a 
balcony of a tall building with an initial speed vi. At the 
same time, a second student drops a lighter blue ball 
from the balcony. Neglecting air resistance, which state-
ment is true? (a) The blue ball reaches the ground first. 
(b) The balls reach the ground at the same instant.  
(c) The red ball reaches the ground first. (d) Both balls 
hit the ground with the same speed. (e) None of state-
ments (a) through (d) is true.

 4. A projectile is launched on the Earth with a certain ini-
tial velocity and moves without air resistance. Another 
projectile is launched with the same initial velocity on 
the Moon, where the acceleration due to gravity is one-
sixth as large. How does the maximum altitude of the 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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c 5 0.125 m/s2, and d 5 1.00 m. (a) Calculate the aver-
age velocity during the time interval from t 5 2.00 s to  
t 5 4.00 s. (b) Determine the velocity and the speed at 
t 5 2.00 s.

 4. The coordinates of an object moving in the xy plane 
vary with time according to the equations x 5  
25.00 sin vt and y 5 4.00 2 5.00 cos vt, where v is a 
constant, x and y are in meters, and t is in seconds.  
(a) Determine the components of velocity of the 
object at t 5 0. (b) Determine the components of 
acceleration of the object at t 5 0. (c) Write expres-
sions for the position vector, the velocity vector, and 
the acceleration vector of the object at any time t . 0. 
(d) Describe the path of the object in an xy plot.

Q/C

Section 4.1 the Position, Velocity, and Acceleration Vectors
 1. A motorist drives south at 20.0 m/s for 3.00 min, then 

turns west and travels at 25.0 m/s for 2.00 min, and 
finally travels northwest at 30.0 m/s for 1.00 min. For 
this 6.00-min trip, find (a) the total vector displace-
ment, (b) the average speed, and (c) the average veloc-
ity. Let the positive x axis point east.

 2. When the Sun is directly overhead, a hawk dives toward 
the ground with a constant velocity of 5.00 m/s at 60.0° 
below the horizontal. Calculate the speed of its shadow 
on the level ground.

 3. Suppose the position vector for a particle is given as 
a function of time by rS 1t 2 5 x 1t 2 î 1 y 1t 2 ĵ, with x(t) 5  
at 1 b and y(t) 5 ct2 1 d, where a 5 1.00 m/s, b 5 1.00 m, 

 12. A rubber stopper on the end of a string is swung 
steadily in a horizontal circle. In one trial, it moves at 
speed v in a circle of radius r. In a second trial, it moves 
at a higher speed 3v in a circle of radius 3r. In this 
second trial, is its acceleration (a) the same as in the 
first trial, (b) three times larger, (c) one-third as large,  
(d) nine times larger, or (e) one-ninth as large?

 13. In which of the following situations is the moving 
object appropriately modeled as a projectile? Choose 
all correct answers. (a) A shoe is tossed in an arbitrary 

direction. (b)  A jet airplane crosses the sky with its 
engines thrusting the plane forward. (c) A rocket leaves 
the launch pad. (d) A rocket moves through the sky, at 
much less than the speed of sound, after its fuel has 
been used up. (e) A diver throws a stone under water.

 14. A certain light truck can go around a curve having a 
radius of 150 m with a maximum speed of 32.0 m/s. 
To have the same acceleration, at what maximum speed 
can it go around a curve having a radius of 75.0 m?  
(a) 64 m/s (b) 45 m/s (c) 32 m/s (d) 23 m/s (e) 16 m/s

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. A spacecraft drifts through space at a constant velocity. 
Suddenly, a gas leak in the side of the spacecraft gives it a 
constant acceleration in a direction perpendicular to the 
initial velocity. The orientation of the spacecraft does not 
change, so the acceleration remains perpendicular to 
the original direction of the velocity. What is the shape 
of the path followed by the spacecraft in this situation?

 2. An ice skater is executing a figure eight, consisting of two 
identically shaped, tangent circular paths. Throughout 
the first loop she increases her speed uniformly, and dur-
ing the second loop she moves at a constant speed. Draw 
a motion diagram showing her velocity and acceleration 
vectors at several points along the path of motion.

  3. If you know the position vectors of a particle at two 
points along its path and also know the time interval 
during which it moved from one point to the other, 
can you determine the particle’s instantaneous veloc-
ity? Its average velocity? Explain.

 4. Describe how a driver can steer a car traveling at con-
stant speed so that (a) the acceleration is zero or (b) the 
magnitude of the acceleration remains constant.

 5. A projectile is launched at some angle to the hori-
zontal with some initial speed vi, and air resistance is 
negligible. (a) Is the projectile a freely falling body?  
(b) What is its acceleration in the vertical direction? 
(c) What is its acceleration in the horizontal direction?

 6. Construct motion diagrams showing the velocity and 
acceleration of a projectile at several points along its 
path, assuming (a) the projectile is launched horizon-
tally and (b) the projectile is launched at an angle u 
with the horizontal.

 7. Explain whether or not the following particles have 
an acceleration: (a) a particle moving in a straight line 
with constant speed and (b) a particle moving around 
a curve with constant speed.

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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102 chapter 4 Motion in two Dimensions

 5. A golf ball is hit off a tee at the edge of a cliff. Its x and 
y coordinates as functions of time are given by x 5 18.0t  
and y 5 4.00t  2 4.90t2, where x and y are in meters and t  
is in seconds. (a) Write a vector expression for the ball’s 
position as a function of time, using the unit vectors  
î and ĵ. By taking derivatives, obtain expressions for  
(b) the velocity vector vS as a function of time and  
(c) the acceleration vector aS as a function of time.  
(d) Next use unit-vector notation to write expressions 
for the position, the velocity, and the acceleration of 
the golf ball at t 5 3.00 s.

Section 4.2 two-Dimensional Motion  
with Constant Acceleration

 6. A particle initially located at the origin has an accel-
eration of aS 5 3.00 ĵ m/s2 and an initial velocity of 
vSi 5 5.00 î m/s. Find (a) the vector position of the par-
ticle at any time t, (b) the velocity of the particle at any 
time t, (c) the coordinates of the particle at t 5 2.00 s, 
and (d) the speed of the particle at t 5 2.00 s.

 7. The vector position of a particle varies in time accord-
ing to the expression rS 5 3.00î 2 6.00t 2 ĵ, where rS is 
in meters and t is in seconds. (a) Find an expression 
for the velocity of the particle as a function of time.  
(b) Determine the acceleration of the particle as a 
function of time. (c) Calculate the particle’s position 
and velocity at t 5 1.00 s.

 8.  It is not possible to see very small objects, such as 
viruses, using an ordinary light microscope. An elec-
tron microscope, however, can view such objects using 
an electron beam instead of a light beam. Electron 
microscopy has proved invaluable for investigations 
of viruses, cell membranes and subcellular structures, 
bacterial surfaces, visual receptors, chloroplasts, and 
the contractile properties of muscles. The “lenses” of 
an electron microscope consist of electric and mag-
netic fields that control the electron beam. As an exam-
ple of the manipulation of an electron beam, consider 
an electron traveling away from the origin along the  
x axis in the xy plane with initial velocity vSi 5 vi î. As it 
passes through the region x 5 0 to x 5 d, the electron 
experiences acceleration aS 5 ax î 1 ay ĵ, where ax and 
ay are constants. For the case vi 5 1.80 3 107 m/s, ax 5 
8.00 3 1014 m/s2, and ay 5 1.60 × 1015 m/s2, determine 
at x 5 d 5 0.010 0 m (a) the position of the electron, 
(b) the velocity of the electron, (c) the speed of the 
electron, and (d) the direction of travel of the electron 
(i.e., the angle between its velocity and the x axis).

 9. A fish swimming in a horizontal plane has veloc-
ity vSi 5 14.00 î 1 1.00 ĵ 2  m/s at a point in the 
ocean where the position relative to a certain rock 
is rSi 5 110.0 î 2 4.00 ĵ 2  m.  After the fish swims 
with constant acceleration for 20.0 s, its velocity is 
vS 5 120.0 î 2 5.00 ĵ 2  m/s. (a) What are the components 
of the acceleration of the fish? (b) What is the direc-
tion of its acceleration with respect to unit vector î ?  
(c) If the fish maintains constant acceleration, where is 
it at t 5 25.0 s and in what direction is it moving?

 10. Review. A snowmobile is originally at the point with 
position vector 29.0 m at 95.0° counterclockwise from 
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the x axis, moving with velocity 4.50 m/s at 40.0°. It 
moves with constant acceleration 1.90 m/s2 at 200°. 
After 5.00 s have elapsed, find (a) its velocity and (b) its 
position vector.

Section 4.3 Projectile Motion

Note: Ignore air resistance in all problems and take  
g 5 9.80 m/s2 at the Earth’s surface.

 11.  Mayan kings and many school sports teams are named 
for the puma, cougar, or mountain lion—Felis concolor— 
the best jumper among animals. It can jump to a height 
of 12.0 ft when leaving the ground at an angle of 45.0°. 
With what speed, in SI units, does it leave the ground 
to make this leap?

 12. An astronaut on a strange planet finds that she can 
jump a maximum horizontal distance of 15.0 m if her 
initial speed is 3.00 m/s. What is the free-fall accelera-
tion on the planet?

 13. In a local bar, a customer slides an empty beer mug down 
the counter for a refill. The height of the counter is  
1.22 m. The mug slides off the counter and strikes the 
floor 1.40 m from the base of the counter. (a) With what 
velocity did the mug leave the counter? (b) What was the 
direction of the mug’s velocity just before it hit the floor?

 14. In a local bar, a customer slides an empty beer mug 
down the counter for a refill. The height of the counter 
is h. The mug slides off the counter and strikes the floor 
at distance d from the base of the counter. (a) With what 
velocity did the mug leave the counter? (b) What was the 
direction of the mug’s velocity just before it hit the floor?

 15. A projectile is fired in such a way that its horizontal 
range is equal to three times its maximum height. 
What is the angle of projection?

 16. To start an avalanche on a mountain slope, an artillery 
shell is fired with an initial velocity of 300 m/s at 55.0° 
above the horizontal. It explodes on the mountainside 
42.0 s after firing. What are the x and y coordinates of 
the shell where it explodes, relative to its firing point?

 17.  Chinook salmon are able to move through water espe-
cially fast by jumping out of the water periodically. 
This behavior is called porpoising. Suppose a salmon 
swimming in still water jumps out of the water with 
velocity 6.26 m/s at 45.0° above the horizontal, sails 
through the air a distance L before returning to the 
water, and then swims the same distance L underwa-
ter in a straight, horizontal line with velocity 3.58 m/s 
before jumping out again. (a) Determine the average 
velocity of the fish for the entire process of jumping 
and swimming underwater. (b) Consider the time 
interval required to travel the entire distance of 2L. 
By what percentage is this time interval reduced by 
the jumping/swimming process compared with simply 
swimming underwater at 3.58 m/s?

 18. A rock is thrown upward from level ground in such a 
way that the maximum height of its flight is equal to 
its horizontal range R. (a) At what angle u is the rock 
thrown? (b) In terms of its original range R, what is 
the range Rmax the rock can attain if it is launched at 
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of mass, which we will define in Chapter 9. His center 
of mass is at elevation 1.02 m when he leaves the floor. 
It reaches a maximum height of 1.85 m above the floor 
and is at elevation 0.900 m when he touches down again. 
Determine (a)  his time of flight (his “hang time”),  
(b) his horizontal and (c) vertical velocity components at 
the instant of takeoff, and (d) his takeoff angle. (e) For  
comparison, determine the hang time of a whitetail 
deer making a jump (Fig. P4.24b) with center-of-mass 
elevations yi 5 1.20 m, ymax 5 2.50 m, and yf 5 0.700 m.

b

Figure P4.24
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 25. A playground is on the flat roof of a city school, 6.00 m  
above the street below (Fig. P4.25). The vertical wall 
of the building is h 5 7.00 m high, forming a 1-m-high 
railing around the playground. A ball has fallen to  
the street below, and a passerby returns it by launch-
ing it at an angle of u 5 53.0° above the horizontal at a  
point d 5 24.0 m from the base of the building wall. The 
ball takes 2.20 s to reach a point vertically above the 
wall. (a) Find the speed at which the ball was launched.  
(b) Find the vertical distance by which the ball clears 
the wall. (c) Find the horizontal distance from the wall 
to the point on the roof where the ball lands.

h

u

d

Figure P4.25

 26. The motion of a human body through space can be 
modeled as the motion of a particle at the body’s cen-
ter of mass as we will study in Chapter 9. The compo-
nents of the displacement of an athlete’s center of mass 
from the beginning to the end of a certain jump are 
described by the equations

  xf 5 0 1 (11.2 m/s)(cos 18.5°)t

0.360 m 5 0.840 m 1 111.2 m/s 2 1sin 18.582t 2 1
2 19.80 m/s2 2t 2

  where t is in seconds and is the time at which the ath-
lete ends the jump. Identify (a) the athlete’s position 
and (b) his vector velocity at the takeoff point. (c) How 
far did he jump?

 27. A soccer player kicks a rock horizontally off a 
40.0-m-high cliff into a pool of water. If the player W

the same speed but at the optimal angle for maximum 
range? (c) What If? Would your answer to part (a) be 
different if the rock is thrown with the same speed on a 
different planet? Explain.

 19. The speed of a projectile when it reaches its maximum 
height is one-half its speed when it is at half its maxi-
mum height. What is the initial projection angle of the 
projectile?

 20. A ball is tossed from an upper-story window of a build-
ing. The ball is given an initial velocity of 8.00 m/s at 
an angle of 20.0° below the horizontal. It strikes the 
ground 3.00 s later. (a) How far horizontally from the 
base of the building does the ball strike the ground? 
(b) Find the height from which the ball was thrown.  
(c) How long does it take the ball to reach a point 10.0 m  
below the level of launching?

 21. A firefighter, a distance d from a burning building, 
directs a stream of water from a fire hose at angle ui 
above the horizontal as shown in Figure P4.21. If the 
initial speed of the stream is vi, at what height h does 
the water strike the building?

d

h

i

ui

vS

Figure P4.21

 22. A landscape architect is 
planning an artificial water-
fall in a city park. Water 
flowing at 1.70 m/s will 
leave the end of a horizon-
tal channel at the top of 
a vertical wall h 5 2.35  m 
high, and from there it will 
fall into a pool (Fig. P4.22). 
(a) Will the space behind 
the waterfall be wide 
enough for a pedestrian walkway? (b) To sell her plan to 
the city council, the architect wants to build a model to 
standard scale, which is one-twelfth actual size. How fast 
should the water flow in the channel in the model?

 23. A placekicker must kick a football from a point 36.0 m 
(about 40 yards) from the goal. Half the crowd hopes 
the ball will clear the crossbar, which is 3.05 m high. 
When kicked, the ball leaves the ground with a speed 
of 20.0 m/s at an angle of 53.0° to the horizontal. (a) By 
how much does the ball clear or fall short of clearing 
the crossbar? (b) Does the ball approach the crossbar 
while still rising or while falling?

 24. A basketball star covers 2.80 m horizontally in a jump to 
dunk the ball (Fig. P4.24a). His motion through space 
can be modeled precisely as that of a particle at his center 
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104 chapter 4 Motion in two Dimensions

hears the sound of the splash 3.00 s later, what was the 
initial speed given to the rock? Assume the speed of 
sound in air is 343 m/s.

 28. A projectile is fired from the top of a cliff of height h 
above the ocean below. The projectile is fired at an 
angle u above the horizontal and with an initial speed 
vi. (a) Find a symbolic expression in terms of the vari-
ables vi, g, and u for the time at which the projectile 
reaches its maximum height. (b) Using the result of 
part (a), find an expression for the maximum height 
hmax above the ocean attained by the projectile in 
terms of h, vi, g, and u.

 29. A student stands at the 
edge of a cliff and throws 
a stone horizontally over 
the edge with a speed of 
vi 5 18.0  m/s. The cliff is 
h 5 50.0 m above a body 
of water as shown in Fig-
ure P4.29. (a)  What are 
the coordinates of the ini-
tial position of the stone? 
(b)  What are the compo-
nents of the initial velocity 
of the stone? (c) What is the 
appropriate analysis model 
for the vertical motion of 
the stone? (d)  What is the 
appropriate analysis model for the horizontal motion 
of the stone? (e) Write symbolic equations for the x and 
y components of the velocity of the stone as a function 
of time. (f) Write symbolic equations for the position 
of the stone as a function of time. (g) How long after 
being released does the stone strike the water below 
the cliff? (h) With what speed and angle of impact does 
the stone land?

 30. The record distance in the sport of throwing cowpats 
is 81.1  m. This record toss was set by Steve Urner of 
the United States in 1981. Assuming the initial launch 
angle was 45° and neglecting air resistance, determine 
(a) the initial speed of the projectile and (b) the total 
time interval the projectile was in flight. (c) How would 
the answers change if the range were the same but the 
launch angle were greater than 45°? Explain.

 31. A boy stands on a diving board and tosses a stone into 
a swimming pool. The stone is thrown from a height of 
2.50 m above the water surface with a velocity of 4.00 m/s  
at an angle of 60.0° above the horizontal. As the stone 
strikes the water surface, it immediately slows down to 
exactly half the speed it had when it struck the water 
and maintains that speed while in the water. After the 
stone enters the water, it moves in a straight line in the 
direction of the velocity it had when it struck the water. 
If the pool is 3.00  m deep, how much time elapses 
between when the stone is thrown and when it strikes 
the bottom of the pool?

 32. A home run is hit in such a way that the baseball just 
clears a wall 21.0 m high, located 130 m from home 
plate. The ball is hit at an angle of 35.0° to the hori-
zontal, and air resistance is negligible. Find (a) the 
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initial speed of the ball, (b) the time it takes the ball 
to reach the wall, and (c) the velocity components and 
the speed of the ball when it reaches the wall. (Assume 
the ball is hit at a height of 1.00 m above the ground.)

Section 4.4 Analysis Model: Particle  
in uniform Circular Motion

Note: Problems 6 and 13 in Chapter 6 can also be 
assigned with this section.

 33. The athlete shown in Figure P4.33 rotates a 1.00-kg dis-
cus along a circular path of radius 1.06 m. The maxi-
mum speed of the discus is 20.0 m/s. Determine the 
magnitude of the maximum radial acceleration of the 
discus.

Figure P4.33
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 34. In Example 4.6, we found the centripetal accelera-
tion of the Earth as it revolves around the Sun. From 
information on the endpapers of this book, compute 
the centripetal acceleration of a point on the surface of 
the Earth at the equator caused by the rotation of the 
Earth about its axis.

 35. Casting molten metal is important in many industrial 
processes. Centrifugal casting is used for manufacturing 
pipes, bearings, and many other structures. A variety of 
sophisticated techniques have been invented, but the 
basic idea is as illustrated in Figure P4.35. A cylindrical 
enclosure is rotated rapidly and steadily about a hori-
zontal axis. Molten metal is poured into the rotating 
cylinder and then cooled, forming the finished prod-
uct. Turning the cylinder at a high rotation rate forces 
the solidifying metal strongly to the outside. Any bub-
bles are displaced toward the axis, so unwanted voids 
will not be present in the casting. Sometimes it is desir-
able to form a composite casting, such as for a bearing. 
Here a strong steel outer surface is poured and then 
inside it a lining of special low-friction metal. In some 
applications, a very strong metal is given a coating of 
corrosion-resistant metal. Centrifugal casting results 
in strong bonding between the layers.

Figure P4.35

Axis of rotation

Molten metal

Preheated steel sheath
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 41. A train slows down as it rounds a sharp horizontal 
turn, going from 90.0 km/h to 50.0 km/h in the 15.0 s  
it takes to round the bend. The radius of the curve is 
150 m. Compute the acceleration at the moment the 
train speed reaches 50.0 km/h. Assume the train con-
tinues to slow down at this time at the same rate.

 42. A ball swings counterclockwise in a vertical circle at 
the end of a rope 1.50 m long. When the ball is 36.9° 
past the lowest point on its way up, its total acceleration 
is 1222.5 î 1 20.2 ĵ 2  m/s2. For that instant, (a) sketch a 
vector diagram showing the components of its acceler-
ation, (b) determine the magnitude of its radial accel-
eration, and (c) determine the speed and velocity of 
the ball.

 43. (a) Can a particle moving with instantaneous speed 
3.00  m/s on a path with radius of curvature 2.00 m 
have an acceleration of magnitude 6.00 m/s2? (b) Can 
it have an acceleration of magnitude 4.00 m/s2? In 
each case, if the answer is yes, explain how it can hap-
pen; if the answer is no, explain why not.

Section 4.6 Relative Velocity and Relative Acceleration

 44. The pilot of an airplane notes that the compass indi-
cates a heading due west. The airplane’s speed relative 
to the air is 150 km/h. The air is moving in a wind at 
30.0 km/h toward the north. Find the velocity of the 
airplane relative to the ground.

 45. An airplane maintains a speed of 630 km/h relative 
to the air it is flying through as it makes a trip to a 
city 750 km away to the north. (a) What time interval is 
required for the trip if the plane flies through a head-
wind blowing at 35.0 km/h toward the south? (b) What 
time interval is required if there is a tailwind with the 
same speed? (c) What time interval is required if there 
is a crosswind blowing at 35.0 km/h to the east relative 
to the ground?

 46. A moving beltway at an airport has a speed v1 and a 
length L. A woman stands on the beltway as it moves 
from one end to the other, while a man in a hurry to 
reach his flight walks on the beltway with a speed of 
v2 relative to the moving beltway. (a) What time inter-
val is required for the woman to travel the distance L? 
(b) What time interval is required for the man to travel 
this distance? (c) A second beltway is located next  
to the first one. It is identical to the first one but moves 
in the opposite direction at speed v1. Just as the man 
steps onto the beginning of the beltway and begins to 
walk at speed v2 relative to his beltway, a child steps on 
the other end of the adjacent beltway. The child stands 
at rest relative to this second beltway. How long after 
stepping on the beltway does the man pass the child?

 47. A police car traveling at 95.0 km/h is traveling west, 
chasing a motorist traveling at 80.0 km/h. (a) What is 
the velocity of the motorist relative to the police car? 
(b) What is the velocity of the police car relative to the 
motorist? (c) If they are originally 250 m apart, in what 
time interval will the police car overtake the motorist?

 48. A car travels due east with a speed of 50.0 km/h. Rain-
drops are falling at a constant speed vertically with 
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   Suppose a copper sleeve of inner radius 2.10 cm 
and outer radius 2.20 cm is to be cast. To eliminate 
bubbles and give high structural integrity, the cen-
tripetal acceleration of each bit of metal should be at 
least 100g. What rate of rotation is required? State the 
answer in revolutions per minute.

 36. A tire 0.500 m in radius rotates at a constant rate of 
200 rev/min. Find the speed and acceleration of a small 
stone lodged in the tread of the tire (on its outer edge).

 37. Review. The 20-g centrifuge at NASA’s Ames Research 
Center in Mountain View, California, is a horizontal, 
cylindrical tube 58.0 ft long and is represented in Fig-
ure P4.37. Assume an astronaut in training sits in a 
seat at one end, facing the axis of rotation 29.0 ft away. 
Determine the rotation rate, in revolutions per second, 
required to give the astronaut a centripetal accelera-
tion of 20.0g.

29 ft

Figure P4.37

 38. An athlete swings a ball, connected to the end of a chain, 
in a horizontal circle. The athlete is able to rotate the 
ball at the rate of 8.00 rev/s when the length of the chain 
is 0.600 m. When he increases the length to 0.900 m, he 
is able to rotate the ball only 6.00 rev/s. (a) Which rate of 
rotation gives the greater speed for the ball? (b) What is 
the centripetal acceleration of the ball at 8.00 rev/s? 
(c) What is the centripetal acceleration at 6.00 rev/s?

 39. The astronaut orbit-
ing the Earth in Figure 
P4.39 is preparing to 
dock with a Westar VI 
satellite. The satellite 
is in a circular orbit  
600 km above the 
Earth’s surface, where 
the free-fall accelera-
tion is 8.21 m/s2. Take 
the radius of the Earth 
as 6 400 km. Determine the speed of the satellite and 
the time interval required to complete one orbit around 
the Earth, which is the period of the satellite.

Section 4.5 tangential and Radial Acceleration

 40. Figure P4.40 represents the 
total acceleration of a particle 
moving clockwise in a circle 
of radius 2.50  m at a certain 
instant of time. For that instant, 
find (a) the radial acceleration 
of the particle, (b) the speed of 
the particle, and (c) its tangen-
tial acceleration.

AMT

Figure P4.39
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can and catch it. In this observer’s frame of reference,  
(d) describe the shape of the can’s path and (e) deter-
mine the initial velocity of the can.

Additional Problems

 55. A ball on the end of a string is whirled around in a 
horizontal circle of radius 0.300 m. The plane of the 
circle is 1.20 m above the ground. The string breaks 
and the ball lands 2.00 m (horizontally) away from the 
point on the ground directly beneath the ball’s loca-
tion when the string breaks. Find the radial accelera-
tion of the ball during its circular motion.

 56. A ball is thrown with an initial speed vi at an angle ui 
with the horizontal. The horizontal range of the ball 
is R, and the ball reaches a maximum height R/6. In 
terms of R and g, find (a) the time interval during 
which the ball is in motion, (b) the ball’s speed at the 
peak of its path, (c) the initial vertical component of 
its velocity, (d) its initial speed, and (e) the angle ui.  
(f) Suppose the ball is thrown at the same initial speed 
found in (d) but at the angle appropriate for reach-
ing the greatest height that it can. Find this height.  
(g) Suppose the ball is thrown at the same initial speed 
but at the angle for greatest possible range. Find this 
maximum horizontal range.

 57. Why is the following situation impossible? A normally pro-
portioned adult walks briskly along a straight line in the 
1x direction, standing straight up and holding his right 
arm vertical and next to his body so that the arm does 
not swing. His right hand holds a ball at his side a dis-
tance h above the floor. When the ball passes above a 
point marked as x 5 0 on the horizontal floor, he opens 
his fingers to release the ball from rest relative to his 
hand. The ball strikes the ground for the first time at 
position x 5 7.00h.

 58. A particle starts from the origin with velocity 5î m/s  
at t 5 0 and moves in the xy plane with a varying accel-
eration given by aS 5 16!t ĵ 2 , where aS is in meters per 
second squared and t is in seconds. (a) Determine the 
velocity of the particle as a function of time. (b) Deter-
mine the position of the particle as a function of time.

 59. The “Vomit Comet.” In microgravity astronaut training 
and equipment testing, NASA flies a KC135A aircraft 
along a parabolic flight path. As shown in Figure P4.59, 
the aircraft climbs from 24 000 ft to 31 000 ft, where 
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respect to the Earth. The traces of the rain on the side 
windows of the car make an angle of 60.0° with the ver-
tical. Find the velocity of the rain with respect to (a) the 
car and (b) the Earth.

 49. A bolt drops from the ceiling of a moving train car 
that is accelerating northward at a rate of 2.50 m/s2. 
(a) What is the acceleration of the bolt relative to the 
train car? (b) What is the acceleration of the bolt rela-
tive to the Earth? (c) Describe the trajectory of the bolt 
as seen by an observer inside the train car. (d) Describe 
the trajectory of the bolt as seen by an observer fixed 
on the Earth.

 50. A river has a steady speed of 0.500 m/s. A student swims 
upstream a distance of 1.00 km and swims back to the 
starting point. (a) If the student can swim at a speed 
of 1.20 m/s in still water, how long does the trip take? 
(b) How much time is required in still water for the 
same length swim? (c) Intuitively, why does the swim 
take longer when there is a current?

 51. A river flows with a steady speed v. A student swims 
upstream a distance d and then back to the starting 
point. The student can swim at speed c in still water. 
(a) In terms of d, v, and c, what time interval is required 
for the round trip? (b) What time interval would be 
required if the water were still? (c) Which time interval 
is larger? Explain whether it is always larger.

 52. A Coast Guard cutter detects an unidentified ship at 
a distance of 20.0 km in the direction 15.0° east of 
north. The ship is traveling at 26.0 km/h on a course 
at 40.0° east of north. The Coast Guard wishes to send 
a speedboat to intercept and investigate the vessel. If 
the speedboat travels at 50.0 km/h, in what direction 
should it head? Express the direction as a compass 
bearing with respect to due north.

 53. A science student is riding on a flatcar of a train trav-
eling along a straight, horizontal track at a constant 
speed of 10.0 m/s. The student throws a ball into the 
air along a path that he judges to make an initial angle 
of 60.0° with the horizontal and to be in line with the 
track. The student’s professor, who is standing on the 
ground nearby, observes the ball to rise vertically. How 
high does she see the ball rise?

 54. A farm truck moves 
due east with a constant 
velocity of 9.50 m/s  
on a limitless, hori-
zontal stretch of road. 
A boy riding on the 
back of the truck 
throws a can of soda 
upward (Fig. P4.54) 
and catches the projectile at the same location on the 
truck bed, but 16.0 m farther down the road. (a) In  
the frame of reference of the truck, at what angle to 
the vertical does the boy throw the can? (b) What is the 
initial speed of the can relative to the truck? (c) What 
is the shape of the can’s trajectory as seen by the boy? 
An observer on the ground watches the boy throw the 
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leave simultaneously and drive for 2.50 h in the direc-
tions shown. Car 1 has a speed of 90.0 km/h. If the 
cars arrive simultaneously at the lake, what is the speed 
of car 2?

80.0 km40.0°
A B

1
2

L

Figure P4.64

 65. A catapult launches a rocket at an angle of 53.0° above 
the horizontal with an initial speed of 100 m/s. The 
rocket engine immediately starts a burn, and for 3.00 s  
the rocket moves along its initial line of motion with 
an acceleration of 30.0 m/s2. Then its engine fails, and 
the rocket proceeds to move in free fall. Find (a) the 
maximum altitude reached by the rocket, (b) its total 
time of flight, and (c) its horizontal range.

 66. A cannon with a muzzle speed of 1 000 m/s is used to 
start an avalanche on a mountain slope. The target 
is 2 000 m from the cannon horizontally and 800 m 
above the cannon. At what angle, above the horizontal, 
should the cannon be fired?

 67. Why is the following situation impossible? Albert Pujols hits 
a home run so that the baseball just clears the top row 
of bleachers, 24.0 m high, located 130 m from home 
plate. The ball is hit at 41.7 m/s at an angle of 35.0° to 
the horizontal, and air resistance is negligible.

 68. As some molten metal splashes, one droplet flies off to 
the east with initial velocity vi at angle ui above the hor-
izontal, and another droplet flies off to the west with 
the same speed at the same angle above the horizontal 
as shown in Figure P4.68. In terms of vi and ui, find 
the distance between the two droplets as a function of 
time.

i

i i

iu u

vS vS

Figure P4.68

 69. An astronaut on the surface of the Moon fires a can-
non to launch an experiment package, which leaves 
the barrel moving horizontally. Assume the free-fall 
acceleration on the Moon is one-sixth of that on the 

S

it enters a parabolic path with a velocity of 143 m/s  
nose high at 45.0° and exits with velocity 143 m/s at 
45.0° nose low. During this portion of the flight, the 
aircraft and objects inside its padded cabin are in free 
fall; astronauts and equipment float freely as if there 
were no gravity. What are the aircraft’s (a) speed and 
(b) altitude at the top of the maneuver? (c) What is the 
time interval spent in microgravity?

 60. A basketball player is standing on the floor 10.0 m from 
the basket as in Figure P4.60. The height of the basket 
is 3.05 m, and he shoots the ball at a 40.0o angle with 
the horizontal from a height of 2.00 m. (a) What is the 
acceleration of the basketball at the highest point in 
its trajectory? (b) At what speed must the player throw 
the basketball so that the ball goes through the hoop 
without striking the backboard?

10.0 m

2.00
m

3.05 m

40.0�

Figure P4.60

 61. Lisa in her Lamborghini accelerates at the rate of 
13.00 î 2 2.00 ĵ 2  m/s2, while Jill in her Jaguar acceler-
ates at 11.00 î 1 3.00 ĵ 2  m/s2. They both start from rest 
at the origin of an xy coordinate system. After 5.00 s, 
(a) what is Lisa’s speed with respect to Jill, (b) how far 
apart are they, and (c) what is Lisa’s acceleration relative 
to Jill?

 62. A boy throws a stone horizontally from the top of a cliff 
of height h toward the ocean below. The stone strikes 
the ocean at distance d from the base of the cliff. In 
terms of h, d, and g, find expressions for (a) the time 
t at which the stone lands in the ocean, (b) the initial 
speed of the stone, (c) the speed of the stone immedi-
ately before it reaches the ocean, and (d) the direction 
of the stone’s velocity immediately before it reaches the 
ocean.

 63. A flea is at point A on a horizontal turntable, 10.0 cm 
from the center. The turntable is rotating at 33.3 rev/min  
in the clockwise direction. The flea jumps straight up 
to a height of 5.00 cm. At takeoff, it gives itself no hori-
zontal velocity relative to the turntable. The flea lands 
on the turntable at point B. Choose the origin of coor-
dinates to be at the center of the turntable and the posi-
tive x axis passing through A at the moment of takeoff.  
Then the original position of the flea is 10.0 î cm. 
(a) Find the position of point A when the flea lands.  
(b) Find the position of point B when the flea lands.

 64. Towns A and B in Figure P4.64 are 80.0 km apart. A 
couple arranges to drive from town A and meet a cou-
ple driving from town B at the lake, L. The two couples 
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Earth. (a) What must the muzzle speed of the package 
be so that it travels completely around the Moon and 
returns to its original location? (b) What time interval 
does this trip around the Moon require?

 70. A pendulum with a cord of 
length r 5 1.00 m swings in 
a vertical plane (Fig. P4.70). 
When the pendulum is in 
the two horizontal positions 
u 5 90.0° and u 5 270°, its 
speed is 5.00 m/s. Find the 
magnitude of (a) the radial 
acceleration and (b) the 
tangential acceleration for 
these positions. (c)  Draw 
vector diagrams to deter-
mine the direction of the 
total acceleration for these 
two positions. (d) Calculate 
the magnitude and direction of the total acceleration 
at these two positions.

 71. A hawk is flying horizontally at 10.0 m/s in a straight 
line, 200 m above the ground. A mouse it has been car-
rying struggles free from its talons. The hawk continues 
on its path at the same speed for 2.00 s before attempt-
ing to retrieve its prey. To accomplish the retrieval, it 
dives in a straight line at constant speed and recaptures 
the mouse 3.00 m above the ground. (a) Assuming no 
air resistance acts on the mouse, find the diving speed 
of the hawk. (b) What angle did the hawk make with 
the horizontal during its descent? (c) For what time 
interval did the mouse experience free fall?

 72. A projectile is launched from the point (x 5 0, y 5 0), 
with velocity 112.0 î 1 49.0 ĵ 2  m/s, at t 5 0. (a) Make a 
table listing the projectile’s distance | rS| from the ori-
gin at the end of each second thereafter, for 0 # t #  
10 s. Tabulating the x and y coordinates and the compo-
nents of velocity vx and vy will also be useful. (b) Notice 
that the projectile’s distance from its starting point 
increases with time, goes through a maximum, and 
starts to decrease. Prove that the distance is a maximum 
when the position vector is perpendicular to the veloc-
ity. Suggestion: Argue that if vS is not perpendicular to 
 rS, then | rS| must be increasing or decreasing. (c) Deter-
mine the magnitude of the maximum displacement. 
(d) Explain your method for solving part (c).

 73. A spring cannon is located at the edge of a table that 
is 1.20 m above the floor. A steel ball is launched from 
the cannon with speed vi at 35.0° above the horizontal. 
(a) Find the horizontal position of the ball as a func-
tion of vi at the instant it lands on the floor. We write 
this function as x(vi). Evaluate x for (b) vi 5 0.100 m/s 
and for (c) vi 5 100 m/s. (d) Assume vi is close to but 
not equal to zero. Show that one term in the answer to 
part (a) dominates so that the function x(vi) reduces to 
a simpler form. (e) If vi is very large, what is the approx-
imate form of x(vi)? (f) Describe the overall shape of 
the graph of the function x(vi).
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 74. An outfielder throws a baseball to his catcher in an 
attempt to throw out a runner at home plate. The ball 
bounces once before reaching the catcher. Assume the 
angle at which the bounced ball leaves the ground is 
the same as the angle at which the outfielder threw it 
as shown in Figure P4.74, but that the ball’s speed after 
the bounce is one-half of what it was before the bounce.  
(a) Assume the ball is always thrown with the same 
initial speed and ignore air resistance. At what angle u 
should the fielder throw the ball to make it go the same 
distance D with one bounce (blue path) as a ball thrown 
upward at 45.0° with no bounce (green path)? (b) Deter-
mine the ratio of the time interval for the one-bounce 
throw to the flight time for the no-bounce throw.

45.0°
θ θ

D

Figure P4.74

 75. A World War II bomber flies horizontally over level 
terrain with a speed of 275 m/s relative to the ground 
and at an altitude of 3.00 km. The bombardier releases 
one bomb. (a) How far does the bomb travel horizon-
tally between its release and its impact on the ground? 
Ignore the effects of air resistance. (b) The pilot main-
tains the plane’s original course, altitude, and speed 
through a storm of flak. Where is the plane when the 
bomb hits the ground? (c)  The bomb hits the target 
seen in the telescopic bombsight at the moment of the 
bomb’s release. At what angle from the vertical was the 
bombsight set?

 76. A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out 
bridge (Fig. P4.76). The quick stop causes a number of 
melons to fly off the truck. One melon leaves the hood 
of the truck with an initial speed vi 5 10.0 m/s in the 
horizontal direction. A cross section of the bank has 
the shape of the bottom half of a parabola, with its ver-
tex at the initial location of the projected watermelon 
and with the equation y2 5 16x, where x and y are mea-

vi � 10.0 m/s
x

y

Figure P4.76 The blue dashed curve 
shows the parabolic shape of the bank.
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order-of-magnitude estimate of this acceleration, stating 
the quantities you measure or estimate and their values.

Challenge Problems

 81. A skier leaves the ramp of a ski jump with a velocity of  
v 5 10.0 m/s at u 5 15.0° above the horizontal as shown 
in Figure P4.81. The slope where she will land is inclined 
downward at f 5 50.0°, and air resistance is negligible. 
Find (a) the distance from the end of the ramp to where 
the jumper lands and (b) her velocity components 
just before the landing. (c) Explain how you think the 
results might be affected if air resistance were included.

f

u
vS

Figure P4.81

 82. Two swimmers, Chris and Sarah, start together at the 
same point on the bank of a wide stream that flows 
with a speed v. Both move at the same speed c (where 
c . v) relative to the water. Chris swims downstream 
a distance L and then upstream the same distance. 
Sarah swims so that her motion relative to the Earth 
is perpendicular to the banks of the stream. She swims 
the distance L and then back the same distance, with 
both swimmers returning to the starting point. In 
terms of L, c, and v, find the time intervals required  
(a) for Chris’s round trip and (b) for Sarah’s round trip.  
(c) Explain which swimmer returns first.

 83. The water in a river flows uniformly at a constant speed 
of 2.50 m/s between parallel banks 80.0 m apart. You 
are to deliver a package across the river, but you can 
swim only at 1.50 m/s. (a) If you choose to minimize the 
time you spend in the water, in what direction should 
you head? (b) How far downstream will you be carried? 
(c) If you choose to minimize the distance downstream 
that the river carries you, in what direction should you 
head? (d) How far downstream will you be carried?

 84. A person standing at the top of a hemispherical rock of 
radius R kicks a ball (initially at rest on the top of the 
rock) to give it horizontal velocity vSi as shown in Fig-
ure P4.84. (a) What must be its minimum initial speed 
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sured in meters. What are the x and y coordinates of 
the melon when it splatters on the bank?

 77. A car is parked on a steep incline, making an angle of 
37.0° below the horizontal and overlooking the ocean, 
when its brakes fail and it begins to roll. Starting from 
rest at t 5 0, the car rolls down the incline with a con-
stant acceleration of 4.00 m/s2, traveling 50.0 m to the 
edge of a vertical cliff. The cliff is 30.0 m above the 
ocean. Find (a)  the speed of the car when it reaches  
the edge of the cliff, (b) the time interval elapsed when 
it arrives there, (c) the velocity of the car when it lands 
in the ocean, (d) the total time interval the car is in 
motion, and (e) the position of the car when it lands in 
the ocean, relative to the base of the cliff.

 78. An aging coyote cannot run 
fast enough to catch a road-
runner. He purchases on 
eBay a set of jet-powered roller 
skates, which provide a con-
stant horizontal acceleration of 
15.0 m/s2 (Fig. P4.78). The coy-
ote starts at rest 70.0 m from 
the edge of a cliff at the instant 
the roadrunner zips past in the 
direction of the cliff. (a) Deter-
mine the minimum constant speed the roadrunner must 
have to reach the cliff before the coyote. At the edge of 
the cliff, the roadrunner escapes by making a sudden 
turn, while the coyote continues straight ahead. The coy-
ote’s skates remain horizontal and continue to operate 
while he is in flight, so his acceleration while in the air 
is 115.0 î 2 9.80 ĵ 2  m/s2. (b) The cliff is 100 m above the 
flat floor of the desert. Determine how far from the base 
of the vertical cliff the coyote lands. (c) Determine the 
components of the coyote’s impact velocity.

 79. A fisherman sets out upstream on a river. His small boat, 
powered by an outboard motor, travels at a constant 
speed v in still water. The water flows at a lower con-
stant speed vw . The fisherman has traveled upstream 
for 2.00 km when his ice chest falls out of the boat. He 
notices that the chest is missing only after he has gone 
upstream for another 15.0 min. At that point, he turns 
around and heads back downstream, all the time travel-
ing at the same speed relative to the water. He catches 
up with the floating ice chest just as he returns to his 
starting point. How fast is the river flowing? Solve this 
problem in two ways. (a) First, use the Earth as a refer-
ence frame. With respect to the Earth, the boat travels 
upstream at speed v 2 vw and downstream at v 1 vw. 
(b) A second much simpler and more elegant solution 
is obtained by using the water as the reference frame. 
This approach has important applications in many 
more complicated problems; examples are calculating 
the motion of rockets and satellites and analyzing the 
scattering of subatomic particles from massive targets.

 80. Do not hurt yourself; do not strike your hand against 
anything. Within these limitations, describe what you 
do to give your hand a large acceleration. Compute an 
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  (b) For what value of ui is d a maximum, and what is 
that maximum value?

 87. A fireworks rocket explodes at height h, the peak of 
its vertical trajectory. It throws out burning fragments 
in all directions, but all at the same speed v. Pellets 
of solidified metal fall to the ground without air resis-
tance. Find the smallest angle that the final velocity of 
an impacting fragment makes with the horizontal.

 88. In the What If? section of Example 4.5, it was claimed 
that the maximum range of a ski jumper occurs for a 
launch angle u given by

u 5 458 2
f

2
  where f is the angle the hill makes with the horizontal 

in Figure 4.14. Prove this claim by deriving the equa-
tion above.

 89. An enemy ship is on the east side of a mountain island 
as shown in Figure P4.89. The enemy ship has maneu-
vered to within 2 500 m of the 1 800-m-high mountain 
peak and can shoot projectiles with an initial speed of 
250 m/s. If the western shoreline is horizontally 300 m 
from the peak, what are the distances from the western 
shore at which a ship can be safe from the bombard-
ment of the enemy ship? 

S

S

if the ball is never to hit the rock after it is kicked?  
(b) With this initial speed, how far from the base of the 
rock does the ball hit the ground?

 85. A dive-bomber has a velocity of 280 m/s at an angle u 
below the horizontal. When the altitude of the aircraft 
is 2.15 km, it releases a bomb, which subsequently hits 
a target on the ground. The magnitude of the displace-
ment from the point of release of the bomb to the tar-
get is 3.25 km. Find the angle u.

 86. A projectile is fired up an incline (incline angle f) 
with an initial speed vi at an angle ui with respect to the 
horizontal (ui > f) as shown in Figure P4.86. (a) Show 
that the projectile travels a distance d up the incline, 
where 

d 5
2v i

2 cos ui sin 1ui 2 f 2
g cos2 f

vi � 250 m/s uH

uL

2 500 m
300 m

vi
S

1 800 m

Figure P4.89

Figure P4.86
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5.1 The Concept of Force

5.2 Newton’s First Law and 
Inertial Frames

5.3 Mass

5.4 Newton’s Second Law

5.5 The Gravitational Force and 
Weight

5.6 Newton’s Third Law

5.7 Analysis Models Using 
Newton’s Second Law

5.8 Forces of Friction

A person sculls on a calm waterway. 
The water exerts forces on the oars 
to accelerate the boat. (Tetra Images/

Getty Images)

The Laws of Motion
c h a p T e r 

5

In Chapters 2 and 4, we described the motion of an object in terms of its position, 
velocity, and acceleration without considering what might influence that motion. Now 
we consider that influence: Why does the motion of an object change? What might cause 
one object to remain at rest and another object to accelerate? Why is it generally easier to 
move a small object than a large object? The two main factors we need to consider are the 
forces acting on an object and the mass of the object. In this chapter, we begin our study of 
dynamics by discussing the three basic laws of motion, which deal with forces and masses 
and were formulated more than three centuries ago by Isaac Newton.

5.1 The Concept of Force
Everyone has a basic understanding of the concept of force from everyday experi-
ence. When you push your empty dinner plate away, you exert a force on it. Simi-
larly, you exert a force on a ball when you throw or kick it. In these examples, the 
word force refers to an interaction with an object by means of muscular activity and 
some change in the object’s velocity. Forces do not always cause motion, however. 
For example, when you are sitting, a gravitational force acts on your body and yet 
you remain stationary. As a second example, you can push (in other words, exert a 
force) on a large boulder and not be able to move it.
 What force (if any) causes the Moon to orbit the Earth? Newton answered this 
and related questions by stating that forces are what cause any change in the velocity  
of an object. The Moon’s velocity changes in direction as it moves in a nearly circular  

 



112 chapter 5 The Laws of Motion

orbit around the Earth. This change in velocity is caused by the gravitational force 
exerted by the Earth on the Moon.
 When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a 
stationary cart is pulled, as in Figure 5.1b, the cart moves. When a football is kicked, 
as in Figure 5.1c, it is both deformed and set in motion. These situations are all 
examples of a class of forces called contact forces. That is, they involve physical contact 
between two objects. Other examples of contact forces are the force exerted by gas 
molecules on the walls of a container and the force exerted by your feet on the floor.
 Another class of forces, known as field forces, does not involve physical contact 
between two objects. These forces act through empty space. The gravitational force 
of attraction between two objects with mass, illustrated in Figure 5.1d, is an example 
of this class of force. The gravitational force keeps objects bound to the Earth and 
the planets in orbit around the Sun. Another common field force is the electric force 
that one electric charge exerts on another (Fig. 5.1e), such as the attractive electric 
force between an electron and a proton that form a hydrogen atom. A third example 
of a field force is the force a bar magnet exerts on a piece of iron (Fig. 5.1f).
 The distinction between contact forces and field forces is not as sharp as you may 
have been led to believe by the previous discussion. When examined at the atomic 
level, all the forces we classify as contact forces turn out to be caused by electric 
(field) forces of the type illustrated in Figure 5.1e. Nevertheless, in developing mod-
els for macroscopic phenomena, it is convenient to use both classifications of forces. 
The only known fundamental forces in nature are all field forces: (1) gravitational 
forces between objects, (2) electromagnetic forces between electric charges, (3) strong 
forces between subatomic particles, and (4) weak forces that arise in certain radioac-
tive decay processes. In classical physics, we are concerned only with gravitational 
and electromagnetic forces. We will discuss strong and weak forces in Chapter 46.

The Vector Nature of Force
It is possible to use the deformation of a spring to measure force. Suppose a verti-
cal force is applied to a spring scale that has a fixed upper end as shown in Fig-
ure  5.2a. The spring elongates when the force is applied, and a pointer on the 
scale reads the extension of the spring. We can calibrate the spring by defining a 
reference force F

S

1 as the force that produces a pointer reading of 1.00 cm. If we 
now apply a different downward force F

S

2 whose magnitude is twice that of the ref-
erence force F

S

1 as seen in Figure 5.2b, the pointer moves to 2.00 cm. Figure 5.2c 
shows that the combined effect of the two collinear forces is the sum of the effects 
of the individual forces.
 Now suppose the two forces are applied simultaneously with F

S

1 downward and 
F
S

2 horizontal as illustrated in Figure 5.2d. In this case, the pointer reads 2.24 cm.  
The single force F

S
 that would produce this same reading is the sum of the two vec-

tors F
S

1 and F
S

2 as described in Figure 5.2d. That is, 0 FS1 0 5 !F1
2 1 F2

2 5 2.24 units, 

b c

M

Field forces

d

�qm �Q

e

Iron N S

f

Contact forces

a

Figure 5.1 Some examples of 
applied forces. In each case, a force 
is exerted on the object within the 
boxed area. Some agent in the 
environment external to the boxed 
area exerts a force on the object.

Isaac Newton
English physicist and mathematician 
(1642–1727)
Isaac Newton was one of the most 
brilliant scientists in history. Before 
the age of 30, he formulated the basic 
concepts and laws of mechanics, 
discovered the law of universal gravita-
tion, and invented the mathematical 
methods of calculus. As a consequence 
of his theories, Newton was able to 
explain the motions of the planets, 
the ebb and flow of the tides, and 
many special features of the motions 
of the Moon and the Earth. He also 
interpreted many fundamental obser-
vations concerning the nature of light. 
His contributions to physical theories 
dominated scientific thought for two 
centuries and remain important today.
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and its direction is u 5 tan21 (20.500) 5 226.6°. Because forces have been experi-
mentally verified to behave as vectors, you must use the rules of vector addition to 
obtain the net force on an object.

5.2 Newton’s First Law and Inertial Frames
We begin our study of forces by imagining some physical situations involving a puck 
on a perfectly level air hockey table (Fig. 5.3). You expect that the puck will remain 
stationary when it is placed gently at rest on the table. Now imagine your air hockey 
table is located on a train moving with constant velocity along a perfectly smooth 
track. If the puck is placed on the table, the puck again remains where it is placed. 
If the train were to accelerate, however, the puck would start moving along the 
table opposite the direction of the train’s acceleration, just as a set of papers on 
your dashboard falls onto the floor of your car when you step on the accelerator.
 As we saw in Section 4.6, a moving object can be observed from any number of 
reference frames. Newton’s first law of motion, sometimes called the law of inertia, 
defines a special set of reference frames called inertial frames. This law can be stated 
as follows:

If an object does not interact with other objects, it is possible to identify a ref-
erence frame in which the object has zero acceleration.

Such a reference frame is called an inertial frame of reference. When the puck is 
on the air hockey table located on the ground, you are observing it from an inertial 
reference frame; there are no horizontal interactions of the puck with any other 
objects, and you observe it to have zero acceleration in that direction. When you 
are on the train moving at constant velocity, you are also observing the puck from 
an inertial reference frame. Any reference frame that moves with constant veloc-
ity relative to an inertial frame is itself an inertial frame. When you and the train 
accelerate, however, you are observing the puck from a noninertial reference frame 
because the train is accelerating relative to the inertial reference frame of the 
Earth’s surface. While the puck appears to be accelerating according to your obser-
vations, a reference frame can be identified in which the puck has zero acceleration. 

WW Newton’s first law

WW Inertial frame of reference
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Figure 5.2 The vector nature 
of a force is tested with a spring 
scale.

Airflow

Electric blower

Figure 5.3 On an air hockey 
table, air blown through holes 
in the surface allows the puck 
to move almost without friction. 
If the table is not accelerating, 
a puck placed on the table will 
remain at rest.
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For example, an observer standing outside the train on the ground sees the puck 
sliding relative to the table but always moving with the same velocity with respect to 
the ground as the train had before it started to accelerate (because there is almost 
no friction to “tie” the puck and the train together). Therefore, Newton’s first law is 
still satisfied even though your observations as a rider on the train show an apparent 
acceleration relative to you.
 A reference frame that moves with constant velocity relative to the distant stars is 
the best approximation of an inertial frame, and for our purposes we can consider 
the Earth as being such a frame. The Earth is not really an inertial frame because 
of its orbital motion around the Sun and its rotational motion about its own axis, 
both of which involve centripetal accelerations. These accelerations are small com-
pared with g, however, and can often be neglected. For this reason, we model the 
Earth as an inertial frame, along with any other frame attached to it.
 Let us assume we are observing an object from an inertial reference frame. (We 
will return to observations made in noninertial reference frames in Section 6.3.) 
Before about 1600, scientists believed that the natural state of matter was the state 
of rest. Observations showed that moving objects eventually stopped moving. Gali-
leo was the first to take a different approach to motion and the natural state of mat-
ter. He devised thought experiments and concluded that it is not the nature of an 
object to stop once set in motion: rather, it is its nature to resist changes in its motion. 
In his words, “Any velocity once imparted to a moving body will be rigidly main-
tained as long as the external causes of retardation are removed.” For example, a 
spacecraft drifting through empty space with its engine turned off will keep mov-
ing forever. It would not seek a “natural state” of rest.
 Given our discussion of observations made from inertial reference frames, we 
can pose a more practical statement of Newton’s first law of motion:

In the absence of external forces and when viewed from an inertial reference 
frame, an object at rest remains at rest and an object in motion continues in 
motion with a constant velocity (that is, with a constant speed in a straight line).

In other words, when no force acts on an object, the acceleration of the object 
is zero. From the first law, we conclude that any isolated object (one that does not 
interact with its environment) is either at rest or moving with constant velocity. The 
tendency of an object to resist any attempt to change its velocity is called inertia. 
Given the statement of the first law above, we can conclude that an object that is 
accelerating must be experiencing a force. In turn, from the first law, we can define 
force as that which causes a change in motion of an object.

Q uick Quiz 5.1 Which of the following statements is correct? (a) It is possible for 
an object to have motion in the absence of forces on the object. (b) It is possible to 
have forces on an object in the absence of motion of the object. (c) Neither state-
ment (a) nor statement (b) is correct. (d) Both statements (a) and (b) are correct.

5.3 Mass
Imagine playing catch with either a basketball or a bowling ball. Which ball is more 
likely to keep moving when you try to catch it? Which ball requires more effort to 
throw it? The bowling ball requires more effort. In the language of physics, we say 
that the bowling ball is more resistant to changes in its velocity than the basketball. 
How can we quantify this concept?
 Mass is that property of an object that specifies how much resistance an object 
exhibits to changes in its velocity, and as we learned in Section 1.1, the SI unit of 
mass is the kilogram. Experiments show that the greater the mass of an object, the 
less that object accelerates under the action of a given applied force.
 To describe mass quantitatively, we conduct experiments in which we compare 
the accelerations a given force produces on different objects. Suppose a force act-

 Another statement of 
 Newton’s first law

Definition of force 

Definition of mass 

Pitfall Prevention 5.1
Newton’s First Law Newton’s first 
law does not say what happens for 
an object with zero net force, that 
is, multiple forces that cancel; it 
says what happens in the absence 
of external forces. This subtle but 
important difference allows us to 
define force as that which causes 
a change in the motion. The 
description of an object under the 
effect of forces that balance is cov-
ered by Newton’s second law.

Pitfall Prevention 5.2
Force Is the Cause of Changes 
in Motion An object can have 
motion in the absence of forces 
as described in Newton’s first law. 
Therefore, don’t interpret force 
as the cause of motion. Force is the 
cause of changes in motion.
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ing on an object of mass m1 produces a change in motion of the object that we can 
quantify with the object’s acceleration aS1, and the same force acting on an object of 
mass m2 produces an acceleration aS2. The ratio of the two masses is defined as the 
inverse ratio of the magnitudes of the accelerations produced by the force:

 
m1

m2
;

a2

a1
 (5.1)

 For example, if a given force acting on a 3-kg object produces an acceleration of 
4 m/s2, the same force applied to a 6-kg object produces an acceleration of 2 m/s2. 
According to a huge number of similar observations, we conclude that the magni-
tude of the acceleration of an object is inversely proportional to its mass when acted 
on by a given force. If one object has a known mass, the mass of the other object can 
be obtained from acceleration measurements.
 Mass is an inherent property of an object and is independent of the object’s sur-
roundings and of the method used to measure it. Also, mass is a scalar quantity and 
thus obeys the rules of ordinary arithmetic. For example, if you combine a 3-kg mass 
with a 5-kg mass, the total mass is 8 kg. This result can be verified experimentally by 
comparing the acceleration that a known force gives to several objects separately with 
the acceleration that the same force gives to the same objects combined as one unit.
 Mass should not be confused with weight. Mass and weight are two different 
quantities. The weight of an object is equal to the magnitude of the gravitational 
force exerted on the object and varies with location (see Section 5.5). For example, 
a person weighing 180 lb on the Earth weighs only about 30 lb on the Moon. On the 
other hand, the mass of an object is the same everywhere: an object having a mass 
of 2 kg on the Earth also has a mass of 2 kg on the Moon.

5.4 Newton’s Second Law
Newton’s first law explains what happens to an object when no forces act on it: it 
maintains its original motion; it either remains at rest or moves in a straight line 
with constant speed. Newton’s second law answers the question of what happens to 
an object when one or more forces act on it.
 Imagine performing an experiment in which you push a block of mass m across 
a frictionless, horizontal surface. When you exert some horizontal force F

S
 on the 

block, it moves with some acceleration aS. If you apply a force twice as great on the 
same block, experimental results show that the acceleration of the block doubles; if 
you increase the applied force to 3 F

S
, the acceleration triples; and so on. From such 

observations, we conclude that the acceleration of an object is directly proportional 
to the force acting on it: F

S
~ aS. This idea was first introduced in Section 2.4 when 

we discussed the direction of the acceleration of an object. We also know from the 
preceding section that the magnitude of the acceleration of an object is inversely 
proportional to its mass: 0 aS 0 ~  1/m.
 These experimental observations are summarized in Newton’s second law:

When viewed from an inertial reference frame, the acceleration of an object 
is directly proportional to the net force acting on it and inversely proportional 
to its mass:

 aS ~  
a  F

S

m
  

 If we choose a proportionality constant of 1, we can relate mass, acceleration, 
and force through the following mathematical statement of Newton’s second law:1

 a  F
S

5 maS (5.2)

WW  Mass and weight are  
different quantities

WW Newton’s second law

1Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat the relativistic 
situation in Chapter 39.

Pitfall Prevention 5.3
maS Is Not a Force Equation 5.2 
does not say that the product maS 
is a force. All forces on an object 
are added vectorially to generate 
the net force on the left side of the 
equation. This net force is then 
equated to the product of the mass 
of the object and the acceleration 
that results from the net force. Do 
not include an “maS force” in your 
analysis of the forces on an object.
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Analyze Find the component of the net force acting on 
the puck in the x direction:

a  Fx 5 F1x 1 F2x 5 F1 cos u 1 F2 cos f

In both the textual and mathematical statements of Newton’s second law, we have 
indicated that the acceleration is due to the net force g  F

S
 acting on an object. The 

net force on an object is the vector sum of all forces acting on the object. (We 
sometimes refer to the net force as the total force, the resultant force, or the unbalanced 
force.) In solving a problem using Newton’s second law, it is imperative to determine 
the correct net force on an object. Many forces may be acting on an object, but 
there is only one acceleration.
 Equation 5.2 is a vector expression and hence is equivalent to three component 
equations:
 a  Fx 5 max  a  Fy 5 may  a  Fz 5 maz (5.3)

Q uick Quiz 5.2 An object experiences no acceleration. Which of the following 
cannot be true for the object? (a) A single force acts on the object. (b) No forces 
act on the object. (c) Forces act on the object, but the forces cancel.

Q uick Quiz 5.3 You push an object, initially at rest, across a frictionless floor 
with a constant force for a time interval Dt, resulting in a final speed of v for 
the object. You then repeat the experiment, but with a force that is twice as 
large. What time interval is now required to reach the same final speed v? 
(a) 4 Dt (b) 2 Dt  (c) Dt (d) Dt/2 (e) Dt/4

 The SI unit of force is the newton (N). A force of 1 N is the force that, when act-
ing on an object of mass 1 kg, produces an acceleration of 1 m/s2. From this defini-
tion and Newton’s second law, we see that the newton can be expressed in terms of 
the following fundamental units of mass, length, and time:

 1 N ; 1 kg ? m/s2 (5.4)

 In the U.S. customary system, the unit of force is the pound (lb). A force of 1 lb is 
the force that, when acting on a 1-slug mass,2 produces an acceleration of 1 ft/s2:

 1 lb ; 1 slug ? ft/s2 

 A convenient approximation is 1 N < 14 lb.

 Newton’s second law: W
component form

Definition of the newton 

2The slug is the unit of mass in the U.S. customary system and is that system’s counterpart of the SI unit the kilogram. 
Because most of the calculations in our study of classical mechanics are in SI units, the slug is seldom used in this text.

Example 5.1   An Accelerating Hockey Puck 

A hockey puck having a mass of 0.30 kg slides on the friction-
less, horizontal surface of an ice rink. Two hockey sticks strike 
the puck simultaneously, exerting the forces on the puck shown 
in Figure 5.4. The force F

S

1 has a magnitude of 5.0 N, and is 
directed at u 5 20° below the x axis. The force F

S

2 has a mag-
nitude of 8.0 N and its direction is f 5 60° above the x axis. 
Determine both the magnitude and the direction of the puck’s 
acceleration.

Conceptualize Study Figure 5.4. Using your expertise in vector addition from Chapter 3, predict the approximate 
direction of the net force vector on the puck. The acceleration of the puck will be in the same direction.

Categorize Because we can determine a net force and we want an acceleration, this problem is categorized as one that 
may be solved using Newton’s second law. In Section 5.7, we will formally introduce the particle under a net force analysis 
model to describe a situation such as this one.

AM
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60�

F2  =  8.0 N
F1  =  5.0 N

20�

F1
S

F2
S

Figure 5.4  
(Example 5.1) A 
hockey puck moving 
on a frictionless sur-
face is subject to two 
forces F

S

1 and F
S

2.
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Find the component of the net force acting on the 
puck in the y direction:

a  Fy 5 F1y 1 F2y 5 F1 sin u 1 F2 sin f

Use Newton’s second law in component form (Eq. 
5.3) to find the x and y components of the puck’s 
acceleration:

ax 5
a  Fx

m
5  

F1 cos u 1 F2 cos f
m

ay 5
a  Fy

m
5  

F1 sin u 1 F2 sin f
m

Substitute numerical values: ax 5
15.0 N 2 cos 12208 2 1 18.0 N 2 cos 1608 2

0.30 kg
5 29 m/s2

ay 5
15.0 N 2 sin 12208 2 1 18.0 N 2 sin 1608 2

0.30 kg
5 17 m/s2

Find the direction of the acceleration relative to the 
positive x axis:

u 5 tan21 a
ay

ax
b 5 tan21 a17

29
b 5 318

Finalize  The vectors in Figure 5.4 can be added graphically to check the reasonableness of our answer. Because the 
acceleration vector is along the direction of the resultant force, a drawing showing the resultant force vector helps us 
check the validity of the answer. (Try it!)

Suppose three hockey sticks strike the puck simultaneously, with two of them exerting the forces shown in 
Figure 5.4. The result of the three forces is that the hockey puck shows no acceleration. What must be the components 
of the third force?

Answer If there is zero acceleration, the net force acting on the puck must be zero. Therefore, the three forces must 
cancel. The components of the third force must be of equal magnitude and opposite sign compared to the compo-
nents of the net force applied by the first two forces so that all the components add to zero. Therefore, F3x 5 2a  Fx 5 
2 10.30 kg 2 129 m/s2 2  5 28.7 N and F3y 5 2a  Fy 5 2 10.30 kg 2 117 m/s2 2  5 25.2 N.

WhAt IF ?

5.5 The Gravitational Force and Weight
All objects are attracted to the Earth. The attractive force exerted by the Earth on 
an object is called the gravitational force F

S

g. This force is directed toward the cen-
ter of the Earth,3 and its magnitude is called the weight of the object.
 We saw in Section 2.6 that a freely falling object experiences an acceleration gS 
acting toward the center of the Earth. Applying Newton’s second law g  F

S
5 maS to 

a freely falling object of mass m, with aS 5 gS and g  F
S

5 F
S

g , gives

 F
S

g 5 mgS (5.5)

Therefore, the weight of an object, being defined as the magnitude of F
S

g , is given by

 Fg = mg (5.6)

 Because it depends on g, weight varies with geographic location. Because g 
decreases with increasing distance from the center of the Earth, objects weigh less 
at higher altitudes than at sea level. For example, a 1 000-kg pallet of bricks used 
in the construction of the Empire State Building in New York City weighed 9 800 N 
at street level, but weighed about 1 N less by the time it was lifted from sidewalk 
level to the top of the building. As another example, suppose a student has a mass 

 3This statement ignores that the mass distribution of the Earth is not perfectly spherical.

Pitfall Prevention 5.4
“Weight of an object” We are 
familiar with the everyday phrase, 
the “weight of an object.” Weight, 
however, is not an inherent prop-
erty of an object; rather, it is a 
measure of the gravitational force 
between the object and the Earth 
(or other planet). Therefore, 
weight is a property of a system of 
items: the object and the Earth.

Pitfall Prevention 5.5
Kilogram Is Not a unit of Weight  
You may have seen the “conver-
sion” 1 kg 5 2.2 lb. Despite popu-
lar statements of weights expressed 
in kilograms, the kilogram is not 
a unit of weight, it is a unit of mass. 
The conversion statement is not an 
equality; it is an equivalence that is 
valid only on the Earth’s surface.

▸ 5.1 c o n t i n u e d

 

Find the magnitude of the acceleration: a 5 "129 m/s2 22 1 117 m/s2 22 5  34 m/s2
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of 70.0 kg. The student’s weight in a location where g 5 9.80 m/s2 is 686 N (about 
150 lb). At the top of a mountain, however, where g 5 9.77 m/s2, the student’s weight 
is only 684 N. Therefore, if you want to lose weight without going on a diet, climb a 
mountain or weigh yourself at 30 000 ft during an airplane flight!
 Equation 5.6 quantifies the gravitational force on the object, but notice that this 
equation does not require the object to be moving. Even for a stationary object or 
for an object on which several forces act, Equation 5.6 can be used to calculate the 
magnitude of the gravitational force. The result is a subtle shift in the interpreta-
tion of m in the equation. The mass m in Equation 5.6 determines the strength of 
the gravitational attraction between the object and the Earth. This role is com-
pletely different from that previously described for mass, that of measuring the 
resistance to changes in motion in response to an external force. In that role, mass 
is also called inertial mass. We call m in Equation 5.6 the gravitational mass. Even 
though this quantity is different in behavior from inertial mass, it is one of the 
experimental conclusions in Newtonian dynamics that gravitational mass and iner-
tial mass have the same value.
 Although this discussion has focused on the gravitational force on an object 
due to the Earth, the concept is generally valid on any planet. The value of g will 
vary from one planet to the next, but the magnitude of the gravitational force will 
always be given by the value of mg.

Q uick Quiz 5.4 Suppose you are talking by interplanetary telephone to a friend 
who lives on the Moon. He tells you that he has just won a newton of gold in a 
contest. Excitedly, you tell him that you entered the Earth version of the same 
contest and also won a newton of gold! Who is richer? (a) You are. (b) Your 
friend is. (c) You are equally rich.

The life-support unit strapped to 
the back of astronaut Harrison 
Schmitt weighed 300 lb on the 
Earth and had a mass of 136 kg. 
During his training, a 50-lb mock-
up with a mass of 23 kg was used. 
Although this strategy effectively 
simulated the reduced weight the 
unit would have on the Moon, it did 
not correctly mimic the unchang-
ing mass. It was more difficult to 
accelerate the 136-kg unit (perhaps 
by jumping or twisting suddenly) 
on the Moon than it was to acceler-
ate the 23-kg unit on the Earth.
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Conceptual Example 5.2   How Much Do You Weigh in an Elevator?

You have most likely been in an elevator that accelerates upward as it moves toward a higher floor. In this case, you feel 
heavier. In fact, if you are standing on a bathroom scale at the time, the scale measures a force having a magnitude 
that is greater than your weight. Therefore, you have tactile and measured evidence that leads you to believe you are 
heavier in this situation. Are you heavier?

No; your weight is unchanged. Your experiences are due to your being in a noninertial reference frame. To provide the 
acceleration upward, the floor or scale must exert on your feet an upward force that is greater in magnitude than your 
weight. It is this greater force you feel, which you interpret as feeling heavier. The scale reads this upward force, not 
your weight, and so its reading increases.

S o L u t I o N

 

5.6 Newton’s Third Law
If you press against a corner of this textbook with your fingertip, the book pushes 
back and makes a small dent in your skin. If you push harder, the book does the same 
and the dent in your skin is a little larger. This simple activity illustrates that forces 
are interactions between two objects: when your finger pushes on the book, the book 
pushes back on your finger. This important principle is known as Newton’s third law:

If two objects interact, the force F
S

12 exerted by object 1 on object 2 is equal in 
magnitude and opposite in direction to the force F

S

21 exerted by object 2 on 
object 1:

 F
S

12 5 2 F
S

21 (5.7)

Newton’s third law W
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When it is important to designate forces as interactions between two objects, we 
will use this subscript notation, where F

S

ab means “the force exerted by a on b.” The 
third law is illustrated in Figure 5.5. The force that object 1 exerts on object 2 is 
popularly called the action force, and the force of object 2 on object 1 is called the 
reaction force. These italicized terms are not scientific terms; furthermore, either 
force can be labeled the action or reaction force. We will use these terms for conve-
nience. In all cases, the action and reaction forces act on different objects and must 
be of the same type (gravitational, electrical, etc.). For example, the force acting 
on a freely falling projectile is the gravitational force exerted by the Earth on  
the projectile F

S

g 5 F
S

Ep (E 5 Earth, p 5 projectile), and the magnitude of this 
force is mg. The reaction to this force is the gravitational force exerted by the pro-
jectile on the Earth F

S

pE 5 2 F
S

Ep. The reaction force F
S

pE must accelerate the Earth 
toward the projectile just as the action force F

S

Ep accelerates the projectile toward 
the Earth. Because the Earth has such a large mass, however, its acceleration due 
to this reaction force is negligibly small.
 Consider a computer monitor at rest on a table as in Figure 5.6a. The gravita-
tional force on the monitor is F

S

g 5 F
S

Em. The reaction to this force is the force 
F
S

mE 5 2 F
S

Em exerted by the monitor on the Earth. The monitor does not acceler-
ate because it is held up by the table. The table exerts on the monitor an upward 
force nS 5 F

S

tm, called the normal force. (Normal in this context means perpendicu-
lar.) In general, whenever an object is in contact with a surface, the surface exerts 
a normal force on the object. The normal force on the monitor can have any value 
needed, up to the point of breaking the table. Because the monitor has zero accel-
eration, Newton’s second law applied to the monitor gives us g  F

S
5 nS 1 mgS 5 0, 

so n  ĵ 2 mg  ĵ 5 0, or n 5 mg. The normal force balances the gravitational force on 
the monitor, so the net force on the monitor is zero. The reaction force to nS is the 
force exerted by the monitor downward on the table, F

S

mt 5 2 F
S

tm 5 2nS.
 Notice that the forces acting on the monitor are F

S

g and nS as shown in Figure 5.6b.  
The two forces F

S

mE and F
S

mt are exerted on objects other than the monitor.
 Figure 5.6 illustrates an extremely important step in solving problems involv-
ing forces. Figure 5.6a shows many of the forces in the situation: those acting on 
the monitor, one acting on the table, and one acting on the Earth. Figure 5.6b, 
by contrast, shows only the forces acting on one object, the monitor, and is called 
a force diagram or a diagram showing the forces on the object. The important picto-
rial representation in Figure 5.6c is called a free-body diagram. In a free-body 
diagram, the particle model is used by representing the object as a dot and show-
ing the forces that act on the object as being applied to the dot. When analyz-
ing an object subject to forces, we are interested in the net force acting on one 
object, which we will model as a particle. Therefore, a free-body diagram helps 
us isolate only those forces on the object and eliminate the other forces from our 
analysis.

2

1

F12
S

F12 �
S

F21
S

�F21
S

Figure 5.5  Newton’s third law. 
The force F

S

12 exerted by object 1 
on object 2 is equal in magnitude 
and opposite in direction to  
the force F

S

21 exerted by object 2  
on object 1.

Pitfall Prevention 5.6
n Does Not Always Equal mg In 
the situation shown in Figure 5.6 
and in many others, we find that 
n 5 mg (the normal force has the 
same magnitude as the gravita-
tional force). This result, however, 
is not generally true. If an object is 
on an incline, if there are applied 
forces with vertical components, 
or if there is a vertical acceleration 
of the system, then n ? mg. Always 
apply Newton’s second law to find 
the relationship between n and mg.

Pitfall Prevention 5.7
Newton’s third Law Remember 
that Newton’s third-law action 
and reaction forces act on different 
objects. For example, in Figure 5.6,  
nS 5 F

S

tm 5 2mgS 5 2 F
S

Em. The 
forces nS and mgS are equal in 
magnitude and opposite in direc-
tion, but they do not represent an 
action–reaction pair because both 
forces act on the same object, the 
monitor.

Pitfall Prevention 5.8
Free-Body Diagrams The most 
important step in solving a problem 
using Newton’s laws is to draw a 
proper sketch, the free-body dia-
gram. Be sure to draw only those 
forces that act on the object you 
are isolating. Be sure to draw all 
forces acting on the object, includ-
ing any field forces, such as the 
gravitational force.

� Ftm
S

Fmt
S

FmE
S

nS � Ftm
S

nS

� Ftm
S

nS

� Fg
S S

� Fg
S

FEm
S

� Fg
S

FEm
S

a b c

FEm Figure 5.6 (a) When a computer monitor is at rest on a table, 
the forces acting on the monitor are the normal force nS and 
the gravitational force F

S

g. The reaction to nS is the force F
S

mt 
exerted by the monitor on the table. The reaction to F

S

g is the 
force F

S

mE exerted by the monitor on the Earth. (b) A force 
diagram shows the forces on the monitor. (c) A free-body diagram 
shows the monitor as a black dot with the forces acting on it.
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Q uick Quiz 5.5  (i) If a fly collides with the windshield of a fast-moving bus, 
which experiences an impact force with a larger magnitude? (a) The fly. (b) The 
bus. (c) The same force is experienced by both. (ii) Which experiences the 
greater acceleration? (a) The fly. (b) The bus. (c) The same acceleration is expe-
rienced by both.

Conceptual Example 5.3   You Push Me and I’ll Push You

A large man and a small boy stand facing each other on frictionless ice. They put their hands together and push 
against each other so that they move apart.

(A) Who moves away with the higher speed?

This situation is similar to what we saw in Quick Quiz 5.5. According to Newton’s third law, the force exerted by the 
man on the boy and the force exerted by the boy on the man are a third-law pair of forces, so they must be equal in 
magnitude. (A bathroom scale placed between their hands would read the same, regardless of which way it faced.) 
Therefore, the boy, having the smaller mass, experiences the greater acceleration. Both individuals accelerate for the 
same amount of time, but the greater acceleration of the boy over this time interval results in his moving away from the 
interaction with the higher speed.

(B) Who moves farther while their hands are in contact?

Because the boy has the greater acceleration and therefore the greater average velocity, he moves farther than the man 
during the time interval during which their hands are in contact.

S o L u t I o N

S o L u t I o N

5.7 Analysis Models Using Newton’s Second Law
In this section, we discuss two analysis models for solving problems in which 
objects are either in equilibrium 1 aS 5 0 2  or accelerating under the action of con-
stant external forces. Remember that when Newton’s laws are applied to an object, 
we are interested only in external forces that act on the object. If the objects are 
modeled as particles, we need not worry about rotational motion. For now, we also 
neglect the effects of friction in those problems involving motion, which is equiva-
lent to stating that the surfaces are frictionless. (The friction force is discussed in 
Section 5.8.)
 We usually neglect the mass of any ropes, strings, or cables involved. In this 
approximation, the magnitude of the force exerted by any element of the rope on the 
adjacent element is the same for all elements along the rope. In problem statements, 
the synonymous terms light and of negligible mass are used to indicate that a mass is to 
be ignored when you work the problems. When a rope attached to an object is pull-
ing on the object, the rope exerts a force on the object in a direction away from the 
object, parallel to the rope. The magnitude T of that force is called the tension in the 
rope. Because it is the magnitude of a vector quantity, tension is a scalar quantity.

Analysis Model: The Particle in Equilibrium
If the acceleration of an object modeled as a particle is zero, the object is treated with 
the particle in equilibrium model. In this model, the net force on the object is zero:

 a  F
S

5 0 (5.8)

Consider a lamp suspended from a light chain fastened to the ceiling as in Figure 
5.7a. The force diagram for the lamp (Fig. 5.7b) shows that the forces acting on the 
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lamp are the downward gravitational force F
S

g and the upward force T
S

 exerted by 
the chain. Because there are no forces in the x direction, o Fx 5 0 provides no help-
ful information. The condition o Fy 5 0 gives

o Fy 5 T 2 Fg 5 0 or T 5 Fg

Again, notice that T
S

 and F
S

g are not an action–reaction pair because they act on 
the same object, the lamp. The reaction force to T

S
 is a downward force exerted by 

the lamp on the chain.
 Example 5.4 (page 122) shows an application of the particle in equilibrium model.

Analysis Model: The Particle Under a Net Force
If an object experiences an acceleration, its motion can be analyzed with the par-
ticle under a net force model. The appropriate equation for this model is Newton’s 
second law, Equation 5.2:

 a  F
S

5 maS (5.2)

Consider a crate being pulled to the right on a frictionless, horizontal floor as in 
Figure 5.8a. Of course, the floor directly under the boy must have friction; other-
wise, his feet would simply slip when he tries to pull on the crate! Suppose you wish 
to find the acceleration of the crate and the force the floor exerts on it. The forces 
acting on the crate are illustrated in the free-body diagram in Figure 5.8b. Notice 
that the horizontal force T

S
 being applied to the crate acts through the rope. The 

magnitude of T
S

 is equal to the tension in the rope. In addition to the force T
S

, the 
free-body diagram for the crate includes the gravitational force F

S

g and the normal 
force nS exerted by the floor on the crate.
 We can now apply Newton’s second law in component form to the crate. The 
only force acting in the x direction is T

S
. Applying o Fx 5 max to the horizontal 

motion gives

 a  Fx 5 T 5 max or ax 5
T
m

 

 No acceleration occurs in the y direction because the crate moves only horizon-
tally. Therefore, we use the particle in equilibrium model in the y direction. Apply-
ing the y component of Equation 5.8 yields

o Fy 5 n 2 Fg 5 0 or n 5 Fg

That is, the normal force has the same magnitude as the gravitational force but acts 
in the opposite direction.
 If T

S
 is a constant force, the acceleration ax 5 T/m also is constant. Hence, the 

crate is also modeled as a particle under constant acceleration in the x direction, 
and the equations of kinematics from Chapter 2 can be used to obtain the crate’s 
position x and velocity vx as functions of time.
 Notice from this discussion two concepts that will be important in future prob-
lem solving: (1) In a given problem, it is possible to have different analysis models applied in 
different directions. The crate in Figure 5.8 is a particle in equilibrium in the vertical 
direction and a particle under a net force in the horizontal direction. (2) It is pos-
sible to describe an object by multiple analysis models. The crate is a particle under a net 
force in the horizontal direction and is also a particle under constant acceleration 
in the same direction.
 In the situation just described, the magnitude of the normal force nS is equal  
to the magnitude of F

S

g, but that is not always the case, as noted in Pitfall Preven-
tion 5.6. For example, suppose a book is lying on a table and you push down on  
the book with a force F

S
 as in Figure 5.9. Because the book is at rest and therefore 

not accelerating, o Fy 5 0, which gives n 2 Fg 2 F 5 0, or n 5 Fg 1 F 5 mg 1 F. In 
this situation, the normal force is greater than the gravitational force. Other exam-
ples in which n ? Fg are presented later.

Fg
S

a b

T
S

Figure 5.7 (a) A lamp sus-
pended from a ceiling by a chain 
of negligible mass. (b) The forces 
acting on the lamp are the gravi-
tational force F

S

g and the force T
S

 
exerted by the chain.

a

b

nS

T
S

Fg
S

x

y

Figure 5.8 (a) A crate being 
pulled to the right on a friction-
less floor. (b) The free-body dia-
gram representing the external 
forces acting on the crate.

nS

F
S

Fg
S

Physics

Figure 5.9 When a force F
S

 
pushes vertically downward on 
another object, the normal force 
nS on the object is greater than the 
gravitational force: n 5 Fg 1 F.
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Analyze We construct a diagram of the forces acting on the traffic light, shown in Figure 5.10b, and a free-body 
diagram for the knot that holds the three cables together, shown in Figure 5.10c. This knot is a convenient object to 
choose because all the forces of interest act along lines passing through the knot.

From the particle in equilibrium model, apply  
Equation 5.8 for the traffic light in the y direction:

o Fy 5 0   S   T3 2 Fg 5 0

T3 5 Fg

Example 5.4   A Traffic Light at Rest 

A traffic light weighing 122 N hangs from a cable tied to 
two other cables fastened to a support as in Figure 5.10a. 
The upper cables make angles of u1 5 37.0° and u2 5 
53.0° with the horizontal. These upper cables are not as 
strong as the vertical cable and will break if the tension 
in them exceeds 100 N. Does the traffic light remain 
hanging in this situation, or will one of the cables break?

Conceptualize Inspect the drawing in Figure 5.10a. Let 
us assume the cables do not break and nothing is moving.

Categorize If nothing is moving, no part of the system 
is accelerating. We can now model the light as a particle 
in equilibrium on which the net force is zero. Similarly, 
the net force on the knot (Fig. 5.10c) is zero, so it is also 
modeled as a particle in equilibrium.

AM

S o L u t I o N

 Several examples below demonstrate the use of the particle under a net force 
model.

Fg
S

a b c

T2T1

T3
x

y

T
S

3

T
S

3

T
S

1

T
S

2

u1

u1

u2

u2

Figure 5.10 (Example 5.4) (a) A traffic light suspended by 
cables. (b) The forces acting on the traffic light. (c) The free-body 
diagram for the knot where the three cables are joined.

Imagine an object that can be modeled as a particle. If it has one 
or more forces acting on it so that there is a net force on the object, 
it will accelerate in the direction of the net force. The relationship 
between the net force and the acceleration is

 a  F
S

5 m aS (5.2)

m

� F
S

 

aS 

Analysis Model   Particle Under a Net Force
Examples

•	 a	crate	pushed	across	a	factory	floor
•	 a	falling	object	acted	upon	by	a	gravita-

tional force
•	 a	piston	in	an	automobile	engine	pushed	

by hot gases (Chapter 22)
•	 a	charged	particle	in	an	electric	field	

(Chapter 23)

Imagine an object that can be modeled as a particle. If it has sev-
eral forces acting on it so that the forces all cancel, giving a net 
force of zero, the object will have an acceleration of zero. This con-
dition is mathematically described as

 a  F
S

5 0 (5.8)

m

�F � 0
S

a � 0S

Analysis Model   Particle in Equilibrium
Examples

•	 a	chandelier	hanging	over	a	dining	room	
table

•	 an	object	moving	at	terminal	speed	
through a viscous medium (Chapter 6)

•	 a	steel	beam	in	the	frame	of	a	building	
(Chapter 12) 

•	 a	boat	floating	on	a	body	of	water	 
(Chapter 14)
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Choose the coordinate axes as shown in Figure 5.10c 
and resolve the forces acting on the knot into their 
components:

 Force x Component y Component

 T
S

1 2T1 cos u1 T1 sin u1

 T
S

2 T2 cos u2 T2 sin u2

 T
S

3 0 2Fg

Apply the particle in equilibrium model to the knot: (1)   o Fx 5 2T1 cos u1 1 T2 cos u2 5 0

(2)   o Fy 5 T1 sin u1 1 T2 sin u2 1 (2Fg) 5 0

Solve Equation (1) for T2 in terms of T1: (3)   T2 5 T1a
cos u1

cos u2
b

Substitute this value for T2 into Equation (2): T1 sin u1 1 T1a
cos u1

cos u2
b(sin u2) 2Fg 5 0

Equation (1) shows that the horizontal components of T
S

1 and T
S

2 must be equal in magnitude, and Equation (2)  
shows that the sum of the vertical components of T

S

1 and T
S

2 must balance the downward force T
S

3, which is equal in 
 magnitude to the weight of the light.

Both values are less than 100 N ( just barely for T2), so  the cables will not break  .

Finalize Let us finalize this problem by imagining a change in the system, as in the following What If?

Suppose the two angles in Figure 5.10a are equal. What would be the relationship between T1 and T2?

Answer We can argue from the symmetry of the problem that the two tensions T1 and T2 would be equal to each other. 
Mathematically, if the equal angles are called u, Equation (3) becomes

T2 5 T1acos u
cos u

b 5 T1

which also tells us that the tensions are equal. Without knowing the specific value of u, we cannot find the values of T1 
and T2. The tensions will be equal to each other, however, regardless of the value of u.

WhAt IF ?

 

▸ 5.4 c o n t i n u e d

Solve for T1: T1 5
Fg

sin u1 1 cos u1 tan u2

Substitute numerical values: T1 5
122 N

sin 37.08 1 cos 37.08 tan 53.08
5 73.4 N

Using Equation (3), solve for T2: T2 5 173.4 N 2 acos 37.08

cos 53.08
b 5 97.4 N

Conceptual Example 5.5   Forces Between Cars in a Train

Train cars are connected by couplers, which are under tension as the locomotive pulls the train. Imagine you are on a 
train speeding up with a constant acceleration. As you move through the train from the locomotive to the last car, mea-
suring the tension in each set of couplers, does the tension increase, decrease, or stay the same? When the engineer 
applies the brakes, the couplers are under compression. How does this compression force vary from the locomotive to 
the last car? (Assume only the brakes on the wheels of the engine are applied.)

While the train is speeding up, tension decreases from the front of the train to the back. The coupler between the 
locomotive and the first car must apply enough force to accelerate the rest of the cars. As you move back along the 

S o L u t I o N

continued
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Example 5.6   The Runaway Car 

A car of mass m is on an icy driveway inclined 
at an angle u as in Figure 5.11a.

(A) Find the acceleration of the car, assuming 
the driveway is frictionless.

Conceptualize  Use Figure 5.11a to conceptu-
alize the situation. From everyday experience, 
we know that a car on an icy incline will accel-
erate down the incline. (The same thing hap-
pens to a car on a hill with its brakes not set.)

Categorize We categorize the car as a particle 
under a net force because it accelerates. Further-
more, this example belongs to a very common category of problems in which an object moves under the influence of 
gravity on an inclined plane.

Analyze Figure 5.11b shows the free-body diagram for the car. The only forces acting on the car are the normal force 
nS exerted by the inclined plane, which acts perpendicular to the plane, and the gravitational force F

S

g 5 mgS, which 
acts vertically downward. For problems involving inclined planes, it is convenient to choose the coordinate axes with x 
along the incline and y perpendicular to it as in Figure 5.11b. With these axes, we represent the gravitational force by 
a component of magnitude mg sin u along the positive x axis and one of magnitude mg cos u along the negative y axis. 
Our choice of axes results in the car being modeled as a particle under a net force in the x direction and a particle in 
equilibrium in the y direction.

AM
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Apply these models to the car: (1)   o Fx 5 mg sin u 5 max

(2)   o Fy 5 n 2 mg cos u 5 0 

Solve Equation (1) for ax: (3)   ax 5   g sin u

Finalize Note that the acceleration component ax is independent of the mass of the car! It depends only on the angle 
of inclination and on g.
 From Equation (2), we conclude that the component of F

S

g perpendicular to the incline is balanced by the normal 
force; that is, n 5 mg cos u. This situation is a case in which the normal force is not equal in magnitude to the weight of 
the object (as discussed in Pitfall Prevention 5.6 on page 119).
 It is possible, although inconvenient, to solve the problem with “standard” horizontal and vertical axes. You may 
want to try it, just for practice.

(B) Suppose the car is released from rest at the top of the incline and the distance from the car’s front bumper to 
the bottom of the incline is d. How long does it take the front bumper to reach the bottom of the hill, and what is the 
car’s speed as it arrives there?

train, each coupler is accelerating less mass behind it. The last coupler has to accelerate only the last car, and so it is 
under the least tension.
 When the brakes are applied, the force again decreases from front to back. The coupler connecting the locomotive 
to the first car must apply a large force to slow down the rest of the cars, but the final coupler must apply a force large 
enough to slow down only the last car.

 

▸ 5.5 c o n t i n u e d

a b

y

xx u
u

mg cos u

mg sin u

g = m gS 

nS

F
S

Figure 5.11  (Example 5.6) (a) A car on a frictionless incline. (b) The free-
body diagram for the car. The black dot represents the position of the center 
of mass of the car. We will learn about center of mass in Chapter 9.



 5.7 analysis Models Using Newton’s Second Law 125

Example 5.7   One Block Pushes Another 

Two blocks of masses m1 and m2, with m1 . m2, are placed in contact 
with each other on a frictionless, horizontal surface as in Figure 5.12a. A 
constant horizontal force F

S
 is applied to m1 as shown.

(A) Find the magnitude of the acceleration of the system.

Conceptualize Conceptualize the situation by using Figure 5.12a and 
realize that both blocks must experience the same acceleration because 
they are in contact with each other and remain in contact throughout 
the motion.

Categorize We categorize this problem as one involving a particle under a 
net force because a force is applied to a system of blocks and we are look-
ing for the acceleration of the system.

AM
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Analyze Defining the initial position of the front bumper 
as xi 5 0 and its final position as xf 5 d, and recognizing 
that vxi 5 0, choose Equation 2.16 from the particle under 
constant acceleration model, xf 5 xi 1 vxi t 1 1

2ax t 2:

d 5 1
2ax t 2

Solve for t: (4)   t 5 Å
2d
ax

5 Å
2d

g sin u

Use Equation 2.17, with vxi 5 0, to find the final velocity 
of the car:

vxf
2 5 2axd

(5)   vxf 5 "2axd 5 "2gd sin u

Finalize We see from Equations (4) and (5) that the time t at which the car reaches the bottom and its final speed vxf 
are independent of the car’s mass, as was its acceleration. Notice that we have combined techniques from Chapter 2 
with new techniques from this chapter in this example. As we learn more techniques in later chapters, this process of 
combining analysis models and information from several parts of the book will occur more often. In these cases, use 
the General Problem-Solving Strategy to help you identify what analysis models you will need.

What previously solved problem does this situation become if u 5 90°?

Answer Imagine u going to 90° in Figure 5.11. The inclined plane becomes vertical, and the car is an object in free 
fall! Equation (3) becomes

ax 5 g sin u 5 g sin 90° 5 g

which is indeed the free-fall acceleration. (We find ax 5 g rather than ax 5 2g because we have chosen positive x to be 
downward in Fig. 5.11.) Notice also that the condition n 5 mg cos u gives us n 5 mg cos 90° 5 0. That is consistent with 
the car falling downward next to the vertical plane, in which case there is no contact force between the car and the plane.

WhAt IF ?

m2
m1

1

m1
m2

2

x

y

F
S

F
S

21P
S

 12P
S

 

nS
nS

gS 
gS 

a

b c

Figure 5.12 (Example 5.7) (a) A force is 
applied to a block of mass m1, which pushes on 
a second block of mass m2. (b) The forces act-
ing on m1. (c) The forces acting on m2.

continued

 

▸ 5.6 c o n t i n u e d

Conceptualize Imagine the car is sliding down the hill and you use a stopwatch to measure the entire time interval 
until it reaches the bottom.

Categorize This part of the problem belongs to kinematics rather than to dynamics, and Equation (3) shows that the 
acceleration ax is constant. Therefore, you should categorize the car in this part of the problem as a particle under 
constant acceleration.

S o L u t I o N
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Finalize The acceleration given by Equation (1) is the same as that of a single object of mass m1 1 m2 and subject to the 
same force.

(B) Determine the magnitude of the contact force between the two blocks.

Conceptualize The contact force is internal to the system of two blocks. Therefore, we cannot find this force by model-
ing the whole system (the two blocks) as a single particle.

Categorize Now consider each of the two blocks individually by categorizing each as a particle under a net force.

Analyze We construct a diagram of forces acting on the object for each block as shown in Figures 5.12b and 5.12c, 
where the contact force is denoted by P

S
. From Figure 5.12c, we see that the only horizontal force acting on m2 is the 

contact force P
S

12 (the force exerted by m1 on m2), which is directed to the right.

S o L u t I o N

Apply Newton’s second law to m2: (2)   o Fx 5 P12 5 m2ax

Substitute the value of the acceleration ax given by Equa-
tion (1) into Equation (2):

(3)   P12 5 m 2ax 5 a m2

m1 1 m2
bF

Finalize This result shows that the contact force P12 is less than the applied force F. The force required to accelerate 
block 2 alone must be less than the force required to produce the same acceleration for the two-block system.
 To finalize further, let us check this expression for P12 by considering the forces acting on m1, shown in Figure 5.12b. 
The horizontal forces acting on m1 are the applied force F

S
 to the right and the contact force P

S

21 to the left (the  
force exerted by m2 on m1). From Newton’s third law, P

S

21 is the reaction force to P
S

12, so P21 5 P12.

Apply Newton’s second law to m1: (4)   o Fx 5 F 2 P21 5 F 2 P12 5 m1ax

Solve for P12 and substitute the value of ax from 
Equation (1):

P12 5 F 2 m1ax 5 F 2 m1a F
m1 1 m2

b 5 a m2

m1 1 m2
bF

This result agrees with Equation (3), as it must.

Imagine that the force F
S

 in Figure 5.12 is applied toward the left on the right-hand block of mass m2.  
Is the magnitude of the force P

S

12 the same as it was when the force was applied toward the right on m1?

Answer When the force is applied toward the left on m2, the contact force must accelerate m1. In the original situation, 
the contact force accelerates m2. Because m1 . m2, more force is required, so the magnitude of P

S

12 is greater than in 
the original situation. To see this mathematically, modify Equation (4) appropriately and solve for P

S

12.

WhAt IF ?

Analyze First model the combination of two blocks as 
a single particle under a net force. Apply Newton’s sec-
ond law to the combination in the x direction to find the 
acceleration:

o Fx 5 F 5 (m1 1 m2)ax

(1)   ax 5 
F

m1 1 m2
 

 

▸ 5.7 c o n t i n u e d

Example 5.8   Weighing a Fish in an Elevator 

A person weighs a fish of mass m on a spring scale attached to the ceiling of an elevator as illustrated in Figure 5.13.

(A) Show that if the elevator accelerates either upward or downward, the spring scale gives a reading that is different 
from the weight of the fish.

AM
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Conceptualize The reading on the scale is related to the 
extension of the spring in the scale, which is related to the 
force on the end of the spring as in Figure 5.2. Imagine 
that the fish is hanging on a string attached to the end of 
the spring. In this case, the magnitude of the force exerted 
on the spring is equal to the tension T in the string. There-
fore, we are looking for T. The force T

S
 pulls down on the 

string and pulls up on the fish.

Categorize We can categorize this problem by identify-
ing the fish as a particle in equilibrium if the elevator is not 
accelerating or as a particle under a net force if the elevator 
is accelerating.

Analyze Inspect the diagrams of the forces acting on the 
fish in Figure 5.13 and notice that the external forces acting 
on the fish are the downward gravitational force F

S

g 5 mgS 
and the force T

S
 exerted by the string. If the elevator is 

either at rest or moving at constant velocity, the fish is a par-
ticle in equilibrium, so o Fy 5 T 2 Fg 5 0 or T 5 Fg 5 mg.  
(Remember that the scalar mg is the weight of the fish.)
 Now suppose the elevator is moving with an acceleration aS relative to an observer standing outside the elevator in 
an inertial frame. The fish is now a particle under a net force.
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When the elevator accelerates 
upward, the spring scale reads 
a value greater than the
weight of the fish. 

When the elevator accelerates 
downward, the spring scale 
reads a value less than the
weight of the fish. 

Figure 5.13 (Example 5.8) A fish is weighed on a spring scale in 
an accelerating elevator car.

Apply Newton’s second law to the fish: o Fy 5 T 2 mg 5 may

Solve for T : (1)   T 5 may 1 mg 5 mg a
ay

g
1 1b 5 Fg a

ay

g
1 1b

where we have chosen upward as the positive y direction. We conclude from Equation (1) that the scale reading T is 
greater than the fish’s weight mg if aS is upward, so ay is positive (Fig. 5.13a), and that the reading is less than mg if aS is 
downward, so ay is negative (Fig. 5.13b).

(B) Evaluate the scale readings for a 40.0-N fish if the elevator moves with an acceleration ay 5 62.00 m/s2.

S o L u t I o N

Evaluate the scale reading from Equation (1) if aS is upward:

 

T 5 140.0 N 2 a2.00 m/s2

9.80 m/s2 1 1b 5 48.2 N  

Evaluate the scale reading from Equation (1) if aS is downward:

 

T 5 140.0 N 2 a22.00 m/s2

9.80 m/s2 1 1b 5 31.8 N

Finalize Take this advice: if you buy a fish in an elevator, make sure the fish is weighed while the elevator is either at 
rest or accelerating downward! Furthermore, notice that from the information given here, one cannot determine the 
direction of the velocity of the elevator.

Suppose the elevator cable breaks and the elevator and its contents are in free fall. What happens to the 
reading on the scale?

Answer If the elevator falls freely, the fish’s acceleration is ay 5 2g. We see from Equation (1) that the scale reading T 
is zero in this case; that is, the fish appears to be weightless.

WhAt IF ?

▸ 5.8 c o n t i n u e d
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Example 5.9   The Atwood Machine 

When two objects of unequal mass are hung vertically over a frictionless pulley of 
negligible mass as in Figure 5.14a, the arrangement is called an Atwood machine. 
The device is sometimes used in the laboratory to determine the value of g. Deter-
mine the magnitude of the acceleration of the two objects and the tension in the 
lightweight string.

Conceptualize Imagine the situation pictured in Figure 5.14a in action: as one 
object moves upward, the other object moves downward. Because the objects 
are connected by an inextensible string, their accelerations must be of equal 
magnitude.

Categorize The objects in the Atwood machine are subject to the gravitational 
force as well as to the forces exerted by the strings connected to them. Therefore, 
we can categorize this problem as one involving two particles under a net force.

Analyze The free-body diagrams for the two objects are shown in Figure 5.14b. 
Two forces act on each object: the upward force T

S
 exerted by the string and  

the downward gravitational force. In problems such as this one in which the 
pulley is modeled as massless and frictionless, the tension in the string on both 
sides of the pulley is the same. If the pulley has mass or is subject to friction, the tensions on either side are not the 
same and the situation requires techniques we will learn in Chapter 10.
 We must be very careful with signs in problems such as this one. In Figure 5.14a, notice that if object 1 accelerates 
upward, object 2 accelerates downward. Therefore, for consistency with signs, if we define the upward direction as 
positive for object 1, we must define the downward direction as positive for object 2. With this sign convention, both 
objects accelerate in the same direction as defined by the choice of sign. Furthermore, according to this sign conven-
tion, the y component of the net force exerted on object 1 is T 2 m1g, and the y component of the net force exerted on 
object 2 is m2g 2 T.

AM

S o L u t I o N

Figure 5.14 (Example 5.9) The 
Atwood machine. (a) Two objects 
connected by a massless inextensible 
string over a frictionless pulley.  
(b) The free-body diagrams for the 
two objects.
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From the particle under a net force model, apply New-
ton’s second law to object 1:

(1)   o Fy 5 T 2 m1g  5 m1ay

Apply Newton’s second law to object 2: (2)   o Fy 5 m2g 2 T 5 m2ay

Add Equation (2) to Equation (1), noticing that T cancels: 2 m1g 1 m2g 5 m1ay 1 m2ay

Solve for the acceleration: (3)   ay 5 am2 2 m1

m1 1 m2
bg

Substitute Equation (3) into Equation (1) to find T : (4)   T 5 m1(g 1 ay) 5 a 2m1m2

m1 1 m2
bg

Finalize The acceleration given by Equation (3) can be interpreted as the ratio of the magnitude of the unbalanced 
force on the system (m2 2 m1)g to the total mass of the system (m1 1 m2), as expected from Newton’s second law. Notice 
that the sign of the acceleration depends on the relative masses of the two objects.

Describe the motion of the system if the objects have equal masses, that is, m1 5 m2.

Answer If we have the same mass on both sides, the system is balanced and should not accelerate. Mathematically, we 
see that if m1 5 m2, Equation (3) gives us ay 5 0.

What if one of the masses is much larger than the other: m1 .. m2?

Answer In the case in which one mass is infinitely larger than the other, we can ignore the effect of the smaller mass. 
Therefore, the larger mass should simply fall as if the smaller mass were not there. We see that if m1 .. m2, Equation 
(3) gives us ay 5 2g.

WhAt IF ?

WhAt IF ?
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Example 5.10   Acceleration of Two Objects Connected by a Cord 

A ball of mass m1 and a block of mass m2 are attached by a lightweight cord 
that passes over a frictionless pulley of negligible mass as in Figure 5.15a. 
The block lies on a frictionless incline of angle u. Find the magnitude of 
the acceleration of the two objects and the tension in the cord.

Conceptualize Imagine the objects in Figure 5.15 in motion. If m2 moves 
down the incline, then m1 moves upward. Because the objects are con-
nected by a cord (which we assume does not stretch), their accelerations 
have the same magnitude. Notice the normal coordinate axes in Figure 
5.15b for the ball and the “tilted” axes for the block in Figure 5.15c.

Categorize We can identify forces on each of the two objects and we are 
looking for an acceleration, so we categorize the objects as particles under a 
net force. For the block, this model is only valid for the x9 direction. In the y9 
direction, we apply the particle in equilibrium model because the block does 
not accelerate in that direction.

Analyze Consider the free-body diagrams shown in Figures 5.15b and 
5.15c.
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Figure 5.15 (Example 5.10) (a) Two objects 
connected by a lightweight cord strung over a 
frictionless pulley. (b) The free-body diagram 
for the ball. (c) The free-body diagram for the 
block. (The incline is frictionless.)

Apply Newton’s second law in the y direction to the ball, 
choosing the upward direction as positive:

(1)   o Fy 5 T 2 m1g  5 m1ay 5 m1a

For the ball to accelerate upward, it is necessary that T . m1g. In Equation (1), we replaced ay with a because the accel-
eration has only a y component.
 For the block, we have chosen the x9 axis along the incline as in Figure 5.15c. For consistency with our choice for the 
ball, we choose the positive x9 direction to be down the incline.

Apply the particle under a net force model to the block 
in the x9 direction and the particle in equilibrium model 
in the y9 direction:

(2)   o Fx9 5 m2g sin u 2 T 5 m2ax9 5 m2a

(3)   o Fy9 5 n 2 m2g cos u 5 0

Solve Equation (1) for T : (4)   T 5 m1(g 1 a)

Substitute this expression for T into Equation (2): m2g sin u 2 m1(g 1 a) 5 m2a

Solve for a: (5)   a 5 am2 sin u 2 m1

m1 1 m2
bg

Substitute this expression for a into Equation (4) to  
find T :

(6)   T 5 am1m2 1sin u 1 1 2
m1 1 m2

bg

Finalize The block accelerates down the incline only if m2 sin u . m1. If m1 . m2 sin u, the acceleration is up the 
incline for the block and downward for the ball. Also notice that the result for the acceleration, Equation (5), can be 
interpreted as the magnitude of the net external force acting on the ball–block system divided by the total mass of the 
system; this result is consistent with Newton’s second law.

What happens in this situation if u 5 90°?WhAt IF ?

continued

In Equation (2), we replaced ax9 with a because the two objects have accelerations of equal magnitude a.
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Answer If u 5 90°, the inclined plane becomes vertical and there is no interaction between its surface and m2. There-
fore, this problem becomes the Atwood machine of Example 5.9. Letting u S 90° in Equations (5) and (6) causes 
them to reduce to Equations (3) and (4) of Example 5.9!

What if m1 5 0?

Answer If m1 5 0, then m2 is simply sliding down an inclined plane without interacting with m1 through the string. 
Therefore, this problem becomes the sliding car problem in Example 5.6. Letting m1 S 0 in Equation (5) causes it to 
reduce to Equation (3) of Example 5.6!

WhAt IF ?

5.8 Forces of Friction
When an object is in motion either on a surface or in a viscous medium such as air 
or water, there is resistance to the motion because the object interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very 
important in our everyday lives. They allow us to walk or run and are necessary for 
the motion of wheeled vehicles.
 Imagine that you are working in your garden and have filled a trash can with 
yard clippings. You then try to drag the trash can across the surface of your concrete 
patio as in Figure 5.16a. This surface is real, not an idealized, frictionless surface.  
If we apply an external horizontal force F

S
 to the trash can, acting to the right, 

the trash can remains stationary when F
S

 is small. The force on the trash can that 
counteracts F

S
 and keeps it from moving acts toward the left and is called the  

F
S

a b

c

fs,max

F
Static region Kinetic region

f s �
 F

fk � mkn    

|  |
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nS

f
S

f
S

s

gSm

F
S

nS

f
S

k

gSm

Motion

For small applied 
forces, the magnitude 
of the force of static 
friction equals the 
magnitude of the 
applied force.

When the magnitude of 
the applied force 
exceeds the magnitude 
of the maximum force of 
static friction, the trash 
can breaks free and 
accelerates to the right.

Figure 5.16 (a) and (b) When 
pulling on a trash can, the direc-
tion of the force of friction f

S
 

between the can and a rough sur-
face is opposite the direction of 
the applied force F

S

. (c) A graph of 
friction force versus applied force. 
Notice that fs,max . fk.

 

▸ 5.10 c o n t i n u e d
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force of static friction f
S

s. As long as the trash can is not moving, fs 5 F. Therefore, 
if F

S
 is increased, f

S

s also increases. Likewise, if F
S

 decreases, f
S

s also decreases.
 Experiments show that the friction force arises from the nature of the two sur-
faces: because of their roughness, contact is made only at a few locations where 
peaks of the material touch. At these locations, the friction force arises in part 
because one peak physically blocks the motion of a peak from the opposing surface 
and in part from chemical bonding (“spot welds”) of opposing peaks as they come 
into contact. Although the details of friction are quite complex at the atomic level, 
this force ultimately involves an electrical interaction between atoms or molecules.
 If we increase the magnitude of F

S
 as in Figure 5.16b, the trash can eventually 

slips. When the trash can is on the verge of slipping, fs has its maximum value fs,max 
as shown in Figure 5.16c. When F exceeds fs,max, the trash can moves and accelerates 
to the right. We call the friction force for an object in motion the force of kinetic  
friction f

S

k. When the trash can is in motion, the force of kinetic friction on the can 
is less than fs ,max (Fig. 5.16c). The net force F 2 fk in the x direction produces an accel-
eration to the right, according to Newton’s second law. If F 5 fk, the acceleration  
is zero and the trash can moves to the right with constant speed. If the applied 
force F

S
 is removed from the moving can, the friction force f

S

k acting to the left pro-
vides an acceleration of the trash can in the 2x direction and eventually brings it to 
rest, again consistent with Newton’s second law.
 Experimentally, we find that, to a good approximation, both fs,max and fk are 
proportional to the magnitude of the normal force exerted on an object by the sur-
face. The following descriptions of the force of friction are based on experimental 
observations and serve as the simplification model we shall use for forces of friction 
in problem solving:

•	The magnitude of the force of static friction between any two surfaces in con-
tact can have the values

 fs # msn (5.9)

 where the dimensionless constant ms is called the coefficient of static friction 
and n is the magnitude of the normal force exerted by one surface on the 
other. The equality in Equation 5.9 holds when the surfaces are on the verge of 
slipping, that is, when fs 5 fs,max 5 msn . This situation is called impending motion. 
The inequality holds when the surfaces are not on the verge of slipping.

•	The magnitude of the force of kinetic friction acting between two surfaces is

 fk 5 mkn (5.10)

 where mk is the coefficient of kinetic friction. Although the coefficient of 
kinetic friction can vary with speed, we shall usually neglect any such varia-
tions in this text.

•	The values of mk and ms depend on the nature of the surfaces, but mk is gener-
ally less than ms. Typical values range from around 0.03 to 1.0. Table 5.1 (page 
132) lists some reported values.

•	The direction of the friction force on an object is parallel to the surface with 
which the object is in contact and opposite to the actual motion (kinetic fric-
tion) or the impending motion (static friction) of the object relative to the 
surface.

•	The coefficients of friction are nearly independent of the area of contact 
between the surfaces. We might expect that placing an object on the side hav-
ing the most area might increase the friction force. Although this method 
provides more points in contact, the weight of the object is spread out over 
a larger area and the individual points are not pressed together as tightly. 
Because these effects approximately compensate for each other, the friction 
force is independent of the area.

WW Force of static friction

WW Force of kinetic friction

Pitfall Prevention 5.9
the Equal Sign Is used in Limited 
Situations In Equation 5.9, the 
equal sign is used only in the case 
in which the surfaces are just 
about to break free and begin slid-
ing. Do not fall into the common 
trap of using fs 5 msn in any static 
situation.

Pitfall Prevention 5.10
Friction Equations Equations 5.9 
and 5.10 are not vector equations. 
They are relationships between 
the magnitudes of the vectors rep-
resenting the friction and normal 
forces. Because the friction and 
normal forces are perpendicular 
to each other, the vectors can-
not be related by a multiplicative 
constant.

Pitfall Prevention 5.11
the Direction of the Friction 
Force Sometimes, an incorrect 
statement about the friction force 
between an object and a surface is 
made—“the friction force on an 
object is opposite to its motion or 
impending motion”—rather than 
the correct phrasing, “the friction 
force on an object is opposite to 
its motion or impending motion 
relative to the surface.”



132 chapter 5 The Laws of Motion

Example 5.11   Experimental Determination of Ms and Mk 

The following is a simple method of measuring coefficients of friction. Suppose 
a block is placed on a rough surface inclined relative to the horizontal as shown 
in Figure 5.18. The incline angle is increased until the block starts to move. Show 
that you can obtain ms by measuring the critical angle uc at which this slipping just 
occurs.

Conceptualize Consider Figure 5.18 and imagine that the block tends to slide 
down the incline due to the gravitational force. To simulate the situation, place 
a coin on this book’s cover and tilt the book until the coin begins to slide. Notice 
how this example differs from Example 5.6. When there is no friction on an 
incline, any angle of the incline will cause a stationary object to begin moving. 
When there is friction, however, there is no movement of the object for angles less 
than the critical angle.

Categorize The block is subject to various forces. Because we are raising the 
plane to the angle at which the block is just ready to begin to move but is not mov-
ing, we categorize the block as a particle in equilibrium.

Analyze The diagram in Figure 5.18 shows the forces on the block: the gravitational force mgS, the normal force nS, and 
the force of static friction f

S

s . We choose x to be parallel to the plane and y perpendicular to it.
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From the particle in equilibrium model, apply Equation 5.8 
to the block in both the x and y directions:

(1)   o Fx 5 mg sin u 2 fs 5 0

(2)   o Fy 5 n 2 mg cos u 5 0

Q uick Quiz 5.6 You press your physics textbook flat against a vertical wall with 
your hand. What is the direction of the friction force exerted by the wall on the 
book? (a) downward (b) upward (c) out from the wall (d) into the wall

Q uick Quiz 5.7 You are playing with your daughter in the snow. She sits on  
a sled and asks you to slide her across a flat, horizontal field. You have a  
choice of (a) pushing her from behind by applying a force downward on her 
shoulders at 30° below the horizontal (Fig. 5.17a) or (b) attaching a rope to  
the front of the sled and pulling with a force at 30° above the horizontal 
(Fig. 5.17b). Which would be easier for you and why?

Table 5.1
Coefficients of Friction
 Ms Mk

Rubber on concrete 1.0  0.8
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Glass on glass 0.94 0.4
Copper on steel 0.53 0.36
Wood on wood 0.25–0.5 0.2
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Teflon on Teflon 0.04 0.04
Ice on ice 0.1  0.03
Synovial joints in humans 0.01 0.003

Note: All values are approximate. In some cases, the coefficient of friction 
can exceed 1.0.

a

b

30�

F
S

30�

F
S

Figure 5.17 (Quick Quiz 5.7) 
A father slides his daughter on a 
sled either by (a) pushing down 
on her shoulders or (b) pulling up 
on a rope.

y

x

s

mg sin u

uu

mg cos u

nS

mgS 

f
S

 

Figure 5.18 (Example 5.11) The 
external forces exerted on a block 
lying on a rough incline are the grav-
itational force mgS, the normal force 
nS, and the force of friction f

S

s . For 
convenience, the gravitational force 
is resolved into a component mg sin u 
along the incline and a component  
mg cos u perpendicular to the 
incline.

Table 5.1
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We have shown, as requested, that the coefficient of static friction is related only to the critical angle. For example, if 
the block just slips at uc 5 20.0°, we find that ms 5 tan 20.0° 5 0.364.

Finalize Once the block starts to move at u $ uc , it accelerates down the incline and the force of friction is fk 5 mkn.  
If u is reduced to a value less than uc, however, it may be possible to find an angle u9c  such that the block moves down 
the incline with constant speed as a particle in equilibrium again (ax 5 0). In this case, use Equations (1) and (2) with 
fs replaced by fk to find mk: mk 5 tan u9c , where u9c  , uc .

Substitute mg 5 n/cos u from Equation (2) into 
Equation (1):

(3)   fs 5 mg sin u 5 a n
cos u

b sin u 5 n tan u

When the incline angle is increased until the block is on 
the verge of slipping, the force of static friction has reached 
its maximum value msn. The angle u in this situation is the 
critical angle uc. Make these substitutions in Equation (3):

msn 5 n tan uc

ms 5 tan uc

Example 5.12   The Sliding Hockey Puck 

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck 
always remains on the ice and slides 115 m before coming to rest, determine the 
coefficient of kinetic friction between the puck and ice.

Conceptualize Imagine that the puck in Figure 5.19 slides to the right. The kinetic 
friction force acts to the left and slows the puck, which eventually comes to rest 
due to that force.

Categorize The forces acting on the puck are identified in Figure 5.19, but the 
text of the problem provides kinematic variables. Therefore, we categorize the 
problem in several ways. First, it involves modeling the puck as a particle under a 
net force in the horizontal direction: kinetic friction causes the puck to acceler-
ate. There is no acceleration of the puck in the vertical direction, so we use the 
particle in equilibrium model for that direction. Furthermore, because we model 
the force of kinetic friction as independent of speed, the acceleration of the puck is constant. So, we can also catego-
rize this problem by modeling the puck as a particle under constant acceleration.

Analyze First, let’s find the acceleration algebraically in terms of the coefficient of kinetic friction, using Newton’s 
second law. Once we know the acceleration of the puck and the distance it travels, the equations of kinematics can be 
used to find the numerical value of the coefficient of kinetic friction. The diagram in Figure 5.19 shows the forces on 
the puck.
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k
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f
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nS

Figure 5.19  (Example 5.12) After 
the puck is given an initial velocity 
to the right, the only external forces 
acting on it are the gravitational 
force mgS, the normal force nS, and 
the force of kinetic friction f

S

k.

Apply the particle under a net force model in the x direc-
tion to the puck:

(1)   o Fx 5 2 fk 5 max

Apply the particle in equilibrium model in the y direc-
tion to the puck:

(2)   o Fy 5 n 2 mg 5 0

Substitute n 5 mg from Equation (2) and fk 5 mkn into 
Equation (1):

2 mkn 5 2 mkmg 5 max

ax 5 2 mkg

The negative sign means the acceleration is to the left in Figure 5.19. Because the velocity of the puck is to the right, 
the puck is slowing down. The acceleration is independent of the mass of the puck and is constant because we assume 
mk remains constant.

continued

 

▸ 5.11 c o n t i n u e d
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Example 5.13   Acceleration of Two Connected Objects When Friction Is Present 

A block of mass m2 on a rough, horizontal surface is con-
nected to a ball of mass m1 by a lightweight cord over a 
lightweight, frictionless pulley as shown in Figure 5.20a. 
A force of magnitude F at an angle u with the horizontal 
is applied to the block as shown, and the block slides to 
the right. The coefficient of kinetic friction between the 
block and surface is mk. Determine the magnitude of the 
acceleration of the two objects.

Conceptualize Imagine what happens as F
S

 is applied to 
the block. Assuming F

S
 is large enough to break the block 

free from static friction but not large enough to lift the 
block, the block slides to the right and the ball rises.

Categorize We can identify forces and we want an acceleration, so we categorize this problem as one involving two 
particles under a net force, the ball and the block. Because we assume that the block does not rise into the air due to the 
applied force, we model the block as a particle in equilibrium in the vertical direction.

Analyze First draw force diagrams for the two objects as shown in Figures 5.20b and 5.20c. Notice that the string 
exerts a force of magnitude T on both objects. The applied force F

S
 has x and y components F cos u and F sin u, respec-

tively. Because the two objects are connected, we can equate the magnitudes of the x component of the acceleration of 
the block and the y component of the acceleration of the ball and call them both a. Let us assume the motion of the 
block is to the right.
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Apply the particle under constant acceleration model to 
the puck, choosing Equation 2.17 from the model, vxf

2 5 
vxi

2 1 2ax(xf 2 xi), with xi 5 0 and vxf 5 0:

0 5 vxi
2 1 2axxf 5 vxi

2 2 2mkgxf

Solve for the coefficient of kinetic friction: mk 5
vxi

2

2gxf

Substitute the numerical values: mk 5
120.0 m/s 22

2 19.80 m/s2 2 1115 m 2 5 0.177

Finalize Notice that mk is dimensionless, as it should be, and that it has a low value, consistent with an object sliding 
on ice.
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Figure 5.20  (Example 5.13) (a) The external force F
S

 applied 
as shown can cause the block to accelerate to the right. (b, c) Dia-
grams showing the forces on the two objects, assuming the block 
accelerates to the right and the ball accelerates upward.

Apply the particle under a net force model to the block in the 
horizontal direction:

(1)   o Fx 5 F cos u 2 fk 2 T 5 m2ax 5 m2a

Because the block moves only horizontally, apply the particle 
in equilibrium model to the block in the vertical direction:

(2)   o Fy 5 n 1 F sin u 2 m2g 5 0

Apply the particle under a net force model to the ball in the 
vertical direction:

(3)   o Fy 5 T 2 m1g 5 m1ay 5 m1a

Solve Equation (2) for n: n 5 m2g  2 F sin u

Substitute n into fk 5 mkn from Equation 5.10: (4)   fk 5 mk(m2g  2 F sin u)
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Finalize The acceleration of the block can be either to the right or to the left depending on the sign of the numerator 
in Equation (5). If the velocity is to the left, we must reverse the sign of fk in Equation (1) because the force of kinetic 
friction must oppose the motion of the block relative to the surface. In this case, the value of a is the same as in Equa-
tion (5), with the two plus signs in the numerator changed to minus signs.
 What does Equation (5) reduce to if the force F

S
 is removed and the surface becomes frictionless? Call this expres-

sion Equation (6). Does this algebraic expression match your intuition about the physical situation in this case? Now 
go back to Example 5.10 and let angle u go to zero in Equation (5) of that example. How does the resulting equation 
compare with your Equation (6) here in Example 5.13? Should the algebraic expressions compare in this way based on 
the physical situations?

Substitute Equation (4) and the value of T from Equation (3) 
into Equation (1):

F cos u 2 mk(m2g  2 F sin u) 2 m1(a 1 g) 5 m2a

Solve for a: (5)   a 5 
F 1cos u 1 mk sin u 2 2 1m1 1 mkm2 2g

m1 1 m2

continued
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Summary

Definitions

 An inertial frame of reference is a frame in which an object that does not 
interact with other objects experiences zero acceleration. Any frame moving 
with constant velocity relative to an inertial frame is also an inertial frame.

 We define force as that 
which causes a change in 
motion of an object.

Concepts and Principles

 The gravitational force 
exerted on an object is equal 
to the product of its mass (a 
scalar quantity) and the free-
fall acceleration:

 F
S

g 5 mgS (5.5)

The weight of an object is the 
magnitude of the gravitational 
force acting on the object:

 Fg 5 mg (5.6)

 When an object slides over a surface, the 
magnitude of the force of kinetic friction f

S

k is 
given by fk 5 mkn, where mk is the coefficient of 
kinetic friction.

 Newton’s first law states that it is possible to find an inertial frame in which 
an object that does not interact with other objects experiences zero acceleration, 
or, equivalently, in the absence of an external force, when viewed from an iner-
tial frame, an object at rest remains at rest and an object in uniform motion in a 
straight line maintains that motion.

Newton’s second law states that the acceleration of an object is directly propor-
tional to the net force acting on it and inversely proportional to its mass.

Newton’s third law states that if two objects interact, the force exerted by object 
1 on object 2 is equal in magnitude and opposite in direction to the force 
exerted by object 2 on object 1.

 The maximum force of static friction f
S

s,max between an 
object and a surface is proportional to the normal force acting 
on the object. In general, fs # msn, where ms is the coefficient 
of static friction and n is the magnitude of the normal force. 



136 chapter 5 The Laws of Motion

Analysis Models for Problem Solving

 Particle Under a Net Force If a particle of mass 
m experiences a nonzero net force, its acceleration 
is related to the net force by Newton’s second law:

 a  F
S

5 m aS (5.2)

m

� F
S

 

aS 

 Particle in Equilibrium If a particle maintains a constant 
velocity (so that aS 5 0), which could include a velocity of 
zero, the forces on the particle balance and Newton’s second 
law reduces to

 a  F
S

5 0 (5.8)

m

�F � 0
S

a � 0S

400 g

9 m/s

400 g 8 m/s
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300 g
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Figure oQ5.3

 4. The driver of a speeding truck slams on the brakes and 
skids to a stop through a distance d. On another trial, 
the initial speed of the truck is half as large. What now 
will be the truck’s skidding distance? (a) 2d (b) !2d  
(c) d (d) d/2 (e) d/4

 5. An experiment is performed on a puck on a level 
air hockey table, where friction is negligible. A con-
stant horizontal force is applied to the puck, and the 
puck’s acceleration is measured. Now the same puck is 
transported far into outer space, where both friction 
and gravity are negligible. The same constant force 
is applied to the puck (through a spring scale that 
stretches the same amount), and the puck’s acceleration 
(relative to the distant stars) is measured. What is the 
puck’s acceleration in outer space? (a)  It is somewhat 
greater than its acceleration on the Earth. (b) It is the 
same as its acceleration on the Earth. (c) It is less than 
its acceleration on the Earth. (d) It is infinite because 
neither friction nor gravity constrains it. (e) It is very 
large because acceleration is inversely proportional to 
weight and the puck’s weight is very small but not zero.

 6. The manager of a department store is pushing horizon-
tally with a force of magnitude 200 N on a box of shirts. 
The box is sliding across the horizontal floor with a for-
ward acceleration. Nothing else touches the box. What 
must be true about the magnitude of the force of kinetic 
friction acting on the box (choose one)? (a) It is greater 
than 200 N. (b) It is less than 200 N. (c) It is equal to 
200 N. (d) None of those statements is necessarily true.

 1. The driver of a speeding empty truck slams on the brakes 
and skids to a stop through a distance d. On a second 
trial, the truck carries a load that doubles its mass. What 
will now be the truck’s “skidding distance”? (a) 4d (b) 2d  
(c)!2d (d) d (e) d/2

 2. In Figure OQ5.2, a locomotive has broken through the 
wall of a train station. During the collision, what can 
be said about the force exerted by the locomotive on 
the wall? (a) The force exerted by the locomotive on 
the wall was larger than the force the wall could exert 
on the locomotive. (b) The force exerted by the loco-
motive on the wall was the same in magnitude as the 
force exerted by the wall on the locomotive. (c) The 
force exerted by the locomotive on the wall was less 
than the force exerted by the wall on the locomotive. 
(d) The wall cannot be said to “exert” a force; after all, 
it broke.

Figure oQ5.2
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 3. The third graders are on one side of a schoolyard, and 
the fourth graders are on the other. They are throw-
ing snowballs at each other. Between them, snowballs 
of various masses are moving with different velocities 
as shown in Figure OQ5.3. Rank the snowballs (a) 
through (e) according to the magnitude of the total 
force exerted on each one. Ignore air resistance. If two 
snowballs rank together, make that fact clear.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide



 conceptual Questions 137

force (c) the friction force (d) the ma force exerted by 
the crate (e) No force is required.

 11. If an object is in equilibrium, which of the following 
statements is not true? (a) The speed of the object 
remains constant. (b) The acceleration of the object 
is zero. (c) The net force acting on the object is zero.  
(d) The object must be at rest. (e) There are at least 
two forces acting on the object.

 12. A crate remains stationary after it has been placed on 
a ramp inclined at an angle with the horizontal. Which 
of the following statements is or are correct about the 
magnitude of the friction force that acts on the crate? 
Choose all that are true. (a) It is larger than the weight 
of the crate. (b) It is equal to msn. (c) It is greater than 
the component of the gravitational force acting down 
the ramp. (d) It is equal to the component of the gravi-
tational force acting down the ramp. (e) It is less than 
the component of the gravitational force acting down 
the ramp.

 13. An object of mass m moves with acceleration aS down 
a rough incline. Which of the following forces should 
appear in a free-body diagram of the object? Choose 
all correct answers. (a) the gravitational force exerted 
by the planet (b) m aS in the direction of motion (c) the 
normal force exerted by the incline (d) the friction 
force exerted by the incline (e) the force exerted by the 
object on the incline

 7. Two objects are connected by a string that passes over 
a frictionless pulley as in Figure 5.14a, where m1 , m2 
and a1 and a2 are the magnitudes of the respective 
accelerations. Which mathematical statement is true 
regarding the magnitude of the acceleration a2 of the 
mass m2? (a) a2 , g  (b) a2 . g  (c) a2 5 g  (d) a2 , a1  
(e) a2 . a1

 8. An object of mass m is sliding with speed vi at some 
instant across a level tabletop, with which its coefficient 
of kinetic friction is m. It then moves through a dis-
tance d and comes to rest. Which of the following equa-
tions for the speed vi is reasonable? (a) vi 5 !22mmgd 
(b) vi 5 !2mmgd (c) vi 5 !22mgd (d) vi 5 !2mgd  
(e) vi 5 !2md

 9. A truck loaded with sand accelerates along a high-
way. The driving force on the truck remains constant. 
What happens to the acceleration of the truck if its 
trailer leaks sand at a constant rate through a hole 
in its bottom? (a) It decreases at a steady rate. (b) It 
increases at a steady rate. (c) It increases and then 
decreases. (d) It decreases and then increases. (e) It 
remains constant.

 10. A large crate of mass m is place on the flatbed of a 
truck but not tied down. As the truck accelerates for-
ward with acceleration a, the crate remains at rest  
relative to the truck. What force causes the crate to 
accelerate? (a) the normal force (b) the gravitational 

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. If you hold a horizontal metal bar several centimeters 
above the ground and move it through grass, each leaf 
of grass bends out of the way. If you increase the speed 
of the bar, each leaf of grass will bend more quickly. 
How then does a rotary power lawn mower manage to 
cut grass? How can it exert enough force on a leaf of 
grass to shear it off?

 2. Your hands are wet, and the restroom towel dispenser 
is empty. What do you do to get drops of water off your 
hands? How does the motion of the drops exemplify 
one of Newton’s laws? Which one?

 3. In the motion picture It Happened One Night (Colum-
bia Pictures, 1934), Clark Gable is standing inside a 
stationary bus in front of Claudette Colbert, who is 
seated. The bus suddenly starts moving forward and 
Clark falls into Claudette’s lap. Why did this happen?

 4. If a car is traveling due westward with a constant speed 
of 20 m/s, what is the resultant force acting on it?

 5. A passenger sitting in the rear of a bus claims that she 
was injured when the driver slammed on the brakes, 
causing a suitcase to come flying toward her from the 
front of the bus. If you were the judge in this case, what 
disposition would you make? Why?

 6. A child tosses a ball straight up. She says that the ball 
is moving away from her hand because the ball feels an 
upward “force of the throw” as well as the gravitational 
force. (a) Can the “force of the throw” exceed the 

gravitational force? How would the ball move if it did?  
(b) Can the “force of the throw” be equal in magni-
tude to the gravitational force? Explain. (c) What 
strength can accurately be attributed to the “force of 
the throw”? Explain. (d) Why does the ball move away 
from the child’s hand?

 7. A person holds a ball in her hand. (a) Identify all the 
external forces acting on the ball and the Newton’s 
third-law reaction force to each one. (b) If the ball is 
dropped, what force is exerted on it while it is falling? 
Identify the reaction force in this case. (Ignore air 
resistance.)

 8. A spherical rubber balloon inflated with air is held 
stationary, with its opening, on the west side, pinched 
shut. (a) Describe the forces exerted by the air inside 
and outside the balloon on sections of the rubber. 
(b) After the balloon is released, it takes off toward 
the east, gaining speed rapidly. Explain this motion 
in terms of the forces now acting on the rubber.  
(c) Account for the motion of a skyrocket taking off 
from its launch pad.

 9. A rubber ball is dropped onto the floor. What force 
causes the ball to bounce?

 10. Twenty people participate in a tug-of-war. The two 
teams of ten people are so evenly matched that nei-
ther team wins. After the game they notice that a car 
is stuck in the mud. They attach the tug-of-war rope to 
the bumper of the car, and all the people pull on the 
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floor on the ball be different in magnitude from the 
force the ball exerts on the floor?

 20. Balancing carefully, three boys inch out onto a hori-
zontal tree branch above a pond, each planning to 
dive in separately. The third boy in line notices that 
the branch is barely strong enough to support them. 
He decides to jump straight up and land back on the 
branch to break it, spilling all three into the pond. 
When he starts to carry out his plan, at what precise 
moment does the branch break? Explain. Suggestion: 
Pretend to be the third boy and imitate what he does 
in slow motion. If you are still unsure, stand on a bath-
room scale and repeat the suggestion.

 21. Identify action–reaction pairs in the following situa-
tions: (a) a man takes a step (b) a snowball hits a girl in 
the back (c) a baseball player catches a ball (d) a gust 
of wind strikes a window

 22. As shown in Figure CQ5.22, student A, a 55-kg girl, 
sits on one chair with metal runners, at rest on a class-
room floor. Student B, an 80-kg boy, sits on an identi-
cal chair. Both students keep their feet off the floor.  
A rope runs from student A’s hands around a light pul-
ley and then over her shoulder to the hands of a teacher 
standing on the floor behind her. The low-friction axle 
of the pulley is attached to a second rope held by stu-
dent B. All ropes run parallel to the chair runners.  
(a) If student A pulls on her end of the rope, will her 
chair or will B’s chair slide on the floor? Explain why. 
(b) If instead the teacher pulls on his rope end, which 
chair slides? Why this one? (c) If student B pulls on his 
rope, which chair slides? Why? (d) Now the teacher 
ties his end of the rope to student A’s chair. Student A 
pulls on the end of the rope in her hands. Which chair 
slides and why?

Student B

Student A

Teacher

Figure CQ5.22

 23. A car is moving forward slowly and is speeding up. A 
student claims that “the car exerts a force on itself” 
or that “the car’s engine exerts a force on the car.”  
(a) Argue that this idea cannot be accurate and that 
friction exerted by the road is the propulsive force 
on the car. Make your evidence and reasoning as per-
suasive as possible. (b) Is it static or kinetic friction?  
Suggestions: Consider a road covered with light gravel. 
Consider a sharp print of the tire tread on an asphalt 
road, obtained by coating the tread with dust.

rope. The heavy car has just moved a couple of deci-
meters when the rope breaks. Why did the rope break 
in this situation when it did not break when the same 
twenty people pulled on it in a tug-of-war?

 11. Can an object exert a force on itself? Argue for your 
answer.

 12. When you push on a box with a 200-N force instead of 
a 50-N force, you can feel that you are making a greater 
effort. When a table exerts a 200-N normal force 
instead of one of smaller magnitude, is the table really 
doing anything differently?

 13. A weightlifter stands on a bathroom scale. He pumps a 
barbell up and down. What happens to the reading on 
the scale as he does so? What If? What if he is strong 
enough to actually throw the barbell upward? How does 
the reading on the scale vary now?

 14. An athlete grips a light rope that passes over a low-
friction pulley attached to the ceiling of a gym. A sack 
of sand precisely equal in weight to the athlete is tied 
to the other end of the rope. Both the sand and the 
athlete are initially at rest. The athlete climbs the rope, 
sometimes speeding up and slowing down as he does 
so. What happens to the sack of sand? Explain.

 15. Suppose you are driving a classic car. Why should you 
avoid slamming on your brakes when you want to stop 
in the shortest possible distance? (Many modern cars 
have antilock brakes that avoid this problem.)

 16. In Figure CQ5.16, the light, 
taut, unstretchable cord B 
joins block 1 and the larger-
mass block 2. Cord A exerts 
a force on block 1 to make it 
accelerate forward. (a) How 
does the magnitude of the force exerted by cord A 
on block 1 compare with the magnitude of the force 
exerted by cord B on block 2? Is it larger, smaller, or 
equal? (b) How does the acceleration of block 1 com-
pare with the acceleration (if any) of block 2? (c) Does 
cord B exert a force on block 1? If so, is it forward or 
backward? Is it larger, smaller, or equal in magnitude 
to the force exerted by cord B on block 2?

 17. Describe two examples in which the force of friction 
exerted on an object is in the direction of motion of 
the object.

 18. The mayor of a city reprimands some city employees 
because they will not remove the obvious sags from the 
cables that support the city traffic lights. What expla-
nation can the employees give? How do you think the 
case will be settled in mediation?

 19. Give reasons for the answers to each of the follow-
ing questions: (a) Can a normal force be horizontal?  
(b) Can a normal force be directed vertically downward?  
(c) Consider a tennis ball in contact with a stationary 
floor and with nothing else. Can the normal force be 
different in magnitude from the gravitational force 
exerted on the ball? (d) Can the force exerted by the 

2 1

B A

Figure CQ5.16
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opposite direction, what is the average acceleration of 
the molecule during this time interval? (b) What aver-
age force does the molecule exert on the wall?

 7. The distinction between mass and weight was discov-
ered after Jean Richer transported pendulum clocks 
from Paris, France, to Cayenne, French Guiana, in 
1671. He found that they quite systematically ran slower 
in Cayenne than in Paris. The effect was reversed when 
the clocks returned to Paris. How much weight would a 
90.0 kg person lose in traveling from Paris, where g 5 
9.809 5 m/s2, to Cayenne, where g 5 9.780 8 m/s2? (We 
will consider how the free-fall acceleration influences 
the period of a pendulum in Section 15.5.) 

 8. (a) A car with a mass of 850 kg is moving to the right 
with a constant speed of 1.44 m/s. What is the total 
force on the car? (b) What is the total force on the car 
if it is moving to the left?

 9. Review. The gravitational force exerted on a baseball 
is 2.21 N down. A pitcher throws the ball horizontally 
with velocity 18.0 m/s by uniformly accelerating it 
along a straight horizontal line for a time interval of 
170 ms. The ball starts from rest. (a) Through what 
distance does it move before its release? (b) What are 
the magnitude and direction of the force the pitcher 
exerts on the ball?

 10. Review. The gravitational force exerted on a baseball is 
2Fg  ĵ. A pitcher throws the ball with velocity v î by uni-
formly accelerating it along a straight horizontal line 
for a time interval of Dt 5 t 2 0 5 t. (a) Starting from 
rest, through what distance does the ball move before 
its release? (b)  What force does the pitcher exert on 
the ball?

 11. Review. An electron of mass 9.11 3 10231 kg has an 
initial speed of 3.00 3 105 m/s. It travels in a straight 
line, and its speed increases to 7.00 3 105 m/s in a dis-
tance of 5.00 cm. Assuming its acceleration is constant,  
(a) determine the magnitude of the force exerted on 
the electron and (b) compare this force with the weight 
of the electron, which we ignored.

 12. Besides the gravitational force, a 2.80-kg object is sub-
jected to one other constant force. The object starts 
from rest and in 1.20 s experiences a displacement 
of 14.20 î 2 3.30 ĵ 2  m, where the direction of ĵ is the 
upward vertical direction. Determine the other force.

S

M

Section 5.1 the Concept of Force
Section 5.2 Newton’s First Law and Inertial Frames
Section 5.3 Mass
Section 5.4 Newton’s Second Law
Section 5.5 the Gravitational Force and Weight
Section 5.6 Newton’s third Law

 1. A woman weighs 120 lb. Determine (a) her weight in 
newtons and (b) her mass in kilograms.

 2. If a man weighs 900 N on the Earth, what would he 
weigh on Jupiter, where the free-fall acceleration is 
25.9 m/s2?

 3. A 3.00-kg object undergoes an acceleration given by 
aS 5 12.00 î 1 5.00 ĵ 2  m/s2. Find (a) the resultant force 
acting on the object and (b) the magnitude of the 
resultant force.

 4. A certain orthodontist uses a wire brace to align a 
patient’s crooked tooth as in Figure P5.4. The tension 
in the wire is adjusted to have a magnitude of 18.0 N. 
Find the magnitude of the net force exerted by the 
wire on the crooked tooth.

14°

14°y
x
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S

T
S

Figure P5.4

 5. A toy rocket engine is securely fastened to a large puck 
that can glide with negligible friction over a horizon-
tal surface, taken as the xy plane. The 4.00-kg puck 
has a velocity of 3.00 î m/s at one instant. Eight sec-
onds later, its velocity is 18.00 î 1 10.00 ĵ 2  m/s. Assum-
ing the rocket engine exerts a constant horizontal 
force, find (a) the components of the force and (b) its 
magnitude.

 6. The average speed of a nitrogen molecule in air is about 
6.70 3 102 m/s, and its mass is 4.68 3 10226 kg. (a) If it 
takes 3.00 3 10213 s for a nitrogen molecule to hit a wall 
and rebound with the same speed but moving in the 

W

BIO

M

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S



140 chapter 5 The Laws of Motion

 20. You stand on the seat of a chair and then hop off.  
(a) During the time interval you are in flight down to 
the floor, the Earth moves toward you with an accel-
eration of what order of magnitude? In your solution, 
explain your logic. Model the Earth as a perfectly solid 
object. (b) The Earth moves toward you through a dis-
tance of what order of magnitude?

 21. A 15.0-lb block rests on the floor. (a) What force does 
the floor exert on the block? (b) A rope is tied to the 
block and is run vertically over a pulley. The other end 
is attached to a free-hanging 10.0-lb object. What now 
is the force exerted by the floor on the 15.0-lb block? 
(c) If the 10.0-lb object in part (b) is replaced with a 
20.0-lb object, what is the force exerted by the floor on 
the 15.0-lb block?

 22. Review. Three forces acting on an object are given by 
F
S

1 5 (22.00î  1 2.00 ĵ ) N, and F
S

2 5(5.00î  2 3.00 ĵ ) N, 
and F

S

3 5 1245.0 î 2  N. The object experiences an accel- 
eration of magnitude 3.75 m/s2. (a) What is the direc-
tion of the acceleration? (b) What is the mass of the 
object? (c) If the object is initially at rest, what is its 
speed after 10.0 s? (d) What are the velocity compo-
nents of the object after 10.0 s?

 23. A 1 000-kg car is pulling a 300-kg trailer. Together, 
the car and trailer move forward with an acceleration 
of 2.15 m/s2. Ignore any force of air drag on the car 
and all friction forces on the trailer. Determine (a) the 
net force on the car, (b) the net force on the trailer,  
(c) the force exerted by the trailer on the car, and  
(d) the resultant force exerted by the car on the road.

 24. If a single constant force acts on an object that moves 
on a straight line, the object’s velocity is a linear func-
tion of time. The equation v 5 vi 1 at gives its velocity 
v as a function of time, where a is its constant accelera-
tion. What if velocity is instead a linear function of posi-
tion? Assume that as a particular object moves through 
a resistive medium, its speed decreases as described by 
the equation v 5 vi 2 kx, where k is a constant coef-
ficient and x is the position of the object. Find the law 
describing the total force acting on this object.

Section 5.7 Analysis Models using Newton’s Second Law

 25. Review. Figure P5.25 shows a 
worker poling a boat—a very 
efficient mode of transporta-
tion—across a shallow lake. He 
pushes parallel to the length of 
the light pole, exerting a force 
of magnitude 240 N on the 
bottom of the lake. Assume the 
pole lies in the vertical plane 
containing the keel of the 
boat. At one moment, the pole 
makes an angle of 35.0° with 
the vertical and the water exerts a horizontal drag force 
of 47.5 N on the boat, opposite to its forward velocity of 
magnitude 0.857 m/s. The mass of the boat including 
its cargo and the worker is 370 kg. (a) The water exerts 
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 13. One or more external forces, large enough to be eas-
ily measured, are exerted on each object enclosed in a 
dashed box shown in Figure 5.1. Identify the reaction 
to each of these forces.

 14. A brick of mass M has been placed on a rubber cush-
ion of mass m. Together they are sliding to the right 
at constant velocity on an ice-covered parking lot.  
(a) Draw a free-body diagram of the brick and identify 
each force acting on it. (b) Draw a free-body diagram 
of the cushion and identify each force acting on it.  
(c) Identify all of the action– reaction pairs of forces in 
the brick–cushion–planet system.

 15. Two forces, F
S

1 5 126.00 î 2 4.00 ĵ 2  N and F
S

2 5  
123.00 î 1 7.00 ĵ 2  N, act on a particle of mass 2.00 kg  
that is initially at rest at coordinates (22.00 m,  
14.00 m). (a) What are the components of the particle’s 
velocity at t 5 10.0 s? (b) In what direction is the par-
ticle moving at t 5 10.0 s? (c) What displacement does 
the particle undergo during the first 10.0 s? (d) What 
are the coordinates of the particle at t 5 10.0 s? 

 16. The force exerted by the wind on the sails of a sailboat 
is 390 N north. The water exerts a force of 180 N east. If 
the boat (including its crew) has a mass of 270 kg, what 
are the magnitude and direction of its acceleration?

 17. An object of mass m is dropped at t 5 0 from the roof 
of a building of height h. While the object is falling, a 
wind blowing parallel to the face of the building exerts 
a constant horizontal force F on the object. (a) At what 
time t does the object strike the ground? Express t 
in terms of g and h. (b) Find an expression in terms 
of m and F for the acceleration ax of the object in the 
horizontal direction (taken as the positive x direction).  
(c) How far is the object displaced horizontally before 
hitting the ground? Answer in terms of m, g, F, and h. 
(d) Find the magnitude of the object’s acceleration 
while it is falling, using the variables F, m, and g.

 18. A force F
S

 applied to an object of mass m1 produces  
an acceleration of 3.00 m/s2. The same force applied 
to a second object of mass m2 produces an acceleration 
of 1.00 m/s2. (a) What is the value of the ratio m1/m2? 
(b) If m1 and m2 are combined into one object, find its 
acceleration under the action of the force F

S
.

 19. Two forces F
S

1 and F
S

2 act on a 5.00-kg object. Taking  
F1 5 20.0 N and F2 5 15.0 N, find the accelerations 
of the object for the configurations of forces shown in 
parts (a) and (b) of Figure P5.19.
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a buoyant force vertically upward on the boat. Find the 
magnitude of this force. (b) Model the forces as con-
stant over a short interval of time to find the velocity of 
the boat 0.450 s after the moment described.

 26. An iron bolt of mass 65.0 g hangs from a string 35.7 cm 
long. The top end of the string is fixed. Without touch-
ing it, a magnet attracts the bolt so that it remains sta-
tionary, but is displaced horizontally 28.0 cm to the 
right from the previously vertical line of the string. 
The magnet is located to the right of the bolt and on 
the same vertical level as the bolt in the final configu-
ration. (a) Draw a free-body diagram of the bolt.  
(b) Find the tension in the string. (c)  Find the mag-
netic force on the bolt.

 27. Figure P5.27 shows the 
horizontal forces acting on 
a sailboat moving north at 
constant velocity, seen 
from a point straight above 
its mast. At the particular 
speed of the sailboat, the 
water exerts a 220-N drag 
force on its hull and u 5 
40.0°. For each of the situa-
tions (a) and (b) described 
below, write two component equations representing 
Newton’s second law. Then solve the equations for P 
(the force exerted by the wind on the sail) and for n (the 
force exerted by the water on the keel). (a) Choose the 
x direction as east and the y direction as north. (b) Now 
choose the x direction as u 5 40.0° north of east and 
the y direction as u 5 40.0° west of north. (c) Compare 
your solutions to parts (a) and (b). Do the results agree?  
Is one method significantly easier?

 28. The systems shown in Figure P5.28 are in equilibrium. 
If the spring scales are calibrated in newtons, what do 
they read? Ignore the masses of the pulleys and strings 
and assume the pulleys and the incline in Figure 
P5.28d are frictionless.
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 29. Assume the three blocks portrayed in Figure P5.29 
move on a frictionless surface and a 42-N force acts as 
shown on the 3.0-kg block. Determine (a) the accelera-
tion given this system, (b) the tension in the cord con-
necting the 3.0-kg and the 1.0-kg blocks, and (c) the 
force exerted by the 1.0-kg block on the 2.0-kg block.

42 N

1.0 kg
2.0 kg

3.0 kg

Figure P5.29

 30. A block slides down a frictionless plane having an incli-
nation of u 5 15.0°. The block starts from rest at the 
top, and the length of the incline is 2.00 m. (a) Draw a 
free-body diagram of the block. Find (b) the accelera-
tion of the block and (c) its speed when it reaches the 
bottom of the incline.

 31. The distance between two telephone poles is 50.0 m. 
When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. (a) Draw 
a free-body diagram of the bird. (b) How much tension 
does the bird produce in the wire? Ignore the weight of 
the wire.

 32. A 3.00-kg object is moving in a plane, with its x and y 
coordinates given by x 5 5t 2 2 1 and y 5 3t 3 1 2, 
where x and y are in meters and t is in seconds. Find 
the magnitude of the net force acting on this object at 
t 5 2.00 s.

 33. A bag of cement weighing 325 N  
hangs in equilibrium from 
three wires as suggested in Fig-
ure P5.33. Two of the wires make 
angles u1 5 60.0° and u2 5 40.0°  
with the horizontal. Assuming 
the system is in equilibrium, 
find the tensions T1, T2, and T3 
in the wires.

 34. A bag of cement whose weight 
is Fg hangs in equilibrium from 
three wires as shown in Figure 
P5.33. Two of the wires make 
angles u1 and u2 with the horizontal. Assuming the sys-
tem is in equilibrium, show that the tension in the left-
hand wire is

T1 5
Fg cos u2

sin 1u1 1 u2 2
 35. Two people pull as hard as they can on horizontal 

ropes attached to a boat that has a mass of 200 kg.  
If they pull in the same direction, the boat has an 
acceleration of 1.52 m/s2 to the right. If they pull in 
opposite directions, the boat has an acceleration of 
0.518 m/s2 to the left. What is the magnitude of the 
force each person exerts on the boat? Disregard any 
other horizontal forces on the boat.
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diagrams of both objects. Find (b) the magnitude of 
the acceleration of the objects and (c) the tension in 
the string.

 41. Figure P5.41 shows the speed of a person’s body as he 
does a chin-up. Assume the motion is vertical and the 
mass of the person’s body is 64.0 kg. Determine the 
force exerted by the chin-up bar on his body at (a) t 5 
0, (b) t 5 0.5 s, (c) t 5 1.1 s, and (d) t 5 1.6 s.

time (s)
1.0 1.50
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Figure P5.41

 42. Two objects are connected by a 
light string that passes over a  
frictionless pulley as shown in  
Figure P5.42. Assume the incline 
is frictionless and take m1 5  
2.00 kg, m2  5 6.00  kg, and u 5 
55.0°. (a)  Draw free-body dia-
grams of both objects. Find 
(b)  the magnitude of the accel-
eration of the objects, (c) the ten-
sion in the string, and (d) the 
speed of each object 2.00 s after 
it is released from rest.

 43. Two blocks, each of mass m 5 
3.50 kg, are hung from the ceiling 
of an elevator as in Figure P5.43. 
(a) If the elevator moves with an 
upward acceler ation aS of magni-
tude 1.60 m/s2, find the tensions 
T1 and T2 in the upper and lower 
strings. (b) If the strings can 
withstand a maximum tension of 
85.0 N, what maximum accelera-
tion can the elevator have before 
a string breaks?

 44. Two blocks, each of mass m, are 
hung from the ceiling of an eleva-
tor as in Figure P5.43. The elevator has an upward accel-
eration a. The strings have negligible mass. (a) Find the 
tensions T1 and T2 in the upper and lower strings in 
terms of m, a, and g. (b) Compare the two tensions and 
determine which string would break first if a is made 
sufficiently large. (c) What are the tensions if the cable 
supporting the elevator breaks?

 45. In the system shown in Figure P5.45, a horizontal force 
F
S

x acts on an object of mass m2 5 8.00 kg. The hori-

m1 m2

u

Figure P5.42
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 36. Figure P5.36 shows loads hanging from the ceiling of 
an elevator that is moving at constant velocity. Find the 
tension in each of the three strands of cord supporting 
each load.

50.0°40.0°

T1 T2

T3

5.00 kg

60.0°

T1

T3

10.0 kg

T2

a b

Figure P5.36

 37. An object of mass m 5 1.00 kg 
is observed to have an accel-
eration aS with a magnitude of  
10.0 m/s2 in a direction 60.0° 
east of north. Figure P5.37 
shows a view of the object 
from above. The force F

S

2 act-
ing on the object has a magni-
tude of 5.00 N and is directed 
north. Determine the magnitude and direction of the 
one other horizontal force F

S

1 acting on the object.

 38. A setup similar to the one shown in Figure P5.38 is often 
used in hospitals to support and apply a horizontal trac-
tion force to an injured leg. (a) Determine the force of 
tension in the rope supporting the leg. (b) What is the 
traction force exerted to the right on the leg?

70�

8.00 kg

Figure P5.38

 39. A simple accelerometer is constructed inside a car by 
suspending an object of mass m from a string of length 
L that is tied to the car’s ceiling. As the car accelerates 
the string–object system makes a constant angle of u 
with the vertical. (a) Assuming that the string mass is 
negligible compared with m, derive an expression for 
the car’s acceleration in terms of u and show that it is 
independent of the mass m and the length L. (b) Deter-
mine the acceleration of the car 
when u 5 23.0°.

 40. An object of mass m1 5 5.00 kg 
placed on a frictionless, horizon-
tal table is connected to a string 
that passes over a pulley and then 
is fastened to a hanging object of 
mass m2  5 9.00 kg as shown in 
Figure P5.40. (a) Draw free-body 

60.0�

m

aS F2
S

F1
S

Figure P5.37
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Problems 40, 63, 
and 87.
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acts on the top pin. Draw a free-body diagram of the 
pin. Use the condition for equilibrium of the pin to 
translate the free-body diagram into equations. From 
the equations calculate the forces exerted by struts A 
and B. If you obtain a positive answer, you correctly 
guessed the direction of the force. A negative answer 
means that the direction should be reversed, but the 
absolute value correctly gives the magnitude of the 
force. If a strut pulls on a pin, it is in tension. If it 
pushes, the strut is in compression. Identify whether 
each strut is in tension or in compression. 

60.0°

A

B

50.0°

Figure P5.48

 49. Two blocks of mass 3.50 kg and 8.00 kg are connected 
by a massless string that passes over a frictionless pul-
ley (Fig. P5.49). The inclines are frictionless. Find (a) 
the magnitude of the acceleration of each block and 
(b) the tension in the string.

3.50 kg 8.00 kg

35.0° 35.0°

Figure P5.49 Problems 49 and 71.

 50. In the Atwood machine discussed in Example 5.9 and 
shown in Figure 5.14a, m1 5 2.00 kg and m2 5 7.00 kg. 
The masses of the pulley and string are negligible by 
comparison. The pulley turns without friction, and the 
string does not stretch. The lighter object is released 
with a sharp push that sets it into motion at vi 5  
2.40 m/s downward. (a) How far will m1 descend below 
its initial level? (b) Find the velocity of m1 after 1.80 s.

 51. In Example 5.8, we investigated the apparent weight of 
a fish in an elevator. Now consider a 72.0-kg man stand-
ing on a spring scale in an elevator. Starting from rest, 
the elevator ascends, attaining its maximum speed of 
1.20 m/s in 0.800 s. It travels with this constant speed 
for the next 5.00 s. The elevator then undergoes a uni-
form acceleration in the negative y direction for 1.50 s 
and comes to rest. What does the spring scale register 
(a) before the elevator starts to move, (b) during the 
first 0.800 s, (c) while the elevator is traveling at con-
stant speed, and (d) during the time interval it is slow-
ing down?

Section 5.8 Forces of Friction

 52. Consider a large truck carrying a heavy load, such as 
steel beams. A significant hazard for the driver is that 
the load may slide forward, crushing the cab, if the 
truck stops suddenly in an accident or even in braking. 
Assume, for example, that a 10 000-kg load sits on the 

AMT
M

zontal surface is frictionless. Consider the acceleration 
of the sliding object as a function of Fx. (a) For what 
values of Fx does the object of mass m1 5 2.00 kg accel-
erate upward? (b) For what values of Fx is the tension in 
the cord zero? (c) Plot the acceleration of the m2 object 
versus Fx. Include values of Fx from 2100 N to 1100 N.

Fx
S

m1

m2

Figure P5.45

 46. An object of mass m1 hangs from a string that passes 
over a very light fixed pulley P1 as shown in Figure 
P5.46. The string connects to a second very light pul-
ley P2. A second string passes around this pulley with 
one end attached to a wall and the other to an object 
of mass m2 on a frictionless, horizontal table. (a) If a1 
and a2 are the accelerations of m1 and m2, respectively, 
what is the relation between these accelerations? Find 
expressions for (b) the tensions in the strings and  
(c) the accelerations a1 and a2 in terms of the masses 
m1 and m2, and g.

P2
P1

m2

m1

Figure P5.46

 47. A block is given an initial velocity of 5.00 m/s up a fric-
tionless incline of angle u 5 20.0° (Fig. P5.47). How far 
up the incline does the block slide before coming to rest?

θ

Figure P5.47

 48. A car is stuck in the mud. A tow truck pulls on the 
car with the arrangement shown in Fig. P5.48. The tow 
cable is under a tension of 2 500 N and pulls down-
ward and to the left on the pin at its upper end. The 
light pin is held in equilibrium by forces exerted by 
the two bars A and B. Each bar is a strut; that is, each 
is a bar whose weight is small compared to the forces 
it exerts and which exerts forces only through hinge 
pins at its ends. Each strut exerts a force directed par-
allel to its length. Determine the force of tension or 
compression in each strut. Proceed as follows. Make a 
guess as to which way (pushing or pulling) each force 

S
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mum value of ms is necessary to achieve the record 
time? (b) Suppose the driver were able to increase his 
or her engine power, keeping other things equal. How 
would this change affect the elapsed time?

 59. To meet a U.S. Postal Service requirement, employees’ 
footwear must have a coefficient of static friction of 0.5 
or more on a specified tile surface. A typical athletic 
shoe has a coefficient of static friction of 0.800. In an 
emergency, what is the minimum time interval in 
which a person starting from rest can move 3.00 m on 
the tile surface if she is wearing (a) footwear meeting 
the Postal Service minimum and (b) a typical athletic 
shoe?

 60. A woman at an airport is towing 
her 20.0-kg suitcase at constant 
speed by pulling on a strap at 
an angle u above the horizontal 
(Fig. P5.60). She pulls on the 
strap with a 35.0-N force, and 
the friction force on the suit-
case is 20.0 N. (a) Draw a free-
body diagram of the suitcase. 
(b) What angle does the strap 
make with the horizontal? (c) 
What is the magnitude of the normal force that the 
ground exerts on the suitcase?

 61. Review. A 3.00-kg block starts from rest at the top of a 
30.0° incline and slides a distance of 2.00 m down the 
incline in 1.50 s. Find (a) the magnitude of the acceler-
ation of the block, (b) the coefficient of kinetic friction 
between block and plane, (c) the friction force acting 
on the block, and (d) the speed of the block after it has 
slid 2.00 m.

 62. The person in Figure P5.62 
weighs 170 lb. As seen from 
the front, each light crutch 
makes an angle of 22.0° 
with the vertical. Half of the 
person’s weight is supported 
by the crutches. The other 
half is supported by the ver-
tical forces of the ground 
on the person’s feet. Assum-
ing that the person is mov-
ing with constant velocity 
and the force exerted by the 
ground on the crutches acts 
along the crutches, deter-
mine (a) the smallest possible coefficient of friction 
between crutches and ground and (b) the magnitude 
of the compression force in each crutch.

 63. A 9.00-kg hanging object is connected by a light, inex-
tensible cord over a light, frictionless pulley to a 5.00-
kg block that is sliding on a flat table (Fig. P5.40). Tak-
ing the coefficient of kinetic friction as 0.200, find the 
tension in the string.

 64. Three objects are connected on a table as shown in Fig-
ure P5.64. The coefficient of kinetic friction between 
the block of mass m2 and the table is 0.350. The objects 
have masses of m1 5 4.00 kg, m2 5 1.00 kg, and m3 5 

u

Figure P5.60
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22.0�22.0�

Figure P5.62
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flatbed of a 20 000-kg truck moving at 12.0 m/s. Assume 
that the load is not tied down to the truck, but has a coef-
ficient of friction of 0.500 with the flatbed of the truck. 
(a) Calculate the minimum stopping distance for which 
the load will not slide forward relative to the truck.  
(b) Is any piece of data unnecessary for the solution?

 53. Review. A rifle bullet with a mass of 12.0 g traveling 
toward the right at 260 m/s strikes a large bag of sand 
and penetrates it to a depth of 23.0 cm. Determine the 
magnitude and direction of the friction force (assumed 
constant) that acts on the bullet.

 54. Review. A car is traveling at 50.0 mi/h on a horizontal 
highway. (a) If the coefficient of static friction between 
road and tires on a rainy day is 0.100, what is the mini-
mum distance in which the car will stop? (b) What is 
the stopping distance when the surface is dry and ms 5 
0.600?

 55. A 25.0-kg block is initially at rest on a horizontal sur-
face. A horizontal force of 75.0 N is required to set 
the block in motion, after which a horizontal force of  
60.0 N is required to keep the block moving with con-
stant speed. Find (a)  the coefficient of static friction 
and (b) the coefficient of kinetic friction between the 
block and the surface.

 56. Why is the following situation impossible? Your 3.80-kg  
physics book is placed next to you on the horizontal seat 
of your car. The coefficient of static friction between the 
book and the seat is 0.650, and the coefficient of kinetic 
friction is 0.550. You are traveling forward at 72.0 km/h 
and brake to a stop with constant acceleration over a  
distance of 30.0 m. Your physics book remains on the 
seat rather than sliding forward onto the floor.

 57. To determine the coefficients of friction between rub-
ber and various surfaces, a student uses a rubber eraser 
and an incline. In one experiment, the eraser begins 
to slip down the incline when the angle of inclination 
is 36.0° and then moves down the incline with constant 
speed when the angle is reduced to 30.0°. From these 
data, determine the coefficients of static and kinetic 
friction for this experiment.

 58. Before 1960, people believed that the maximum 
attainable coefficient of static friction for an automo-
bile tire on a roadway was ms 5 1. Around 1962, three 
companies independently developed racing tires with 
coefficients of 1.6. This problem shows that tires have 
improved further since then. The shortest time inter-
val in which a piston-engine car initially at rest has 
covered a distance of one-quarter mile is about 4.43 s. 
(a) Assume the car’s rear wheels lift the front wheels 
off the pavement as shown in Figure P5.58. What mini-

W
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the fluid friction force disappears as soon as the fish’s 
head breaks the water surface and assume the force on 
its tail is constant. Model the gravitational force as sud-
denly switching full on when half the length of the fish 
is out of the water. Find the value of P.

 69. Review. A magician pulls a tablecloth from under a 
200-g mug located 30.0 cm from the edge of the cloth. 
The cloth exerts a friction force of 0.100 N on the mug, 
and the cloth is pulled with a constant acceleration of 
3.00 m/s2. How far does the mug move relative to the 
horizontal tabletop before the cloth is completely out 
from under it? Note that the cloth must move more 
than 30 cm relative to the tabletop during the process.

 70. A 5.00-kg block is placed on top of a 10.0-kg block (Fig. 
P5.70). A horizontal force of 45.0 N is applied to the 
10-kg block, and the 5.00-kg block is tied to the wall. 
The coefficient of kinetic friction between all moving 
surfaces is 0.200. (a) Draw a free-body diagram for each 
block and identify the action–reaction forces between 
the blocks. (b) Determine the tension in the string and 
the magnitude of the acceleration of the 10.0-kg block.

5.00
kg

10.0 kg F = 45.0 N

Figure P5.70

 71. The system shown in Figure P5.49 has an acceleration 
of magnitude 1.50 m/s2. Assume that the coefficient of 
kinetic friction between block and incline is the same 
for both inclines. Find (a) the coefficient of kinetic 
friction and (b) the tension in the string.

Additional Problems
 72. A black aluminum glider floats on a film of air above a 

level aluminum air track. Aluminum feels essentially no 
force in a magnetic field, and air resistance is negligi-
ble. A strong magnet is attached to the top of the glider, 
forming a total mass of 240 g. A piece of scrap iron 
attached to one end stop on the track attracts the mag-
net with a force of 0.823 N when the iron and the mag-
net are separated by 2.50 cm. (a) Find the acceleration 
of the glider at this instant. (b) The scrap iron is now 
attached to another green glider, forming total mass 
120 g. Find the acceleration of each glider when the glid-
ers are simultaneously released at 2.50-cm separation.

 73. A young woman buys an inexpensive used car for stock 
car racing. It can attain highway speed with an accelera-
tion of 8.40 mi/h · s. By making changes to its engine, 
she can increase the net horizontal force on the car by 
24.0%. With much less expense, she can remove material 
from the body of the car to decrease its mass by 24.0%. 
(a) Which of these two changes, if either, will result in 
the greater increase in the car’s acceleration? (b) If she 
makes both changes, what acceleration can she attain?

 74. Why is the following situation impossible? A book sits on an 
inclined plane on the surface of the Earth. The angle 

2.00 kg, and the pulleys are frictionless. (a) Draw a free-
body diagram of each object. (b) Determine the accel-
eration of each object, including its direction. (c) Deter-
mine the tensions in the two cords. What If? (d) If the 
tabletop were smooth, would the tensions increase, 
decrease, or remain the same? Explain.

m1

m2

m3

Figure P5.64

 65. Two blocks connected by a 
rope of negligible mass are 
being dragged by a hori-
zontal force (Fig. P5.65). 
Suppose F 5 68.0 N, m1 5 
12.0  kg, m2  5 18.0 kg,  
and the coefficient of kinetic friction between each 
block and the surface is 0.100. (a) Draw a free-body 
diagram for each block. Determine (b) the accelera-
tion of the system and (c) the tension T in the rope.

 66. A block of mass 3.00 kg is pushed 
up against a wall by a force P

S
 that 

makes an angle of u 5 50.0° with 
the horizontal as shown in Figure 
P5.66. The coefficient of static fric-
tion between the block and the wall 
is 0.250. (a) Determine the possible 
values for the magnitude of P

S
 that 

allow the block to remain station-
ary. (b) Describe what happens if 0 PS 0  has a larger value 
and what happens if it is smaller. (c) Repeat parts (a) and 
(b), assuming the force makes an angle of u 5 13.0° with 
the horizontal.

 67. Review. One side of the roof of a house slopes up at 
37.0°. A roofer kicks a round, flat rock that has been 
thrown onto the roof by a neighborhood child. The 
rock slides straight up the incline with an initial speed 
of 15.0 m/s. The coefficient of kinetic friction between 
the rock and the roof is 0.400. The rock slides 10.0 m 
up the roof to its peak. It crosses the ridge and goes 
into free fall, following a parabolic trajectory above 
the far side of the roof, with negligible air resistance. 
Determine the maximum height the rock reaches 
above the point where it was kicked.

 68. Review. A Chinook salmon can swim underwater at 
3.58 m/s, and it can also jump vertically upward, leav-
ing the water with a speed of 6.26 m/s. A record salmon 
has length 1.50 m and mass 61.0 kg. Consider the fish 
swimming straight upward in the water below the sur-
face of a lake. The gravitational force exerted on it is 
very nearly canceled out by a buoyant force exerted 
by the water as we will study in Chapter 14. The fish 
experiences an upward force P exerted by the water 
on its threshing tail fin and a downward fluid friction 
force that we model as acting on its front end. Assume 

T
m1

m2 F
S

Figure P5.65
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to the force on the block as the rope’s mass approaches 
zero? What can you state about the tension in a light 
cord joining a pair of moving objects?

 79. Two blocks of masses m1 and m2 are placed on a table in 
contact with each other as discussed in Example 5.7 and 
shown in Figure 5.12a. The coefficient of kinetic friction 
between the block of mass m1 and the table is m1, and 
that between the block of mass m2 and the table is m2.  
A horizontal force of magnitude F is applied to the block 
of mass m1. We wish to find P, the magnitude of the con-
tact force between the blocks. (a) Draw diagrams show-
ing the forces for each block. (b) What is the net force 
on the  system of two blocks? (c) What is the net force 
acting on m1? (d) What is the net force acting on m2?  
(e) Write Newton’s second law in the x direction for each 
block. (f) Solve the two equations in two unknowns for 
the acceleration a of the blocks in terms of the masses, 
the applied force F, the coefficients of friction, and g. 
(g) Find the magnitude P of the contact force between 
the blocks in terms of the same quantities.

 80. On a single, light, vertical cable that does not stretch, 
a crane is lifting a 1 207-kg Ferrari and, below it, a   
1 461-kg BMW Z8. The Ferrari is moving upward with 
speed 3.50  m/s and acceleration 1.25  m/s2. (a) How 
do the velocity and acceleration of the BMW compare 
with those of the Ferrari? (b) Find the tension in the 
cable between the BMW and the Ferrari. (c) Find the 
tension in the cable above the Ferrari.

 81. An inventive child named Nick wants to reach an apple 
in a tree without climbing the tree. Sitting in a chair 
connected to a rope that passes over a frictionless pul-
ley (Fig. P5.81), Nick pulls on the loose end of the rope 
with such a force that the spring scale reads 250 N. 
Nick’s true weight is 320 N, and the chair weighs 160 N. 
Nick’s feet are not touching the ground. (a) Draw one 
pair of diagrams showing the forces for Nick and the 
chair considered as separate systems and another dia-
gram for Nick and the chair considered as one system. 
(b) Show that the acceleration of the system is upward 
and find its magnitude. (c) Find the force Nick exerts 
on the chair.

Figure P5.81 Problems 81 and 82.

 82. In the situation described in Problem 81 and Figure 
P5.81, the masses of the rope, spring balance, and pul-
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of the plane with the horizontal is 60.0°. The coef-
ficient of kinetic friction between the book and the 
plane is 0.300. At time t 5 0, the book is released from 
rest. The book then slides through a distance of 1.00 m, 
measured along the plane, in a time interval of 0.483 s.

 75. Review. A hockey puck struck by a hockey stick is given an 
initial speed vi in the positive x direction. The coefficient 
of kinetic friction between the ice and the puck is mk.  
(a)  Obtain an expression for the acceleration of the 
puck as it slides across the ice. (b) Use the result of part 
(a) to obtain an expression for the distance d the puck 
slides. The answer should be in terms of the variables vi, 
mk, and g only.

 76. A 1.00-kg glider on a horizontal air track is pulled by a 
string at an angle u. The taut string runs over a pulley 
and is attached to a hanging object of mass 0.500 kg 
as shown in Figure P5.76. (a) Show that the speed vx of 
the glider and the speed vy of the hanging object are 
related by vx 5 uvy, where u 5 z(z2 2 h0

2)–1/2. (b) The 
glider is released from rest. Show that at that instant 
the acceleration ax of the glider and the acceleration ay 
of the hanging object are related by ax 5 uay. (c) Find 
the tension in the string at the instant the glider is  
released for h0 5 80.0 cm and u 5 30.0°.

h0

θ

z

m

vy

vx

x

y

Figure P5.76

 77. A frictionless plane is 10.0 m long and inclined at 35.0°. 
A sled starts at the bottom with an initial speed of 
5.00  m/s up the incline. When the sled reaches the 
point at which it momentarily stops, a second sled is 
released from the top of the incline with an initial 
speed vi. Both sleds reach the bottom of the incline at 
the same moment. (a) Determine the distance that the 
first sled traveled up the incline. (b) Determine the ini-
tial speed of the second sled.

 78. A rope with mass mr is 
attached to a block with 
mass mb as in Figure P5.78. 
The block rests on a friction-
less, horizontal surface. The 
rope does not stretch. The 
free end of the rope is pulled to the right with a hori-
zontal force F

S
. (a) Draw force diagrams for the rope 

and the block, noting that the tension in the rope is 
not uniform. (b) Find the acceleration of the system in 
terms of mb, mr, and F. (c) Find the magnitude of the 
force the rope exerts on the block. (d) What happens 
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mrmb
F
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Figure P5.78
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or the inclined plane, are very simple. Some machines 
do not even look like machines. For example, your car is 
stuck in the mud and you can’t pull hard enough to get it 
out. You do, however, have a long cable that you connect 
taut between your front bumper and the trunk of a stout 
tree. You now pull sideways on the cable at its midpoint, 
exerting a force f. Each half of the cable is displaced 
through a small angle u from the straight line between 
the ends of the cable. (a) Deduce an expression for the 
force acting on the car. (b) Evaluate the cable tension for 
the case where u 5 7.00° and f  5 100 N.

 87. Objects with masses m1 5 10.0 kg and m2 5 5.00 kg are 
connected by a light string that passes over a friction-
less pulley as in Figure P5.40. If, when the system starts 
from rest, m2 falls 1.00 m in 1.20 s, determine the coef-
ficient of kinetic friction between m1 and the table.

 88. Consider the three connected objects shown in Figure 
P5.88. Assume first that the inclined plane is friction-
less and that the system is in equilibrium. In terms of m, 
g, and u, find (a) the mass M and (b) the tensions T1 and 
T2. Now assume that the value of M is double the value 
found in part (a). Find (c) the acceleration of each 
object and (d) the tensions T1 and T2. Next, assume that 
the coefficient of static friction between m and 2m and 
the inclined plane is ms and that the system is in equilib-
rium. Find (e) the maximum value of M and  
(f) the minimum value of M. (g) Compare the values of 
T2 when M has its minimum and maximum values. 

2m

m

M

T1

T2

θ

Figure P5.88

 89. A crate of weight Fg is pushed by a force 
P
S

 on a horizontal floor as shown 
in Figure P5.89. The coefficient of 
static friction is ms, and P

S
 is directed 

at angle u below the horizontal.  
(a) Show that the minimum value of P 
that will move the crate is given by

P 5
ms Fg sec u

1 2 ms tan u

  (b) Find the condition on u in terms of ms for which 
motion of the crate is impossible for any value of P.

 90. A student is asked to measure the acceleration of a 
glider on a frictionless, inclined plane, using an air 
track, a stopwatch, and a meterstick. The top of the 
track is measured to be 1.774 cm higher than the bot-
tom of the track, and the length of the track is d 5 
127.1 cm. The cart is released from rest at the top of 
the incline, taken as x 5 0, and its position x along the 
incline is measured as a function of time. For x values 
of 10.0 cm, 20.0 cm, 35.0 cm, 50.0  cm, 75.0 cm, and  
100 cm, the measured times at which these positions 
are reached (averaged over five runs) are 1.02 s, 1.53 s, 
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Figure P5.89
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ley are negligible. Nick’s feet are not touching the 
ground. (a) Assume Nick is momentarily at rest when he 
stops pulling down on the rope and passes the end of 
the rope to another child, of weight 440 N, who is stand-
ing on the ground next to him. The rope does not 
break. Describe the ensuing motion. (b) Instead, 
assume Nick is momentarily at rest when he ties the end 
of the rope to a strong hook projecting from the tree 
trunk. Explain why this action can make the rope break.

 83. In Example 5.7, we pushed on two blocks on a table. 
Suppose three blocks are in contact with one another 
on a frictionless, horizontal surface as shown in Figure 
P5.83. A horizontal force F

S
 is applied to m1. Take m1 5  

2.00 kg, m2 5 3.00 kg, m3 5 4.00 kg, and F 5 18.0 N.  
(a) Draw a separate free-body diagram for each block. 
(b) Determine the acceleration of the blocks. (c) Find 
the resultant force on each block. (d) Find the magni-
tudes of the contact forces between the blocks. (e) You 
are working on a construction project. A coworker is 
nailing up plasterboard on one side of a light partition, 
and you are on the opposite side, providing “backing” 
by leaning against the wall with your back pushing on 
it. Every hammer blow makes your back sting. The 
supervisor helps you put a heavy block of wood between 
the wall and your back. Using the situation analyzed in 
parts (a) through (d) as a model, explain how this 
change works to make your job more comfortable.

m1 m2 m3F
S

Figure P5.83

 84. An aluminum block of 
mass m1 5 2.00  kg and a 
copper block of mass m2 5 
6.00 kg are connected by a 
light string over a friction-
less pulley. They sit on a 
steel surface as shown in 
Figure P5.84, where u 5 
30.0°. (a) When they are released from rest, will they 
start to move? If they do, determine (b) their accelera-
tion and (c) the tension in the string. If they do not 
move, determine (d) the sum of the 
magnitudes of the forces of friction 
acting on the blocks.

 85. An object of mass M is held in place 
by an applied force F

S
 and a pulley 

system as shown in Figure P5.85. The 
pulleys are massless and friction-
less. (a) Draw diagrams showing the 
forces on each pulley. Find (b) the 
tension in each section of rope, T1, 
T2, T3, T4, and T5 and (c) the mag-
nitude of F

S
.

 86. Any device that allows you to increase 
the force you exert is a kind of machine. 
Some machines, such as the prybar 
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 95. A car accelerates down a 
hill (Fig. P5.95), going from 
rest to 30.0 m/s in 6.00 s. A 
toy inside the car hangs by 
a string from the car’s ceil-
ing. The ball in the figure 
represents the toy, of mass 
0.100 kg. The acceleration is 
such that the string remains 
perpendicular to the ceiling. Determine (a) the angle u 
and (b) the tension in the string.

Challenge Problems
 96. A time-dependent force, F

S
5 18.00 î 2 4.00t ĵ 2 , where 

F
S

 is in newtons and t is in seconds, is exerted on a 
2.00-kg object initially at rest. (a) At what time will the 
object be moving with a speed of 15.0 m/s? (b) How far 
is the object from its initial position when its speed is 
15.0 m/s? (c) Through what total displacement has the 
object traveled at this moment?

 97. The board sandwiched between two other boards in 
Figure P5.97 weighs 95.5 N. If the coefficient of static 
friction between the boards is 0.663, what must be 
the magnitude of the compression forces (assumed 
horizontal) acting on both sides of the center board to 
keep it from slipping?

Figure P5.97

 98. Initially, the system of objects shown in Figure P5.93 is 
held motionless. The pulley and all surfaces and wheels 
are frictionless. Let the force F

S
 be zero and assume 

that m1 can move only vertically. At the instant after 
the system of objects is released, find (a) the tension T 
in the string, (b) the acceleration of m2, (c) the accel-
eration of M, and (d) the acceleration of m1. (Note: The 
pulley accelerates along with the cart.) 

 99. A block of mass 2.20 kg is accel-
erated across a rough surface 
by a light cord passing over a 
small pulley as shown in Fig-
ure P5.99. The tension T in the 
cord is maintained at 10.0 N,  
and the pulley is 0.100 m above 
the top of the block. The coef-
ficient of kinetic friction is 
0.400. (a) Determine the accel-
eration of the block when x 5  
0.400 m. (b) Describe the gen-
eral behavior of the acceleration as the block slides 
from a location where x is large to x 5 0. (c) Find the 
maximum value of the acceleration and the position 
x for which it occurs. (d) Find the value of x for which 
the acceleration is zero.

M

S

M

T

x

Figure P5.99

Q/C

2.01 s, 2.64 s, 3.30 s, and 3.75 s, respectively. (a) Con-
struct a graph of x versus t 2, with a best-fit straight line 
to describe the data. (b) Determine the acceleration of 
the cart from the slope of this graph. (c) Explain how 
your answer to part (b) compares with the theoretical 
value you calculate using a 5 g sin u as derived in 
Example 5.6.

 91. A flat cushion of mass m is 
released from rest at the cor-
ner of the roof of a building, 
at height h. A wind blowing 
along the side of the building 
exerts a constant horizontal 
force of magnitude F on the 
cushion as it drops as shown 
in Figure P5.91. The air exerts 
no vertical force. (a) Show 
that the path of the cushion is 
a straight line. (b)  Does the 
cushion fall with constant velocity? Explain. (c) If m 5 
1.20 kg, h 5 8.00 m, and F 5 2.40 N, how far from the 
building will the cushion hit the level ground? What 
If? (d) If the cushion is thrown downward with a non-
zero speed at the top of the building, what will be the 
shape of its trajectory? Explain.

 92. In Figure P5.92, the pulleys 
and the cord are light, all sur-
faces are frictionless, and the 
cord does not stretch. (a) How 
does the acceleration of block 
1 compare with the accelera-
tion of block 2? Explain your 
reasoning. (b)  The mass of 
block 2 is 1.30 kg. Find its 
acceleration as it depends on 
the mass m1 of block 1.  
(c) What If? What does the result of part (b) predict if 
m1 is very much less than 1.30 kg? (d) What does the 
result of part (b) predict if m1 approaches infinity?  
(e) In this last case, what is the tension in the cord?  
(f) Could you anticipate the answers to parts (c), (d), 
and (e) without first doing part (b)? Explain.

 93. What horizontal force must 
be applied to a large block 
of mass M shown in Figure 
P5.93 so that the tan blocks 
remain stationary relative 
to M? Assume all surfaces 
and the pulley are friction-
less. Notice that the force 
exerted by the string accelerates m2.

 94. An 8.40-kg object slides down a fixed, frictionless, 
inclined plane. Use a computer to determine and tabu-
late (a) the normal force exerted on the object and  
(b) its acceleration for a series of incline angles (mea-
sured from the horizontal) ranging from 0° to 90° in 5° 
increments. (c) Plot a graph of the normal force and 
the acceleration as functions of the incline angle.  
(d) In the limiting cases of 0° and 90°, are your results 
consistent with the known behavior?

h

Cushion
Wind
force

Figure P5.91

Q/C

m1

m2

Figure P5.92

Q/C

F
S m1

m2

M

Figure P5.93  
Problems 93 and 98.

S

Q/C

u

u

Figure P5.95
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shown in Figure P5.103a. If the distance L that the 
leading edge of the smaller block travels on the larger 
block is 3.00 m, (a) in what time interval will the 
smaller block make it to the right side of the 8.00-kg 
block as shown in Figure P5.103b? (Note: Both blocks 
are set into motion when F

S
 is applied.) (b) How far 

does the 8.00-kg block move in the process?

F
S

F
S

M

M

m

m

L

a

b

Figure P5.103

 104. A mobile is formed by supporting four metal butter-
flies of equal mass m from a string of length L. The 
points of support are evenly spaced a distance , apart 
as shown in Figure P5.104. The string forms an angle 
u1 with the ceiling at each endpoint. The center sec-
tion of string is horizontal. (a) Find the tension in 
each section of string in terms of u1, m, and g. (b) In 
terms of u1, find the angle u2 that the sections of string 
between the outside butterflies and the inside butter-
flies form with the horizontal. (c) Show that the dis-
tance D between the endpoints of the string is

D 5
L
5
b2 cos u1 1 2 cos 3tan21 11

2 tan u1 2 4 1 1r

�

��
�

D

�

m

m

m

m

L � 5�

u1

u2 u2

u1

Figure P5.104
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 100. Why is the following situation impossible? A 1.30-kg toaster  
is not plugged in. The coefficient of static friction 
between the toaster and a horizontal countertop is 
0.350. To make the toaster start moving, you carelessly 
pull on its electric cord. Unfortunately, the cord has 
become frayed from your previous similar actions and 
will break if the tension in the cord exceeds 4.00 N. 
By pulling on the cord at a particular angle, you suc-
cessfully start the toaster moving without breaking the 
cord.

 101. Review. A block of mass m 5 2.00 kg is released from 
rest at h 5 0.500 m above the surface of a table, at the 
top of a u 5 30.0° incline as shown in Figure P5.101. 
The frictionless incline is fixed on a table of height  
H 5 2.00 m. (a)  Determine the acceleration of the 
block as it slides down the incline. (b) What is the 
velocity of the block as it leaves the incline? (c) How far 
from the table will the block hit the floor? (d) What 
time interval elapses between when the block is 
released and when it hits the floor? (e) Does the mass of 
the block affect any of the above calculations?

h

H

u

R

m

Figure P5.101 Problems 101 and 102.

 102. In Figure P5.101, the incline has mass M and is fas-
tened to the stationary horizontal tabletop. The block 
of mass m is placed near the bottom of the incline and 
is released with a quick push that sets it sliding 
upward. The block stops near the top of the incline as 
shown in the figure and then slides down again, 
always without friction. Find the force that the table-
top exerts on the incline throughout this motion in 
terms of m, M, g, and u.

 103. A block of mass m 5 2.00 kg rests on the left edge of a 
block of mass M 5 8.00 kg. The coefficient of kinetic 
friction between the two blocks is 0.300, and the sur-
face on which the 8.00-kg block rests is frictionless. A 
constant horizontal force of magnitude F 5 10.0 N is 
applied to the 2.00-kg block, setting it in motion as 

S
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In the preceding chapter, we introduced Newton’s laws of motion and incorporated 
them into two analysis models involving linear motion. Now we discuss motion that is 
slightly more complicated. For example, we shall apply Newton’s laws to objects traveling in 
circular paths. We shall also discuss motion observed from an accelerating frame of refer-
ence and motion of an object through a viscous medium. For the most part, this chapter 
consists of a series of examples selected to illustrate the application of Newton’s laws to a 
variety of new circumstances.

6.1 Extending the Particle in Uniform  
 Circular Motion Model

In Section 4.4, we discussed the analysis model of a particle in uniform circular 
motion, in which a particle moves with constant speed v in a circular path having a 
radius r. The particle experiences an acceleration that has a magnitude

ac 5
v2

r

c h a p t e r 

6

6.1 Extending the Particle in 
Uniform Circular Motion 
Model

6.2 Nonuniform Circular Motion

6.3 Motion in Accelerated 
Frames

6.4 Motion in the Presence of 
Resistive Forces

circular Motion and  
Other applications 
of Newton’s Laws

Kyle Busch, driver of the #18 
Snickers Toyota, leads Jeff Gordon, 
driver of the #24 Dupont Chevrolet, 
during the NASCAR Sprint Cup 
Series Kobalt Tools 500 at the 
Atlanta Motor Speedway on March 
9, 2008, in Hampton, Georgia. The 
cars travel on a banked roadway to 
help them undergo circular motion 
on the turns. (Chris Graythen/Getty 

Images for NASCAR)
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The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S

r that makes it follow 
the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r
 (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

WW Force causing centripetal  
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S

r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 
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Example 6.1   The Conical Pendulum 

A small ball of mass m is suspended from a string of length L. The ball revolves 
with constant speed v in a horizontal circle of radius r as shown in Figure 6.3. 
(Because the string sweeps out the surface of a cone, the system is known as a 
conical pendulum.) Find an expression for v in terms of the geometry in Figure 6.3.

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your-
self that the string sweeps out a cone and that the ball moves in a horizontal circle.

Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we 
model it as a particle in equilibrium in the vertical direction. It experiences a cen-
tripetal acceleration in the horizontal direction, so it is modeled as a particle in 
uniform circular motion in this direction.

Analyze Let u represent the angle between the string and the vertical. In the dia-
gram of forces acting on the ball in Figure 6.3b, the force T

S
 exerted by the string on the ball is resolved into a vertical 

component T cos u and a horizontal component T sin u acting toward the center of the circular path.

AM

S o l u T I o N

Apply the particle in equilibrium model in the vertical 
direction:

o Fy 5 T cos u 2 mg 5 0

(1)   T cos u 5 mg

Use Equation 6.1 from the particle in uniform circular 
motion model in the horizontal direction:

(2)   a  Fx 5 T sin u 5 mac 5
mv2

r

Divide Equation (2) by Equation (1) and use  
sin u/cos u 5 tan u:

tan u 5
v2

rg

Solve for v:  v 5 "rg tan u

Incorporate r 5 L sin u from the geometry in Figure 6.3a:  v 5  "Lg sin u tan u

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when u goes to 908 so 
that the string is horizontal. Because the tangent of 908 is infinite, the speed v is infinite, which tells us the string can-
not possibly be horizontal. If it were, there would be no vertical component of the force T

S
 to balance the gravitational 

force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by 
a frictionless table.

Imagine a moving object that can be mod-
eled as a particle. If it moves in a circular 
path of radius r at a constant speed v, it 
experiences a centripetal acceleration.  
Because the particle is accelerating, there 
must be a net force acting on the particle. 
That force is directed toward the center of 
the circular path and is given by 

 a  F 5 mac 5 m 
v2

r
 (6.1)

Analysis Model   Particle in Uniform Circular Motion (Extension)

Examples

•	 the	tension	in	a	string	of	constant	length	
acting on a rock twirled in a circle

•	 the	gravitational	force	acting	on	a	planet	
traveling around the Sun in a perfectly 
circular orbit (Chapter 13)

•	 the	magnetic	force	acting	on	a	charged	
particle moving in a uniform magnetic field (Chapter 29)

•	the	electric	force	acting	on	an	electron	in	orbit	around	a	
nucleus in the Bohr model of the hydrogen atom (Chapter 42)

r

� vS

ac
S

F
S

r

L

m

u

u

T sin u

T cos u
T
S

gS mgS 

a b

Figure 6.3 (Example 6.1) (a) A 
conical pendulum. The path of the 
ball is a horizontal circle. (b) The 
forces acting on the ball.



 

Example 6.2   How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we 
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

AM

S o l u T I o N

Analyze Incorporate the tension and the centripetal acceler-
ation into Newton’s second law as described by Equation 6.1:

T 5 m 
v2

r
 

continued

Solve for v: (1)   v 5 Å
Tr
m

  

Example 6.3   What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown 
in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static 
friction between the tires and dry pavement is 0.523, find the maximum speed 
the car can have and still make the turn successfully.

Conceptualize Imagine that the curved roadway is part of a large circle so 
that the car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze Figure 6.4b shows the forces on the car. The force that enables the 
car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If 
this force of static friction were zero—for example, if the car were on an icy 
road—the car would continue in a straight line and slide off the curved road.) 
The maximum speed vmax the car can have around the curve is the speed at 
which it is on the verge of skidding outward. At this point, the friction force 
has its maximum value fs,max 5 msn.

AM

S o l u T I o N

Find the maximum speed the puck can have, which corre-
sponds to the maximum tension the string can withstand:

vmax 5 Å
Tmaxr

m
5 Å

150.0 N 2 11.50 m 2
0.500 kg

5  12.2 m/s

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptual-
ization of the problem.

Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less 
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time 
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string 
is less likely to break when the puck travels in a circle of larger radius.

WhaT IF ?

nS

fs
S

 

fs
S

 

mgS 

a

b

Figure 6.4 (Example 6.3) (a) The force 
of static friction directed toward the center 
of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5

18.00 m/s 22

19.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WhaT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 

AM
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Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal accelera-
tion and keeps the car moving in 
its circular path is the horizontal 
component of the normal force.

nx

ny

u

u

Fg
S

nS

 

▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max

r

Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Å
msnr

m
5 Å

msmgr
m

5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s
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nbot
S

mgS

ntop
S

vS

R

Bottom

Top
vS

mgS

 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.
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continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22

135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WhaT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.

AM

S o l u T I o N
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6.2 Nonuniform Circular Motion
In Chapter 4, we found that if a particle moves with varying speed in a circular 
path, there is, in addition to the radial component of acceleration, a tangential 
component having magnitude udv/dtu. Therefore, the force acting on the particle 

Substitute numerical values given for the speed and 
radius:

n bot 5 mg c1 1
13.00 m/s 22

110.0 m 2 19.80 m/s2 2 d

5   1.09 mg

Hence, the magnitude of the force nSbot exerted by the seat on the child is greater than the weight of the child by a factor 
of 1.09. So, the child experiences an apparent weight that is greater than his true weight by a factor of 1.09.

 (B) Determine the force exerted by the seat on the child at the top of the ride.

Analyze The diagram of forces acting on the child at the top of the ride is shown in Figure 6.6c. The net downward 
force that provides the centripetal acceleration has a magnitude mg 2 n top.

S o l u T I o N

Substitute numerical values: n top 5 mg c1 2
13.00 m/s 22

110.0 m 2 19.80 m/s2 2 d

5   0.908 mg

Solve for the force exerted by the seat on the child: n top 5 mg 2 m 
v2

r
5 mg a1 2

v2

rg
b

Apply Newton’s second law to the child at this position: a  F 5 mg 2 n top 5 m 
v2

r

In this case, the magnitude of the force exerted by the seat on the child is less than his true weight by a factor of 0.908, 
and the child feels lighter.

Finalize The variations in the normal force are consistent with our prediction in the Conceptualize step of the problem.

Suppose a defect in the Ferris wheel mechanism causes the speed of the child to increase to 10.0 m/s. 
What does the child experience at the top of the ride in this case?

Answer If the calculation above is performed with v 5 10.0 m/s, the magnitude of the normal force at the top of the 
ride is negative, which is impossible. We interpret it to mean that the required centripetal acceleration of the child is 
larger than that due to gravity. As a result, the child will lose contact with the seat and will only stay in his circular path 
if there is a safety bar or a seat belt that provides a downward force on him to keep him in his seat. At the bottom of the 
ride, the normal force is 2.02 mg, which would be uncomfortable.

WhaT IF ?

Using the particle in uniform circular motion model, 
apply Newton’s second law to the child in the radial 
direction when he is at the bottom of the ride:

a  F 5 nbot 2 mg 5 m 
v2

r

Solve for the force exerted by the seat on the child: n bot 5 mg 1 m 
v 2

r
5 mg a1 1

v 2

rg
b

Categorize Because the speed of the child is constant, we can categorize this problem as one involving a particle (the 
child) in uniform circular motion, complicated by the gravitational force acting at all times on the child.

Analyze We draw a diagram of forces acting on the child at the bottom of the ride as shown in Figure 6.6b. The only 
forces acting on him are the downward gravitational force F

S

g 5 mgS and the upward force nSbot exerted by the seat.  
The net upward force on the child that provides his centripetal acceleration has a magnitude nbot 2 mg.

 

▸ 6.5 c o n t i n u e d
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must also have a tangential and a radial component. Because the total accelera-
tion is aS 5 aSr 1 aSt, the total force exerted on the particle is g  F

S
5 g  F

S

r 1 g  F
S

t  
as shown in Figure 6.7. (We express the radial and tangential forces as net forces 
with the summation notation because each force could consist of multiple forces 
that combine.) The vector g  F

S

r  is directed toward the center of the circle and is 
responsible for the centripetal acceleration. The vector g  F

S

t  tangent to the circle is 
responsible for the tangential acceleration, which represents a change in the par-
ticle’s speed with time.

Q uick Quiz 6.2 A bead slides at constant speed along a curved wire lying on a 
horizontal surface as shown in Figure 6.8. (a) Draw the vectors representing the 
force exerted by the wire on the bead at points A, B, and C. (b) Suppose the 
bead in Figure 6.8 speeds up with constant tangential acceleration as it moves 
toward the right. Draw the vectors representing the force on the bead at points 
A, B, and C.

Figure 6.8 (Quick Quiz 6.2) A 
bead slides along a curved wire.

C

B

A

Example 6.6   Keep Your Eye on the Ball 

A small sphere of mass m is attached to the end of a cord of length 
R and set into motion in a vertical circle about a fixed point O as 
illustrated in Figure 6.9. Determine the tangential acceleration 
of the sphere and the tension in the cord at any instant when the 
speed of the sphere is v and the cord makes an angle u with the 
vertical.

Conceptualize Compare the motion of the sphere in Figure 6.9 
with that of the child in Figure 6.6a associated with Example 
6.5. Both objects travel in a circular path. Unlike the child in 
Example 6.5, however, the speed of the sphere is not uniform in 
this example because, at most points along the path, a tangen-
tial component of acceleration arises from the gravitational force 
exerted on the sphere.

Categorize We model the sphere as a particle under a net force and 
moving in a circular path, but it is not a particle in uniform circu-
lar motion. We need to use the techniques discussed in this sec-
tion on nonuniform circular motion.

Analyze From the force diagram in Figure 6.9, we see that the 
only forces acting on the sphere are the gravitational force 

AM

S o l u T I o N

Figure 6.9 (Example 6.6) The forces acting on a 
sphere of mass m connected to a cord of length R and 
rotating in a vertical circle centered at O. Forces acting 
on the sphere are shown when the sphere is at the top 
and bottom of the circle and at an arbitrary location.

R

O

mg sin u

u

umg cos u
vbot
S

vtop
S

T
S

Tbot
S

Ttop
S

mgS 

mgS 

mgS 

Figure 6.7 When the net force acting on a par-
ticle moving in a circular path has a tangential 
component o Ft , the particle’s speed changes.

�

�

�

F
S

Ft
S

Fr
S

The net force exerted on 
the particle is the vector 
sum of the radial force 
and the tangential force.
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6.3 Motion in Accelerated Frames
Newton’s laws of motion, which we introduced in Chapter 5, describe observations 
that are made in an inertial frame of reference. In this section, we analyze how 
Newton’s laws are applied by an observer in a noninertial frame of reference, that 
is, one that is accelerating. For example, recall the discussion of the air hockey 
table on a train in Section 5.2. The train moving at constant velocity represents an 
inertial frame. An observer on the train sees the puck at rest remain at rest, and 
Newton’s first law appears to be obeyed. The accelerating train is not an inertial 
frame. According to you as the observer on this train, there appears to be no force 
on the puck, yet it accelerates from rest toward the back of the train, appearing to 
violate Newton’s first law. This property is a general property of observations made 
in noninertial frames: there appear to be unexplained accelerations of objects that 
are not “fastened” to the frame. Newton’s first law is not violated, of course. It only 
appears to be violated because of observations made from a noninertial frame. 
 On the accelerating train, as you watch the puck accelerating toward the back 
of the train, you might conclude based on your belief in Newton’s second law that a 

 

▸ 6.6 c o n t i n u e d

From the particle under a net force model, apply Newton’s 
second law to the sphere in the tangential direction:

o Ft 5 mg sin u 5 mat

at 5   g sin u

Apply Newton’s second law to the forces acting on the sphere 
in the radial direction, noting that both T

S
 and aSr are 

directed toward O. As noted in Section 4.5, we can use Equa-
tion 4.14 for the centripetal acceleration of a particle even 
when it moves in a circular path in nonuniform motion:

a Fr 5 T 2 mg cos u 5
mv 2

R

T 5 mg a v 2

Rg
1 cos ub

Finalize Let us evaluate this result at the top and bottom of the circular path (Fig. 6.9):

Ttop 5 mg a
v 2

top

Rg
2 1b  Tbot 5 mg av 2

bot

Rg
1 1b

These results have similar mathematical forms as those for the normal forces n top and nbot on the child in Example 
6.5, which is consistent with the normal force on the child playing a similar physical role in Example 6.5 as the ten-
sion in the string plays in this example. Keep in mind, however, that the normal force nS on the child in Example 6.5 
is always upward, whereas the force T

S
 in this example changes direction because it must always point inward along 

the string. Also note that v in the expressions above varies for different positions of the sphere, as indicated by the 
subscripts, whereas v in Example 6.5 is constant.

What if the ball is set in motion with a slower speed? 

(A) What speed would the ball have as it passes over the top of the circle if the tension in the cord goes to zero 
instantaneously at this point?

Answer Let us set the tension equal to zero in the expression for Ttop:

0 5 mg a
v 2

top

Rg
2 1b S  vtop 5 "gR

(B) What if the ball is set in motion such that the speed at the top is less than this value? What happens?

Answer In this case, the ball never reaches the top of the circle. At some point on the way up, the tension in the string 
goes to zero and the ball becomes a projectile. It follows a segment of a parabolic path over the top of its motion, 
rejoining the circular path on the other side when the tension becomes nonzero again.

WhaT IF ?

F
S

g 5 mgS exerted by the Earth and the force T
S

 exerted by the cord. We resolve F
S

g into a tangential component mg sin u  
and a radial component mg cos u.
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force has acted on the puck to cause it to accelerate. We call an apparent force such 
as this one a fictitious force because it is not a real force and is due only to observa-
tions made in an accelerated reference frame. A fictitious force appears to act on an 
object in the same way as a real force. Real forces are always interactions between 
two objects, however, and you cannot identify a second object for a fictitious force. 
(What second object is interacting with the puck to cause it to accelerate?) In gen-
eral, simple fictitious forces appear to act in the direction opposite that of the acceler-
ation of the noninertial frame. For example, the train accelerates forward and there 
appears to be a fictitious force causing the puck to slide toward the back of the train.
 The train example describes a fictitious force due to a change in the train’s 
speed. Another fictitious force is due to the change in the direction of the veloc-
ity vector. To understand the motion of a system that is noninertial because of a 
change in direction, consider a car traveling along a highway at a high speed and 
approaching a curved exit ramp on the left as shown in Figure 6.10a. As the car 
takes the sharp left turn on the ramp, a person sitting in the passenger seat leans or 
slides to the right and hits the door. At that point the force exerted by the door on 
the passenger keeps her from being ejected from the car. What causes her to move 
toward the door? A popular but incorrect explanation is that a force acting toward 
the right in Figure 6.10b pushes the passenger outward from the center of the cir-
cular path. Although often called the “centrifugal force,” it is a fictitious force. The 
car represents a noninertial reference frame that has a centripetal  acceleration 
toward the center of its circular path. As a result, the passenger feels an apparent 
force which is outward from the center of the circular path, or to the right in Figure 
6.10b, in the direction opposite that of the acceleration.
 Let us address this phenomenon in terms of Newton’s laws. Before the car enters 
the ramp, the passenger is moving in a straight-line path. As the car enters the 
ramp and travels a curved path, the passenger tends to move along the original 
straight-line path, which is in accordance with Newton’s first law: the natural ten-
dency of an object is to continue moving in a straight line. If a sufficiently large 
force (toward the center of curvature) acts on the passenger as in Figure 6.10c, 
however, she moves in a curved path along with the car. This force is the force of 
friction between her and the car seat. If this friction force is not large enough, the 
seat follows a curved path while the passenger tends to continue in the straight-line 
path of the car before the car began the turn. Therefore, from the point of view of 
an observer in the car, the passenger leans or slides to the right relative to the seat. 
Eventually, she encounters the door, which provides a force large enough to enable 
her to follow the same curved path as the car.
 Another interesting fictitious force is the “Coriolis force.” It is an apparent force 
caused by changing the radial position of an object in a rotating coordinate system.
 For example, suppose you and a friend are on opposite sides of a rotating circular 
platform and you decide to throw a baseball to your friend. Figure 6.11a on page 
160 represents what an observer would see if the ball is viewed while the observer is 
hovering at rest above the rotating platform. According to this observer, who is in an 
inertial frame, the ball follows a straight line as it must according to Newton’s first 
law. At t 5 0 you throw the ball toward your friend, but by the time tf when the ball 
has crossed the platform, your friend has moved to a new position and can’t catch 
the ball. Now, however, consider the situation from your friend’s viewpoint. Your 
friend is in a noninertial reference frame because he is undergoing a centripetal 
acceleration relative to the inertial frame of the Earth’s surface. He starts off seeing 
the baseball coming toward him, but as it crosses the platform, it veers to one side 
as shown in Figure 6.11b. Therefore, your friend on the rotating platform states that 
the ball does not obey Newton’s first law and claims that a sideways force is causing 
the ball to follow a curved path. This fictitious force is called the Coriolis force.
 Fictitious forces may not be real forces, but they can have real effects. An object 
on your dashboard really slides off if you press the accelerator of your car. As you 
ride on a merry-go-round, you feel pushed toward the outside as if due to the ficti-
tious “centrifugal force.” You are likely to fall over and injure yourself due to the 

From the passenger’s frame of 
reference, a force appears to push 
her toward the right door, but it is 
a fictitious force.

Fictitious
force

Relative to the reference frame of 
the Earth, the car seat applies a 
real force (friction) toward the 
left on the passenger, causing her 
to change direction along with 
the rest of the car.

Real
force

a

b

c

Figure 6.10 (a) A car approach-
ing a curved exit ramp. What 
causes a passenger in the front 
seat to move toward the right-
hand door? (b) Passenger’s frame 
of reference. (c) Reference frame 
of the Earth.
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Coriolis force if you walk along a radial line while a merry-go-round rotates. (One 
of the authors did so and suffered a separation of the ligaments from his ribs when 
he fell over.) The Coriolis force due to the rotation of the Earth is responsible for 
rotations of hurricanes and for large-scale ocean currents.

Q uick Quiz 6.3 Consider the passenger in the car making a left turn in Figure 6.10.  
Which of the following is correct about forces in the horizontal direction if she 
is making contact with the right-hand door? (a) The passenger is in equilibrium 
between real forces acting to the right and real forces acting to the left. (b) The 
passenger is subject only to real forces acting to the right. (c) The passenger is sub-
ject only to real forces acting to the left. (d) None of those statements is true.

Friend at
t � 0

You at
t � 0

Friend at
t � tf

Ball at
t � tf

You at
t � tf Ball at

t � 0

By the time tf  that the ball arrives at the other side 
of the platform, your friend is no longer there to 
catch it. According to this observer, the ball follows 
a straight-line path, consistent with Newton’s laws.

From your friend’s point of view, the ball veers to 
one side during its flight. Your friend introduces a 
fictitious force to explain this deviation from the 
expected path.

a b

Figure 6.11 You and your friend stand at the edge of a rotating circular platform. You throw the 
ball at t 5 0 in the direction of your friend. (a) Overhead view observed by someone in an inertial ref-
erence frame attached to the Earth. The ground appears stationary, and the platform rotates clock-
wise. (b) Overhead view observed by someone in an inertial reference frame attached to the platform. 
The platform appears stationary, and the ground rotates counterclockwise.

Pitfall Prevention 6.2
Centrifugal Force The commonly 
heard phrase “centrifugal force” 
is described as a force pulling 
outward on an object moving in a 
circular path. If you are feeling a 
“centrifugal force” on a rotating 
carnival ride, what is the other 
object with which you are interact-
ing? You cannot identify another 
object because it is a fictitious 
force that occurs when you are in 
a noninertial reference frame. 

Example 6.7   Fictitious Forces in Linear Motion 

A small sphere of mass m hangs by a cord from the ceiling of a boxcar that is accelerating to the right as shown in Fig-
ure 6.12. Both the inertial observer on the ground in Figure 6.12a and the noninertial observer on the train in Figure 
6.12b agree that the cord makes an angle u with respect to the vertical. The noninertial observer claims that a force, 
which we know to be fictitious, causes the observed deviation of the cord from the vertical. How is the magnitude of 
this force related to the boxcar’s acceleration measured by the inertial observer in Figure 6.12a?

Conceptualize Place yourself in the role of each of the two observers in Figure 6.12. As the inertial observer on the 
ground, you see the boxcar accelerating and know that the deviation of the cord is due to this acceleration. As the 
noninertial observer on the boxcar, imagine that you ignore any effects of the car’s motion so that you are not aware of 
its acceleration. Because you are unaware of this acceleration, you claim that a force is pushing sideways on the sphere 
to cause the deviation of the cord from the vertical. To make the conceptualization more real, try running from rest 
while holding a hanging object on a string and notice that the string is at an angle to the vertical while you are acceler-
ating, as if a force is pushing the object backward.

AM
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T
Inertial
observer

a

u

mg

S

S

S

An inertial observer at rest outside the car claims that the 
acceleration of the sphere is provided by the horizontal 
component of T.

S

a

Noninertial 
observerT u

mg
F fictitious

S

S

S

A noninertial observer riding in the car says that the net 
force on the sphere is zero and that the deflection of the 
cord from the vertical is due to a fictitious force F         
that balances the horizontal component of T.

fictitious
S

S

b

T
Inertial
observer

a

u

mg

S

S

S

An inertial observer at rest outside the car claims that the 
acceleration of the sphere is provided by the horizontal 
component of T.

S

a

Noninertial 
observerT u

mg
F fictitious

S

S

S

A noninertial observer riding in the car says that the net 
force on the sphere is zero and that the deflection of the 
cord from the vertical is due to a fictitious force F         
that balances the horizontal component of T.

fictitious
S

S

b

Figure 6.12 (Example 6.7) A small sphere suspended from the ceiling of a boxcar accelerating to the right is deflected as shown.

 According to the noninertial observer riding in the car (Fig. 6.12b), the cord also makes an angle u with the verti-
cal; to that observer, however, the sphere is at rest and so its acceleration is zero. Therefore, the noninertial observer 
introduces a force (which we know to be fictitious) in the horizontal direction to balance the horizontal component of 
T
S

 and claims that the net force on the sphere is zero.

Apply the particle in equilibrium model for this observer 
in both directions:

Noninertial observer       
a F rx 5T sin u 2 Ffictitious  5 0

a F ry 5T cos u 2 mg 5 0  

These expressions are equivalent to Equations (1) and (2) if   Ffictitious 5 ma  , where a is the acceleration according to 
the inertial observer.

Finalize If we make this substitution in the equation for o F rx above, we obtain the same mathematical results as the 
inertial observer. The physical interpretation of the cord’s deflection, however, differs in the two frames of reference.

Suppose the inertial observer wants to measure the acceleration of the train by means of the pendulum 
(the sphere hanging from the cord). How could she do so?

Answer Our intuition tells us that the angle u the cord makes with the vertical should increase as the acceleration 
increases. By solving Equations (1) and (2) simultaneously for a, we find that a 5 g tan u. Therefore, the inertial observer 
can determine the magnitude of the car’s acceleration by measuring the angle u and using that relationship. Because the 
deflection of the cord from the vertical serves as a measure of acceleration, a simple pendulum can be used as an accelerometer.

WhaT IF ?

7
8
9

For this observer, apply the particle under a net force 
and particle in equilibrium models:

(1)   o Fx 5 T sin u 5 ma

(2)   o Fy 5 T cos u 2 mg 5 0

7
8
9

Inertial observer

6.4 Motion in the Presence of Resistive Forces
In Chapter 5, we described the force of kinetic friction exerted on an object moving 
on some surface. We completely ignored any interaction between the object and the 
medium through which it moves. Now consider the effect of that medium, which 

Categorize For the inertial observer, we model the sphere as a particle under a net force in the horizontal direction and 
a particle in equilibrium in the vertical direction. For the noninertial observer, the sphere is modeled as a particle in equi-
librium in both directions.

Analyze According to the inertial observer at rest (Fig. 6.12a), the forces on the sphere are the force T
S

 exerted by the 
cord and the gravitational force. The inertial observer concludes that the sphere’s acceleration is the same as that of 
the boxcar and that this acceleration is provided by the horizontal component of T

S
.

▸ 6.7 c o n t i n u e d
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can be either a liquid or a gas. The medium exerts a resistive force R
S

 on the object 
moving through it. Some examples are the air resistance associated with moving 
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R

S
 depends on factors such as the speed of 

the object, and the direction of R
S

 is always opposite the direction of the object’s 
motion relative to the medium. This direction may or may not be in the direction 
opposite the object’s velocity according to the observer. For example, if a marble 
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the 
moment at which there is no wind and you are looking at a flag hanging limply on 
a flagpole. When a breeze begins to blow toward the right, the flag moves toward 
the right. In this case, the drag force on the flag from the moving air is to the right 
and the motion of the flag in response is also to the right, the same direction as 
the drag force. Because the air moves toward the right with respect to the flag, the 
flag moves to the left relative to the air. Therefore, the direction of the drag force 
is indeed opposite to the direction of the motion of the flag with respect to the air!
 The magnitude of the resistive force can depend on speed in a complex way, 
and here we consider only two simplified models. In the first model, we assume 
the resistive force is proportional to the velocity of the moving object; this model is 
valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity
If we model the resistive force acting on an object moving through a liquid or gas as 
proportional to the object’s velocity, the resistive force can be expressed as

 R
S

5 2bvS (6.2)
where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative to 
the medium. The negative sign indicates that R

S
 is in the opposite direction to vS.

 Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a. 
Assuming the only forces acting on the sphere are the resistive force R

S
 5 2bvS and 

the gravitational force F
S

g, let us describe its motion.1 We model the sphere as a par-

1A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.

v

vT

0.632vT

t

v � 0 a � g

v � vT

a � 0mgS 

R
S

vS

a b c

The sphere approaches a 
maximum (or terminal) 
speed vT.

The time constant t is the 
time at which the sphere 
reaches a speed of 0.632vT.

t

Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.
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ticle under a net force. Applying Newton’s second law to the vertical motion of the 
sphere and choosing the downward direction to be positive, we obtain

 o Fy 5 ma   S   mg 2 bv 5 ma (6.3)

where the acceleration of the sphere is downward. Noting that the acceleration a is 
equal to dv/dt gives

 
dv
dt

5 g 2
b
m

 v (6.4)

This equation is called a differential equation, and the methods of solving it may not 
be familiar to you as yet. Notice, however, that initially when v 5 0, the magnitude 
of the resistive force is also zero and the acceleration of the sphere is simply g. 
As t increases, the magnitude of the resistive force increases and the acceleration 
decreases. The acceleration approaches zero when the magnitude of the resistive 
force approaches the sphere’s weight so that the net force on the sphere is zero. In 
this situation, the speed of the sphere approaches its terminal speed vT.
 The terminal speed is obtained from Equation 6.4 by setting dv/dt 5 0, which gives

 mg 2 bvT 5 0 or vT 5
mg

b
 (6.5)

 Because you may not be familiar with differential equations yet, we won’t show  
the details of the process that gives the expression for v for all times t. If v 5 0 at t 5 0,  
this expression is

 v 5
mg

b
11 2 e2bt/m 2 5 vT 11 2 e2t/t 2  (6.6)

This function is plotted in Figure 6.13c. The symbol e represents the base of the 
natural logarithm and is also called Euler’s number: e 5 2.718 28. The time constant 
t 5 m/b (Greek letter tau) is the time at which the sphere released from rest at t 5 
0 reaches 63.2% of its terminal speed; when t 5 t, Equation 6.6 yields v 5 0.632vT . 
(The number 0.632 is 1 2 e21.)
 We can check that Equation 6.6 is a solution to Equation 6.4 by direct 
differentiation:

dv
dt

5
d
dt
cmg

b
11 2 e2bt/m 2 d 5

mg

b
a0 1

b
m

 e2bt/mb 5 ge2bt/m

(See Appendix Table B.4 for the derivative of e raised to some power.) Substituting 
into Equation 6.4 both this expression for dv/dt and the expression for v given by 
Equation 6.6 shows that our solution satisfies the differential equation.

WW Terminal speed 

Example 6.8   Sphere Falling in Oil 

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil, where it experiences a resistive force 
proportional to its speed. The sphere reaches a terminal speed of 5.00 cm/s. Determine the time constant t and the 
time at which the sphere reaches 90.0% of its terminal speed.

Conceptualize With the help of Figure 6.13, imagine dropping the sphere into the oil and watching it sink to the bot-
tom of the vessel. If you have some thick shampoo in a clear container, drop a marble in it and observe the motion of 
the marble.

Categorize We model the sphere as a particle under a net force, with one of the forces being a resistive force that depends 
on the speed of the sphere. This model leads to the result in Equation 6.5.

AM

S o l u T I o N

continued

Analyze From Equation 6.5, evaluate the coefficient b: b 5
mg
vT
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Model 2: Resistive Force Proportional to Object Speed Squared
For objects moving at high speeds through air, such as airplanes, skydivers, cars, 
and baseballs, the resistive force is reasonably well modeled as proportional to the 
square of the speed. In these situations, the magnitude of the resistive force can be 
expressed as

 R 5 1
2 DrAv2 (6.7)

where D is a dimensionless empirical quantity called the drag coefficient, r is the 
density of air, and A is the cross-sectional area of the moving object measured in a 
plane perpendicular to its velocity. The drag coefficient has a value of about 0.5 for 
spherical objects but can have a value as great as 2 for irregularly shaped objects.
 Let us analyze the motion of a falling object subject to an upward air resistive 
force of magnitude R 5 1

2 DrAv2. Suppose an object of mass m is released from rest. 
As Figure 6.14 shows, the object experiences two external forces:2 the downward 
gravitational force F

S

g 5 mgS and the upward resistive force R
S

. Hence, the magni-
tude of the net force is

 a F 5 mg 2 1
2 DrAv2 (6.8)

where we have taken downward to be the positive vertical direction. Modeling the 
object as a particle under a net force, with the net force given by Equation 6.8, we 
find that the object has a downward acceleration of magnitude

 a 5 g 2 aDrA
2m

bv2 (6.9)

 We can calculate the terminal speed vT by noticing that when the gravitational 
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting a 5 0 in Equation 6.9 gives

g 2 aDrA
2m

bvT
2 5 0

Find the time t at which the sphere reaches a speed  
of 0.900vT  by setting v 5 0.900vT in Equation 6.6 and 
solving for t :

0.900vT 5 vT(1 2 e2t/t)

1 2 e2t/t 5 0.900

e2t/t 5 0.100

2
t
t

5 ln 10.100 2 5 22.30

t 5 2.30t 5 2.30(5.10 3 1023 s) 5 11.7 3 1023 s

5   11.7 ms

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this 
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required 
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.

mgS mgS 

vS vT
S

R
S

R
S

ba

Figure 6.14   (a) An object  
falling through air experiences 
a resistive force R

S
 and a gravi-

tational force F
S

g 5 mgS. (b) The 
object reaches terminal speed 
when the net force acting on it is 
zero, that is, when R

S
5 2 F

S

g or 
R 5 mg. 2As with Model 1, there is also an upward buoyant force that we neglect.

Evaluate the time constant t: t 5
m
b

5 m a vt

mg
b 5

vt

g

Substitute numerical values: t 5
5.00 cm/s
980 cm/s2 5 5.10 3 1023 s

 

▸ 6.8 c o n t i n u e d
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Conceptual Example 6.9   The Skysurfer

Consider a skysurfer (Fig. 6.15) who jumps from a plane with his feet attached 
firmly to his surfboard, does some tricks, and then opens his parachute. 
Describe the forces acting on him during these maneuvers.

When the surfer first steps out of the plane, he has no vertical velocity. The 
downward gravitational force causes him to accelerate toward the ground. As 
his downward speed increases, so does the upward resistive force exerted by the 
air on his body and the board. This upward force reduces their acceleration, 
and so their speed increases more slowly. Eventually, they are going so fast that 
the upward resistive force matches the downward gravitational force. Now the 
net force is zero and they no longer accelerate, but instead reach their terminal 
speed. At some point after reaching terminal speed, he opens his parachute, 
resulting in a drastic increase in the upward resistive force. The net force (and 
therefore the acceleration) is now upward, in the direction opposite the direc-
tion of the velocity. The downward velocity therefore decreases rapidly, and the 
resistive force on the parachute also decreases. Eventually, the upward resistive 
force and the downward gravitational force balance each other again and a 
much smaller terminal speed is reached, permitting a safe landing.
 (Contrary to popular belief, the velocity vector of a skydiver never points upward. You may have seen a video in 
which a skydiver appears to “rocket” upward once the parachute opens. In fact, what happens is that the skydiver slows 
down but the person holding the camera continues falling at high speed.)

S o l u T I o N
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Figure 6.15  (Conceptual Example 
6.9) A skysurfer.

so

 vT 5 Å
2mg

DrA
 (6.10)

 Table 6.1 lists the terminal speeds for several objects falling through air.

Q uick Quiz 6.4 A baseball and a basketball, having the same mass, are dropped 
through air from rest such that their bottoms are initially at the same height 
above the ground, on the order of 1 m or more. Which one strikes the ground 
first? (a) The baseball strikes the ground first. (b) The basketball strikes the 
ground first. (c) Both strike the ground at the same time.

Table 6.1 Terminal Speed for Various Objects Falling Through Air
 Mass Cross-Sectional Area vT

Object (kg) (m2) (m/s)

Skydiver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 4.2 3 1023 43
Golf ball (radius 2.1 cm) 0.046 1.4 3 1023 44
Hailstone (radius 0.50 cm) 4.8 3 1024 7.9 3 1025 14
Raindrop (radius 0.20 cm) 3.4 3 1025 1.3 3 1025 9.0

 

Example 6.10   Falling Coffee Filters 

The dependence of resistive force on the square of the speed is a simplification model. Let’s test the model for a specific 
situation. Imagine an experiment in which we drop a series of bowl-shaped, pleated coffee filters and measure their termi-
nal speeds. Table 6.2 on page 166 presents typical terminal speed data from a real experiment using these coffee filters as 
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Likewise, two filters nested together experience 0.032 2 N of resis-
tive force, and so forth. These values of resistive force are shown in 
the far right column of Table 6.2. A graph of the resistive force on 
the filters as a function of terminal speed is shown in Figure 6.16a. 
A straight line is not a good fit, indicating that the resistive force is 
not proportional to the speed. The behavior is more clearly seen in 
Figure 6.16b, in which the resistive force is plotted as a function of 
the square of the terminal speed. This graph indicates that the resis-
tive force is proportional to the square of the speed as suggested by 
Equation 6.7.

Finalize Here is a good opportunity for you to take some actual data 
at home on real coffee filters and see if you can reproduce the results 
shown in Figure 6.16. If you have shampoo and a marble as mentioned 
in Example 6.8, take data on that system too and see if the resistive 
force is appropriately modeled as being proportional to the speed.

they fall through the air. The time constant t is small, so a dropped filter quickly reaches terminal speed. Each filter has a 
mass of 1.64 g. When the filters are nested together, they combine in such a way that the front-facing surface area does not 
increase. Determine the relationship between the resistive force exerted by the air and the speed of the falling filters.

Conceptualize Imagine dropping the coffee filters through the air. (If you have some coffee filters, try dropping 
them.) Because of the relatively small mass of the coffee filter, you probably won’t notice the time interval during 
which there is an acceleration. The filters will appear to fall at constant velocity immediately upon leaving your hand.

Categorize Because a filter moves at constant velocity, we model it as a particle in equilibrium.

Analyze At terminal speed, the upward resistive force on the filter balances the downward gravitational force so that 
R 5 mg.

S o l u T I o N

Table 6.2 Terminal Speed and 

Resistive Force for Nested Coffee Filters
 Number of
 Filters vT (m/s)a R (N)

  1 1.01 0.016 1
  2 1.40 0.032 2
  3 1.63 0.048 3
  4 2.00 0.064 4
  5 2.25 0.080 5
  6 2.40 0.096 6
  7 2.57 0.112 7
  8 2.80 0.128 8
  9 3.05 0.144 9
 10 3.22 0.161 0

aAll values of vT are approximate.
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The data points do not lie 
along a straight line, but 
instead suggest a curve.
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The fit of the straight line 
to the data points indicates 
that the resistive force is 
proportional to the terminal 
speed squared. 

Figure 6.16 (Example 6.10) (a) Relationship between the resistive force acting on falling coffee filters and their terminal speed. 
(b) Graph relating the resistive force to the square of the terminal speed.

Evaluate the magnitude of the resistive force: R 5 mg 5 11.64 g 2 a 1 kg

1 000 g
b 19.80 m/s2 2 5 0.016 1 N

Example 6.11   Resistive Force Exerted on a Baseball 

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s (5 90 mi/h). Find the resistive force acting on the ball at 
this speed.

AM
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Conceptualize This example is different from the previous ones in that the object is now moving horizontally through 
the air instead of moving vertically under the influence of gravity and the resistive force. The resistive force causes the 
ball to slow down, and gravity causes its trajectory to curve downward. We simplify the situation by assuming the veloc-
ity vector is exactly horizontal at the instant it is traveling at 40.2 m/s.

Categorize In general, the ball is a particle under a net force. Because we are considering only one instant of time, how-
ever, we are not concerned about acceleration, so the problem involves only finding the value of one of the forces.

S o l u T I o N

Analyze To determine the drag coefficient D, imagine 
that we drop the baseball and allow it to reach terminal 
speed. Solve Equation 6.10 for D:

D 5
2mg

vT
2rA

Use this expression for D in Equation 6.7 to find an 
expression for the magnitude of the resistive force:

R 5 1
2DrAv2 5 

1
2
a 2mg

vt
2rA

brAv2 5 mg a v
vt

b
2

Substitute numerical values, using the terminal speed 
from Table 6.1:

R 5 10.145 kg 2 19.80 m/s2 2 a40.2 m/s
43 m/s

b
2

5 1.2 N

Finalize The magnitude of the resistive force is similar in magnitude to the weight of the baseball, which is about  
1.4 N. Therefore, air resistance plays a major role in the motion of the ball, as evidenced by the variety of curve balls, 
floaters, sinkers, and the like thrown by baseball pitchers.

Summary

▸ 6.11 c o n t i n u e d

 

 A particle moving in uniform circular motion 
has a centripetal acceleration; this acceleration 
must be provided by a net force directed toward the 
center of the circular path.

 An observer in a noninertial (accelerating) 
frame of reference introduces fictitious forces 
when applying Newton’s second law in that frame.

 An object moving through a liquid or gas experiences a 
speed-dependent resistive force. This resistive force is in a 
direction opposite that of the velocity of the object relative 
to the medium and generally increases with speed. The 
magnitude of the resistive force depends on the object’s size 
and shape and on the properties of the medium through 
which the object is moving. In the limiting case for a falling 
object, when the magnitude of the resistive force equals the 
object’s weight, the object reaches its terminal speed.

Concepts and Principles

 Particle in Uniform Circular Motion (Extension) With our new knowledge of forces, we can 
extend the model of a particle in uniform circular motion, first introduced in Chapter 4. New-
ton’s second law applied to a particle moving in uniform circular motion states that the net force 
causing the particle to undergo a centripetal acceleration (Eq. 4.14) is related to the accelera-
tion according to

 a  F 5 mac 5 m 
v2

r
 (6.1)

Analysis Model for Problem-Solving

r

� vS

ac
S

F
S
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direction of its total acceleration 
at this point? (b) Of these points, 
is there a point where the bob 
has nonzero tangential accel-
eration and zero radial accelera-
tion? If so, which point? What is 
the direction of its total accelera-
tion at this point? (c)  Is there a 
point where the bob has no accel-
eration? If so, which point? (d) Is 
there a point where the bob has 
both nonzero tangential and radial acceleration? If 
so, which point? What is the direction of its total accel-
eration at this point?

 5. As a raindrop falls through the atmosphere, its speed 
initially changes as it falls toward the Earth. Before 
the raindrop reaches its terminal speed, does the mag-
nitude of its acceleration (a) increase, (b) decrease,  
(c) stay constant at zero, (d) stay constant at 9.80 m/s2, 
or (e) stay constant at some other value?

 6. An office door is given a sharp push and swings open 
against a pneumatic device that slows the door down 
and then reverses its motion. At the moment the door 
is open the widest, (a) does the doorknob have a cen-
tripetal acceleration? (b) Does it have a tangential 
acceleration?

 7. Before takeoff on an airplane, an inquisitive student 
on the plane dangles an iPod by its earphone wire. 
It hangs straight down as the plane is at rest waiting 
to take off. The plane then gains speed rapidly as it 
moves down the runway. (i) Relative to the student’s 
hand, does the iPod (a)  shift toward the front of the 
plane, (b) continue to hang straight down, or (c) shift 
toward the back of the plane? (ii)  The speed of the 
plane increases at a constant rate over a time interval 
of several seconds. During this interval, does the angle 
the earphone wire makes with the vertical (a) increase,  
(b) stay constant, or (c) decrease?

 1. A child is practicing 
for a BMX race. His 
speed remains con-
stant as he goes coun-
terclockwise around 
a level track with two 
straight sections and 
two nearly semicircu-
lar sections as shown in 
the aerial view of Fig-
ure OQ6.1. (a) Rank  
the magnitudes of his acceleration at the points A, B, 
C, D, and E from largest to smallest. If his acceleration 
is the same size at two points, display that fact in your 
ranking. If his acceleration is zero, display that fact.  
(b) What are the directions of his velocity at points A, 
B, and C ? For each point, choose one: north, south, 
east, west, or nonexistent. (c) What are the directions 
of his acceleration at points A, B, and C ?

 2. Consider a skydiver who has stepped from a helicopter 
and is falling through air. Before she reaches terminal 
speed and long before she opens her parachute, does 
her speed (a) increase, (b) decrease, or (c) stay constant?

 3. A door in a hospital has a pneumatic closer that pulls 
the door shut such that the doorknob moves with con-
stant speed over most of its path. In this part of its 
motion, (a) does the doorknob experience a centrip-
etal acceleration? (b) Does it experience a tangential 
acceleration?

 4. A pendulum consists of a small object called a bob 
hanging from a light cord of fixed length, with the top 
end of the cord fixed, as represented in Figure OQ6.4. 
The bob moves without friction, swinging equally 
high on both sides. It moves from its turning point A 
through point B and reaches its maximum speed at 
point C. (a) Of these points, is there a point where 
the bob has nonzero radial acceleration and zero tan-
gential acceleration? If so, which point? What is the 

 1. What forces cause (a) an automobile, (b) a propeller-
driven airplane, and (c) a rowboat to move?

 2. A falling skydiver reaches terminal speed with her 
parachute closed. After the parachute is opened, what 
parameters change to decrease this terminal speed?

 3. An object executes circular motion with constant 
speed whenever a net force of constant magnitude acts 
perpendicular to the velocity. What happens to the 
speed if the force is not perpendicular to the velocity?

 4. Describe the path of a moving body in the event that 
(a) its acceleration is constant in magnitude at all times 
and perpendicular to the velocity, and (b) its accelera-
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Figure oQ6.1
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Figure oQ6.4

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

tion is constant in magnitude at all times and parallel 
to the velocity.

 5. The observer in the accelerating elevator of Example 
5.8 would claim that the “weight” of the fish is T, the 
scale reading, but this answer is obviously wrong. Why 
does this observation differ from that of a person out-
side the elevator, at rest with respect to the Earth?

 6. If someone told you that astronauts are weightless in 
orbit because they are beyond the pull of gravity, would 
you accept the statement? Explain.

 7. It has been suggested that rotating cylinders about 
20 km in length and 8 km in diameter be placed in 
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 10. A pail of water can be whirled in a vertical path such 
that no water is spilled. Why does the water stay in the 
pail, even when the pail is above your head?

 11. “If the current position and velocity of every par-
ticle in the Universe were known, together with the 
laws describing the forces that particles exert on one 
another, the whole future of the Universe could be cal-
culated. The future is determinate and preordained. 
Free will is an illusion.” Do you agree with this thesis? 
Argue for or against it.

Section 6.1 Extending the Particle in uniform Circular 
Motion Model

 1. A light string can 
support a station-
ary hanging load 
of 25.0  kg before 
breaking. An object 
of mass m 5 3.00  kg 
attached to the string 
rotates on a friction-
less, horizontal table 
in a circle of radius 
r 5 0.800 m, and 
the other end of the 
string is held fixed 
as in Figure P6.1. What range of speeds can the object 
have before the string breaks?

 2. Whenever two Apollo astronauts were on the surface of 
the Moon, a third astronaut orbited the Moon. Assume 
the orbit to be circular and 100 km above the surface 
of the Moon, where the acceleration due to gravity is 
1.52 m/s2. The radius of the Moon is 1.70 3 106 m. 
Determine (a) the astronaut’s orbital speed and (b) the 
period of the orbit.

 3. In the Bohr model of the hydrogen atom, an electron 
moves in a circular path around a proton. The speed 
of the electron is approximately 2.20 3 106 m/s. Find 
(a) the force acting on the electron as it revolves in a 
circular orbit of radius 0.529 3 10210 m and (b) the 
centripetal acceleration of the electron.

 4. A curve in a road forms part of a horizontal circle. As a 
car goes around it at constant speed 14.0 m/s, the total 
horizontal force on the driver has magnitude 130 N. 

AMT
M

What is the total horizontal force on the driver if the 
speed on the same curve is 18.0 m/s instead?

 5. In a cyclotron (one type of particle accelerator), a 
deuteron (of mass 2.00 u) reaches a final speed of 
10.0% of the speed of light while moving in a circular 
path of radius 0.480 m. What magnitude of magnetic 
force is required to maintain the deuteron in a circu-
lar path?

 6. A car initially traveling 
eastward turns north by 
traveling in a circular 
path at uniform speed 
as shown in Figure P6.6. 
The length of the arc 
ABC is 235 m, and the 
car completes the turn 
in 36.0 s. (a) What is the 
acceleration when the 
car is at B located at an 
angle of 35.08? Express 
your answer in terms of the unit vectors î and ĵ. Deter-
mine (b) the car’s average speed and (c) its average 
acceleration during the 36.0-s interval.

 7. A space station, in the form of a wheel 120 m in 
diameter, rotates to provide an “artificial gravity” of  
3.00 m/s2 for persons who walk around on the inner 
wall of the outer rim. Find the rate of the wheel’s 
rotation in revolutions per minute that will produce 
this effect.

 8. Consider a conical pendulum (Fig. P6.8) with a bob 
of mass m 5 80.0 kg on a string of length L 5 10.0 m 
that makes an angle of u 5 5.008 with the vertical. Deter-
mine (a) the horizontal and vertical components of the 
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space and used as colonies. The purpose of the rota-
tion is to simulate gravity for the inhabitants. Explain 
this concept for producing an effective imitation of 
gravity.

 8. Consider a small raindrop and a large raindrop fall-
ing through the atmosphere. (a) Compare their termi-
nal speeds. (b) What are their accelerations when they 
reach terminal speed?

 9. Why does a pilot tend to black out when pulling out of 
a steep dive?

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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force exerted by the string on the pen-
dulum and (b) the radial acceleration of 
the bob.

 9. A coin placed 30.0 cm from the center 
of a rotating, horizontal turntable slips 
when its speed is 50.0 cm/s. (a)  What 
force causes the centripetal acceleration 
when the coin is stationary relative to 
the turntable? (b) What is the coeffi-
cient of static friction between coin and turntable?

 10. Why is the following situation 
impossible? The object of mass 
m 5 4.00  kg in Figure P6.10 is 
attached to a vertical rod by two 
strings of length , 5 2.00 m. The 
strings are attached to the rod 
at points a distance d 5 3.00 m  
apart. The object rotates in a 
horizontal circle at a constant 
speed of v 5 3.00 m/s, and the 
strings remain taut. The rod 
rotates along with the object so 
that the strings do not wrap onto the rod. What If? 
Could this situation be possible on another planet?

 11. A crate of eggs is located in the middle of the flatbed 
of a pickup truck as the truck negotiates a curve in the 
flat road. The curve may be regarded as an arc of a 
circle of radius 35.0 m. If the coefficient of static fric-
tion between crate and truck is 0.600, how fast can the 
truck be moving without the crate sliding?

Section 6.2 Nonuniform Circular Motion

 12. A pail of water is rotated in a vertical circle of radius 
1.00 m. (a) What two external forces act on the water in 
the pail? (b) Which of the two forces is most important 
in causing the water to move in a circle? (c) What is 
the pail’s minimum speed at the top of the circle if no 
water is to spill out? (d) Assume the pail with the speed 
found in part (c) were to suddenly disappear at the top 
of the circle. Describe the subsequent motion of the 
water. Would it differ from the motion of a projectile?

 13. A hawk flies in a horizontal arc of radius 12.0 m at con-
stant speed 4.00 m/s. (a) Find its centripetal accelera-
tion. (b) It continues to fly along the same horizontal 
arc, but increases its speed at the rate of 1.20 m/s2. Find 
the acceleration (magnitude and direction) in this situ-
ation at the moment the hawk’s speed is 4.00 m/s.

 14. A 40.0-kg child swings in a swing supported by two 
chains, each 3.00 m long. The tension in each chain at 
the lowest point is 350 N. Find (a) the child’s speed at 
the lowest point and (b) the force exerted by the seat 
on the child at the lowest point. (Ignore the mass of 
the seat.)

 15. A child of mass m swings in a swing supported by two 
chains, each of length R. If the tension in each chain 
at the lowest point is T, find (a) the child’s speed at the 
lowest point and (b) the force exerted by the seat on the 
child at the lowest point. (Ignore the mass of the seat.)
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 16. A roller-coaster car (Fig. P6.16) has a mass of 500 kg 
when fully loaded with passengers. The path of the 
coaster from its initial point shown in the figure to point 
B involves only up-and-down motion (as seen by the rid-
ers), with no motion to the left or right. (a) If the vehicle 
has a speed of 20.0 m/s at point A, what is the force 
exerted by the track on the car at this point? (b) What is 
the maximum speed the vehicle can have at point B 
and still remain on the track? Assume the roller-coaster 
tracks at points A and B are parts of vertical circles of 
radius r1 5 10.0 m and r2 5 15.0 m, respectively.

r2r1

A

B

Figure P6.16 Problems 16 and 38.

 17. A roller coaster at the Six 
Flags Great America amuse-
ment park in Gurnee, Illi-
nois, incorporates some 
clever design technology and 
some basic physics. Each ver-
tical loop, instead of being 
circular, is shaped like a tear-
drop (Fig. P6.17). The cars 
ride on the inside of the loop 
at the top, and the speeds 
are fast enough to ensure the 
cars remain on the track. 
The biggest loop is 40.0 m high. Suppose the speed at 
the top of the loop is 13.0 m/s and the corresponding 
centripetal acceleration of the riders is 2g. (a) What is 
the radius of the arc of the teardrop at the top? (b) If 
the total mass of a car plus the riders is M, what force 
does the rail exert on the car at the top? (c) Suppose 
the roller coaster had a circular loop of radius 20.0 m. 
If the cars have the same speed, 13.0 m/s at the top, 
what is the centripetal acceleration of the riders at the 
top? (d) Comment on the normal force at the top in 
the situation described in part (c) and on the advan-
tages of having teardrop-shaped loops.

 18. One end of a cord is fixed and a small 
0.500-kg object is attached to the 
other end, where it swings in a section 
of a vertical circle of radius 2.00 m as 
shown in Figure P6.18. When u 5 20.08, 
the speed of the object is 8.00 m/s.  
At this instant, find (a) the tension 
in the string, (b) the tangential and 
radial components of acceleration,  
and (c) the total acceleration. (d) Is your answer 
changed if the object is swinging down toward its  
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of kinetic friction mk between the backpack and the 
elevator floor.

 25. A small container of water is placed on a turntable 
inside a microwave oven, at a radius of 12.0 cm from 
the center. The turntable rotates steadily, turning one 
revolution in each 7.25 s. What angle does the water 
surface make with the horizontal?

Section 6.4 Motion in the Presence of Resistive Forces

 26. Review. (a) Estimate the terminal speed of a wooden 
sphere (density 0.830 g/cm3) falling through air, tak-
ing its radius as 8.00 cm and its drag coefficient as 
0.500. (b)  From what height would a freely falling 
object reach this speed in the absence of air resistance?

 27. The mass of a sports car is 1 200 kg. The shape of the 
body is such that the aerodynamic drag coefficient 
is 0.250 and the frontal area is 2.20 m2. Ignoring all 
other sources of friction, calculate the initial accelera-
tion the car has if it has been traveling at 100 km/h 
and is now shifted into neutral and allowed to coast.

 28. A skydiver of mass 80.0 kg jumps from a slow-moving 
aircraft and reaches a terminal speed of 50.0 m/s.  
(a) What is her acceleration when her speed is 30.0 m/s?  
What is the drag force on the skydiver when her speed 
is (b) 50.0 m/s and (c) 30.0 m/s?

 29. Calculate the force required to pull a copper ball of 
radius 2.00 cm upward through a fluid at the con-
stant speed 9.00 cm/s. Take the drag force to be pro-
portional to the speed, with proportionality constant 
0.950 kg/s. Ignore the buoyant force.

 30. A small piece of Styrofoam packing material is dropped 
from a height of 2.00 m above the ground. Until it 
reaches terminal speed, the magnitude of its accelera-
tion is given by a 5 g 2 Bv. After falling 0.500 m, the 
Styrofoam effectively reaches terminal speed and then 
takes 5.00 s more to reach the ground. (a) What is the 
value of the constant B? (b) What is the acceleration at 
t 5 0? (c) What is the acceleration when the speed is 
0.150 m/s?

 31. A small, spherical bead of mass 3.00 g is released from 
rest at t 5 0 from a point under the surface of a vis-
cous liquid. The terminal speed is observed to be vT 5  
2.00 cm/s. Find (a) the value of the constant b that 
appears in Equation 6.2, (b) the time t at which the 
bead reaches 0.632vT, and (c) the value of the resistive 
force when the bead reaches terminal speed.

 32. At major league baseball games, it is commonplace to 
flash on the scoreboard a speed for each pitch. This 
speed is determined with a radar gun aimed by an 
operator positioned behind home plate. The gun uses 
the Doppler shift of microwaves reflected from the 
baseball, an effect we will study in Chapter 39. The gun 
determines the speed at some particular point on the 
baseball’s path, depending on when the operator pulls 
the trigger. Because the ball is subject to a drag force 
due to air proportional to the square of its speed given 
by R 5 kmv2, it slows as it travels 18.3 m toward the 
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lowest point instead of swinging up? (e) Explain your 
answer to part (d).

 19. An adventurous archeologist (m 5 85.0 kg) tries to cross 
a river by swinging from a vine. The vine is 10.0 m long, 
and his speed at the bottom of the swing is 8.00 m/s.  
The archeologist doesn’t know that the vine has a 
breaking strength of 1 000 N. Does he make it across 
the river without falling in?

Section 6.3 Motion in accelerated Frames

 20. An object of mass m 5 
5.00  kg, attached to a 
spring scale, rests on a 
frictionless, horizontal 
surface as shown in Fig-
ure P6.20. The spring 
scale, attached to the 
front end of a boxcar, 
reads zero when the  
car is at rest. (a) Determine the acceleration of the car 
if the spring scale has a constant reading of 18.0 N 
when the car is in motion. (b) What constant reading 
will the spring scale show if the car moves with con-
stant velocity? Describe the forces on the object as 
observed (c) by someone in the car and (d) by some-
one at rest outside the car.

 21. An object of mass m 5 
0.500 kg is suspended 
from the ceiling of an 
accelerating truck as 
shown in Figure P6.21. 
Taking a 5 3.00 m/s2, 
find (a) the angle u that 
the string makes with 
the vertical and (b) the 
tension T in the string.

 22. A child lying on her back experiences 55.0 N tension in 
the muscles on both sides of her neck when she raises 
her head to look past her toes. Later, sliding feet first 
down a water slide at terminal speed 5.70 m/s and rid-
ing high on the outside wall of a horizontal curve of 
radius 2.40 m, she raises her head again to look for-
ward past her toes. Find the tension in the muscles on 
both sides of her neck while she is sliding.

 23. A person stands on a scale in an elevator. As the elevator 
starts, the scale has a constant reading of 591 N. As the 
elevator later stops, the scale reading is 391 N. Assum-
ing the magnitude of the acceleration is the same  
during starting and stopping, determine (a) the weight 
of the person, (b) the person’s mass, and (c) the accel-
eration of the elevator.

 24. Review. A student, along with her backpack on the 
floor next to her, are in an elevator that is accelerat-
ing upward with acceleration a. The student gives her 
backpack a quick kick at t 5 0, imparting to it speed 
v and causing it to slide across the elevator floor. 
At time t, the backpack hits the opposite wall a dis-
tance L away from the student. Find the coefficient 
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r1 5 25 m. Find the force that a seat in the roller-coaster 
car exerts on a 50-kg passenger at the lowest point.

 39. A string under a ten-
sion of 50.0 N is used 
to whirl a rock in a 
horizontal circle of 
radius 2.50 m at a 
speed of 20.4 m/s on 
a frictionless surface 
as shown in Figure 
P6.39. As the string 
is pulled in, the 
speed of the rock 
increases. When the 
string on the table is 1.00 m long and the speed of the 
rock is 51.0 m/s, the string breaks. What is the breaking 
strength, in newtons, of the string?

 40. Disturbed by speeding cars outside his workplace, 
Nobel laureate Arthur Holly Compton designed a 
speed bump (called the “Holly hump”) and had it 
in stalled. Suppose a 1 800-kg car passes over a hump 
in a roadway that follows the arc of a circle of radius 
20.4 m as shown in Figure P6.40. (a) If the car travels at 
30.0 km/h, what force does the road exert on the car as 
the car passes the high-
est point of the hump? 
(b) What If? What is 
the maximum speed 
the car can have with-
out losing contact with 
the road as it passes this 
highest point?

 41. A car of mass m passes over a hump in a road that fol-
lows the arc of a circle of radius R as shown in Figure 
P6.40. (a) If the car travels at a speed v, what force does 
the road exert on the car as the car passes the highest 
point of the hump? (b) What If? What is the maximum 
speed the car can have without losing contact with the 
road as it passes this highest point?

 42. A child’s toy consists of a small 
wedge that has an acute angle u  
(Fig. P6.42). The sloping side of 
the wedge is frictionless, and an 
object of mass m on it remains 
at constant height if the wedge 
is spun at a certain constant 
speed. The wedge is spun by 
rotating, as an axis, a vertical 
rod that is firmly attached to 
the wedge at the bottom end. 
Show that, when the object sits 
at rest at a point at distance L up along the wedge, the 
speed of the object must be v 5 (gL sin u)1/2.

 43. A seaplane of total mass m lands on a lake with initial 
speed vi î. The only horizontal force on it is a resistive 
force on its pontoons from the water. The resistive 
force is proportional to the velocity of the seaplane: 
R
S

5 2bvS. Newton’s second law applied to the plane 
is 2bv î 5 m 1dv/dt 2  î. From the fundamental theorem 
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plate according to the formula v 5 vie2kx. Suppose the 
ball leaves the pitcher’s hand at 90.0 mi/h 5 40.2 m/s. 
Ignore its vertical motion. Use the calculation of R for 
baseballs from Example 6.11 to determine the speed of 
the pitch when the ball crosses the plate.

 33. Assume the resistive force acting on a speed skater is 
proportional to the square of the skater’s speed v and 
is given by f 5 2kmv 2, where k is a constant and m is 
the skater’s mass. The skater crosses the finish line of 
a straight-line race with speed vi and then slows down 
by coasting on his skates. Show that the skater’s speed 
at any time t after crossing the finish line is v(t) 5  
vi/(1 1 ktvi).

 34. Review. A window washer pulls a rubber squeegee 
down a very tall vertical window. The squeegee has 
mass 160 g and is mounted on the end of a light rod. 
The coefficient of kinetic friction between the squee-
gee and the dry glass is 0.900. The window washer 
presses it against the window with a force having a 
horizontal component of 4.00 N. (a) If she pulls the 
squeegee down the window at constant velocity, what 
vertical force component must she exert? (b) The win-
dow washer increases the downward force component 
by 25.0%, while all other forces remain the same. Find 
the squeegee’s acceleration in this situation. (c) The 
squeegee is moved into a wet portion of the window, 
where its motion is resisted by a fluid drag force R pro-
portional to its velocity according to R 5 220.0v, where 
R is in newtons and v is in meters per second. Find the 
terminal velocity that the squeegee approaches, assum-
ing the window washer exerts the same force described 
in part (b).

 35. A motorboat cuts its engine when its speed is 10.0 m/s  
and then coasts to rest. The equation describing the 
motion of the motorboat during this period is v 5 
vie2ct, where v is the speed at time t, vi is the initial 
speed at t 5 0, and c is a constant. At t 5 20.0 s, the 
speed is 5.00 m/s. (a) Find the constant c. (b) What is 
the speed at t 5 40.0 s? (c) Differentiate the expression 
for v(t) and thus show that the acceleration of the boat 
is proportional to the speed at any time.

 36. You can feel a force of air drag on your hand if you 
stretch your arm out of the open window of a speeding 
car. Note: Do not endanger yourself. What is the order 
of magnitude of this force? In your solution, state the 
quantities you measure or estimate and their values.

additional Problems

 37. A car travels clockwise at con-
stant speed around a circular 
section of a horizontal road as 
shown in the aerial view of Fig-
ure P6.37. Find the directions of 
its velocity and acceleration at (a) 
position A and (b) position B.

 38. The mass of a roller-coaster car, 
including its passengers, is  
500 kg. Its speed at the bottom of the track in Figure 
P6.16 is 19 m/s. The radius of this section of the track is 
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of the structure rotates about the vertical central axis 
when the ride operates. The child sits on the sloped 
surface at a point d 5 5.32 m down the sloped side 
from the center of the cone and pouts. The coefficient 
of static friction between the boy and the cone is 0.700. 
The ride operator does not notice that the child has 
slipped away from his seat and so continues to operate 
the ride. As a result, the sitting, pouting boy rotates in 
a circular path at a speed of 3.75 m/s.

 47. (a) A luggage carousel at an airport has the form of 
a section of a large cone, steadily rotating about its 
vertical axis. Its metallic surface slopes downward 
toward the outside, making an angle of 20.08 with the 
horizontal. A piece of luggage having mass 30.0 kg is 
placed on the carousel at a position 7.46 m measured 
horizontally from the axis of rotation. The travel bag 
goes around once in 38.0 s. Calculate the force of static 
friction exerted by the carousel on the bag. (b) The 
drive motor is shifted to turn the carousel at a higher 
constant rate of rotation, and the piece of luggage is 
bumped to another position, 7.94 m from the axis of 
rotation. Now going around once in every 34.0 s, the 
bag is on the verge of slipping down the sloped surface. 
Calculate the coefficient of static friction between the 
bag and the carousel.

 48. In a home laundry dryer, a cylindrical tub containing 
wet clothes is rotated steadily about a horizontal axis 
as shown in Figure P6.48. So that the clothes will dry 
uniformly, they are made to tumble. The rate of rota-
tion of the smooth-walled tub is chosen so that a small 
piece of cloth will lose contact with the tub when the 
cloth is at an angle of u 5 68.08 above the horizontal. If 
the radius of the tub is r 5 0.330 m, what rate of revolu-
tion is needed?

u

r

Figure P6.48

 49. Interpret the graph in Figure 6.16(b), which describes 
the results for falling coffee filters discussed in Exam-
ple 6.10. Proceed as follows. (a) Find the slope of the 
straight line, including its units. (b) From Equation 
6.6, R 5 1

2DrAv2, identify the theoretical slope of a 
graph of resistive force versus squared speed. (c) Set 
the experimental and theoretical slopes equal to each 
other and proceed to calculate the drag coefficient of 
the filters. Model the cross-sectional area of the filters 
as that of a circle of radius 10.5 cm and take the den-
sity of air to be 1.20 kg/m3. (d) Arbitrarily choose the 
eighth data point on the graph and find its vertical  

of calculus, this differential equation implies that the 
speed changes according to

3
v

vi
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  (a) Carry out the integration to determine the speed of 
the seaplane as a function of time. (b) Sketch a graph 
of the speed as a function of time. (c) Does the sea-
plane come to a complete stop after a finite interval of 
time? (d) Does the seaplane travel a finite distance in 
stopping?

 44. An object of mass m1 5 
4.00 kg is tied to an 
object of mass m2 5 
3.00 kg with String 1 of 
length , 5 0.500 m. 
The combination is 
swung in a vertical cir-
cular path on a second 
string, String 2, of 
length , 5 0.500 m. During the motion, the two strings 
are collinear at all times as shown in Figure P6.44.  
At the top of its motion, m2 is traveling at v 5 4.00 m/s. 
(a) What is the tension in String 1 at this instant?  
(b) What is the tension in String 2 at this instant?  
(c) Which string will break first if the combination is 
rotated faster and faster?

 45. A ball of mass m 5 0.275 kg swings 
in a vertical circular path on a 
string L 5 0.850 m long as in Fig-
ure P6.45. (a) What are the forces 
acting on the ball at any point on 
the path? (b) Draw force diagrams 
for the ball when it is at the bottom 
of the circle and when it is at the 
top. (c)  If its speed is 5.20  m/s at 
the top of the circle, what is the 
tension in the string there? (d) If the string breaks when 
its tension exceeds 22.5 N, what is the maximum speed 
the ball can have at the bottom before that happens?

 46. Why is the following situation impossible? A mischievous 
child goes to an amusement park with his family. On 
one ride, after a severe scolding from his mother, he 
slips out of his seat and climbs to the top of the ride’s 
structure, which is shaped like a cone with its axis verti-
cal and its sloped sides making an angle of u 5 20.08 
with the horizontal as shown in Figure P6.46. This part 
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in part (d) depend on the numerical values given in 
this problem, or is it true in general? Explain.

 54. A puck of mass m1 is tied 
to a string and allowed 
to revolve in a circle of 
radius R on a friction-
less, horizontal table. 
The other end of the 
string passes through a 
small hole in the cen-
ter of the table, and 
an object of mass m2 is 
tied to it (Fig. P6.54). 
The suspended object 
remains in equilibrium while the puck on the tabletop 
revolves. Find symbolic expressions for (a) the tension in 
the string, (b) the radial force acting on the puck, and 
(c) the speed of the puck. (d) Qualitatively describe what 
will happen in the motion of the puck if the value of m2 
is increased by placing a small additional load on the 
puck. (e) Qualitatively describe what will happen in the 
motion of the puck if the value of m2 is instead decreased 
by removing a part of the hanging load.

 55. Because the Earth rotates about its axis, a point on 
the equator experiences a centripetal acceleration of 
0.033 7 m/s2, whereas a point at the poles experiences 
no centripetal acceleration. If a person at the equator 
has a mass of 75.0  kg, calculate (a) the gravitational 
force (true weight) on the person and (b) the normal 
force (apparent weight) on the person. (c) Which force 
is greater? Assume the Earth is a uniform sphere and 
take g 5 9.800 m/s2.

 56. Galileo thought about whether acceleration should be 
defined as the rate of change of velocity over time or as 
the rate of change in velocity over distance. He chose 
the former, so let’s use the name “vroomosity” for the 
rate of change of velocity over distance. For motion of 
a particle on a straight line with constant acceleration, 
the equation v 5 vi 1 at gives its velocity v as a function 
of time. Similarly, for a particle’s linear motion with 
constant vroomosity k, the equation v 5 vi 1 kx gives 
the velocity as a function of the position x if the parti-
cle’s speed is vi at x 5 0. (a) Find the law describing the 
total force acting on this object of mass m. (b) Describe 
an example of such a motion or explain why it is unre-
alistic. Consider (c) the possibility of k positive and  
(d) the possibility of k negative.

 57. Figure P6.57 shows 
a photo of a swing 
ride at an amusement 
park. The structure 
consists of a horizon-
tal, rotating, circular 
platform of diameter 
D from which seats 
of mass m are sus-
pended at the end 
of massless chains 
of length d. When 
the system rotates at 
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separation from the line of best fit. Express this scatter 
as a percentage. (e) In a short paragraph, state what 
the graph demonstrates and compare it with the the-
oretical prediction. You will need to make reference 
to the quantities plotted on the axes, to the shape of 
the graph line, to the data points, and to the results of 
parts (c) and (d).

 50. A basin surrounding a drain has the shape of a circular 
cone opening upward, having everywhere an angle of 
35.0° with the horizontal. A 25.0-g ice cube is set slid-
ing around the cone without friction in a horizontal 
circle of radius R. (a) Find the speed the ice cube must 
have as a function of R. (b) Is any piece of data unnec-
essary for the solution? Suppose R is made two times 
larger. (c) Will the required speed increase, decrease, 
or stay constant? If it changes, by what factor? (d) Will 
the time required for each revolution increase, 
decrease, or stay constant? If it changes, by what factor? 
(e) Do the answers to parts (c) and (d) seem contradic-
tory? Explain.

 51. A truck is moving with 
constant acceleration 
a up a hill that makes 
an angle f with the 
horizontal as in Figure 
P6.51. A small sphere 
of mass m is suspended 
from the ceiling of the 
truck by a light cord. If 
the pendulum makes a 
constant angle u with the perpendicular to the ceiling, 
what is a?

 52. The pilot of an airplane executes a loop-the-loop 
maneuver in a vertical circle. The speed of the airplane 
is 300 mi/h at the top of the loop and 450 mi/h at the 
bottom, and the radius of the circle is 1 200 ft. (a) What  
is the pilot’s apparent weight at the lowest point if his 
true weight is 160 lb? (b) What is his apparent weight 
at the highest point? (c)  What If? Describe how the 
pilot could experience weightlessness if both the 
radius and the speed can be varied. Note: His apparent 
weight is equal to the magnitude of the force exerted 
by the seat on his body.

 53. Review. While learning to drive, you are in a 1 200-kg 
car moving at 20.0 m/s across a large, vacant, level 
parking lot. Suddenly you realize you are heading 
straight toward the brick sidewall of a large supermar-
ket and are in danger of running into it. The pavement 
can exert a maximum horizontal force of 7 000 N on 
the car. (a) Explain why you should expect the force to 
have a well-defined maximum value. (b) Suppose you 
apply the brakes and do not turn the steering wheel. 
Find the minimum distance you must be from the wall 
to avoid a collision. (c) If you do not brake but instead 
maintain constant speed and turn the steering wheel, 
what is the minimum distance you must be from the 
wall to avoid a collision? (d) Of the two methods in 
parts (b) and (c), which is better for avoiding a colli-
sion? Or should you use both the brakes and the steer-
ing wheel, or neither? Explain. (e) Does the conclusion 
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 t (s) d (ft) t (s) d (ft) t (s) d (ft)

 0   0  7   652 14 1 831
 1  16  8   808 15 2 005
 2  62  9   971 16 2 179
 3 138 10 1 138 17 2 353
 4 242 11 1 309 18 2 527
 5 366 12 1 483 19 2 701
 6 504 13 1 657 20 2 875

 61. A car rounds a banked curve as discussed in Example 
6.4 and shown in Figure 6.5. The radius of curvature 
of the road is R, the banking angle is u, and the coef-
ficient of static friction is ms. (a) Determine the range 
of speeds the car can have without slipping up or down 
the road. (b) Find the minimum value for ms such that 
the minimum speed is zero.

 62. In Example 6.5, we investigated the forces a child expe-
riences on a Ferris wheel. Assume the data in that exam-
ple applies to this problem. What force (magnitude and 
direction) does the seat exert on a 40.0-kg child when 
the child is halfway between top and bottom?

 63. A model airplane of mass 0.750 kg flies with a speed of 
35.0 m/s in a horizontal circle at the end of a 60.0-m-long 
control wire as shown in Figure P6.63a. The forces 
exerted on the airplane are shown in Figure P6.63b: the 
tension in the control wire, the gravitational force, and 
aerodynamic lift that acts at u 5 20.08 inward from the 
vertical. Compute the tension in the wire, assuming it 
makes a constant angle of u 5 20.08 with the horizontal.

Wire

Circular path 
of airplane
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Figure P6.63

 64. A student builds and calibrates an accelerometer and 
uses it to determine the speed of her car around a cer-
tain unbanked highway curve. The accelerometer is a 
plumb bob with a protractor that she attaches to the 
roof of her car. A friend riding in the car with the stu-
dent observes that the plumb bob hangs at an angle 
of 15.0° from the vertical when the car has a speed of 
23.0 m/s. (a) What is the centripetal acceleration of the 
car rounding the curve? (b) What is the radius of the 
curve? (c) What is the speed of the car if the plumb 
bob deflection is 9.00° while rounding the same curve?

Challenge Problems

 65. A 9.00-kg object starting from rest falls through a vis-
cous medium and experiences a resistive force given 
by Equation 6.2. The object reaches one half its termi-
nal speed in 5.54 s. (a) Determine the terminal speed.  
(b) At what time is the speed of the object three-
fourths the terminal speed? (c) How far has the object 
traveled in the first 5.54 s of motion?
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constant speed, the chains swing outward and make 
an angle u with the vertical. Consider such a ride with 
the following parameters: D 5 8.00  m, d 5 2.50 m,  
m 5 10.0 kg, and u 5 28.08. (a) What is the speed of 
each seat? (b) Draw a diagram of forces acting on the 
combination of a seat and a 40.0-kg child and (c) find 
the tension in the chain.

 58. Review. A piece of putty is initially located at point A 
on the rim of a grinding wheel rotating at constant 
angular speed about a horizontal axis. The putty is 
dislodged from point A when the diameter through A 
is horizontal. It then rises vertically and returns to A at 
the instant the wheel completes one revolution. From 
this information, we wish to find the speed v of the 
putty when it leaves the wheel and the force holding it 
to the wheel. (a) What analysis model is appropriate 
for the motion of the putty as it rises and falls? (b) Use 
this model to find a symbolic expression for the time 
interval between when the putty leaves point A and 
when it arrives back at A, in terms of v and g. (c) What 
is the appropriate analysis model to describe point A 
on the wheel? (d) Find the period of the motion of 
point A in terms of the tangential speed v and the 
radius R of the wheel. (e) Set the time interval from 
part (b) equal to the period from part (d) and solve 
for the speed v of the putty as it leaves the wheel. (f) If 
the mass of the putty is m, what is the magnitude of 
the force that held it to the wheel before it was 
released?

 59. An amusement park ride 
consists of a large vertical 
cylinder that spins about 
its axis fast enough that 
any person inside is held 
up against the wall when 
the floor drops away (Fig. 
P6.59). The coefficient 
of static friction between 
person and wall is ms, 
and the radius of the cyl-
inder is R. (a)  Show that 
the maximum period of 
revolution necessary to keep the person from falling is  
T 5 (4p2Rms/g)1/2. (b) If the rate of revolution of the 
cylinder is made to be somewhat larger, what hap-
pens to the magnitude of each one of the forces act-
ing on the person? What happens in the motion of the 
person? (c) If the rate of revolution of the cylinder is 
instead made to be somewhat smaller, what happens to 
the magnitude of each one of the forces acting on the 
person? How does the motion of the person change?

 60. Members of a skydiving club were given the following 
data to use in planning their jumps. In the table, d is 
the distance fallen from rest by a skydiver in a “free-
fall stable spread position” versus the time of fall t.  
(a) Convert the distances in feet into meters. (b) Graph 
d (in meters) versus t. (c) Determine the value of the 
terminal speed vT by finding the slope of the straight 
portion of the curve. Use a least-squares fit to deter-
mine this slope.
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you found in part (c). (d) How far to 
the west of the hole does the ball land?

 68. A single bead can slide with negligible 
friction on a stiff wire that has been 
bent into a circular loop of radius 
15.0 cm as shown in Figure P6.68. The 
circle is always in a vertical plane and 
rotates steadily about its vertical diam-
eter with a period of 0.450 s. The posi-
tion of the bead is described by the 
angle u that the radial line, from the center of the loop 
to the bead, makes with the vertical. (a) At what angle 
up from the bottom of the circle can the bead stay 
motionless relative to the turning circle? (b) What If? 
Repeat the problem, this time taking the period of the 
circle’s rotation as 0.850 s. (c) Describe how the solu-
tion to part (b) is different from the solution to part 
(a). (d) For any period or loop size, is there always an 
angle at which the bead can stand still relative to the 
loop? (e) Are there ever more than two angles? Arnold 
Arons suggested the idea for this problem.

 69. The expression F 5 arv 1 br 2v2 gives the magnitude of 
the resistive force (in newtons) exerted on a sphere of 
radius r (in meters) by a stream of air moving at speed 
v (in meters per second), where a and b are constants 
with appropriate SI units. Their numerical values are 
a 5 3.10 3 1024 and b 5 0.870. Using this expression, 
find the terminal speed for water droplets falling under 
their own weight in air, taking the following values for 
the drop radii: (a) 10.0 mm, (b) 100 mm, (c) 1.00 mm. 
For parts (a) and (c), you can obtain accurate answers 
without solving a quadratic equation by considering 
which of the two contributions to the air resistance is 
dominant and ignoring the lesser contribution.

 70. Because of the Earth’s rotation, a plumb bob does not 
hang exactly along a line directed to the center of the 
Earth. How much does the plumb bob deviate from a 
radial line at 35.08 north latitude? Assume the Earth is 
spherical.

Q/C

 66. For t , 0, an object of mass m experiences no force and 
moves in the positive x direction with a constant speed 
vi. Beginning at t 5 0, when the object passes position 
x 5 0, it experiences a net resistive force proportional  
to the square of its speed: F

S

net 5 2mkv2
 î, where k is a 

constant. The speed of the object after t 5 0 is given by 
v 5 vi/(1 1 kvit). (a) Find the position x of the object as 
a function of time. (b) Find the object’s velocity as a 
function of position.

 67. A golfer tees off from 
a location precisely at 
fi 5 35.08 north lati-
tude. He hits the ball 
due south, with range 
285  m. The ball’s ini-
tial velocity is at 48.08 
above the horizontal. 
Suppose air resistance 
is negligible for the golf 
ball. (a) For how long 
is the ball in flight? 
The cup is due south 
of the golfer’s location, and the golfer would have a 
hole-in-one if the Earth were not rotating. The Earth’s 
rotation makes the tee move in a circle of radius  
RE cos fi 5 (6.37 3 106 m) cos 35.08 as shown in Fig-
ure P6.67. The tee completes one revolution each day. 
(b) Find the eastward speed of the tee relative to the 
stars. The hole is also moving east, but it is 285 m 
farther south and thus at a slightly lower latitude ff . 
Because the hole moves in a slightly larger circle, its 
speed must be greater than that of the tee. (c) By how 
much does the hole’s speed exceed that of the tee? 
During the time interval the ball is in flight, it moves 
upward and downward as well as southward with the 
projectile motion you studied in Chapter 4, but it 
also moves eastward with the speed you found in part  
(b). The hole moves to the east at a faster speed, how-
ever, pulling ahead of the ball with the relative speed 

S

North
Pole

Radius of circular
path of tee

Tee Golf ball
trajectory

Hole

Equator

RE cos fi

RE

fi

Figure P6.67

u

Figure P6.68
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7.1 Systems and Environments

7.2 Work Done by a Constant 
Force

7.3 The Scalar Product of Two 
Vectors

7.4 Work Done by a Varying 
Force

7.5 Kinetic Energy and the 
Work–Kinetic  
Energy Theorem

7.6 Potential Energy of a System

7.7 Conservative and 
Nonconservative Forces

7.8 Relationship Between 
Conservative Forces and 
Potential Energy

7.9 Energy Diagrams and 
Equilibrium  
of a System

The definitions of quantities such as position, velocity, acceleration, and force and 
associated principles such as Newton’s second law have allowed us to solve a variety of 
problems. Some problems that could theoretically be solved with Newton’s laws, however, 
are very difficult in practice, but they can be made much simpler with a different approach. 
Here and in the following chapters, we will investigate this new approach, which will include 
definitions of quantities that may not be familiar to you. Other quantities may sound famil-
iar, but they may have more specific meanings in physics than in everyday life. We begin 
this discussion by exploring the notion of energy.
 The concept of energy is one of the most important topics in science and engineering. In 
everyday life, we think of energy in terms of fuel for transportation and heating, electric-
ity for lights and appliances, and foods for consumption. These ideas, however, do not truly 
define energy. They merely tell us that fuels are needed to do a job and that those fuels pro-
vide us with something we call energy.
 Energy is present in the Universe in various forms. Every physical process that occurs in 
the Universe involves energy and energy transfers or transformations. Unfortunately, despite 
its extreme importance, energy cannot be easily defined. The variables in previous chapters 
were relatively concrete; we have everyday experience with velocities and forces, for example. 
Although we have experiences with energy, such as running out of gasoline or losing our elec-
trical service following a violent storm, the notion of energy is more abstract.

On a wind farm at the mouth of the 
River Mersey in Liverpool, England, 
the moving air does work on the 
blades of the windmills, causing the 
blades and the rotor of an electrical 
generator to rotate. Energy is 
transferred out of the system of the 
windmill by means of electricity. 
(Christopher Furlong/Getty Images)

Energy of a System
c h a p t E r 
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 The concept of energy can be applied to mechanical systems without resorting to Newton’s 
laws. Furthermore, the energy approach allows us to understand thermal and electrical phe-
nomena in later chapters of the book in terms of the same models that we will develop here in 
our study of mechanics.
 Our analysis models presented in earlier chapters were based on the motion of a particle 
or an object that could be modeled as a particle. We begin our new approach by focusing our 
attention on a new simplification model, a system, and analysis models based on the model of 
a system. These analysis models will be formally introduced in Chapter 8. In this chapter, we 
introduce systems and three ways to store energy in a system.

Pitfall Prevention 7.1
Identify the System The most 
important first step to take in solv-
ing a problem using the energy 
approach is to identify the appro-
priate system of interest.

7.1 Systems and Environments
In the system model, we focus our attention on a small portion of the Universe—
the system—and ignore details of the rest of the Universe outside of the system.  
A critical skill in applying the system model to problems is identifying the system.
 A valid system

•	may be a single object or particle
•	may be a collection of objects or particles
•	may be a region of space (such as the interior of an automobile engine com-

bustion cylinder)
•	may vary with time in size and shape (such as a rubber ball, which deforms 

upon striking a wall)

 Identifying the need for a system approach to solving a problem (as opposed to 
a particle approach) is part of the Categorize step in the General Problem-Solving 
Strategy outlined in Chapter 2. Identifying the particular system is a second part of 
this step.
 No matter what the particular system is in a given problem, we identify a system 
boundary, an imaginary surface (not necessarily coinciding with a physical sur-
face) that divides the Universe into the system and the environment surrounding 
the system.
 As an example, imagine a force applied to an object in empty space. We can 
define the object as the system and its surface as the system boundary. The force 
applied to it is an influence on the system from the environment that acts across the 
system boundary. We will see how to analyze this situation from a system approach 
in a subsequent section of this chapter.
 Another example was seen in Example 5.10, where the system can be defined as 
the combination of the ball, the block, and the cord. The influence from the envi-
ronment includes the gravitational forces on the ball and the block, the normal 
and friction forces on the block, and the force exerted by the pulley on the cord. 
The forces exerted by the cord on the ball and the block are internal to the system 
and therefore are not included as an influence from the environment.
 There are a number of mechanisms by which a system can be influenced by its 
environment. The first one we shall investigate is work.

7.2 Work Done by a Constant Force
Almost all the terms we have used thus far—velocity, acceleration, force, and so 
on—convey a similar meaning in physics as they do in everyday life. Now, however, 
we encounter a term whose meaning in physics is distinctly different from its every-
day meaning: work.
 To understand what work as an influence on a system means to the physicist, 
consider the situation illustrated in Figure 7.1. A force F

S
 is applied to a chalkboard 
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eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the 
other hand, Figure 7.1c shows a situation in which the applied force does not move 
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a 
force so great that we break the chalkboard tray!). These results suggest that when 
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force. 
Moving a force with a magnitude of 0 FS 0 5 2 N through a displacement represents a 
greater influence on the system than moving a force of magnitude 1 N through the 
same displacement. The magnitude of the displacement is also important. Moving 
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if 
the same force is used in both cases.
 Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)

 Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors, a force F

S
 and a displacement D rS. In Section 7.3, we explore how to 

combine two vectors to generate a scalar quantity.
 Notice also that the displacement in Equation 7.1 is that of the point of application 
of the force. If the force is applied to a particle or a rigid object that can be modeled 
as a particle, this displacement is the same as that of the particle. For a deformable 
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves 
through zero displacement. The points of application of the forces from your hands 
on the sides of the balloon, however, do indeed move through a displacement as 
the balloon is compressed, and that is the displacement to be used in Equation 7.1. 
We will see other examples of deformable systems, such as springs and samples of 
gas contained in a vessel.
 As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 

WW  Work done by a  
constant force

a b c

Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 

�

u

F
S

rS 

Figure 7.2  An object undergoes 
a displacement D rS under the 
action of a constant force F

S
.

Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, “the 
work done by . . . on . . . .” After 
“by,” insert the part of the environ-
ment that is interacting directly 
with the system. After “on,” insert 
the system. For example, “the work 
done by the hammer on the nail” 
identifies the nail as the system, 
and the force from the hammer 
represents the influence from the 
environment.
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have done a considerable amount of work on the chair. According to our defini-
tion, however, you have done no work on it whatsoever. You exert a force to support 
the chair, but you do not move it. A force does no work on an object if the force 
does not move through a displacement. If Dr 5 0, Equation 7.1 gives W 5 0, which is 
the situation depicted in Figure 7.1c.
 Also notice from Equation 7.1 that the work done by a force on a moving object 
is zero when the force applied is perpendicular to the displacement of its point of 
application. That is, if u 5 908, then W 5 0 because cos 908 5 0. For example, in 
Figure 7.3, the work done by the normal force on the object and the work done by 
the gravitational force on the object are both zero because both forces are perpen-
dicular to the displacement and have zero components along an axis in the direc-
tion of D rS.
 The sign of the work also depends on the direction of F

S
 relative to D rS. The work 

done by the applied force on a system is positive when the projection of F
S

 onto D rS 
is in the same direction as the displacement. For example, when an object is lifted, 
the work done by the applied force on the object is positive because the direction 
of that force is upward, in the same direction as the displacement of its point of 
application. When the projection of F

S
 onto D rS is in the direction opposite the dis-

placement, W is negative. For example, as an object is lifted, the work done by the 
gravitational force on the object is negative. The factor cos u in the definition of W 
(Eq. 7.1) automatically takes care of the sign.
 If an applied force F

S
 is in the same direction as the displacement D rS, then u 5 

0 and cos 0 5 1. In this case, Equation 7.1 gives

 W 5 F Dr 

 The units of work are those of force multiplied by those of length. Therefore, 
the SI unit of work is the newton ? meter (N ? m 5 kg ? m2/s2). This combination of 
units is used so frequently that it has been given a name of its own, the joule ( J).
 An important consideration for a system approach to problems is that work is an 
energy transfer. If W is the work done on a system and W is positive, energy is trans-
ferred to the system; if W is negative, energy is transferred from the system. There-
fore, if a system interacts with its environment, this interaction can be described 
as a transfer of energy across the system boundary. The result is a change in the 
energy stored in the system. We will learn about the first type of energy storage in 
Section 7.5, after we investigate more aspects of work.

Q uick Quiz 7.1  The gravitational force exerted by the Sun on the Earth holds the 
Earth in an orbit around the Sun. Let us assume that the orbit is perfectly cir-
cular. The work done by this gravitational force during a short time interval in 
which the Earth moves through a displacement in its orbital path is (a) zero  
(b) positive (c) negative (d) impossible to determine

Q uick Quiz 7.2  Figure 7.4 shows four situations in which a force is applied to an 
object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-
tions in order of the work done by the force on the object, from most positive to 
most negative.

u

F
S

mgS 

nS

�rS

   is the only force 
that does work on 
the block in this 
situation.

F
S

Figure 7.3  An object is dis-
placed on a frictionless, horizon-
tal surface. The normal force nS 
and the gravitational force mgS do 
no work on the object.

Pitfall Prevention 7.3
Cause of the Displacement We can 
calculate the work done by a force 
on an object, but that force is not 
necessarily the cause of the object’s 
displacement. For example, if you 
lift an object, (negative) work is 
done on the object by the gravi-
tational force, although gravity is 
not the cause of the object moving 
upward!

F
S

F
S

F
S

F
S

ba

dc
�rS

�rS

�rS

�rS

Figure 7.4  (Quick Quiz 7.2)  
A block is pulled by a force in four 
different directions. In each case, 
the displacement of the block 
is to the right and of the same 
magnitude.

Example 7.1   Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F 5 50.0 N at an angle of 30.08 with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m  
to the right.
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Conceptualize  Figure 7.5 helps conceptualize the 
situation. Think about an experience in your life in 
which you pulled an object across the floor with a 
rope or cord.

Categorize   We are asked for the work done on 
an object by a force and are given the force on 
the object, the displacement of the object, and 
the angle between the two vectors, so we categorize this example as a substitution problem. We identify the vacuum 
cleaner as the system.

S o l u T I o n

7.3 The Scalar Product of Two Vectors
Because of the way the force and displacement vectors are combined in Equation 
7.1, it is helpful to use a convenient mathematical tool called the scalar product of 
two vectors. We write this scalar product of vectors A

S
 and B

S
 as A

S
? B

S
. (Because of 

the dot symbol, the scalar product is often called the dot product.)
 The scalar product of any two vectors A

S
 and B

S
 is defined as a scalar quantity 

equal to the product of the magnitudes of the two vectors and the cosine of the 
angle u between them:

 A
S

? B
S

; AB cos u (7.2)

As is the case with any multiplication, A
S

 and B
S

 need not have the same units.
 By comparing this definition with Equation 7.1, we can express Equation 7.1 as a 
scalar product:

 W 5 F Dr cos u 5 F
S

? D rS  (7.3)

In other words, F
S

? D rS  is a shorthand notation for F Dr cos u.
 Before continuing with our discussion of work, let us investigate some properties 
of the dot product. Figure 7.6 shows two vectors A

S
 and B

S
 and the angle u between 

them used in the definition of the dot product. In Figure 7.6, B cos u is the projec-
tion of B

S
 onto A

S
. Therefore, Equation 7.2 means that A

S
? B

S
 is the product of the 

magnitude of A
S

 and the projection of B
S

 onto A
S

.1

 From the right-hand side of Equation 7.2, we also see that the scalar product is 
commutative.2 That is,

A
S

? B
S

5 B
S

? A
S

WW  Scalar product of any two 
vectors A

S
 and B

S

Pitfall Prevention 7.4
Work Is a Scalar Although Equa-
tion 7.3 defines the work in terms 
of two vectors, work is a scalar; 
there is no direction associated 
with it. All types of energy and 
energy transfer are scalars. This 
fact is a major advantage of the 
energy approach because we don’t 
need vector calculations!

1This statement is equivalent to stating that A
S

? B
S

 equals the product of the magnitude of B
S

 and the projection of A
S

  
onto B

S
.

2In Chapter 11, you will see another way of combining vectors that proves useful in physics and is not commutative.

B cos 

.  =  AB cos
u

u

u

B
S

 

B
S

 

A
S

 

A
S

 

Figure 7.6  The scalar product 
A
S

? B
S

 equals the magnitude of A
S

  
multiplied by B cos u, which is the 
projection of B

S
 onto A

S
.

 

▸ 7.1 c o n t i n u e d

Use the definition of work (Eq. 7.1): W 5 F Dr cos u 5 150.0 N 2 13.00 m 2 1cos 30.08 2  
5  130 J

Notice in this situation that the normal force nS and the gravitational F
S

g 5 mgS do no work on the vacuum cleaner 
because these forces are perpendicular to the displacements of their points of application. Furthermore, there was 
no mention of whether there was friction between the vacuum cleaner and the floor. The presence or absence of fric-
tion is not important when calculating the work done by the applied force. In addition, this work does not depend on 
whether the vacuum moved at constant velocity or if it accelerated.

30.0�

50.0 N

mgS 

nS

Figure 7.5  (Example 7.1) A 
vacuum cleaner being pulled 
at an angle of 30.08 from the 
horizontal.
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 Finally, the scalar product obeys the distributive law of multiplication, so

A
S

? 1 B
S

1 C
S 2 5 A

S
? B

S
1 A

S
? C

S

 The scalar product is simple to evaluate from Equation 7.2 when A
S

 is either per-
pendicular or parallel to B

S
. If A

S
 is perpendicular to B

S
 (u 5 908), then A

S
? B

S
 5 0.  

(The equality A
S

? B
S

 5 0 also holds in the more trivial case in which either A
S

  
or B

S
 is zero.) If vector A

S
 is parallel to vector B

S
 and the two point in the same direc-

tion (u 5 0), then A
S

? B
S

 5 AB. If vector A
S

 is parallel to vector B
S

 but the two point 
in opposite directions (u 5 1808), then A

S
? B

S
 5 2AB. The scalar product is negative  

when 908 , u # 1808.
 The unit vectors  î,  ĵ, and k̂, which were defined in Chapter 3, lie in the positive 
x, y, and z directions, respectively, of a right-handed coordinate system. Therefore, it 
follows from the definition of A

S
? B

S
 that the scalar products of these unit vectors are

  î ?  î 5  ĵ ?  ĵ 5 k̂ ? k̂ 5 1 (7.4)

  î ?  ĵ 5  î ? k̂ 5  ĵ ? k̂ 5 0 (7.5)

 Equations 3.18 and 3.19 state that two vectors A
S

 and B
S

 can be expressed in unit-
vector form as

A
S

5 Ax  î 1 Ay  ĵ 1 Az k̂

B
S

5 Bx  î 1 By  ĵ 1 Bz k̂

Using these expressions for the vectors and the information given in Equations 7.4 
and 7.5 shows that the scalar product of A

S
 and B

S
 reduces to

 A
S

? B
S

5 Ax Bx 1 Ay By 1 Az Bz (7.6)

(Details of the derivation are left for you in Problem 7 at the end of the chapter.) In 
the special case in which A

S
5 B

S
,  we see that

A
S

? A
S

5 Ax
2 1 Ay

2 1 Az
2 5 A2

Q uick Quiz 7.3  Which of the following statements is true about the relationship 
between the dot product of two vectors and the product of the magni tudes  
of the vectors? (a) A

S
? B

S
 is larger than AB. (b) A

S
? B

S
 is smaller than AB. (c) A

S
? B

S
  

could be larger or smaller than AB, depending on the angle between the vectors. 
(d) A

S
? B

S
 could be equal to AB.

Scalar products of 
unit vectors

Substitute the specific vector expressions for A
S

 and B
S

: A
S

? B
S

 5 12 î 1 3 ĵ 2 ? 12 î 1 2 ĵ 2  
5 22 î ?  î 1 2 î ? 2 ĵ 2 3 ĵ ?  î 1 3 ĵ ? 2 ĵ

5 22(1) 1 4(0) 2 3(0) 1 6(1) 5 22 1 6 5  4

The same result is obtained when we use Equation 7.6 directly, where Ax 5 2, Ay 5 3, Bx 5 21, and By 5 2.

Example 7.2   The Scalar Product

The vectors A
S

 and B
S

 are given by A
S

5 2 î 1 3 ĵ  and B
S

5 2 î 1 2 ĵ .

(A)  Determine the scalar product A
S

? B
S

.

Conceptualize  There is no physical system to imagine here. Rather, it is purely a mathematical exercise involving two 
vectors.

Categorize   Because we have a definition for the scalar product, we categorize this example as a substitution problem.

S o l u T I o n
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Example 7.3   Work Done by a Constant Force

A particle moving in the xy plane undergoes a displacement given by D rS 5 12.0 î 1 3.0 ĵ 2  m as a constant force 
F
S

5 15.0 î 1 2.0 ĵ 2  N acts on the particle. Calculate the work done by F
S

 on the particle.

Conceptualize  Although this example is a little more physical than the previous one in that it identifies a force and a 
displacement, it is similar in terms of its mathematical structure.

Categorize  Because we are given force and displacement vectors and asked to find the work done by this force on the 
particle, we categorize this example as a substitution problem.

S o l u t i o n

Evaluate the magnitudes of A
S

 and B
S

 using the Pythago-
rean theorem:

A 5 "Ax
2 1 Ay

2 5 "12 22 1 13 22 5 "13

B 5 "Bx
2 1 By

2 5 "121 22 1 12 22 5 "5

Use Equation 7.2 and the result from part (A) to find the 
angle: 

cos u 5
A
S

? B
S

AB
5

4

"13"5
5

4

"65

u 5 cos21 
4

!65
5 60.38

(B) Find the angle u between A
S

 and B
S

.

S o l u t i o n

Substitute the expressions for F
S

 and D rS  into 
Equation 7.3 and use Equations 7.4 and 7.5:

W 5 F
S

? D rS 5 3 15.0 î 1 2.0 ĵ 2  N 4 ? 3 12.0 î 1 3.0 ĵ 2  m 4 
5 15.0 î ? 2.0 î 1 5.0 î ? 3.0 ĵ 1 2.0 ĵ ? 2.0 î 1 2.0 ĵ ? 3.0 ĵ 2  N # m

5 [10 1 0 1 0 1 6] N ? m 5  16 J

7.4 Work Done by a Varying Force
Consider a particle being displaced along the x axis under the action of a force that 
varies with position. In such a situation, we cannot use Equation 7.1 to calculate the 
work done by the force because this relationship applies only when F

S
 is constant in 

magnitude and direction. Figure 7.7a (page 184) shows a varying force applied on 
a particle that moves from initial position xi to final position xf . Imagine a particle 
undergoing a very small displacement Dx, shown in the figure. The x component 
Fx of the force is approximately constant over this small interval; for this small dis-
placement, we can approximate the work done on the particle by the force using 
Equation 7.1 as

 W < Fx Dx 

which is the area of the shaded rectangle in Figure 7.7a. If the Fx versus x curve is 
divided into a large number of such intervals, the total work done for the displace-
ment from xi to xf is approximately equal to the sum of a large number of such 
terms:

 W < a
xf

xi

 Fx  Dx 

 

▸ 7.2 c o n t i n u e d
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If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the Fx curve and the x axis:

lim
Dx S 0

a
xf

xi

 Fx  Dx 5 3
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf as

 W 5 3
xf

xi

 Fx dx (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.
 If more than one force acts on a system and the system can be modeled as a particle, 
the total work done on the system is just the work done by the net force. If we 
express the net force in the x direction as o Fx, the total work, or net work, done as 
the particle moves from xi to xf is

aW 5 Wext 5 3
xf

xi

1 a Fx 2  dx (particle)

For the general case of a net force g  F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 aW 5 Wext 5 3 1 a F
S 2 ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.
 If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:

 aW 5 Wext 5 a
forces

 a3  F
S

? d rSb (deformable system) 

Fx Area  =  Fx  x

Fx

xxfxi

x

Fx

xxfxi

Work

�

�

The total work done for the 
displacement from xi to xf is 
approximately equal to the sum 
of the areas of all the rectangles.

The work done by the component 
Fx of the varying force as the par-
ticle moves from xi to xf is exactly 
equal to the area under the curve.

a

b

Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the 
work done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force 
remains constant as the particle moves through the first 4.0 m and then decreases 
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could 
be modeled as a particle under constant acceleration for the first 4.0 m because 
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit 
into one of our earlier analysis models because the acceleration of the particle is 
changing. If the particle starts from rest, its speed increases throughout the motion, 
and the particle is always moving in the positive x direction. These details about its 
speed and direction are not necessary for the calculation of the work done, however.

Categorize  Because the force varies during the motion of the particle, we must 
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used 
to evaluate the work done.

S o l u T I o n

1 2 3 4 5 6
x (m)0

5

Fx (N)

C

A B

The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is constant 
for the first 4.0 m of motion and then 
decreases linearly with x from xB 5 
4.0 m to xC 5 6.0 m.



 7.4 Work Done by a Varying Force 185

Analyze  The work done by the force is equal to the area under the curve from xA 5 0 to xC 5 6.0 m. This area is equal 
to the area of the rectangular section from A to B plus the area of the triangular section from B to C.

Evaluate the area of the rectangle: WA to B 5 (5.0 N)(4.0 m) 5 20 J 

Evaluate the area of the triangle: WB to C 5 12(5.0 N)(2.0 m) 5 5.0 J

Find the total work done by the force on the particle: WA to C 5 WA to B 1 WB to C 5 20 J 1 5.0 J 5   25 J

Finalize  Because the graph of the force consists of straight lines, we can use rules for finding the areas of simple geo-
metric models to evaluate the total work done in this example. If a force does not vary linearly as in Figure 7.7, such 
rules cannot be used and the force function must be integrated as in Equation 7.7 or 7.8.

Work Done by a Spring
A model of a common physical system on which the force varies with position is 
shown in Figure 7.9. The system is a block on a frictionless, horizontal surface and 
connected to a spring. For many springs, if the spring is either stretched or com-
pressed a small distance from its unstretched (equilibrium) configuration, it exerts 
on the block a force that can be mathematically modeled as

 Fs 5 2kx (7.9)

where x is the position of the block relative to its equilibrium (x 5 0) position and k 
is a positive constant called the force constant or the spring constant of the spring. 
In other words, the force required to stretch or compress a spring is proportional 
to the amount of stretch or compression x. This force law for springs is known as 
Hooke’s law. The value of k is a measure of the stiffness of the spring. Stiff springs 
have large k values, and soft springs have small k values. As can be seen from Equa-
tion 7.9, the units of k are N/m.

WW Spring force

Figure 7.9 The force exerted 
by a spring on a block varies with 
the block’s position x relative to 
the equilibrium position x 5 0.  
(a) x is positive. (b) x is zero. (c) x 
is negative. (d) Graph of Fs versus 
x for the block–spring system.
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When x is positive 
(stretched spring), the 
spring force is directed 
to the left.

When x is zero 
(natural length of the 
spring), the spring 
force is zero.

When x is negative 
(compressed spring), 
the spring force is 
directed to the right.

The work done by the 
spring force on the 
block as it moves from 
�xmax to 0 is the area 
of the shaded triangle,
� kx 2
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1
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 The vector form of Equation 7.9 is

 F
S

s 5 Fs î 5 2kx î (7.10)

where we have chosen the x axis to lie along the direction the spring extends or 
compresses.
 The negative sign in Equations 7.9 and 7.10 signifies that the force exerted by 
the spring is always directed opposite the displacement from equilibrium. When 
x . 0 as in Figure 7.9a so that the block is to the right of the equilibrium position, 
the spring force is directed to the left, in the negative x direction. When x , 0 as in 
Figure 7.9c, the block is to the left of equilibrium and the spring force is directed 
to the right, in the positive x direction. When x 5 0 as in Figure 7.9b, the spring 
is unstretched and Fs 5 0. Because the spring force always acts toward the equilib-
rium position (x 5 0), it is sometimes called a restoring force.
 If the spring is compressed until the block is at the point 2xmax and is then 
released, the block moves from 2xmax through zero to 1xmax. It then reverses direc-
tion, returns to 2xmax, and continues oscillating back and forth. We will study these 
oscillations in more detail in Chapter 15. For now, let’s investigate the work done by 
the spring on the block over small portions of one oscillation.
 Suppose the block has been pushed to the left to a position 2xmax and is then 
released. We identify the block as our system and calculate the work Ws done by the 
spring force on the block as the block moves from xi 5 2xmax to xf 5 0. Applying 
Equation 7.8 and assuming the block may be modeled as a particle, we obtain

 Ws 5 3 F
S

s ? d rS 5 3
xf

xi

12kx î 2 ? 1dx î 2 5 3
0

2x max

12kx 2  dx 5 1
2kx 2

max (7.11)

where we have used the integral e xn dx 5 xn11/(n 1 1) with n 5 1. The work done by 
the spring force is positive because the force is in the same direction as its displace-
ment (both are to the right). Because the block arrives at x 5 0 with some speed, it 
will continue moving until it reaches a position 1xmax. The work done by the spring 
force on the block as it moves from xi 5 0 to xf 5 xmax is Ws 5 21

2kx 2
max. The work is 

negative because for this part of the motion the spring force is to the left and its 
displacement is to the right. Therefore, the net work done by the spring force on the 
block as it moves from xi 5 2xmax to xf 5 xmax is zero.
 Figure 7.9d is a plot of Fs versus x. The work calculated in Equation 7.11 is the 
area of the shaded triangle, corresponding to the displacement from 2xmax to 0. 
Because the triangle has base xmax and height kxmax, its area is 12kx 2

max, agreeing with 
the work done by the spring as given by Equation 7.11.
 If the block undergoes an arbitrary displacement from x 5 xi to x 5 xf , the work 
done by the spring force on the block is

 Ws 5 3
xf

xi

12kx 2  dx 5 1
2kxi

2 2 1
2kxf

2 (7.12)

From Equation 7.12, we see that the work done by the spring force is zero for any 
motion that ends where it began (xi 5 xf). We shall make use of this important 
result in Chapter 8 when we describe the motion of this system in greater detail.
 Equations 7.11 and 7.12 describe the work done by the spring on the block. Now 
let us consider the work done on the block by an external agent as the agent applies 
a force on the block and the block moves very slowly from xi 5 2xmax to xf 5 0 as  
in Figure 7.10. We can calculate this work by noting that at any value of the posi-
tion, the applied force F

S

app is equal in magnitude and opposite in direction to the 
spring force F

S

s, so F
S

app 5 Fapp î 5 2 F
S

s 5 2 12kx î 2 5 kx î. Therefore, the work 
done by this applied force (the external agent) on the system of the block is

 Wext 5 3  F
S

app ? d rS 5 3
xf

xi

1kx î 2 ? 1dx î 2 5 3
0

2x max

kx dx 5 21
2kx 2

max 

Work done by a spring  
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This work is equal to the negative of the work done by the spring force for this dis-
placement (Eq. 7.11). The work is negative because the external agent must push 
inward on the spring to prevent it from expanding, and this direction is opposite 
the direction of the displacement of the point of application of the force as the 
block moves from 2xmax to 0.
 For an arbitrary displacement of the block, the work done on the system by the 
external agent is

 Wext 5 3
xf

xi

 kx dx 5 1
2kxf

2 2 1
2kxi

2 (7.13)

Notice that this equation is the negative of Equation 7.12.

Q uick Quiz 7.4  A dart is inserted into a spring-loaded dart gun by pushing the 
spring in by a distance x. For the next loading, the spring is compressed a dis-
tance 2x. How much work is required to load the second dart compared with 
that required to load the first? (a) four times as much (b) two times as much  
(c) the same (d) half as much (e) one-fourth as much

Example 7.5   Measuring k for a Spring 

A common technique used to measure the force constant of a spring is demon-
strated by the setup in Figure 7.11. The spring is hung vertically (Fig. 7.11a), and 
an object of mass m is attached to its lower end. Under the action of the “load” mg, 
the spring stretches a distance d from its equilibrium position (Fig. 7.11b).

(A)  If a spring is stretched 2.0 cm by a suspended object having a mass of 
0.55 kg, what is the force constant of the spring?

Conceptualize  Figure 7.11b shows what happens to the spring when the object is 
attached to it. Simulate this situation by hanging an object on a rubber band.

Categorize  The object in Figure 7.11b is at rest and not accelerating, so it is mod-
eled as a particle in equilibrium.

Analyze  Because the object is in equilibrium, the net force on it is zero and the 
upward spring force balances the downward gravitational force mgS (Fig. 7.11c).

AM
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d

mgS

Fs
S

The elongation d is 
caused by the weight mg 
of the attached object.

b ca

Figure 7.11  (Example 7.5) Deter-
mining the force constant k of a 
spring.

Apply Hooke’s law to give Fs 5 kd and solve for k: k 5
mg

d
5

10.55 kg 2 19.80 m/s2 2
2.0 3 1022 m

5 2.7 3 102 N/m

Apply the particle in equilibrium model to the object: F
S

s 1 mgS 5 0  S   Fs 2 mg 5 0  S   Fs 5 mg

continued

Use Equation 7.12 to find the work done by the spring 
on the object:

Ws 5 0 2 1
2kd 2 5 21

2 12.7 3 102 N/m 2 12.0 3 1022 m 22

5  25.4 3 1022 J

(B)  How much work is done by the spring on the object as it stretches through this distance?

S o l u T I o n

Finalize  This work is negative because the spring force acts upward on the object, but its point of application (where 
the spring attaches to the object) moves downward. As the object moves through the 2.0-cm distance, the gravitational 
force also does work on it. This work is positive because the gravitational force is downward and so is the displacement 

xi � �xmax xf � 0

Fs
S

Fapp
S

If the process of moving the 
block is carried out very slowly, 
then Fapp is equal in magnitude 
and opposite in direction to Fs 
at all times.

S

S

Figure 7.10  A block moves from  
xi 5 2xmax to xf 5 0 on a friction-
less surface as a force F

S

app is 
applied to the block.
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Evaluate the work done by the gravitational force on the 
object:

W 5 F
S

? D rS 5 1mg 2 1d 2  cos 0 5 mgd

5 (0.55 kg)(9.80 m/s2)(2.0 3 1022 m) 5 1.1 3 1021 J

If you expected the work done by gravity simply to be that done by the spring with a positive sign, you may be surprised 
by this result! To understand why that is not the case, we need to explore further, as we do in the next section.

7.5  Kinetic Energy and the Work–Kinetic  
Energy Theorem

We have investigated work and identified it as a mechanism for transferring energy 
into a system. We have stated that work is an influence on a system from the envi-
ronment, but we have not yet discussed the result of this influence on the system. 
One possible result of doing work on a system is that the system changes its speed. 
In this section, we investigate this situation and introduce our first type of energy 
that a system can possess, called kinetic energy.
 Consider a system consisting of a single object. Figure 7.12 shows a block of 
mass m moving through a displacement directed to the right under the action of a  
net force g  F

S
, also directed to the right. We know from Newton’s second law that 

the block moves with an acceleration aS. If the block (and therefore the force) moves 
through a displacement D rS 5 Dx î 5 1xf 2 xi 2  î, the net work done on the block by 
the external net force g  F

S
 is

 Wext 5 3
xf

xi

 a F dx (7.14)

 Using Newton’s second law, we substitute for the magnitude of the net force o F 5 
ma and then perform the following chain-rule manipulations on the integrand:

 Wext 5 3
xf

xi

 ma dx 5 3
xf

xi

 m 
dv
dt

 dx 5 3
xf

xi

 m 
dv
dx

  
dx
dt

 dx 5 3
vf

vi

 mv dv 

 Wext 5 1
2mvf

2 2 1
2mvi

2 (7.15)

where vi is the speed of the block at x 5 xi and vf is its speed at xf .
 Equation 7.15 was generated for the specific situation of one-dimensional 
motion, but it is a general result. It tells us that the work done by the net force on a 
particle of mass m is equal to the difference between the initial and final values of 
a quantity 12mv2. This quantity is so important that it has been given a special name, 
kinetic energy:

 K ;
1
2mv2 (7.16)

Kinetic energy represents the energy associated with the motion of the particle. 
Note that kinetic energy is a scalar quantity and has the same units as work. For 
example, a 2.0-kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J. 
Table 7.1 lists the kinetic energies for various objects.
 Equation 7.15 states that the work done on a particle by a net force g  F

S
 acting 

on it equals the change in kinetic energy of the particle. It is often convenient to 
write Equation 7.15 in the form

 Wext 5 Kf 2 Ki 5 DK  (7.17)

Another way to write it is Kf 5 Ki 1 Wext, which tells us that the final kinetic energy 
of an object is equal to its initial kinetic energy plus the change in energy due to 
the net work done on it.

Kinetic energy 

fi

x�

�

m

vS vS

F
S

Figure 7.12  An object undergo-
ing a displacement D rS 5 Dx î and 
a change in velocity under the 
action of a constant net force g  F

S
.

 

▸ 7.5 c o n t i n u e d

of the point of application of this force. Would we expect the work done by the gravitational force, as the applied force 
in a direction opposite to the spring force, to be the negative of the answer above? Let’s find out.
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We have generated Equation 7.17 by imagining doing work on a particle. We 
could also do work on a deformable system, in which parts of the system move with 
respect to one another. In this case, we also find that Equation 7.17 is valid as long 
as the net work is found by adding up the works done by each force and adding, as 
discussed earlier with regard to Equation 7.8.

Equation 7.17 is an important result known as the work–kinetic energy theorem:

When work is done on a system and the only change in the system is in its 
speed, the net work done on the system equals the change in kinetic energy of 
the system, as expressed by Equation 7.17: 

The work–kinetic energy theorem indicates that the speed of a system increases if 
the net work done on it is positive because the final kinetic energy is greater than 
the initial kinetic energy. The speed decreases if the net work is negative because the 
final kinetic energy is less than the initial kinetic energy.

Because we have so far only investigated translational motion through space, 
we arrived at the work–kinetic energy theorem by analyzing situations involving 
translational motion. Another type of motion is rotational motion, in which an 
object spins about an axis. We will study this type of motion in Chapter 10. The 
work–kinetic energy theorem is also valid for systems that undergo a change in 
the rotational speed due to work done on the system. The windmill in the photo
graph at the beginning of this chapter is an example of work causing rotational 
motion.

The work–kinetic energy theorem will clarify a result seen earlier in this chapter 
that may have seemed odd. In Section 7.4, we arrived at a result of zero net work 
done when we let a spring push a block from max to max. Notice that 
because the speed of the block is continually changing, it may seem complicated 
to analyze this process. The quantity  in the work–kinetic energy theorem, how
ever, only refers to the initial and final points for the speeds; it does not depend on 
details of the path followed between these points. Therefore, because the speed 
is zero at both the initial and final points of the motion, the net work done on 
the block is zero. We will often see this concept of path independence in similar 
approaches to problems.

Let us also return to the mystery in the Finalize step at the end of Example 7.5. 
Why was the work done by gravity not just the value of the work done by the spring 
with a positive sign? Notice that the work done by gravity is larger than the magni
tude of the work done by the spring. Therefore, the total work done by all forces 
on the object is positive. Imagine now how to create the situation in which the only
forces on the object are the spring force and the gravitational force. You must sup
port the object at the highest point and then remove your hand and let the object 
fall. If you do so, you know that when the object reaches a position 2.0 cm below 
your hand, it will be moving, which is consistent with Equation 7.17. Positive net 

WW Work–kinetic energy 
theorem

Table 7.1 Kinetic Energies for Various Objects
Object Mass (kg) Speed (m/s) Kinetic Energy (J)

Earth orbiting the Sun 5.97 2.98 2.65 
Moon orbiting the Earth 7.35 1.02 3.82 28

Rocket moving at escape speed 500 1.12   3.14 
Automobile at 65 mi/h 000 29   8.4 
Running athlete 70 10 3 500
Stone dropped from 10 m 1.0 14 98
Golf ball at terminal speed 0.046 44 45
Raindrop at terminal speed    3.5 9.0    1.4 
Oxygen molecule in air    5.3 500   6.6 21

Escape speed is the minimum speed an object must reach near the Earth’s surface to move infinitely far away from 
the Earth.

Pitfall Prevention 7.5
Conditions for the Work–Kinetic 
Energy Theorem The work–
kinetic energy theorem is impor-
tant but limited in its application; 
it is not a general principle. In 
many situations, other changes in 
the system occur besides its speed, 
and there are other interactions 
with the environment besides 
work. A more general principle 
involving energy is conservation of 
energy in Section 8.1.

Pitfall Prevention 7.6
The Work–Kinetic Energy 
Theorem: Speed, ot Velocity
The work–kinetic energy theorem 
relates work to a change in the 
speed of a system, not a change 
in its velocity. For example, if 
an object is in uniform circular 
motion, its speed is constant. Even 
though its velocity is changing, no 
work is done on the object by the 
force causing the circular motion.
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work is done on the object, and the result is that it has a kinetic energy as it passes 
through the 2.0-cm point.
 The only way to prevent the object from having a kinetic energy after moving 
through 2.0 cm is to slowly lower it with your hand. Then, however, there is a third 
force doing work on the object, the normal force from your hand. If this work is 
calculated and added to that done by the spring force and the gravitational force, 
the net work done on the object is zero, which is consistent because it is not moving 
at the 2.0-cm point.
 Earlier, we indicated that work can be considered as a mechanism for transfer-
ring energy into a system. Equation 7.17 is a mathematical statement of this con-
cept. When work Wext is done on a system, the result is a transfer of energy across 
the boundary of the system. The result on the system, in the case of Equation 7.17, 
is a change DK in kinetic energy. In the next section, we investigate another type of 
energy that can be stored in a system as a result of doing work on the system.

Q uick Quiz 7.5  A dart is inserted into a spring-loaded dart gun by pushing the 
spring in by a distance x. For the next loading, the spring is compressed a dis-
tance 2x. How much faster does the second dart leave the gun compared with 
the first? (a) four times as fast (b) two times as fast (c) the same (d) half as fast 
(e) one-fourth as fast

Example 7.6   A Block Pulled on a Frictionless Surface 

A 6.0-kg block initially at rest is pulled to the right along a frictionless, horizontal 
surface by a constant horizontal force of magnitude 12 N. Find the block’s speed 
after it has moved through a horizontal distance of 3.0 m.

Conceptualize  Figure 7.13 illustrates this situation. Imagine pulling a toy car 
across a table with a horizontal rubber band attached to the front of the car. The 
force is maintained constant by ensuring that the stretched rubber band always has 
the same length.

Categorize  We could apply the equations of kinematics to determine the answer, 
but let us practice the energy approach. The block is the system, and three exter-
nal forces act on the system. The normal force balances the gravitational force on the block, and neither of these verti-
cally acting forces does work on the block because their points of application are horizontally displaced.

Analyze  The net external force acting on the block is the horizontal 12-N force.
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Figure 7.13  (Example 7.6) A 
block pulled to the right on a fric-
tionless surface by a constant hori-
zontal force.

Use the work–kinetic energy theorem for the block, not-
ing that its initial kinetic energy is zero:

Wext 5 DK 5 K f 2 K i 5 1
2mvf

2 2 0 5 1
2mvf

2

Solve for vf and use Equation 7.1 for the work done on 
the block by F

S
:

vf 5 Å
2Wext

m
 5 Å

2F Dx
m

Substitute numerical values: vf 5 Å
2 112 N 2 13.0 m 2

6.0 kg
5 3.5 m/s

Finalize  You should solve this problem again by modeling the block as a particle under a net force to find its acceleration 
and then as a particle under constant acceleration to find its final velocity. In Chapter 8, we will see that the energy proce-
dure followed above is an example of the analysis model of the nonisolated system.

 Suppose the magnitude of the force in this example is doubled to F 9 5 2F. The 6.0-kg block accelerates to 
3.5 m/s due to this applied force while moving through a displacement Dx9. How does the displacement Dx9 compare 
with the original displacement Dx?

WhaT IF ?
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Answer  If we pull harder, the block should accelerate to a given speed in a shorter distance, so we expect that  
Dx9 , Dx. In both cases, the block experiences the same change in kinetic energy DK. Mathematically, from the work–
kinetic energy theorem, we find that

Wext 5 F rDx r 5 DK 5 F Dx

Dx r 5
F
F r

 Dx 5
F
2F

  Dx 5 1
2 Dx

and the distance is shorter as suggested by our conceptual argument.

Conceptual Example 7.7   Does the Ramp Lessen the Work Required?

A man wishes to load a refrigerator onto a truck using 
a ramp at angle u as shown in Figure 7.14. He claims 
that less work would be required to load the truck if the 
length L of the ramp were increased. Is his claim valid?

No. Suppose the refrigerator is wheeled on a hand 
truck up the ramp at constant speed. In this case, for 
the system of the refrigerator and the hand truck, DK 5 
0. The normal force exerted by the ramp on the system 
is directed at 908 to the displacement of its point of 
application and so does no work on the system. Because 
DK 5 0, the work–kinetic energy theorem gives

Wext 5 Wby man 1 Wby gravity 5 0

The work done by the gravitational force equals the product of the weight mg of the system, the distance L through 
which the refrigerator is displaced, and cos (u 1 908). Therefore,

Wby man 5 2Wby gravity 5 2 1mg 2 1L 2 3cos 1u 1 908 2 4
5 mgL sin u 5 mgh

where h 5 L sin u is the height of the ramp. Therefore, the man must do the same amount of work mgh on the system 
regardless of the length of the ramp. The work depends only on the height of the ramp. Although less force is required 
with a longer ramp, the point of application of that force moves through a greater displacement.
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Figure 7.14  (Conceptual Example 7.7) A refrigerator attached to 
a frictionless, wheeled hand truck is moved up a ramp at constant 
speed.

7.6 Potential Energy of a System
So far in this chapter, we have defined a system in general, but have focused our 
attention primarily on single particles or objects under the influence of external 
forces. Let us now consider systems of two or more particles or objects interacting 
via a force that is internal to the system. The kinetic energy of such a system is the 
algebraic sum of the kinetic energies of all members of the system. There may be 
systems, however, in which one object is so massive that it can be modeled as sta-
tionary and its kinetic energy can be neglected. For example, if we consider a ball– 
Earth system as the ball falls to the Earth, the kinetic energy of the system can be 
considered as just the kinetic energy of the ball. The Earth moves so slowly in this 
process that we can ignore its kinetic energy. On the other hand, the kinetic energy 
of a system of two electrons must include the kinetic energies of both particles.
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 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.
 Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi . Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the work 
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S

app and the upward displacement of this force, D rS 5 Dy ĵ:

 Wext 5 1 F
S

app 2 ? D rS 5 1mg  ĵ 2 ? 3 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:

 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3

 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as

 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 

Gravitational 
 potential energy

Figure 7.15 An external agent 
lifts a book slowly from a height yi 
to a height yf .
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The work done by 
the agent on the 
book–Earth system is 
mgyf � mgyi .
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.
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kinetic energy, representing motion of the members of the system. In Equation 7.20, 
work is done on the system and energy appears in the system as potential energy, 
representing a change in the configuration of the members of the system. 
 Gravitational potential energy depends only on the vertical height of the object 
above the surface of the Earth. The same amount of work must be done on an 
object–Earth system whether the object is lifted vertically from the Earth or is 
pushed starting from the same point up a frictionless incline, ending up at the 
same height. We verified this statement for a specific situation of rolling a refrigera-
tor up a ramp in Conceptual Example 7.7. This statement can be shown to be true 
in general by calculating the work done on an object by an agent moving the object 
through a displacement having both vertical and horizontal components:

Wext 5 1 F
S

app 2 ? D rS 5 1mg ĵ 2 ? 3 1xf 2 xi 2  î 1 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi

where there is no term involving x in the final result because  ĵ ? î 5 0.
 In solving problems, you must choose a reference configuration for which the 
gravitational potential energy of the system is set equal to some reference value, 
which is normally zero. The choice of reference configuration is completely arbi-
trary because the important quantity is the difference in potential energy, and this 
difference is independent of the choice of reference configuration.
 It is often convenient to choose as the reference configuration for zero gravita-
tional potential energy the configuration in which an object is at the surface of the 
Earth, but this choice is not essential. Often, the statement of the problem suggests 
a convenient configuration to use.

Q uick Quiz 7.6  Choose the correct answer. The gravitational potential energy of a 
system (a) is always positive (b) is always negative (c) can be negative or positive

Example 7.8   The Proud Athlete and the Sore Toe

A trophy being shown off by a careless athlete slips from the athlete’s hands and drops on his foot. Choosing floor 
level as the y 5 0 point of your coordinate system, estimate the change in gravitational potential energy of the  
trophy–Earth system as the trophy falls. Repeat the calculation, using the top of the athlete’s head as the origin of 
coordinates.

Conceptualize  The trophy changes its vertical position with respect to the surface of the Earth. Associated with this 
change in position is a change in the gravitational potential energy of the trophy–Earth system.

Categorize  We evaluate a change in gravitational potential energy defined in this section, so we categorize this exam-
ple as a substitution problem. Because there are no numbers provided in the problem statement, it is also an estima-
tion problem.

 The problem statement tells us that the reference configuration of the trophy–Earth system corresponding to zero 
potential energy is when the bottom of the trophy is at the floor. To find the change in potential energy for the system, 
we need to estimate a few values. Let’s say the trophy has a mass of approximately 2 kg, and the top of a person’s foot is 
about 0.05 m above the floor. Also, let’s assume the trophy falls from a height of 1.4 m.

S o l u T I o n

Calculate the gravitational potential energy of the 
 trophy–Earth system just before the trophy is released:

Ui 5 mgyi 5 12 kg 2 19.80 m/s2 2 11.4 m 2 5 27.4 J

Calculate the gravitational potential energy of the 
 trophy–Earth system when the trophy reaches the ath-
lete’s foot:

Uf 5 mgyf 5 12 kg 2 19.80 m/s2 2 10.05 m 2 5 0.98 J

Evaluate the change in gravitational potential energy of 
the trophy–Earth system:

DUg 5 0.98 J 2 27.4 J 5 226.4 J

continued
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Calculate the gravitational potential energy of the 
 trophy–Earth system just before the trophy is released 
from its position 0.6 m below the athlete’s head:

Ui 5 mgyi 5 12 kg 2 19.80 m/s2 2 120.6 m 2 5 211.8 J

Calculate the gravitational potential energy of the 
 trophy–Earth system when the trophy reaches the ath-
lete’s foot located 1.95 m below its initial position:

Uf 5 mgyf 5 12 kg 2 19.80 m/s2 2 121.95 m 2 5 238.2 J

Evaluate the change in gravitational potential energy of 
the trophy–Earth system:

DUg 5 238.2 J 2 1211.8 J 2 5 226.4 J < 226 J

We should probably keep only two digits because of the roughness of our estimates; therefore, we estimate that the 
change in gravitational potential energy is   226 J  . The system had about 27 J of gravitational potential energy before 
the trophy began its fall and approximately 1 J of potential energy as the trophy reaches the top of the foot.
 The second case presented indicates that the reference configuration of the system for zero potential energy is cho-
sen to be when the trophy is on the athlete’s head (even though the trophy is never at this position in its motion). We 
estimate this position to be 2.0 m above the floor).

This value is the same as before, as it must be. The change in potential energy is independent of the choice of configu-
ration of the system representing the zero of potential energy. If we wanted to keep only one digit in our estimates, we 
could write the final result as 3 3 101 J.

Elastic Potential Energy
Because members of a system can interact with one another by means of different 
types of forces, it is possible that there are different types of potential energy in a 
system. We have just become familiar with gravitational potential energy of a sys-
tem in which members interact via the gravitational force. Let us explore a second 
type of potential energy that a system can possess.
 Consider a system consisting of a block and a spring as shown in Figure 7.16. 
In Section 7.4, we identified only the block as the system. Now we include both the 
block and the spring in the system and recognize that the spring force is the inter-
action between the two members of the system. The force that the spring exerts on 
the block is given by Fs 5 2kx (Eq. 7.9). The external work done by an applied force 
Fapp on the block–spring system is given by Equation 7.13:

 Wext 5 1
2kxf

2 2 1
2kxi

2 (7.21)

In this situation, the initial and final x coordinates of the block are measured from 
its equilibrium position, x 5 0. Again (as in the gravitational case, Eq. 7.18) the 
work done on the system is equal to the difference between the initial and final 
values of an expression related to the system’s configuration. The elastic potential 
energy function associated with the block–spring system is defined by

 Us ;
1
2kx 2 (7.22)

Equation 7.21 can be expressed as

 Wext 5 DUs (7.23)

Compare this equation to Equations 7.17 and 7.20. In all three situations, external 
work is done on a system and a form of energy storage in the system changes as a 
result.
 The elastic potential energy of the system can be thought of as the energy stored 
in the deformed spring (one that is either compressed or stretched from its equilib-
rium position). The elastic potential energy stored in a spring is zero whenever the 
spring is undeformed (x 5 0). Energy is stored in the spring only when the spring is 

Elastic potential energy 

 

▸ 7.8 c o n t i n u e d
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either stretched or compressed. Because the elastic potential energy is proportional 
to x2, we see that Us is always positive in a deformed spring. Everyday examples of 
the storage of elastic potential energy can be found in old-style clocks or watches 
that operate from a wound-up spring and small wind-up toys for children.
 Consider Figure 7.16 once again, which shows a spring on a frictionless, hori-
zontal surface. When a block is pushed against the spring by an external agent, the 
elastic potential energy and the total energy of the system increase as indicated 
in Figure 7.16b. When the spring is compressed a distance xmax (Fig. 7.16c), the 
elastic potential energy stored in the spring is 1

2kx 2
max. When the block is released 

from rest, the spring exerts a force on the block and pushes the block to the right. 
The elastic potential energy of the system decreases, whereas the kinetic energy 
increases and the total energy remains fixed (Fig. 7.16d). When the spring returns 
to its original length, the stored elastic potential energy is completely transformed 
into kinetic energy of the block (Fig. 7.16e).

Work is done by the hand 
on the spring–block 
system, so the total energy 
of the system increases.

No work is done on the 
spring–block system from 
the surroundings, so the 
total energy of the system 
stays constant.
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Before the spring is 
compressed, there is no 
energy in the spring–block 
system.

When the spring is partially 
compressed, the total energy 
of the system is elastic 
potential energy.

The spring is compressed by a 
maximum amount, and the 
block is held steady; there is 
elastic potential energy in the 
system and no kinetic energy.

After the block is released, 
the elastic potential energy in 
the system decreases and the 
kinetic energy increases.

After the block loses contact 
with the spring, the total 
energy of the system is kinetic 
energy.

x

xmax

x

a

b
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Figure 7.16 A spring on a frictionless, horizontal surface is compressed a distance xmax when a 
block of mass m is pushed against it. The block is then released and the spring pushes it to the right, 
where the block eventually loses contact with the spring. Parts (a) through (e) show various instants in 
the process. Energy bar charts on the right of each part of the figure help keep track of the energy in 
the system.
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Q uick Quiz 7.7  A ball is connected to a light spring suspended vertically as 
shown in Figure 7.17. When pulled downward from its equilibrium position and 
released, the ball oscillates up and down. (i) In the system of the ball, the spring, 
and the Earth, what forms of energy are there during the motion? (a) kinetic and 
elastic potential (b) kinetic and gravitational potential (c) kinetic, elastic poten-
tial, and gravitational potential (d) elastic potential and gravitational potential 
(ii) In the system of the ball and the spring, what forms of energy are there during 
the motion? Choose from the same possibilities (a) through (d).

Figure 7.18 (a) A book sliding 
to the right on a horizontal sur-
face slows down in the presence of 
a force of kinetic friction acting to 
the left. (b) An energy bar chart 
showing the energy in the system 
of the book and the surface at the 
initial instant of time. The energy 
of the system is all kinetic energy. 
(c) While the book is sliding, 
the kinetic energy of the system 
decreases as it is transformed to 
internal energy. (d) After the 
book has stopped, the energy of 
the system is all internal energy.
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Figure 7.17  (Quick Quiz 7.7) 
A ball connected to a massless 
spring suspended vertically. What 
forms of potential energy are asso-
ciated with the system when the 
ball is displaced downward?

Energy Bar Charts
Figure 7.16 shows an important graphical representation of information related 
to energy of systems called an energy bar chart. The vertical axis represents the 
amount of energy of a given type in the system. The horizontal axis shows the 
types of energy in the system. The bar chart in Figure 7.16a shows that the system 
contains zero energy because the spring is relaxed and the block is not moving. 
Between Figure 7.16a and Figure 7.16c, the hand does work on the system, com-
pressing the spring and storing elastic potential energy in the system. In Figure 
7.16d, the block has been released and is moving to the right while still in contact 
with the spring. The height of the bar for the elastic potential energy of the system 
decreases, the kinetic energy bar increases, and the total energy bar remains fixed. 
In Figure 7.16e, the spring has returned to its relaxed length and the system now 
contains only kinetic energy associated with the moving block.
 Energy bar charts can be a very useful representation for keeping track of the 
various types of energy in a system. For practice, try making energy bar charts for 
the book–Earth system in Figure 7.15 when the book is dropped from the higher 
position. Figure 7.17 associated with Quick Quiz 7.7 shows another system for which 
drawing an energy bar chart would be a good exercise. We will show energy bar 
charts in some figures in this chapter. Some figures will not show a bar chart in the 
text but will include one in animated versions that appear in Enhanced WebAssign.

7.7 Conservative and Nonconservative Forces
We now introduce a third type of energy that a system can possess. Imagine that 
the book in Figure 7.18a has been accelerated by your hand and is now sliding to 
the right on the surface of a heavy table and slowing down due to the friction force. 
Suppose the surface is the system. Then the friction force from the sliding book 
does work on the surface. The force on the surface is to the right and the displace-
ment of the point of application of the force is to the right because the book has 
moved to the right. The work done on the surface is therefore positive, but the 
surface is not moving after the book has stopped. Positive work has been done on 
the surface, yet there is no increase in the surface’s kinetic energy or the potential 
energy of any system. So where is the energy?
 From your everyday experience with sliding over surfaces with friction, you can 
probably guess that the surface will be warmer after the book slides over it. The 
work that was done on the surface has gone into warming the surface rather than 
increasing its speed or changing the configuration of a system. We call the energy 
associated with the temperature of a system its internal energy, symbolized Eint. 
(We will define internal energy more generally in Chapter 20.) In this case, the 
work done on the surface does indeed represent energy transferred into the sys-
tem, but it appears in the system as internal energy rather than kinetic or potential 
energy.
 Now consider the book and the surface in Figure 7.18a together as a system. Ini-
tially, the system has kinetic energy because the book is moving. While the book is 
sliding, the internal energy of the system increases: the book and the surface are 
warmer than before. When the book stops, the kinetic energy has been completely 
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transformed to internal energy. We can consider the nonconservative force within 
the system—that is, between the book and the surface—as a transformation mecha-
nism for energy. This nonconservative force transforms the kinetic energy of the sys-
tem into internal energy. Rub your hands together briskly to experience this effect!
 Figures 7.18b through 7.18d show energy bar charts for the situation in Figure 
7.18a. In Figure 7.18b, the bar chart shows that the system contains kinetic energy 
at the instant the book is released by your hand. We define the reference amount of 
internal energy in the system as zero at this instant. Figure 7.18c shows the kinetic 
energy transforming to internal energy as the book slows down due to the friction 
force. In Figure 7.18d, after the book has stopped sliding, the kinetic energy is zero, 
and the system now contains only internal energy Eint. Notice that the total energy 
bar in red has not changed during the process. The amount of internal energy in 
the system after the book has stopped is equal to the amount of kinetic energy in 
the system at the initial instant. This equality is described by an important prin-
ciple called conservation of energy. We will explore this principle in Chapter 8.
 Now consider in more detail an object moving downward near the surface of the 
Earth. The work done by the gravitational force on the object does not depend on 
whether it falls vertically or slides down a sloping incline with friction. All that mat-
ters is the change in the object’s elevation. The energy transformation to internal 
energy due to friction on that incline, however, depends very much on the distance 
the object slides. The longer the incline, the more potential energy is transformed 
to internal energy. In other words, the path makes no difference when we consider 
the work done by the gravitational force, but it does make a difference when we 
consider the energy transformation due to friction forces. We can use this varying 
dependence on path to classify forces as either conservative or nonconservative. Of the 
two forces just mentioned, the gravitational force is conservative and the friction 
force is nonconservative.

Conservative Forces
Conservative forces have these two equivalent properties:

 1. The work done by a conservative force on a particle moving between any 
two points is independent of the path taken by the particle.

 2. The work done by a conservative force on a particle moving through any 
closed path is zero. (A closed path is one for which the beginning point and 
the endpoint are identical.)

 The gravitational force is one example of a conservative force; the force that 
an ideal spring exerts on any object attached to the spring is another. The work 
done by the gravitational force on an object moving between any two points near 
the Earth’s surface is Wg 5 2mg  ĵ ? 3 1yf 2 yi 2  ĵ 4 5 mgyi 2 mgyf . From this equation, 
notice that Wg depends only on the initial and final y coordinates of the object and 
hence is independent of the path. Furthermore, Wg is zero when the object moves 
over any closed path (where yi 5 yf ).
 For the case of the object–spring system, the work Ws done by the spring force is 
given by Ws 5 1

2kxi
2 2 1

2kxf
2 (Eq. 7.12). We see that the spring force is conservative 

because Ws depends only on the initial and final x coordinates of the object and is 
zero for any closed path.
 We can associate a potential energy for a system with a force acting between 
members of the system, but we can do so only if the force is conservative. In gen-
eral, the work Wint done by a conservative force on an object that is a member of 
a system as the system changes from one configuration to another is equal to the 
initial value of the potential energy of the system minus the final value:

 Wint 5 Ui 2 Uf 5 2DU  (7.24)

The subscript “int” in Equation 7.24 reminds us that the work we are discussing is 
done by one member of the system on another member and is therefore internal to 

WW  Properties of conservative 
forces

Pitfall Prevention 7.9
Similar Equation Warning Com-
pare Equation 7.24 with Equation 
7.20. These equations are similar 
except for the negative sign, which 
is a common source of confusion. 
Equation 7.20 tells us that posi-
tive work done by an outside agent 
on a system causes an increase in 
the potential energy of the system 
(with no change in the kinetic or 
internal energy). Equation 7.24 
states that positive work done on 
a component of a system by a con-
servative force internal to the system 
causes a decrease in the potential 
energy of the system.
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the system. It is different from the work Wext done on the system as a whole by an 
external agent. As an example, compare Equation 7.24 with the equation for the 
work done by an external agent on a block–spring system (Eq. 7.23) as the exten-
sion of the spring changes.

Nonconservative Forces
A force is nonconservative if it does not satisfy properties 1 and 2 above. The work 
done by a nonconservative force is path-dependent. We define the sum of the 
kinetic and potential energies of a system as the mechanical energy of the system:

 Emech ; K 1 U (7.25)

where K includes the kinetic energy of all moving members of the system and U 
includes all types of potential energy in the system. For a book falling under the 
action of the gravitational force, the mechanical energy of the book–Earth system 
remains fixed; gravitational potential energy transforms to kinetic energy, and 
the total energy of the system remains constant. Nonconservative forces acting 
within a system, however, cause a change in the mechanical energy of the system. 
For example, for a book sent sliding on a horizontal surface that is not frictionless 
(Fig. 7.18a), the mechanical energy of the book–surface system is transformed to 
internal energy as we discussed earlier. Only part of the book’s kinetic energy is 
transformed to internal energy in the book. The rest appears as internal energy 
in the surface. (When you trip and slide across a gymnasium floor, not only does 
the skin on your knees warm up, so does the floor!) Because the force of kinetic 
friction transforms the mechanical energy of a system into internal energy, it is a 
nonconservative force.
 As an example of the path dependence of the work for a nonconservative force, 
consider Figure 7.19. Suppose you displace a book between two points on a table. If 
the book is displaced in a straight line along the blue path between points A and 
B in Figure 7.19, you do a certain amount of work against the kinetic friction force 
to keep the book moving at a constant speed. Now, imagine that you push the book 
along the brown semicircular path in Figure 7.19. You perform more work against 
friction along this curved path than along the straight path because the curved 
path is longer. The work done on the book depends on the path, so the friction 
force cannot be conservative.

7.8  Relationship Between Conservative  
Forces and Potential Energy

In the preceding section, we found that the work done on a member of a system by 
a conservative force between the members of the system does not depend on the 
path taken by the moving member. The work depends only on the initial and final 
coordinates. For such a system, we can define a potential energy function U such 
that the work done within the system by the conservative force equals the negative of 
the change in the potential energy of the system according to Equation 7.24. Let us 
imagine a system of particles in which a conservative force F

S
 acts between the par-

ticles. Imagine also that the configuration of the system changes due to the motion 
of one particle along the x axis. Then we can evaluate the internal work done by this 
force as the particle moves along the x axis4 using Equations 7.7 and 7.24:

 Wint 5 3
xf

xi

 Fx dx 5 2DU  (7.26)

The work done in moving the 
book is greater along the brown 
path than along the blue path.

A

B

Physics

Figure 7.19  The work done 
against the force of kinetic fric-
tion depends on the path taken as 
the book is moved from A to B.

4For a general displacement, the work done in two or three dimensions also equals 2DU, where U 5 U(x, y, z). We 
write this equation formally as Wint 5 e

f

i
  F

S
? d rS 5 Ui 2 Uf  .
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where Fx is the component of F
S

 in the direction of the displacement. We can also 
express Equation 7.26 as

 DU 5 Uf 2 Ui 5 23
xf

xi

 Fx dx (7.27)

Therefore, DU is negative when Fx and dx are in the same direction, as when an 
object is lowered in a gravitational field or when a spring pushes an object toward 
equilibrium.
 It is often convenient to establish some particular location xi of one member of a 
system as representing a reference configuration and measure all potential energy 
differences with respect to it. We can then define the potential energy function as

 Uf 1x 2 5 23
xf

xi

 Fx dx 1 Ui (7.28)

The value of Ui is often taken to be zero for the reference configuration. It does not 
matter what value we assign to Ui because any nonzero value merely shifts Uf(x) by 
a constant amount and only the change in potential energy is physically meaningful.
 If the point of application of the force undergoes an infinitesimal displacement dx, 
we can express the infinitesimal change in the potential energy of the system dU as

dU 5 2Fx dx

Therefore, the conservative force is related to the potential energy function 
through the relationship5

 Fx 5 2
dU
dx

 (7.29)

That is, the x component of a conservative force acting on a member within a   
system equals the negative derivative of the potential energy of the system with respect 
to x.
 We can easily check Equation 7.29 for the two examples already discussed. In the 
case of the deformed spring, Us 5 1

2kx2; therefore,

Fs 5 2
dUs

dx
5 2

d
dx

11
2kx2 2 5 2kx

which corresponds to the restoring force in the spring (Hooke’s law). Because the 
gravitational potential energy function is Ug 5 mgy, it follows from Equation 7.29 
that Fg 5 2mg when we differentiate Ug with respect to y instead of x.
 We now see that U is an important function because a conservative force can be 
derived from it. Furthermore, Equation 7.29 should clarify that adding a constant 
to the potential energy is unimportant because the derivative of a constant is zero.

Q uick Quiz 7.8  What does the slope of a graph of U(x) versus x represent? (a) the 
magnitude of the force on the object (b) the negative of the magnitude of the 
force on the object (c) the x component of the force on the object (d) the nega-
tive of the x component of the force on the object

WW  Relation of force between 
members of a system to  
the potential energy of  
the system

5In three dimensions, the expression is

F
S

5 2
'U
'x

 î 2
'U
'y

 ĵ 2
'U
'z

 k̂

where (0U/0x) and so forth are partial derivatives. In the language of vector calculus, F
S

 equals the negative of the 
gradient of the scalar quantity U(x, y, z).

7.9 Energy Diagrams and Equilibrium of a System
The motion of a system can often be understood qualitatively through a graph of its 
potential energy versus the position of a member of the system. Consider the potential  
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energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:

Fs 5 2
dUs

dx
5 2kx

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.

0
x

U

Negative slopePositive slope
x � 0 x � 0

Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
the particle is directed away from 
x 5 0.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.

E

�xmax 0

Us

x

� � kx21
2Us

xmax

xmaxx � 0

m

Fs
S

The restoring force exerted by the 
spring always acts toward x � 0, 
the position of stable equilibrium.

a

b

Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.
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Example 7.9   Force and Energy on an Atomic Scale

The potential energy associated with the force between two neutral atoms in a molecule can be modeled by the 
 Lennard–Jones potential energy function:

U 1x 2 5 4P c as

x b
12

2 as

x b
6

d
where x is the separation of the atoms. The function U(x) contains two parameters s and P that are determined from 
experiments. Sample values for the interaction between two atoms in a molecule are s 5 0.263 nm and P 5 1.51 3 
10222 J. Using a spreadsheet or similar tool, graph this function and find the most likely distance between the two atoms.

Conceptualize  We identify the two atoms in the molecule as a system. Based on our understanding that stable mol-
ecules exist, we expect to find stable equilibrium when the two atoms are separated by some equilibrium distance.

Categorize  Because a potential energy function exists, we categorize the force between the atoms as conservative. For 
a conservative force, Equation 7.29 describes the relationship between the force and the potential energy function.

Analyze  Stable equilibrium exists for a separation distance at which the potential energy of the system of two atoms 
(the molecule) is a minimum.

S o l u T I o n

Take the derivative of the function U(x):
dU 1x 2

dx
5 4P 

d
dx

c as

x
b

12

2 as

x
b

6

d 5 4P c212s12

x13 1
6s6

x7 d

Minimize the function U(x) by setting its derivative 
equal to zero:

4P c212s12

x eq
13 1

6s6

x eq
7 d 5 0  S   xeq 5 12 21/6s

Evaluate xeq, the equilibrium separation of the two 
atoms in the molecule:

x eq 5 12 21/6 10.263 nm 2 5 2.95 3 10210 m

We graph the Lennard–Jones function on both sides of 
this critical value to create our energy diagram as shown 
in Figure 7.22.

Finalize  Notice that U(x) is extremely large when the 
atoms are very close together, is a minimum when the 
atoms are at their critical separation, and then increases 
again as the atoms move apart. When U(x) is a minimum, 
the atoms are in stable equilibrium, indicating that the 
most likely separation between them occurs at this point.

continued

Summary

Definitions

 A system is most often a single parti-
cle, a collection of particles, or a region 
of space, and may vary in size and shape.  
A system boundary separates the system 
from the environment.

 The work W done on a system by an agent exerting a constant  
force F

S
 on the system is the product of the magnitude Dr of the dis-

placement of the point of application of the force and the component 
F cos u of the force along the direction of the displacement D rS:

 W ; F Dr cos u (7.1)

–20

–10

0
3 4 5 6

x (10�10 m)

U (10�23 J )

xeq

Figure 7.22  (Example 7.9) Potential energy curve associated 
with a molecule. The distance x is the separation between the two 
atoms making up the molecule.

continued
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 1. Alex and John are loading identical cabinets onto 
a truck. Alex lifts his cabinet straight up from the  
ground to the bed of the truck, whereas John slides  
his cabinet up a rough ramp to the truck. Which state-
ment is correct about the work done on the cabinet–
Earth system? (a) Alex and John do the same amount 
of work. (b) Alex does more work than John. (c) John 
does more work than Alex. (d) None of those state-

ments is necessarily true because the force of friction 
is unknown. (e) None of those statements is necessar-
ily true because the angle of the incline is unknown.

 2. If the net work done by external forces on a particle is 
zero, which of the following statements about the par-
ticle must be true? (a) Its velocity is zero. (b) Its veloc-
ity is decreased. (c) Its velocity is unchanged. (d) Its 
speed is unchanged. (e) More information is needed.

 The kinetic energy of a particle of 
mass m moving with a speed v is

 K ;
1
2mv2 (7.16)

 The total mechanical energy of  
a system is defined as the sum of 
the kinetic energy and the potential 
energy:

 Emech  ; K 1 U (7.25)

 If a particle of mass m is at a distance y above the Earth’s surface, the 
gravitational potential energy of the particle–Earth system is

 Ug ; mgy (7.19)

The elastic potential energy stored in a spring of force constant k is

 Us ;
1
2kx2 (7.22)

 A force is conservative if the work it does on a particle that is a member 
of the system as the particle moves between two points is independent of 
the path the particle takes between the two points. Furthermore, a force 
is conservative if the work it does on a particle is zero when the particle 
moves through an arbitrary closed path and returns to its initial position. 
A force that does not meet these criteria is said to be nonconservative.

 The scalar product (dot product) of two  
vectors A

S
 and B

S
 is defined by the relationship

 A
S

? B
S

; AB cos u (7.2)

where the result is a scalar quantity and u is the 
angle between the two vectors. The scalar product 
obeys the commutative and distributive laws.

 If a varying force does work on a particle as the particle 
moves along the x axis from xi to xf , the work done by the 
force on the particle is given by

 W 5 3
xf

xi

 Fx dx (7.7)

where Fx is the component of force in the x direction.

Concepts and Principles

 A potential energy function U can be associated only with 
a conservative force. If a conservative force F

S
 acts between 

members of a system while one member moves along the x 
axis from xi to xf , the change in the potential energy of the 
system equals the negative of the work done by that force:

 Uf 2 Ui 5 23
xf

xi

 Fx dx (7.27)

 Configurations of 
unstable equilibrium 
correspond to those for 
which U(x) is a maximum. 

 Neutral equilibrium 
arises when U is constant 
as a member of the system 
moves over some region.

 The work–kinetic energy theorem states that 
if work is done on a system by external forces and 
the only change in the system is in its speed,

Wext 5 Kf 2 Ki 5 DK 5 1
2mvf

2 2 1
2mvi

2 (7.15, 7.17)

 Systems can be in three types of equilibrium con-
figurations when the net force on a member of the 
system is zero. Configurations of stable equilibrium 
correspond to those for which U(x) is a minimum. 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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 3. A worker pushes a wheelbarrow with a horizontal 
force of 50 N on level ground over a distance of 5.0 m.  
If a friction force of 43 N acts on the wheelbarrow 
in a direction opposite that of the worker, what work 
is done on the wheelbarrow by the worker? (a) 250 J 
(b) 215 J (c) 35 J (d) 10 J (e) None of those answers is 
correct.

 4. A cart is set rolling across a level table, at the same 
speed on every trial. If it runs into a patch of sand, the 
cart exerts on the sand an average horizontal force of  
6 N and travels a distance of 6 cm through the sand as 
it comes to a stop. If instead the cart runs into a patch 
of gravel on which the cart exerts an average horizon-
tal force of 9 N, how far into the gravel will the cart roll 
before stopping? (a) 9 cm (b) 6 cm (c) 4 cm (d) 3 cm 
(e) none of those answers

 5. Let N̂ represent the direction horizontally north, 
NE represent northeast (halfway between north and 
east), and so on. Each direction specification can be 
thought of as a unit vector. Rank from the largest to 
the smallest the following dot products. Note that zero 
is larger than a negative number. If two quantities 
are equal, display that fact in your ranking. (a) N̂ ? N̂  
(b) N̂ ? NE (c) N̂ ? Ŝ (d) N̂ ? Ê (e) SE ? Ŝ

 6. Is the work required to be done by an external force 
on an object on a frictionless, horizontal surface to 
accelerate it from a speed v to a speed 2v (a) equal to 
the work required to accelerate the object from v 5 0  
to v, (b) twice the work required to accelerate the 
object from v 5 0 to v, (c) three times the work required 
to accelerate the object from v  5  0 to v, (d) four  
times the work required to accelerate the object from 
0 to v, or (e) not known without knowledge of the 
acceleration?

 7. A block of mass m is dropped from the fourth floor of 
an office building and hits the sidewalk below at speed 
v. From what floor should the block be dropped to 
double that impact speed? (a) the sixth floor (b) the 
eighth floor (c) the tenth floor (d) the twelfth floor  
(e) the sixteenth floor

 8. As a simple pendulum swings back and forth, the 
forces acting on the suspended object are (a) the gravi-
tational force, (b) the tension in the supporting cord, 
and (c) air resistance. (i) Which of these forces, if any, 
does no work on the pendulum at any time? (ii) Which 
of these forces does negative work on the pendulum at 
all times during its motion?

 9. Bullet 2 has twice the mass of bullet 1. Both are fired so 
that they have the same speed. If the kinetic energy of 
bullet 1 is K, is the kinetic energy of bullet 2 (a) 0.25K, 
(b) 0.5K, (c) 0.71K, (d) K, or (e) 2K?

 10. Figure OQ7.10 shows a light extended spring exerting 
a force Fs to the left on a block. (i) Does the block exert 
a force on the spring? Choose every correct answer. 
(a) No, it doesn’t. (b) Yes, it does, to the left. (c) Yes, 
it does, to the right. (d) Yes, it does, and its magni-
tude is larger than Fs. (e) Yes, it does, and its magni-
tude is equal to Fs. (ii) Does the spring exert a force 

7

7 7

on the wall? Choose your answers from the same list  
(a) through (e).

 11. If the speed of a particle is doubled, what happens to 
its kinetic energy? (a) It becomes four times larger. 
(b) It becomes two times larger. (c) It becomes !2 
times larger. (d) It is unchanged. (e) It becomes half 
as large.

 12. Mark and David are loading identical cement blocks 
onto David’s pickup truck. Mark lifts his block straight 
up from the ground to the truck, whereas David slides 
his block up a ramp containing frictionless rollers. 
Which statement is true about the work done on the 
block–Earth system? (a) Mark does more work than 
David. (b) Mark and David do the same amount of 
work. (c) David does more work than Mark. (d) None 
of those statements is necessarily true because the 
angle of the incline is unknown. (e) None of those 
statements is necessarily true because the mass of one 
block is not given.

 13. (i) Rank the gravitational accelerations you would mea-
sure for the following falling objects: (a) a 2-kg object 
5 cm above the floor, (b) a 2-kg object 120 cm above 
the floor, (c) a 3-kg object 120 cm above the floor, and 
(d) a 3-kg object 80 cm above the floor. List the one 
with the largest magnitude of acceleration first. If any 
are equal, show their equality in your list. (ii) Rank the 
gravitational forces on the same four objects, listing 
the one with the largest magnitude first. (iii) Rank the 
gravitational potential energies (of the object–Earth 
system) for the same four objects, largest first, taking  
y 5 0 at the floor.

 14. A certain spring that obeys Hooke’s law is stretched 
by an external agent. The work done in stretching the 
spring by 10 cm is 4 J. How much additional work is 
required to stretch the spring an additional 10 cm?  
(a) 2 J (b) 4 J (c) 8 J (d) 12 J (e) 16 J

 15. A cart is set rolling across a level table, at the same 
speed on every trial. If it runs into a patch of sand, the 
cart exerts on the sand an average horizontal force of 
6 N and travels a distance of 6 cm through the sand as 
it comes to a stop. If instead the cart runs into a patch 
of flour, it rolls an average of 18 cm before stopping. 
What is the average magnitude of the horizontal force 
the cart exerts on the flour? (a) 2 N (b) 3 N (c) 6 N  
(d) 18 N (e) none of those answers

 16. An ice cube has been given a push and slides without 
friction on a level table. Which is correct? (a) It is in sta-
ble equilibrium. (b) It is in unstable equilibrium. (c) It  
is in neutral equilibrium. (d) It is not in equilibrium.

x

x � 0

x

x

Fs
S

Figure oQ7.10
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 8. If only one external force acts on a particle, does it nec-
essarily change the particle’s (a) kinetic energy? (b) Its 
velocity?

 9. Preparing to clean them, you pop all the removable 
keys off a computer keyboard. Each key has the shape 
of a tiny box with one side open. By accident, you spill 
the keys onto the floor. Explain why many more keys 
land letter-side down than land open-side down.

 10. You are reshelving books in a library. You lift a book 
from the floor to the top shelf. The kinetic energy of 
the book on the floor was zero and the kinetic energy 
of the book on the top shelf is zero, so no change 
occurs in the kinetic energy, yet you did some work in 
lifting the book. Is the work–kinetic energy theorem 
violated? Explain.

 11. A certain uniform spring has spring constant k. Now 
the spring is cut in half. What is the relationship 
between k and the spring constant k9 of each resulting 
smaller spring? Explain your reasoning.

 12. What shape would the graph of U versus x have if a par-
ticle were in a region of neutral equilibrium?

 13. Does the kinetic energy of an object depend on the 
frame of reference in which its motion is measured? 
Provide an example to prove this point.

 14. Cite two examples in which a force is exerted on an 
object without doing any work on the object.

 1. Can a normal force do work? If not, why not? If so, give 
an example.

 2. Object 1 pushes on object 2 as the objects move 
together, like a bulldozer pushing a stone. Assume 
object 1 does 15.0 J of work on object 2. Does object 2 
do work on object 1? Explain your answer. If possible, 
determine how much work and explain your reasoning.

 3. A student has the idea that the total work done on an 
object is equal to its final kinetic energy. Is this idea true  
always, sometimes, or never? If it is sometimes true, 
under what circumstances? If it is always or never  
true, explain why.

 4. (a) For what values of the angle u between two vectors 
is their scalar product positive? (b) For what values of u 
is their scalar product negative?

 5. Can kinetic energy be negative? Explain.

 6. Discuss the work done by a pitcher throwing a baseball. 
What is the approximate distance through which the 
force acts as the ball is thrown?

 7. Discuss whether any work is being done by each of the 
following agents and, if so, whether the work is posi-
tive or negative. (a) a chicken scratching the ground 
(b) a person studying (c) a crane lifting a bucket of 
concrete (d)  the gravitational force on the bucket in 
part (c) (e) the leg muscles of a person in the act of 
sitting down

Section 7.2 Work Done by a Constant Force

 1. A shopper in a supermarket pushes a cart with a  
force of 35.0 N directed at an angle of 25.08 below 
the horizontal. The force is just sufficient to bal-
ance various friction forces, so the cart moves at con-
stant speed. (a) Find the work done by the shopper 
on the cart as she moves down a 50.0-m-long aisle.  
(b) The shopper goes down the next aisle, pushing hor-
izontally and maintaining the same speed as before.  
If the friction force doesn’t change, would the shop-
per’s applied force be larger, smaller, or the same? 
(c) What about the work done on the cart by the 
shopper?

 2. A raindrop of mass 3.35 3 1025 kg falls vertically at 
constant speed under the influence of gravity and 
air resistance. Model the drop as a particle. As it falls  

Q/C

W

100 m, what is the work done on the raindrop (a) by 
the gravitational force and (b) by air resistance?

 3. In 1990, Walter Arfeuille of Belgium lifted a 281.5-kg 
object through a distance of 17.1 cm using only his 
teeth. (a) How much work was done on the object by 
Arfeuille in this lift, assuming the object was lifted at 
constant speed? (b) What total force was exerted on 
Arfeuille’s teeth during the lift?

 4. The record number of boat lifts, including the boat 
and its ten crew members, was achieved by Sami Hei-
nonen and Juha Räsänen of Sweden in 2000. They 
lifted a total mass of 653.2 kg approximately 4 in. off 
the ground a total of 24 times. Estimate the total work 
done by the two men on the boat in this record lift, 
ignoring the negative work done by the men when they 
lowered the boat back to the ground.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C
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Section 7.4 Work Done by a Varying Force

 14. The force acting on a particle varies as shown in Figure 
P7.14. Find the work done by the force on the particle 
as it moves (a) from x 5 0 to x 5 8.00 m, (b) from x 5 
8.00 m to x 5 10.0 m, and (c) from x 5 0 to x 5 10.0 m.

2 4 6 8 10
x (m)

�2

2

4

6

Fx (N)

Figure P7.14

 15. A particle is subject to a force Fx that varies with posi-
tion as shown in Figure P7.15. Find the work done by 
the force on the particle as it moves (a) from x 5 0 to 
x 5 5.00 m, (b)  from x 5 5.00 m to x 5 10.0 m, and  
(c) from x 5 10.0 m to x 5 15.0 m. (d) What is the total 
work done by the force over the distance x 5 0 to x 5 
15.0 m?

0 2 4 6 8 10 12 14 16

1

2

3

Fx (N)

x (m)

Figure P7.15 Problems 15 and 34.

 16. In a control system, an accelerometer consists of a 
4.70-g object sliding on a calibrated horizontal rail. A 
low-mass spring attaches the object to a flange at one 
end of the rail. Grease on the rail makes static friction 
negligible, but rapidly damps out vibrations of the slid-
ing object. When subject to a steady acceleration of 
0.800g, the object should be at a location 0.500 cm away 
from its equilibrium position. Find the force constant 
of the spring required for the calibration to be correct.

 17. When a 4.00-kg object is hung vertically on a cer-
tain light spring that obeys Hooke’s law, the spring 
stretches 2.50 cm. If the 4.00-kg object is removed,  
(a) how far will the spring stretch if a 1.50-kg block 
is hung on it? (b) How much work must an external 
agent do to stretch the same spring 4.00 cm from its 
unstretched position?

 18. Hooke’s law describes a certain light spring of 
unstretched length 35.0 cm. When one end is attached 
to the top of a doorframe and a 7.50-kg object is hung 
from the other end, the length of the spring is 41.5 cm. 
(a) Find its spring constant. (b) The load and the spring 
are taken down. Two people pull in opposite directions 
on the ends of the spring, each with a force of 190 N. 
Find the length of the spring in this situation.

 19. An archer pulls her bowstring back 0.400 m by exerting 
a force that increases uniformly from zero to 230 N.  
(a) What is the equivalent spring constant of the bow? 

W
M

W

M
AMT

 5. A block of mass m 5 
2.50  kg is pushed a dis-
tance d  5  2.20  m along 
a frictionless, horizontal 
table by a constant applied 
force of magnitude F  5 
16.0 N directed at an angle 
u 5 25.08 below the hori-
zontal as shown in Figure P7.5. Determine the work 
done on the block by (a) the applied force, (b) the 
normal force exerted by the table, (c) the gravitational 
force, and (d) the net force on the block.

 6. Spiderman, whose mass is 80.0 kg, is dangling on the 
free end of a 12.0-m-long rope, the other end of which 
is fixed to a tree limb above. By repeatedly bending at 
the waist, he is able to get the rope in motion, even-
tually getting it to swing enough that he can reach a 
ledge when the rope makes a 60.08 angle with the ver-
tical. How much work was done by the gravitational 
force on Spiderman in this maneuver?

Section 7.3 The Scalar Product of Two Vectors

 7. For any two vectors A
S

 and B
S

, show that A
S

? B
S

 5 AxBx 1  
AyBy 1 AzBz. Suggestions: Write A

S
 and B

S
 in unit-vector 

form and use Equations 7.4 and 7.5.

 8. Vector A
S

 has a magnitude of 5.00 units, and vector B
S

 
has a magnitude of 9.00 units. The two vectors make 
an angle of 50.08 with each other. Find A

S
? B

S
.

Note: In Problems 9 through 12, calculate numerical 
answers to three significant figures as usual.

 9. For A
S

5 3 î 1  ĵ 2 k̂, B
S

5 2 î 1 2 ĵ 1 5k̂, and C
S

5
2 ĵ 2 3k̂, find C

S
? 1AS 2 B

S 2 .
 10. Find the scalar product of the vectors in Figure P7.10.

118

132

y

x

32.8 N

17.3 cm

�

�

Figure P7.10

 11. A force F
S

5 16 î 2 2  ĵ 2  N acts on a particle that under-
goes a displacement D rS 5 13 î 1  ĵ 2  m. Find (a) the work  
done by the force on the particle and (b) the angle 
between F

S
 and D rS.

 12. Using the definition of the scalar product, find the 
angles between (a) A

S
5 3 î 2 2 ĵ and B

S
5 4 î 2 4 ĵ,  

(b) A
S

5 22î  1 4 ĵ  and B
S

5 3î  2 4 ĵ  1 2k̂, and (c) A
S

5 
î 2 2 ĵ 1 2k̂ and B

S
 5 3 ĵ 1 4k̂.

 13. Let B
S

 5 5.00 m at 60.0°. Let the vector C
S

 have the same 
magnitude as A

S
 and a direction angle greater than  

that of A
S

 by 25.0°. Let A
S

? B
S

 5 30.0 m2 and B
S

? C
S

 5 
35.0 m2. Find the magnitude and direction of A

S
.

M

S

W

M

u

F
S

m

d

Figure P7.5
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 27. When different loads hang on a spring, the spring 
stretches to different lengths as shown in the follow-
ing table. (a) Make a graph of the applied force versus 
the extension of the spring. (b) By least-squares fit-
ting, determine the straight line that best fits the data.  
(c) To complete part (b), do you want to use all the 
data points, or should you ignore some of them? 
Explain. (d) From the slope of the best-fit line, find 
the spring constant k. (e) If the spring is extended to 
105 mm, what force does it exert on the suspended 
object?

F (N) 2.0 4.0 6.0 8.0 10 12 14 16 18 20 22

L (mm) 15 32 49 64 79 98 112 126 149 175 190

 28. A 100-g bullet is fired from a rifle having a barrel 
0.600 m long. Choose the origin to be at the location 
where the bullet begins to move. Then the force (in 
newtons) exerted by the expanding gas on the bullet is 
15 000 1 10 000x  2 25 000x2, where x is in meters.  
(a) Determine the work done by the gas on the bullet 
as the bullet travels the length of the barrel. (b) What 
If? If the barrel is 1.00 m long, how much work is done, 
and (c) how does this value compare with the work cal-
culated in part (a)?

 29. A force F
S

5 14x î 1 3y ĵ 2 , where F
S

 is in newtons and 
x and y are in meters, acts on an object as the object 
moves in the x direction from the origin to x 5  
5.00 m. Find the work 
W 5 e  F

S
? d rS  done by 

the force on the object.

 30. Review. The graph in 
Figure P7.30 specifies a 
functional relationship 
between the two vari-
ables u and v. (a) Find  
e

b

a
 u dv. (b) Find e

a

b
 u dv.  

(c) Find e
b

a
 v du.

Section 7.5 Kinetic Energy and the Work–Kinetic  
Energy Theorem

 31. A 3.00-kg object has a velocity 16.00 î 2 2.00 ĵ 2  m/s. 
(a) What is its kinetic energy at this moment? (b) What  
is the net work done on the object if its velocity changes 
to 18.00 î 1 4.00 ĵ 2  m/s? (Note: From the definition of 
the dot product, v2 5 vS ? vS .)

 32. A worker pushing a 35.0-kg wooden crate at a constant 
speed for 12.0 m along a wood floor does 350 J of work 
by applying a constant horizontal force of magnitude 
F on the crate. (a) Determine the value of F. (b) If the 
worker now applies a force greater than F, describe 
the subsequent motion of the crate. (c) Describe what 
would happen to the crate if the applied force is less 
than F.

 33. A 0.600-kg particle has a speed of 2.00 m/s at point A 
and kinetic energy of 7.50 J at point B. What is (a) its 
kinetic energy at A, (b) its speed at B, and (c) the net 
work done on the particle by external forces as it moves 
from A to B?
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(b) How much work does the archer do on the string in 
drawing the bow?

 20. A light spring with spring constant 1 200 N/m is hung 
from an elevated support. From its lower end hangs  
a second light spring, which has spring constant  
1 800 N/m. An object of mass 1.50 kg is hung at rest 
from the lower end of the second spring. (a) Find the 
total extension distance of the pair of springs. (b) Find 
the effective spring constant of the pair of springs as a 
system. We describe these springs as in series.

 21. A light spring with spring constant k1 is hung from an 
elevated support. From its lower end a second light 
spring is hung, which has spring constant k2. An object 
of mass m is hung at rest from the lower end of the sec-
ond spring. (a) Find the total extension distance of the 
pair of springs. (b) Find the effective spring constant 
of the pair of springs as a system.

 22. Express the units of the force constant of a spring in SI 
fundamental units.

 23. A cafeteria tray dispenser supports a stack of trays on 
a shelf that hangs from four identical spiral springs 
under tension, one near each corner of the shelf. Each 
tray is rectangular, 45.3 cm by 35.6 cm, 0.450 cm thick, 
and with mass 580 g. (a) Demonstrate that the top tray 
in the stack can always be at the same height above the 
floor, however many trays are in the dispenser. (b) Find 
the spring constant each spring should have for the 
dispenser to function in this convenient way. (c) Is any 
piece of data unnecessary for this determination?

 24. A light spring with force constant 3.85 N/m is com-
pressed by 8.00 cm as it is held between a 0.250-kg block 
on the left and a 0.500-kg block on the right, both rest-
ing on a horizontal surface. The spring exerts a force 
on each block, tending to push the blocks apart. The 
blocks are simultaneously released from rest. Find the 
acceleration with which each block starts to move, given 
that the coefficient of kinetic friction between each 
block and the surface is (a) 0, (b) 0.100, and (c) 0.462.

 25. A small particle of mass 
m is pulled to the top 
of a frictionless half-
cylinder (of radius R) by 
a light cord that passes 
over the top of the cyl-
inder as illustrated in 
Figure P7.25. (a) Assum-
ing the particle moves at 
a constant speed, show that F 5 mg cos u. Note: If the 
particle moves at constant speed, the component of its 
acceleration tangent to the cylinder must be zero at all 
times. (b) By directly integrating W 5 e  F

S
? d rS, find 

the work done in moving the particle at constant speed 
from the bottom to the top of the half-cylinder.

 26. The force acting on a particle is Fx 5 (8x 2 16), where 
F is in newtons and x is in meters. (a) Make a plot of 
this force versus x from x 5 0 to x 5 3.00 m. (b) From 
your graph, find the net work done by this force on the 
particle as it moves from x 5 0 to x 5 3.00 m.
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F
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on the object during this time interval? (c) What is the 
speed of the particle at t 5 2.00 s?

Section 7.6 Potential Energy of a System

 40. A 1 000-kg roller coaster car is initially at the top of a  
rise, at point A. It then moves 135 ft, at an angle of 40.08  
below the horizontal, to a lower point B. (a) Choose 
the car at point B to be the zero configuration for 
gravitational potential energy of the roller coaster–
Earth system. Find the potential energy of the system 
when the car is at points A and B, and the change 
in potential energy as the car moves between these 
points. (b) Repeat part (a), setting the zero configura-
tion with the car at point A.

 41. A 0.20-kg stone is held 1.3 m above the top edge of a 
water well and then dropped into it. The well has a 
depth of 5.0 m. Relative to the configuration with the 
stone at the top edge of the well, what is the gravita-
tional potential energy of the stone–Earth system  
(a) before the stone is released and (b) when it reaches 
the bottom of the well? (c) What is the change in gravi-
tational potential energy of the system from release to 
reaching the bottom of the well?

 42. A 400-N child is in a swing that is attached to a pair 
of ropes 2.00 m long. Find the gravitational potential 
energy of the child–Earth system relative to the child’s 
lowest position when (a) the ropes are horizontal,  
(b) the ropes make a 30.08 angle with the vertical, and 
(c) the child is at the bottom of the circular arc.

Section 7.7 Conservative and nonconservative Forces

 43. A 4.00-kg particle moves 
from the origin to posi-
tion C, having coordi-
nates x 5 5.00 m and y 5 
5.00 m (Fig. P7.43). One 
force on the particle is 
the gravitational force 
acting in the negative y 
direction. Using Equa-
tion 7.3, calculate the 
work done by the gravi-
tational force on the 
particle as it goes from O 
to C along (a) the purple path, (b) the red path, and  
(c) the blue path. (d) Your results should all be identi-
cal. Why?

 44. (a) Suppose a constant force acts on an object. The 
force does not vary with time or with the position or 
the velocity of the object. Start with the general defini-
tion for work done by a force

W 5 3
f

i
 F

S
? d rS

  and show that the force is conservative. (b) As a spe-
cial case, suppose the force F

S
5 13 î 1 4ĵ 2  N acts on a 

particle that moves from O to C in Figure P7.43. Cal-
culate the work done by F

S
 on the particle as it moves 

along each one of the three paths shown in the figure 

W

(5.00, 5.00)

y (m)

x (m)
O A

B
C

Figure P7.43  
Problems 43 through 46.
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 34. A 4.00-kg particle is subject to a net force that varies 
with position as shown in Figure P7.15. The particle 
starts from rest at x 5 0. What is its speed at (a) x 5 
5.00 m, (b) x 5 10.0 m, and (c) x 5 15.0 m?

 35. A 2 100-kg pile driver is used to drive a steel I-beam into 
the ground. The pile driver falls 5.00 m before coming 
into contact with the top of the beam, and it drives the 
beam 12.0 cm farther into the ground before coming 
to rest. Using energy considerations, calculate the aver-
age force the beam exerts on the pile driver while the 
pile driver is brought to rest.

 36. Review. In an electron microscope, there is an electron 
gun that contains two charged metallic plates 2.80 cm 
apart. An electric force accelerates each electron in 
the beam from rest to 9.60% of the speed of light over 
this distance. (a) Determine the kinetic energy of the 
electron as it leaves the electron gun. Electrons carry 
this energy to a phosphorescent viewing screen where 
the microscope’s image is formed, making it glow. For 
an electron passing between the plates in the electron 
gun, determine (b) the magnitude of the constant 
electric force acting on the electron, (c) the accelera-
tion of the electron, and (d) the time interval the elec-
tron spends between the plates.

 37. Review. You can think of the work–kinetic energy the-
orem as a second theory of motion, parallel to New-
ton’s laws in describing how outside influences affect 
the motion of an object. In this problem, solve parts 
(a), (b), and (c) separately from parts (d) and (e) so 
you can compare the predictions of the two theories. 
A 15.0-g bullet is accelerated from rest to a speed of 
780 m/s in a rifle barrel of length 72.0 cm. (a) Find 
the kinetic energy of the bullet as it leaves the bar-
rel. (b) Use the work–kinetic energy theorem to find 
the net work that is done on the bullet. (c) Use your 
result to part (b) to find the magnitude of the average 
net force that acted on the bullet while it was in the 
barrel. (d) Now model the bullet as a particle under 
constant acceleration. Find the constant acceleration 
of a bullet that starts from rest and gains a speed of  
780 m/s over a distance of 72.0 cm. (e) Modeling the 
bullet as a particle under a net force, find the net 
force that acted on it during its acceleration. (f) What 
conclusion can you draw from comparing your results 
of parts (c) and (e)?

 38. Review. A 7.80-g bullet moving at 575 m/s strikes the 
hand of a superhero, causing the hand to move 5.50 cm  
in the direction of the bullet’s velocity before stopping. 
(a) Use work and energy considerations to find the 
average force that stops the bullet. (b) Assuming the 
force is constant, determine how much time elapses 
between the moment the bullet strikes the hand and 
the moment it stops moving.

 39. Review. A 5.75-kg object passes through the origin 
at time t 5 0 such that its x component of velocity is  
5.00 m/s and its y component of velocity is 23.00 m/s. 
(a) What is the kinetic energy of the object at this time? 
(b) At a later time t 5 2.00 s, the particle is located at 
x 5 8.50 m and y 5 5.00 m. What constant force acted 

W

M

AMT

Q/C
GP



208 chapter 7 Energy of a System

Section 7.9 Energy Diagrams and Equilibrium of a System

 52. For the potential 
energy curve shown 
in Figure P7.52, 
(a)  determine whe-
ther the force Fx is 
positive, negative, or  
zero at the five 
points indicated. 
(b) Indicate points 
of stable, unstable, 
and neutral equilib-
rium. (c) Sketch the 
curve for Fx versus x from x 5 0 to x 5 9.5 m.

 53. A right circular cone can theoretically be balanced on a 
horizontal surface in three different ways. Sketch these 
three equilibrium configurations and identify them as 
positions of stable, unstable, or neutral equilibrium.

additional Problems
 54. The potential energy function for a system of particles 

is given by U(x) 5 2x3 1 2x2 1 3x, where x is the posi-
tion of one particle in the system. (a) Determine the 
force Fx on the particle as a function of x. (b) For what 
values of x is the force equal to zero? (c) Plot U(x) ver-
sus x and Fx versus x and indicate points of stable and 
unstable equilibrium.

 55. Review. A baseball outfielder throws a 0.150-kg base-
ball at a speed of 40.0 m/s and an initial angle of 30.08 
to the horizontal. What is the kinetic energy of the 
baseball at the highest point of its trajectory?

 56. A particle moves along the x axis from x 5 12.8 m to  
x 5 23.7 m under the influence of a force

F 5
375

x 3 1 3.75x
  where F is in newtons and x is in meters. Using numeri-

cal integration, determine the work done by this force 
on the particle during this displacement. Your result 
should be accurate to within 2%.

 57. Two identical steel balls, each of diameter 25.4 mm 
and moving in opposite directions at 5 m/s, run into 
each other head-on and bounce apart. Prior to the col-
lision, one of the balls is squeezed in a vise while pre-
cise measurements are made of the resulting amount 
of compression. The results show that Hooke’s law is a 
fair model of the ball’s elastic behavior. For one datum, 
a force of 16 kN exerted by each jaw of the vise results 
in a 0.2-mm reduction in the diameter. The diameter 
returns to its original value when the force is removed. 
(a) Modeling the ball as a spring, find its spring con-
stant. (b) Does the interaction of the balls during the 
collision last only for an instant or for a nonzero time 
interval? State your evidence. (c) Compute an estimate 
for the kinetic energy of each of the balls before they 
collide. (d) Compute an estimate for the maximum 
amount of compression each ball undergoes when the 
balls collide. (e) Compute an order-of-magnitude esti-
mate for the time interval for which the balls are in 
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and show that the work done along the three paths is 
identical.

 45. A force acting on a particle moving in the xy plane is  
given by F

S
5 12y î 1 x2

 ĵ 2 , where F
S

 is in newtons 
and x and y are in meters. The particle moves from 
the origin to a final position having coordinates x 5  
5.00 m and y 5 5.00  m as shown in Figure P7.43.  
Calculate the work done by F

S
 on the particle as it moves  

along (a) the purple path, (b) the red path, and  
(c) the blue path. (d) Is F

S
 conservative or nonconser-

vative? (e) Explain your answer to part (d).

 46. An object moves in the xy plane in Figure P7.43 and 
experiences a friction force with constant magnitude 
3.00  N, always acting in the direction opposite the 
object’s velocity. Calculate the work that you must do 
to slide the object at constant speed against the fric-
tion force as the object moves along (a) the purple 
path O to A followed by a return purple path to O, 
(b) the purple path O to C followed by a return blue 
path to O, and (c) the blue path O to C followed by a 
return blue path to O. (d) Each of your three answers 
should be nonzero. What is the significance of this 
observation?

Section 7.8 Relationship Between Conservative  
Forces and Potential Energy

 47. The potential energy of a system of two particles sepa-
rated by a distance r is given by U(r) 5 A/r, where A  
is a constant. Find the radial force F

S

r that each particle 
exerts on the other.

 48. Why is the following situation impossible? A librarian lifts a 
book from the ground to a high shelf, doing 20.0 J of 
work in the lifting process. As he turns his back, the 
book falls off the shelf back to the ground. The gravita-
tional force from the Earth on the book does 20.0 J of 
work on the book while it falls. Because the work done 
was 20.0 J 1 20.0 J 5 40.0 J, the book hits the ground 
with 40.0 J of kinetic energy.

 49. A potential energy function for a system in which a 
two-dimensional force acts is of the form U 5 3x3y 2 
7x. Find the force that acts at the point (x, y).

 50. A single conservative force acting on a particle within a 
system varies as F

S
5 12Ax 1 Bx 2 2 î, where A and B are 

 constants, F
S

 is in newtons, and x is in meters. (a) Calcu-
late the potential energy function U(x) associated with 
this force for the system, taking U 5 0 at x 5 0. Find  
(b) the change in potential energy and (c) the change 
in kinetic energy of the system as the particle moves 
from x 5 2.00 m to x 5 3.00 m.

 51. A single conservative force acts on a 5.00-kg particle 
within a system due to its interaction with the rest of 
the system. The equation Fx 5 2x 1 4 describes the 
force, where Fx is in newtons and x is in meters. As the 
particle moves along the x axis from x 5 1.00 m to x 5 
5.00 m, calculate (a) the work done by this force on the 
particle, (b) the change in the potential energy of the 
system, and (c) the kinetic energy the particle has at  
x 5 5.00 m if its speed is 3.00 m/s at x 5 1.00 m.

Q/C
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ball of mass 100 g is projected into play by releasing 
the plunger. Casino visitors find the play of the giant 
machine quite exciting.

u

Figure P7.60

 61. Review. Two con stant forces act on an object of mass  
m 5 5.00  kg moving in the xy plane as shown in  
Figure P7.61. Force F

S

1 is 25.0 N at 35.08, and force F
S

2 is  
42.0 N at 1508. At time t 5 0, the object is at the origin 
and has velocity 14.00 î 1 2.50 ĵ 2  m/s. (a) Express the 
two forces in unit-vector notation. Use unit-vector nota-
tion for your other answers. (b) Find the total force 
exerted on the object. (c) Find the object’s acceleration. 
Now, considering the instant t 5 3.00 s, find (d) the 
object’s velocity, (e) its 
position, (f)  its kinetic 
energy from 1

2mvf
2, and 

(g) its kinetic energy 
from 1

2mvi
2 1 g  F

S
 ? D rS. 

(h) What conclusion 
can you draw by com-
paring the answers to 
parts (f) and (g)?

 62. The spring constant of an automotive suspension 
spring increases with increasing load due to a spring 
coil that is widest at the bottom, smoothly tapering to a 
smaller diameter near the top. The result is a softer 
ride on normal road surfaces from the wider coils, but 
the car does not bottom out on bumps because when 
the lower coils collapse, the stiffer coils near the top 
absorb the load. For such springs, the force exerted by 
the spring can be empirically found to be given by  
F 5 axb. For a tapered spiral spring that compresses 
12.9 cm with a 1 000-N load and 31.5 cm with a 5 000-N 
load, (a) evaluate the constants a and b in the empiri-
cal equation for F and (b) find the work needed to 
compress the spring 25.0 cm.

 63. An inclined plane of 
angle u 5 20.08 has a 
spring of force constant 
k 5 500 N/m fastened 
securely at the bottom 
so that the spring is par-
allel to the surface as 
shown in Figure P7.63. 
A block of mass m 5 
2.50 kg is placed on the 
plane at a distance d 5 0.300 m from the spring. From 
this position, the block is projected downward toward 
the spring with speed v 5 0.750 m/s. By what distance 
is the spring compressed when the block momentarily 
comes to rest?

 64. An inclined plane of angle u has a spring of force 
constant k fastened securely at the bottom so that the 
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Problems 63 and 64.

S

contact. (In Chapter 15, you will learn to calculate the 
contact time interval precisely.)

 58. When an object is displaced by an amount x from sta-
ble equilibrium, a restoring force acts on it, tending 
to return the object to its equilibrium position. The 
magnitude of the restoring force can be a complicated  
function of x. In such cases, we can generally imag-
ine the force function F(x) to be expressed as a power 
series in x as F(x) 5 2(k1x  1 k2x2  1 k3x3 1 . . .). The 
first term here is just Hooke’s law, which describes the 
force exerted by a simple spring for small displace-
ments. For small excursions from equilibrium, we gen-
erally ignore the higher-order terms, but in some cases 
it may be desirable to keep the second term as well.  
If we model the restoring force as F 5 2(k1x 1 k2x2), 
how much work is done on an object in displacing it 
from x 5 0 to x 5 xmax by an applied force 2F ?

 59. A 6 000-kg freight car rolls along rails with negligible 
friction. The car is brought to rest by a combination of 
two coiled springs as illustrated in Figure P7.59. Both 
springs are described by Hooke’s law and have spring 
constants k1 5 1 600 N/m and k2 5 3 400 N/m. After 
the first spring compresses a distance of 30.0 cm, the 
second spring acts with the first to increase the force as 
additional compression occurs as shown in the graph. 
The car comes to rest 50.0 cm after first contacting the 
two-spring system. Find the car’s initial speed.
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 60. Why is the following situation impossible? In a new casino, 
a supersized pinball machine is introduced. Casino 
advertising boasts that a professional basketball player 
can lie on top of the machine and his head and feet 
will not hang off the edge! The ball launcher in the 
machine sends metal balls up one side of the machine 
and then into play. The spring in the launcher (Fig. 
P7.60) has a force constant of 1.20 N/cm. The sur-
face on which the ball moves is inclined u 5 10.08 
with respect to the horizontal. The spring is initially 
compressed its maximum distance d 5 5.00 cm. A 

S
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  (b) Show that the potential energy of the system is

U 1x 2 5 kx 2 1 2kL 1L 2 "x 2 1 L2 2
  (c) Make a plot of U(x) 

versus x and identify 
all equilibrium points. 
Assume L 5 1.20 m and 
k 5 40.0 N/m. (d) If  
the particle is pulled 
0.500 m to the right 
and then released, 
what is its speed when 
it reaches x 5 0?

 67. Review. A light spring 
has unstressed length 
15.5  cm. It is described by Hooke’s law with spring 
constant 4.30 N/m. One end of the horizontal spring 
is held on a fixed vertical axle, and the other end is 
attached to a puck of mass m that can move without 
friction over a horizontal surface. The puck is set into 
motion in a circle with a period of 1.30 s. (a) Find the 
extension of the spring x as it depends on m. Evaluate  
x for (b) m 5 0.070 0 kg, (c) m 5 0.140 kg, (d) m 5 
0.180 kg, and (e) m 5 0.190 kg. (f) Describe the pattern 
of variation of x as it depends on m.

Overhead view
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L

x

k

k

x

x � 0

m

Figure P7.66
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spring is parallel to the surface. A block of mass m is 
placed on the plane at a distance d from the spring. 
From this position, the block is projected downward 
toward the spring with speed v as shown in Figure 
P7.63. By what distance is the spring compressed when 
the block momentarily comes to rest?

 65. (a) Take U 5 5 for a system with a particle at position x 5  
0 and calculate the potential energy of the system as 
a function of the particle position x. The force on the 
particle is given by (8e22x) î. (b) Explain whether the 
force is conservative or nonconservative and how you 
can tell.

Challenge Problems

 66. A particle of mass m 5 1.18  kg is attached between 
two identical springs on a frictionless, horizontal 
tabletop. Both springs have spring constant k and 
are initially unstressed, and the particle is at x 5 0. 
(a) The particle is pulled a distance x along a direc-
tion perpendicular to the initial configuration of the 
springs as shown in Figure P7.66. Show that the force 
exerted by the springs on the particle is

F
S

5 22kx a1 2
L

"x 2 1 L2
b  î

Q/C
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c h a p t e r 

8
8.1 Analysis Model: 

Nonisolated System 
(Energy)

8.2 Analysis Model: Isolated 
System (Energy)

8.3 Situations Involving 
Kinetic Friction

8.4 Changes in 
Mechanical Energy for 
Nonconservative Forces

8.5 Power

In Chapter 7, we introduced three methods for storing energy in a system: kinetic energy, 
associated with movement of members of the system; potential energy, determined by the con-
figuration of the system; and internal energy, which is related to the temperature of the system.
 We now consider analyzing physical situations using the energy approach for two types of 
systems: nonisolated and isolated systems. For nonisolated systems, we shall investigate ways 
that energy can cross the boundary of the system, resulting in a change in the system’s total 
energy. This analysis leads to a critically important principle called conservation of energy. The 
conservation of energy principle extends well beyond physics and can be applied to biological 
organisms, technological systems, and engineering situations.
 In isolated systems, energy does not cross the boundary of the system. For these systems, 
the total energy of the system is constant. If no nonconservative forces act within the system, 
we can use conservation of mechanical energy to solve a variety of problems.

conservation of energy

Three youngsters enjoy the 
transformation of potential energy 
to kinetic energy on a waterslide. 
We can analyze processes such 
as these with the techniques 
developed in this chapter.  
(Jade Lee/Asia Images/Getty Images)
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Energy transfers to 
the handle of the 
spoon by heat.
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Energy is transferred 
to the block by work.
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Energy leaves the light- 
bulb by electromagnetic 
radiation.
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Energy enters the 
hair dryer by 
electrical transmission.
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Energy enters the 
automobile gas tank 
by matter transfer.
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Figure 8.1  Energy trans-
fer mechanisms. In each 
case, the system into which 
or from which energy is 
transferred is indicated.

 Situations involving the transformation of mechanical energy to internal energy due to 
nonconservative forces require special handling. We investigate the procedures for these 
types of problems.
 Finally, we recognize that energy can cross the boundary of a system at different rates. 
We describe the rate of energy transfer with the quantity power.

8.1 Analysis Model: Nonisolated System (Energy)
As we have seen, an object, modeled as a particle, can be acted on by various 
forces, resulting in a change in its kinetic energy according to the work–kinetic 
energy theorem from Chapter 7. If we choose the object as the system, this very 
simple situation is the first example of a nonisolated system, for which energy crosses 
the boundary of the system during some time interval due to an interaction with 
the environment. This scenario is common in physics problems. If a system does 
not interact with its environment, it is an isolated system, which we will study in Sec-
tion 8.2.
 The work–kinetic energy theorem is our first example of an energy equation 
appropriate for a nonisolated system. In the case of that theorem, the interaction 
of the system with its environment is the work done by the external force, and the 
quantity in the system that changes is the kinetic energy.
 So far, we have seen only one way to transfer energy into a system: work. We men-
tion below a few other ways to transfer energy into or out of a system. The details of 
these processes will be studied in other sections of the book. We illustrate mecha-
nisms to transfer energy in Figure 8.1 and summarize them as follows.
 Work, as we have learned in Chapter 7, is a method of transferring energy to a 
system by applying a force to the system such that the point of application of the 
force undergoes a displacement (Fig. 8.1a).
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 Mechanical waves (Chapters 16–18) are a means of transferring energy by allow-
ing a disturbance to propagate through air or another medium. It is the method 
by which energy (which you detect as sound) leaves the system of your clock radio 
through the loudspeaker and enters your ears to stimulate the hearing process 
(Fig. 8.1b). Other examples of mechanical waves are seismic waves and ocean waves.
 Heat (Chapter 20) is a mechanism of energy transfer that is driven by a tem-
perature difference between a system and its environment. For example, imagine 
dividing a metal spoon into two parts: the handle, which we identify as the system, 
and the portion submerged in a cup of coffee, which is part of the environment 
(Fig. 8.1c). The handle of the spoon becomes hot because fast-moving electrons 
and atoms in the submerged portion bump into slower ones in the nearby part of 
the handle. These particles move faster because of the collisions and bump into the 
next group of slow particles. Therefore, the internal energy of the spoon handle 
rises from energy transfer due to this collision process.
 Matter transfer (Chapter 20) involves situations in which matter physically 
crosses the boundary of a system, carrying energy with it. Examples include filling 
your automobile tank with gasoline (Fig. 8.1d) and carrying energy to the rooms of 
your home by circulating warm air from the furnace, a process called convection.
 Electrical transmission (Chapters 27 and 28) involves energy transfer into or 
out of a system by means of electric currents. It is how energy transfers into your 
hair dryer (Fig. 8.1e), home theater system, or any other electrical device.
 Electromagnetic radiation (Chapter 34) refers to electromagnetic waves such 
as light (Fig. 8.1f), microwaves, and radio waves crossing the boundary of a system. 
Examples of this method of transfer include cooking a baked potato in your micro-
wave oven and energy traveling from the Sun to the Earth by light through space.1

 A central feature of the energy approach is the notion that we can neither cre-
ate nor destroy energy, that energy is always conserved. This feature has been tested 
in countless experiments, and no experiment has ever shown this statement to be 
incorrect. Therefore, if the total amount of energy in a system changes, it can only 
be because energy has crossed the boundary of the system by a transfer mecha-
nism such as one of the methods listed above. 
 Energy is one of several quantities in physics that are conserved. We will see 
other conserved quantities in subsequent chapters. There are many physical quanti-
ties that do not obey a conservation principle. For example, there is no conserva-
tion of force principle or conservation of velocity principle. Similarly, in areas other 
than physical quantities, such as in everyday life, some quantities are conserved and 
some are not. For example, the money in the system of your bank account is a con-
served quantity. The only way the account balance changes is if money crosses the 
boundary of the system by deposits or withdrawals. On the other hand, the num-
ber of people in the system of a country is not conserved. Although people indeed 
cross the boundary of the system, which changes the total population, the popula-
tion can also change by people dying and by giving birth to new babies. Even if no 
people cross the system boundary, the births and deaths will change the number 
of people in the system. There is no equivalent in the concept of energy to dying or 
giving birth. The general statement of the principle of conservation of energy can 
be described mathematically with the conservation of energy equation as follows:

 DEsystem 5 o T (8.1)

where Esystem is the total energy of the system, including all methods of energy stor-
age (kinetic, potential, and internal), and T (for transfer) is the amount of energy 
transferred across the system boundary by some mechanism. Two of our transfer 
mechanisms have well-established symbolic notations. For work, Twork 5 W as dis-
cussed in Chapter 7, and for heat, Theat 5 Q as defined in Chapter 20. (Now that we 
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Pitfall Prevention 8.1
Heat Is Not a Form of Energy  
The word heat is one of the most 
misused words in our popular lan-
guage. Heat is a method of transfer-
ring energy, not a form of storing 
energy. Therefore, phrases such 
as “heat content,” “the heat of the 
summer,” and “the heat escaped” 
all represent uses of this word that 
are inconsistent with our physics 
definition. See Chapter 20.

1Electromagnetic radiation and work done by field forces are the only energy transfer mechanisms that do not 
require molecules of the environment to be available at the system boundary. Therefore, systems surrounded by a 
vacuum (such as planets) can only exchange energy with the environment by means of these two possibilities.
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are familiar with work, we can simplify the appearance of equations by letting the 
simple symbol W represent the external work Wext on a system. For internal work, we 
will always use Wint to differentiate it from W.) The other four members of our list 
do not have established symbols, so we will call them TMW (mechanical waves), TMT 
(matter transfer), TET (electrical transmission), and TER (electromagnetic radiation).
 The full expansion of Equation 8.1 is

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

which is the primary mathematical representation of the energy version of the anal-
ysis model of the nonisolated system. (We will see other versions of the nonisolated 
system model, involving linear momentum and angular momentum, in later chap-
ters.) In most cases, Equation 8.2 reduces to a much simpler one because some of 
the terms are zero for the specific situation. If, for a given system, all terms on the 
right side of the conservation of energy equation are zero, the system is an isolated 
system, which we study in the next section.
 The conservation of energy equation is no more complicated in theory than the 
process of balancing your checking account statement. If your account is the sys-
tem, the change in the account balance for a given month is the sum of all the 
transfers: deposits, withdrawals, fees, interest, and checks written. You may find it 
useful to think of energy as the currency of nature!
 Suppose a force is applied to a nonisolated system and the point of application 
of the force moves through a displacement. Then suppose the only effect on the 
system is to change its speed. In this case, the only transfer mechanism is work (so 
that the right side of Eq. 8.2 reduces to just W) and the only kind of energy in the 
system that changes is the kinetic energy (so that the left side of Eq. 8.2 reduces to 
just DK). Equation 8.2 then becomes

DK 5 W

which is the work–kinetic energy theorem. This theorem is a special case of the 
more general principle of conservation of energy. We shall see several more special 
cases in future chapters.

Q uick Quiz 8.1  By what transfer mechanisms does energy enter and leave (a) your 
television set? (b) Your gasoline-powered lawn mower? (c) Your hand-cranked 
pencil sharpener?

Q uick Quiz 8.2  Consider a block sliding over a horizontal surface with friction. 
Ignore any sound the sliding might make. (i) If the system is the block, this sys-
tem is (a) isolated (b) nonisolated (c) impossible to determine (ii) If the system 
is the surface, describe the system from the same set of choices. (iii) If the system 
is the block and the surface, describe the system from the same set of choices.

Analysis Model   Nonisolated System (Energy)
Imagine you have identified a system to be analyzed 
and have defined a system boundary.  Energy can 
exist in the system in three forms: kinetic, potential, 
and internal. The total of that energy can be changed 
when energy crosses the system boundary by any of six 
transfer methods shown in the diagram here. The total 
change in the energy in the system is equal to the total 
amount of energy that has crossed the system bound-
ary. The mathematical statement of that concept is 
expressed in the conservation of energy equation:

 DEsystem 5 o T (8.1)

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.
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8.2 Analysis Model: Isolated System (Energy)
In this section, we study another very common scenario in physics problems: a sys-
tem is chosen such that no energy crosses the system boundary by any method. We 
begin by considering a gravitational situation. Think about the book–Earth system 
in Figure 7.15 in the preceding chapter. After we have lifted the book, there is grav-
itational potential energy stored in the system, which can be calculated from the 
work done by the external agent on the system, using W 5 DUg. (Check to see that 
this equation, which we’ve seen before, is contained within Eq. 8.2 above.) 
 Let us now shift our focus to the work done on the book alone by the gravitational 
force (Fig. 8.2) as the book falls back to its original height. As the book falls from yi 
to yf , the work done by the gravitational force on the book is

 Won book 5 1mgS 2 ? D rS 5 12mg  ĵ 2 ? 3 1yf 2 yi 2 ĵ 4 5 mgyi 2 mgyf  (8.3)

From the work–kinetic energy theorem of Chapter 7, the work done on the book is 
equal to the change in the kinetic energy of the book:

Won book 5 DKbook

We can equate these two expressions for the work done on the book:

 DKbook 5 mgyi 2 mgyf (8.4)

Let us now relate each side of this equation to the system of the book and the Earth. 
For the right-hand side,

mgyi 2 mgyf 5 2(mgyf 2 mgyi) 5 2DUg

where Ug 5 mgy is the gravitational potential energy of the system. For the left-hand 
side of Equation 8.4, because the book is the only part of the system that is moving, 
we see that DKbook 5 DK, where K is the kinetic energy of the system. Therefore, 
with each side of Equation 8.4 replaced with its system equivalent, the equation 
becomes

 DK 5 2DUg (8.5)

This equation can be manipulated to provide a very important general result for 
solving problems. First, we move the change in potential energy to the left side of 
the equation:

DK 1 DUg 5 0

The book is held at rest 
here and then released.

At a lower position, the 
book is moving and has 
kinetic energy K.

Physics

Physics

yf

yi

�rS

Figure 8.2  A book is released 
from rest and falls due to work 
done by the gravitational force on 
the book.

Analysis Model   Nonisolated System (Energy) (continued)

The full expansion of Equation 8.1 shows the specific types of energy storage and transfer: 

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

For a specific problem, this equation is generally reduced to a smaller number of terms by eliminating the terms that 
are equal to zero because they are not appropriate to the situation.

Examples: 

•	 a	force	does	work	on	a	system	of	a	single	object,	changing	its	speed:	the	work–kinetic	energy	theorem,	W 5 DK
•	 a	gas	contained	in	a	vessel	has	work	done	on	it	and	experiences	a	transfer	of	energy	by	heat,	resulting	in	a	change	

in its temperature: the first law of thermodynamics, DEint 5 W 1 Q (Chapter 20)
•	 an	incandescent	light	bulb	is	turned	on,	with	energy	entering	the	filament	by	electricity,	causing	its	temperature	

to increase, and leaving by light: DEint 5 TET 1 TER (Chapter 27)
•	 a	photon	enters	a	metal,	causing	an	electron	to	be	ejected	from	the	metal:	the	photoelectric	effect,	DK 1 DU 5 

TER (Chapter 40)
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The left side represents a sum of changes of the energy stored in the system. The 
right-hand side is zero because there are no transfers of energy across the bound-
ary of the system; the book–Earth system is isolated from the environment. We devel-
oped this equation for a gravitational system, but it can be shown to be valid for a 
system with any type of potential energy. Therefore, for an isolated system,

 DK 1 DU 5 0 (8.6)

(Check to see that this equation is contained within Eq. 8.2.)
 We defined in Chapter 7 the sum of the kinetic and potential energies of a sys-
tem as its mechanical energy:

 Emech ; K  1 U (8.7)

where U represents the total of all types of potential energy. Because the system 
under consideration is isolated, Equations 8.6 and 8.7 tell us that the mechanical 
energy of the system is conserved:

 DEmech 5 0 (8.8)

Equation 8.8 is a statement of conservation of mechanical energy for an iso-
lated system with no nonconservative forces acting. The mechanical energy in 
such a system is conserved: the sum of the kinetic and potential energies remains 
constant: 
 Let us now write the changes in energy in Equation 8.6 explicitly:

(Kf 2 Ki) 1 (Uf 2 Ui) 5 0

 Kf 1 Uf 5 Ki 1 Ui (8.9)

For the gravitational situation of the falling book, Equation 8.9 can be written as

1
2mvf

2 1 mgyf 5 1
2mvi

2 1 mgyi

As the book falls to the Earth, the book–Earth system loses potential energy and 
gains kinetic energy such that the total of the two types of energy always remains 
constant: Etotal,i 5 Etotal, f .
 If there are nonconservative forces acting within the system, mechanical energy 
is transformed to internal energy as discussed in Section 7.7. If nonconservative 
forces act in an isolated system, the total energy of the system is conserved although 
the mechanical energy is not. In that case, we can express the conservation of 
energy of the system as

 DEsystem 5 0 (8.10)

where Esystem includes all kinetic, potential, and internal energies. This equation is 
the most general statement of the energy version of the isolated system model. It is 
equivalent to Equation 8.2 with all terms on the right-hand side equal to zero.

Q uick Quiz 8.3  A rock of mass m is dropped to the ground from a height h. A 
second rock, with mass 2m, is dropped from the same height. When the second 
rock strikes the ground, what is its kinetic energy? (a) twice that of the first rock 
(b) four times that of the first rock (c) the same as that of the first rock (d) half 
as much as that of the first rock (e) impossible to determine

Q uick Quiz 8.4  Three identical balls are thrown from the top of a building, all 
with the same initial speed. As shown in Figure 8.3, the first is thrown hori-
zontally, the second at some angle above the horizontal, and the third at some 
angle below the horizontal. Neglecting air resistance, rank the speeds of the 
balls at the instant each hits the ground.

Mechanical energy 
of a system

 The mechanical energy of 
an isolated system with  

no nonconservative forces 
acting is conserved.

 The total energy of an 
isolated system is conserved.

Figure 8.3 (Quick Quiz 8.4) 
Three identical balls are thrown 
with the same initial speed from 
the top of a building.

2
1

3

Pitfall Prevention 8.2
Conditions on Equation 8.6 Equa-
tion 8.6 is only true for a system in 
which conservative forces act. We 
will see how to handle nonconserva-
tive forces in Sections 8.3 and 8.4.
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Analysis Model   Isolated System (Energy)

Imagine you have 
identified a system 
to be analyzed and 
have defined a system 
boundary.  Energy can 
exist in the system in 
three forms: kinetic, 
potential, and inter-
nal. Imagine also a 
situation in which no 
energy crosses the 
boundary of the sys-
tem by any method. Then, the system is isolated; energy transforms 
from one form to another and Equation 8.2 becomes

 DEsystem 5 0 (8.10)

If no nonconservative forces act within the isolated system, the 
mechanical energy of the system is conserved, so

 DEmech 5 0 (8.8)

Examples: 

•	 an	object	is	in	free-fall;	gravitational	
potential energy transforms to kinetic 
energy: DK 1 DU 5 0

•	 a	basketball	rolling	across	a	gym	 
floor comes to rest; kinetic energy 
transforms to internal energy: DK 1 
DEint 5 0

•	 a	pendulum	is	raised	and	released	
with an initial speed; its motion even-
tually stops due to air resistance; gravi-
tational potential energy and kinetic 
energy transform to internal energy, 
DK 1 DU 1 DEint 5 0 (Chapter 15)

•	 a	battery	is	connected	to	a	resistor;	
chemical potential energy in the bat-
tery transforms to internal energy  
in the resistor: DU 1 DEint 5 0 (Chap-
ter 27)

Kinetic energy
Potential energy
Internal energy

System
boundary

The total amount of energy 
in the system is constant. 
Energy transforms among 
the three possible types.

Problem-Solving Strategy   Isolated and Nonisolated Systems with  
No Nonconservative Forces: Conservation of Energy

Many problems in physics can be solved using the principle of conservation of 
energy. The following procedure should be used when you apply this principle:

1. Conceptualize.  Study the physical situation carefully and form a mental representa-
tion of what is happening. As you become more proficient working energy problems, 
you will begin to be comfortable imagining the types of energy that are changing in 
the system and the types of energy transfers occurring across the system boundary.

2. Categorize.  Define your system, which may consist of more than one object and 
may or may not include springs or other possibilities for storing potential energy. 
Identify the time interval over which you will analyze the energy changes in the prob-
lem. Determine if any energy transfers occur across the boundary of your system 
during this time interval. If so, use the nonisolated system model, DEsystem 5 o T, 
from Section 8.1. If not, use the isolated system model, DEsystem 5 0.
 Determine whether any nonconservative forces are present within the system. If 
so, use the techniques of Sections 8.3 and 8.4. If not, use the principle of conserva-
tion of energy as outlined below.

3. Analyze.  Choose configurations to represent the initial and final conditions of 
the system based on your choice of time interval. For each object that changes eleva-
tion, select a reference position for the object that defines the zero configuration 
of gravitational potential energy for the system. For an object on a spring, the zero 
configuration for elastic potential energy is when the object is at its equilibrium posi-
tion. If there is more than one conservative force, write an expression for the poten-
tial energy associated with each force.
 Begin with Equation 8.2 and retain only those terms in the equation that are appro-
priate for the situation in the problem. Express each change of energy stored in the 
system as the final value minus the initial value. Substitute appropriate expressions for 
each initial and final value of energy storage on the left side of the equation and for 
the energy transfers on the right side of the equation. Solve for the unknown quantity.

continued
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▸ Problem-Solving Strategy c o n t i n u e d

4. Finalize. Make sure your results are consistent with your mental representation. 
Also make sure the values of your results are reasonable and consistent with connec-
tions to everyday experience.

Example 8.1   Ball in Free Fall 

A ball of mass m is dropped from a height h above the ground as shown in  
Figure 8.4.

(A)  Neglecting air resistance, determine the speed of the ball when it is at a 
height y above the ground. Choose the system as the ball and the Earth.

Conceptualize  Figure 8.4 and our everyday experience with falling objects 
allow us to conceptualize the situation. Although we can readily solve this prob-
lem with the techniques of Chapter 2, let us practice an energy approach.

Categorize As suggested in the problem, we identify the system as the ball and 
the Earth. Because there is neither air resistance nor any other interaction 
between the system and the environment, the system is isolated and we use 
the isolated system model. The only force between members of the system is the 
gravitational force, which is conservative.

Analyze  Because the system is isolated and there are no nonconservative forces 
acting within the system, we apply the principle of conservation of mechanical 
energy to the ball–Earth system. At the instant the ball is released, its kinetic 
energy is Ki 5 0 and the gravitational potential energy of the system is Ugi 5 
mgh. When the ball is at a position y above the ground, its kinetic energy is 
Kf 5 1

2mvf
2 and the potential energy relative to the ground is Ugf 5 mgy.

AM

S o l u t i o n

Figure 8.4 (Example 8.1) A ball is 
dropped from a height h above the 
ground. Initially, the total energy of 
the ball–Earth system is gravitational 
potential energy, equal to mgh relative to 
the ground. At the position y, the total 
energy is the sum of the kinetic and 
potential energies.

y

h

f

Ugi � mgh
Ki � 0

y � 0
Ug � 0

yf � y
Ugf � mgy

Kf � mvf
2

yi � h

2
1

vS

Write the appropriate reduction of Equation 8.2, noting 
that the only types of energy in the system that change 
are kinetic energy and gravitational potential energy:

DK 1 DUg 5 0

Solve for vf : vf
2 5 2g 1h 2 y 2   S   vf 5 "2g 1h 2 y 2

The speed is always positive. If you had been asked to find the ball’s velocity, you would use the negative value of the 
square root as the y component to indicate the downward motion.

(B)  Find the speed of the ball again at height y by choosing the ball as the system.

Categorize In this case, the only type of energy in the system that changes is kinetic energy. A single object that can be 
modeled as a particle cannot possess potential energy. The effect of gravity is to do work on the ball across the bound-
ary of the system. We use the nonisolated system model.

S o l u t i o n

Analyze Write the appropriate reduction of Equation 8.2: DK 5 W

Substitute for the initial and final kinetic energies and 
the work:

11
2mvf

2 2 0 2 5 F
S

g ? D rS 5 2mg ĵ ? Dy ĵ
5 2mgDy 5 2mg(y 2 h) 5 mg(h 2 y)

Substitute for the energies: 11
2mvf

2 2 0 2 1 1mgy 2 mgh 2 5 0

Solve for vf : vf
2 5 2g 1h 2 y 2   S   vf 5 "2g 1h 2 y 2
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Example 8.2   A Grand Entrance 

You are designing an apparatus to support an actor of mass 65.0 kg 
who is to “fly” down to the stage during the performance of a play. 
You attach the actor’s harness to a 130-kg sandbag by means of 
a lightweight steel cable running smoothly over two frictionless 
pulleys as in Figure 8.5a. You need 3.00 m of cable between the 
harness and the nearest pulley so that the pulley can be hidden 
behind a curtain. For the apparatus to work successfully, the sand-
bag must never lift above the floor as the actor swings from above 
the stage to the floor. Let us call the initial angle that the actor’s 
cable makes with the vertical u. What is the maximum value u can 
have before the sandbag lifts off the floor?

Conceptualize  We must use several concepts to solve this problem. 
Imagine what happens as the actor approaches the bottom of the 
swing. At the bottom, the cable is vertical and must support his 
weight as well as provide centripetal acceleration of his body in the 
upward direction. At this point in his swing, the tension in the cable 
is the highest and the sandbag is most likely to lift off the floor.

Categorize  Looking first at the swinging of the actor from the ini-
tial point to the lowest point, we model the actor and the Earth 
as an isolated system. We ignore air resistance, so there are no non-
conservative forces acting. You might initially be tempted to model 
the system as nonisolated because of the interaction of the system 
with the cable, which is in the environment. The force applied to 
the actor by the cable, however, is always perpendicular to each 
element of the displacement of the actor and hence does no work. 
Therefore, in terms of energy transfers across the boundary, the 
system is isolated.

Analyze  We first find the actor’s speed as he arrives at the floor as a function of the initial angle u and the radius R of 
the circular path through which he swings.

AM

S o l u T I o N

R

Actor Sandbag
yi

u

mactor mbag

T
S

T
S

gS 
gS 

b c

mactor
mbag

a

Figure 8.5  (Example 8.2) (a) An actor uses some 
clever staging to make his entrance. (b) The free-body 
diagram for the actor at the bottom of the circular 
path. (c) The free-body diagram for the sandbag if the 
normal force from the floor goes to zero.

From the isolated system model, make the appropriate 
reduction of Equation 8.2 for the actor–Earth system:

DK 1 DUg 5 0

Finalize  The final result is the same, regardless of the choice of system. In your future problem solving, keep in mind 
that the choice of system is yours to make. Sometimes the problem is much easier to solve if a judicious choice is made 
as to the system to analyze.

What if the ball were thrown downward from its highest position with a speed vi? What would its speed be 
at height y?

Answer If the ball is thrown downward initially, we would expect its speed at height y to be larger than if simply 
dropped. Make your choice of system, either the ball alone or the ball and the Earth. You should find that either 
choice gives you the following result:

vf 5 "vi
2 1 2g 1h 2 y 2

WHaT IF ?

 

▸ 8.1 c o n t i n u e d

continued
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Analyze  Apply Newton’s second law from the particle under 
a net force model to the actor at the bottom of his path, 
using the free-body diagram in Figure 8.5b as a guide, and 
recognizing the acceleration as centripetal:

a  Fy 5 T 2 mactorg 5 mactor 
vf

2

R

(3)   T 5 mactorg 1 mactor 
vf

2

R

Solve for cos u and substitute the given parameters: cos u 5
3mactor 2 mbag

2mactor 
5

3 165.0 kg 2 2 130 kg

2 165.0 kg 2 5 0.500 

u 5   60.08

Categorize  Finally, notice that the sandbag lifts off the floor when the upward force exerted on it by the cable exceeds 
the gravitational force acting on it; the normal force from the floor is zero when that happens. We do not, however, 
want the sandbag to lift off the floor. The sandbag must remain at rest, so we model it as a particle in equilibrium.

Analyze  A force T of the magnitude given by Equation (3) is transmitted by the cable to the sandbag. If the sandbag 
remains at rest but is just ready to be lifted off the floor if any more force were applied by the cable, the normal force 
on it becomes zero and the particle in equilibrium model tells us that T 5 mbagg as in Figure 8.5c.

Finalize  Here we had to combine several analysis models from different areas of our study. Notice that the length R of 
the cable from the actor’s harness to the leftmost pulley did not appear in the final algebraic equation for cos u. There-
fore, the final answer is independent of R.

Substitute this condition and Equation (2) into Equa-
tion (3): 

m bagg 5 m actor g 1 m actor  
2gR 11 2 cos u 2

R

Let yi be the initial height of the actor above the floor and 
vf  be his speed at the instant before he lands. (Notice that 
Ki 5 0 because the actor starts from rest and that Uf 5 0 
because we define the configuration of the actor at the 
floor as having a gravitational potential energy of zero.)

(1)   11
2mactorvf

2 2 0 2 1 10 2 mactor gyi 2 5 0

From the geometry in Figure 8.5a, notice that yf 5 0, so 
yi 5 R 2 R cos u 5 R(1 2 cos u). Use this relationship in 
Equation (1) and solve for vf

2:

(2)   vf
2 5 2gR 11 2 cos u 2

Categorize  Next, focus on the instant the actor is at the lowest point. Because the tension in the cable is transferred as 
a force applied to the sandbag, we model the actor at this instant as a particle under a net force. Because the actor moves 
along a circular arc, he experiences at the bottom of the swing a centripetal acceleration of vf

2/r directed upward.

 

▸ 8.2 c o n t i n u e d

Example 8.3   The Spring-Loaded Popgun 

The launching mechanism of a popgun consists of a trigger-released spring (Fig. 8.6a). The spring is compressed to a 
position yA, and the trigger is fired. The projectile of mass m rises to a position yC above the position at which it leaves 
the spring, indicated in Figure 8.6b as position yB 5 0. Consider a firing of the gun for which m 5 35.0 g, yA 5 20.120 m,  
and yC 5 20.0 m.

(A)  Neglecting all resistive forces, determine the spring constant.

Conceptualize  Imagine the process illustrated in parts (a) and (b) of Figure 8.6. The projectile starts from rest at A, 
speeds up as the spring pushes upward on it, leaves the spring at B, and then slows down as the gravitational force 
pulls downward on it, eventually coming to rest at point C.

AM

S o l u T I o N
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Figure 8.6 (Example 8.3)  
A spring-loaded popgun (a) before 
firing and (b) when the spring 
extends to its relaxed length. 
(c) An energy bar chart for the 
popgun–projectile–Earth system 
before the popgun is loaded.  
The energy in the system is zero. 
(d) The popgun is loaded by 
means of an external agent doing 
work on the system to push the 
spring downward. Therefore 
the system is nonisolated during 
this process. After the popgun is 
loaded, elastic potential energy is 
stored in the spring and the gravi-
tational potential energy of the 
system is lower because the pro-
jectile is below point B. (e) as the 
projectile passes through point 
B, all of the energy of the isolated 
system is kinetic. (f) When the 
projectile reaches point C, all of 
the energy of the isolated system is 
gravitational potential.

continued

Substitute numerical values:
k 5

2 10.035 0 kg 2 19.80 m/s2 2 320.0 m 2 120.120 m 2 4
10.120 m 22 5 958 N/m

From the isolated system model, write a con-
servation of mechanical energy equation for 
the system between configurations when the 
projectile is at points A and C:

(1)   DK 1 DUg 1 DUs 5 0

Substitute for the initial and final energies: 10 2 0 2 1 1mgyC 2 mgyA 2 1 10 2 1
2kx2 2 5 0

Solve for k: k 5
2mg 1yC 2 yA 2

x2

Categorize  We identify the system as the projectile, the spring, and the Earth. We ignore both air resistance on the 
projectile and friction in the gun, so we model the system as isolated with no nonconservative forces acting.

Analyze  Because the projectile starts from rest, its initial kinetic energy is zero. We choose the zero configuration for 
the gravitational potential energy of the system to be when the projectile leaves the spring at B. For this configuration, 
the elastic potential energy is also zero.
 After the gun is fired, the projectile rises to a maximum height yC. The final kinetic energy of the projectile is zero.

(B)  Find the speed of the projectile as it moves through the equilibrium position B of the spring as shown in  
Figure 8.6b.

Analyze  The energy of the system as the projectile moves through the equilibrium position of the spring includes only the 
kinetic energy of the projectile 12mvB

2. Both types of potential energy are equal to zero for this configuration of the system.

S o l u T I o N

▸ 8.3 c o n t i n u e d
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8.3 Situations Involving Kinetic Friction
Consider again the book in Figure 7.18a sliding to the right on the surface of a heavy 
table and slowing down due to the friction force. Work is done by the friction force 
on the book because there is a force and a displacement. Keep in mind, however, 
that our equations for work involve the displacement of the point of application of the 
force. A simple model of the friction force between the book and the surface is shown 
in Figure 8.7a. We have represented the entire friction force between the book and 
surface as being due to two identical teeth that have been spot-welded together.2 
One tooth projects upward from the surface, the other downward from the book, 
and they are welded at the points where they touch. The friction force acts at the 
junction of the two teeth. Imagine that the book slides a small distance d to the right 
as in Figure 8.7b. Because the teeth are modeled as identical, the junction of the 
teeth moves to the right by a distance d/2. Therefore, the displacement of the point 
of application of the friction force is d/2, but the displacement of the book is d!
 In reality, the friction force is spread out over the entire contact area of an object 
sliding on a surface, so the force is not localized at a point. In addition, because the 
magnitudes of the friction forces at various points are constantly changing as indi-
vidual spot welds occur, the surface and the book deform locally, and so on, the dis-
placement of the point of application of the friction force is not at all the same as the 
displacement of the book. In fact, the displacement of the point of application of the 
friction force is not calculable and so neither is the work done by the friction force.
 The work–kinetic energy theorem is valid for a particle or an object that can be 
modeled as a particle. When a friction force acts, however, we cannot calculate the 
work done by friction. For such situations, Newton’s second law is still valid for the 
system even though the work–kinetic energy theorem is not. The case of a nonde-
formable object like our book sliding on the surface3 can be handled in a relatively 
straightforward way.
 Starting from a situation in which forces, including friction, are applied to the 
book, we can follow a similar procedure to that done in developing Equation 7.17. 
Let us start by writing Equation 7.8 for all forces on an object other than friction:

 a  Wother forces 5 3
  
1a  F

S

other forces 2 ? d rS (8.11)

d
2

Book
Surface

d

The entire friction force is 
modeled to be applied at the 
interface between two identical 
teeth projecting from the book 
and the surface.

The point of application of the 
friction force moves through a 
displacement of magnitude d/2.

a

b

Figure 8.7  (a) A simplified 
model of friction between a book 
and a surface. (b) The book is 
moved to the right by a distance d.

2Figure 8.7 and its discussion are inspired by a classic article on friction: B. A. Sherwood and W. H. Bernard, “Work 
and heat transfer in the presence of sliding friction,” American Journal of Physics, 52:1001, 1984.
3The overall shape of the book remains the same, which is why we say it is nondeformable. On a microscopic level, 
however, there is deformation of the book’s face as it slides over the surface.

▸ 8.3 c o n t i n u e d

Write Equation (1) again for the system between points 
A and B:

DK 1 DUg 1 DUs 5 0

Substitute for the initial and final energies: 1  1
2mvB

2 2 0 2 1 10 2 mgyA 2 1 10 2  1
2kx2 2 5 0

Solve for vB: vB 5 Å
kx2

m
1 2gyA

Substitute numerical values: vB 5 Å
1958 N/m 2 10.120 m 22

10.035 0 kg 2 1 2 19.80 m/s2 2 120.120 m 2 5 19.8 m/s

Finalize  This example is the first one we have seen in which we must include two different types of potential energy. 
Notice in part (A) that we never needed to consider anything about the speed of the ball between points A and C, 
which is part of the power of the energy approach: changes in kinetic and potential energy depend only on the initial 
and final values, not on what happens between the configurations corresponding to these values.
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The d rS in this equation is the displacement of the object because for forces other 
than friction, under the assumption that these forces do not deform the object, 
this displacement is the same as the displacement of the point of application of the 
forces. To each side of Equation 8.11 let us add the integral of the scalar product of 
the force of kinetic friction and d rS. In doing so, we are not defining this quantity 
as work! We are simply saying that it is a quantity that can be calculated mathemati-
cally and will turn out to be useful to us in what follows.

a  Wother forces 1 3  f
S

k ? d rS 5 3  1 a  F
S

other forces 2 ? d rS 1 3  f
S

k ? d rS

5 3  1 a  F
S

other forces 1 f
S

k 2 ? d rS

The integrand on the right side of this equation is the net force g  F
S

 on the object, so

a  Wother forces 1 3  f
S

k ? d rS 5 3a  F
S

? d rS

Incorporating Newton’s second law g  F
S

5 maS gives

 aWother forces 1 3  f
S

k ? d rS 5 3
 

 maS ? d rS 5 3
 

m 
d vS

dt
? d rS 5 3

tf

ti
 m 

d vS

dt
? vS dt (8.12)

where we have used Equation 4.3 to rewrite d rS  as vS dt. The scalar product obeys 
the product rule for differentiation (See Eq. B.30 in Appendix B.6), so the deriva-
tive of the scalar product of vS  with itself can be written

d
dt

1 vS ? vS 2 5
d vS

dt
? vS 1 vS ?

d vS

dt
5 2 

d vS

dt
? vS

We used the commutative property of the scalar product to justify the final expres-
sion in this equation. Consequently,

d vS

dt
? vS 5 1

2 
d
dt

1 vS ? vS 2 5 1
2 

dv 2

dt

Substituting this result into Equation 8.12 gives

aWother forces 1 3 f
S

k ? d rS 5 3
tf

ti
 m a1

2 
dv 2

dt
b dt 5 1

2m 3
vf

vi

 d 1v 2 2 5 1
2mvf

2 2 1
2mvi

2 5 DK

Looking at the left side of this equation, notice that in the inertial frame of the 
surface, f

S

k and d rS  will be in opposite directions for every increment d rS  of the 
path followed by the object. Therefore, f

S

k ? d rS 5 2fk dr. The previous expression 
now becomes

 aWother forces 2 3  fk dr 5 DK  

In our model for friction, the magnitude of the kinetic friction force is constant, so 
fk can be brought out of the integral. The remaining integral e dr is simply the sum 
of increments of length along the path, which is the total path length d. Therefore,

 o Wother forces 2 fkd 5 DK (8.13)

Equation 8.13 can be used when a friction force acts on an object. The change in 
kinetic energy is equal to the work done by all forces other than friction minus a 
term fkd associated with the friction force.
 Considering the sliding book situation again, let’s identify the larger system of the 
book and the surface as the book slows down under the influence of a friction force 
alone. There is no work done across the boundary of this system by other forces 
because the system does not interact with the environment. There are no other types 
of energy transfer occurring across the boundary of the system, assuming we ignore 
the inevitable sound the sliding book makes! In this case, Equation 8.2 becomes

 DEsystem 5 DK 1 DEint 5 0 
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The change in kinetic energy of this book–surface system is the same as the change 
in kinetic energy of the book alone because the book is the only part of the system 
that is moving. Therefore, incorporating Equation 8.13 with no work done by other 
forces gives

 2fkd 1 DEint 5 0 

 DEint 5 fkd (8.14)

Equation 8.14 tells us that the increase in internal energy of the system is equal 
to the product of the friction force and the path length through which the block 
moves. In summary, a friction force transforms kinetic energy in a system to inter-
nal energy. If work is done on the system by forces other than friction, Equation 
8.13, with the help of Equation 8.14, can be written as

 o Wother forces 5 W 5 DK 1 DEint (8.15)

which is a reduced form of Equation 8.2 and represents the nonisolated system 
model for a system within which a nonconservative force acts.

Q uick Quiz 8.5  You are traveling along a freeway at 65 mi/h. Your car has kinetic 
energy. You suddenly skid to a stop because of congestion in traffic. Where is 
the kinetic energy your car once had? (a) It is all in internal energy in the road. 
(b) It is all in internal energy in the tires. (c) Some of it has transformed to 
internal energy and some of it transferred away by mechanical waves. (d) It is all 
transferred away from your car by various mechanisms.

Change in internal energy   
due to a constant friction 

force within the system

Example 8.4   A Block Pulled on a Rough Surface 

A 6.0-kg block initially at rest is pulled to the right along a horizontal surface by a 
constant horizontal force of 12 N.

(A)  Find the speed of the block after it has moved 3.0 m if the surfaces in contact 
have a coefficient of kinetic friction of 0.15.

Conceptualize  This example is similar to Example 
7.6 (page 190), but modified so that the surface is no 
longer frictionless. The rough surface applies a fric-
tion force on the block opposite to the applied force. 
As a result, we expect the speed to be lower than that 
found in Example 7.6.

Categorize  The block is pulled by a force and the 
surface is rough, so the block and the surface are 
modeled as a nonisolated system with a nonconservative force acting.

Analyze  Figure 8.8a illustrates this situation. Neither the normal force nor the gravitational force does work on the 
system because their points of application are displaced horizontally.

AM

S o l u T I o N

Figure 8.8 (Example 8.4) 
(a) A block pulled to the right 
on a rough surface by a con-
stant horizontal force. (b) The 
applied force is at an angle u 
to the horizontal.

x

x

�

�

u

a

b

F
S

mgS 

fk
S

nS

vf
S

F
S

mgS 

fk
S

nS
vf
S

Find the work done on the system by the applied force 
just as in Example 7.6:

o Wother forces 5 WF 5 F Dx 

Apply the particle in equilibrium model to the block in the 
vertical direction:

o Fy 5 0   S   n 2 mg 5 0   S   n 5 mg 

Find the magnitude of the friction force: fk 5 mkn 5 mkmg  5 (0.15)(6.0 kg)(9.80 m/s2) 5 8.82 N
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Substitute the energies into Equation 8.15 and solve for 
the final speed of the block:

FDx 5 DK 1 DEint 5 11
2mvf

2 2 0 2 1 fkd

vf 5 Å
2
m

12fkd 1 F Dx 2

Substitute numerical values: vf 5 Å
2

6.0 kg
32 18.82 N 2 13.0 m 2 1 112 N 2 13.0 m 2 4 5 1.8 m/s

Finalize  As expected, this value is less than the 3.5 m/s found in the case of the block sliding on a frictionless surface 
(see Example 7.6). The difference in kinetic energies between the block in Example 7.6 and the block in this example 
is equal to the increase in internal energy of the block–surface system in this example.

(B)  Suppose the force F
S

 is applied at an angle u as shown in Figure 8.8b. At what angle should the force be applied 
to achieve the largest possible speed after the block has moved 3.0 m to the right?

Conceptualize  You might guess that u 5 0 would give the largest speed because the force would have the largest com-
ponent possible in the direction parallel to the surface. Think about F

S
 applied at an arbitrary nonzero angle, however. 

Although the horizontal component of the force would be reduced, the vertical component of the force would reduce 
the normal force, in turn reducing the force of friction, which suggests that the speed could be maximized by pulling 
at an angle other than u 5 0.

Categorize  As in part (A), we model the block and the surface as a nonisolated system with a nonconservative force acting.

S o l u T I o N

Analyze  Find the work done by the applied force, noting 
that Dx 5 d because the path followed by the block is a 
straight line:

(1)   o Wother forces 5 WF 5 F Dx cos u 5 Fd cos u 

Apply the particle in equilibrium model to the block in 
the vertical direction:

o Fy 5 n 1 F sin u 2 mg 5 0

Solve for n: (2)   n 5 mg 2 F sin u 

Use Equation 8.15 to find the final kinetic energy for 
this situation:

WF 5 DK 1 D Eint 5 (Kf 2 0) 1 fkd   S   Kf 5 WF 2 fkd

Maximizing the speed is equivalent to maximizing the 
final kinetic energy. Consequently, differentiate Kf with 
respect to u and set the result equal to zero:

dKf

du
 5 2Fd sin u 2 mk(0 2 F  cos u)d 5 0

2 sin u 1 mk cos u 5 0

tan u 5 mk

Evaluate u for mk 5 0.15: u 5 tan21(mk) 5 tan21(0.15) 5   8.58

Finalize  Notice that the angle at which the speed of the block is a maximum is indeed not u 5 0. When the angle 
exceeds 8.58, the horizontal component of the applied force is too small to be compensated by the reduced friction 
force and the speed of the block begins to decrease from its maximum value.

Substitute the results in Equations (1) and (2): Kf 5 Fd cos u 2 mknd 5 Fd cos u 2 mk(mg 2 F sin u)d

 

▸ 8.4 c o n t i n u e d

Conceptual Example 8.5   Useful Physics for Safer Driving

A car traveling at an initial speed v slides a distance d to a halt after its brakes lock. If the car’s initial speed is instead 
2v at the moment the brakes lock, estimate the distance it slides.

continued
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Let us assume the force of kinetic friction between the car and the road surface is constant and the same for both 
speeds. According to Equation 8.13, the friction force multiplied by the distance d is equal to the initial kinetic energy 
of the car (because Kf 5 0 and there is no work done by other forces). If the speed is doubled, as it is in this example, 
the kinetic energy is quadrupled. For a given friction force, the distance traveled is four times as great when the initial 
speed is doubled, and so the estimated distance the car slides is 4d.

S o l u T I o N

Work is done on the block, and its speed changes. 
The conservation of energy equation, Equation 8.2, 
reduces to the work–kinetic energy theorem. Use that 
theorem to find the speed at x 5 0:

Ws 5 1
2mvf

2 2 1
2mvi

2

vf 5 Åvi
2 1

2
m

 Ws 5 Åvi
2 1

2
m

 11
2kxmax

2 2

Finalize  Although this problem could have been solved in Chapter 7, it is presented here to provide contrast with the 
following part (B), which requires the techniques of this chapter.

(B)  Calculate the speed of the block as it passes through the equilibrium position if a constant friction force of 4.0 N 
retards its motion from the moment it is released.

Conceptualize  The correct answer must be less than that found in part (A) because the friction force retards the 
motion.

Categorize  We identify the system as the block and the surface, a nonisolated system because of the work done by the 
spring. There is a nonconservative force acting within the system: the friction between the block and the surface.

S o l u T I o N

Use Equation 7.11 to find the work done by the spring 
on the system with xmax 5 xi :

Ws 5 1
2kx2

max

Substitute numerical values: vf 5 Å0 1
2

1.6 kg
312 11 000 N/m 2 10.020 m 22 4 5  0.50 m/s

Example 8.6   A Block–Spring System 

A block of mass 1.6 kg is attached to a horizontal spring that has a force constant 
of 1 000 N/m as shown in Figure 8.9a. The spring is compressed 2.0 cm and is then 
released from rest as in Figure 8.9b.

(A)  Calculate the speed of the block as it passes through the equilibrium posi-
tion x 5 0 if the surface is frictionless.

Conceptualize  This situation has been discussed 
before, and it is easy to visualize the block being pushed 
to the right by the spring and moving with some speed 
at x 5 0.

Categorize  We identify the system as the block and 
model the block as a nonisolated system.

Analyze  In this situation, the block starts with vi 5 0 
at xi 5 22.0 cm, and we want to find vf at xf 5 0.

AM

S o l u T I o N

 

▸ 8.5 c o n t i n u e d

x

s

a

b

x � 0

x � 0

x

x

F
S

Figure 8.9  (Example 8.6) 
(a) A block attached to a 
spring is pushed inward  
from an initial position  
x 5 0 by an external agent. 
(b) At position x, the block 
is released from rest and the 
spring pushes it to the right.
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Analyze  Write Equation 8.15: Ws 5 DK 1 DE int 5 11
2mvf

2 2 0 2 1 fkd

Substitute for the work done by the 
spring:

vf 5 Å
2
m

 11
2kx max

2 2 fkd 2

Finalize  As expected, this value is less than the 0.50 m/s found in part (A).

 What if the friction force were increased to 10.0 N? What is the block’s speed at x 5 0?WHaT IF ?

Substitute numerical values: vf 5 Å
2

1.6 kg
3 12 11 000 N/m 2 10.020 m 22 2 14.0 N 2 10.020 m 2 4 5 0.39 m/s

8.4 Changes in Mechanical Energy  
for Nonconservative Forces

Consider the book sliding across the surface in the preceding section. As the book 
moves through a distance d, the only force in the horizontal direction is the force 
of kinetic friction. This force causes a change 2fkd in the kinetic energy of the book 
as described by Equation 8.13.
 Now, however, suppose the book is part of a system that also exhibits a change in 
potential energy. In this case, 2fkd is the amount by which the mechanical energy of 
the system changes because of the force of kinetic friction. For example, if the book 
moves on an incline that is not frictionless, there is a change in both the kinetic energy 
and the gravitational potential energy of the book–Earth system. Consequently,

 DEmech 5 DK 1 DUg 5 2fkd 5 2DEint 

In general, if a nonconservative force acts within an isolated system,

 DK 1 DU 1 DEint 5 0 (8.16)

where DU is the change in all forms of potential energy. We recognize Equation 
8.16 as Equation 8.2 with no transfers of energy across the boundary of the system.
 If the system in which nonconservative forces act is nonisolated and the external 
influence on the system is by means of work, the generalization of Equation 8.13 is

 o Wother forces 2 fkd 5 DEmech 

This equation, with the help of Equations 8.7 and 8.14, can be written as

 o Wother forces 5 W  5 DK 1 DU 1 DEint (8.17)

This reduced form of Equation 8.2 represents the nonisolated system model for a sys-
tem that possesses potential energy and within which a nonconservative force acts. 

Answer  In this case, the value of fkd as the block moves 
to x 5 0 is

fkd 5 (10.0 N)(0.020 m) 5 0.20 J

which is equal in magnitude to the kinetic energy at x 5 
0 for the frictionless case. (Verify it!). Therefore, all the 

kinetic energy has been transformed to internal energy 
by friction when the block arrives at x 5 0, and its speed 
at this point is v 5 0.
 In this situation as well as that in part (B), the speed 
of the block reaches a maximum at some position other 
than x 5 0. Problem 53 asks you to locate these positions.

Solve for vf : vf 5 Å
2
m

 1Ws 2 fkd 2

 

▸ 8.6 c o n t i n u e d
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Example 8.7   Crate Sliding Down a Ramp 

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and 
inclined at an angle of 30.08 as shown in Figure 8.10. The crate starts from 
rest at the top, experiences a constant friction force of magnitude 5.00 N,  
and continues to move a short distance on the horizontal floor after it 
leaves the ramp.

(A)  Use energy methods to determine the speed of the crate at the bot-
tom of the ramp.

Conceptualize  Imagine the crate sliding down the ramp in Figure 8.10. 
The larger the friction force, the more slowly the crate will slide.

Categorize  We identify the crate, the surface, and the Earth as an isolated 
system with a nonconservative force acting.

Analyze  Because vi 5 0, the initial kinetic energy of the system when the crate is at the top of the ramp is zero. If the y 
coordinate is measured from the bottom of the ramp (the final position of the crate, for which we choose the gravita-
tional potential energy of the system to be zero) with the upward direction being positive, then yi 5 0.500 m.

AM

S o l u T I o N

0.500 m

d � 1.00 m

30.0�

 � 0vi
S

vf
S

Figure 8.10  (Example 8.7) A crate slides 
down a ramp under the influence of gravity. 
The potential energy of the system decreases, 
whereas the kinetic energy increases.

Write the conservation of energy equation (Eq. 8.2) for 
this system:

DK 1 DU 1 DEint 5 0

Substitute for the energies: 11
2mvf

2 2 0 2 1 10 2 mgyi 2 1 fkd 5 0

Solve for vf :
(1)   vf 5 Å

2
m
1mgyi 2 fkd 2

Substitute numerical values:
vf 5 Å

2
3.00 kg

 3 13.00 kg 2 19.80 m/s2 2 10.500 m 2 2 15.00 N 2 11.00 m 2 4 5 2.54 m/s

Write the conservation of energy equation for this 
situation:

DK 1 DE int 5 0

Substitute for the energies: 10 2 1
2mvi

2 2 1 fkd 5 0

Solve for the distance d and substitute numerical values: d 5
mvi

2

2fk
5

13.00 kg 2 12.54 m/s 22

2 15.00 N 2 5 1.94 m

Finalize  For comparison, you may want to calculate the speed of the crate at the bottom of the ramp in the case in 
which the ramp is frictionless. Also notice that the increase in internal energy of the system as the crate slides down 
the ramp is fkd 5 (5.00 N)(1.00 m) 5 5.00 J. This energy is shared between the crate and the surface, each of which is 
a bit warmer than before.
 Also notice that the distance d the object slides on the horizontal surface is infinite if the surface is frictionless. Is 
that consistent with your conceptualization of the situation?

 A cautious worker decides that the speed of the crate when it arrives at the bottom of the ramp may 
be so large that its contents may be damaged. Therefore, he replaces the ramp with a longer one such that the new 
WHaT IF ?

(B)  How far does the crate slide on the horizontal floor if it continues to experience a friction force of magnitude 
5.00 N?

Analyze  This part of the problem is handled in exactly the same way as part (A), but in this case we can consider the 
mechanical energy of the system to consist only of kinetic energy because the potential energy of the system remains 
fixed.

S o l u T I o N
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continued

Find the length d of the new ramp: sin 25.08 5
0.500 m

d
   S   d 5

0.500 m
sin 25.08

5 1.18 m 

Find vf from Equation (1) in 
part (A):

vf 5 Å
2

3.00 kg
 3 13.00 kg 2 19.80 m/s2 2 10.500 m 2 2 15.00 N 2 11.18 m 2 4 5 2.42 m/s

The final speed is indeed lower than in the higher-angle case.

ramp makes an angle of 25.08 with the ground. Does this new ramp reduce the speed of the crate as it reaches the 
ground?

Answer  Because the ramp is longer, the friction force acts over a longer distance and transforms more of the mechani-
cal energy into internal energy. The result is a reduction in the kinetic energy of the crate, and we expect a lower speed 
as it reaches the ground.

 

▸ 8.7 c o n t i n u e d

Example 8.8   Block–Spring Collision 

A block having a mass of 0.80 kg is given an initial velocity vA 5 1.2 m/s to the right and collides with a spring whose 
mass is negligible and whose force constant is k 5 50 N/m as shown in Figure 8.11.

(A)  Assuming the surface to be frictionless, calculate the maximum compression of the spring after the collision.

Conceptualize  The various parts 
of Figure 8.11 help us imagine what 
the block will do in this situation. 
All motion takes place in a hori-
zontal plane, so we do not need to 
consider changes in gravitational 
potential energy.

Categorize  We identify the system 
to be the block and the spring and 
model it as an isolated system with no 
nonconservative forces acting.

Analyze  Before the collision, when 
the block is at A, it has kinetic 
energy and the spring is uncom-
pressed, so the elastic potential 
energy stored in the system is zero. Therefore, the total mechanical energy of the system before the collision is just 12mvA

2. 
After the collision, when the block is at C, the spring is fully compressed; now the block is at rest and so has zero kinetic 
energy. The elastic potential energy stored in the system, however, has its maximum value 12kx2 5 1

2kx2
max, where the origin 

of coordinates x 5 0 is chosen to be the equilibrium position of the spring and xmax is the maximum compression of the 
spring, which in this case happens to be xC. The total mechanical energy of the system is conserved because no noncon-
servative forces act on objects within the isolated system.

AM
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a

Figure 8.11  (Example 
8.8) A block sliding on a 
frictionless, horizontal 
surface collides with a 
light spring. (a) Initially, 
the mechanical energy is 
all kinetic energy. (b) The 
mechanical energy is the 
sum of the kinetic energy 
of the block and the elas-
tic potential energy in the 
spring. (c) The energy is 
entirely potential energy. 
(d) The energy is trans-
formed back to the kinetic 
energy of the block. 
The total energy of the 
system remains constant 
throughout the motion.

Write the conservation of energy equation for this situation: DK 1 DU 5 0 

Substitute for the energies: 10 2 1
2mvA

2 2 1 11
2kx 2

max 2 0 2 5 0

Solve for xmax and evaluate: xmax 5 Å
m
k

 vA 5 Å
0.80 kg

50 N/m
11.2 m/s 2 5 0.15 m
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(B)  Suppose a constant force of kinetic friction acts between the block and the surface, with mk 5 0.50. If the speed of 
the block at the moment it collides with the spring is vA 5 1.2 m/s, what is the maximum compression xC in the spring?

Conceptualize  Because of the friction force, we expect the compression of the spring to be smaller than in part (A) 
because some of the block’s kinetic energy is transformed to internal energy in the block and the surface.

Categorize  We identify the system as the block, the surface, and the spring. This is an isolated system but now involves a 
nonconservative force.

Analyze  In this case, the mechanical energy Emech 5 K 1 Us of the system is not conserved because a friction force acts 
on the block. From the particle in equilibrium model in the vertical direction, we see that n 5 mg.

S o l u T I o N

Substitute the initial and final energies: 10 2 1
2mvA

2 2 1 11
2kx 2

C 2 0 2 1 mkmgx C 5 0

Substitute numerical values: 50xC
2 1 2 10.50 2 10.80 2 19.80 2x C 2 10.80 2 11.2 22 5 0

50xC
2 1 7.84xC 2 1.15 5 0 

Write the conservation of energy equation for this 
situation:

DK 1 DU 1 DEint 5 0

Evaluate the magnitude of the friction force: fk 5 mkn 5 mkmg 

Solving the quadratic equation for xC gives xC 5 0.092 m and xC 5 20.25 m. The physically meaningful root is  
xC 5   0.092 m.

Finalize  The negative root does not apply to this situation because the block must be to the right of the origin (positive 
value of x) when it comes to rest. Notice that the value of 0.092 m is less than the distance obtained in the frictionless 
case of part (A) as we expected.

 

▸ 8.8 c o n t i n u e d

Rearrange the terms into a qaudratic equation: kxC
2 1 2mkmgx C 2 mvA

2 5 0

Example 8.9   Connected Blocks in Motion 

Two blocks are connected by a light string that passes over a frictionless pulley 
as shown in Figure 8.12. The block of mass m1 lies on a horizontal surface and is 
connected to a spring of force constant k. The system is released from rest when 
the spring is unstretched. If the hanging block of mass m2 falls a distance h before 
coming to rest, calculate the coefficient of kinetic friction between the block of 
mass m1 and the surface.

Conceptualize  The key word rest appears twice in the problem statement. This 
word suggests that the configurations of the system associated with rest are good 
candidates for the initial and final configurations because the kinetic energy of 
the system is zero for these configurations.

Categorize  In this situation, the system consists of the two blocks, the spring, the 
surface, and the Earth. This is an isolated system with a nonconservative force act-
ing. We also model the sliding block as a particle in equilibrium in the vertical direc-
tion, leading to n 5 m1g.

Analyze  We need to consider two forms of potential energy for the system, gravitational and elastic: DUg 5 Ugf 2 Ugi is 
the change in the system’s gravitational potential energy, and DUs 5 Usf 2 Usi is the change in the system’s elastic poten-
tial energy. The change in the gravitational potential energy of the system is associated with only the falling block 

AM

S o l u T I o N

k

h

m1

m2

Figure 8.12  (Example 8.9) As the 
hanging block moves from its high-
est elevation to its lowest, the system 
loses gravitational potential energy 
but gains elastic potential energy in 
the spring. Some mechanical energy 
is transformed to internal energy 
because of friction between the slid-
ing block and the surface.
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Write the appropriate reduction of Equation 8.2: (1)   DUg 1 DUs 1 DEint 5 0 

Substitute for the energies, noting that as the hanging block falls a 
distance h, the horizontally moving block moves the same distance h 
to the right, and the spring stretches by a distance h:

10 2 m2gh 2 1 11
2kh2 2 0 2 1 fkh 5 0 

Substitute for the friction force: 2m2gh 1 1
2kh2 1 mkm1gh 5 0 

Solve for mk: mk 5
m2g 2 1

2kh
m1g

 

Finalize  This setup represents a method of measuring the coefficient of kinetic friction between an object and some 
surface. Notice how we have solved the examples in this chapter using the energy approach. We begin with Equation 
8.2 and then tailor it to the physical situation. This process may include deleting terms, such as the kinetic energy term 
and all terms on the right-hand side of Equation 8.2 in this example. It can also include expanding terms, such as 
rewriting DU due to two types of potential energy in this example.

 

▸ 8.9 c o n t i n u e d

Conceptual Example 8.10    Interpreting the Energy Bars

The energy bar charts in Figure 8.13 show three instants in 
the motion of the system in Figure 8.12 and described in 
Example 8.9. For each bar chart, identify the configuration 
of the system that corresponds to the chart.

In Figure 8.13a, there is no kinetic energy in the system. 
Therefore, nothing in the system is moving. The bar chart 
shows that the system contains only gravitational potential 
energy and no internal energy yet, which corresponds to the 
configuration with the darker blocks in Figure 8.12 and rep-
resents the instant just after the system is released.
 In Figure 8.13b, the system contains four types of energy. 
The height of the gravitational potential energy bar is at 
50%, which tells us that the hanging block has moved half-
way between its position corresponding to Figure 8.13a and 
the position defined as y 5 0. Therefore, in this configura-
tion, the hanging block is between the dark and light images 
of the hanging block in Figure 8.12. The system has gained 
kinetic energy because the blocks are moving, elastic poten-
tial energy because the spring is stretching, and internal 
energy because of friction between the block of mass m1 and 
the surface.
 In Figure 8.13c, the height of the gravitational potential energy bar is zero, telling us that the hanging block is at y 5 
0. In addition, the height of the kinetic energy bar is zero, indicating that the blocks have stopped moving momentarily. 
Therefore, the configuration of the system is that shown by the light images of the blocks in Figure 8.12. The height of 
the elastic potential energy bar is high because the spring is stretched its maximum amount. The height of the internal 
energy bar is higher than in Figure 8.13b because the block of mass m1 has continued to slide over the surface after the 
configuration shown in Figure 8.13b.

S o l u T I o N
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Figure 8.13 (Conceptual Example 8.10) Three energy bar 
charts are shown for the system in Figure 8.12.

 

because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies 
of the system are zero, so DK 5 0.
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8.5 Power
Consider Conceptual Example 7.7 again, which involved rolling a refrigerator up a 
ramp into a truck. Suppose the man is not convinced the work is the same regard-
less of the ramp’s length and sets up a long ramp with a gentle rise. Although he 
does the same amount of work as someone using a shorter ramp, he takes longer 
to do the work because he has to move the refrigerator over a greater distance. 
Although the work done on both ramps is the same, there is something different 
about the tasks: the time interval during which the work is done.
 The time rate of energy transfer is called the instantaneous power P and is 
defined as

 P ;
dE
dt

 (8.18)

 We will focus on work as the energy transfer method in this discussion, but keep 
in mind that the notion of power is valid for any means of energy transfer discussed 
in Section 8.1. If an external force is applied to an object (which we model as a par-
ticle) and if the work done by this force on the object in the time interval Dt is W, 
the average power during this interval is

 Pavg 5
W
Dt

 

Therefore, in Conceptual Example 7.7, although the same work is done in rolling 
the refrigerator up both ramps, less power is required for the longer ramp.
 In a manner similar to the way we approached the definition of velocity and 
acceleration, the instantaneous power is the limiting value of the average power as 
Dt approaches zero:

 P 5 lim
Dt S 0

 W
Dt

5
dW
dt

  

where we have represented the infinitesimal value of the work done by dW. We find 
from Equation 7.3 that dW 5 F

S
? d rS . Therefore, the instantaneous power can be 

written

 P 5
dW
dt

5 F
S

?
d rS

dt
5 F

S
? vS  (8.19)

where vS 5 d rS/dt.
 The SI unit of power is joules per second (J/s), also called the watt (W) after 
James Watt:

 1 W 5 1 J/s 5 1 kg ? m2/s3 

 A unit of power in the U.S. customary system is the horsepower (hp):

 1 hp 5 746 W 

 A unit of energy (or work) can now be defined in terms of the unit of power. One 
kilowatt-hour (kWh) is the energy transferred in 1 h at the constant rate of 1 kW 5 
1 000 J/s. The amount of energy represented by 1 kWh is

 1 kWh 5 (103 W)(3 600 s) 5 3.60 3 106 J 

A kilowatt-hour is a unit of energy, not power. When you pay your electric bill, you 
are buying energy, and the amount of energy transferred by electrical transmission 
into a home during the period represented by the electric bill is usually expressed 
in kilowatt-hours. For example, your bill may state that you used 900 kWh of energy 
during a month and that you are being charged at the rate of 10¢ per kilowatt-hour. 
Your obligation is then $90 for this amount of energy. As another example, sup-
pose an electric bulb is rated at 100 W. In 1.00 h of operation, it would have energy 
transferred to it by electrical transmission in the amount of (0.100 kW)(1.00 h) 5  
0.100 kWh 5 3.60 3 105 J.

Definition of power  

The watt  

Pitfall Prevention 8.3
W, W, and watts Do not confuse 
the symbol W for the watt with 
the italic symbol W for work. Also, 
remember that the watt already 
represents a rate of energy trans-
fer, so “watts per second” does not 
make sense. The watt is the same as 
a joule per second.
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T
S

gS 

f
S

 

�

Motor

M

a b

Figure 8.14  (Example 
8.11) (a) The motor exerts 
an upward force T

S
 on the 

elevator car. The magnitude 
of this force is the total ten-
sion T in the cables connect-
ing the car and motor. The 
downward forces acting on 
the car are a friction force f

S
 

and the gravitational force 
F
S

g 5 M gS. (b) The free-body 
diagram for the elevator car.

Example 8.11   Power Delivered by an Elevator Motor 

An elevator car (Fig. 8.14a) has a mass of 1 600 kg and is carrying passengers having 
a combined mass of 200 kg. A constant friction force of 4 000 N retards its motion.

(A)  How much power must a motor deliver to lift the elevator car and its passengers 
at a constant speed of 3.00 m/s?

Conceptualize  The motor must supply the force of mag-
nitude T that pulls the elevator car upward.

Categorize  The friction force increases the power neces-
sary to lift the elevator. The problem states that the speed 
of the elevator is constant, which tells us that a 5 0. We 
model the elevator as a particle in equilibrium.

Analyze  The free-body diagram in Figure 8.14b specifies 
the upward direction as positive. The total mass M of the 
system (car plus passengers) is equal to 1 800 kg.

AM

S o l u T I o N

Using the particle in equilibrium model, 
apply Newton’s second law to the car:

o Fy 5 T 2 f 2 Mg 5 0

Solve for T : T 5 Mg 1 f

Use Equation 8.19 and that T
S

 is in the same 
direction as vS to find the power:

P 5 T
S

? vS 5 Tv 5 1Mg 1 f 2v

Substitute numerical values: P 5 [(1 800 kg)(9.80 m/s2) 1 (4 000 N)](3.00 m/s) 5   6.49 3 104 W

(B)  What power must the motor deliver at the instant the speed of the elevator is v if the motor is designed to provide 
the elevator car with an upward acceleration of 1.00 m/s2?

Conceptualize  In this case, the motor must supply the force of magnitude T that pulls the elevator car upward with an 
increasing speed. We expect that more power will be required to do that than in part (A) because the motor must now 
perform the additional task of accelerating the car.

Categorize  In this case, we model the elevator car as a particle under a net force because it is accelerating.

S o l u T I o N

Analyze  Using the particle under a net force model, 
apply Newton’s second law to the car:

o Fy 5 T 2 f 2 Mg 5 Ma 

Solve for T : T 5 M(a 1 g) 1 f 

Use Equation 8.19 to obtain the required power: P 5 Tv 5 [M(a 1 g) 1 f ]v 

Substitute numerical values: P 5 [(1 800 kg)(1.00 m/s2 1 9.80 m/s2) 1 4 000 N]v

5   (2.34 3 104)v

where v is the instantaneous speed of the car in meters per second and P is in watts.

Finalize  To compare with part (A), let v 5 3.00 m/s, giving a power of

 P 5 (2.34 3 104 N)(3.00 m/s) 5 7.02 3 104 W

which is larger than the power found in part (A), as expected.
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Summary

Definitions

 A nonisolated system is one for which 
energy crosses the boundary of the system. 
An isolated system is one for which no energy 
crosses the boundary of the system.

 The instantaneous power P is defined as the time rate of 
energy transfer:

 P ;
dE
dt

 (8.18)

Concepts and Principles

 If a friction force of magnitude fk acts over a dis-
tance d within a system, the change in internal energy 
of the system is  

 DEint 5 fkd (8.14)

 For a nonisolated system, we can equate the change 
in the total energy stored in the system to the sum of 
all the transfers of energy across the system boundary, 
which is a statement of conservation of energy. For an 
isolated system, the total energy is constant.

Analysis Models for Problem Solving 

 Isolated System (Energy).  The total energy 
of an isolated system is conserved, so

 DEsystem 5 0 (8.10)

which can be written as 

 DK 1 DU 1 DEint 5 0 (8.16)

If no nonconservative forces act within the 
isolated system, the mechanical energy of the 
system is conserved, so

 DEmech 5 0 (8.8)

which can be written as

 DK 1 DU 5 0 (8.6)

 Nonisolated System (Energy).  The most general statement 
describing the behavior of a nonisolated system is the conser-
vation of energy equation:

 DEsystem 5 o T (8.1)

Including the types of energy storage and energy transfer that 
we have discussed gives

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

For a specific problem, this equation is generally reduced to a 
smaller number of terms by eliminating the terms that are not 
appropriate to the situation.

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.

Kinetic energy
Potential energy
Internal energy

System
boundary

The total amount of energy 
in the system is constant. 
Energy transforms among 
the three possible types.



 conceptual Questions 235

 1. You hold a slingshot at arm’s length, pull the light elastic 
band back to your chin, and release it to launch a pebble 
horizontally with speed 200 cm/s. With the same proce-
dure, you fire a bean with speed 600 cm/s. What is the 
ratio of the mass of the bean to the mass of the pebble?  
(a) 19 (b) 13 (c) 1 (d) 3 (e) 9

 2. Two children stand on a platform at the top of a curving 
slide next to a backyard swimming pool. At the same 
moment the smaller child hops off to jump straight 
down into the pool, the bigger child releases herself 
at the top of the frictionless slide. (i) Upon reaching 
the water, the kinetic energy of the smaller child com-
pared with that of the larger child is (a) greater (b) less  
(c) equal. (ii) Upon reaching the water, the speed of 
the smaller child compared with that of the larger 
child is (a) greater (b) less (c) equal. (iii) During their 
motions from the platform to the water, the average 
acceleration of the smaller child compared with that of 
the larger child is (a) greater (b) less (c) equal.

 3. At the bottom of an air track tilted at angle u, a glider 
of mass m is given a push to make it coast a distance d 
up the slope as it slows down and stops. Then the glider 
comes back down the track to its starting point. Now the 
experiment is repeated with the same original speed but 
with a second identical glider set on top of the first. The 
airflow from the track is strong enough to support the 
stacked pair of gliders so that the combination moves 
over the track with negligible friction. Static friction 
holds the second glider stationary relative to the first 
glider throughout the motion. The coefficient of static 
friction between the two gliders is ms. What is the change 
in mechanical energy of the two-glider–Earth system in 
the up- and down-slope motion after the pair of gliders 
is released? Choose one. (a)  22msmg (b) 22mgd cos u  
(c) 22msmgd cos u (d) 0 (e) 12msmgd cos u

 4. An athlete jumping vertically on a trampoline leaves 
the surface with a velocity of 8.5 m/s upward. What 
maximum height does she reach? (a) 13 m (b) 2.3 m 
(c) 3.7 m (d)  0.27  m (e) The answer can’t be deter-
mined because the mass of the athlete isn’t given.

 5. Answer yes or no to each of the following questions. 
(a)  Can an object–Earth system have kinetic energy 
and not gravitational potential energy? (b) Can it have 
gravitational potential energy and not kinetic energy? 
(c) Can it have both types of energy at the same 
moment? (d) Can it have neither?

 6. In a laboratory model of cars skidding to a stop, data 
are measured for four trials using two blocks. The 
blocks have identical masses but different coefficients 
of kinetic friction with a table: mk 5 0.2 and 0.8. Each 
block is launched with speed vi 5 1 m/s and slides 
across the level table as the block comes to rest. This 
process represents the first two trials. For the next two 
trials, the procedure is repeated but the blocks are 
launched with speed vi 5 2 m/s. Rank the four trials 
(a) through (d) according to the stopping distance 
from largest to smallest. If the stopping distance is 
the same in two cases, give them equal rank. (a) vi 5  
1 m/s, mk 5 0.2 (b) vi 5 1 m/s, mk 5 0.8 (c) vi 5 2 m/s, 
mk 5 0.2 (d) vi 5 2 m/s, mk 5 0.8

 7. What average power is generated by a 70.0-kg moun-
tain climber who climbs a summit of height 325 m in 
95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W 
(e) 88.4 W

 8. A ball of clay falls freely to the hard floor. It does not 
bounce noticeably, and it very quickly comes to rest. 
What, then, has happened to the energy the ball had 
while it was falling? (a) It has been used up in produc-
ing the downward motion. (b) It has been transformed 
back into potential energy. (c) It has been transferred 
into the ball by heat. (d) It is in the ball and floor (and 
walls) as energy of invisible molecular motion. (e) Most 
of it went into sound.

 9. A pile driver drives posts into the ground by repeatedly 
dropping a heavy object on them. Assume the object is 
dropped from the same height each time. By what factor 
does the energy of the pile driver–Earth system change 
when the mass of the object being dropped is doubled?  
(a) 12 (b) 1; the energy is the same (c) 2 (d) 4

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. One person drops a ball from the top of a building 
while another person at the bottom observes its 
motion. Will these two people agree (a) on the value 
of the gravitational potential energy of the ball–
Earth system? (b) On the change in potential energy?  
(c) On the kinetic energy of the ball at some point in 
its motion?

 2. A car salesperson claims that a 300-hp engine is a nec-
essary option in a compact car, in place of the conven-
tional 130-hp engine. Suppose you intend to drive the 

car within speed limits (# 65 mi/h) on flat terrain. 
How would you counter this sales pitch?

 3. Does everything have energy? Give the reasoning for 
your answer.

 4. You ride a bicycle. In what sense is your bicycle 
solar-powered?

 5. A bowling ball is suspended from the ceiling of a lec-
ture hall by a strong cord. The ball is drawn away from 
its equilibrium position and released from rest at the 
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and, (ii) whenever possible, describe a natural pro-
cess in which the energy transfer or transformation 
occurs. Give details to defend your choices, such as 
identifying the system and identifying other output 
energy if the device or natural process has limited 
efficiency. (a) Chemical potential energy transforms 
into internal energy. (b) Energy transferred by elec-
trical transmission becomes gravitational potential 
energy. (c) Elastic potential energy transfers out of 
a system by heat. (d) Energy transferred by mechani-
cal waves does work on a system. (e) Energy carried 
by electromagnetic waves becomes kinetic energy in a 
system.

 9. A block is connected to a spring that is suspended 
from the ceiling. Assuming air resistance is ignored, 
describe the energy transformations that occur within 
the system consisting of the block, the Earth, and the 
spring when the block is set into vertical motion.

 10. In Chapter 7, the work–kinetic energy theorem, W 5 DK,  
was introduced. This equation states that work done on 
a system appears as a change in kinetic energy. It is a 
special-case equation, valid if there are no changes in 
any other type of energy such as potential or internal. 
Give two or three examples in which work is done on a 
system but the change in energy of the system is not a 
change in kinetic energy.

tip of the demonstrator’s nose as 
shown in Figure CQ8.5. The dem-
onstrator remains stationary. (a) Ex- 
plain why the ball does not strike 
her on its return swing. (b) Would 
this demonstrator be safe if the ball 
were given a push from its starting 
position at her nose?

 6. Can a force of static friction do 
work? If not, why not? If so, give an 
example.

 7. In the general conservation of 
energy equation, state which terms 
predominate in describing each of the following 
devices and processes. For a process going on continu-
ously, you may consider what happens in a 10-s time 
interval. State which terms in the equation represent 
original and final forms of energy, which would be 
inputs, and which outputs. (a) a slingshot firing a peb-
ble (b) a fire burning (c) a portable radio operating 
(d) a car braking to a stop (e) the surface of the Sun 
shining visibly (f) a person jumping up onto a chair

 8. Consider the energy transfers and transformations 
listed below in parts (a) through (e). For each part, 
(i) describe human-made devices designed to pro-
duce each of the energy transfers or transformations 

Section 8.1 analysis Model: Nonisolated System (Energy)

 1. For each of the following systems and time intervals, 
write the appropriate version of Equation 8.2, the 
conservation of energy equation. (a) the heating coils 
in your toaster during the first five seconds after you 
turn the toaster on (b) your automobile from just 
before you fill it with gasoline until you pull away 
from the gas station at speed v (c) your body while 
you sit quietly and eat a peanut butter and jelly sand-
wich for lunch (d) your home during five minutes of 
a sunny afternoon while the temperature in the home 
remains fixed

 2. A ball of mass m falls from a height h to the floor. 
(a) Write the appropriate version of Equation 8.2 for 
the system of the ball and the Earth and use it to cal-
culate the speed of the ball just before it strikes the 
Earth. (b) Write the appropriate version of Equation 
8.2 for the system of the ball and use it to calculate the 
speed of the ball just before it strikes the Earth.

S

S

Section 8.2 analysis Model: Isolated System (Energy)

 3. A block of mass 0.250 kg is placed on top of a light, ver-
tical spring of force constant 5 000 N/m and pushed 
downward so that the spring is compressed by 0.100 m. 
After the block is released from rest, it travels upward 
and then leaves the spring. To what maximum height 
above the point of release does it rise?

 4. A 20.0-kg cannonball is fired from a cannon with muz-
zle speed of 1 000 m/s at an angle of 37.08 with the hor-
izontal. A second ball is fired at an angle of 90.08. Use 
the isolated system model to find (a) the maximum 
height reached by each ball and (b) the total mechani-
cal energy of the ball–Earth sys-
tem at the maximum height for 
each ball. Let y 5 0 at the cannon.

 5. Review. A bead slides without fric-
tion around a loop-the-loop (Fig. 
P8.5). The bead is released from 
rest at a height h 5 3.50R. (a) What 
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Figure CQ8.5
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1.   full solution available in the Student 
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 M   Master It tutorial available in Enhanced 
WebAssign
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Enhanced WebAssign
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duced high-frequency “microtremor” vibrations that 
were rapidly damped and did not travel far. Assume 
0.01% of the total energy was carried away by long-
range seismic waves. The magnitude of an earthquake 
on the Richter scale is given by

M 5
log E 2 4.8

1.5
  where E is the seismic wave energy in joules. According 

to this model, what was the magnitude of the demon-
stration quake?

 11. Review. The system shown in Figure 
P8.11 consists of a light, inextensible 
cord, light, frictionless pulleys, and 
blocks of equal mass. Notice that 
block B is attached to one of the pul-
leys. The system is initially held at 
rest so that the blocks are at the same 
height above the ground. The blocks 
are then released. Find the speed of 
block A at the moment the vertical 
separation of the blocks is h.

Section 8.3 Situations Involving Kinetic Friction

 12. A sled of mass m is given a kick on a frozen pond. The 
kick imparts to the sled an initial speed of 2.00 m/s. 
The coefficient of kinetic friction between sled and ice 
is 0.100. Use energy considerations to find the distance 
the sled moves before it stops.

 13. A sled of mass m is given a kick on a frozen pond. The 
kick imparts to the sled an initial speed of v. The coef-
ficient of kinetic friction between sled and ice is mk. 
Use energy considerations to find the distance the sled 
moves before it stops.

 14. A crate of mass 10.0 kg is pulled up a rough incline with 
an initial speed of 1.50 m/s. The pulling force is 100 N 
parallel to the incline, which makes an angle of 20.08 
with the horizontal. The coefficient of kinetic friction 
is 0.400, and the crate is pulled 5.00 m. (a) How much 
work is done by the gravitational force on the crate?  
(b) Determine the increase in internal energy of the 
crate–incline system owing to friction. (c) How much 
work is done by the 100-N force on the crate? (d) What 
is the change in kinetic energy of the crate? (e) What is 
the speed of the crate after being pulled 5.00 m?

 15. A block of mass m 5 2.00 kg 
is attached to a spring of 
force constant k 5 500 N/m 
as shown in Figure P8.15. 
The block is pulled to a posi-
tion xi 5 5.00 cm to the right 
of equilibrium and released 
from rest. Find the speed 
the block has as it passes 
through equilibrium if (a) the horizontal surface is 
frictionless and (b) the coefficient of friction between 
block and surface is mk 5 0.350.

 16. A 40.0-kg box initially at rest is pushed 5.00 m along 
a rough, horizontal floor with a constant applied 
horizontal force of 130 N. The coefficient of friction 
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is its speed at point A? (b) How large is the normal 
force on the bead at point A if its mass is 5.00 g?

 6. A block of mass m 5 5.00 kg is released from point A 
and slides on the frictionless track shown in Figure 
P8.6. Determine (a) the block’s speed at points B and 
C and (b) the net work done by the gravitational force 
on the block as it moves from point A to point C.

2.00 m

5.00 m
3.20 m

m
A

B

C

Figure P8.6

 7. Two objects are connected 
by a light string passing over 
a light, frictionless pulley as 
shown in Figure P8.7. The 
object of mass m1 5 5.00 kg 
is released from rest at a 
height h 5 4.00 m above the 
table. Using the isolated sys-
tem model, (a) determine 
the speed of the object of 
mass m2 5 3.00  kg just as 
the 5.00-kg object hits the 
table and (b) find the maxi-
mum height above the table 
to which the 3.00-kg object 
rises.

 8. Two objects are connected by a light string passing 
over a light, frictionless pulley as shown in Figure P8.7. 
The object of mass m1 is released from rest at height 
h above the table. Using the isolated system model,  
(a) determine the speed of m2 just as m1 hits the table 
and (b) find the maximum height above the table to 
which m2 rises.

 9. A light, rigid rod is 77.0 cm long. Its top end is piv-
oted on a frictionless, horizontal axle. The rod hangs 
straight down at rest with a small, massive ball attached 
to its bottom end. You strike the ball, suddenly giving 
it a horizontal velocity so that it swings around in a full 
circle. What minimum speed at the bottom is required 
to make the ball go over the top of the circle?

 10. At 11:00 a.m. on September 7, 2001, more than one 
million British schoolchildren jumped up and down 
for one minute to simulate an earthquake. (a) Find 
the energy stored in the children’s bodies that was con-
verted into internal energy in the ground and their 
bodies and propagated into the ground by seismic 
waves during the experiment. Assume 1 050 000 chil-
dren of average mass 36.0 kg jumped 12 times each, 
raising their centers of mass by 25.0 cm each time and 
briefly resting between one jump and the next. (b) Of 
the energy that propagated into the ground, most pro-
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of the cannon? (b) At what point does the ball have 
maximum speed? (c) What is this maximum speed?

 22. The coefficient of friction 
between the block of mass 
m1 5 3.00 kg and the surface 
in Figure P8.22 is mk 5 0.400. 
The system starts from rest. 
What is the speed of the ball 
of mass m2 5 5.00 kg when it 
has fallen a distance h 5 
1.50 m?

 23. A 5.00-kg block is set into 
motion up an inclined plane 
with an initial speed of vi 5 
8.00 m/s (Fig. P8.23). The 
block comes to rest after trav-
eling d 5 3.00 m along the 
plane, which is inclined at 
an angle of u 5 30.08 to the 
horizontal. For this motion, 
determine (a) the change in the block’s kinetic energy,  
(b) the change in the potential energy of the block–
Earth system, and (c) the friction force exerted on the 
block (assumed to be constant). (d) What is the coef-
ficient of kinetic friction?

 24. A 1.50-kg object is held 1.20 m above a relaxed mass-
less, vertical spring with a force constant of 320 N/m. 
The object is dropped onto the spring. (a) How far does 
the object compress the spring? (b) What If? Repeat 
part (a), but this time assume a constant air-resistance 
force of 0.700 N acts on the object during its motion.  
(c) What If? How far does the object compress the spring 
if the same experiment is performed on the Moon, 
where g 5 1.63 m/s2 and air resistance is neglected?

 25. A 200-g block is pressed against a spring of force 
constant 1.40 kN/m until the block compresses the 
spring 10.0  cm. The spring rests at the bottom of a 
ramp inclined at 60.08 to the horizontal. Using energy 
considerations, determine how far up the incline the 
block moves from its initial position before it stops  
(a) if the ramp exerts no friction force on the block 
and (b) if the coefficient of kinetic friction is 0.400.

 26. An 80.0-kg skydiver jumps out of a balloon at an alti-
tude of 1 000 m and opens his parachute at an altitude 
of 200 m. (a) Assuming the total retarding force on the 
skydiver is constant at 50.0 N with the parachute closed 
and constant at 3 600 N with the parachute open, find 
the speed of the skydiver when he lands on the ground. 
(b) Do you think the skydiver will be injured? Explain. 
(c) At what height should the parachute be opened so 
that the final speed of the skydiver when he hits the 
ground is 5.00 m/s? (d) How realistic is the assumption 
that the total retarding force is constant? Explain.

 27. A child of mass m starts from rest and slides without 
friction from a height h along a slide next to a pool 
(Fig.  P8.27). She is launched from a height h/5 into 
the air over the pool. We wish to find the maximum 
height she reaches above the water in her projec-
tile motion. (a) Is the child–Earth system isolated or 
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between box and floor is 0.300. Find (a) the work done 
by the applied force, (b) the increase in internal energy 
in the box–floor system as a result of friction, (c) the 
work done by the normal force, (d) the work done by 
the gravitational force, (e) the change in kinetic energy 
of the box, and (f) the final speed of the box.

 17. A smooth circular hoop with a radius of 0.500 m is 
placed flat on the floor. A 0.400-kg particle slides 
around the inside edge of the hoop. The particle is 
given an initial speed of 8.00  m/s. After one revolu-
tion, its speed has dropped to 6.00 m/s because of fric-
tion with the floor. (a)  Find the energy transformed 
from mechanical to internal in the particle–hoop–
floor system as a result of friction in one revolution. 
(b) What is the total number of revolutions the particle 
makes before stopping? Assume the friction force 
remains constant during the entire motion.

Section 8.4 Changes in Mechanical Energy  
for Nonconservative Forces

 18. At time ti, the kinetic energy of a particle is 30.0 J and 
the potential energy of the system to which it belongs 
is 10.0 J. At some later time tf , the kinetic energy of 
the particle is 18.0 J. (a) If only conservative forces act 
on the particle, what are the potential energy and the 
total energy of the system at time tf ? (b) If the poten-
tial energy of the system at time tf is 5.00 J, are any non-
conservative forces acting on the particle? (c) Explain 
your answer to part (b).

 19. A boy in a wheelchair (total mass 47.0 kg) has speed 
1.40 m/s at the crest of a slope 2.60 m high and 12.4 m 
long. At the bottom of the slope his speed is 6.20 m/s. 
Assume air resistance and rolling resistance can be 
modeled as a constant friction force of 41.0 N. Find the 
work he did in pushing forward on his wheels during 
the downhill ride.

 20. As shown in Figure 
P8.20, a green bead of 
mass 25 g slides along a 
straight wire. The length 
of the wire from point 
A to point B is 0.600 m,  
and point A is 0.200 m 
higher than point B. A 
constant friction force 
of magnitude 0.025 0 N acts on the bead. (a) If the 
bead is released from rest at point A, what is its speed 
at point B? (b) A red bead of mass 25 g slides along a 
curved wire, subject to a friction force with the same 
constant magnitude as that on the green bead. If the 
green and red beads are released simultaneously from 
rest at point A, which bead reaches point B with a 
higher speed? Explain.

 21. A toy cannon uses a spring to project a 5.30-g soft rub-
ber ball. The spring is originally compressed by  
5.00 cm and has a force constant of 8.00 N/m. When 
the cannon is fired, the ball moves 15.0 cm through 
the horizontal barrel of the cannon, and the barrel 
exerts a constant friction force of 0.032 0 N on the ball. 
(a) With what speed does the projectile leave the barrel 
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lifetime of the energy-efficient bulb is 10 000 h and its 
purchase price is $4.50, whereas the conventional bulb 
has a lifetime of 750 h and costs $0.42. Determine the 
total savings obtained by using one energy-efficient 
bulb over its lifetime as opposed to using conventional 
bulbs over the same time interval. Assume an energy 
cost of $0.200 per kilowatt-hour.

 34. An electric scooter has a battery capable of supplying 
120  Wh of energy. If friction forces and other losses 
account for 60.0% of the energy usage, what altitude 
change can a rider achieve when driving in hilly ter-
rain if the rider and scooter have a combined weight of 
890 N?

 35. Make an order-of-magnitude estimate of the power a 
car engine contributes to speeding the car up to high-
way speed. In your solution, state the physical quanti-
ties you take as data and the values you measure or esti-
mate for them. The mass of a vehicle is often given in 
the owner’s manual.

 36. An older-model car accelerates from 0 to speed v in 
a time interval of Dt. A newer, more powerful sports 
car accelerates from 0 to 2v in the same time period. 
Assuming the energy coming from the engine appears 
only as kinetic energy of the cars, compare the power 
of the two cars.

 37. For saving energy, bicycling and walking are far more 
efficient means of transportation than is travel by 
automobile. For example, when riding at 10.0 mi/h, a 
cyclist uses food energy at a rate of about 400 kcal/h 
above what he would use if merely sitting still. (In exer-
cise physiology, power is often measured in kcal/h 
rather than in watts. Here 1 kcal 5 1 nutritionist’s Cal-
orie = 4 186 J.) Walking at 3.00 mi/h requires about 
220 kcal/h. It is interesting to compare these values 
with the energy consumption required for travel by car. 
Gasoline yields about 1.30 3 108 J/gal. Find the fuel 
economy in equivalent miles per gallon for a person  
(a) walking and (b) bicycling.

 38. A 650-kg elevator starts from rest. It moves upward 
for 3.00 s with constant acceleration until it reaches 
its cruising speed of 1.75 m/s. (a) What is the average 
power of the elevator motor during this time inter-
val? (b) How does this power compare with the motor 
power when the elevator moves at its cruising speed?

 39. A 3.50-kN piano is lifted by three workers at constant 
speed to an apartment 25.0 m above the street using a 
pulley system fastened to the roof of the building. Each 
worker is able to deliver 165 W of power, and the pulley 
system is 75.0% efficient (so that 25.0% of the mechan-
ical energy is transformed to other forms due to fric-
tion in the pulley). Neglecting the mass of the pulley, 
find the time required to lift the piano from the street 
to the apartment.

 40. Energy is conventionally measured in Calories as well 
as in joules. One Calorie in nutrition is one kilocalo-
rie, defined as 1 kcal 5 4 186 J. Metabolizing 1 g of fat 
can release 9.00 kcal. A student decides to try to lose 
weight by exercising. He plans to run up and down 
the stairs in a football stadium as fast as he can and 
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nonisolated? Why? (b)  Is there a nonconservative 
force acting within the system? (c) Define the con-
figuration of the system when the child is at the water 
level as having zero gravitational potential energy. 
Express the total energy of the system when the child 
is at the top of the waterslide. (d) Express the total 
energy of the system when the child is at the launch-
ing point. (e)  Express the total energy of the system 
when the child is at the highest point in her projectile 
motion. (f) From parts (c) and (d), determine her ini-
tial speed vi at the launch point in terms of g and h.  
(g) From parts (d), (e), and (f), determine her maxi-
mum airborne height ymax in terms of h and the launch 
angle u. (h) Would your answers be the same if the 
waterslide were not frictionless? Explain.

h

/5
ymax

h

u

Figure P8.27

Section 8.5 Power

 28. Sewage at a certain pumping station is raised vertically 
by 5.49 m at the rate of 1 890 000 liters each day. The 
sewage, of density 1 050 kg/m3, enters and leaves the 
pump at atmospheric pressure and through pipes of 
equal diameter. (a) Find the output mechanical power 
of the lift station. (b) Assume an electric motor con-
tinuously operating with average power 5.90 kW runs 
the pump. Find its efficiency.

 29. An 820-N Marine in basic training climbs a 12.0-m 
vertical rope at a constant speed in 8.00 s. What is his 
power output?

 30. The electric motor of a model train accelerates the 
train from rest to 0.620 m/s in 21.0 ms. The total mass 
of the train is 875 g. (a) Find the minimum power 
delivered to the train by electrical transmission from 
the metal rails during the acceleration. (b) Why is it 
the minimum power?

 31. When an automobile moves with constant speed down 
a highway, most of the power developed by the engine 
is used to compensate for the energy transformations 
due to friction forces exerted on the car by the air 
and the road. If the power developed by an engine is  
175 hp, estimate the total friction force acting on the 
car when it is moving at a speed of 29 m/s. One horse-
power equals 746 W.

 32. A certain rain cloud at an altitude of 1.75 km contains 
3.20 3 107 kg of water vapor. How long would it take a 
2.70-kW pump to raise the same amount of water from 
the Earth’s surface to the cloud’s position?

 33. An energy-efficient lightbulb, taking in 28.0 W of 
power, can produce the same level of brightness as a 
conventional lightbulb operating at power 100 W. The 
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 45. Review. A boy starts at rest and slides down a friction-
less slide as in Figure P8.45. The bottom of the track is 
a height h above the ground. The boy then leaves the 
track horizontally, striking the ground at a distance d 
as shown. Using energy methods, determine the initial 
height H of the boy above the ground in terms of h 
and d.

0 d

H

h

Figure P8.45

 46. Review. As shown in Fig-
ure P8.46, a light string 
that does not stretch 
changes from horizon-
tal to vertical as it passes 
over the edge of a table. 
The string connects m1, a  
3.50-kg block originally 
at rest on the horizontal 
table at a height h 5 1.20 m  
above the floor, to m2, a 
hanging 1.90-kg block originally a distance d 5 0.900 m 
above the floor. Neither the surface of the table nor its 
edge exerts a force of kinetic friction. The blocks start 
to move from rest. The sliding block m1 is projected hor-
izontally after reaching the edge of the table. The hang-
ing block m2 stops without bouncing when it strikes the 
floor. Consider the two blocks plus the Earth as the sys-
tem. (a) Find the speed at which m1 leaves the edge of 
the table. (b) Find the impact speed of m1 on the floor. 
(c) What is the shortest length of the string so that it 
does not go taut while m1 is in flight? (d) Is the energy 
of the system when it is released from rest equal to the 
energy of the system just before m1 strikes the ground? 
(e) Why or why not?

 47. A 4.00-kg particle moves along the x axis. Its position 
varies with time according to x 5 t 1 2.0t 3, where x 
is in meters and t is in seconds. Find (a) the kinetic 
energy of the particle at any time t, (b) the accelera-
tion of the particle and the force acting on it at time t, 
(c) the power being delivered to the particle at time t, 
and (d) the work done on the particle in the interval  
t 5 0 to t 5 2.00 s.

 48. Why is the following situation impossible? A softball pitcher 
has a strange technique: she begins with her hand at 
rest at the highest point she can reach and then quickly 
rotates her arm backward so that the ball moves 
through a half-circle path. She releases the ball when 
her hand reaches the bottom of the path. The pitcher 
maintains a component of force on the 0.180-kg  
ball of constant magnitude 12.0 N in the direction of 
motion around the complete path. As the ball arrives 
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as many times as necessary. To evaluate the program, 
suppose he runs up a flight of 80 steps, each 0.150 m 
high, in 65.0 s. For simplicity, ignore the energy he 
uses in coming down (which is small). Assume a typi-
cal efficiency for human muscles is 20.0%. This state-
ment means that when your body converts 100 J from 
metabolizing fat, 20 J goes into doing mechanical work 
(here, climbing stairs). The remainder goes into extra 
internal energy. Assume the student’s mass is 75.0 kg. 
(a) How many times must the student run the flight 
of stairs to lose 1.00 kg of fat? (b) What is his average 
power output, in watts and in horsepower, as he runs 
up the stairs? (c) Is this activity in itself a practical way 
to lose weight?

 41. A loaded ore car has a mass of 950 kg and rolls on rails 
with negligible friction. It starts from rest and is pulled 
up a mine shaft by a cable connected to a winch. The 
shaft is inclined at 30.08 above the horizontal. The car 
accelerates uniformly to a speed of 2.20 m/s in 12.0 s  
and then continues at constant speed. (a) What power 
must the winch motor provide when the car is mov-
ing at constant speed? (b) What maximum power must 
the winch motor provide? (c) What total energy has 
transferred out of the motor by work by the time the 
car moves off the end of the track, which is of length 
1 250 m?

additional Problems

 42. Make an order-of-magnitude estimate of your power 
output as you climb stairs. In your solution, state the 
physical quantities you take as data and the values you 
measure or estimate for them. Do you consider your 
peak power or your sustainable power?

 43. A small block of mass m 5 200 g is released from rest 
at point A along the horizontal diameter on the inside 
of a frictionless, hemispherical bowl of radius R 5  
30.0 cm (Fig.  P8.43). Calculate (a) the gravitational 
potential energy of the block–Earth system when the 
block is at point A relative to point B, (b) the kinetic 
energy of the block at point B, (c) its speed at point 
B, and (d) its kinetic energy and the potential energy 
when the block is at point C.

2R/3

R

A

B
C

Figure P8.43 Problems 43 and 44.

 44. What If? The block of mass m 5 200 g described in 
Problem 43 (Fig. P8.43) is released from rest at point 
A, and the surface of the bowl is rough. The block’s 
speed at point B is 1.50 m/s. (a) What is its kinetic 
energy at point B? (b) How much mechanical energy 
is transformed into internal energy as the block moves 
from point A to point B? (c) Is it possible to determine 
the coefficient of friction from these results in any sim-
ple manner? (d) Explain your answer to part (c).
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Jonathan do on the bicycle pedals within the Jona-
than–bicycle–Earth system during this process?

 52. Jonathan is riding a bicycle and encounters a hill 
of height h. At the base of the hill, he is traveling at 
a speed vi. When he reaches the top of the hill, he 
is traveling at a speed vf . Jonathan and his bicycle 
together have a mass m. Ignore friction in the bicycle 
mechanism and between the bicycle tires and the road.  
(a) What is the total external work done on the system 
of Jonathan and the bicycle between the time he starts 
up the hill and the time he reaches the top? (b) What 
is the change in potential energy stored in Jonathan’s 
body during this process? (c) How much work does  
Jonathan do on the bicycle pedals within the Jonathan– 
bicycle–Earth system during this process?

 53. Consider the block–spring–surface system in part (B) 
of Example 8.6. (a) Using an energy approach, find the 
position x of the block at which its speed is a maxi-
mum. (b) In the What If? section of this example, we 
explored the effects of an increased friction force of 
10.0 N. At what position of the block does its maximum 
speed occur in this situation?

 54. As it plows a parking lot, a 
snowplow pushes an ever-
growing pile of snow in 
front of it. Suppose a car 
moving through the air 
is similarly modeled as a 
cylinder of area A push-
ing a growing disk of air 
in front of it. The origi-
nally stationary air is set into motion at the constant 
speed v of the cylinder as shown in Figure P8.54. In a 
time interval Dt, a new disk of air of mass Dm must be 
moved a distance v Dt and hence must be given a kinetic 
energy 1

2 1Dm 2v2. Using this model, show that the car’s 
power loss owing to air resistance is 1

2rAv3 and that the 
resistive force acting on the car is 1

2rAv2, where r is the 
density of air. Compare this result with the empirical 
expression 12DrAv2 for the resistive force.

 55. A wind turbine on a wind farm turns in response to 
a force of high-speed air resistance, R 5 1

2DrAv2. The 
power available is P 5 Rv 5 1

2Drpr 2v3, where v is the 
wind speed and we have assumed a circular face for  
the wind turbine of radius r. Take the drag coefficient 
as D 5 1.00 and the density of air from the front end-
paper. For a wind turbine having r 5 1.50 m, calculate 
the power available with (a) v 5 8.00 m/s and (b) v 5  
24.0 m/s. The power delivered to the generator is lim-
ited by the efficiency of the system, about 25%. For 
comparison, a large American home uses about 2 kW 
of electric power.

 56. Consider the popgun in Example 8.3. Suppose the 
projectile mass, compression distance, and spring con-
stant remain the same as given or calculated in the 
example. Suppose, however, there is a friction force of 
magnitude 2.00 N acting on the projectile as it rubs 
against the interior of the barrel. The vertical length 
from point A to the end of the barrel is 0.600 m.  
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at the bottom of the path, it leaves her hand with a 
speed of 25.0 m/s.

 49. A skateboarder with his board can be modeled as a 
particle of mass 76.0 kg, located at his center of mass 
(which we will study in Chapter 9). As shown in Figure 
P8.49, the skateboarder starts from rest in a crouch-
ing position at one lip of a half-pipe (point A). The 
half-pipe is one half of a cylinder of radius 6.80 m with 
its axis horizontal. On his descent, the skateboarder 
moves without friction so that his center of mass moves 
through one quarter of a circle of radius 6.30 m.  
(a) Find his speed at the bottom of the half-pipe (point 
B). (b) Immediately after passing point B, he stands 
up and raises his arms, lifting his center of mass from 
0.500 m to 0.950 m above the concrete (point C). 
Next, the skateboarder glides upward with his center 
of mass moving in a quarter circle of radius 5.85 m. 
His body is horizontal when he passes point D, the 
far lip of the half-pipe. As he passes through point D, 
the speed of the skateboarder is 5.14 m/s. How much 
chemical potential energy in the body of the skate-
boarder was converted to mechanical energy in the 
skateboarder–Earth system when he stood up at point 
B? (c) How high above point D does he rise? Caution: 
Do not try this stunt yourself without the required skill 
and protective equipment.

A

B C

D

Figure P8.49

 50. Heedless of danger, a child leaps onto a pile of old 
mattresses to use them as a trampoline. His motion 
between two particular points is described by the 
energy conservation equation

1
2 146.0 kg 2 12.40 m/s 22 1 146.0 kg 2 19.80 m/s2 2 12.80 m 1 x 2 5

1
2 11.94 3 104 N/m 2x 2

  (a) Solve the equation for x. (b) Compose the state-
ment of a problem, including data, for which this 
equation gives the solution. (c) Add the two values of 
x obtained in part (a) and divide by 2. (d) What is the 
significance of the resulting value in part (c)?

 51. Jonathan is riding a bicycle and encounters a hill of 
height 7.30 m. At the base of the hill, he is traveling 
at 6.00 m/s. When he reaches the top of the hill, he is 
traveling at 1.00 m/s. Jonathan and his bicycle together 
have a mass of 85.0 kg. Ignore friction in the bicycle 
mechanism and between the bicycle tires and the road. 
(a) What is the total external work done on the system 
of Jonathan and the bicycle between the time he starts 
up the hill and the time he reaches the top? (b) What 
is the change in potential energy stored in Jonathan’s 
body during this process? (c) How much work does 
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load w a distance d/2 in time interval Dt/2, then 
(4) P/2 will move w/2 the given distance d in the 
given time interval Dt.

  (a) Show that Aristotle’s proportions are included in 
the equation P  Dt 5 bwd, where b is a proportionality 
constant. (b) Show that our theory of motion includes 
this part of Aristotle’s theory as one special case. In 
particular, describe a situation in which it is true, 
derive the equation representing Aristotle’s propor-
tions, and determine the proportionality constant.

 61. A child’s pogo stick (Fig. P8.61) 
stores energy in a spring with a 
force constant of 2.50 3   
104 N/m. At position A (xA 5 
20.100  m), the spring com-
pression is a maximum and the 
child is momentarily at rest. At 
position B (xB 5 0), the spring 
is relaxed and the child is mov-
ing upward. At position C, the 
child is again momentarily at 
rest at the top of the jump. The 
combined mass of child and 
pogo stick is 25.0 kg. Although 
the boy must lean forward to 
remain balanced, the angle is small, so let’s assume the 
pogo stick is vertical. Also assume the boy does not 
bend his legs during the motion. (a) Calculate the total 
energy of the child–stick–Earth system, taking both 
gravitational and elastic potential energies as zero for  
x 5 0. (b) Determine xC. (c) Calculate the speed of the 
child at x 5 0. (d) Determine the value of x for which 
the kinetic energy of the system is a maximum. (e) Cal-
culate the child’s maximum upward speed.

 62. A 1.00-kg object slides 
to the right on a sur-
face having a coeffi-
cient of kinetic friction 
0.250 (Fig. P8.62a). 
The object has a speed 
of vi 5 3.00 m/s when 
it makes contact with 
a light spring (Fig. 
P8.62b) that has a force 
constant of 50.0  N/m. 
The object comes to 
rest after the spring 
has been compressed 
a distance d (Fig. 
P8.62c). The object is 
then forced toward the 
left by the spring (Fig. 
P8.62d) and continues 
to move in that direc-
tion beyond the spring’s unstretched position. Finally, 
the object comes to rest a distance D to the left of the 
unstretched spring (Fig. P8.62e). Find (a) the distance of 
compression d, (b) the speed v at the unstretched posi-
tion when the object is moving to the left (Fig. P8.62d), 
and (c) the distance D where the object comes to rest.
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k

d

D

i

b

c

d

e

a

vS

vS

Svf � 0

Sv � 0

m

Figure P8.62

W

(a) After the spring is compressed and the popgun 
fired, to what height does the projectile rise above 
point B? (b) Draw four energy bar charts for this situa-
tion, analogous to those in Figures 8.6c–d.

 57. As the driver steps on the gas pedal, a car of mass  
1 160 kg accelerates from rest. During the first few sec-
onds of motion, the car’s acceleration increases with 
time according to the expression

a 5 1.16t 2 0.210t 2 1 0.240t 3

  where t is in seconds and a is in m/s2. (a) What is the 
change in kinetic energy of the car during the interval 
from t 5 0 to t 5 2.50 s? (b) What is the minimum aver-
age power output of the engine over this time interval? 
(c) Why is the value in part (b) described as the mini-
mum value?

 58. Review. Why is the following situation impossible? A new 
high-speed roller coaster is claimed to be so safe that 
the passengers do not need to wear seat belts or any 
other restraining device. The coaster is designed with 
a vertical circular section over which the coaster trav-
els on the inside of the circle so that the passengers 
are upside down for a short time interval. The radius 
of the circular section is 12.0 m, and the coaster 
enters the bottom of the circular section at a speed of  
22.0 m/s. Assume the coaster moves without friction 
on the track and model the coaster as a particle.

 59. A horizontal spring attached to a wall has a force con-
stant of k 5 850 N/m. A block of mass m 5 1.00 kg 
is attached to the spring and rests on a frictionless, 
horizontal surface as in Figure P8.59. (a) The block 
is pulled to a position xi 5 6.00 cm from equilibrium 
and released. Find the elastic potential energy stored 
in the spring when the block is 6.00 cm from equilib-
rium and when the block passes through equilibrium. 
(b) Find the speed of the block as it passes through the 
equilibrium point. (c) What is the speed of the block 
when it is at a position xi/2 5 3.00 cm? (d) Why isn’t 
the answer to part (c) half the answer to part (b)?

x � xix � xi/2

k
m

x � 0

Figure P8.59

 60. More than 2 300 years ago, the Greek teacher Aristo-
tle wrote the first book called Physics. Put into more 
precise terminology, this passage is from the end of its 
Section Eta:

Let P be the power of an agent causing motion; 
w, the load moved; d, the distance covered; and 
Dt, the time interval required. Then (1) a power 
equal to P will in an interval of time equal to Dt 
move w/2 a distance 2d; or (2) it will move w/2 
the given distance d in the time interval Dt/2. 
Also, if (3) the given power P moves the given 
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The line from the center of curvature of the cap to 
the pumpkin makes an angle ui 5 08 with the vertical. 
While you happen to be standing nearby in the middle 
of a rainy night, a breath of wind makes the pumpkin 
start sliding downward from rest. It loses contact with 
the cap when the line from the center of the hemi-
sphere to the pumpkin makes a certain angle with the 
vertical. What is this angle?

 67. Review. The mass of a car is 1 500 kg. The shape of the 
car’s body is such that its aerodynamic drag coefficient 
is D 5 0.330 and its frontal area is 2.50 m2. Assuming 
the drag force is proportional to v2 and ignoring other 
sources of friction, calculate the power required to 
maintain a speed of 100 km/h as the car climbs a long 
hill sloping at 3.208.

 68. A pendulum, comprising a light 
string of length L and a small 
sphere, swings in the vertical 
plane. The string hits a peg located 
a distance d below the point of 
suspension (Fig. P8.68). (a) Show 
that if the sphere is released from 
a height below that of the peg, it 
will return to this height after the 
string strikes the peg. (b) Show that if the pendulum is 
released from rest at the horizontal position (u 5 908) 
and is to swing in a complete circle centered on the peg, 
the minimum value of d must be 3L/5.

 69. A block of mass M rests on a table. It is fastened to the 
lower end of a light, vertical spring. The upper end of 
the spring is fastened to a block of mass m. The upper 
block is pushed down by an additional force 3mg, so 
the spring compression is 4mg/k. In this configuration,  
the upper block is released from rest. The spring lifts the  
lower block off the table. In terms of m, what is the 
greatest possible value for M?

 70. Review. Why is the follow-
ing situation impossible? 
An athlete tests her hand 
strength by having an 
assistant hang weights 
from her belt as she hangs 
onto a horizontal bar 
with her hands. When 
the weights hanging on 
her belt have increased 
to 80% of her body 
weight, her hands can 
no longer support her 
and she drops to the floor. Frustrated at not meeting 
her hand-strength goal, she decides to swing on a tra-
peze. The trapeze consists of a bar suspended by two 
parallel ropes, each of length ,, allowing performers to 
swing in a vertical circular arc (Fig. P8.70). The athlete 
holds the bar and steps off an elevated platform, start-
ing from rest with the ropes at an angle ui 5 60.08 with 
respect to the vertical. As she swings several times back 
and forth in a circular arc, she forgets her frustration 
related to the hand-strength test. Assume the size of the 
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 63. A 10.0-kg block is released from rest at point A in Fig-
ure P8.63. The track is frictionless except for the por-
tion between points B and C, which has a length of 
6.00 m. The block travels down the track, hits a spring 
of force constant 2 250 N/m, and compresses the 
spring 0.300 m from its equilibrium position before 
coming to rest momentarily. Determine the coefficient 
of kinetic friction between the block and the rough 
surface between points B and C.

3.00 m
6.00 m

A

B C

Figure P8.63

 64. A block of mass m1 5 20.0 kg is 
connected to a block of mass 
m2  5 30.0 kg by a massless 
string that passes over a light, 
frictionless pulley. The 30.0-kg 
block is connected to a spring 
that has negligible mass and a 
force constant of k 5 250 N/m 
as shown in Figure P8.64. The 
spring is unstretched when 
the system is as shown in the figure, and the incline 
is frictionless. The 20.0-kg block is pulled a distance 
h 5 20.0 cm down the incline of angle u 5 40.08 and 
released from rest. Find the speed of each block when 
the spring is again unstretched.

 65. A block of mass 0.500 kg is pushed against a horizon-
tal spring of negligible mass until the spring is com-
pressed a distance x (Fig. P8.65). The force constant of 
the spring is 450 N/m. When it is released, the block 
travels along a frictionless, horizontal surface to point 
A, the bottom of a vertical circular track of radius R 5 
1.00 m, and continues to move up the track. The block’s 
speed at the bottom of the track is vA 5 12.0 m/s, 
and the block experiences an average friction force of  
7.00 N while sliding up the track. (a) What is x? (b) If 
the block were to reach the top of the track, what would 
be its speed at that point? (c) Does the block actually 
reach the top of the track, or does it fall off before 
reaching the top?

k
m

x

A

R
AvS

Figure P8.65

 66. Review. As a prank, someone has balanced a pumpkin 
at the highest point of a grain silo. The silo is topped 
with a hemispherical cap that is frictionless when wet. 
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the maximum value of the coefficient of friction that 
would allow the block to return to x 5 0?

 76. In bicycling for aerobic exercise, a woman wants her 
heart rate to be between 136 and 166 beats per min-
ute. Assume that her heart rate is directly proportional 
to her mechanical power output within the range rel-
evant here. Ignore all forces on the woman–bicycle 
system except for static friction forward on the drive 
wheel of the bicycle and an air resistance force propor-
tional to the square of her speed. When her speed is 
22.0 km/h, her heart rate is 90.0 beats per minute. In 
what range should her speed be so that her heart rate 
will be in the range she wants?

 77. Review. In 1887 in Bridgeport, Connecticut, C. J. 
Belknap built the water slide shown in Figure P8.77. A 
rider on a small sled, of total mass 80.0 kg, pushed off 
to start at the top of the slide (point A) with a speed 
of 2.50 m/s. The chute was 9.76 m high at the top and  
54.3 m long. Along its length, 725 small wheels made 
friction negligible. Upon leaving the chute horizon-
tally at its bottom end (point C), the rider skimmed 
across the water of Long Island Sound for as much 
as 50 m, “skipping along like a flat pebble,” before at 
last coming to rest and swimming ashore, pulling his 
sled after him. (a) Find the speed of the sled and rider 
at point C. (b) Model the force of water friction as a 
constant retarding force acting on a particle. Find the 
magnitude of the friction force the water exerts on 
the sled. (c) Find the magnitude of the force the chute 
exerts on the sled at point B. (d) At point C, the chute 
is horizontal but curving in the vertical plane. Assume 
its radius of curvature is 20.0 m. Find the force the 
chute exerts on the sled at point C.
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Figure P8.77
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 78. In a needle biopsy, a narrow strip of tissue is extracted 
from a patient using a hollow needle. Rather than 
being pushed by hand, to ensure a clean cut the needle 
can be fired into the patient’s body by a spring. Assume 
that the needle has mass 5.60 g, the light spring has 
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BIO

performer’s body is small compared to the length , and 
air resistance is negligible.

 71. While running, a person transforms about 0.600 J of 
chemical energy to mechanical energy per step per 
kilogram of body mass. If a 60.0-kg runner trans-
forms energy at a rate of 70.0 W during a race, how 
fast is the person running? Assume that a running 
step is 1.50 m long.

 72. A roller-coaster car shown in Figure P8.72 is released 
from rest from a height h and then moves freely with 
negligible friction. The roller-coaster track includes a 
circular loop of radius R in a vertical plane. (a) First 
suppose the car barely makes it around the loop; at the 
top of the loop, the riders are upside down and feel 
weightless. Find the required height h of the release 
point above the bottom of the loop in terms of R.  
(b) Now assume the release point is at or above the 
minimum required height. Show that the normal force 
on the car at the bottom of the loop exceeds the nor-
mal force at the top of the loop by six times the car’s 
weight. The normal force on each rider follows the 
same rule. Such a large normal force is dangerous 
and very uncomfortable for the riders. Roller coasters 
are therefore not built with circular loops in vertical 
planes. Figure P6.17 (page 170) shows an actual design.

Rh

Figure P8.72

 73. A ball whirls around in a vertical circle at the end of a 
string. The other end of the string is fixed at the cen-
ter of the circle. Assuming the total energy of the ball– 
Earth system remains constant, show that the tension 
in the string at the bottom is greater than the tension 
at the top by six times the ball’s weight.

 74. An airplane of mass 1.50 3 104 kg is in level flight, ini-
tially moving at 60.0 m/s. The resistive force exerted 
by air on the airplane has a magnitude of 4.0 3 104 N. 
By Newton’s third law, if the engines exert a force on 
the exhaust gases to expel them out of the back of the 
engine, the exhaust gases exert a force on the engines 
in the direction of the airplane’s travel. This force is 
called thrust, and the value of the thrust in this situa-
tion is 7.50 3 104 N. (a) Is the work done by the exhaust 
gases on the airplane during some time interval equal 
to the change in the airplane’s kinetic energy? Explain. 
(b) Find the speed of the airplane after it has traveled 
5.0 3 102 m.

 75. Consider the block–spring collision discussed in 
Example 8.8. (a) For the situation in part (B), in which 
the surface exerts a friction force on the block, show 
that the block never arrives back at x 5 0. (b) What is 
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a wind exerting constant horizontal force F
S

, on a vine 
having length L and initially making an angle u with 
the vertical (Fig. P8.81). Take D 5 50.0 m, F 5 110 N, 
L 5 40.0 m, and u 5 50.08. (a) With what minimum 
speed must Jane begin her swing to just make it to the 
other side? (b) Once the rescue is complete, Tarzan 
and Jane must swing back across the river. With what 
minimum speed must they begin their swing? Assume 
Tarzan has a mass of 80.0 kg.

Wind L

D

Jane

u

f
F
S

TarzanTarzan

Figure P8.81

 82. A ball of mass m 5 300 g is connected by a strong 
string of length L 5 80.0 cm to a pivot and held in 
place with the string vertical. A wind exerts constant 
force F to the right on the ball as shown in Figure 
P8.82. The ball is released from rest. The wind makes 
it swing up to attain maximum height H above its 
starting point before it swings down again. (a) Find H 
as a function of F. Evaluate H for (b) F 5 1.00 N and 
(c) F 5 10.0 N. How does H behave (d) as F approaches 
zero and (e) as F approaches infinity? (f) Now con-
sider the equilibrium height of the ball with the wind 
blowing. Determine it as a function of F. Evaluate the 
equilibrium height for (g) F 5 10 N and (h) F going 
to infinity.
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Figure P8.82

 83. What If? Consider the roller coaster described in Prob-
lem 58. Because of some friction between the coaster 
and the track, the coaster enters the circular section at 
a speed of 15.0 m/s rather than the 22.0 m/s in Prob-
lem 58. Is this situation more or less dangerous for the 
passengers than that in Problem 58? Assume the circu-
lar section is still frictionless.

Q/C

force constant 375 N/m, and the spring is originally 
compressed 8.10 cm to project the needle horizontally 
without friction. After the needle leaves the spring, 
the tip of the needle moves through 2.40 cm of skin 
and soft tissue, which exerts on it a resistive force of  
7.60 N. Next, the needle cuts 3.50 cm into an organ, 
which exerts on it a backward force of 9.20 N. Find  
(a) the maximum speed of the needle and (b) the 
speed at which the flange on the back end of the nee-
dle runs into a stop that is set to limit the penetration 
to 5.90 cm.

Challenge Problems

 79. Review. A uniform board of length L is sliding along a 
smooth, frictionless, horizontal plane as shown in Fig-
ure P8.79a. The board then slides across the bound-
ary with a rough horizontal surface. The coefficient of 
kinetic friction between the board and the second sur-
face is mk. (a) Find the acceleration of the board at the 
moment its front end has traveled a distance x beyond 
the boundary. (b) The board stops at the moment its 
back end reaches the boundary as shown in Figure 
P8.79b. Find the initial speed v of the board.

BoundaryvS

a

b

L

v � 0

Figure P8.79

 80. Starting from rest, a 64.0-kg person bungee jumps 
from a tethered hot-air balloon 65.0 m above the 
ground. The bungee cord has negligible mass and 
unstretched length 25.8 m. One end is tied to the 
basket of the balloon and the other end to a har-
ness around the person’s body. The cord is modeled 
as a spring that obeys Hooke’s law with a spring con-
stant of 81.0 N/m, and the person’s body is modeled 
as a particle. The hot-air balloon does not move.  
(a) Express the gravitational potential energy of the 
person–Earth system as a function of the person’s 
variable height y above the ground. (b) Express the 
elastic potential energy of the cord as a function of 
y. (c) Express the total potential energy of the per-
son–cord–Earth system as a function of y. (d) Plot a 
graph of the gravitational, elastic, and total potential 
energies as functions of y. (e) Assume air resistance 
is negligible. Determine the minimum height of the 
person above the ground during his plunge. (f) Does 
the potential energy graph show any equilibrium posi-
tion or positions? If so, at what elevations? Are they 
stable or unstable? (g) Determine the jumper’s maxi-
mum speed.

 81. Jane, whose mass is 50.0 kg, needs to swing across a 
river (having width D) filled with person-eating croco-
diles to save Tarzan from danger. She must swing into 
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cord, tied to a harness around his body, to stop his fall 
at a point 10.0 m above the ground. Model his body as 
a particle and the cord as having negligible mass and 
obeying Hooke’s law. In a preliminary test he finds that 
when hanging at rest from a 5.00-m length of the cord, 
his body weight stretches it by 1.50 m. He will drop 
from rest at the point where the top end of a longer 
section of the cord is attached to the stationary bal-
loon. (a) What length of cord should he use? (b) What 
maximum acceleration will he experience?

 84. A uniform chain of length 8.00 m initially lies stretched 
out on a horizontal table. (a) Assuming the coefficient 
of static friction between chain and table is 0.600, 
show that the chain will begin to slide off the table if 
at least 3.00 m of it hangs over the edge of the table.  
(b) Determine the speed of the chain as its last link 
leaves the table, given that the coefficient of kinetic 
friction between the chain and the table is 0.400.

 85. A daredevil plans to bungee jump from a balloon  
65.0 m above the ground. He will use a uniform elastic 
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9.1 Linear Momentum

9.2 Analysis Model: Isolated 
System (Momentum)

9.3 Analysis Model: Nonisolated 
System (Momentum)

9.4 Collisions in One Dimension

9.5 Collisions in Two Dimensions

9.6 The Center of Mass

9.7 Systems of Many Particles

9.8 Deformable Systems

9.9 Rocket Propulsion

Linear Momentum  
and Collisions

The concept of momentum allows 
the analysis of car collisions even 
without detailed knowledge of the 
forces involved. Such analysis can 
determine the relative velocity  
of the cars before the collision, 
and in addition aid engineers in 
designing safer vehicles. (The 
English translation of the German 
text on the side of the trailer in  
the background is: “Pit stop for 
your vehicle.”) (AP Photos/Keystone/

Regina Kuehne)

C h a p t e r 

9

Consider what happens when two cars collide as in the opening photograph for this 
chapter. Both cars change their motion from having a very large velocity to being at rest 
because of the collision. Because each car experiences a large change in velocity over a very 
short time interval, the average force on it is very large. By Newton’s third law, each of the 
cars experiences a force of the same magnitude. By Newton’s second law, the results of 
those forces on the motion of the car depends on the mass of the car.
 One of the main objectives of this chapter is to enable you to understand and analyze 
such events in a simple way. First, we introduce the concept of momentum, which is useful 
for describing objects in motion. The momentum of an object is related to both its mass 
and its velocity. The concept of momentum leads us to a second conservation law, that 
of conservation of momentum. In turn, we identify new momentum versions of analysis 
models for isolated and nonisolated system. These models are especially useful for treating 
problems that involve collisions between objects and for analyzing rocket propulsion.  
This chapter also introduces the concept of the center of mass of a system of particles.  
We find that the motion of a system of particles can be described by the motion of one 
particle located at the center of mass that represents the entire system.

9.1 Linear Momentum
In Chapter 8, we studied situations that are difficult to analyze with Newton’s laws. 
We were able to solve problems involving these situations by identifying a system and 
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applying a conservation principle, conservation of energy. Let us consider another 
situation and see if we can solve it with the models we have developed so far:

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg arrow 
horizontally at 85 m/s. With what velocity does the archer move across the ice 
after firing the arrow?

From Newton’s third law, we know that the force that the bow exerts on the arrow 
is paired with a force in the opposite direction on the bow (and the archer). This 
force causes the archer to slide backward on the ice with the speed requested in the 
problem. We cannot determine this speed using motion models such as the particle 
under constant acceleration because we don’t have any information about the accel-
eration of the archer. We cannot use force models such as the particle under a net 
force because we don’t know anything about forces in this situation. Energy models 
are of no help because we know nothing about the work done in pulling the bow-
string back or the elastic potential energy in the system related to the taut bowstring.
 Despite our inability to solve the archer problem using models learned so far, 
this problem is very simple to solve if we introduce a new quantity that describes 
motion, linear momentum. To generate this new quantity, consider an isolated system 
of two particles (Fig. 9.1) with masses m1 and m2 moving with velocities vS1 and vS2 at 
an instant of time. Because the system is isolated, the only force on one particle is 
that from the other particle. If a force from particle 1 (for example, a gravitational 
force) acts on particle 2, there must be a second force—equal in magnitude but 
opposite in direction—that particle 2 exerts on particle 1. That is, the forces on the 
particles form a Newton’s third law action–reaction pair, and F

S

12 5 2 F
S

21. We can 
express this condition as

F
S

21 1 F
S

12 5 0

From a system point of view, this equation says that if we add up the forces on the 
particles in an isolated system, the sum is zero.
 Let us further analyze this situation by incorporating Newton’s second law. At 
the instant shown in Figure 9.1, the interacting particles in the system have accel-
erations corresponding to the forces on them. Therefore, replacing the force on 
each particle with maS for the particle gives

m1 aS1 1 m2 aS2 5 0

Now we replace each acceleration with its definition from Equation 4.5:

m1 
d vS1

dt
1 m2 

d vS2

dt
5 0

If the masses m1 and m2 are constant, we can bring them inside the derivative oper-
ation, which gives

d 1m1 vS1 2
dt

1
d 1m2 vS2 2

dt
5 0

 
d
dt
1m1 vS1 1 m2 vS2 2 5 0 (9.1)

Notice that the derivative of the sum m1 vS1 1 m2 vS2 with respect to time is zero. 
Consequently, this sum must be constant. We learn from this discussion that the 
quantity mvS for a particle is important in that the sum of these quantities for an 
isolated system of particles is conserved. We call this quantity linear momentum:

The linear momentum of a particle or an object that can be modeled as a 
particle of mass m moving with a velocity vS is defined to be the product of the 
mass and velocity of the particle:

 pS ; mvS (9.2)

Definition of linear  
momentum of a particle

m2

m1

F21
S

F12
S

v1
S

v2
S

Figure 9.1  Two particles inter-
act with each other. According to 
Newton’s third law, we must have 
F
S

12 5 2 F
S

21.
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Linear momentum is a vector quantity because it equals the product of a scalar 
quantity m and a vector quantity vS. Its direction is along vS, it has dimensions 
ML/T, and its SI unit is kg ? m/s.
 If a particle is moving in an arbitrary direction, pS has three components, and 
Equation 9.2 is equivalent to the component equations

px 5 mvx  py 5 mvy  pz 5 mvz

As you can see from its definition, the concept of momentum1 provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For 
example, the momentum of a bowling ball is much greater than that of a tennis ball 
moving at the same speed. Newton called the product mvS quantity of motion; this 
term is perhaps a more graphic description than our present-day word momentum, 
which comes from the Latin word for movement.
 We have seen another quantity, kinetic energy, that is a combination of mass 
and speed. It would be a legitimate question to ask why we need another quan-
tity, momentum, based on mass and velocity. There are clear differences between 
kinetic energy and momentum. First, kinetic energy is a scalar, whereas momen-
tum is a vector. Consider a system of two equal-mass particles heading toward each 
other along a line with equal speeds. There is kinetic energy associated with this 
system because members of the system are moving. Because of the vector nature 
of momentum, however, the momentum of this system is zero. A second major 
difference is that kinetic energy can transform to other types of energy, such as 
potential energy or internal energy. There is only one type of linear momentum, 
so we see no such transformations when using a momentum approach to a prob-
lem. These differences are sufficient to make models based on momentum sepa-
rate from those based on energy, providing an independent tool to use in solving 
problems.
 Using Newton’s second law of motion, we can relate the linear momentum of a 
particle to the resultant force acting on the particle. We start with Newton’s second 
law and substitute the definition of acceleration:

 a F
S

5 maS 5 m 
d vS

dt
 

In Newton’s second law, the mass m is assumed to be constant. Therefore, we can 
bring m inside the derivative operation to give us

 a F
S

5
d 1mvS 2

dt
5

d pS

dt
 (9.3)

This equation shows that the time rate of change of the linear momentum of a 
particle is equal to the net force acting on the particle. In Chapter 5, we identified 
force as that which causes a change in the motion of an object (Section 5.2). In 
Newton’s second law (Eq. 5.2), we used acceleration aS to represent the change in 
motion. We see now in Equation 9.3 that we can use the derivative of momentum pS 
with respect to time to represent the change in motion.
 This alternative form of Newton’s second law is the form in which Newton pre-
sented the law, and it is actually more general than the form introduced in Chapter 
5. In addition to situations in which the velocity vector varies with time, we can use 
Equation 9.3 to study phenomena in which the mass changes. For example, the 
mass of a rocket changes as fuel is burned and ejected from the rocket. We cannot 
use g F

S
5 maS to analyze rocket propulsion; we must use a momentum approach, 

as we will show in Section 9.9.

WW  Newton’s second law  
for a particle

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter 11, we shall use 
the term angular momentum for a different quantity when dealing with rotational motion.
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Q uick Quiz 9.1  Two objects have equal kinetic energies. How do the magnitudes 
of their momenta compare? (a) p1 , p2 (b) p1 5 p2 (c) p1 . p2 (d) not enough 
information to tell

Q uick Quiz 9.2   Your physical education teacher throws a baseball to you at a cer-
tain speed and you catch it. The teacher is next going to throw you a medicine 
ball whose mass is ten times the mass of the baseball. You are given the follow-
ing choices: You can have the medicine ball thrown with (a) the same speed 
as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank 
these choices from easiest to hardest to catch.

Pitfall Prevention 9.1
Momentum of an Isolated System  
Is Conserved Although the 
momentum of an isolated system is 
conserved, the momentum of one 
particle within an isolated system is 
not necessarily conserved because 
other particles in the system may 
be interacting with it. Avoid apply-
ing conservation of momentum to 
a single particle.

9.2 Analysis Model: Isolated System (Momentum)
Using the definition of momentum, Equation 9.1 can be written

d
dt
1pS1 1 pS2 2 5 0

Because the time derivative of the total momentum pStot 5 pS1 1 pS2 is zero, we con-
clude that the total momentum of the isolated system of the two particles in Figure 
9.1 must remain constant:

 pStot 5 constant (9.4)

or, equivalently, over some time interval,

 DpStot 5 0 (9.5)

Equation 9.5 can be written as

 pS1i 1 pS2i 5 pS1f 1 pS2f  

where pS1i and pS2i are the initial values and pS1f  and pS2f  are the final values of the 
momenta for the two particles for the time interval during which the particles 
interact. This equation in component form demonstrates that the total momenta in 
the x, y, and z directions are all independently conserved:

 p1ix 1 p2ix 5 p1fx 1 p2fx  p1iy 1 p2iy 5 p1fy 1 p2fy  p1iz 1 p2iz 5 p1fz 1 p2fz (9.6)

 Equation 9.5 is the mathematical statement of a new analysis model, the isolated 
system (momentum). It can be extended to any number of particles in an isolated 
system as we show in Section 9.7. We studied the energy version of the isolated sys-
tem model in Chapter 8 (DE system 5 0) and now we have a momentum version. In 
general, Equation 9.5 can be stated in words as follows:

Whenever two or more particles in an isolated system interact, the total 
momentum of the system does not change.

This statement tells us that the total momentum of an isolated system at all times 
equals its initial momentum.
 Notice that we have made no statement concerning the type of forces acting on 
the particles of the system. Furthermore, we have not specified whether the forces 
are conservative or nonconservative. We have also not indicated whether or not 
the forces are constant. The only requirement is that the forces must be internal to 
the system. This single requirement should give you a hint about the power of this 
new model.

The momentum version of the 
isolated system model
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Example 9.1   The Archer 

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg archer 
stands at rest on frictionless ice and fires a 0.030-kg arrow horizontally at 85 m/s (Fig. 
9.2). With what velocity does the archer move across the ice after firing the arrow?

Conceptualize  You may have conceptualized this problem already when it was 
introduced at the beginning of Section 9.1. Imagine the arrow being fired one way 
and the archer recoiling in the opposite direction.

Categorize  As discussed in Section 9.1, we cannot solve this problem with models 
based on motion, force, or energy. Nonetheless, we can solve this problem very eas-
ily with an approach involving momentum.
 Let us take the system to consist of the archer (including the bow) and the arrow. 
The system is not isolated because the gravitational force and the normal force from 
the ice act on the system. These forces, however, are vertical and perpendicular to 
the motion of the system. There are no external forces in the horizontal direction, 
and we can apply the isolated system (momentum) model in terms of momentum com-
ponents in this direction.

Analyze  The total horizontal momentum of the system before the arrow is fired is zero because nothing in the sys-
tem is moving. Therefore, the total horizontal momentum of the system after the arrow is fired must also be zero. We 
choose the direction of firing of the arrow as the positive x direction. Identifying the archer as particle 1 and the arrow 
as particle 2, we have m1 5 60 kg, m2 5 0.030 kg, and vS2f 5 85 î m/s.

AM
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Figure 9.2  (Example 9.1) An 
archer fires an arrow horizontally 
to the right. Because he is standing 
on frictionless ice, he will begin to 
slide to the left across the ice.

Using the isolated system (momentum) model, 
begin with Equation 9.5:

DpS 5 0    S    pSf  2 pSi 5 0    S    pSf  5 pSi    S    m1 vS1f 1 m2 vS2f 5 0

Solve this equation for vS1f  and substitute 
numerical values:

vS1f 5 2
m 2

m1
 vS2f 5 2a0.030 kg

60 kg
b 185 î m/s 2 5 20.042 î m/s

Analysis Model   Isolated System (Momentum)
Imagine you have identified a system to be analyzed and have defined a 
system boundary. If there are no external forces on the system, the system 
is isolated. In that case, the total momentum of the system, which is the 
vector sum of the momenta of all members of the system, is conserved: 

 DpStot 5 0 (9.5)

Examples: 

•	 a	cue	ball	strikes	another	ball	on	a	pool	table
•	 a	spacecraft	fires	its	rockets	and	moves	faster	through	space
•	 molecules	in	a	gas	at	a	specific	temperature	move	about	and	strike	

each other (Chapter 21)
•	 an	incoming	particle	strikes	a	nucleus,	creating	a	new	nucleus	and	a	different	outgoing	particle	(Chapter	44)
•	 an	electron	and	a	positron	annihilate	to	form	two	outgoing	photons	(Chapter	46)

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.

continued

Finalize  The negative sign for vS1f  indicates that the archer is moving to the left in Figure 9.2 after the arrow is fired, in 
the direction opposite the direction of motion of the arrow, in accordance with Newton’s third law. Because the archer 
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Example 9.2   Can We Really Ignore the Kinetic Energy of the Earth? 

In Section 7.6, we claimed that we can ignore the kinetic energy of the Earth when considering the energy of a system 
consisting of the Earth and a dropped ball. Verify this claim.

Conceptualize Imagine dropping a ball at the surface of the Earth. From your point of view, the ball falls while the 
Earth remains stationary. By Newton’s third law, however, the Earth experiences an upward force and therefore an 
upward acceleration while the ball falls. In the calculation below, we will show that this motion is extremely small and 
can be ignored.

Categorize  We identify the system as the ball and the Earth. We assume there are no forces on the system from outer 
space, so the system is isolated. Let’s use the momentum version of the isolated system model.

Analyze  We begin by setting up a ratio of the kinetic energy of the Earth to that of the ball. We identify vE and vb as the 
speeds of the Earth and the ball, respectively, after the ball has fallen through some distance.

AM
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Use the definition of kinetic energy to set up this ratio: (1)   
KE

Kb
5

1
2mEvE

2

1
2mbvb

2 5 amE

mb
b avE

vb
b

2

Apply the isolated system (momentum) model, recogniz-
ing that the initial momentum of the system is zero:

DpS5 0    S    pi 5 pf     S    0 5 mbvb 1 mEvE

Solve the equation for the ratio of speeds:
vE

vb
5 2

mb

mE

Substitute this expression for vE/vb in Equation (1):
KE

Kb
5 amE

mb
b a2mb

mE
b

2

5
mb

mE

Finalize The kinetic energy of the Earth is a very small fraction of the kinetic energy of the ball, so we are justified in 
ignoring it in the kinetic energy of the system.

Substitute order-of-magnitude numbers for the masses:
KE

Kb
5

mb

mE
,

1 kg

1025 kg
, 10225
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is much more massive than the arrow, his acceleration and consequent velocity are much smaller than the acceleration 
and velocity of the arrow. Notice that this problem sounds very simple, but we could not solve it with models based on 
motion, force, or energy. Our new momentum model, however, shows us that it not only sounds simple, it is simple!

What if the arrow were fired in a direction 
that makes an angle u with the horizontal? How will that 
change the recoil velocity of the archer?

Answer  The recoil velocity should decrease in magni-
tude because only a component of the velocity of the 
arrow is in the x direction. Conservation of momentum 
in the x direction gives

m1v1f 1 m2v2f  cos u 5 0

WhaT IF ? leading to

v1f 5 2
m2

m1
 v2f  cos u

For u 5 0, cos u 5 1 and the final velocity of the archer 
reduces to the value when the arrow is fired horizontally. 
For nonzero values of u, the cosine function is less than 1 
and the recoil velocity is less than the value calculated for 
u 5 0. If u 5 908, then cos u 5 0 and v1f 5 0, so there is no 
recoil velocity. In this case, the archer is simply pushed 
downward harder against the ice as the arrow is fired.

 

9.3 Analysis Model: Nonisolated System (Momentum)
According to Equation 9.3, the momentum of a particle changes if a net force acts 
on the particle. The same can be said about a net force applied to a system as we 
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2Here we are integrating force with respect to time. Compare this strategy with our efforts in Chapter 7, where we 
integrated force with respect to position to find the work done by the force.

will show explicitly in Section 9.7: the momentum of a system changes if a net force 
from the environment acts on the system. This may sound similar to our discus-
sion of energy in Chapter 8: the energy of a system changes if energy crosses the 
boundary of the system to or from the environment. In this section, we consider a 
nonisolated system. For energy considerations, a system is nonisolated if energy trans-
fers across the boundary of the system by any of the means listed in Section 8.1. For 
momentum considerations, a system is nonisolated if a net force acts on the system 
for a time interval. In this case, we can imagine momentum being transferred to 
the system from the environment by means of the net force. Knowing the change in 
momentum caused by a force is useful in solving some types of problems. To build 
a better understanding of this important concept, let us assume a net force g F

S
 

acts on a particle and this force may vary with time. According to Newton’s second 
law, in the form expressed in Equation 9.3, g F

S
5 d pS/dt, we can write

 d pS 5 a F
S

 dt (9.7)

We can integrate2 this expression to find the change in the momentum of a par-
ticle when the force acts over some time interval. If the momentum of the particle 
changes from pSi at time ti to pSf  at time tf , integrating Equation 9.7 gives

 DpS 5 pSf 2 pSi 5 3
tf

ti
a F

S
 dt (9.8)

To evaluate the integral, we need to know how the net force varies with time. The 
quantity on the right side of this equation is a vector called the impulse of the net 
force g F

S
 acting on a particle over the time interval Dt 5 tf 2 ti:

  I
S

; 3
tf

ti

 a F
S

 dt (9.9)

From its definition, we see that impulse  I
S

 is a vector quantity having a magni-
tude equal to the area under the force–time curve as described in Figure 9.3a. It is 
assumed the force varies in time in the general manner shown in the figure and is 
nonzero in the time interval Dt 5 tf 2 ti . The direction of the impulse vector is the 
same as the direction of the change in momentum. Impulse has the dimensions of 
momentum, that is, ML/T. Impulse is not a property of a particle; rather, it is a mea-
sure of the degree to which an external force changes the particle’s momentum.
 Because the net force imparting an impulse to a particle can generally vary in 
time, it is convenient to define a time-averaged net force:

 1 a F
S 2 avg ;

1
Dt

 3
tf

ti
a  F

S
 dt (9.10)

WW Impulse of a force

t i t f

t i

F

t f
t

F

t

F )avg

�

�

(�

a

b

The time-averaged net force 
gives the same impulse to a 
particle as does the time-
varying force in (a).

The impulse imparted to the 
particle by the force is the 
area under the curve.

t i t f

t i

F

t f
t

F

t

F )avg

�

�

(�

a

b

The time-averaged net force 
gives the same impulse to a 
particle as does the time-
varying force in (a).

The impulse imparted to the 
particle by the force is the 
area under the curve.

Figure 9.3   (a) A net force act-
ing on a particle may vary in time. 
(b) The value of the constant 
force (o F  )avg (horizontal dashed 
line) is chosen so that the area 
(o F  )avg Dt of the rectangle is the 
same as the area under the curve 
in (a).
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where Dt 5 tf 2 ti. (This equation is an application of the mean value theorem of 
calculus.) Therefore, we can express Equation 9.9 as

  I
S

5 1 a  F
S 2 avg Dt (9.11)

This time-averaged force, shown in Figure 9.3b, can be interpreted as the constant 
force that would give to the particle in the time interval Dt the same impulse that 
the time-varying force gives over this same interval.
 In principle, if g F

S
 is known as a function of time, the impulse can be calcu-

lated from Equation 9.9. The calculation becomes especially simple if the force 
acting on the particle is constant. In this case, 1g F

S 2 avg 5 g F
S

, where g F
S

 is the 
constant net force, and Equation 9.11 becomes

  I
S

5 a F
S

 Dt (9.12)

 Combining Equations 9.8 and 9.9 gives us an important statement known as the 
impulse–momentum theorem:

The change in the momentum of a particle is equal to the impulse of the net 
force acting on the particle:

 DpS 5  I
S

 (9.13)

This statement is equivalent to Newton’s second law. When we say that an impulse is 
given to a particle, we mean that momentum is transferred from an external agent 
to that particle. Equation 9.13 is identical in form to the conservation of energy 
equation, Equation 8.1, and its full expansion, Equation 8.2. Equation 9.13 is the 
most general statement of the principle of conservation of momentum and is called 
the conservation of momentum equation. In the case of a momentum approach, 
isolated systems tend to appear in problems more often than nonisolated systems, 
so, in practice, the conservation of momentum equation is often identified as the 
special case of Equation 9.5.
 The left side of Equation 9.13 represents the change in the momentum of the 
system, which in this case is a single particle. The right side is a measure of how 
much momentum crosses the boundary of the system due to the net force being 
applied to the system. Equation 9.13 is the mathematical statement of a new analy-
sis model, the nonisolated system (momentum) model. Although this equation is 
similar in form to Equation 8.1, there are several differences in its application to 
problems. First, Equation 9.13 is a vector equation, whereas Equation 8.1 is a scalar 
equation. Therefore, directions are important for Equation 9.13. Second, there is 
only one type of momentum and therefore only one way to store momentum in 
a system. In contrast, as we see from Equation 8.2, there are three ways to store 
energy in a system: kinetic, potential, and internal. Third, there is only one way 
to transfer momentum into a system: by the application of a force on the system 
over a time interval. Equation 8.2 shows six ways we have identified as transferring 
energy into a system. Therefore, there is no expansion of Equation 9.13 analogous 
to Equation 8.2.
 In many physical situations, we shall use what is called the impulse approxima-
tion, in which we assume one of the forces exerted on a particle acts for a short 
time but is much greater than any other force present. In this case, the net force 
g F

S
 in Equation 9.9 is replaced with a single force F

S
 to find the impulse on the 

particle. This approximation is especially useful in treating collisions in which the 
duration of the collision is very short. When this approximation is made, the single 
force is referred to as an impulsive force. For example, when a baseball is struck with 
a bat, the time of the collision is about 0.01 s and the average force that the bat 
exerts on the ball in this time is typically several thousand newtons. Because this 
contact force is much greater than the magnitude of the gravitational force, the 
impulse approximation justifies our ignoring the gravitational forces exerted on 

 Impulse–momentum theorem 
 for a particle

Air bags in automobiles have 
saved countless lives in accidents. 
The air bag increases the time 
interval during which the pas-
senger is brought to rest, thereby 
decreasing the force on (and 
resultant injury to) the passenger.
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continued

the ball and bat during the collision. When we use this approximation, it is impor-
tant to remember that pSi and pSf  represent the momenta immediately before and 
after the collision, respectively. Therefore, in any situation in which it is proper to 
use the impulse approximation, the particle moves very little during the collision.

Q uick Quiz 9.3  Two objects are at rest on a frictionless surface. Object 1 has a 
greater mass than object 2. (i) When a constant force is applied to object 1, it 
accelerates through a distance d in a straight line. The force is removed from 
object 1 and is applied to object 2. At the moment when object 2 has accelerated 
through the same distance d, which statements are true? (a) p1 , p2 (b) p1 5 p2 
(c) p1 . p2 (d) K1 , K2 (e) K1 5 K2 (f) K1 . K2 (ii) When a force is applied to 
object 1, it accelerates for a time interval Dt. The force is removed from object 1  
and is applied to object 2. From the same list of choices, which statements are 
true after object 2 has accelerated for the same time interval Dt?

Q uick Quiz 9.4  Rank an automobile dashboard, seat belt, and air bag, each used 
alone in separate collisions from the same speed, in terms of (a) the impulse and 
(b) the average force each delivers to a front-seat passenger, from greatest to least.

Analysis Model   Nonisolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 
boundary. If external forces are applied on the system, the system is nonisolated. 
In that case, the change in the total momentum of the system is equal to the 
impulse on the system, a statement known as the impulse–momentum theorem: 

 DpS 5 I
S

 (9.13)

Examples: 

•	 a	baseball	is	struck	by	a	bat
•	 a	spool	sitting	on	a	table	is	pulled	by	a	string	(Example	10.14	in	Chapter	10)
•	 a	gas	molecule	strikes	the	wall	of	the	container	holding	the	gas	(Chapter	21)
•	 photons	strike	an	absorbing	surface	and	exert	pressure	on	the	surface	

(Chapter 34)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Example 9.3   How Good Are the Bumpers? 

In a particular crash test, a car of mass 1 500 kg col-
lides with a wall as shown in Figure 9.4. The initial 
and final velocities of the car are vSi 5 215.0 î m/s 
and vSf 5 2.60 î m/s, respectively. If the collision lasts 
0.150 s, find the impulse caused by the collision and 
the average net force exerted on the car.

Conceptualize  The collision time is short, so we can 
imagine the car being brought to rest very rapidly 
and then moving back in the opposite direction with 
a reduced speed.

Categorize  Let us assume the net force exerted on 
the car by the wall and friction from the ground is 
large compared with other forces on the car (such as 
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+2.60 m/s

–15.0 m/s

Before

After

a b

Figure 9.4  (Example 9.3) (a) This car’s momentum changes as a 
result of its collision with the wall. (b) In a crash test, much of the 
car’s initial kinetic energy is transformed into energy associated 
with the damage to the car.
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9.4 Collisions in One Dimension
In this section, we use the isolated system (momentum) model to describe what 
happens when two particles collide. The term collision represents an event during 
which two particles come close to each other and interact by means of forces. The 
interaction forces are assumed to be much greater than any external forces present, 
so we can use the impulse approximation.
 A collision may involve physical contact between two macroscopic objects as 
described in Figure 9.5a, but the notion of what is meant by a collision must be 
generalized because “physical contact” on a submicroscopic scale is ill-defined and 
hence meaningless. To understand this concept, consider a collision on an atomic 
scale (Fig. 9.5b) such as the collision of a proton with an alpha particle (the nucleus 
of a helium atom). Because the particles are both positively charged, they repel 
each other due to the strong electrostatic force between them at close separations 
and never come into “physical contact.”
 When two particles of masses m1 and m2 collide as shown in Figure 9.5, the 
impulsive forces may vary in time in complicated ways, such as that shown in Figure 
9.3. Regardless of the complexity of the time behavior of the impulsive force, how-
ever, this force is internal to the system of two particles. Therefore, the two particles 
form an isolated system and the momentum of the system must be conserved in any 
collision.

Figure 9.5 (a) The collision 
between two objects as the result of 
direct contact. (b) The “collision” 
between two charged particles.
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air resistance). Furthermore, the gravitational force and the normal force exerted by the road on the car are perpen-
dicular to the motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as 
one in which we can apply the impulse approximation in the horizontal direction. We also see that the car’s momentum 
changes due to an impulse from the environment. Therefore, we can apply the nonisolated system (momentum) model.

Analyze

Use Equation 9.13 to find the impulse 
on the car:

I
S

5 DpS 5 pSf 2 pSi 5 mvSf 2 mvSi 5 m 1 vSf 2 vSi 2
5 11 500 kg 2 32.60 î m/s 2 1215.0 î m/s 2 4 5 2.64 3 104

 î kg # m/s

Use Equation 9.11 to evaluate the aver-
age net force exerted on the car:

1 a F
S 2 avg 5

 I
S

Dt
5

2.64 3 104
 î kg # m/s

0.150 s
5 1.76 3 105

 î N

Finalize  The net force found above is a combination of the normal force on the car from the wall and any friction 
force between the tires and the ground as the front of the car crumples. If the brakes are not operating while the crash 
occurs and the crumpling metal does not interfere with the free rotation of the tires, this friction force could be rela-
tively small due to the freely rotating wheels. Notice that the signs of the velocities in this example indicate the reversal 
of directions. What would the mathematics be describing if both the initial and final velocities had the same sign?

What if the car did not rebound from the wall? Suppose the final velocity of the car is zero and the time 
interval of the collision remains at 0.150 s. Would that represent a larger or a smaller net force on the car?

Answer In the original situation in which the car rebounds, the net force on the car does two things during the time 
interval: (1) it stops the car, and (2) it causes the car to move away from the wall at 2.60 m/s after the collision. If the car 
does not rebound, the net force is only doing the first of these steps—stopping the car—which requires a smaller force.
 Mathematically, in the case of the car that does not rebound, the impulse is

  I
S

5 DpS 5 pSf 2 pSi 5 0 2 11 500 kg 2 1215.0 î m/s 2 5 2.25 3 104
 î kg # m/s

The average net force exerted on the car is

1 a F
S 2 avg 5

I
S

Dt
5

2.25 3 104
 î kg # m/s

0.150 s
5 1.50 3 105

 î N

which is indeed smaller than the previously calculated value, as was argued conceptually.

WhaT IF ?
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 In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being 
either elastic or inelastic depending on whether or not kinetic energy is conserved.
 An elastic collision between two objects is one in which the total kinetic energy 
(as well as total momentum) of the system is the same before and after the collision. 
Collisions between certain objects in the macroscopic world, such as billiard balls, 
are only approximately elastic because some deformation and loss of kinetic energy 
take place. For example, you can hear a billiard ball collision, so you know that 
some of the energy is being transferred away from the system by sound. An elastic 
collision must be perfectly silent! Truly elastic collisions occur between atomic and 
subatomic particles. These collisions are described by the isolated system model for 
both energy and momentum. Furthermore, there must be no transformation of 
kinetic energy into other types of energy within the system.
 An inelastic collision is one in which the total kinetic energy of the system is not 
the same before and after the collision (even though the momentum of the system 
is conserved). Inelastic collisions are of two types. When the objects stick together 
after they collide, as happens when a meteorite collides with the Earth, the collision 
is called perfectly inelastic. When the colliding objects do not stick together but 
some kinetic energy is transformed or transferred away, as in the case of a rubber 
ball colliding with a hard surface, the collision is called inelastic (with no modify-
ing adverb). When the rubber ball collides with the hard surface, some of the ball’s 
kinetic energy is transformed when the ball is deformed while it is in contact with 
the surface. Inelastic collisions are described by the momentum version of the iso-
lated system model. The system could be isolated for energy, with kinetic energy 
transformed to potential or internal energy. If the system is nonisolated, there could 
be energy leaving the system by some means. In this latter case, there could also 
be some transformation of energy within the system. In either of these cases, the 
kinetic energy of the system changes.
 In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic 
and elastic collisions.

Perfectly Inelastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.6. The two particles collide head-
on, stick together, and then move with some common velocity vSf  after the collision. 
Because the momentum of an isolated system is conserved in any collision, we can 
say that the total momentum before the collision equals the total momentum of the 
composite system after the collision:

 DpS 5 0    S    pSi 5 pSf     S    m1 vS1i 1 m2 vS2i 5 1m1 1 m2 2 vSf  (9.14)

Solving for the final velocity gives

 vSf 5
m1 vS1i 1 m2 vS2i

m1 1 m2
 (9.15)

Elastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.7 on page 258. The two particles 
collide head-on and then leave the collision site with different velocities, vS1f  and 
vS2f . In an elastic collision, both the momentum and kinetic energy of the system 
are conserved. Therefore, considering velocities along the horizontal direction in 
Figure 9.7, we have

 pi 5 pf    S    m1v1i 1 m2v2i 5 m1v1f 1 m2v2f (9.16)

 Ki 5 Kf    S    12m1v1i 2 1 1
2m2v2i 2 5 1

2m1v1f 2 1 1
2m2v2f 2 (9.17)

Pitfall Prevention 9.2
Inelastic Collisions Generally, 
inelastic collisions are hard to 
analyze without additional infor-
mation. Lack of this information 
appears in the mathematical 
representation as having more 
unknowns than equations.

Figure 9.6 Schematic repre-
sentation of a perfectly inelastic 
head-on collision between two 
particles.

m1 m2

m1 m2

vf
S

v1i
S v2i

S

Before the collision, the 
particles move separately.

After the collision, the 
particles move together.

a

b
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Because all velocities in Figure 9.7 are either to the left or the right, they can be 
represented by the corresponding speeds along with algebraic signs indicating 
direction. We shall indicate v as positive if a particle moves to the right and nega-
tive if it moves to the left.
 In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.16 and 9.17 can be solved simultaneously to find them. An 
alternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.17—often simplifies this process. To see how, let us cancel the 
factor 1

2 in Equation 9.17 and rewrite it by gathering terms with subscript 1 on the 
left and 2 on the right:

 m1(v1i
2 2 v1f

2) 5 m2(v2f
2 2 v2i

2) 

Factoring both sides of this equation gives

 m1(v1i 2 v1f) (v1i 1 v1f) 5 m2(v2f 2 v2i)(v2f 1 v2i) (9.18)

 Next, let us separate the terms containing m1 and m2 in Equation 9.16 in a simi-
lar way to obtain

 m1(v1i 2 v1f) 5 m2(v2f 2 v2i) (9.19)

To obtain our final result, we divide Equation 9.18 by Equation 9.19 and obtain

 v1i 1 v1f 5 v2f 1 v2i 

Now rearrange terms once again so as to have initial quantities on the left and final 
quantities on the right:
 v1i 2 v2i 5 2(v1f

 2 v2f) (9.20)

This equation, in combination with Equation 9.16, can be used to solve problems 
dealing with elastic collisions. This pair of equations (Eqs. 9.16 and 9.20) is easier 
to handle than the pair of Equations 9.16 and 9.17 because there are no quadratic 
terms like there are in Equation 9.17. According to Equation 9.20, the relative veloc-
ity of the two particles before the collision, v1i 2 v2i, equals the negative of their 
relative velocity after the collision, 2(v1f 2 v2f).
 Suppose the masses and initial velocities of both particles are known. Equations 
9.16 and 9.20 can be solved for the final velocities in terms of the initial velocities 
because there are two equations and two unknowns:

 v1f 5 am1 2 m2

m1 1 m2
bv1i 1 a 2m2

m1 1 m2
bv2i (9.21)

 v2f 5 a 2m1

m1 1 m2
bv1i 1 am2 2 m1

m1 1 m2
bv2i (9.22)

It is important to use the appropriate signs for v1i and v2i in Equations 9.21 and 9.22.
 Let us consider some special cases. If m1 5 m2, Equations 9.21 and 9.22 show that 
v1f 5 v2i and v2f 5 v1i , which means that the particles exchange velocities if they 
have equal masses. That is approximately what one observes in head-on billiard ball 
collisions: the cue ball stops and the struck ball moves away from the collision with 
the same velocity the cue ball had.
 If particle 2 is initially at rest, then v2i 5 0, and Equations 9.21 and 9.22 become

 v1f 5 am1 2 m2

m1 1 m2
bv1i (9.23)

 v2f 5 a 2m1

m1 1 m2
bv1i (9.24)

If m1 is much greater than m2 and v2i 5 0, we see from Equations 9.23 and 9.24 that 
v1f < v1i and v2f < 2v1i. That is, when a very heavy particle collides head-on with a 

Elastic collision: particle 2 
initially at rest

1i 2i

1f 2f

m1 m2

Before the collision, the 
particles move separately.

After the collision, the 
particles continue to move 
separately with new velocities.

a

b

vS vS

vS vS

Figure 9.7 Schematic represen-
tation of an elastic head-on colli-
sion between two particles.

Pitfall Prevention 9.3
Not a General Equation Equation 
9.20 can only be used in a very spe-
cific situation, a one- dimensional, 
elastic collision between two 
objects. The general  concept is 
conservation of momentum (and 
conservation of kinetic energy if 
the collision is elastic) for an iso-
lated system.
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very light one that is initially at rest, the heavy particle continues its motion unal-
tered after the collision and the light particle rebounds with a speed equal to about 
twice the initial speed of the heavy particle. An example of such a collision is that 
of a moving heavy atom, such as uranium, striking a light atom, such as hydrogen.
 If m2 is much greater than m1 and particle 2 is initially at rest, then v1f < –v1i and 
v2f < 0. That is, when a very light particle collides head-on with a very heavy particle 
that is initially at rest, the light particle has its velocity reversed and the heavy one 
remains approximately at rest. For example, imagine what happens when you throw 
a table tennis ball at a bowling ball as in Quick Quiz 9.6 below.

Q uick Quiz 9.5  In a perfectly inelastic one-dimensional collision between two 
moving objects, what condition alone is necessary so that the final kinetic 
energy of the system is zero after the collision? (a) The objects must have initial 
momenta with the same magnitude but opposite directions. (b) The objects 
must have the same mass. (c) The objects must have the same initial velocity.  
(d) The objects must have the same initial speed, with velocity vectors in oppo-
site directions.

Q uick Quiz 9.6  A table-tennis ball is thrown at a stationary bowling ball. The 
table-tennis ball makes a one-dimensional elastic collision and bounces back 
along the same line. Compared with the bowling ball after the collision, does 
the table-tennis ball have (a) a larger magnitude of momentum and more 
kinetic energy, (b) a smaller magnitude of momentum and more kinetic energy, 
(c) a larger magnitude of momentum and less kinetic energy, (d) a smaller 
magnitude of momentum and less kinetic energy, or (e) the same magnitude of 
momentum and the same kinetic energy?

Problem-Solving Strategy   One-Dimensional Collisions

You should use the following approach when solving collision problems in one 
dimension:

1. Conceptualize. Imagine the collision occurring in your mind. Draw simple dia-
grams of the particles before and after the collision and include appropriate velocity 
vectors. At first, you may have to guess at the directions of the final velocity vectors.

2. Categorize. Is the system of particles isolated? If so, use the isolated system 
(momentum) model. Further categorize the collision as elastic, inelastic, or perfectly 
inelastic.

3. Analyze. Set up the appropriate mathematical representation for the problem. 
If the collision is perfectly inelastic, use Equation 9.15. If the collision is elastic, use 
Equations 9.16 and 9.20. If the collision is inelastic, use Equation 9.16. To find the 
final velocities in this case, you will need some additional information.

4. Finalize. Once you have determined your result, check to see if your answers are 
consistent with the mental and pictorial representations and that your results are 
realistic.

Example 9.4   The Executive Stress Reliever 

An ingenious device that illustrates conservation of momentum and kinetic energy is shown in Figure 9.8 on page 260. 
It consists of five identical hard balls supported by strings of equal lengths. When ball 1 is pulled out and released, 
after the almost-elastic collision between it and ball 2, ball 1 stops and ball 5 moves out as shown in Figure 9.8b. If balls 
1 and 2 are pulled out and released, they stop after the collision and balls 4 and 5 swing out, and so forth. Is it ever 
possible that when ball 1 is released, it stops after the collision and balls 4 and 5 will swing out on the opposite side and 
travel with half the speed of ball 1 as in Figure 9.8c?

AM

continued
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Conceptualize  With the help of Figure 
9.8c, imagine one ball coming in from 
the left and two balls exiting the colli-
sion on the right. That is the phenom-
enon we want to test to see if it could 
ever happen.

Categorize   Because of the very short 
time interval between the arrival of the 
ball from the left and the departure  
of the ball(s) from the right, we can use 
the impulse approximation to ignore 
the gravitational forces on the balls and 
model the five balls as an isolated system 
in terms of both momentum and energy. 
Because the balls are hard, we can cat-
egorize the collisions between them as 
elastic for purposes of calculation.

Analyze  Let’s consider the situation 
shown in Figure 9.8c. The momentum 
of the system before the collision is mv, where m is the mass of ball 1 and v is its speed immediately before the collision. 
After the collision, we imagine that ball 1 stops and balls 4 and 5 swing out, each moving with speed v/2. The total 
momentum of the system after the collision would be m(v/2) 1 m(v/2) 5 mv. Therefore, the momentum of the system 
is conserved in the situation shown in Figure 9.8c! 
 The kinetic energy of the system immediately before the collision is Ki 5 1

2mv2 and that after the collision is 
Kf 5 1

2m 1v/2 22 1 1
2m 1v/2 22 5 1

4mv2. That shows that the kinetic energy of the system is not conserved, which is inconsis-
tent with our assumption that the collisions are elastic.

Finalize  Our analysis shows that it is not possible for balls 4 and 5 to swing out when only ball 1 is released. The only 
way to conserve both momentum and kinetic energy of the system is for one ball to move out when one ball is released, 
two balls to move out when two are released, and so on.

Consider what would happen if balls 4 and 5 are glued together. Now what happens when ball 1 is pulled 
out and released?

Answer  In this situation, balls 4 and 5 must move together as a single object after the collision. We have argued that 
both momentum and energy of the system cannot be conserved in this case. We assumed, however, ball 1 stopped after 
striking ball 2. What if we do not make this assumption? Consider the conservation equations with the assumption that 
ball 1 moves after the collision. For conservation of momentum,

pi 5 pf

mv1i 5 mv1f 1 2mv4,5

where v4,5 refers to the final speed of the ball 4–ball 5 combination. Conservation of kinetic energy gives us

Ki 5 Kf

1
2mv1i

2 5 1
2mv1f

2 1 1
2 12m 2v4,5

2

Combining these equations gives

v4,5 5 2
3v1i  v1f 5 21

3v1i

Therefore, balls 4 and 5 move together as one object after the collision while ball 1 bounces back from the collision 
with one third of its original speed.

S o l u T I o N
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Figure 9.8  (Example 9.4) (a) An executive stress reliever. (b) If one ball swings 
down, we see one ball swing out at the other end. (c) Is it possible for one ball to swing 
down and two balls to leave the other end with half the speed of the first ball? In (b) 
and (c), the velocity vectors shown represent those of the balls immediately before and 
immediately after the collision.

 

▸ 9.4 c o n t i n u e d
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continued

Example 9.5   Carry Collision Insurance! 

An 1 800-kg car stopped at a traffic light is struck from the rear by a 900-kg car. The two cars become entangled, mov-
ing along the same path as that of the originally moving car. If the smaller car were moving at 20.0 m/s before the col-
lision, what is the velocity of the entangled cars after the collision?

Conceptualize  This kind of collision is easily visualized, and one can predict that after the collision both cars will be 
moving in the same direction as that of the initially moving car. Because the initially moving car has only half the mass 
of the stationary car, we expect the final velocity of the cars to be relatively small.

Categorize  We identify the two cars as an isolated system in terms of momentum in the horizontal direction and apply 
the impulse approximation during the short time interval of the collision. The phrase “become entangled” tells us to 
categorize the collision as perfectly inelastic.

Analyze  The magnitude of the total momentum of the system before the collision is equal to that of the smaller car 
because the larger car is initially at rest.

AM

S o l u T I o N

Use the isolated system model for momentum: DpS5 0    S   pi 5 pf    S   m1vi 5 (m1 1 m2)vf

Solve for vf  and substitute numerical values: vf 5
m1vi

m1 1 m2
5

1900 kg 2 120.0 m/s 2
900 kg 1 1 800 kg

5 6.67 m/s

Finalize  Because the final velocity is positive, the direction of the final velocity of the combination is the same as the 
velocity of the initially moving car as predicted. The speed of the combination is also much lower than the initial speed 
of the moving car.

Suppose we reverse the masses of the cars. What if a stationary 900-kg car is struck by a moving 1 800-kg 
car? Is the final speed the same as before?

Answer  Intuitively, we can guess that the final speed of the combination is higher than 6.67 m/s if the initially moving 
car is the more massive car. Mathematically, that should be the case because the system has a larger momentum if the 
initially moving car is the more massive one. Solving for the new final velocity, we find

vf 5
m1vi

m1 1 m2
5

11 800 kg 2 120.0 m/s 2
1 800 kg 1 900 kg

5 13.3 m/s

which is two times greater than the previous final velocity.

WhaT IF ?

 

Example 9.6   The Ballistic Pendulum 

The ballistic pendulum (Fig. 9.9, page 262) is an apparatus used to measure the speed of a fast-moving projectile such 
as a bullet. A projectile of mass m1 is fired into a large block of wood of mass m2 suspended from some light wires. The 
projectile embeds in the block, and the entire system swings through a height h. How can we determine the speed of 
the projectile from a measurement of h?

Conceptualize  Figure 9.9a helps conceptualize the situation. Run the animation in your mind: the projectile enters 
the pendulum, which swings up to some height at which it momentarily comes to rest.

Categorize  The projectile and the block form an isolated system in terms of momentum if we identify configuration A as 
immediately before the collision and configuration B as immediately after the collision. Because the projectile imbeds 
in the block, we can categorize the collision between them as perfectly inelastic.

Analyze  To analyze the collision, we use Equation 9.15, which gives the speed of the system immediately after the col-
lision when we assume the impulse approximation.

AM

S o l u T I o N
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m2m1
1A B

m1 � m2

h
vS vS

a

Figure 9.9  (Example 9.6) (a) Diagram of a ballistic pendulum. Notice that vS1A is the velocity of the projectile imme-
diately before the collision and vSB is the velocity of the projectile–block system immediately after the perfectly inelas-
tic collision. (b) Multiflash photograph of a ballistic pendulum used in the laboratory.
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Finalize   We had to solve this problem in two steps. Each step involved a different system and a different analysis model: 
isolated system (momentum) for the first step and isolated system (energy) for the second. Because the collision was 
assumed to be perfectly inelastic, some mechanical energy was transformed to internal energy during the collision. 
Therefore, it would have been incorrect to apply the isolated system (energy) model to the entire process by equating 
the initial kinetic energy of the incoming projectile with the final gravitational potential energy of the projectile–
block–Earth combination.

 

▸ 9.6 c o n t i n u e d

Noting that v2A 5 0, solve Equation 9.15 for vB: (1)   vB 5
m1v1A

m1 1 m2

Analyze   Write an expression for the total kinetic energy of 
the system immediately after the collision:

(2)   KB 5 1
2 1m1 1 m2 2vB

2

Substitute the value of vB from Equation (1) into Equation (2): KB 5
m1

2v1A
2

2 1m1 1 m2 2

Apply the isolated system model to the system: DK 1 DU 5 0    S   (KC 2 KB) 1 (UC 2 UB) 5 0

Solve for v1A: v1A 5 am1 1 m2

m1
b"2gh

Categorize   For the process during which the projectile–block combination swings upward to height h (ending at a 
configuration we’ll call C), we focus on a different system, that of the projectile, the block, and the Earth. We categorize 
this part of the problem as one involving an isolated system for energy with no nonconservative forces acting.

This kinetic energy of the system immediately after the collision is less than the initial kinetic energy of the projectile 
as is expected in an inelastic collision.
 We define the gravitational potential energy of the system for configuration B to be zero. Therefore, UB 5 0, whereas 
UC 5 (m1 1 m2)gh.

Substitute the energies: a0 2
m1

2v1A
2

2 1m1 1 m2 2 b
1 3 1m1 1 m2 2gh 2 0 4 5 0

Example 9.7   A Two-Body Collision with a Spring 

A block of mass m1 5 1.60 kg initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal track 
collides with a light spring attached to a second block of mass m2 5 2.10 kg initially moving to the left with a speed of 
2.50 m/s as shown in Figure 9.10a. The spring constant is 600 N/m.

AM
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(A) Find the velocities of the two blocks after the collision.

Conceptualize   With the help of Figure 9.10a, run an 
animation of the collision in your mind. Figure 9.10b 
shows an instant during the collision when the spring 
is compressed. Eventually, block 1 and the spring will 
again separate, so the system will look like Figure 9.10a 
again but with different velocity vectors for the two 
blocks.

Categorize   Because the spring force is conservative, 
kinetic energy in the system of two blocks and the 
spring is not transformed to internal energy during the 
compression of the spring. Ignoring any sound made when the block hits the spring, we can categorize the collision as 
being elastic and the two blocks and the spring as an isolated system for both energy and momentum.

S o l u T I o N
1i  4.00î m/s 1f  3.00 î m/s 2f2i  –2.50î m/svS vS vS vS

x

k
m1

m
k

2m1 m2

a

b

� � �

Figure 9.10  (Example 9.7) A moving block approaches a second 
moving block that is attached to a spring.

continued

Analyze   Because momentum of 
the system is conserved, apply 
Equation 9.16:

(1)   m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

Because the collision is elastic, 
apply Equation 9.20:

(2)   v1i 2 v2i 5 2(v1f 2 v2f)

Multiply Equation (2) by m1: (3)   m1v1i 2 m1v2i 5 2m1v1f 1 m1v2f

Add Equations (1) and (3): 2m1v1i 1 (m2 2 m1)v2i 5 (m1 1 m2)v2f

Solve for v2f : v2f 5
2m1v1i 1 1m2 2 m1 2v2i

m1 1 m2

Substitute numerical values: v2f 5
2 11.60 kg 2 14.00 m/s 2 1 12.10 kg 2 1.60 kg 2 122.50 m/s 2

1.60 kg 1 2.10 kg
5 3.12 m/s

Solve Equation (2) for v1f and  
substitute numerical values:

v1f 5 v2f 2 v1i 1 v2i 5 3.12 m/s 2 4.00 m/s 1 (22.50 m/s) 5   2 3.38 m/s

(B)  Determine the velocity of block 2 during the collision, at the instant block 1 is moving to the right with a velocity 
of 13.00 m/s as in Figure 9.10b.

Conceptualize    Focus your attention now on Figure 9.10b, which represents the final configuration of the system for 
the time interval of interest.

Categorize  Because the momentum and mechanical energy of the isolated system of two blocks and the spring are 
conserved throughout the collision, the collision can be categorized as elastic for any final instant of time. Let us now 
choose the final instant to be when block 1 is moving with a velocity of 13.00 m/s.

S o l u T I o N

▸ 9.7 c o n t i n u e d

Analyze  Apply Equation 9.16: m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

Solve for v2f : v2f 5
m1v1i 1 m2v2i 2 m1v1f

m2
 

Substitute numerical values: v2f 5
11.60 kg 2 14.00 m/s 2 1 12.10 kg 2 122.50 m/s 2 2 11.60 kg 2 13.00 m/s 2

2.10 kg
 

5  21.74 m/s
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Finalize  The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

Conceptualize  Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize  For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. 
The system also remains an isolated system in terms of momentum.

Analyze   We choose the initial configuration of the system to be that existing immediately before block 1 strikes the 
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

S o l u T I o N

Write the appropriate reduction of  
Equation 8.2:

DK 1 DU 5 0

Evaluate the energies, recognizing that two 
objects in the system have kinetic energy 
and that the potential energy is elastic:

3 11
2m1v1f

2 1 1
2m2v2f

2 2 2 11
2m1v1i

2 1 1
2m2v2i

2 2 4 1 11
2kx2 2 0 2 5 0

Solve for x 2: x2 5 1
k 3m1 1v1i

2 2 v1f
2 2 1 m2 1v2i

2 2 v2f
2 2 4

Substitute  
numerical values:

x2 5 a 1
600 N/m

b5 11.60 kg 2 3 14.00 m/s 22 2 13.00 m/s 22 4 1 12.10 kg 2 3 12.50 m/s 22 2 11.74 m/s 22 4 6

S   x 5   0.173 m

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward 
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?

9.5 Collisions in Two Dimensions
In Section 9.2, we showed that the momentum of a system of two particles is con-
served when the system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f (9.25)

 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f (9.26)

 

▸ 9.7 c o n t i n u e d
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Figure 9.11 An elastic, glancing 
collision between two particles.
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where the minus sign in Equation 9.26 is included because after the collision par-
ticle 2 has a y component of velocity that is downward. (The symbols v in these 
particular equations are speeds, not velocity components. The direction of the 
component vector is indicated explicitly with plus or minus signs.) We now have 
two independent equations. As long as no more than two of the seven quantities in 
Equations 9.25 and 9.26 are unknown, we can solve the problem.
 If the collision is elastic, we can also use Equation 9.17 (conservation of kinetic 
energy) with v2i 5 0:

 Ki 5 Kf    S    12m1v1i
2 5 1

2m1v1f
2 1 1

2m2v2f
2 (9.27)

Knowing the initial speed of particle 1 and both masses, we are left with four 
unknowns (v1f , v2f , u, and f). Because we have only three equations, one of the four 
remaining quantities must be given to determine the motion after the elastic colli-
sion from conservation principles alone.
 If the collision is inelastic, kinetic energy is not conserved and Equation 9.27 
does not apply.

Problem-Solving Strategy   Two-Dimensional Collisions

The following procedure is recommended when dealing with problems involving col-
lisions between two particles in two dimensions.

1. Conceptualize. Imagine the collisions occurring and predict the approximate 
directions in which the particles will move after the collision. Set up a coordinate 
system and define your velocities in terms of that system. It is convenient to have the 
x axis coincide with one of the initial velocities. Sketch the coordinate system, draw 
and label all velocity vectors, and include all the given information.

2. Categorize. Is the system of particles truly isolated? If so, categorize the collision 
as elastic, inelastic, or perfectly inelastic.

3. Analyze. Write expressions for the x and y components of the momentum of each 
object before and after the collision. Remember to include the appropriate signs for 
the components of the velocity vectors and pay careful attention to signs throughout 
the calculation.
 Apply the isolated system model for momentum DpS 5 0. When applied in each 
direction, this equation will generally reduce to pix 5 pfx and piy 5 pf y, where each 
of these terms refer to the sum of the momenta of all objects in the system. Write 
expressions for the total momentum in the x direction before and after the collision and 
equate the two. Repeat this procedure for the total momentum in the y direction.
 Proceed to solve the momentum equations for the unknown quantities. If the 
collision is inelastic, kinetic energy is not conserved and additional information is 
probably required. If the collision is perfectly inelastic, the final velocities of the two 
objects are equal.
 If the collision is elastic, kinetic energy is conserved and you can equate the total 
kinetic energy of the system before the collision to the total kinetic energy after the 
collision, providing an additional relationship between the velocity magnitudes.

4. Finalize. Once you have determined your result, check to see if your answers are 
consistent with the mental and pictorial representations and that your results are 
realistic.

Example 9.8   Collision at an Intersection 

A 1 500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2 500-kg truck traveling north 
at a speed of 20.0 m/s as shown in Figure 9.12 on page 266. Find the direction and magnitude of the velocity of the 
wreckage after the collision, assuming the vehicles stick together after the collision.

AM

continued

Pitfall Prevention 9.4
Don’t use Equation 9.20 Equa-
tion 9.20, relating the initial and 
final relative velocities of two 
colliding objects, is only valid 
for one-dimensional elastic col-
lisions. Do not use this equation 
when analyzing two-dimensional 
collisions.
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Conceptualize  Figure 9.12 should help you conceptualize the situation before 
and after the collision. Let us choose east to be along the positive x direction and 
north to be along the positive y direction.

Categorize  Because we consider moments immediately before and immediately 
after the collision as defining our time interval, we ignore the small effect that 
friction would have on the wheels of the vehicles and model the two vehicles as an 
isolated system in terms of momentum. We also ignore the vehicles’ sizes and model 
them as particles. The collision is perfectly inelastic because the car and the truck 
stick together after the collision.

Analyze   Before the collision, the only object having momentum in the x direction 
is the car. Therefore, the magnitude of the total initial momentum of the system 
(car plus truck) in the x direction is that of only the car. Similarly, the total initial 
momentum of the system in the y direction is that of the truck. After the collision, let 
us assume the wreckage moves at an angle u with respect to the x axis with speed vf .

S o l u T I o N

25.0i m/sˆ

20.0j m/sˆ

y

xu

vf
S

Figure 9.12  (Example 9.8) An 
eastbound car colliding with a north-
bound truck.

Apply the isolated system model for momen-
tum in the x direction:

Dpx 5 0    S   o pxi 5 o pxf    S   (1)   m1v1i 5 (m1 1 m2)vf  cos u

Apply the isolated system model for momen-
tum in the y direction:

Dpy 5 0    S   o pyi 5 o pyf    S   (2)   m2v2i 5 (m1 1 m2)vf  sin u

Divide Equation (2) by Equation (1):
m2v2i

m1v1i
5

sin u
cos u

5 tan u

Solve for u and substitute numerical values: u 5 tan21am2v2i

m1v1i
b 5 tan21 c

12 500 kg 2 120.0 m/s 2
11 500 kg 2 125.0 m/s 2 d 5 53.18

Use Equation (2) to find the value of vf  and 
substitute numerical values:

vf 5
m2v2i

1m1 1 m2 2  sin u
5

12 500 kg 2 120.0 m/s 2
11 500 kg 1 2 500 kg 2  sin 53.18

5 15.6 m/s

Finalize Notice that the angle u is qualitatively in agreement with Figure 9.12. Also notice that the final speed of the 
combination is less than the initial speeds of the two cars. This result is consistent with the kinetic energy of the system 
being reduced in an inelastic collision. It might help if you draw the momentum vectors of each vehicle before the col-
lision and the two vehicles together after the collision.
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Example 9.9   Proton–Proton Collision 

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of  
3.50 3 105 m/s and makes a glancing collision with the second proton as in Figure 9.11. (At close separations, the pro-
tons exert a repulsive electrostatic force on each other.) After the collision, one proton moves off at an angle of 37.08 to 
the original direction of motion and the second deflects at an angle of f to the same axis. Find the final speeds of the 
two protons and the angle f.

Conceptualize  This collision is like that shown in Figure 9.11, which will help you conceptualize the behavior of the 
system. We define the x axis to be along the direction of the velocity vector of the initially moving proton.

Categorize The pair of protons form an isolated system. Both momentum and kinetic energy of the system are con-
served in this glancing elastic collision.

AM

S o l u T I o N
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Analyze Using the isolated system model for both 
momentum and energy for a two- dimensional 
elastic collision, set up the mathematical represen-
tation with Equations 9.25 through 9.27:

(1)   v1i 5 v1f  cos u 1 v2f  cos f

(2)   0 5 v1f  sin u 2 v2f  sin f

(3)   v1i
2 5 v1f

2 1 v2f
2

Rearrange Equations (1) and (2): v2f  cos f 5 v1i 2 v1f  cos u

v2f  sin f 5 v1f  sin u

Square these two equations and add them: v2f
2 cos2 f 1 v2f

2 sin2 f 5

 v1i
2 2 2v1iv1f  cos u 1 v1f

2 cos2 u 1 v1f
2 sin2 u

Incorporate that the sum of the squares of sine 
and cosine for any angle is equal to 1:

(4)   v2f
2 5 v1i

2 2 2v1iv1f  cos u 1 v1f
2

Substitute Equation (4) into Equation (3): v1f
2 1 (v1i

2 2 2v1iv1f  cos u 1 v1f
2) 5 v1i

2

(5)   v1f
2 2 v1iv1f  cos u 5 0

One possible solution of Equation (5) is v1f 5 0, which corresponds to a head-on, one-dimensional collision in which the 
first proton stops and the second continues with the same speed in the same direction. That is not the solution we want.

Divide both sides of Equation (5) by v1f  and solve 
for the remaining factor of v1f :

v1f 5 v1i cos u 5 (3.50 3 105 m/s) cos 37.08 5   2.80 3 105 m/s

Use Equation (3) to find v2f : v2f 5 "v1i
2 2 v1f

2 5 "13.50 3 105 m/s 22 2 12.80 3 105 m/s 22

5 2.11 3 105 m/s

Use Equation (2) to find f: (2)   f 5 sin21a
v1f sin u

v2f
b 5 sin21B

12.80 3 105 m/s 2  sin 37.08

12.11 3 105 m/s 2 R

5 53.08

Finalize It is interesting that u 1 f 5 908. This result is not accidental. Whenever two objects of equal mass collide elas-
tically in a glancing collision and one of them is initially at rest, their final velocities are perpendicular to each other.

9.6 The Center of Mass
In this section, we describe the overall motion of a system in terms of a special 
point called the center of mass of the system. The system can be either a small 
number of particles or an extended, continuous object, such as a gymnast leaping 
through the air. We shall see that the translational motion of the center of mass 
of the system is the same as if all the mass of the system were concentrated at that 
point. That is, the system moves as if the net external force were applied to a single 
particle located at the center of mass. This model, the particle model, was introduced 
in Chapter 2. This behavior is independent of other motion, such as rotation or 
vibration of the system or deformation of the system (for instance, when a gymnast 
folds her body). 
 Consider a system consisting of a pair of particles that have different masses 
and are connected by a light, rigid rod (Fig. 9.13 on page 268). The position of 
the center of mass of a system can be described as being the average position of the 
system’s mass. The center of mass of the system is located somewhere on the line 
joining the two particles and is closer to the particle having the larger mass. If a 
single force is applied at a point on the rod above the center of mass, the system 
rotates clockwise (see Fig. 9.13a). If the force is applied at a point on the rod below 
the center of mass, the system rotates counterclockwise (see Fig. 9.13b). If the force 
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is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
5

a
i

mixi

a
i

mi

5
a

i
mixi

M
5

1
M a

i
mixi 

  (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

 yCM ;
1
M a

i
miyi and zCM ;

1
M a

i
mizi (9.30)

 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

 rSCM 5 xCM î 1 yCM  ĵ 1 zCM k̂ 5
1
M a

i
mixi î 1

1
M a

i
miyi  ĵ 1

1
M a

i
mizi k̂

 rSCM ;
1
M a

i
mi r

S
i (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

 xCM 5 lim
Dmi S 0

 
1
M

 a
i

xi Dmi 5
1
M

 3  x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm (9.33)

CM

CM

CM

a

b

c

The system rotates clockwise 
when a force is applied 
above the center of mass. 

The system rotates counter-
clockwise when a force is applied 
below the center of mass. 

The system moves in the 
direction of the force without 
rotating when a force is applied 
at the center of mass.

Figure 9.13 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.

y

m1

x1

x 2

CM

m 2

x

x CM
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Example 9.10   The Center of Mass of Three Particles

A system consists of three particles located as shown in Figure 9.18. Find the cen-
ter of mass of the system. The masses of the particles are m1 5 m2 5 1.0 kg and 
m3 5 2.0 kg.

Conceptualize  Figure 9.18 shows the three 
masses. Your intuition should tell you that the 
center of mass is located somewhere in the 
region between the blue particle and the pair 
of tan particles as shown in the figure.

Categorize  We categorize this example as a 
substitution problem because we will be using the equations for the center of mass developed in this section.

S o l u T I o N

We can express the vector position of the center of mass of an extended object in 
the form

 rSCM 5
1
M

 3 rS dm (9.34)

which is equivalent to the three expressions given by Equations 9.32 and 9.33.
 The center of mass of any symmetric object of uniform density lies on an axis of 
symmetry and on any plane of symmetry. For example, the center of mass of a uni-
form rod lies in the rod, midway between its ends. The center of mass of a sphere or 
a cube lies at its geometric center.
 Because an extended object is a continuous distribution of mass, each small mass 
element is acted upon by the gravitational force. The net effect of all these forces is 
equivalent to the effect of a single force M gS acting through a special point, called 
the center of gravity. If gS is constant over the mass distribution, the center of grav-
ity coincides with the center of mass. If an extended object is pivoted at its center of 
gravity, it balances in any orientation.
 The center of gravity of an irregularly shaped object such as a wrench can be 
determined by suspending the object first from one point and then from another. 
In Figure 9.16, a wrench is hung from point A and a vertical line AB (which can be 
established with a plumb bob) is drawn when the wrench has stopped swinging. 
The wrench is then hung from point C, and a second vertical line CD is drawn. The 
center of gravity is halfway through the thickness of the wrench, under the intersec-
tion of these two lines. In general, if the wrench is hung freely from any point, the 
vertical line through this point must pass through the center of gravity.

Q uick Quiz 9.7  A baseball bat of uniform density is cut at the location of its cen-
ter of mass as shown in Figure 9.17. Which piece has the smaller mass? (a) the 
piece on the right (b) the piece on the left (c) both pieces have the same mass 
(d) impossible to determine

Figure 9.17  (Quick 
Quiz 9.7) A baseball bat 
cut at the location of its 
center of mass.

rCM
S 

2

0
21

1

3

y (m)

x (m)
3

m1 m2

m3

Figure 9.18  (Example 9.10) Two 
particles are located on the x axis, 
and a single particle is located on 
the y axis as shown. The vector indi-
cates the location of the system’s 
center of mass.

continued

y

x

z

ri
S

rCM
S

CM
�mi

An extended object can be 
considered to be a distribution 
of small elements of mass �mi .

Figure 9.15  The center of mass 
is located at the vector position 
r
S

CM, which has coordinates xCM, 
yCM, and zCM.

A
B

C

D

The wrench is hung 
freely first from point A 
and then from point C.

The intersection of 
the two lines AB 
and CD locates the 
center of gravity.

A

B

Figure 9.16  An experimental 
technique for determining the 
center of gravity of a wrench.
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Use the defining equations for 
the coordinates of the center of 
mass and notice that zCM 5 0:

xCM 5
1
M a

i
mixi 5

m1x1 1 m2x2 1 m3x3

m1 1 m2 1 m3

5
11.0 kg 2 11.0 m 2 1 11.0 kg 2 12.0 m 2 1 12.0 kg 2 10 2

1.0 kg 1 1.0 kg 1 2.0 kg
5

3.0 kg # m

4.0 kg
5 0.75 m

yCM 5
1
M a

i
mi yi 5

m1y1 1 m2y2 1 m3y3

m1 1 m2 1 m3

5
11.0 kg 2 10 2 1 11.0 kg 2 10 2 1 12.0 kg 2 12.0 m 2

4.0 kg
5

4.0 kg # m

4.0 kg
5 1.0 m

Write the position vector of the 
center of mass:

rSCM ; xCM î 1 yCM  ĵ 5 10.75 î 1 1.0 ĵ 2  m

Example 9.11   The Center of Mass of a Rod

(A) Show that the center of mass of a rod of mass M and length L lies midway 
between its ends, assuming the rod has a uniform mass per unit length.

Conceptualize The rod is shown aligned along the x axis in Figure 9.19, so yCM 5  
zCM 5 0. What is your prediction of the value of xCM?

Categorize  We categorize this example as an analysis problem because we need 
to divide the rod into small mass elements to perform the integration in Equa-
tion 9.32.

Analyze  The mass per unit length (this quantity is called the linear mass density) can be written as l 5 M/L for the uni-
form rod. If the rod is divided into elements of length dx, the mass of each element is dm 5 l dx.

S o l u T I o N

x

dm = l dx
y

dx

x

L

Figure 9.19  (Example 9.11) The 
geometry used to find the center 
of mass of a uniform rod.

Use Equation 9.32 to find an expression for xCM: xCM 5
1
M

  3 x dm 5
1
M

  3
L

0
 xl dx 5

l

M
  

x2

2
`
L

0
5

lL2

2M

Substitute l 5 M/L: xCM 5
L2

2M
aM

L
b 5 1

2 L

One can also use symmetry arguments to obtain the same result.

(B)  Suppose a rod is nonuniform such that its mass per unit length varies linearly with x according to the expression  
l 5 ax, where a is a constant. Find the x coordinate of the center of mass as a fraction of L.

Conceptualize Because the mass per unit length is not constant in this case but is proportional to x, elements of the 
rod to the right are more massive than elements near the left end of the rod.

Categorize This problem is categorized similarly to part (A), with the added twist that the linear mass density is not 
constant.

Analyze  In this case, we replace dm in Equation 9.32 by l dx, where l 5 ax.

S o l u T I o N

Use Equation 9.32 to find an expression for xCM: xCM 5
1
M

  3 x dm 5
1
M

  3
L

0
  xl dx 5

1
M

  3
L

0
  xax dx

5
a

M
  3

L

0
 x

2 dx 5
aL3

3M
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Example 9.12   The Center of Mass of a Right Triangle

You have been asked to hang a metal sign from a single vertical string. The sign has 
the triangular shape shown in Figure 9.20a. The bottom of the sign is to be parallel 
to the ground. At what distance from the left end of the sign should you attach the 
support string?

Conceptualize Figure 9.20a shows the sign hanging from the string. The string must 
be attached at a point directly above the center of gravity of the sign, which is the 
same as its center of mass because it is in a uniform gravitational field.

Categorize  As in the case of Example 9.11, we categorize this example as an analysis 
problem because it is necessary to identify infinitesimal mass elements of the sign to 
perform the integration in Equation 9.32.

Analyze  We assume the triangular sign has a uniform density and total mass M. 
Because the sign is a continuous distribution of mass, we must use the integral 
expression in Equation 9.32 to find the x coordinate of the center of mass.
 We divide the triangle into narrow strips of width dx and height y as shown in 
Figure 9.20b, where y is the height of the hypotenuse of the triangle above the x axis 
for a given value of x. The mass of each strip is the product of the volume of the strip 
and the density r of the material from which the sign is made: dm 5 ryt dx, where t 
is the thickness of the metal sign. The density of the material is the total mass of the 
sign divided by its total volume (area of the triangle times thickness).

S o l u T I o N

Finalize  Notice that the center of mass in part (B) is farther to the right than that in part (A). That result is reasonable 
because the elements of the rod become more massive as one moves to the right along the rod in part (B).

Find the total mass of the rod: M 5 3 dm 5 3
L

0
 l dx 5 3

L

0
 ax dx 5

aL2

2

Substitute M into the expression for xCM: xCM 5
aL3

3aL2/2
5  2

3L

continued

Evaluate dm: dm 5 ryt dx 5 a M
1
2abt

byt dx 5
2My

ab
 dx

Use Equation 9.32 to find the x coordinate of the center 
of mass:

(1)   xCM 5
1
M

  3 x dm 5
1
M

  3
a

0
  x 

2My

ab
 dx 5

2
ab

  3
a

0
  xy dx

To proceed further and evaluate the integral, we must express y in terms of x. The line representing the hypotenuse 
of the triangle in Figure 9.20b has a slope of b/a and passes through the origin, so the equation of this line is y 5 
(b/a)x.
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a

x
xO

y

c b
y

dx

dm

a

b

Joe’s
Cheese Shop

Figure 9.20  (Example 9.12) 
(a) A triangular sign to be hung 
from a single string. (b) Geomet-
ric construction for locating the 
center of mass.

Substitute for y in Equation (1):
xCM 5

2
ab

 3
a

0
 x a b

a
 xbdx 5

2
a2 3

a

0
 x2 dx 5

2
a2 c

x3

3
d

a

0

5 2
3a

Therefore, the string must be attached to the sign at a distance two-thirds of the length of the bottom edge from the 
left end.
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Finalize  This answer is identical to that in part (B) of Example 9.11. For the triangular sign, the linear increase in 
height y with position x means that elements in the sign increase in mass linearly along the x axis, just like the linear 
increase in mass density in Example 9.11. We could also find the y coordinate of the center of mass of the sign, but that 
is not needed to determine where the string should be attached. You might try cutting a right triangle out of cardboard 
and hanging it from a string so that the long base is horizontal. Does the string need to be attached at 23a?
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9.7 Systems of Many Particles
Consider a system of two or more particles for which we have identified the center of 
mass. We can begin to understand the physical significance and utility of the center 
of mass concept by taking the time derivative of the position vector for the center of 
mass given by Equation 9.31. From Section 4.1, we know that the time derivative of 
a position vector is by definition the velocity vector. Assuming M remains constant 
for a system of particles—that is, no particles enter or leave the system—we obtain 
the following expression for the velocity of the center of mass of the system:

 vSCM 5
d rSCM

dt
5

1
M a

i
mi 

d rSi

dt
5

1
M a

i
mi v

S
i (9.35)

where vSi is the velocity of the ith particle. Rearranging Equation 9.35 gives

 M vSCM 5 a
i

mi v
S

i 5 a
i

pSi 5 pStot (9.36)

Therefore, the total linear momentum of the system equals the total mass multi-
plied by the velocity of the center of mass. In other words, the total linear momen-
tum of the system is equal to that of a single particle of mass M moving with a 
velocity vSCM.
 Differentiating Equation 9.35 with respect to time, we obtain the acceleration of 
the center of mass of the system:

 aSCM 5
d vSCM

dt
5

1
M a

i
mi 

d vSi

dt
5

1
M a

i
mi a

S
i (9.37)

Rearranging this expression and using Newton’s second law gives

 M aSCM 5 a
i

mi a
S

i 5 a
i

F
S

i (9.38)

where F
S

i is the net force on particle i.
 The forces on any particle in the system may include both external forces (from 
outside the system) and internal forces (from within the system). By Newton’s third 
law, however, the internal force exerted by particle 1 on particle 2, for example, is 
equal in magnitude and opposite in direction to the internal force exerted by par-
ticle 2 on particle 1. Therefore, when we sum over all internal force vectors in Equa-
tion 9.38, they cancel in pairs and we find that the net force on the system is caused 
only by external forces. We can then write Equation 9.38 in the form

 a F
S

ext 5 M aSCM (9.39)

That is, the net external force on a system of particles equals the total mass of the 
system multiplied by the acceleration of the center of mass. Comparing Equation 
9.39 with Newton’s second law for a single particle, we see that the particle model 
we have used in several chapters can be described in terms of the center of mass:

The center of mass of a system of particles having combined mass M moves 
like an equivalent particle of mass M would move under the influence of the 
net external force on the system.

Velocity of the center of  
mass of a system of particles

Total momentum of a  
system of particles

acceleration of the center of  
mass of a system of particles

Newton’s second law for  
a system of particles
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 Let us integrate Equation 9.39 over a finite time interval:

3a F
S

ext dt 5 3  M aSCM dt 5 3  M 
d vSCM

dt
 dt 5 M  3  d vSCM 5 M DvSCM

Notice that this equation can be written as

 DpStot 5  I
S

 (9.40)

where  I
S

 is the impulse imparted to the system by external forces and pStot is the 
momentum of the system. Equation 9.40 is the generalization of the impulse–
momentum theorem for a particle (Eq. 9.13) to a system of many particles. It is also 
the mathematical representation of the nonisolated system (momentum) model for 
a system of many particles.
 Finally, if the net external force on a system is zero so that the system is isolated, 
it follows from Equation 9.39 that

M aSCM 5 M 
d vSCM

dt
5 0

Therefore, the isolated system model for momentum for a system of many particles 
is described by

 DpStot 5 0 (9.41)
which can be rewritten as

 M vSCM 5 pStot 5 constant 1when a F
S

ext 5 0 2  (9.42)

That is, the total linear momentum of a system of particles is conserved if no net 
external force is acting on the system. It follows that for an isolated system of par-
ticles, both the total momentum and the velocity of the center of mass are con-
stant in time. This statement is a generalization of the isolated system (momentum) 
model for a many-particle system.
 Suppose the center of mass of an isolated system consisting of two or more mem-
bers is at rest. The center of mass of the system remains at rest if there is no net 
force on the system. For example, consider a system of a swimmer standing on a 
raft, with the system initially at rest. When the swimmer dives horizontally off the 
raft, the raft moves in the direction opposite that of the swimmer and the center of 
mass of the system remains at rest (if we neglect friction between raft and water). 
Furthermore, the linear momentum of the diver is equal in magnitude to that of 
the raft, but opposite in direction.

Q uick Quiz 9.8  A cruise ship is moving at constant speed through the water. The  
vacationers on the ship are eager to arrive at their next destination. They decide 
to try to speed up the cruise ship by gathering at the bow (the front) and running 
together toward the stern (the back) of the ship. (i) While they are running toward 
the stern, is the speed of the ship (a) higher than it was before, (b) unchanged,  
(c) lower than it was before, or (d) impossible to determine? (ii) The vacationers 
stop running when they reach the stern of the ship. After they have all stopped 
running, is the speed of the ship (a) higher than it was before they started run-
ning, (b) unchanged from what it was before they started running, (c) lower than 
it was before they started running, or (d) impossible to determine?

WW  Impulse–momentum theorem 
for a system of particles

Conceptual Example 9.13   Exploding Projectile

A projectile fired into the air suddenly explodes into several fragments (Fig. 9.21 on page 274).

(A)  What can be said about the motion of the center of mass of the system made up of all the fragments after the 
explosion?

continued
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Neglecting air resistance, the only external force on the projectile is the gravi-
tational force. Therefore, if the projectile did not explode, it would continue 
to move along the parabolic path indicated by the dashed line in Figure 9.21. 
Because the forces caused by the explosion are internal, they do not affect the 
motion of the center of mass of the system (the fragments). Therefore, after the 
explosion, the center of mass of the fragments follows the same parabolic path 
the projectile would have followed if no explosion had occurred.

(B) If the projectile did not explode, it would land at a distance R from its launch 
point. Suppose the projectile explodes and splits into two pieces of equal mass. 
One piece lands at a distance 2R to the right of the launch point. Where does the 
other piece land?

As discussed in part (A), the center of mass of the two-piece system lands at a dis-
tance R from the launch point. One of the pieces lands at a farther distance R from the landing point (or a distance 2R 
from the launch point), to the right in Figure 9.21. Because the two pieces have the same mass, the other piece must 
land a distance R to the left of the landing point in Figure 9.21, which places this piece right back at the launch point!

S o l u T I o N

S o l u T I o N

Figure 9.21 (Conceptual Example 
9.13) When a projectile explodes 
into several fragments, the center 
of mass of the system made up of all 
the fragments follows the same para-
bolic path the projectile would have 
taken had there been no explosion.

R

Example 9.14   The Exploding Rocket 

A rocket is fired vertically upward. At the instant it reaches an altitude of 1 000 m and a speed of vi 5 300 m/s, it 
explodes into three fragments having equal mass. One fragment moves upward with a speed of v1 5 450 m/s following 
the explosion. The second fragment has a speed of v2 5 240 m/s and is moving east right after the explosion. What is 
the velocity of the third fragment immediately after the explosion?

Conceptualize  Picture the explosion in your mind, with one piece going upward and a second piece moving horizon-
tally toward the east. Do you have an intuitive feeling about the direction in which the third piece moves?

Categorize  This example is a two-dimensional problem because we have two fragments moving in perpendicular 
directions after the explosion as well as a third fragment moving in an unknown direction in the plane defined by the 
velocity vectors of the other two fragments. We assume the time interval of the explosion is very short, so we use the 
impulse approximation in which we ignore the gravitational force and air resistance. Because the forces of the explo-
sion are internal to the system (the rocket), the rocket is an isolated system in terms of momentum. Therefore, the total 
momentum pSi of the rocket immediately before the explosion must equal the total momentum pSf  of the fragments 
immediately after the explosion.

Analyze Because the three fragments have equal mass, the mass of each fragment is M/3, where M is the total mass of 
the rocket. We will let vS3 represent the unknown velocity of the third fragment.

AM

S o l u T I o N

Use the isolated system (momentum) model to equate 
the initial and final momenta of the system and 
express the momenta in terms of masses and velocities:

DpS 5 0    S    pSi 5 pSf     S    M vSi 5
M
3

 vS1 1
M
3

 vS2 1
M
3

 vS3

Solve for vS3: vS3 5 3vSi 2 vS1 2 vS2

Substitute the numerical values: vS3 5 3 1300 ĵ m/s 2 2 1450 ĵ m/s 2 2 1240 î m/s 2 5 12240 î 1 450 ĵ 2  m/s

Finalize  Notice that this event is the reverse of a perfectly inelastic collision. There is one object before the collision 
and three objects afterward. Imagine running a movie of the event backward: the three objects would come together 
and become a single object. In a perfectly inelastic collision, the kinetic energy of the system decreases. If you were 

 

▸ 9.13 c o n t i n u e d
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to calculate the kinetic energy before and after the event in this example, you would find that the kinetic energy of 
the system increases. (Try it!) This increase in kinetic energy comes from the potential energy stored in whatever fuel 
exploded to cause the breakup of the rocket.

 

▸ 9.14 c o n t i n u e d

9.8 Deformable Systems
So far in our discussion of mechanics, we have analyzed the motion of particles or 
nondeformable systems that can be modeled as particles. The discussion in Section 
9.7 can be applied to an analysis of the motion of deformable systems. For example, 
suppose you stand on a skateboard and push off a wall, setting yourself in motion 
away from the wall. Your body has deformed during this event: your arms were bent 
before the event, and they straightened out while you pushed off the wall. How 
would we describe this event?
 The force from the wall on your hands moves through no displacement; the 
force is always located at the interface between the wall and your hands. Therefore, 
the force does no work on the system, which is you and your skateboard. Pushing 
off the wall, however, does indeed result in a change in the kinetic energy of the 
system. If you try to use the work–kinetic energy theorem, W 5 DK, to describe this 
event, you will notice that the left side of the equation is zero but the right side is 
not zero. The work–kinetic energy theorem is not valid for this event and is often 
not valid for systems that are deformable. 
 To analyze the motion of deformable systems, we appeal to Equation 8.2, the 
conservation of energy equation, and Equation 9.40, the impulse–momentum the-
orem. For the example of you pushing off the wall on your skateboard, identifying 
the system as you and the skateboard, Equation 8.2 gives

DEsystem 5 o T S DK 1 DU 5 0

where DK is the change in kinetic energy, which is related to the increased speed 
of the system, and DU is the decrease in potential energy stored in the body from 
previous meals. This equation tells us that the system transformed potential energy 
into kinetic energy by virtue of the muscular exertion necessary to push off the 
wall. Notice that the system is isolated in terms of energy but nonisolated in terms 
of momentum.
 Applying Equation 9.40 to the system in this situation gives us

DpStot 5  I
S

 S m DvS 5 3  F
S

wall dt

where F
S

wall is the force exerted by the wall on your hands, m is the mass of you and 
the skateboard, and DvS is the change in the velocity of the system during the event. 
To evaluate the right side of this equation, we would need to know how the force 
from the wall varies in time. In general, this process might be complicated. In the 
case of constant forces, or well-behaved forces, however, the integral on the right 
side of the equation can be evaluated.

Example 9.15   Pushing on a Spring3 

As shown in Figure 9.22a (page 276), two blocks are at rest on a frictionless, level table. Both blocks have the same 
mass m, and they are connected by a spring of negligible mass. The separation distance of the blocks when the spring 
is relaxed is L. During a time interval Dt, a constant force of magnitude F is applied horizontally to the left block,  

AM

3Example 9.15 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher 43:10, 2005.

continued
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moving it through a distance x1 as shown in Figure 9.22b. During this time inter-
val, the right block moves through a distance x2. At the end of this time interval, 
the force F is removed.

(A)  Find the resulting speed vSCM of the center of mass of the system.

Conceptualize Imagine what happens as you push on the left block. It begins to 
move to the right in Figure 9.22, and the spring begins to compress. As a result, the 
spring pushes to the right on the right block, which begins to move to the right. At 
any given time, the blocks are generally moving with different velocities. As the cen-
ter of mass of the system moves to the right with a constant speed after the force is 
removed, the two blocks oscillate back and forth with respect to the center of mass.

Categorize  We apply three analysis models in this problem: the deformable sys-
tem of two blocks and a spring is modeled as a nonisolated system in terms of energy 
because work is being done on it by the applied force. It is also modeled as a noniso-
lated system in terms of momentum because of the force acting on the system during 
a time interval. Because the applied force on the system is constant, the acceleration of its center of mass is constant 
and the center of mass is modeled as a particle under constant acceleration.

Analyze  Using the nonisolated system (momentum) model, we apply the impulse–momentum theorem to the system 
of two blocks, recognizing that the force F is constant during the time interval Dt while the force is applied.

S o l u T I o N

Write Equation 9.40 for the system: Dpx 5 Ix  S   12m 2 1vCM 2 0 2 5  F Dt

(1)   2mvCM 5  F Dt

During the time interval Dt, the center of mass of the sys-
tem moves a distance 12 1x1 1 x2 2 . Use this fact to express 
the time interval in terms of vCM,avg:

Dt 5

1
2 1x1 1 x2 2

vCM,avg

Because the center of mass is modeled as a particle 
under constant acceleration, the average velocity of the 
center of mass is the average of the initial velocity, which 
is zero, and the final velocity vCM:

Dt 5

1
2 1x1 1 x2 2

1
2 10 1 vCM 2 5

1x1 1 x2 2
vCM

Substitute this expression into Equation (1): 2mvCM 5 F  
1x1 1 x2 2

vCM

Solve for vCM: vCM 5  ÅF  
1x1 1 x2 2

2m

(B) Find the total energy of the system associated with vibration relative to its center of mass after the force F is 
removed.

Analyze  The vibrational energy is all the energy of the system other than the kinetic energy associated with transla-
tional motion of the center of mass. To find the vibrational energy, we apply the conservation of energy equation. The 
kinetic energy of the system can be expressed as K 5 KCM 1 K vib, where K vib is the kinetic energy of the blocks relative 
to the center of mass due to their vibration. The potential energy of the system is Uvib, which is the potential energy 
stored in the spring when the separation of the blocks is some value other than L.

S o l u T I o N

From the nonisolated system (energy) model, express 
Equation 8.2 for this system:

(2)   DKCM 1 DK vib 1 DUvib 5 W

▸ 9.15 c o n t i n u e d

mm

L

F

x2x1

m m

a

b

Figure 9.22 (Example 9.15)  
(a) Two blocks of equal mass are 
connected by a spring. (b) The left 
block is pushed with a constant 
force of magnitude F and moves a 
distance x1 during some time inter-
val. During this same time interval, 
the right block moves through a 
distance x2.
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Figure 9.23  Rocket propul-
sion. (a) The initial mass of the 
rocket plus all its fuel is M 1 Dm 
at a time t, and its speed is v. 
(b) At a time t 1 Dt, the rocket’s 
mass has been reduced to M 
and an amount of fuel Dm has 
been ejected. The rocket’s speed 
increases by an amount Dv.

Express Equation (2) in an alternate form, noting that 
K vib 1 Uvib 5 Evib:

DKCM 1 DEvib 5 W

The initial values of the kinetic energy of the center of 
mass and the vibrational energy of the system are zero. 
Use this fact and substitute for the work done on the sys-
tem by the force F :

KCM 1 Evib 5 W 5 Fx1

Solve for the vibrational energy and use the result from 
part (A):

E vib 5 Fx1 2 K CM 5 Fx1 2 1
2 12m 2vCM 2 5 F  

1x1 2 x2 2
2

Finalize  Neither of the two answers in this example depends on the spring length, the spring constant, or the time 
interval. Notice also that the magnitude x1 of the displacement of the point of application of the applied force is differ-
ent from the magnitude 12 1x1 1 x2 2  of the displacement of the center of mass of the system. This difference reminds us 
that the displacement in the definition of work (Eq. 7.1) is that of the point of application of the force.

9.9 Rocket Propulsion
When ordinary vehicles such as cars are propelled, the driving force for the motion 
is friction. In the case of the car, the driving force is the force exerted by the road 
on the car. We can model the car as a nonisolated system in terms of momentum. 
An impulse is applied to the car from the roadway, and the result is a change in the 
momentum of the car as described by Equation 9.40.
 A rocket moving in space, however, has no road to push against. The rocket is an 
isolated system in terms of momentum. Therefore, the source of the propulsion of 
a rocket must be something other than an external force. The operation of a rocket 
depends on the law of conservation of linear momentum as applied to an isolated 
system, where the system is the rocket plus its ejected fuel.
 Rocket propulsion can be understood by first considering our archer standing 
on frictionless ice in Example 9.1. Imagine the archer fires several arrows hori-
zontally. For each arrow fired, the archer receives a compensating momentum 
in the opposite direction. As more arrows are fired, the archer moves faster and 
faster across the ice. In addition to this analysis in terms of momentum, we can also 
understand this phenomenon in terms of Newton’s second and third laws. Every 
time the bow pushes an arrow forward, the arrow pushes the bow (and the archer) 
backward, and these forces result in an acceleration of the archer.
 In a similar manner, as a rocket moves in free space, its linear momentum 
changes when some of its mass is ejected in the form of exhaust gases. Because 
the gases are given momentum when they are ejected out of the engine, the rocket 
receives a compensating momentum in the opposite direction. Therefore, the 
rocket is accelerated as a result of the “push,” or thrust, from the exhaust gases. In 
free space, the center of mass of the system (rocket plus expelled gases) moves uni-
formly, independent of the propulsion process.4

 Suppose at some time t the magnitude of the momentum of a rocket plus its fuel 
is (M 1 Dm)v, where v is the speed of the rocket relative to the Earth (Fig. 9.23a). 
Over a short time interval Dt, the rocket ejects fuel of mass Dm. At the end of this 
interval, the rocket’s mass is M and its speed is v 1 Dv, where Dv is the change in 
speed of the rocket (Fig. 9.23b). If the fuel is ejected with a speed ve relative to 

4The rocket and the archer represent cases of the reverse of a perfectly inelastic collision: momentum is conserved, 
but the kinetic energy of the rocket–exhaust gas system increases (at the expense of chemical potential energy in 
the fuel), as does the kinetic energy of the archer–arrow system (at the expense of potential energy from the archer’s 
previous meals).

 

▸ 9.15 c o n t i n u e d

The force from a nitrogen-
propelled hand-controlled device 
allows an astronaut to move about 
freely in space without restrictive 
tethers, using the thrust force 
from the expelled nitrogen.
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the rocket (the subscript e stands for exhaust, and ve is usually called the exhaust 
speed), the velocity of the fuel relative to the Earth is v 2 ve . Because the system of 
the rocket and the ejected fuel is isolated, we apply the isolated system model for 
momentum and obtain

 Dp 5 0   S   pi 5 pf   S   1M 1 Dm 2v 5 M 1v 1 Dv 2 1 Dm 1v 2 ve 2  
Simplifying this expression gives

 M Dv 5 ve Dm 

 If we now take the limit as Dt goes to zero, we let Dv S dv and Dm S dm. Fur-
thermore, the increase in the exhaust mass dm corresponds to an equal decrease in 
the rocket mass, so dm 5 2dM. Notice that dM is negative because it represents a 
decrease in mass, so 2dM is a positive number. Using this fact gives

 M dv 5 ve dm 5 2ve dM (9.43)

Now divide the equation by M and integrate, taking the initial mass of the rocket 
plus fuel to be Mi and the final mass of the rocket plus its remaining fuel to be Mf . 
The result is

3
vf

vi

 dv 5 2ve 3
Mf

Mi

 
dM
M

 vf 2 vi 5 ve lna
Mi

Mf
b (9.44)

which is the basic expression for rocket propulsion. First, Equation 9.44 tells us that 
the increase in rocket speed is proportional to the exhaust speed ve of the ejected 
gases. Therefore, the exhaust speed should be very high. Second, the increase in 
rocket speed is proportional to the natural logarithm of the ratio Mi/Mf . There-
fore, this ratio should be as large as possible; that is, the mass of the rocket without 
its fuel should be as small as possible and the rocket should carry as much fuel as 
possible.
 The thrust on the rocket is the force exerted on it by the ejected exhaust gases. 
We obtain the following expression for the thrust from Newton’s second law and 
Equation 9.43:

 Thrust 5 M 
dv
dt

5 `ve 
dM
dt

`  (9.45)

This expression shows that the thrust increases as the exhaust speed increases and 
as the rate of change of mass (called the burn rate) increases.

Expression for rocket  
propulsion

Example 9.16   Fighting a Fire

Two firefighters must apply a total force of 600 N to steady a hose that is discharging water at the rate of 3 600 L/min. 
Estimate the speed of the water as it exits the nozzle.

Conceptualize  As the water leaves the hose, it acts in a way similar to the gases being ejected from a rocket engine. As a 
result, a force (thrust) acts on the firefighters in a direction opposite the direction of motion of the water. In this case, 
we want the end of the hose to be modeled as a particle in equilibrium rather than to accelerate as in the case of the 
rocket. Consequently, the firefighters must apply a force of magnitude equal to the thrust in the opposite direction to 
keep the end of the hose stationary.

Categorize  This example is a substitution problem in which we use given values in an equation derived in this section. 
The water exits at 3 600 L/min, which is 60 L/s. Knowing that 1 L of water has a mass of 1 kg, we estimate that about 
60 kg of water leaves the nozzle each second.

S o l u T I o N
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Use Equation 9.45 for the thrust: Thrust 5 `ve 
dM
dt

 `

Solve for the exhaust speed: ve 5
Thrust
0 dM /dt 0

Substitute numerical values: ve 5
600 N

60 kg/s
5 10 m/s

Solve Equation 9.44 for the final velocity and substitute 
the known values:

vf 5 vi 1 ve lna
Mi

Mf
b

5 3.0 3 103 m/s 1 15.0 3 103 m/s 2 lna Mi

0.50Mi
b

5   6.5 3 103 m/s

(B)  What is the thrust on the rocket if it burns fuel at the rate of 50 kg/s?

Use Equation 9.45, noting that dM/dt 5 50 kg/s:

Thrust 5 `ve 
dM
dt

` 5 15.0 3 103 m/s 2 150 kg/s 2 5  2.5 3 105 N

S o l u T I o N

continued

▸ 9.16 c o n t i n u e d

 

 

Example 9.17   A Rocket in Space

A rocket moving in space, far from all other objects, has a speed of 3.0 3 103 m/s relative to the Earth. Its engines are 
turned on, and fuel is ejected in a direction opposite the rocket’s motion at a speed of 5.0 3 103 m/s relative to the 
rocket.

(A)  What is the speed of the rocket relative to the Earth once the rocket’s mass is reduced to half its mass before 
ignition?

Conceptualize  Figure 9.23 shows the situation in this problem. From the discussion in this section and scenes from sci-
ence fiction movies, we can easily imagine the rocket accelerating to a higher speed as the engine operates.

Categorize  This problem is a substitution problem in which we use given values in the equations derived in this section.

S o l u T I o N

Summary

Definitions

 The linear momentum pS of a particle of mass m 
moving with a velocity vS is

 pS ; mvS (9.2)

 The impulse imparted to a particle by a net force 
g F

S
 is equal to the time integral of the force:

  I
S

; 3
tf

t i

 a F
S

 dt (9.9)
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 An inelastic collision is one for which the 
total kinetic energy of the system of colliding 
particles is not conserved. A perfectly inelastic 
collision is one in which the colliding particles 
stick together after the collision. An elastic col-
lision is one in which the kinetic energy of the 
system is conserved.

 The position vector of the center of mass of a system of par-
ticles is defined as

 rSCM ;
1
M

 a
i

mi r
S

i (9.31)

where M 5 Si mi is the total mass of the system and rSi is the 
position vector of the ith particle.

Concepts and Principles

 Newton’s second law applied to a system of 
particles is

 a F
S

ext 5 M aSCM (9.39)

where aSCM is the acceleration of the center of 
mass and the sum is over all external forces. 
The center of mass moves like an imaginary 
particle of mass M under the influence of the 
resultant external force on the system.

 The position vector of the center of mass of an extended 
object can be obtained from the integral expression

 rSCM 5
1
M

 3 rS dm (9.34)

The velocity of the center of mass for a system of particles is

 vSCM 5
1
M a

i
mi v

S
i (9.35)

The total momentum of a system of particles equals the total 
mass multiplied by the velocity of the center of mass.

Analysis Models for Problem Solving

 Isolated System (Momentum).  The total momentum of an 
isolated system (no external forces) is conserved regardless of 
the nature of the forces between the members of the system:

 DpStot 5 0 (9.41)

The system may be isolated in terms of momentum but 
nonisolated in terms of energy, as in the case of inelastic 
collisions.

 Nonisolated System (Momentum).  If a sys-
tem interacts with its environment in the sense 
that there is an external force on the system, 
the behavior of the system is described by the 
impulse–momentum theorem:

 DpStot 5 I
S

 (9.40)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.
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 1. You are standing on a saucer-shaped sled at rest in the 
middle of a frictionless ice rink. Your lab partner throws 
you a heavy Frisbee. You take different actions in succes-
sive experimental trials. Rank the following situations 
according to your final speed from largest to smallest. 
If your final speed is the same in two cases, give them 
equal rank. (a) You catch the Frisbee and hold onto it. 
(b) You catch the Frisbee and throw it back to your part-
ner. (c) You bobble the catch, just touching the Frisbee 
so that it continues in its original direction more slowly. 
(d) You catch the Frisbee and throw it so that it moves 
vertically upward above your head. (e) You catch the Fris-
bee and set it down so that it remains at rest on the ice.

 2. A boxcar at a rail yard is set into motion at the top of 
a hump. The car rolls down quietly and without fric-
tion onto a straight, level track where it couples with 
a flatcar of smaller mass, originally at rest, so that the 
two cars then roll together without friction. Consider 
the two cars as a system from the moment of release of 
the boxcar until both are rolling together. Answer the 
following questions yes or no. (a) Is mechanical energy 
of the system conserved? (b) Is momentum of the sys-
tem conserved? Next, consider only the process of the 
boxcar gaining speed as it rolls down the hump. For 
the boxcar and the Earth as a system, (c) is mechani-
cal energy conserved? (d) Is momentum conserved? 
Finally, consider the two cars as a system as the boxcar 
is slowing down in the coupling process. (e) Is mechan-
ical energy of this system conserved? (f) Is momentum 
of this system conserved?

 3. A massive tractor is rolling down a country road. In 
a perfectly inelastic collision, a small sports car runs 
into the machine from behind. (i) Which vehicle expe-
riences a change in momentum of larger magnitude?  
(a) The car does. (b) The tractor does. (c) Their 
momentum changes are the same size. (d) It could be 
either vehicle. (ii) Which vehicle experiences a larger 
change in kinetic energy? (a)  The car does. (b) The 
tractor does. (c) Their kinetic energy changes are the 
same size. (d) It could be either vehicle.

 4. A 2-kg object moving to the right with a speed of 4 m/s 
makes a head-on, elastic collision with a 1-kg object 
that is initially at rest. The velocity of the 1-kg object 
after the collision is (a) greater than 4 m/s, (b) less 
than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impos-
sible to say based on the information provided.

 5. A 5-kg cart moving to the right with a speed of 6 m/s 
collides with a concrete wall and rebounds with a speed 
of 2 m/s. What is the change in momentum of the cart? 
(a) 0 (b) 40 kg ? m/s (c) 240 kg ? m/s (d) 230 kg ? m/s  
(e) 210 kg ? m/s

 6. A 57.0-g tennis ball is traveling straight at a player at 
21.0  m/s. The player volleys the ball straight back at 
25.0 m/s. If the ball remains in contact with the racket 
for 0.060 0 s, what average force acts on the ball?  
(a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 N

 7. The momentum of an object is increased by a factor 
of 4 in magnitude. By what factor is its kinetic energy 
changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1

 8. The kinetic energy of an object is increased by a factor 
of 4. By what factor is the magnitude of its momentum 
changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1

 9. If two particles have equal momenta, are their kinetic 
energies equal? (a) yes, always (b) no, never (c) no, 
except when their speeds are the same (d) yes, as long 
as they move along parallel lines

 10. If two particles have equal kinetic energies, are their 
momenta equal? (a) yes, always (b) no, never (c) yes, 
as long as their masses are equal (d) yes, if both their 
masses and directions of motion are the same (e) yes, 
as long as they move along parallel lines

 11. A 10.0-g bullet is fired into a 200-g block of wood at rest 
on a horizontal surface. After impact, the block slides 
8.00 m before coming to rest. If the coefficient of fric-
tion between the block and the surface is 0.400, what 
is the speed of the bullet before impact? (a) 106 m/s  
(b) 166 m/s (c) 226 m/s (d) 286 m/s (e) none of those 
answers is correct

 12. Two particles of different mass start from rest. The same 
net force acts on both of them as they move over equal 
distances. How do their final kinetic energies compare? 
(a) The particle of larger mass has more kinetic energy. 
(b)  The particle of smaller mass has more kinetic 
energy. (c) The particles have equal kinetic energies. 
(d) Either particle might have more kinetic energy.

 13. Two particles of different mass start from rest. The 
same net force acts on both of them as they move over 
equal distances. How do the magnitudes of their final 
momenta compare? (a) The particle of larger mass 
has more momentum. (b) The particle of smaller 
mass has more momentum. (c) The particles have 
equal momenta. (d) Either particle might have more 
momentum.

 14. A basketball is tossed up into the air, falls freely, and 
bounces from the wooden floor. From the moment 
after the player releases it until the ball reaches the 
top of its bounce, what is the smallest system for which 
momentum is conserved? (a) the ball (b) the ball plus 
player (c) the ball plus floor (d) the ball plus the Earth 
(e) momentum is not conserved for any system

 15. A 3-kg object moving to the right on a frictionless, 
horizontal surface with a speed of 2 m/s collides head-
on and sticks to a 2-kg object that is initially moving 
to the left with a speed of 4 m/s. After the collision, 
which statement is true? (a) The kinetic energy of the 
system is 20 J. (b) The momentum of the system is  
14 kg ? m/s. (c) The kinetic energy of the system is 
greater than 5 J but less than 20 J. (d) The momentum 
of the system is 22 kg ? m/s. (e) The momentum of the 
system is less than the momentum of the system before 
the collision.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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what is the speed of the combined car and truck after 
the collision? (a) v (b) v/2 (c) v/3 (d) 2v (e) None of 
those answers is correct.

 18. A head-on, elastic collision occurs between two billiard 
balls of equal mass. If a red ball is traveling to the right 
with speed v and a blue ball is traveling to the left with 
speed 3v before the collision, what statement is true 
concerning their velocities subsequent to the collision? 
Neglect any effects of spin. (a) The red ball travels to 
the left with speed v, while the blue ball travels to the 
right with speed 3v. (b) The red ball travels to the left 
with speed v, while the blue ball continues to move to 
the left with a speed 2v. (c) The red ball travels to the 
left with speed 3v, while the blue ball travels to the 
right with speed v. (d) Their final velocities cannot be 
determined because momentum is not conserved in 
the collision. (e) The velocities cannot be determined 
without knowing the mass of each ball.

 16. A ball is suspended by a string 
that is tied to a fixed point 
above a wooden block stand-
ing on end. The ball is pulled 
back as shown in Figure 
OQ9.16 and released. In trial 
A, the ball rebounds elasti-
cally from the block. In trial B, 
two-sided tape causes the ball 
to stick to the block. In which 
case is the ball more likely to 
knock the block over? (a) It is 
more likely in trial A. (b) It is more likely in trial B.  
(c) It makes no difference. (d) It could be either case, 
depending on other factors.

 17. A car of mass m traveling at speed v crashes into the 
rear of a truck of mass 2m that is at rest and in neutral 
at an intersection. If the collision is perfectly inelastic, 
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Figure oQ9.16

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. An airbag in an automobile inflates when a collision 
occurs, which protects the passenger from serious 
injury (see the photo on page 254). Why does the air-
bag soften the blow? Discuss the physics involved in 
this dramatic photograph.

 2. In golf, novice players are often advised to be sure to 
“follow through” with their swing. Why does this advice 
make the ball travel a longer distance? If a shot is taken 
near the green, very little follow-through is required. 
Why?

 3. An open box slides across a frictionless, icy surface of 
a frozen lake. What happens to the speed of the box as 
water from a rain shower falls vertically downward into 
the box? Explain.

 4. While in motion, a pitched baseball carries kinetic 
energy and momentum. (a) Can we say that it carries a 
force that it can exert on any object it strikes? (b) Can  
the baseball deliver more kinetic energy to the bat 
and batter than the ball carries initially? (c) Can the 
baseball deliver to the bat and batter more momentum 
than the ball carries initially? Explain each of your 
answers.

 5. You are standing perfectly still and then take a step for-
ward. Before the step, your momentum was zero, but 
afterward you have some momentum. Is the principle 
of conservation of momentum violated in this case? 
Explain your answer.

 6. A sharpshooter fires a rifle while standing with the 
butt of the gun against her shoulder. If the forward 
momentum of a bullet is the same as the backward 
momentum of the gun, why isn’t it as dangerous to be 
hit by the gun as by the bullet?

 7. Two students hold a large bed sheet vertically between 
them. A third student, who happens to be the star 
pitcher on the school baseball team, throws a raw egg 
at the center of the sheet. Explain why the egg does 
not break when it hits the sheet, regardless of its initial 
speed.

 8. A juggler juggles three balls in a continuous cycle. Any 
one ball is in contact with one of his hands for one 
fifth of the time. (a) Describe the motion of the center 
of mass of the three balls. (b) What average force does 
the juggler exert on one ball while he is touching it?

 9. (a) Does the center of mass of a rocket in free space 
accelerate? Explain. (b) Can the speed of a rocket 
exceed the exhaust speed of the fuel? Explain.

 10. On the subject of the following positions, state your 
own view and argue to support it. (a) The best theory 
of motion is that force causes acceleration. (b) The true 
measure of a force’s effectiveness is the work it does, and 
the best theory of motion is that work done on an object 
changes its energy. (c) The true measure of a force’s 
effect is impulse, and the best theory of motion is that 
impulse imparted to an object changes its momentum.

 11. Does a larger net force exerted on an object always pro-
duce a larger change in the momentum of the object 
compared with a smaller net force? Explain.

 12. Does a larger net force always produce a larger change 
in kinetic energy than a smaller net force? Explain.

 13. A bomb, initially at rest, explodes into several pieces. 
(a)  Is linear momentum of the system (the bomb 
before the explosion, the pieces after the explosion) 
conserved? Explain. (b) Is kinetic energy of the system 
conserved? Explain.
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energy of the boy–girl system? (c) Is the momentum 
of the boy–girl system conserved in the pushing-apart 
process? If so, explain how that is possible consider-
ing (d) there are large forces acting and (e) there is no 
motion beforehand and plenty of motion afterward.

 9. In research in cardiology and exercise physiology, it is 
often important to know the mass of blood pumped by 
a person’s heart in one stroke. This information can be 
obtained by means of a ballistocardiograph. The instru-
ment works as follows. The subject lies on a horizontal 
pallet floating on a film of air. Friction on the pallet is 
negligible. Initially, the momentum of the system is zero. 
When the heart beats, it expels a mass m of blood into 
the aorta with speed v, and the body and platform move 
in the opposite direction with speed V. The blood veloc-
ity can be determined independently (e.g., by observ-
ing the Doppler shift of ultrasound). Assume that it is  
50.0 cm/s in one typical trial. The mass of the subject 
plus the pallet is 54.0 kg. The pallet moves 6.00 3 10–5 m  
in 0.160 s after one heartbeat. Calculate the mass of 
blood that leaves the heart. Assume that the mass of 
blood is negligible compared with the total mass of the 
person. (This simplified example illustrates the prin-
ciple of ballistocardiography, but in practice a more 
sophisticated model of heart function is used.)

 10. When you jump straight up as high as you can, what is 
the order of magnitude of the maximum recoil speed 
that you give to the Earth? Model the Earth as a per-
fectly solid object. In your solution, state the physical 
quantities you take as data and the values you measure 
or estimate for them.

 11. Two blocks of masses m and 
3m are placed on a friction-
less, horizontal surface. A 
light spring is attached to the 
more massive block, and the 
blocks are pushed together 
with the spring between 
them (Fig. P9.11). A cord 
initially holding the blocks 
together is burned; after that 
happens, the block of mass 
3m moves to the right with a 
speed of 2.00 m/s. (a) What 
is the velocity of the block of 
mass m? (b) Find the system’s original elastic potential 
energy, taking m 5 0.350 kg. (c) Is the original energy 
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Section 9.1 linear Momentum

 1. A particle of mass m moves with momentum of magni-
tude p. (a) Show that the kinetic energy of the particle 
is K 5 p2/2m. (b) Express the magnitude of the parti-
cle’s momentum in terms of its kinetic energy and mass.

 2. An object has a kinetic energy of 275 J and a momen-
tum of magnitude 25.0 kg ? m/s. Find the speed and 
mass of the object.

 3. At one instant, a 17.5-kg sled is moving over a horizontal 
surface of snow at 3.50 m/s. After 8.75 s has elapsed, the 
sled stops. Use a momentum approach to find the aver-
age friction force acting on the sled while it was moving.

 4. A 3.00-kg particle has a velocity of 13.00 î 2 4.00 ĵ 2  m/s. 
(a) Find its x and y components of momentum. (b) Find 
the magnitude and direction of its momentum.

 5. A baseball approaches home plate at a speed of 45.0 m/s,  
moving horizontally just before being hit by a bat. The 
batter hits a pop-up such that after hitting the bat, the 
baseball is moving at 55.0 m/s straight up. The ball has 
a mass of 145 g and is in contact with the bat for 2.00 ms.  
What is the average vector force the ball exerts on the 
bat during their interaction?

Section 9.2 analysis Model: Isolated System (Momentum)

 6. A 45.0-kg girl is standing on a 150-kg plank. Both are 
originally at rest on a frozen lake that constitutes a fric-
tionless, flat surface. The girl begins to walk along the 
plank at a constant velocity of 1.50 î m/s relative to the 
plank. (a) What is the velocity of the plank relative to 
the ice surface? (b) What is the girl’s velocity relative to 
the ice surface?

 7. A girl of mass mg is standing on a plank of mass mp. Both  
are originally at rest on a frozen lake that constitutes a 
frictionless, flat surface. The girl begins to walk along 
the plank at a constant velocity vgp to the right relative to  
the plank. (The subscript gp denotes the girl relative to 
plank.) (a) What is the velocity vpi of the plank relative 
to the surface of the ice? (b) What is the girl’s velocity 
vgi relative to the ice surface?

 8. A 65.0-kg boy and his 40.0-kg sister, both wearing roller 
blades, face each other at rest. The girl pushes the boy 
hard, sending him backward with velocity 2.90 m/s  
toward the west. Ignore friction. (a) Describe the sub-
sequent motion of the girl. (b) How much potential 
energy in the girl’s body is converted into mechanical 
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(c) what is the acceleration of the car? Express the accel-
eration as a multiple of the acceleration due to gravity.

 18. A tennis player receives a shot with the ball (0.060 0 kg)  
traveling horizontally at 20.0 m/s and returns the shot 
with the ball traveling horizontally at 40.0 m/s in the 
opposite direction. (a) What is the impulse delivered 
to the ball by the tennis racket? (b) Some work is done 
on the system of the ball and some energy appears in 
the ball as an increase in internal energy during the 
collision between the ball and the racket. What is the 
sum W 2 DE int for the ball?

 19. The magnitude of the net 
force exerted in the x direc-
tion on a 2.50-kg particle 
varies in time as shown in 
Figure P9.19. Find (a) the 
impulse of the force over 
the 5.00-s time interval, 
(b) the final velocity the 
particle attains if it is origi-
nally at rest, (c) its final 
velocity if its original veloc-
ity is 22.00 î m/s, and (d) the average force exerted on 
the particle for the time interval between 0 and 5.00 s.

 20. Review. A force platform is a tool used to analyze the per-
formance of athletes by measuring the vertical force 
the athlete exerts on the ground as a function of time. 
Starting from rest, a 65.0-kg athlete jumps down onto 
the platform from a height of 0.600 m. While she is in 
contact with the platform during the time interval 0 , 
t , 0.800 s, the force she exerts on it is described by the 
function

F 5 9 200t 2 11 500t2

  where F is in newtons and t is in seconds. (a) What im-
pulse did the athlete receive from the platform? (b) With  
what speed did she reach the platform? (c) With what 
speed did she leave it? (d) To what height did she jump 
upon leaving the platform?

 21. Water falls without splashing at a rate of 0.250 L/s from 
a height of 2.60 m into a 0.750-kg bucket on a scale. If 
the bucket is originally empty, what does the scale read 
in newtons 3.00 s after water starts to accumulate in it?

Section 9.4 Collisions in one Dimension

 22. A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an 
easterly direction crashes into the back of a 9 000-kg 
truck moving in the same direction at vTi 5 20.0 m/s 
(Fig. P9.22). The velocity of the car immediately after 
the collision is vCf 5 18.0 m/s to the east. (a) What is 
the velocity of the truck immediately after the colli-
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in the spring or in the cord? (d) Explain your answer 
to part (c). (e) Is the momentum of the system con-
served in the bursting-apart process? Explain how that 
is possible considering (f) there are large forces acting 
and (g) there is no motion beforehand and plenty of 
motion afterward?

Section 9.3 analysis Model: Nonisolated System 
(Momentum)

 12. A man claims that he can hold onto a 12.0-kg child in a 
head-on collision as long as he has his seat belt on. 
Consider this man in a collision in which he is in one 
of two identical cars each traveling toward the other at 
60.0 mi/h relative to the ground. The car in which he 
rides is brought to rest in 0.10 s. (a) Find the magni-
tude of the average force needed to hold onto the 
child. (b) Based on your result to part (a), is the man’s 
claim valid? (c) What does the answer to this problem 
say about laws requiring the use of proper safety 
devices such as seat belts and special toddler seats?

 13. An estimated force–
time curve for a baseball 
struck by a bat is shown 
in Figure P9.13. From 
this curve, determine 
(a) the magnitude of the 
impulse delivered to the 
ball and (b) the average 
force exerted on the ball.

 14. Review. After a 0.300-kg rubber ball is dropped from 
a height of 1.75 m, it bounces off a concrete floor and 
rebounds to a height of 1.50 m. (a) Determine the 
magnitude and direction of the impulse delivered to 
the ball by the floor. (b) Estimate the time the ball is 
in contact with the floor and use this estimate to calcu-
late the average force the floor exerts on the ball.

 15. A glider of mass m is free to slide along a horizontal 
air track. It is pushed against a launcher at one end 
of the track. Model the launcher as a light spring of 
force constant k compressed by a distance x. The glider 
is released from rest. (a) Show that the glider attains a 
speed of v 5 x(k/m)1/2. (b) Show that the magnitude 
of the impulse imparted to the glider is given by the 
expression I 5 x(km)1/2. (c) Is more work done on a cart 
with a large or a small mass?

 16. In a slow-pitch softball game, a 0.200-kg softball crosses 
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The batter hits the ball toward center field, giv-
ing it a velocity of 40.0 m/s at 30.0° above the horizontal.  
(a) Determine the impulse delivered to the ball. (b) If  
the force on the ball increases linearly for 4.00 ms, 
holds constant for 20.0 ms, and then decreases linearly 
to zero in another 4.00 ms, what is the maximum force 
on the ball? 

 17. The front 1.20 m of a 1 400-kg car is designed as a 
“crumple zone” that collapses to absorb the shock of a 
collision. If a car traveling 25.0 m/s stops uniformly in 
1.20 m, (a) how long does the collision last, (b) what 
is the magnitude of the average force on the car, and  
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 30. As shown in Figure P9.30, a 
bullet of mass m and speed v 
passes completely through a 
pendulum bob of mass M. The 
bullet emerges with a speed 
of v/2. The pendulum bob is 
suspended by a stiff rod (not a 
string) of length , and negli-
gible mass. What is the mini-
mum value of v such that the pendulum bob will barely 
swing through a complete vertical circle?

 31. A 12.0-g wad of sticky clay is hurled horizontally at a 
100-g wooden block initially at rest on a horizontal sur-
face. The clay sticks to the block. After impact, the block 
slides 7.50 m before coming to rest. If the coefficient of 
friction between the block and the surface is 0.650, what 
was the speed of the clay immediately before impact?

 32. A wad of sticky clay of mass m is hurled horizontally at a 
wooden block of mass M initially at rest on a horizontal 
surface. The clay sticks to the block. After impact, the 
block slides a distance d before coming to rest. If the 
coefficient of friction between the block and the sur-
face is m, what was the speed of the clay immediately 
before impact?

 33. Two blocks are free to slide along the frictionless, 
wooden track shown in Figure P9.33. The block of 
mass m1 5 5.00 kg is released from the position shown, 
at height h 5 5.00 m above the flat part of the track. 
Protruding from its front end is the north pole of a 
strong magnet, which repels the north pole of an iden-
tical magnet embedded in the back end of the block 
of mass m2 5 10.0 kg, initially at rest. The two blocks 
never touch. Calculate the maximum height to which 
m1 rises after the elastic collision.

Figure P9.33

m1

m2

h

 34. (a) Three carts of masses m1 5 4.00 kg, m2 5 10.0 kg, 
and m3 5 3.00 kg move on a frictionless, horizontal 
track with speeds of v1 5 5.00 m/s to the right, v2 5 
3.00 m/s to the right, and v3 5 4.00 m/s to the left as 
shown in Figure P9.34. Velcro couplers make the carts 
stick together after colliding. Find the final velocity of 
the train of three carts. (b) What If? Does your answer 
in part (a) require that all the carts collide and stick 
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sion? (b) What is the change in mechanical energy of 
the car–truck system in the collision? (c) Account for 
this change in mechanical energy.

 23. A 10.0-g bullet is fired into a stationary block of wood 
having mass m 5 5.00 kg. The bullet imbeds into the 
block. The speed of the bullet-plus-wood combination 
immediately after the collision is 0.600 m/s. What was 
the original speed of the bullet?

 24. A car of mass m moving at a speed v1 collides and cou-
ples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed 
v2. (a) What is the speed vf of the two vehicles imme-
diately after the collision? (b) What is the change in 
kinetic energy of the car–truck system in the collision?

 25. A railroad car of mass 2.50 3 104 kg is moving with a 
speed of 4.00 m/s. It collides and couples with three 
other coupled railroad cars, each of the same mass as 
the single car and moving in the same direction with 
an initial speed of 2.00 m/s. (a) What is the speed 
of the four cars after the collision? (b) How much 
mechanical energy is lost in the collision?

 26. Four railroad cars, each of mass 2.50 3 104 kg, are 
coupled together and coasting along horizontal tracks 
at speed vi toward the south. A very strong but fool-
ish movie actor, riding on the second car, uncouples 
the front car and gives it a big push, increasing its 
speed to 4.00 m/s southward. The remaining three 
cars continue moving south, now at 2.00 m/s. (a) Find 
the initial speed of the four cars. (b) By how much 
did the potential energy within the body of the actor 
change? (c) State the relationship between the process 
described here and the process in Problem 25.

 27. A neutron in a nuclear reactor makes an elastic, head-
on collision with the nucleus of a carbon atom initially 
at rest. (a) What fraction of the neutron’s kinetic energy 
is transferred to the carbon nucleus? (b) The initial 
kinetic energy of the neutron is 1.60 3 10213 J. Find its 
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision. (The mass of the carbon 
nucleus is nearly 12.0 times the mass of the neutron.)

 28. A 7.00-g bullet, when fired from a gun into a 1.00-kg 
block of wood held in a vise, penetrates the block to a 
depth of 8.00 cm. This block of wood is next placed on 
a frictionless horizontal surface, and a second 7.00-g 
bullet is fired from the gun into the block. To what 
depth will the bullet penetrate the block in this case?

 29. A tennis ball of mass 57.0 g is held 
just above a basketball of mass 590 g. 
With their centers vertically aligned, 
both balls are released from rest at 
the same time, to fall through a dis-
tance of 1.20 m, as shown in Figure 
P9.29. (a)  Find the magnitude of the 
downward velocity with which the 
basketball reaches the ground. (b) Assume that an elas-
tic collision with the ground instantaneously reverses 
the velocity of the basketball while the tennis ball is still 
moving down. Next, the two balls meet in an elastic col-
lision. To what height does the tennis ball rebound?
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constitutes a perfectly inelastic collision. (b) Calculate 
the velocity of the players immediately after the tackle. 
(c) Determine the mechanical energy that disappears as 
a result of the collision. Account for the missing energy.

 43. An unstable atomic nucleus of mass 17.0 3 10227 kg ini-
tially at rest disintegrates into three particles. One of 
the particles, of mass 5.00 3 10227 kg, moves in the y 
direction with a speed of 6.00 3 106 m/s. Another par-
ticle, of mass 8.40 3 10227 kg, moves in the x direction 
with a speed of 4.00 3 106 m/s. Find (a) the velocity of 
the third particle and (b) the total kinetic energy 
increase in the process.

 44. The mass of the blue puck in 
Figure P9.44 is 20.0% greater 
than the mass of the green 
puck. Before colliding, the 
pucks approach each other 
with momenta of equal magni-
tudes and opposite directions, 
and the green puck has an 
initial speed of 10.0 m/s. Find 
the speeds the pucks have after the collision if half the 
kinetic energy of the system becomes internal energy 
during the collision.

Section 9.6 The Center of Mass

 45. Four objects are situated along the y axis as follows: a  
2.00-kg object is at 13.00  m, a 3.00-kg object is at 
12.50 m, a 2.50-kg object is at the origin, and a 4.00-kg 
object is at 20.500 m. Where is the center of mass of 
these objects?

 46. The mass of the Earth is 5.97 3 1024 kg, and the mass 
of the Moon is 7.35 3 1022 kg. The distance of separa-
tion, measured between their centers, is 3.84 3 108 m. 
Locate the center of mass of the Earth–Moon system as 
measured from the center of the Earth.

 47. Explorers in the jungle find an ancient monument in 
the shape of a large isosceles triangle as shown in Fig-
ure P9.47. The monument is made from tens of thou-
sands of small stone blocks of density 3 800 kg/m3. The 
monument is 15.7 m high and 64.8 m wide at its base 
and is everywhere 3.60 m thick from front to back. 
Before the monument was built many years ago, all the 
stone blocks lay on the ground. How much work did 
laborers do on the blocks to put them in position while 
building the entire monument? Note: The gravitational 
potential energy of an object–Earth system is given by 
Ug 5 MgyCM, where M is the total mass of the object 
and yCM is the elevation of its center of mass above the 
chosen reference level.
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together at the same moment? What if they collide in a 
different order?

Section 9.5 Collisions in Two Dimensions

 35. A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving 
initially along the x axis with a speed of 2.00 m/s. After 
the collision, the 0.200-kg puck has a speed of 1.00 m/s 
at an angle of u 5 53.0° to the positive x axis (see Fig-
ure 9.11). (a) Determine the velocity of the 0.300-kg 
puck after the collision. (b) Find the fraction of kinetic 
energy transferred away or transformed to other forms 
of energy in the collision.

 36. Two automobiles of equal mass approach an inter-
section. One vehicle is traveling with speed 13.0 m/s 
toward the east, and the other is traveling north with 
speed v2i. Neither driver sees the other. The vehicles 
collide in the intersection and stick together, leaving 
parallel skid marks at an angle of 55.08 north of east. 
The speed limit for both roads is 35 mi/h, and the 
driver of the northward-moving vehicle claims he was 
within the speed limit when the collision occurred. Is 
he telling the truth? Explain your reasoning.

 37. An object of mass 3.00 kg, moving with an initial veloc-
ity of 5.00 î m/s, collides with and sticks to an object 
of mass 2.00 kg with an initial velocity of 23.00 ĵ m/s. 
Find the final velocity of the composite object.

 38. Two shuffleboard disks of equal mass, one orange and 
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by 
the orange disk moving with a speed of 5.00 m/s. After 
the collision, the orange disk moves along a direction 
that makes an angle of 37.08 with its initial direction 
of motion. The velocities of the two disks are perpen-
dicular after the collision. Determine the final speed of 
each disk.

 39. Two shuffleboard disks of equal mass, one orange and 
the other yellow, are involved in an elastic, glancing 
collision. The yellow disk is initially at rest and is struck 
by the orange disk moving with a speed vi. After the 
collision, the orange disk moves along a direction that 
makes an angle u with its initial direction of motion. 
The velocities of the two disks are perpendicular after 
the collision. Determine the final speed of each disk.

 40. A proton, moving with a velocity of vi î, collides elas-
tically with another proton that is initially at rest. 
Assuming that the two protons have equal speeds after 
the collision, find (a) the speed of each proton after 
the collision in terms of vi and (b) the direction of the 
velocity vectors after the collision.

 41. A billiard ball moving at 5.00 m/s strikes a stationary 
ball of the same mass. After the collision, the first ball 
moves at 4.33 m/s at an angle of 30.08 with respect to 
the original line of motion. Assuming an elastic col-
lision (and ignoring friction and rotational motion), 
find the struck ball’s velocity after the collision.

 42. A 90.0-kg fullback running east with a speed of 5.00 m/s 
is tackled by a 95.0-kg opponent running north with a 
speed of 3.00 m/s. (a) Explain why the successful tackle 
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constitutes a perfectly inelastic collision. (b) Calculate 
the velocity of the players immediately after the tackle. 
(c) Determine the mechanical energy that disappears as 
a result of the collision. Account for the missing energy.

 43. An unstable atomic nucleus of mass 17.0 3 10227 kg ini-
tially at rest disintegrates into three particles. One of 
the particles, of mass 5.00 3 10227 kg, moves in the y 
direction with a speed of 6.00 3 106 m/s. Another par-
ticle, of mass 8.40 3 10227 kg, moves in the x direction 
with a speed of 4.00 3 106 m/s. Find (a) the velocity of 
the third particle and (b) the total kinetic energy 
increase in the process.

 44. The mass of the blue puck in 
Figure P9.44 is 20.0% greater 
than the mass of the green 
puck. Before colliding, the 
pucks approach each other 
with momenta of equal magni-
tudes and opposite directions, 
and the green puck has an 
initial speed of 10.0 m/s. Find 
the speeds the pucks have after the collision if half the 
kinetic energy of the system becomes internal energy 
during the collision.

Section 9.6 The Center of Mass

 45. Four objects are situated along the y axis as follows: a  
2.00-kg object is at 13.00  m, a 3.00-kg object is at 
12.50 m, a 2.50-kg object is at the origin, and a 4.00-kg 
object is at 20.500 m. Where is the center of mass of 
these objects?

 46. The mass of the Earth is 5.97 3 1024 kg, and the mass 
of the Moon is 7.35 3 1022 kg. The distance of separa-
tion, measured between their centers, is 3.84 3 108 m. 
Locate the center of mass of the Earth–Moon system as 
measured from the center of the Earth.

 47. Explorers in the jungle find an ancient monument in 
the shape of a large isosceles triangle as shown in Fig-
ure P9.47. The monument is made from tens of thou-
sands of small stone blocks of density 3 800 kg/m3. The 
monument is 15.7 m high and 64.8 m wide at its base 
and is everywhere 3.60 m thick from front to back. 
Before the monument was built many years ago, all the 
stone blocks lay on the ground. How much work did 
laborers do on the blocks to put them in position while 
building the entire monument? Note: The gravitational 
potential energy of an object–Earth system is given by 
Ug 5 MgyCM, where M is the total mass of the object 
and yCM is the elevation of its center of mass above the 
chosen reference level.
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after the collision. (b) Find the velocity of their center 
of mass before and after the collision.

Section 9.8 Deformable Systems

 56. For a technology project, a stu-
dent has built a vehicle, of total 
mass 6.00 kg, that moves itself. 
As shown in Figure  P9.56, it 
runs on four light wheels. A reel 
is attached to one of the axles, 
and a cord originally wound on 
the reel goes up over a pulley 
attached to the vehicle to sup-
port an elevated load. After the 
vehicle is released from rest, 
the load descends very slowly, 
unwinding the cord to turn 
the axle and make the vehicle 
move forward (to the left in 
Fig. P9.56). Friction is negligible in the pulley and axle 
bearings. The wheels do not slip on the floor. The reel 
has been constructed with a conical shape so that the 
load descends at a constant low speed while the vehi-
cle moves horizontally across the floor with constant 
acceleration, reaching a final velocity of 3.00 î m/s.  
(a) Does the floor impart impulse to the vehicle? If so, 
how much? (b) Does the floor do work on the vehicle? 
If so, how much? (c) Does it make sense to say that the 
final momentum of the vehicle came from the floor? 
If not, where did it come from? (d) Does it make sense 
to say that the final kinetic energy of the vehicle came 
from the floor? If not, where did it come from? (e) Can 
we say that one particular force causes the forward 
acceleration of the vehicle? What does cause it?

 57. A particle is suspended from a post on top of a cart by 
a light string of length L as shown in Figure P9.57a. 
The cart and particle are initially moving to the right 
at constant speed vi, with the string vertical. The cart 
suddenly comes to rest when it runs into and sticks to 
a bumper as shown in Figure P9.57b. The suspended 
particle swings through an angle u. (a) Show that 
the original speed of the cart can be computed from 
vi 5 !2gL 11 2 cos u 2 . (b) If the bumper is still exert-
ing a horizontal force on the cart when the hanging 
particle is at its maximum angle forward from the verti-
cal, at what moment does the bumper stop exerting a 
horizontal force?
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Figure P9.57

 58. A 60.0-kg person bends his knees and then jumps 
straight up. After his feet leave the floor, his motion is 

Figure P9.56
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 48. A uniform piece of sheet 
metal is shaped as shown in 
Figure P9.48. Compute the 
x and y coordinates of the 
center of mass of the piece.

 49. A rod of length 30.0 cm has 
linear density (mass per 
length) given by

l 5 50.0 1 20.0x

  where x is the distance from one end, measured in 
meters, and l is in grams/meter. (a) What is the mass 
of the rod? (b) How far from the x 5 0 end is its center 
of mass?

 50. A water molecule con- 
sists of an oxygen 
atom with two hydro-
gen atoms bound to it 
(Fig. P9.50). The angle 
between the two bonds 
is 106°. If the bonds are 
0.100 nm long, where 
is the center of mass of 
the molecule?

Section 9.7 Systems of Many Particles
 51. A 2.00-kg particle has a velocity 12.00 î 2 3.00 ĵ 2  m/s, 

and a 3.00-kg particle has a velocity 11.00 î 1 6.00 ĵ 2  m/s.  
Find (a) the velocity of the center of mass and (b) the 
total momentum of the system.

 52. Consider a system of two particles in the xy plane: m1 5  
2.00 kg is at the location rS1 5 11.00î 1 2.00ĵ 2  m and 
has a velocity of 13.00î 1 0.500ĵ 2  m/s; m 2 5 3.00 kg  
is at rS2 5 124.00î 2 3.00ĵ 2  m and has velocity 13.00î 2
2.00ĵ 2  m/s. (a) Plot these particles on a grid or graph 
paper. Draw their position vectors and show their 
velocities. (b) Find the position of the center of mass 
of the system and mark it on the grid. (c) Determine 
the velocity of the center of mass and also show it on 
the diagram. (d) What is the total linear momentum 
of the system? 

 53. Romeo (77.0 kg) entertains Juliet (55.0 kg) by play-
ing his guitar from the rear of their boat at rest in still 
water, 2.70 m away from Juliet, who is in the front of 
the boat. After the serenade, Juliet carefully moves to 
the rear of the boat (away from shore) to plant a kiss 
on Romeo’s cheek. How far does the 80.0-kg boat move 
toward the shore it is facing?

 54. The vector position of a 3.50-g particle moving in the xy  
plane varies in time according to rS1 5 13 î 1 3 ĵ 2 t 1
2 ĵt 2, where t is in seconds and rS is in centimeters. At 
the same time, the vector position of a 5.50 g particle 
varies as rS2 5 3 î 2 2 ît 2 2 6 ĵt. At t 5 2.50 s, determine 
(a) the vector position of the center of mass, (b) the lin-
ear momentum of the system, (c) the velocity of the cen-
ter of mass, (d) the acceleration of the center of mass, 
and (e) the net force exerted on the two-particle system.

 55. A ball of mass 0.200 kg with a velocity of 1.50 î m/s meets 
a ball of mass 0.300 kg with a velocity of 20.400 î m/s  
in a head-on, elastic collision. (a) Find their velocities 
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pad on the Earth, taking the vehicle’s initial mass as 
3.00 3 106 kg.

 63. A rocket for use in deep space is to be capable of 
boosting a total load (payload plus rocket frame and 
engine) of 3.00 metric tons to a speed of 10 000 m/s. 
(a) It has an engine and fuel designed to produce an 
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine 
design could give an exhaust speed of 5 000 m/s, what 
amount of fuel and oxidizer would be required for the 
same task? (c) Noting that the exhaust speed in part 
(b) is 2.50 times higher than that in part (a), explain 
why the required fuel mass is not simply smaller by a 
factor of 2.50.

 64. A rocket has total mass Mi 5 360 kg, including Mf 5  
330  kg of fuel and oxidizer. In interstellar space, 
it starts from rest at the position x 5 0, turns on its 
engine at time t 5 0, and puts out exhaust with rel-
ative speed ve 5 1 500 m/s at the constant rate k 5  
2.50 kg/s. The fuel will last for a burn time of Tb 5 
Mf /k 5 330 kg/(2.5 kg/s) 5 132 s. (a) Show that dur-
ing the burn the velocity of the rocket as a function of 
time is given by

v 1 t 2 5 2ve lna1 2
kt
Mi

b

  (b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132 s. (c) Show 
that the acceleration of the rocket is

a 1 t 2 5
kve

Mi 2 kt

  (d) Graph the acceleration as a function of time.  
(e) Show that the position of the rocket is

x 1 t 2 5 ve a
Mi

k
2 tb ln a1 2

kt
Mi

b 1 vet

  (f) Graph the position during the burn as a function of 
time.

additional Problems
 65. A ball of mass m is thrown straight up into the air with 

an initial speed vi. Find the momentum of the ball (a) at  
its maximum height and (b) halfway to its maximum 
height.

 66. An amateur skater of mass M is trapped in the middle 
of an ice rink and is unable to return to the side where 
there is no ice. Every motion she makes causes her to 
slip on the ice and remain in the same spot. She decides 
to try to return to safety by throwing her gloves of mass 
m in the direction opposite the safe side. (a) She throws 
the gloves as hard as she can, and they leave her hand 
with a  horizontal velocity vSgloves. Explain whether or 
not she moves. If she does move, calculate her velocity 
vSgirl relative to the Earth after she throws the gloves. 
(b) Discuss her motion from the point of view of the 
forces acting on her.

 67. A 3.00-kg steel ball strikes a wall with a speed of 10.0 m/s 
at an angle of u  5 60.08 with the surface. It bounces 
off with the same speed and angle (Fig. P9.67). If the 
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unaffected by air resistance and his center of mass rises 
by a maximum of 15.0 cm. Model the floor as com-
pletely solid and motionless. (a) Does the floor impart 
impulse to the person? (b) Does the floor do work on 
the person? (c) With what momentum does the person 
leave the floor? (d) Does it make sense to say that this 
momentum came from the floor? Explain. (e) With 
what kinetic energy does the person leave the floor?  
(f) Does it make sense to say that this energy came 
from the floor? Explain.

 59. Figure P9.59a shows an overhead view of the initial 
configuration of two pucks of mass m on frictionless 
ice. The pucks are tied together with a string of length 
, and negligible mass. At time t 5 0, a constant force of 
magnitude F begins to pull to the right on the center 
point of the string. At time t, the moving pucks strike 
each other and stick together. At this time, the force 
has moved through a distance d, and the pucks have 
attained a speed v (Fig. P9.59b). (a) What is v in terms 
of F, d, ,, and m? (b) How much of the energy trans-
ferred into the system by work done by the force has 
been transformed to internal energy?
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Figure P9.59

Section 9.9 Rocket Propulsion

 60. A model rocket engine has an average thrust of 5.26 N. 
It has an initial mass of 25.5 g, which includes fuel mass 
of 12.7 g. The duration of its burn is 1.90 s. (a) What is 
the average exhaust speed of the engine? (b) This 
engine is placed in a rocket body of mass 53.5 g. What 
is the final velocity of the rocket if it were to be fired 
from rest in outer space by an astronaut on a space-
walk? Assume the fuel burns at a constant rate.

 61. A garden hose is held as 
shown in Figure P9.61. 
The hose is originally 
full of motionless water. 
What additional force 
is necessary to hold the 
nozzle stationary after 
the water flow is turned 
on if the discharge rate 
is 0.600 kg/s with a 
speed of 25.0 m/s?

 62. Review. The first stage of a Saturn V space vehicle con-
sumed fuel and oxidizer at the rate of 1.50 3 104 kg/s 
with an exhaust speed of 2.60 3 103 m/s. (a) Calculate 
the thrust produced by this engine. (b) Find the accel-
eration the vehicle had just as it lifted off the launch 

S
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ball is in contact with 
the wall for 0.200 s,  
what is the average 
force exerted by the 
wall on the ball?

 68. (a) Figure P9.68 shows 
three points in the 
operation of the bal-
listic pendulum dis-
cussed in Example 
9.6 (and shown in Fig. 
9.9b). The projectile approaches the pendulum in 
Figure P9.68a. Figure P9.68b shows the situation just 
after the projectile is captured in the pendulum. In 
Figure P9.68c, the pendulum arm has swung upward 
and come to rest at a height h above its initial posi-
tion. Prove that the ratio of the kinetic energy of the 
projectile–pendulum system immediately after the 
collision to the kinetic energy immediately before is  
m1/(m1 1 m2). (b) What is the ratio of the momentum 
of the system immediately after the collision to the 
momentum immediately before? (c) A student believes 
that such a large decrease in mechanical energy must 
be accompanied by at least a small decrease in momen-
tum. How would you convince this student of the truth?

b

vf 

a

m1 m2

vi h

c

Figure P9.68 Problems 68 and 86. (a) A metal ball 
moves toward the pendulum. (b) The ball is captured 
by the pendulum. (c) The ball–pendulum combination 
swings up through a height h before coming to rest.

 69. Review. A 60.0-kg person running at an initial speed of 
4.00 m/s jumps onto a 120-kg cart initially at rest (Fig. 
P9.69). The person slides on the cart’s top surface and 
finally comes to rest relative to the cart. The coeffi-
cient of kinetic friction between the person and the 
cart is 0.400. Friction between the cart and ground can 
be ignored. (a) Find the final velocity of the person 
and cart relative to the ground. (b) Find the friction 
force acting on the person while he is sliding across the 
top surface of the cart. (c) How long does the friction 
force act on the person? (d) Find the change in 
momentum of the person and the change in momen-
tum of the cart. (e) Determine the displacement of the 
person relative to the ground while he is sliding on the 
cart. (f) Determine the displacement of the cart rela-
tive to the ground while the person is sliding. (g) Find 
the change in kinetic energy of the person. (h) Find 
the change in kinetic energy of the cart. (i) Explain 
why the answers to (g) and (h) differ. (What kind of 
collision is this one, and what accounts for the loss of 
mechanical energy?)
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45.0°

Figure P9.70

 70. A cannon is rigidly 
attached to a car-
riage, which can 
move along horizon-
tal rails but is con-
nected to a post by a 
large spring, initially 
unstretched and with  
force constant k 5 
2.00 3 104 N/m, as 
shown in Figure 
P9.70. The cannon fires a 200-kg projectile at a velocity 
of 125 m/s directed 45.0° above the horizontal.  
(a) Assuming that the mass of the cannon and its car-
riage is 5 000 kg, find the recoil speed of the cannon. 
(b) Determine the maximum extension of the spring. 
(c) Find the maximum force the spring exerts on the 
carriage. (d) Consider the system consisting of the can-
non, carriage, and projectile. Is the momentum of this 
system conserved during the firing? Why or why not? 

 71. A 1.25-kg wooden 
block rests on a table 
over a large hole as in 
Figure P9.71. A 5.00-g 
bullet with an ini-
tial velocity vi is fired 
upward into the bot-
tom of the block and 
remains in the block 
after the collision. The 
block and bullet rise 
to a maximum height of 22.0 cm. (a) Describe how you 
would find the initial velocity of the bullet using ideas 
you have learned in this chapter. (b) Calculate the ini-
tial velocity of the bullet from the information provided.

 72. A wooden block of mass M rests on a table over a large 
hole as in Figure 9.71. A bullet of mass m with an ini-
tial velocity of vi is fired upward into the bottom of 
the block and remains in the block after the collision. 
The block and bullet rise to a maximum height of h. 
(a) Describe how you would find the initial velocity of 
the bullet using ideas you have learned in this chap-
ter. (b) Find an expression for the initial velocity of the 
bullet.

 73. Two particles with masses m and 3m are moving toward 
each other along the x axis with the same initial speeds 
vi. The particle with mass m is traveling to the left, and 
particle with mass 3m is traveling to the right. They 
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meet on the level portion of the track, they undergo 
a head-on, elastic collision. Determine the maximum 
heights to which m1 and m2 rise on the curved portion 
of the track after the collision.

 78. Review. A metal cannonball of mass m rests next to a 
tree at the very edge of a cliff 36.0 m above the surface 
of the ocean. In an effort to knock the cannonball off 
the cliff, some children tie one end of a rope around a 
stone of mass 80.0 kg and the other end to a tree limb 
just above the cannonball. They tighten the rope so 
that the stone just clears the ground and hangs next to 
the cannonball. The children manage to swing the 
stone back until it is held at rest 1.80 m above the 
ground. The children release the stone, which then 
swings down and makes a head-on, elastic collision 
with the cannonball, projecting it horizontally off the 
cliff. The cannonball lands in the ocean a horizontal 
distance R away from its initial position. (a) Find the 
horizontal component R of the cannonball’s displace-
ment as it depends on m. (b) What is the maximum 
possible value for R, and (c) to what value of m does it 
correspond? (d) For the stone–cannonball–Earth sys-
tem, is mechanical energy conserved throughout the 
process? Is this principle sufficient to solve the entire 
problem? Explain. (e) What if? Show that R does not 
depend on the value of the gravitational acceleration. 
Is this result remarkable? State how one might make 
sense of it.

 79. A 0.400-kg blue bead 
slides on a frictionless, 
curved wire, starting 
from rest at point A in 
Figure P9.79, where h 5  
1.50 m. At point B, the 
blue bead collides elas-
tically with a 0.600-kg  
green bead at rest. 
Find the maximum height the green bead rises as it 
moves up the wire.

 80. A small block of mass m1 5 0.500 kg is released from 
rest at the top of a frictionless, curve-shaped wedge of 
mass m2 5 3.00 kg, which sits on a frictionless, hori-
zontal surface as shown in Figure P9.80a. When the 
block leaves the wedge, its velocity is measured to 
be 4.00 m/s to the right as shown in Figure P9.80b. 
(a) What is the velocity of the wedge after the block 
reaches the horizontal surface? (b) What is the height 
h of the wedge?
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undergo a head-on elastic collision, and each rebounds 
along the same line as it approached. Find the final 
speeds of the particles.

 74. Pursued by ferocious wolves, you are in a sleigh with no 
horses, gliding without friction across an ice-covered 
lake. You take an action described by the equations
1270 kg 2 17.50 m/s 2  î 5 115.0 kg 2 12v1f  î 2 1 1255 kg 2 1v2f  î 2

v1f 1 v2f 5 8.00 m/s

  (a) Complete the statement of the problem, giving the 
data and identifying the unknowns. (b) Find the val-
ues of v1f and v2f . (c) Find the amount of energy that 
has been transformed from potential energy stored in 
your body to kinetic energy of the system.

 75. Two gliders are set in motion on a horizontal air track. 
A spring of force constant k is attached to the back end 
of the second glider. As shown in Figure P9.75, the first 
glider, of mass m1, moves to the right with speed v1, and 
the second glider, of mass m2, moves more slowly to the 
right with speed v2. When m1 collides with the spring 
attached to m2, the spring compresses by a distance 
xmax, and the gliders then move apart again. In terms 
of v1, v2, m1, m2, and k, find (a) the speed v at maxi-
mum compression, (b) the maximum compression 
xmax, and (c) the velocity of each glider after m1 has lost 
contact with the spring.

k

m2m1

21vS vS

Figure P9.75

 76. Why is the following situation impossible? An astronaut, 
together with the equipment he carries, has a mass 
of 150 kg. He is taking a space walk outside his space-
craft, which is drifting through space with a constant 
velocity. The astronaut accidentally pushes against the 
spacecraft and begins moving away at 20.0 m/s, relative 
to the spacecraft, without a tether. To return, he takes 
equipment off his space suit and throws it in the direc-
tion away from the spacecraft. Because of his bulky 
space suit, he can throw equipment at a maximum 
speed of 5.00 m/s relative to himself. After throwing 
enough equipment, he starts moving back to the space-
craft and is able to grab onto it and climb inside.

 77. Two blocks of masses m1 5 2.00 kg and m2 5 4.00 kg 
are released from rest at a height of h 5 5.00 m on a 
frictionless track as shown in Figure P9.77. When they 
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 81. Review. A bullet of mass m 5 8.00 g is fired into a block 
of mass M 5 250 g that is initially at rest at the edge 
of a table of height h 5 1.00 m (Fig. P9.81). The bullet 
remains in the block, and after the impact the block 
lands d 5 2.00 m from the bottom of the table. Deter-
mine the initial speed of the bullet.

h

d

m
M

Figure P9.81 Problems 81 and 82.

 82. Review. A bullet of mass m is fired into a block of mass 
M initially at rest at the edge of a frictionless table of 
height h (Fig. P9.81). The bullet remains in the block, 
and after impact the block lands a distance d from the 
bottom of the table. Determine the initial speed of the 
bullet.

 83. A 0.500-kg sphere moving with a velocity given by 
12.00 î 2 3.00 ĵ 1 1.00k̂ 2  m/s strikes another sphere 
of mass 1.50 kg moving with an initial velocity of 
121.00 î 1 2.00 ĵ 2 3.00k̂ 2  m/s. (a) The velocity of 
the 0.500-kg sphere after the collision is 121.00 î 1  
3.00 ĵ 2 8.00k̂ 2  m/s. Find the final velocity of the 1.50-kg  
sphere and identify the kind of collision (elastic, 
inelastic, or perfectly inelastic). (b)  Now assume the 
velocity of the 0.500-kg sphere after the collision is 
(20.250 î 1 0.750 ĵ 2 2.00k̂) m/s. Find the final velocity  
of the 1.50-kg sphere and identify the kind of col-
lision. (c) What If? Take the velocity of the 0.500-kg  
sphere after the collision as 121.00 î 1 3.00 ĵ 1 a k̂ 2  m/s.  
Find the value of a and the velocity of the 1.50-kg 
sphere after an elastic collision.

 84. A 75.0-kg firefighter slides down a pole while a constant 
friction force of 300 N retards her motion. A horizontal 
20.0-kg platform is supported by a spring at the bottom 
of the pole to cushion the fall. The firefighter starts 
from rest 4.00 m above the platform, and the spring 
constant is 4 000 N/m. Find (a) the firefighter’s speed 
just before she collides with the platform and (b) the 
maximum distance the spring is compressed. Assume 
the friction force acts during the entire motion.

 85. George of the Jungle, with mass m, swings on a light 
vine hanging from a stationary tree branch. A second 
vine of equal length hangs from the same point, and a 
gorilla of larger mass M swings in the opposite direc-
tion on it. Both vines are horizontal when the primates 
start from rest at the same moment. George and the 
gorilla meet at the lowest point of their swings. Each is 
afraid that one vine will break, so they grab each other 
and hang on. They swing upward together, reaching a 
point where the vines make an angle of 35.08 with the 
vertical. Find the value of the ratio m/M.

 86. Review. A student performs a ballistic pendulum 
experiment using an apparatus similar to that dis-
cussed in Example 9.6 and shown in Figure P9.68. She 
obtains the following average data: h 5 8.68 cm, projec-
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tile mass m1 5 68.8 g, and pendulum mass m2 5 263 g.  
(a) Determine the initial speed v1A of the projectile.  
(b) The second part of her experiment is to obtain v1A 
by firing the same projectile horizontally (with the pen-
dulum removed from the path) and measuring its final 
horizontal position x and distance of fall y (Fig. P9.86). 
What numerical value does she obtain for v1A based on 
her measured values of x 5 257 cm and y 5 85.3 cm?  
(c) What factors might account for the difference in 
this value compared with that obtained in part (a)?

y

x

v1A
S

Figure P9.86

 87. Review. A light spring of force constant 3.85 N/m is 
compressed by 8.00 cm and held between a 0.250-kg 
block on the left and a 0.500-kg block on the right. 
Both blocks are at rest on a horizontal surface. The 
blocks are released simultaneously so that the spring 
tends to push them apart. Find the maximum velocity 
each block attains if the coefficient of kinetic friction 
between each block and the surface is (a) 0, (b) 0.100, 
and (c) 0.462. Assume the coefficient of static friction 
is greater than the coefficient of kinetic friction in 
every case.

 88. Consider as a system the Sun with the Earth in a circu-
lar orbit around it. Find the magnitude of the change 
in the velocity of the Sun relative to the center of mass 
of the system over a six-month period. Ignore the influ-
ence of other celestial objects. You may obtain the nec-
essary astronomical data from the endpapers of the 
book.

 89. A 5.00-g bullet mov-
ing with an initial 
speed of vi 5 400 m/s 
is fired into and passes 
through a 1.00-kg 
block as shown in Fig-
ure P9.89. The block, 
initially at rest on a 
frictionless, horizontal 
surface, is connected 
to a spring with force 
constant 900 N/m. 
The block moves d 5 5.00 cm to the right after impact 
before being brought to rest by the spring. Find (a) the 
speed at which the bullet emerges from the block and 
(b) the amount of initial kinetic energy of the bullet 
that is converted into internal energy in the bullet–
block system during the collision.

 90. Review. There are (one can say) three coequal theo-
ries of motion for a single particle: Newton’s second 
law, stating that the total force on the particle causes its 
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acceleration; the work–kinetic energy theorem, stating 
that the total work on the particle causes its change in 
kinetic energy; and the impulse–momentum theorem, 
stating that the total impulse on the particle causes its 
change in momentum. In this problem, you compare 
predictions of the three theories in one particular 
case. A 3.00-kg object has velocity 7.00 ĵ m/s. Then, a 
constant net force 12.0 î N acts on the object for 5.00 s.  
(a) Calculate the object’s final velocity, using the 
impulse–momentum theorem. (b) Calculate its acceler-
ation from aS 5 1 vSf 2 vSi 2/Dt. (c) Calculate its accel-
eration from aS 5 g  F

S
/m . (d) Find the object’s vector 

displacement from D rS 5 vSit 1 1
2 aSt 2. (e) Find the work  

done on the object from W 5 F
S

? D rS. (f) Find the  
final kinetic energy from 12mvf

2 5 1
2mvSf ? vSf . (g) Find the 

final kinetic energy from 12mvi
2 1 W. (h) State the result 

of comparing the answers to parts (b) and (c), and the 
answers to parts (f) and (g).

 91. A 2.00-g particle moving at 8.00 m/s makes a perfectly 
elastic head-on collision with a resting 1.00-g object. 
(a) Find the speed of each particle after the collision. 
(b) Find the speed of each particle after the collision 
if the stationary particle has a mass of 10.0 g. (c) Find 
the final kinetic energy of the incident 2.00-g particle 
in the situations described in parts (a) and (b). In 
which case does the incident particle lose more kinetic 
energy?

Challenge Problems

 92. In the 1968 Olympic games, University of Oregon 
jumper Dick Fosbury introduced a new technique of 
high jumping called the “Fosbury flop.” It contributed 
to raising the world record by about 30 cm and is cur-
rently used by nearly every world-class jumper. In this 
technique, the jumper goes over the bar face-up while 
arching her back as much as possible as shown in Figure 
P9.92a. This action places her center of mass outside 
her body, below her back. As her body goes over the 
bar, her center of mass passes below the bar. Because 
a given energy input implies a certain elevation for her 
center of mass, the action of arching her back means 
that her body is higher than if her back were straight. 
As a model, consider the jumper as a thin uniform rod 
of length L. When the rod is straight, its center of mass 
is at its center. Now bend the rod in a circular arc so 
that it subtends an angle of 90.08 at the center of the 
arc as shown in Figure P9.92b. In this configuration, 
how far outside the rod is the center of mass?
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 93. Two particles with masses m and 3m are moving toward 
each other along the x axis with the same initial speeds 

M

vi. Particle m is traveling to the left, and particle 3m is 
traveling to the right. They undergo an elastic glanc-
ing collision such that particle m is moving in the nega-
tive y direction after the collision at a right angle from 
its initial direction. (a) Find the final speeds of the two 
particles in terms of vi. (b) What is the angle u at which 
the particle 3m is scattered?

 94. Sand from a stationary hopper falls onto a moving 
conveyor belt at the rate of 5.00 kg/s as shown in 
Figure P9.94. The conveyor belt is supported by fric-
tionless rollers and moves at a constant speed of v 5  
0.750 m/s under the action of a constant horizontal 
external force F

S

ext supplied by the motor that drives 
the belt. Find (a) the sand’s rate of change of momen-
tum in the horizontal direction, (b) the force of fric-
tion exerted by the belt on the sand, (c) the external 
force F

S

ext , (d) the work done by F
S

ext in 1 s, and (e) the 
kinetic energy acquired by the falling sand each 
second due to the change in its horizontal motion.  
(f) Why are the answers to parts (d) and (e) different?

v
Fext
S

Figure P9.94

 95. On a horizontal air track, a glider of mass m carries 
a G-shaped post. The post supports a small dense 
sphere, also of mass m, hanging just above the top 
of the glider on a cord of length L. The glider and 
sphere are initially at rest with the cord vertical. (Fig-
ure P9.57 shows a cart and a sphere similarly con-
nected.) A constant horizontal force of magnitude F 
is applied to the glider, moving it through displace-
ment x1; then the force is removed. During the time 
interval when the force is applied, the sphere moves 
through a displacement with horizontal component 
x2. (a) Find the horizontal component of the veloc-
ity of the center of mass of the glider–sphere system 
when the force is removed. (b) After the force is 
removed, the glider continues to move on the track 
and the sphere swings back and forth, both without 
friction. Find an expression for the largest angle the 
cord makes with the vertical.

 96. Review. A chain of length L 
and total mass M is released 
from rest with its lower end just 
touching the top of a table as 
shown in Figure P9.96a. Find 
the force exerted by the table 
on the chain after the chain 
has fallen through a distance 
x as shown in Figure P9.96b. 
(Assume each link comes to 
rest the instant it reaches the 
table.)

Q/C
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Figure P9.96
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10.1 Angular Position, 
Velocity, and 
Acceleration

10.2 Analysis Model: Rigid 
Object Under Constant  
Angular Acceleration

10.3 Angular and Translational 
Quantities

10.4 Torque

10.5 Analysis Model:  
Rigid Object Under  
a Net Torque

10.6 Calculation of Moments  
of Inertia

10.7 Rotational Kinetic Energy

10.8 Energy Considerations in 
Rotational Motion

10.9 Rolling Motion of  
a Rigid Object

Rotation of a Rigid Object 
About a Fixed Axis

The Malaysian pastime of gasing 
involves the spinning of tops 
that can have masses up to 5 kg. 
Professional spinners can spin their 
tops so that they might rotate for 
more than an hour before stopping. 
We will study the rotational motion 
of objects such as these tops in this 
chapter. (Courtesy Tourism Malaysia)

c h A p t e R 

10

When an extended object such as a wheel rotates about its axis, the motion cannot be 
analyzed by modeling the object as a particle because at any given time different parts of the 
object have different linear velocities and linear accelerations. We can, however, analyze the 
motion of an extended object by modeling it as a system of many particles, each of which has 
its own linear velocity and linear acceleration as discussed in Section 9.7.
 In dealing with a rotating object, analysis is greatly simplified by assuming the object is 
rigid. A rigid object is one that is nondeformable; that is, the relative locations of all particles 
of which the object is composed remain constant. All real objects are deformable to some 
extent; our rigid-object model, however, is useful in many situations in which deformation is 
negligible. We have developed analysis models based on particles and systems. In this chapter, 
we introduce another class of analysis models based on the rigid-object model.

10.1 Angular Position, Velocity, and Acceleration
We will develop our understanding of rotational motion in a manner parallel to 
that used for translational motion in previous chapters. We began in Chapter 2 by  
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r
 (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position A to posi-
tion B in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed 

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x

y

B, t f

A, ti
r

i

O

fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from A to 
B along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.



 10.1 Angular position, Velocity, and Acceleration 295

 In analogy to translational speed, the instantaneous angular speed v is defined 
as the limit of the average angular speed as Dt approaches zero:

 v ; lim
Dt S 0

 
Du

Dt
5

du

dt
 (10.3)

Angular speed has units of radians per second (rad/s), which can be written as s21 
because radians are not dimensional. We take v to be positive when u is increasing 
(counterclockwise motion in Fig. 10.2) and negative when u is decreasing (clock-
wise motion in Fig. 10.2).

Q uick Quiz 10.1  A rigid object rotates in a counterclockwise sense around a fixed 
axis. Each of the following pairs of quantities represents an initial angular posi-
tion and a final angular position of the rigid object. (i) Which of the sets can 
only occur if the rigid object rotates through more than 1808? (a) 3 rad, 6 rad 
(b) 21 rad, 1 rad (c) 1 rad, 5 rad (ii) Suppose the change in angular position for 
each of these pairs of values occurs in 1 s. Which choice represents the lowest 
average angular speed?

 If the instantaneous angular speed of an object changes from vi to vf in the time 
interval Dt, the object has an angular acceleration. The average angular acceleration  
aavg (Greek letter alpha) of a rotating rigid object is defined as the ratio of the 
change in the angular speed to the time interval Dt during which the change in the 
angular speed occurs:

 aavg ;
vf 2 vi

tf 2 ti
5

Dv

Dt
 (10.4)

 In analogy to translational acceleration, the instantaneous angular acceleration 
is defined as the limit of the average angular acceleration as Dt approaches zero:

 a ; lim
Dt S 0

 Dv

Dt
5

dv

dt
 (10.5)

 Angular acceleration has units of radians per second squared (rad/s2), or simply 
s22. Notice that a is positive when a rigid object rotating counterclockwise is speed-
ing up or when a rigid object rotating clockwise is slowing down during some time 
interval.
 When a rigid object is rotating about a fixed axis, every particle on the object 
rotates through the same angle in a given time interval and has the same angular 
speed and the same angular acceleration. Therefore, like the angular position u, 
the quantities v and a characterize the rotational motion of the entire rigid object 
as well as individual particles in the object.
 Angular position (u), angular speed (v), and angular acceleration (a) are analo-
gous to translational position (x), translational speed (v), and translational accel-
eration (a). The variables u, v, and a differ dimensionally from the variables x, v, 
and a only by a factor having the unit of length. (See Section 10.3.)
 We have not specified any direction for angular speed and angular acceleration. 
Strictly speaking, v and a are the magnitudes of the angular velocity and the angu-
lar acceleration vectors1 vS and aS, respectively, and they should always be positive. 
Because we are considering rotation about a fixed axis, however, we can use non-
vector notation and indicate the vectors’ directions by assigning a positive or nega-
tive sign to v and a as discussed earlier with regard to Equations 10.3 and 10.5. For 
rotation about a fixed axis, the only direction that uniquely specifies the rotational 
motion is the direction along the axis of rotation. Therefore, the directions of vS 
and aS are along this axis. If a particle rotates in the xy plane as in Figure 10.2, the 

WW Instantaneous angular speed

WW Average angular acceleration

WW  Instantaneous angular 
acceleration

Pitfall Prevention 10.2
Specify Your Axis In solving 
rotation problems, you must 
specify an axis of rotation. This 
new feature does not exist in our 
study of translational motion. The 
choice is arbitrary, but once you 
make it, you must maintain that 
choice consistently throughout 
the problem. In some problems, 
the physical situation suggests a 
natural axis, such as one along the 
axle of an automobile wheel. In 
other problems, there may not be 
an obvious choice, and you must 
exercise judgment.

1Although we do not verify it here, the instantaneous angular velocity and instantaneous angular acceleration are 
vector quantities, but the corresponding average values are not because angular displacements do not add as vector 
quantities for finite rotations.



296 chapter 10 Rotation of a Rigid Object About a Fixed Axis

direction of vS for the particle is out of the plane of the diagram when the rotation 
is counterclockwise and into the plane of the diagram when the rotation is clock-
wise. To illustrate this convention, it is convenient to use the right-hand rule demon-
strated in Figure 10.3. When the four fingers of the right hand are wrapped in the 
direction of rotation, the extended right thumb points in the direction of vS . The 
direction of aS follows from its definition aS ; dvS  /dt. It is in the same direction as 
vS if the angular speed is increasing in time, and it is antiparallel to vS if the angular 
speed is decreasing in time.

10.2  Analysis Model: Rigid Object Under  
Constant Angular Acceleration

In our study of translational motion, after introducing the kinematic variables, we 
considered the special case of a particle under constant acceleration. We follow the 
same procedure here for a rigid object under constant angular acceleration. 
 Imagine a rigid object such as the CD in Figure 10.1 rotates about a fixed axis 
and has a constant angular acceleration. In parallel with our analysis model of the 
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We 
develop kinematic relationships for this model in this section. Writing Equation 
10.5 in the form dv 5 a dt and integrating from ti 5 0 to tf 5 t gives

 vf 5 vi 1 at (for constant a) (10.6)

where vi is the angular speed of the rigid object at time t 5 0. Equation 10.6 allows 
us to find the angular speed vf of the object at any later time t. Substituting Equa-
tion 10.6 into Equation 10.3 and integrating once more, we obtain

 uf 5 ui 1 vit 1 1
2at 2 1 for constant a 2  (10.7)

where ui is the angular position of the rigid object at time t 5 0. Equation 10.7 
allows us to find the angular position uf of the object at any later time t. Eliminating 
t from Equations 10.6 and 10.7 gives

 vf
2 5 vi

2 1 2a(uf 2 ui) (for constant a) (10.8)

This equation allows us to find the angular speed vf of the rigid object for any value of  
its angular position uf . If we eliminate a between Equations 10.6 and 10.7, we obtain

 uf 5 ui 1 1
2 1vi 1 vf 2 t 1 for constant a 2  (10.9)

 Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under 
constant acceleration (Chapter 2). They can be generated from the equations for 
translational motion by making the substitutions x S u, v S v, and a S a. Table 
10.1 compares the kinematic equations for the rigid object under constant angular 
acceleration and particle under constant acceleration models.

Q uick Quiz 10.2  Consider again the pairs of angular positions for the rigid 
object in Quick Quiz 10.1. If the object starts from rest at the initial angular 
position, moves counterclockwise with constant angular acceleration, and 
arrives at the final angular position with the same angular speed in all three 
cases, for which choice is the angular acceleration the highest?

Rotational kinematic  
equations

 

 v
S

v
S

Figure 10.3  The right-hand rule 
for determining the direction of the 
angular velocity vector.

Pitfall Prevention 10.3
Just Like Translation? Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kinematics 
is just like translational kinemat-
ics. That is almost true, with two 
key differences. (1) In rotational 
kinematics, you must specify a 
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
the number of revolutions made 
by a rigid object. This concept has 
no analog in translational motion.

Table 10.1 Kinematic Equations for Rotational and Translational Motion
Rigid Object Under Constant Angular Acceleration Particle Under Constant Acceleration

	 vf 5 vi 1 at (10.6) vf 5 vi 1 at (2.13)
	 uf 5 ui 1 vit 1 12at2 (10.7) xf 5 xi 1 vit 1 12at2 (2.16)
	vf

2 5 vi
2 1 2a(uf 2 ui) (10.8) vf

2 5 vi
2 1 2a(xf 2 xi) (2.17)

	 uf 5 ui 1 12(vi 1 vf)t (10.9) xf 5 xi 1 12(vi 1 vf)t (2.15)
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Example 10.1   Rotating Wheel 

A wheel rotates with a constant angular acceleration of 3.50 rad/s2.

(A)  If the angular speed of the wheel is 2.00 rad/s at ti 5 0, through what angular displacement does the wheel rotate 
in 2.00 s?

Conceptualize  Look again at Figure 10.1. Imagine that the compact disc rotates with its angular speed increasing at 
a constant rate. You start your stopwatch when the disc is rotating at 2.00 rad/s. This mental image is a model for the 
motion of the wheel in this example.

Categorize  The phrase “with a constant angular acceleration” tells us to apply the rigid object under constant angular 
acceleration model to the wheel.

AM

S o L u T I o n

Analyze From the rigid object under constant angular 
acceleration model, choose Equation 10.7 and rearrange it 
so that it expresses the angular displacement of the wheel:

Du 5 uf 2 ui 5 vit 1 1
2at 2

Substitute the known values to find the angular displace-
ment at t 5 2.00 s:

Du 5 (2.00 rad/s)(2.00 s) 1 12(3.50 rad/s2)(2.00 s)2

5  11.0 rad  5 (11.0 rad)(1808/p	rad) 5  6308

(B)  Through how many revolutions has the wheel turned during this time interval?

S o L u T I o n

Multiply the angular displacement found in part (A) by a 
conversion factor to find the number of revolutions:

Du 5 6308a1 rev
3608

b 5  1.75 rev

(C)  What is the angular speed of the wheel at t 5 2.00 s?

S o L u T I o n

Use Equation 10.6 from the rigid object under constant 
angular acceleration model to find the angular speed at  
t 5 2.00 s:

vf 5 vi 1 at 5 2.00 rad/s 1 (3.50 rad/s2)(2.00 s)

5  9.00 rad/s

Finalize  We could also obtain this result using Equation 10.8 and the results of part (A). (Try it!)

 Suppose a particle moves along a straight line with a constant acceleration of 3.50 m/s2. If the velocity of 
the particle is 2.00 m/s at ti 5 0, through what displacement does the particle move in 2.00 s? What is the velocity of the 
particle at t 5 2.00 s?

WhAT IF ?

Analysis Model   Rigid Object Under Constant Angular Acceleration

Imagine an object that undergoes a spin-
ning motion such that its angular accelera-
tion is constant. The equations describing 
its angular position and angular speed are 
analogous to those for the particle under 
constant acceleration model: 

 vf 5 vi 1 at (10.6)

 uf 5 ui 1 vit 1 1
2at 2 (10.7)

 vf
2 5 vi

2 1 2a(uf 2 ui) (10.8)

 uf 5 ui 1 1
2 1vi 1 vf 2 t (10.9)

Examples: 

•	 during	its	spin	cycle,	the	tub	of	a	clothes	
washer begins from rest and accelerates up 
to its final spin speed

•	 a	workshop	grinding	wheel	is	turned	off	
and comes to rest under the action of a 
constant friction force in the bearings of 
the wheel

•	 a	gyroscope	is	powered	up	and	approaches	
its operating speed (Chapter 11)

•	 the	crankshaft	of	a	diesel	engine	changes	
to a higher angular speed (Chapter 22)

a� constant

continued
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10.3 Angular and Translational Quantities
In this section, we derive some useful relationships between the angular speed and 
acceleration of a rotating rigid object and the translational speed and acceleration 
of a point in the object. To do so, we must keep in mind that when a rigid object 
rotates about a fixed axis as in Figure 10.4, every particle of the object moves in a 
circle whose center is on the axis of rotation.
 Because point P in Figure 10.4 moves in a circle, the translational velocity vector vS 
is always tangent to the circular path and hence is called tangential velocity. The mag-
nitude of the tangential velocity of the point P is by definition the tangential speed 
v 5 ds/dt, where s is the distance traveled by this point measured along the circular 
path. Recalling that s 5 r u (Eq. 10.1a) and noting that r is constant, we obtain

v 5
ds
dt

5 r 
du

dt

Because d u/dt 5 v (see Eq. 10.3), it follows that

 v 5 rv (10.10)

As we saw in Equation 4.17, the tangential speed of a point on a rotating rigid 
object equals the perpendicular distance of that point from the axis of rotation 
multiplied by the angular speed. Therefore, although every point on the rigid 
object has the same angular speed, not every point has the same tangential speed 
because r is not the same for all points on the object. Equation 10.10 shows that 
the tangential speed of a point on the rotating object increases as one moves 
outward from the center of rotation, as we would intuitively expect. For example, 
the outer end of a swinging golf club moves much faster than a point near the 
handle.
 We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v :

at 5
dv
dt

5 r 
dv

dt
 

 at 5 ra (10.11)

That is, the tangential component of the translational acceleration of a point on 
a rotating rigid object equals the point’s perpendicular distance from the axis of 
rotation multiplied by the angular acceleration.
 In Section 4.4, we found that a point moving in a circular path undergoes a 
radial acceleration ar directed toward the center of rotation and whose magnitude 
is that of the centripetal acceleration v 2/r (Fig. 10.5). Because v 5 rv for a point 

Relation between tangential  
velocity and angular velocity

Relation between tangential  
acceleration and angular 

acceleration

Figure 10.4 As a rigid object 
rotates about the fixed axis (the  
z axis) through O, the point P 
has a tangential velocity vS that is 
always tangent to the circular path 
of radius r.

y

P

x
O

r s

u

vS

 

▸ 10.1 c o n t i n u e d

Answer  Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathemat-
ical solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

Dx 5 xf 2 xi 5 vit 1 1
2at 2  

5 12.00 m/s 2 12.00 s 2 1 1
2 13.50 m/s2 2 12.00 s 22 5 11.0 m

and for the velocity,

vf 5 vi 1 at 5 2.00 m/s 1 (3.50 m/s2)(2.00 s) 5 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.



P on a rotating object, we can express the centripetal acceleration at that point in 
terms of angular speed as we did in Equation 4.18:

 ac 5
v2

r
5 rv2 (10.12)

 The total acceleration vector at the point is aS 5 aSt 1 aSr , where the magnitude 
of aSr is the centripetal acceleration ac. Because aS is a vector having a radial and 
a tangential component, the magnitude of aS at the point P on the rotating rigid 
object is

 a 5 "at
2 1 ar

2 5 "r 2 a2 1 r 2 v4 5 r"a2 1 v4 (10.13)

Q uick Quiz 10.3  Ethan and Joseph are riding on a merry-go-round. Ethan rides 
on a horse at the outer rim of the circular platform, twice as far from the cen-
ter of the circular platform as Joseph, who rides on an inner horse. (i) When 
the merry-go-round is rotating at a constant angular speed, what is Ethan’s 
angular speed? (a) twice Joseph’s (b) the same as Joseph’s (c) half of Joseph’s 
(d) impossible to determine (ii) When the merry-go-round is rotating at a con-
stant angular speed, describe Ethan’s tangential speed from the same list of 
choices.
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Example 10.2   CD Player 

On a compact disc (Fig. 10.6), audio information is stored digitally in a series of pits and flat areas on the surface of 
the disc. The alternations between pits and flat areas on the surface represent binary ones and zeros to be read by the 
CD player and converted back to sound waves. The pits and flat areas are detected by a system consisting of a laser and 
lenses. The length of a string of ones and zeros representing one piece of information is the same everywhere on the 
disc, whether the information is near the center of the disc or near its outer edge. So that this length of ones and zeros 
always passes by the laser–lens system in the same time interval, the tangential speed of the disc surface at the location 
of the lens must be constant. According to Equation 10.10, the angular speed must therefore vary as the laser–lens 
system moves radially along the disc. In a typical CD player, the constant speed of the surface at the point of the laser–
lens system is 1.3 m/s.

(A)  Find the angular speed of the disc in revolutions per minute when information is being read from the innermost 
first track (r 5 23 mm) and the outermost final track (r 5 58 mm).

Conceptualize  Figure 10.6 shows a photograph of a compact disc. Trace your fin-
ger around the circle marked “23 mm” and mentally estimate the time interval 
to go around the circle once. Now trace your finger around the circle marked  
“58 mm,” moving your finger across the surface of the page at the same speed as 
you did when tracing the smaller circle. Notice how much longer in time it takes 
your finger to go around the larger circle. If your finger represents the laser read-
ing the disc, you can see that the disc rotates once in a longer time interval when 
the laser reads the information in the outer circle. Therefore, the disc must rotate 
more slowly when the laser is reading information from this part of the disc.

Categorize  This part of the example is categorized as a simple substitution prob-
lem. In later parts, we will need to identify analysis models.

AM

S o L u T I o n

Use Equation 10.10 to find the angular speed that 
gives the required tangential speed at the position of 
the inner track:

vi 5
v
ri

5
1.3 m/s

2.3 3 1022 m
5 57 rad/s

5 157 rad/s 2 a 1 rev
2p rad

b a 60 s
1 min

b 5 5.4 3 102 rev/min

x

y

O

ar

at

P
aS

The total acceleration 
of point P is a � at � ar

S S S

Figure 10.5  As a rigid object 
rotates about a fixed axis (the z 
axis) through O, the point P expe-
riences a tangential component of 
translational acceleration at and a 
radial component of translational 
acceleration ar .

continued
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Figure 10.6  (Example 10.2) A 
compact disc.



300 chapter 10 Rotation of a Rigid Object About a Fixed Axis

(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S o L u T I o n

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S o L u T I o n
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Pitfall Prevention 10.4
Torque Depends on Your Choice  
of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.

O

d2

d1

F2
S

F1
S

Figure 10.8 The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

force F
S

 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F

S
 around the axis passing through O by the expression

 t ; rF sin f 5 Fd (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
F
S

. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F

S
 in Fig. 

10.7 is part of the line of action of F
S

.) From the right triangle in Figure 10.7 that 
has the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called 
the moment arm (or lever arm) of F

S
.

 In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S

2 tends to rotate the 
object clockwise and F

S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S

1, which has a moment arm 
d1, is positive and equal to 1F1d1; the torque from F

S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?

WW Moment arm

Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S

1 to the right on the cylinder. A rope wrapped around the core, 
which has radius R2, exerts a force T

S

2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?

z

x

y

R 1

R 2

O

T1
S

T2
S

Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S

1 is 
R1, and the moment arm of T

S

2 is R2.continued
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▸ 10.3 c o n t i n u e d

Conceptualize  Imagine that the cylinder in Figure 10.9 is a shaft in a machine. The force T
S

1 could be applied by a 
drive belt wrapped around the drum. The force T

S

2 could be applied by a friction brake at the surface of the core.

Categorize  This example is a substitution problem in which we evaluate the net torque using Equation 10.14.
 The torque due to T

S

1 about the rotation axis is 2R1T1. (The sign is negative because the torque tends to produce 
clockwise rotation.) The torque due to T

S

2 is 1R2T2. (The sign is positive because the torque tends to produce counter-
clockwise rotation of the cylinder.)

S o L u T I o n

Evaluate the net torque about the rotation axis: o t 5 t1 1 t2 5  R2T2 2 R1T1

Substitute the given values: o t 5 (0.50 m)(15 N) 2 (1.0 m)(5.0 N) 5		2.5 N ? m

As a quick check, notice that if the two forces are of equal magnitude, the net torque is negative because R1 . R2. Start-
ing from rest with both forces of equal magnitude acting on it, the cylinder would rotate clockwise because T

S

1 would 
be more effective at turning it than would T

S

2.

(B)  Suppose T1 5 5.0 N, R1 5 1.0 m, T2 5 15 N, and R2 5 0.50 m. What is the net torque about the rotation axis, and 
which way does the cylinder rotate starting from rest?

S o L u T I o n

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.
 

10.5  Analysis Model: Rigid Object Under a Net Torque
In Chapter 5, we learned that a net force on an object causes an acceleration of the 
object and that the acceleration is proportional to the net force. These facts are the 
basis of the particle under a net force model whose mathematical representation 
is Newton’s second law. In this section, we show the rotational analog of Newton’s 
second law: the angular acceleration of a rigid object rotating about a fixed axis is 
proportional to the net torque acting about that axis. Before discussing the more 
complex case of rigid-object rotation, however, it is instructive first to discuss the 
case of a particle moving in a circular path about some fixed point under the influ-
ence of an external force.
 Consider a particle of mass m rotating in a circle of radius r under the influence 
of a tangential net force g  F

S

t  and a radial net force g  F
S

r  as shown in Figure 10.10. 
The radial net force causes the particle to move in the circular path with a centrip-
etal acceleration. The tangential force provides a tangential acceleration aSt , and

o Ft 5 mat

The magnitude of the net torque due to g  F
S

t  on the particle about an axis perpen-
dicular to the page through the center of the circle is

o t 5 o Ftr 5 (mat)r

Because the tangential acceleration is related to the angular acceleration through 
the relationship at 5 ra (Eq. 10.11), the net torque can be expressed as

 o t 5 (mra)r 5 (mr 2)a	 (10.15)

Let us denote the quantity mr 2 with the symbol I for now. We will say more about 
this quantity below. Using this notation, Equation 10.15 can be written as

  o t 5 Ia (10.16)

That is, the net torque acting on the particle is proportional to its angular accelera-
tion. Notice that o t 5 Ia has the same mathematical form as Newton’s second law 
of motion, o F 5 ma.

r

m

� Ft
S

� Fr
S

The tangential force on the 
particle results in a torque on the 
particle about an axis through 
the center of the circle.

Figure 10.10  A particle rotating  
in a circle under the influence of a  
tangential net force g  F

S

t . A radial 
net force g  F

S

r also must be present 
to maintain the circular motion.
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 Now let us extend this discussion to a rigid object of arbitrary shape rotating 
about a fixed axis passing through a point O as in Figure 10.11. The object can be 
regarded as a collection of particles of mass mi . If we impose a Cartesian coordi-
nate system on the object, each particle rotates in a circle about the origin and each 
has a tangential acceleration ai  produced by an external tangential force of magni-
tude Fi . For any given particle, we know from Newton’s second law that

Fi  5 mi ai

The external torque tSi associated with the force F
S

i  acts about the origin and its 
magnitude is given by

ti 5 ri Fi 5 ri mi ai

Because ai 5 ri a, the expression for ti becomes

ti 5 mi ri
2a

 Although each particle in the rigid object may have a different translational 
acceleration ai , they all have the same angular acceleration a. With that in mind, we 
can add the torques on all of the particles making up the rigid object to obtain the 
net torque on the object about an axis through O due to all external forces:

 a text 5 a
i

ti 5 a
i

miri
2a 5 aa

i
miri

2ba (10.17)

where a can be taken outside the summation because it is common to all particles. 
Calling the quantity in parentheses I, the expression for o text becomes

	 o text 5 Ia (10.18)

This equation for a rigid object is the same as that found for a particle moving in 
a circular path (Eq. 10.16). The net torque about the rotation axis is proportional 
to the angular acceleration of the object, with the proportionality factor being I, 
a quantity that we have yet to describe fully. Equation 10.18 is the mathematical 
representation of the analysis model of a rigid object under a net torque, the rota-
tional analog to the particle under a net force. 
 Let us now address the quantity I, defined as follows:

 I 5 a
i

miri
2 (10.19)

This quantity is called the moment of inertia of the object, and depends on the 
masses of the particles making up the object and their distances from the rotation 
axis. Notice that Equation 10.19 reduces to I 5 mr 2 for a single particle, consistent 
with our use of the notation I that we used in going from Equation 10.15 to Equa-
tion 10.16. Note that moment of inertia has units of kg · m2 in SI units.
 Equation 10.18 has the same form as Newton’s second law for a system of par-
ticles as expressed in Equation 9.39:

 aFext
S

5 M aSCM 

Consequently, the moment of inertia I must play the same role in rotational motion 
as the role that mass plays in translational motion: the moment of inertia is the 
resistance to changes in rotational motion. This resistance depends not only on the 
mass of the object, but also on how the mass is distributed around the rotation axis. 
Table 10.2 on page 304 gives the moments of inertia2 for a number of objects about 
specific axes. The moments of inertia of rigid objects with simple geometry (high 
symmetry) are relatively easy to calculate provided the rotation axis coincides with 
an axis of symmetry, as we show in the next section.

WW  Torque on a rigid object 
is proportional to angular 
acceleration

Fi
S

y

x
O

r

mi

The particle of mass mi of the 
rigid object experiences a 
torque in the same way that the 
particle in Figure 10.10 does.

Figure 10.11  A rigid object 
rotating about an axis through O. 
Each particle of mass mi rotates 
about the axis with the same 
angular acceleration a.

2Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such structures as loaded 
beams. Hence, it is often useful even in a nonrotational context.

Pitfall Prevention 10.5
no Single Moment of Inertia  
There is one major difference 
between mass and moment of 
inertia. Mass is an inherent prop-
erty of an object. The moment 
of inertia of an object depends 
on your choice of rotation axis. 
Therefore, there is no single value 
of the moment of inertia for an 
object. There is a minimum value 
of the moment of inertia, which is 
that calculated about an axis pass-
ing through the center of mass of 
the object.
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Table 10.2 Moments of Inertia of Homogeneous Rigid Objects  
with Different Geometries

Hoop or thin
cylindrical shell
ICM � MR 

2
R

Solid cylinder
or disk

R

Long, thin rod
with rotation axis
through center

Solid sphere

Hollow cylinder

R 2

Long, thin
rod with
rotation axis
through end

L

Thin spherical
shell

R1

R

Rectangular plate

b

a

L

I  1
2

ICM � M(R1
2 � R2

2)

MR 

21
2

ICM �
 1

12
ICM � M(a2 � b2)

 1
12

ICM � ML2

 2
5

ICM � MR 

2

 2
3

ICM � MR 

2

1
3

ML2I �

R

Q uick Quiz 10.5  You turn off your electric drill and find that the time interval 
for the rotating bit to come to rest due to frictional torque in the drill is Dt. You 
replace the bit with a larger one that results in a doubling of the moment of 
inertia of the drill’s entire rotating mechanism. When this larger bit is rotated 
at the same angular speed as the first and the drill is turned off, the frictional 
torque remains the same as that for the previous situation. What is the time 
interval for this second bit to come to rest? (a) 4Dt (b) 2Dt (c) Dt (d) 0.5Dt  
(e) 0.25Dt (f) impossible to determine

Analysis Model   Rigid Object Under a Net Torque
Imagine you are analyzing the motion of an object that is free to rotate about a fixed axis. The cause 
of changes in rotational motion of this object is torque applied to the object and, in parallel to New-
ton’s second law for translation motion, the torque is equal to the product of the moment of inertia of 
the object and the angular acceleration:

 o text 5 Ia (10.18)

The torque, the moment of inertia, and the angular acceleration must all be evaluated around the 
same rotation axis. 

a
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Analysis Model   Rigid Object Under a Net Torque (continued)

Example 10.4   Rotating Rod 

A uniform rod of length L and mass M is attached at one end to a frictionless pivot 
and is free to rotate about the pivot in the vertical plane as in Figure 10.12. The 
rod is released from rest in the horizontal position. What are the initial angular 
acceleration of the rod and the initial translational acceleration of its right end?

Conceptualize  Imagine what happens to the rod in Figure 10.12 when it is released. 
It rotates clockwise around the pivot at the left end.

Categorize  The rod is categorized as a rigid object under a net torque. The torque is 
due only to the gravitational force on the rod if the rotation axis is chosen to pass 
through the pivot in Figure 10.12. We cannot categorize the rod as a rigid object 
under constant angular acceleration because the torque exerted on the rod and therefore the angular acceleration of 
the rod vary with its angular position.

Analyze  The only force contributing to the torque about an axis through the pivot is the gravitational force M gS 
exerted on the rod. (The force exerted by the pivot on the rod has zero torque about the pivot because its moment arm 
is zero.) To compute the torque on the rod, we assume the gravitational force acts at the center of mass of the rod as 
shown in Figure 10.12.

AM

S o L u T I o n

L

Pivot

M gS 

Figure 10.12 (Example 10.4) A 
rod is free to rotate around a pivot at 
the left end. The gravitational force 
on the rod acts at its center of mass.

Write an expression for the magnitude of the net external 
torque due to the gravitational force about an axis through 
the pivot:

a  text 5 Mg aL
2
b

Use Equation 10.18 to obtain the angular acceleration of the 
rod, using the moment of inertia for the rod from Table 10.2:

(1)   a 5  a
text

I
5

Mg 1L/2 2
1
3ML2 5

3g

2L

Use Equation 10.11 with r 5 L to find the initial translational 
acceleration of the right end of the rod:

at 5 La 5 3
2 g

Finalize These values are the initial values of the angular and translational accelerations. Once the rod begins to 
rotate, the gravitational force is no longer perpendicular to the rod and the values of the two accelerations decrease, 
going to zero at the moment the rod passes through the vertical orientation.

What if we were to place a penny on the end of the rod and then release the rod? Would the penny stay in 
contact with the rod?

Answer  The result for the initial acceleration of a point on the end of the rod shows that at . g. An unsupported 
penny falls at acceleration g. So, if we place a penny on the end of the rod and then release the rod, the end of the 
rod falls faster than the penny does! The penny does not stay in contact with the rod. (Try this with a penny and a 
meterstick!)

WhAT IF ?

continued

Examples: 

•	 a	bicycle	chain	around	the	sprocket	of	a	bicycle	causes	the	rear	wheel	of	the	bicycle	to	rotate
•	 an	electric	dipole	moment	in	an	electric	field	rotates	due	to	the	electric	force	from	the	field		(Chapter	23)
•	 a	magnetic	dipole	moment	in	a	magnetic	field	rotates	due	to	the	magnetic	force	from	the	field		(Chapter	30)
•	 the	armature	of	a	motor	rotates	due	to	the	torque	exerted	by	a	surrounding	magnetic	field	(Chapter	31)

 The question now is to find the location on the rod 
at which we can place a penny that will stay in contact 
as both begin to fall. To find the translational accelera-
tion of an arbitrary point on the rod at a distance r , L  

from the pivot point, we combine Equation (1) with 
Equation 10.11:

at 5 r a 5
3g

2L
 r
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▸ 10.4 c o n t i n u e d

 

Conceptual Example 10.5    Falling Smokestacks and Tumbling Blocks

When a tall smokestack falls over, it often breaks somewhere along its length before 
it hits the ground as shown in Figure 10.13. Why?

As the smokestack rotates around its base, each higher portion of the smokestack falls 
with a larger tangential acceleration than the portion below it according to Equation 
10.11. The angular acceleration increases as the smokestack tips farther. Eventu-
ally, higher portions of the smokestack experience an acceleration greater than the  
acceleration that could result from gravity alone; this situation is similar to that 
described in Example 10.4. That can happen only if these portions are being 
pulled downward by a force in addition to the gravitational force. The force that 
causes that to occur is the shear force from lower portions of the smokestack. Even-
tually, the shear force that provides this acceleration is greater than the smoke-
stack can withstand, and the smokestack breaks. The same thing happens with a tall tower of children’s toy blocks. 
Borrow some blocks from a child and build such a tower. Push it over and watch it come apart at some point before it 
strikes the floor.

S o L u T I o n

Figure 10.13  (Conceptual 
Example 10.5) A falling smoke-
stack breaks at some point along 
its length.
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Example 10.6   Angular Acceleration of a Wheel 

A wheel of radius R, mass M, and moment of inertia I is mounted on a frictionless, 
horizontal axle as in Figure 10.14. A light cord wrapped around the wheel supports an 
object of mass m. When the wheel is released, the object accelerates downward, the cord 
unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expres-
sions for the angular acceleration of the wheel, the translational acceleration of the 
object, and the tension in the cord.

Conceptualize  Imagine that the object is a bucket in an 
old-fashioned water well. It is tied to a cord that passes 
around a cylinder equipped with a crank for raising the 
bucket. After the bucket has been raised, the system is 
released and the bucket accelerates downward while the 
cord unwinds off the cylinder.

Categorize  We apply two analysis models here. The object 
is modeled as a particle under a net force. The wheel is mod-
eled as a rigid object under a net torque.

Analyze  The magnitude of the torque acting on the wheel about its axis of rotation is t 5 TR , where T is the force 
exerted by the cord on the rim of the wheel. (The gravitational force exerted by the Earth on the wheel and the 

AM

S o L u T I o n

M

R

m

mgS 

T
S

T
S

O

Figure 10.14  (Example 10.6) 
An object hangs from a cord 
wrapped around a wheel.

For the penny to stay in contact with the rod, the limiting 
case is that the translational acceleration must be equal 
to that due to gravity:

at 5 g 5
3g

2L
 r

 r 5 2
3L

Therefore, a penny placed closer to the pivot than two-
thirds of the length of the rod stays in contact with the 
falling rod, but a penny farther out than this point loses 
contact.



 10.6 calculation of Moments of Inertia 307

normal force exerted by the axle on the wheel both pass through the axis of rotation and therefore produce no 
torque.)

From the rigid object under a net torque model, write 
Equation 10.18:

o text 5 Ia

Solve for a and substitute the net torque: (1)   a 5
a text

I
5

TR
I

From the particle under a net force model, apply New-
ton’s second law to the motion of the object, taking the 
downward direction to be positive:

  o Fy 5 mg 2 T 5 ma

Solve for the acceleration a: (2)   a 5
mg 2 T

m
 

Use this fact together with Equations (1) and (2): (3)   a 5 Ra 5
TR 2

I
5

mg 2 T
m

 

Solve for the tension T : (4)   T 5 
mg

1 1 1mR 2/I 2

Substitute Equation (4) into Equation (2) and solve for a: (5)   a 5 
g

1 1 1I/mR 2 2

Use a 5 Ra and Equation (5) to solve for a: a 5
a
R

5
g

R 1 1I/mR 2

Equations (1) and (2) have three unknowns: a, a, and T. Because the object and wheel are connected by a cord that 
does not slip, the translational acceleration of the suspended object is equal to the tangential acceleration of a point 
on the wheel’s rim. Therefore, the angular acceleration a of the wheel and the translational acceleration of the object 
are related by a 5 Ra.

Finalize We finalize this problem by imagining the behavior of the system in some extreme limits.

 What if the wheel were to become very massive so that I becomes very large? What happens to the accel-
eration a of the object and the tension T ?

Answer  If the wheel becomes infinitely massive, we can imagine that the object of mass m will simply hang from the 
cord without causing the wheel to rotate.
 We can show that mathematically by taking the limit I S `. Equation (5) then becomes

a 5
g

1 1 1I/mR 2 2    S   0

which agrees with our conceptual conclusion that the object will hang at rest. Also, Equation (4) becomes

T 5
mg

1 1 1mR 2/I 2    S   mg

which is consistent because the object simply hangs at rest in equilibrium between the gravitational force and the ten-
sion in the string.

WhAT IF ?

 

▸ 10.6 c o n t i n u e d

10.6 Calculation of Moments of Inertia
The moment of inertia of a system of discrete particles can be calculated in a 
straightforward way with Equation 10.19. We can evaluate the moment of iner-
tia of a continuous rigid object by imagining the object to be divided into many 
small elements, each of which has mass Dmi . We use the definition I 5 oi  ri

2 Dmi  
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and take the limit of this sum as Dmi S 0. In this limit, the sum becomes an inte-
gral over the volume of the object:

 I 5 lim
Dmi S 0

 a
i

ri
2  Dmi 5 3r 2 dm (10.20)

 It is usually easier to calculate moments of inertia in terms of the volume of 
the elements rather than their mass, and we can easily make that change by using 
Equation 1.1, r ; m/V, where r is the density of the object and V is its volume. From 
this equation, the mass of a small element is dm 5 r	dV. Substituting this result into 
Equation 10.20 gives

 I 5 3rr 2 dV  (10.21)

If the object is homogeneous, r is constant and the integral can be evaluated for a 
known geometry. If r is not constant, its variation with position must be known to 
complete the integration.
 The density given by r 5 m/V sometimes is referred to as volumetric mass density 
because it represents mass per unit volume. Often we use other ways of express-
ing density. For instance, when dealing with a sheet of uniform thickness t, we can 
define a surface mass density s 5 rt, which represents mass per unit area. Finally, when 
mass is distributed along a rod of uniform cross-sectional area A, we sometimes use 
linear mass density l 5 M/L 5 rA, which is the mass per unit length.

 Moment of inertia 
of a rigid object

Example 10.7   Uniform Rigid Rod

Calculate the moment of inertia of a uniform thin rod of length L and mass M (Fig. 
10.15) about an axis perpendicular to the rod (the y9 axis) and passing through its 
center of mass.

Conceptualize  Imagine twirling the rod in Fig-
ure 10.15 with your fingers around its midpoint. 
If you have a meterstick handy, use it to simulate 
the spinning of a thin rod and feel the resistance it 
offers to being spun.

Categorize  This example is a substitution problem, using the definition of moment of inertia in Equation 10.20. As 
with any integration problem, the solution involves reducing the integrand to a single variable.
 The shaded length element dx9 in Figure 10.15 has a mass dm equal to the mass per unit length l multiplied by dx9.

S o L u T I o n

L

x�

O
x�

dx�

y�y

Figure 10.15  (Example 10.7) 
A uniform rigid rod of length L. 
The moment of inertia about the 
y9 axis is less than that about the y 
axis. The latter axis is examined in 
Example 10.9.

Express dm in terms of dx9: dm 5 l dx r 5
M
L

 dx r

Substitute this expression into Equation 10.20, with
r 2 5 (x9)2:

Iy r 5 3r 2 dm 5 3
L/2

2L/2
 1x r 22 

M
L

 dx r 5
M
L

 3
L/2

2L/2
 1x r 22 dx r

5
M
L

 c 1x r 2
3

3
 d

L/2

2L/2
5 1

12ML2

Check this result in Table 10.2.
 

Example 10.8   Uniform Solid Cylinder

A uniform solid cylinder has a radius R, mass M, and length L. Calculate its moment of inertia about its central axis 
(the z axis in Fig. 10.16).
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Conceptualize  To simulate this situation, imagine twirling a can of 
frozen juice around its central axis. Don’t twirl a nonfrozen can of 
vegetable soup; it is not a rigid object! The liquid is able to move rela-
tive to the metal can.

Categorize  This example is a substitution problem, using the defini-
tion of moment of inertia. As with Example 10.7, we must reduce the 
integrand to a single variable.
 It is convenient to divide the cylinder into many cylindrical shells, 
each having radius r, thickness dr, and length L as shown in Figure 
10.16. The density of the cylinder is r. The volume dV of each shell is 
its cross-sectional area multiplied by its length: dV 5 L dA 5 L(2pr) dr.

S o L u T I o n

L

dr

z

r

R

Figure 10.16  (Exam-
ple 10.8) Calculating I 
about the z axis for a  
uniform solid cylinder.

Express dm in terms of dr : dm 5 r dV 5 rL(2pr) dr

Substitute this expression into Equation 10.20: Iz 5 3r 2 dm 5 3r 2 3rL 12pr 2  dr 4 5 2prL 3
R

0
 r 3 dr 5 1

2 prLR 4

Use the total volume pR2L of the cylinder to express  
its density:

r 5
M
V

5
M

pR 2L

Substitute this value into the expression for Iz: Iz 5 1
2pa M

pR 2L
bLR 4 5 1

2MR 2

Check this result in Table 10.2.

What if the length of the cylinder in Figure 10.16 is increased to 2L, while the mass M and radius R are 
held fixed? How does that change the moment of inertia of the cylinder?

Answer  Notice that the result for the moment of inertia of a cylinder does not depend on L, the length of the cylinder. 
It applies equally well to a long cylinder and a flat disk having the same mass M and radius R. Therefore, the moment 
of inertia of the cylinder is not affected by how the mass is distributed along its length.

WhAT IF ?

 

 The calculation of moments of inertia of an object about an arbitrary axis can be 
cumbersome, even for a highly symmetric object. Fortunately, use of an important 
theorem, called the parallel-axis theorem, often simplifies the calculation.
 To generate the parallel-axis theorem, suppose the object in Figure 10.17a on 
page 310 rotates about the z axis. The moment of inertia does not depend on how 
the mass is distributed along the z axis; as we found in Example 10.8, the moment 
of inertia of a cylinder is independent of its length. Imagine collapsing the three-
dimensional object into a planar object as in Figure 10.17b. In this imaginary pro-
cess, all mass moves parallel to the z axis until it lies in the xy plane. The coordinates 
of the object’s center of mass are now xCM, yCM, and zCM 5 0. Let the mass element 
dm have coordinates (x, y, 0) as shown in the view down the z axis in Figure 10.17c. 
Because this element is a distance r 5 !x2 1 y2  from the z axis, the moment of 
inertia of the entire object about the z axis is

I 5 3r 2 dm 5 3 1x2 1 y2 2  dm

We can relate the coordinates x, y of the mass element dm to the coordinates of 
this same element located in a coordinate system having the object’s center of mass 
as its origin. If the coordinates of the center of mass are xCM, yCM, and zCM 5 0 
in the original coordinate system centered on O, we see from Figure 10.17c that  

▸ 10.8 c o n t i n u e d
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the relationships between the unprimed and primed coordinates are x 5 x9 1 xCM,  
y 5 y9 1 yCM, and z 5 z9 5 0. Therefore,

 I 5 3 3 1x r 1 xCM 22 1 1 y r 1 yCM 22 4 dm

5 3 3 1x r 22 1 1y r 22 4 dm 1 2xCM  3x r dm 1 2yCM  3y rdm 1 1xCM
2 1 yCM

2 23  dm

The first integral is, by definition, the moment of inertia ICM about an axis that is 
parallel to the z axis and passes through the center of mass. The second two inte-
grals are zero because, by definition of the center of mass, e x9 dm 5 e y9 dm 5 0. 
The last integral is simply MD 2 because e dm 5 M and D 2 5 xCM

2 1 yCM
2. Therefore, 

we conclude that

 I 5 I CM 1 MD 2 (10.22)Parallel-axis theorem 

Axis through
CM

x

y

z
Rotation
axis

O

a

Axis through
CM

x

y

z

Rotation
axis

b

Figure 10.17  (a) An arbitrarily shaped rigid object. The origin of the coordinate system is not at 
the center of mass of the object. Imagine the object rotating about the z axis. (b) All mass elements 
of the object are collapsed parallel to the z axis to form a planar object. (c) An arbitrary mass element 
dm is indicated in blue in this view down the z axis. The parallel axis theorem can be used with the 
geometry shown to determine the moment of inertia of the original object around the z axis.
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y

x, y
dm
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Example 10.9   Applying the Parallel-Axis Theorem

Consider once again the uniform rigid rod of mass M and length L shown in Figure 10.15. Find the moment of inertia 
of the rod about an axis perpendicular to the rod through one end (the y axis in Fig. 10.15).

Conceptualize  Imagine twirling the rod around an endpoint rather than the midpoint. If you have a meterstick 
handy, try it and notice the degree of difficulty in rotating it around the end compared with rotating it around the 
center.

Categorize  This example is a substitution problem, involving the parallel-axis theorem.
 Intuitively, we expect the moment of inertia to be greater than the result ICM 5 1

12ML2 from Example 10.7 because 
there is mass up to a distance of L away from the rotation axis, whereas the farthest distance in Example 10.7 was only 
L/2. The distance between the center-of-mass axis and the y axis is D 5 L/2.

S o L u T I o n
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Use the parallel-axis theorem: I 5 ICM 1 MD 2 5 1
12ML2 1 M aL

2
b

2

5 1
3ML2

Check this result in Table 10.2.

10.7 Rotational Kinetic Energy
After investigating the role of forces in our study of translational motion, we turned 
our attention to approaches involving energy. We do the same thing in our current 
study of rotational motion.
 In Chapter 7, we defined the kinetic energy of an object as the energy associated 
with its motion through space. An object rotating about a fixed axis remains station-
ary in space, so there is no kinetic energy associated with translational motion. The 
individual particles making up the rotating object, however, are moving through 
space; they follow circular paths. Consequently, there is kinetic energy associated 
with rotational motion.
 Let us consider an object as a system of particles and assume it rotates about a 
fixed z axis with an angular speed v. Figure 10.18 shows the rotating object and 
identifies one particle on the object located at a distance ri from the rotation axis. 
If the mass of the ith particle is mi and its tangential speed is vi, its kinetic energy is

Ki 5 1
2mivi

2

To proceed further, recall that although every particle in the rigid object has the 
same angular speed v, the individual tangential speeds depend on the distance ri 
from the axis of rotation according to Equation 10.10. The total kinetic energy of the 
rotating rigid object is the sum of the kinetic energies of the individual particles:

KR 5 a
i

 Ki 5 a
i

 12mivi
2 5 1

2 a
i

miri
2v2

We can write this expression in the form

 KR 5 1
2 aa

i
miri

2bv2 (10.23)

where we have factored v2 from the sum because it is common to every particle. 
We recognize the quantity in parentheses as the moment of inertia of the object, 
introduced in Section 10.5.
 Therefore, Equation 10.23 can be written

 KR 5 1
2Iv2 (10.24)

Although we commonly refer to the quantity 1
2Iv2 as rotational kinetic energy, 

it is not a new form of energy. It is ordinary kinetic energy because it is derived 
from a sum over individual kinetic energies of the particles contained in the rigid 
object. The mathematical form of the kinetic energy given by Equation 10.24 is 
convenient when we are dealing with rotational motion, provided we know how to 
calculate I.

Q uick Quiz 10.6 A section of hollow pipe and a solid cylinder have the same 
radius, mass, and length. They both rotate about their long central axes with 
the same angular speed. Which object has the higher rotational kinetic energy? 
(a) The hollow pipe does. (b) The solid cylinder does. (c) They have the same 
rotational kinetic energy. (d) It is impossible to determine.

WW Rotational kinetic energy

mi

ri

z axis

O

v

vi
S

Figure 10.18  A rigid object 
rotating about the z axis with 
angular speed v. The kinetic 
energy of the particle of mass mi is 
1
2mivi

2. The total kinetic energy of 
the object is called its rotational 
kinetic energy.

 

▸ 10.9 c o n t i n u e d



312 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

Example 10.10   An Unusual Baton

Four tiny spheres are fastened to the ends of two rods of 
negligible mass lying in the xy plane to form an unusual 
baton (Fig. 10.19). We shall assume the radii of the spheres 
are small compared with the dimensions of the rods.

(A)  If the system rotates about the y axis (Fig. 10.19a) 
with an angular speed v, find the moment of inertia and 
the rotational kinetic energy of the system about this axis.

Conceptualize  Figure 10.19 is a pictorial representation 
that helps conceptualize the system of spheres and how 
it spins. Model the spheres as particles.

Categorize  This example is a substitution problem 
because it is a straightforward application of the defini-
tions discussed in this section.

S o l u t i o n
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m

M M
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Figure 10.19  (Example 10.10) Four spheres form an unusual 
baton. (a) The baton is rotated about the y axis. (b) The baton is 
rotated about the z axis.

Apply Equation 10.19 to the system: Iy 5 a
i

mi ri
2 5 Ma2 1 Ma2 5  2Ma 2

Evaluate the rotational kinetic energy using 
Equation 10.24:

KR 5 1
2Iy v2 5 1

2 12Ma2 2v2 5  Ma 2v2

That the two spheres of mass m do not enter into this result makes sense because they have no motion about the axis 
of rotation; hence, they have no rotational kinetic energy. By similar logic, we expect the moment of inertia about the 
x axis to be Ix 5 2mb 2 with a rotational kinetic energy about that axis of KR 5 mb 2v2.

(B)  Suppose the system rotates in the xy plane about an axis (the z axis) through the center of the baton (Fig. 10.19b). 
Calculate the moment of inertia and rotational kinetic energy about this axis.

S o l u t i o n

Apply Equation 10.19 for this new rotation axis: Iz 5 a
i

miri
2 5 Ma2 1 Ma2 1 mb2 1 mb2 5  2Ma2  1 2mb2

Evaluate the rotational kinetic energy using 
Equation 10.24:

KR 5 1
2Iz v2 5 1

2 12Ma2 1 2mb2 2v2 5  (Ma2 1 mb2)v2

Comparing the results for parts (A) and (B), we conclude that the moment of inertia and therefore the rotational 
kinetic energy associated with a given angular speed depend on the axis of rotation. In part (B), we expect the result to 
include all four spheres and distances because all four spheres are rotating in the xy plane. Based on the work–kinetic 
energy theorem, the smaller rotational kinetic energy in part (A) than in part (B) indicates it would require less work 
to set the system into rotation about the y axis than about the z axis.

What if the mass M is much larger than m? How do the answers to parts (A) and (B) compare?

Answer  If M .. m, then m can be neglected and the moment of inertia and the rotational kinetic energy in part (B) 
become

Iz 5 2Ma2 and KR 5 Ma2v2

which are the same as the answers in part (A). If the masses m of the two tan spheres in Figure 10.19 are negligible, 
these spheres can be removed from the figure and rotations about the y and z axes are equivalent.

What iF ?

 

10.8 Energy Considerations in Rotational Motion
Having introduced rotational kinetic energy in Section 10.7, let us now see how an 
energy approach can be useful in solving rotational problems. We begin by consid-
ering the relationship between the torque acting on a rigid object and its resulting 
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rotational motion so as to generate expressions for power and a rotational analog 
to the work–kinetic energy theorem. Consider the rigid object pivoted at O in Fig-
ure 10.20. Suppose a single external force F

S
 is applied at P, where F

S
 lies in the 

plane of the page. The work done on the object by F
S

 as its point of application 
rotates through an infinitesimal distance ds 5 r d u is

dW 5 F
S

? d sS 5 1F sin f 2r du

where F sin f is the tangential component of F
S

, or, in other words, the component 
of the force along the displacement. Notice that the radial component vector of F

S
 

does no work on the object because it is perpendicular to the displacement of  
the point of application of F

S
.

 Because the magnitude of the torque due to F
S

 about an axis through O is 
defined as rF sin f by Equation 10.14, we can write the work done for the infinitesi-
mal rotation as

 dW 5 t du (10.25)

The rate at which work is being done by F
S

 as the object rotates about the fixed axis 
through the angle du in a time interval dt is

dW
dt

5 t 
du

dt

Because dW/dt is the instantaneous power P (see Section 8.5) delivered by the force 
and du/dt 5 v, this expression reduces to

 P 5
dW
dt

5 tv (10.26)

This equation is analogous to P 5 Fv in the case of translational motion, and Equa-
tion 10.25 is analogous to dW 5 Fx dx.
 In studying translational motion, we have seen that models based on an energy 
approach can be extremely useful in describing a system’s behavior. From what we 
learned of translational motion, we expect that when a symmetric object rotates 
about a fixed axis, the work done by external forces equals the change in the rota-
tional energy of the object.
 To prove that fact, let us begin with the rigid object under a net torque model, 
whose mathematical representation is o text 5 Ia. Using the chain rule from calcu-
lus, we can express the net torque as

a text 5 Ia 5 I 
dv

dt
5 I 

dv

du
 
du

dt
5 I 

dv

du
 v

Rearranging this expression and noting that o text du 5 dW gives

o text du 5 dW 5 Iv dv

Integrating this expression, we obtain for the work W done by the net external force 
acting on a rotating system

 W 5 3
vf

vi

 Iv dv 5 1
2Ivf

2 2 1
2Ivi

2 (10.27)

where the angular speed changes from vi to vf . Equation 10.27 is the work–kinetic 
energy theorem for rotational motion. Similar to the work–kinetic energy theorem 
in translational motion (Section 7.5), this theorem states that the net work done by 
external forces in rotating a symmetric rigid object about a fixed axis equals the 
change in the object’s rotational energy.
 This theorem is a form of the nonisolated system (energy) model discussed in 
Chapter 8. Work is done on the system of the rigid object, which represents a trans-
fer of energy across the boundary of the system that appears as an increase in the 
object’s rotational kinetic energy.

WW  Power delivered to a rotating 
rigid object

WW  Work–kinetic energy theorem 
for rotational motion

O

P
rd u

f

F
S

d sS

Figure 10.20  A rigid object 
rotates about an axis through O 
under the action of an external 
force F

S
 applied at P.
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 In general, we can combine this theorem with the translational form of the work–
kinetic energy theorem from Chapter 7. Therefore, the net work done by external 
forces on an object is the change in its total kinetic energy, which is the sum of the 
translational and rotational kinetic energies. For example, when a pitcher throws a 
baseball, the work done by the pitcher’s hands appears as kinetic energy associated 
with the ball moving through space as well as rotational kinetic energy associated 
with the spinning of the ball.
 In addition to the work–kinetic energy theorem, other energy principles can 
also be applied to rotational situations. For example, if a system involving rotating 
objects is isolated and no nonconservative forces act within the system, the isolated 
system model and the principle of conservation of mechanical energy can be used 
to analyze the system as in Example 10.11 below. In general, Equation 8.2, the con-
servation of energy equation, applies to rotational situations, with the recognition 
that the change in kinetic energy ∆K will include changes in both translational and 
rotational kinetic energies.
 Finally, in some situations an energy approach does not provide enough infor-
mation to solve the problem and it must be combined with a momentum approach. 
Such a case is illustrated in Example 10.14 in Section 10.9.
 Table 10.3 lists the various equations we have discussed pertaining to rotational 
motion together with the analogous expressions for translational motion. Notice 
the similar mathematical forms of the equations. The last two equations in the left-
hand column of Table 10.3, involving angular momentum L, are discussed in Chap-
ter 11 and are included here only for the sake of completeness.

Table 10.3 Useful Equations in Rotational and Translational Motion
Rotational Motion About a Fixed Axis Translational Motion

Angular speed v 5 du/dt Translational speed v 5 dx/dt
Angular acceleration a 5 dv/dt Translational acceleration a 5 dv/dt
Net torque otext 5 Ia Net force oF  5 ma
If vf 5 vi 1 at If vf 5 vi 1 at

a 5 constant uf 5 ui 1 vit 1 12at2 a 5 constant xf 5 xi 1 vit 1 12at 2

 vf
2 5 vi

2 1 2a(uf 2 ui)  vf
2 5 vi

2 1 2a(xf 2 xi)

Work W 5  3
uf

ui

 t du Work W 5  3
xf

xi

 Fx dx

Rotational kinetic energy KR 5 12Iv2 Kinetic energy K 5 12mv2

Power P 5 tv  Power P 5 Fv
Angular momentum L 5 Iv Linear momentum p 5 mv
Net torque ot 5 dL/dt Net force oF 5 dp/dt

• •

Example 10.11   Rotating Rod Revisited 

A uniform rod of length L and mass M is free to rotate on a frictionless pin passing 
through one end (Fig 10.21). The rod is released from rest in the horizontal position.

(A) What is its angular speed when the rod reaches its lowest position?

Conceptualize  Consider Figure 10.21 and imagine the rod rotating downward 
through a quarter turn about the pivot at the left end. Also look back at Example 
10.8. This physical situation is the same.

Categorize  As mentioned in Example 10.4, the angular acceleration of the rod is 
not constant. Therefore, the kinematic equations for rotation (Section 10.2) can-

AM

S o L u T I o n

CM

L/2

O

Figure 10.21  (Example 10.11) 
A uniform rigid rod pivoted at O 
rotates in a vertical plane under the 
action of the gravitational force.
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not be used to solve this example. We categorize the system of the rod and the Earth as an isolated system in terms of 
energy with no nonconservative forces acting and use the principle of conservation of mechanical energy.

Analyze  We choose the configuration in which the rod is hanging straight down as the reference configuration for 
gravitational potential energy and assign a value of zero for this configuration. When the rod is in the horizontal 
position, it has no rotational kinetic energy. The potential energy of the system in this configuration relative to the 
reference configuration is MgL/2 because the center of mass of the rod is at a height L/2 higher than its position in 
the reference configuration. When the rod reaches its lowest position, the energy of the system is entirely rotational 
energy 12Iv2, where I is the moment of inertia of the rod about an axis passing through the pivot.

▸ 10.11 c o n t i n u e d

Using the isolated system (energy) model, write an 
appropriate reduction of Equation 8.2:

DK 1 DU 5 0

Substitute for each of the final and initial energies: 11
2Iv2 2 0 2 1 10 2 1

2MgL 2 5 0

Solve for v and use I 5 1
3ML2 (see Table 10.2) for the rod: v 5 Å

MgL

I
5 Å

MgL
1
3ML2 5 Å

3g

L

Use Equation 10.10 and the result from part (A): vCM 5 r v 5
L
2

 v 5  1
2 "3gL

Because r for the lowest point on the rod is twice what it 
is for the center of mass, the lowest point has a tangen-
tial speed twice that of the center of mass:

v 5 2vCM 5 "3gL

(B) Determine the tangential speed of the center of mass and the tangential speed of the lowest point on the rod 
when it is in the vertical position.

S o L u T I o n

Finalize The initial configuration in this example is the same as that in Example 10.4. In Example 10.4, however, we 
could only find the initial angular acceleration of the rod. Applying an energy approach in the current example allows 
us to find additional information, the angular speed of the rod at the lowest point. Convince yourself that you could 
find the angular speed of the rod at any angular position by knowing the location of the center of mass at this position.

 What if we want to find the angular speed of the rod when the angle it makes with the horizontal is 45.08? 
Because this angle is half of 90.08, for which we solved the problem above, is the angular speed at this configuration 
half the answer in the calculation above, that is, 12!3g/L?

Answer  Imagine the rod in Figure 10.21 at the 45.08 position. Use a pencil or a ruler to represent the rod at this posi-
tion. Notice that the center of mass has dropped through more than half of the distance L/2 in this configuration. 
Therefore, more than half of the initial gravitational potential energy has been transformed to rotational kinetic 
energy. So, we should not expect the value of the angular speed to be as simple as proposed above.
 Note that the center of mass of the rod drops through a distance of 0.500L as the rod reaches the vertical configu-
ration. When the rod is at 45.08 to the horizontal, we can show that the center of mass of the rod drops through a 
distance of 0.354L. Continuing the calculation, we find that the angular speed of the rod at this configuration is 0.841
!3g/L , (not 12!3g/L).

WhAT IF ?

 

Example 10.12   Energy and the Atwood Machine 

Two blocks having different masses m1 and m2 are connected by a string passing over a pulley as shown in Figure 10.22 
on page 316. The pulley has a radius R and moment of inertia I about its axis of rotation. The string does not slip on 
the pulley, and the system is released from rest. Find the translational speeds of the blocks after block 2 descends 
through a distance h and find the angular speed of the pulley at this time.

AM

continued
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Conceptualize  We have already seen examples involving the 
Atwood machine, so the motion of the objects in Figure 10.22 
should be easy to visualize.

Categorize  Because the string does not slip, the pulley rotates 
about the axle. We can neglect friction in the axle because 
the axle’s radius is small relative to that of the pulley. Hence, 
the frictional torque is much smaller than the net torque 
applied by the two blocks provided that their masses are sig-
nificantly different. Consequently, the system consisting of 
the two blocks, the pulley, and the Earth is an isolated system in 
terms of energy with no nonconservative forces acting; there-
fore, the mechanical energy of the system is conserved.

Analyze  We define the zero configuration for gravitational potential energy as that which exists when the system is 
released. From Figure 10.22, we see that the descent of block 2 is associated with a decrease in system potential energy 
and that the rise of block 1 represents an increase in potential energy.

S o L u T I o n

h

h

R

m2

m1Figure 10.22 (Example 
10.12) An Atwood machine with 
a massive pulley.

Using the isolated system (energy) model, write 
an appropriate reduction of the conservation of 
energy equation:

DK 1 DU 5 0

Substitute for each of the energies: 3 11
2m1vf

2 1 1
2m2vf

2 1 1
2Ivf

2 2 2 0 4 1 3 1m1gh 2 m2gh 2 2 0 4 5 0 

Use vf 5 Rvf to substitute for vf : 1
2m1vf

2 1 1
2m2vf

2 1 1
2I 

vf
2

R 2 5 m2gh 2 m1gh

1
2am1 1 m2 1

I
R 2bvf

2 5 1m2 2 m1 2gh

Solve for vf : (1)   vf 5 c 2 1m2 2 m1 2gh

m1 1 m2 1 I/R 2 d
1/2

Use vf 5 Rvf to solve for vf : vf 5
vf

R
5  

1
R

 c 2 1m2 2 m1 2gh

m1 1 m2 1 I/R 2 d
1/2

Finalize Each block can be modeled as a particle under constant acceleration because it experiences a constant net force. 
Think about what you would need to do to use Equation (1) to find the acceleration of one of the blocks. Then imag-
ine the pulley becoming massless and determine the acceleration of a block. How does this result compare with the 
result of Example 5.9?

 

▸ 10.12 c o n t i n u e d

10.9 Rolling Motion of a Rigid Object
In this section, we treat the motion of a rigid object rolling along a flat surface. In 
general, such motion is complex. For example, suppose a cylinder is rolling on a 
straight path such that the axis of rotation remains parallel to its initial orienta-
tion in space. As Figure 10.23 shows, a point on the rim of the cylinder moves in a 
complex path called a cycloid. We can simplify matters, however, by focusing on the 
center of mass rather than on a point on the rim of the rolling object. As shown 
in Figure 10.23, the center of mass moves in a straight line. If an object such as a 
cylinder rolls without slipping on the surface (called pure rolling motion), a simple 
relationship exists between its rotational and translational motions.
 Consider a uniform cylinder of radius R rolling without slipping on a horizontal 
surface (Fig. 10.24). As the cylinder rotates through an angle u, its center of mass 
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Figure 10.23  Two points on a 
rolling object take different paths 
through space.

One light source at the center of a 
rolling cylinder and another at one 
point on the rim illustrate the 
different paths these two points take. 

The point on the 
rim moves in the 
path called a cycloid 
(red curve).

The center 
moves in a 
straight line 
(green line). 
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moves a linear distance s 5 Ru	(see Eq. 10.1a). Therefore, the translational speed of 
the center of mass for pure rolling motion is given by

 vCM 5
ds
dt

5 R 
du

dt
5 Rv (10.28)

where v is the angular speed of the cylinder. Equation 10.28 holds whenever a cyl-
inder or sphere rolls without slipping and is the condition for pure rolling motion. 
The magnitude of the linear acceleration of the center of mass for pure rolling 
motion is

 aCM 5
dvCM 

dt
5 R 

dv

dt
5 Ra (10.29)

where a is the angular acceleration of the cylinder.
 Imagine that you are moving along with a rolling object at speed vCM, staying 
in a frame of reference at rest with respect to the center of mass of the object. As 
you observe the object, you will see the object in pure rotation around its center 
of mass. Figure 10.25a shows the velocities of points at the top, center, and bottom 
of the object as observed by you. In addition to these velocities, every point on the 
object moves in the same direction with speed vCM relative to the surface on which 
it rolls. Figure 10.25b shows these velocities for a nonrotating object. In the refer-
ence frame at rest with respect to the surface, the velocity of a given point on the 
object is the sum of the velocities shown in Figures 10.25a and 10.25b. Figure 10.25c 
shows the results of adding these velocities.
 Notice that the contact point between the surface and object in Figure 10.25c 
has a translational speed of zero. At this instant, the rolling object is moving in 
exactly the same way as if the surface were removed and the object were pivoted at 
point P and spun about an axis passing through P. We can express the total kinetic 
energy of this imagined spinning object as

 K 5 1
2IP v2 (10.30)

where IP is the moment of inertia about a rotation axis through P.

vCM

CM
vCM

vCM
P

CM v � 0  

P

v � R

v � R

CM

P
v � 0

v � vCM

v � vCM � R  � 2vCMv
v

v

Pure rotation Pure translation Combination of 
translation and rotation

a b c

Figure 10.25 The motion of a 
rolling object can be modeled as 
a combination of pure translation 
and pure rotation.

s � R

R s

u

u

Figure 10.24 For pure rolling 
motion, as the cylinder rotates 
through an angle u its center 
moves a linear distance s 5 Ru.

Pitfall Prevention 10.6
Equation 10.28 Looks Familiar  
Equation 10.28 looks very similar 
to Equation 10.10, so be sure to 
be clear on the difference. Equa-
tion 10.10 gives the tangential 
speed of a point on a rotating 
object located a distance r from 
a fixed rotation axis if the object 
is rotating with angular speed v. 
Equation 10.28 gives the trans-
lational speed of the center of 
mass of a rolling object of radius R 
rotating with angular speed v.
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 Because the motion of the imagined spinning object is the same at this instant as 
our actual rolling object, Equation 10.30 also gives the kinetic energy of the rolling 
object. Applying the parallel-axis theorem, we can substitute IP 5 ICM 1 MR 2 into 
Equation 10.30 to obtain

K 5 1
2ICMv2 1 1

2MR2v2

Using vCM 5 Rv, this equation can be expressed as

 K 5 1
2 ICMv2 1 1

2MvCM
2 (10.31)

The term 1
2ICMv2 represents the rotational kinetic energy of the object about its 

center of mass, and the term 12MvCM
2 represents the kinetic energy the object would 

have if it were just translating through space without rotating. Therefore, the total 
kinetic energy of a rolling object is the sum of the rotational kinetic energy about 
the center of mass and the translational kinetic energy of the center of mass. This 
statement is consistent with the situation illustrated in Figure 10.25, which shows 
that the velocity of a point on the object is the sum of the velocity of the center of 
mass and the tangential velocity around the center of mass.
 Energy methods can be used to treat a class of problems concerning the roll-
ing motion of an object on a rough incline. For example, consider Figure 10.26, 
which shows a sphere rolling without slipping after being released from rest at the 
top of the incline. Accelerated rolling motion is possible only if a friction force 
is present between the sphere and the incline to produce a net torque about the 
center of mass. Despite the presence of friction, no loss of mechanical energy 
occurs because the contact point is at rest relative to the surface at any instant. 
(On the other hand, if the sphere were to slip, mechanical energy of the sphere–
incline–Earth system would decrease due to the nonconservative force of kinetic 
friction.)
 In reality, rolling friction causes mechanical energy to transform to internal 
energy. Rolling friction is due to deformations of the surface and the rolling object. 
For example, automobile tires flex as they roll on a roadway, representing a trans-
formation of mechanical energy to internal energy. The roadway also deforms a 
small amount, representing additional rolling friction. In our problem-solving 
models, we ignore rolling friction unless stated otherwise.
 Using vCM 5 Rv for pure rolling motion, we can express Equation 10.31 as

  K 5 1
2ICM avCM 

R
b

2

 1 1
2MvCM

2

  K 5 1
2 a

ICM 
R2  1 MbvCM

2 (10.32)

For the sphere–Earth system in Figure 10.26, we define the zero configuration of 
gravitational potential energy to be when the sphere is at the bottom of the incline. 
Therefore, Equation 8.2 gives

DK 1 DU 5 0

 c1
2 a

ICM 
R2  1 MbvCM

2 2 0 d 1 10 2 Mgh 2 5 0 

  vCM 5 c 2gh

1 1 1ICM /MR2 2  d
1/2

 (10.33)

Q uick Quiz 10.7  A ball rolls without slipping down incline A, starting from rest. 
At the same time, a box starts from rest and slides down incline B, which is iden-
tical to incline A except that it is frictionless. Which arrives at the bottom first? 
(a) The ball arrives first. (b) The box arrives first. (c) Both arrive at the same 
time. (d) It is impossible to determine.

Total kinetic energy 
of a rolling object

x

M

u

v
h

vCM
S

R

Figure 10.26 A sphere roll-
ing down an incline. Mechanical 
energy of the sphere–Earth system 
is conserved if no slipping occurs.
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3Example 10.14 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher, 43:10, 2005.

 

Example 10.13   Sphere Rolling Down an Incline 

For the solid sphere shown in Figure 10.26, calculate the translational speed of the center of mass at the bottom of the 
incline and the magnitude of the translational acceleration of the center of mass.

Conceptualize  Imagine rolling the sphere down the incline. Compare it in your mind to a book sliding down a fric-
tionless incline. You probably have experience with objects rolling down inclines and may be tempted to think that the 
sphere would move down the incline faster than the book. You do not, however, have experience with objects sliding 
down frictionless inclines! So, which object will reach the bottom first? (See Quick Quiz 10.7.)

Categorize  We model the sphere and the Earth as an isolated system in terms of energy with no nonconservative forces 
acting. This model is the one that led to Equation 10.33, so we can use that result.

AM

S o L u T I o n

Analyze  Evaluate the speed of the center of mass of the 
sphere from Equation 10.33:

(1)   vCM 5 c 2gh

1 1 12
5MR 2/MR 2 2  d

1/2

5 110
7 gh 21/2

 This result is less than !2gh, which is the speed an object would have if it simply slid down the incline without rotat-
ing. (Eliminate the rotation by setting ICM 5 0 in Eq. 10.33.)
 To calculate the translational acceleration of the center of mass, notice that the vertical displacement of the sphere 
is related to the distance x it moves along the incline through the relationship h 5 x sin u.

Use this relationship to rewrite Equation (1): vCM 2 5 10
7 gx sin u

Write Equation 2.17 for an object starting from rest and 
moving through a distance x under constant acceleration:

vCM
2 5 2aCMx

Equate the preceding two expressions to find aCM: aCM 5 5
7g sin u

Finalize Both the speed and the acceleration of the center of mass are independent of the mass and the radius of the 
sphere. That is, all homogeneous solid spheres experience the same speed and acceleration on a given incline. Try to 
verify this statement experimentally with balls of different sizes, such as a marble and a croquet ball.
 If we were to repeat the acceleration calculation for a hollow sphere, a solid cylinder, or a hoop, we would obtain 
similar results in which only the factor in front of g sin u would differ. The constant factors that appear in the expres-
sions for vCM and aCM depend only on the moment of inertia about the center of mass for the specific object. In all 
cases, the acceleration of the center of mass is less than g sin u, the value the acceleration would have if the incline were 
frictionless and no rolling occurred.

Example 10.14   Pulling on a Spool3 

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizontal 
table with friction (Fig. 10.27). With your hand on a light string wrapped around 
the axle of radius r, you pull on the spool with a constant horizontal force of mag-
nitude T to the right. As a result, the spool rolls without slipping a distance L 
along the table with no rolling friction.

(A) Find the final translational speed of the center of mass of the spool.

Conceptualize  Use Figure 10.27 to visualize the motion of the spool when you 
pull the string. For the spool to roll through a distance L, notice that your hand 
on the string must pull through a distance different from L.

AM

S o L u T I o n

R
T
S

L

r

Figure 10.27  (Example 10.14)  
A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.

continued
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Categorize  The spool is a rigid object under a net torque, but the net torque includes that due to the friction force at 
the bottom of the spool, about which we know nothing. Therefore, an approach based on the rigid object under a 
net torque model will not be successful. Work is done by your hand on the spool and string, which form a noniso-
lated system in terms of energy. Let’s see if an approach based on the nonisolated system (energy) model is fruitful.

Analyze  The only type of energy that changes in the system is the kinetic energy of the spool. There is no rolling fric-
tion, so there is no change in internal energy. The only way that energy crosses the system’s boundary is by the work 
done by your hand on the string. No work is done by the static force of friction on the bottom of the spool (to the left 
in Fig. 10.27) because the point of application of the force moves through no displacement.

Write the appropriate reduction of the conservation of 
energy equation, Equation 8.2:

(1)   W 5 DK 5 DKtrans 1 DKrot

where W is the work done on the string by your hand. To find this work, we need to find the displacement of your hand 
during the process.
 We first find the length of string that has unwound off the spool. If the spool rolls through a distance L, the total 
angle through which it rotates is u 5 L/R. The axle also rotates through this angle.

Use Equation 10.1a to find the total arc length through 
which the axle turns:

, 5 r u 5
r
R

 L

This result also gives the length of string pulled off the axle. Your hand will move through this distance plus the dis-
tance L through which the spool moves. Therefore, the magnitude of the displacement of the point of application of 
the force applied by your hand is , 1 L 5 L(1 1 r/R).

Solve for vCM: (3)   vCM 5 Å
2TL 11 1 r/R 2
m 11 1 I/mR 2 2

Apply the nonslip rolling condition v 5 vCM/R : TL a1 1
r
R
b 5 1

2mvCM
2 1 1

2I 
vCM

2

R 2

(B) Find the value of the friction force f.

Categorize  Because the friction force does no work, we cannot evaluate it from an energy approach. We model the 
spool as a nonisolated system, but this time in terms of momentum. The string applies a force across the boundary of the 
system, resulting in an impulse on the system. Because the forces on the spool are constant, we can model the spool’s 
center of mass as a particle under constant acceleration.

S o L u T I o n

Substitute Equation (2) into Equation (1): TL a1 1
r
R
b 5 1

2mvCM
2 1 1

2Iv2

Evaluate the work done by your hand on the string: (2)   W 5 TL a1 1
r
R
b

where I is the moment of inertia of the spool about its center of mass and vCM and v are the final values after the wheel 
rolls through the distance L.

Analyze  Write the impulse–momentum theorem (Eq. 
9.40) for the spool:

m(vCM 2 0) 5 (T 2 f )Dt 

(4)   mvCM 5 (T 2 f )Dt

For a particle under constant acceleration starting from rest, Equation 2.14 tells us that the average velocity of the cen-
ter of mass is half the final velocity.

Use Equation 2.2 to find the time interval for the center 
of mass of the spool to move a distance L from rest to a 
final speed vCM:

(5)   Dt 5
L

vCM,avg 
5

2L
vCM

▸ 10.14 c o n t i n u e d
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Substitute Equation (5) into Equation (4): mvCM 5 1T 2 f 2  2L
vCM

Solve for the friction force f : f 5 T 2
mvCM

2

2L

continued

 

▸ 10.14 c o n t i n u e d

Substitute vCM from Equation (3): f 5 T 2
m
2L

 c 2TL 11 1 r/R 2
m 11 1 I/mR 2 2  d  

5 T 2 T 
11 1 r/R 2

11 1 I/mR 2 2 5 T c I 2 mrR
I 1 mR 2 d

Finalize Notice that we could use the impulse–momentum theorem for the translational motion of the spool while ignor-
ing that the spool is rotating! This fact demonstrates the power of our growing list of approaches to solving problems.

continued

Summary

Definitions

 The angular position of a rigid object is defined as the angle 
u between a reference line attached to the object and a refer-
ence line fixed in space. The angular displacement of a particle 
moving in a circular path or a rigid object rotating about a 
fixed axis is Du ; uf 2 ui.
 The instantaneous angular speed of a particle moving in a 
circular path or of a rigid object rotating about a fixed axis is

 v ;
du

dt
 (10.3)

The instantaneous angular acceleration of a particle moving in 
a circular path or of a rigid object rotating about a fixed axis is

 a ;
dv

dt
 (10.5)

 When a rigid object rotates about a fixed axis, every part of 
the object has the same angular speed and the same angular 
acceleration.

 The magnitude of the torque associated 
with a force F

S
 acting on an object at a dis-

tance r from the rotation axis is

 t 5 rF sin f 5 Fd (10.14)
where f is the angle between the position vec-
tor of the point of application of the force and 
the force vector, and d is the moment arm of 
the force, which is the perpendicular distance 
from the rotation axis to the line of action of 
the force.

 The moment of inertia of a system of par-
ticles is defined as

 I ; a
i

miri
2 (10.19)

where mi is the mass of the ith particle and ri is 
its distance from the rotation axis.

 When a rigid object rotates about a 
fixed axis, the angular position, angu-
lar speed, and angular acceleration are 
related to the translational position, 
translational speed, and translational 
acceleration through the relationships

 s 5 ru (10.1a)

 v 5 rv (10.10)

 at 5 r a (10.11)

 If a rigid object rotates about a fixed axis with angular speed v, its 
rotational kinetic energy can be written

 KR 5 1
2Iv2 (10.24)

where I is the moment of inertia of the object about the axis of rotation.

 The moment of inertia of a rigid object is

 I 5 3r 2 dm (10.20)

where r is the distance from the mass element dm to the axis of rotation.

Concepts and Principles
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 The rate at which work is 
done by an external force in 
rotating a rigid object about 
a fixed axis, or the power 
delivered, is

 P 5 tv (10.26)

 If work is done on a rigid object 
and the only result of the work is rota-
tion about a fixed axis, the net work 
done by external forces in rotating the 
object equals the change in the rota-
tional kinetic energy of the object:

 W 5 1
2 Ivf

2 2 1
2 Ivi

2 (10.27)

 The total kinetic energy of a rigid 
object rolling on a rough surface 
without slipping equals the rotational 
kinetic energy about its center of 
mass plus the translational kinetic 
energy of the center of mass:

 K 5 1
2 ICM v2 1 1

2 MvCM
2 (10.31)

Analysis Models for Problem Solving

 Rigid Object Under Constant Angu-
lar Acceleration. If a rigid object rotates 
about a fixed axis under constant angular 
acceleration, one can apply equations of 
kinematics that are analogous to those for 
translational motion of a particle under 
constant acceleration:

 vf 5 vi 1 at (10.6)

 uf 5 ui 1 vit 1 1
2at 2 (10.7)

 vf
2 5 vi

2 1 2a(uf 2 ui) (10.8)

 uf 5 ui 1 1
2 1vi 1 vf 2 t (10.9)

 Rigid Object Under 
a Net Torque. If a rigid 
object free to rotate 
about a fixed axis has 
a net external torque 
acting on it, the object 
undergoes an angular 
acceleration a, where

 o text 5 Ia (10.18)

 This equation is the rotational analog 
to Newton’s second law in the particle 
under a net force model.

a� constant a

 1. A cyclist rides a bicycle with a wheel radius of 0.500 m 
across campus. A piece of plastic on the front rim makes 
a clicking sound every time it passes through the fork. 
If the cyclist counts 320 clicks between her apartment 
and the cafeteria, how far has she traveled? (a) 0.50 km  
(b) 0.80 km (c) 1.0 km (d) 1.5 km (e) 1.8 km

 2. Consider an object on a rotating disk a distance r from 
its center, held in place on the disk by static friction. 
Which of the following statements is not true concern-
ing this object? (a) If the angular speed is constant, 
the object must have constant tangential speed. (b) If 
the angular speed is constant, the object is not accel-
erated. (c) The object has a tangential acceleration 
only if the disk has an angular acceleration. (d) If the 
disk has an angular acceleration, the object has both a 
centripetal acceleration and a tangential acceleration.  
(e) The object always has a centripetal acceleration 
except when the angular speed is zero.

 3. A wheel is rotating about a fixed axis with constant 
angular acceleration 3 rad/s2. At different moments, its 
angular speed is 22 rad/s, 0, and 12 rad/s. For a point 
on the rim of the wheel, consider at these moments 
the magnitude of the tangential component of accel-
eration and the magnitude of the radial component of 
acceleration. Rank the following five items from larg-
est to smallest: (a) uatu when v 5 22 rad/s, (b)uaru when 

v 5 22 rad/s, (c)uaru when v 5 0, (d)  uatu when v 5  
2 rad/s, and (e) uaru when v 5 2 rad/s. If two items are 
equal, show them as equal in your ranking. If a quan-
tity is equal to zero, show that fact in your ranking.

 4. A grindstone increases in angular speed from 4.00 rad/s  
to 12.00 rad/s in 4.00 s. Through what angle does it 
turn during that time interval if the angular accelera-
tion is constant? (a) 8.00 rad (b) 12.0 rad (c) 16.0 rad 
(d) 32.0 rad (e) 64.0 rad

 5. Suppose a car’s standard tires are replaced with tires 
1.30 times larger in diameter. (i) Will the car’s speed-
ometer reading be (a) 1.69 times too high, (b) 1.30 
times too high, (c) accurate, (d) 1.30 times too low,  
(e) 1.69 times too low, or (f) inaccurate by an unpre-
dictable factor? (ii) Will the car’s fuel economy in miles 
per gallon or km/L appear to be (a) 1.69 times better, 
(b) 1.30 times better, (c) essentially the same, (d) 1.30 
times worse, or (e) 1.69 times worse?

 6. Figure OQ10.6 shows a system of four particles joined 
by light, rigid rods. Assume a 5 b and M is larger than 
m. About which of the coordinate axes does the sys-
tem have (i) the smallest and (ii) the largest moment 
of inertia? (a)  the x axis (b) the y axis (c) the z axis. 
(d) The moment of inertia has the same small value for 
two axes. (e) The moment of inertia is the same for all 
three axes.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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 8. A constant net torque is exerted on an object. Which 
of the following quantities for the object cannot be 
constant? Choose all that apply. (a) angular position  
(b) angular velocity (c) angular acceleration (d) moment  
of inertia (e) kinetic energy

 9. A basketball rolls across a classroom floor without slip-
ping, with its center of mass moving at a certain speed. 
A block of ice of the same mass is set sliding across the 
floor with the same speed along a parallel line. Which 
object has more (i) kinetic energy and (ii) momentum? 
(a) The basketball does. (b) The ice does. (c) The two 
quantities are equal. (iii) The two objects encounter a 
ramp sloping upward. Which object will travel farther 
up the ramp? (a) The basketball will. (b) The ice will. 
(c) They will travel equally far up the ramp.

 10. A toy airplane hangs from the ceiling at the bottom 
end of a string. You turn the airplane many times to 
wind up the string clockwise and release it. The air-
plane starts to spin counterclockwise, slowly at first 
and then faster and faster. Take counterclockwise as 
the positive sense and assume friction is negligible. 
When the string is entirely unwound, the airplane has 
its maximum rate of rotation. (i) At this moment, is 
its angular acceleration (a) positive, (b) negative, or 
(c) zero? (ii) The airplane continues to spin, winding 
the string counterclockwise as it slows down. At the 
moment it momentarily stops, is its angular accelera-
tion (a) positive, (b) negative, or (c) zero?

 11. A solid aluminum sphere of radius R has moment of iner-
tia I about an axis through its center. Will the moment of 
inertia about a central axis of a solid aluminum sphere 
of radius 2R be (a) 2I, (b) 4I, (c) 8I, (d) 16I, or (e) 32I ?
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Figure oQ10.6

7. As shown in Figure OQ10.7, a cord is wrapped onto a 
cylindrical reel mounted on a fixed, frictionless, hori-
zontal axle. When does the reel have a greater mag-
nitude of angular acceleration? (a) When the cord is 
pulled down with a constant force of 50 N. (b) When 
an object of weight 50 N is hung from the cord and 
released. (c) The angular accelerations in parts (a) and  
(b) are equal. (d) It is impossible to determine.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Is it possible to change the translational kinetic energy 
of an object without changing its rotational energy?

 2. Must an object be rotating to have a nonzero moment 
of inertia?

 3. Suppose just two external forces act on a stationary, 
rigid object and the two forces are equal in magnitude 
and opposite in direction. Under what condition does 
the object start to rotate?

 4. Explain how you might use the apparatus described in 
Figure OQ10.7 to determine the moment of inertia of 
the wheel. Note: If the wheel does not have a uniform 
mass density, the moment of inertia is not necessarily 
equal to 12MR 2.

 5. Using the results from Example 10.6, how would you 
calculate the angular speed of the wheel and the linear 
speed of the hanging object at t 5 2 s, assuming the 
system is released from rest at t 5 0?

 6. Explain why changing the axis of rotation of an object 
changes its moment of inertia.

 7. Suppose you have two eggs, one hard-boiled and the 
other uncooked. You wish to determine which is the 
hard-boiled egg without breaking the eggs, which 

can be done by spinning the two eggs on the floor 
and comparing the rotational motions. (a) Which egg 
spins faster? (b) Which egg rotates more uniformly?  
(c) Which egg begins spinning again after being 
stopped and then immediately released? Explain your 
answers to parts (a), (b), and (c).

 8. Suppose you set your textbook sliding across a gymna-
sium floor with a certain initial speed. It quickly stops 
moving because of a friction force exerted on it by the 
floor. Next, you start a basketball rolling with the same 
initial speed. It keeps rolling from one end of the gym 
to the other. (a)  Why does the basketball roll so far? 
(b) Does friction significantly affect the basketball’s 
motion?

 9. (a) What is the angular speed of the second hand of 
an analog clock? (b) What is the direction of vS as you 
view a clock hanging on a vertical wall? (c) What is the 
magnitude of the angular acceleration vector aS of the 
second hand?

 10. One blade of a pair of scissors rotates counterclockwise 
in the xy plane. (a) What is the direction of vS for the 
blade? (b) What is the direction of aS if the magnitude 
of the angular velocity is decreasing in time?

Figure oQ10.7 Objective Question 7 and Conceptual Question 4.
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mine the angular position, angular speed, and angu-
lar acceleration of the door (a) at t 5 0 and (b) at t 5 
3.00 s.

 4. A bar on a hinge starts from rest and rotates with an 
angular acceleration a 5 10 1 6t, where a is in rad/s2  
and t is in seconds. Determine the angle in radians 
through which the bar turns in the first 4.00 s.

Section 10.2 Analysis Model: Rigid object  
under Constant Angular Acceleration
 5. A wheel starts from rest and rotates with constant 

angular acceleration to reach an angular speed of  
12.0 rad/s in 3.00 s. Find (a) the magnitude of the angu-

W

Section 10.1 Angular Position, Velocity, and Acceleration

 1. (a) Find the angular speed of the Earth’s rotation about 
its axis. (b) How does this rotation affect the shape of 
the Earth?

 2. A potter’s wheel moves uniformly from rest to an angu-
lar speed of 1.00 rev/s in 30.0 s. (a) Find its average 
angular acceleration in radians per second per second. 
(b) Would doubling the angular acceleration during 
the given period have doubled the final angular speed?

 3. During a certain time interval, the angular position 
of a swinging door is described by u 5 5.00 1 10.0t 1 
2.00t 2, where u is in radians and t is in seconds. Deter-

Q/C

W

far side and pulled forward horizontally, the tricycle 
would start to roll forward. (a) Instead, assume a string 
is attached to the lower pedal on the near side and 
pulled forward horizontally as shown by A. Will the tri-
cycle start to roll? If so, which way? Answer the same 
questions if (b) the string is pulled forward and upward 
as shown by B, (c) if the string is pulled straight down 
as shown by C, and (d) if the string is pulled forward 
and downward as shown by D. (e) What If? Suppose 
the string is instead attached to the rim of the front 
wheel and pulled upward and backward as shown by E. 
Which way does the tricycle roll? (f) Explain a pattern 
of reasoning, based on the figure, that makes it easy to 
answer questions such as these. What physical quantity 
must you evaluate?

B

A

D
C

E

Figure CQ10.15

 16. A person balances a meterstick in a horizontal posi-
tion on the extended index fingers of her right and 
left hands. She slowly brings the two fingers together. 
The stick remains balanced, and the two fingers always 
meet at the 50-cm mark regardless of their original 
positions. (Try it!) Explain why that occurs.

 11. If you see an object rotating, is there necessarily a net 
torque acting on it?

 12. If a small sphere of mass M were placed at the end 
of the rod in Figure 10.21, would the result for v be 
greater than, less than, or equal to the value obtained 
in Example 10.11?

 13. Three objects of uniform density—a solid sphere, 
a solid cylinder, and a hollow  cylinder—are placed 
at the top of an incline (Fig. CQ10.13). They are all 
released from rest at the same elevation and roll with-
out slipping. (a) Which object reaches the bottom first?  
(b) Which reaches it last? Note: The result is indepen-
dent of the masses and the radii of the objects. (Try 
this activity at home!)

Figure CQ10.13

 14. Which of the entries in Table 10.2 applies to finding 
the moment of inertia (a) of a long, straight sewer pipe 
rotating about its axis of symmetry? (b) Of an embroi-
dery hoop rotating about an axis through its center 
and perpendicular to its plane? (c) Of a uniform door 
turning on its hinges? (d) Of a coin turning about an 
axis through its center and perpendicular to its faces?

 15. Figure CQ10.15 shows a side view of a child’s tricycle 
with rubber tires on a horizontal concrete sidewalk. 
If a string were attached to the upper pedal on the 

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S



 problems 325

lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

 6. A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates 
through 50.0 revolutions before coming to rest. Find 
the constant angular acceleration of the centrifuge.

 7. An electric motor rotating a workshop grinding wheel 
at 1.00 3 102 rev/min is switched off. Assume the wheel 
has a constant negative angular acceleration of magni-
tude 2.00 rad/s2. (a) How long does it take the grinding 
wheel to stop? (b) Through how many radians has the 
wheel turned during the time interval found in part (a)?

 8. A machine part rotates at an angular speed of 
0.060  rad/s; its speed is then increased to 2.2 rad/s 
at an angular acceleration of 0.70 rad/s2. (a) Find the 
angle through which the part rotates before reaching 
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration 
remains the same, by what factor is the angular dis-
placement changed? Why?

 9. A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration.  
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

 10. Why is the following situation impossible? Starting from 
rest, a disk rotates around a fixed axis through an 
angle of 50.0   rad in a time interval of 10.0 s. The 
angular acceleration of the disk is constant during the 
entire motion, and its final angular speed is 8.00 rad/s.

 11. A rotating wheel requires 3.00 s to rotate through  
37.0 revolutions. Its angular speed at the end of the 
3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

 12. The tub of a washer goes into its spin cycle, starting 
from rest and gaining angular speed steadily for 8.00 s,  
at which time it is turning at 5.00 rev/s. At this point, 
the person doing the laundry opens the lid, and a 
safety switch turns off the washer. The tub smoothly 
slows to rest in 12.0 s. Through how many revolutions 
does the tub turn while it is in motion?

 13. A spinning wheel is slowed down by a brake, giving it 
a constant angular acceleration of 25.60 rad/s2. Dur-
ing a 4.20-s time interval, the wheel rotates through  
62.4 rad. What is the angular speed of the wheel at the 
end of the 4.20-s interval?

 14. Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground 
with respect to an inertial reference frame because the 
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to 
the ground a distance h below, it lands east of the point 
vertically below where it was dropped. (a) How far to the 
east will the object land? Express your answer in terms 
of h, g, and the angular speed v of the Earth. Ignore air 
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for h 5 50.0 m. (c) In your judgment, 
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were we justified in ignoring this aspect of the Coriolis 
effect in our previous study of free fall? (d) Suppose the 
angular speed of the Earth were to decrease due to tidal 
friction with constant angular acceleration. Would the 
eastward displacement of the dropped object increase 
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities
 15. A racing car travels on a circular track of radius 250 m.  

Assuming the car moves with a constant speed of  
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

 16. Make an order-of-magnitude estimate of the number 
of revolutions through which a typical automobile tire 
turns in one year. State the quantities you measure or 
estimate and their values.

 17. A discus thrower (Fig. P4.33, page 104) accelerates a 
discus from rest to a speed of 25.0 m/s by whirling it 
through 1.25 rev. Assume the discus moves on the arc 
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude 
of the angular acceleration of the discus, assuming it 
to be constant. (c) Calculate the time interval required 
for the discus to accelerate from rest to 25.0 m/s.

 18. Figure P10.18 shows the drive train of a bicycle that 
has wheels 67.3 cm in diameter and pedal cranks  
17.5 cm long. The cyclist pedals at a steady cadence of  
76.0 rev/min. The chain engages with a front sprocket 
15.2 cm in diameter and a rear sprocket 7.00 cm in 
diameter. Calculate (a) the speed of a link of the chain 
relative to the bicycle frame, (b) the angular speed of 
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not 
necessary for the calculations?

Chain

Front sprocket
Pedal crank

Rear
sprocket

Figure P10.18

 19. A wheel 2.00 m in diameter lies in a vertical plane and 
rotates about its central axis with a constant angular 
acceleration of 4.00 rad/s2. The wheel starts at rest at  
t 5 0, and the radius vector of a certain point P on the 
rim makes an angle of 57.38 with the horizontal at this 
time. At t 5 2.00 s, find (a) the angular speed of the 
wheel and, for point P, (b) the tangential speed, (c) the 
total acceleration, and (d) the angular position.

 20. A car accelerates uniformly from rest and reaches a 
speed of 22.0 m/s in 9.00 s. Assuming the diameter of 
a tire is 58.0 cm, (a) find the number of revolutions the 
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a 
tire in revolutions per second?
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 21. A disk 8.00 cm in radius rotates at a constant rate of 
1 200 rev/min about its central axis. Determine (a) its 
angular speed in radians per second, (b) the tangen-
tial speed at a point 3.00 cm from its center, (c) the 
radial acceleration of a point on the rim, and (d) the 
total distance a point on the rim moves in 2.00 s.

 22. A straight ladder is leaning against the wall of a house. 
The ladder has rails 4.90 m long, joined by rungs  
0.410 m long. Its bottom end is on solid but sloping 
ground so that the top of the ladder is 0.690 m to the 
left of where it should be, and the ladder is unsafe to 
climb. You want to put a flat rock under one foot of 
the ladder to compensate for the slope of the ground. 
(a) What should be the thickness of the rock? (b) Does 
using ideas from this chapter make it easier to explain 
the solution to part (a)? Explain your answer.

 23. A car traveling on a flat (unbanked), circular track 
accelerates uniformly from rest with a tangential accel-
eration of 1.70 m/s2. The car makes it one-quarter of 
the way around the circle before it skids off the track. 
From these data, determine the coefficient of static 
friction between the car and the track.

 24. A car traveling on a flat (unbanked), circular track 
accelerates uniformly from rest with a tangential accel-
eration of a. The car makes it one-quarter of the way 
around the circle before it skids off the track. From 
these data, determine the coefficient of static friction 
between the car and the track.

 25. In a manufacturing process, a large, cylindrical roller 
is used to flatten material fed beneath it. The diam-
eter of the roller is 1.00 m, and, while being driven into 
rotation around a fixed axis, its angular position is 
expressed as

u 5 2.50t2 2 0.600t 3

  where u is in radians and t is in seconds. (a) Find the 
maximum angular speed of the roller. (b) What is the 
maximum tangential speed of a point on the rim of 
the roller? (c) At what time t should the driving force 
be removed from the roller so that the roller does not 
reverse its direction of rotation? (d) Through how 
many rotations has the roller turned between t 5 0 and 
the time found in part (c)?

 26. Review. A small object with mass 4.00 kg moves coun-
terclockwise with constant angular speed 1.50 rad/s in 
a circle of radius 3.00 m centered at the origin. It starts 
at the point with position vector 3.00 î m. It then under-
goes an angular displacement of 9.00 rad. (a) What is its 
new position vector? Use unit-vector notation for all vec-
tor answers. (b) In what quadrant is the particle located, 
and what angle does its position vector make with the 
positive x axis? (c) What is its velocity? (d) In what direc-
tion is it moving? (e) What is its acceleration? (f) Make a 
sketch of its position, velocity, and acceleration vectors. 
(g) What total force is exerted on the object?

Section 10.4 Torque

 27. Find the net torque on the wheel in Figure P10.27 about 
the axle through O, taking a 5 10.0 cm and b 5 25.0 cm.
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10.0 N

30.0� a

O

b
12.0 N

9.00 N

Figure P10.27

 28. The fishing pole in Figure P10.28 makes an angle of 
20.0° with the horizontal. What is the torque exerted 
by the fish about an axis perpendicular to the page 
and passing through the angler’s hand if the fish pulls 
on the fishing line with a force F

S
5 100 N at an angle 

37.0° below the horizontal? The force is applied at a 
point 2.00 m from the angler’s hands.

100 N
20.0�

20.0�
37.0�

2.00 m

Figure P10.28

Section 10.5 Analysis Model: Rigid object under a net Torque

 29. An electric motor turns a flywheel through a drive belt 
that joins a pulley on the motor and a pulley that is rig-
idly attached to the flywheel as shown in Figure P10.29. 
The flywheel is a solid disk with a mass of 80.0 kg and 
a radius R 5 0.625 m. It turns on a frictionless axle.  
Its pulley has much smaller mass and a radius of r 5 
0.230 m. The tension Tu in the upper (taut) segment 
of the belt is 135 N, and the flywheel has a clockwise 
angular acceleration of 1.67 rad/s2. Find the tension in 
the lower (slack) segment of the belt.

R

r

Tu

Figure P10.29

 30. A grinding wheel is in the form of a uniform solid disk 
of radius 7.00 cm and mass 2.00 kg. It starts from rest 
and accelerates uniformly under the action of the con-
stant torque of 0.600 N ? m that the motor exerts on 
the wheel. (a) How long does the wheel take to reach its 
final operating speed of 1 200 rev/min? (b) Through 
how many revolutions does it turn while accelerating?
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Object m2 is resting on the floor, and object m1 is 4.00 m 
above the floor when it is released from rest. The pulley 
axis is frictionless. The cord is light, does not stretch, 
and does not slip on the pulley. (a) Calculate the time 
interval required for m1 to hit the floor. (b) How would 
your answer change if the pulley were massless?

 37. A potter’s wheel—a thick stone disk of radius 0.500 m 
and mass 100 kg—is freely rotating at 50.0 rev/min. 
The potter can stop the wheel in 6.00 s by pressing a 
wet rag against the rim and exerting a radially inward 
force of 70.0 N. Find the effective coefficient of kinetic 
friction between wheel and rag.

Section 10.6 Calculation of Moments of Inertia

 38. Imagine that you stand tall and turn about a verti-
cal axis through the top of your head and the point 
halfway between your ankles. Compute an order-of-
magnitude estimate for the moment of inertia of your 
body for this rotation. In your solution, state the quan-
tities you measure or estimate and their values.

 39. A uniform, thin, solid door has height 2.20 m, width 
0.870 m, and mass 23.0 kg. (a) Find its moment of iner-
tia for rotation on its hinges. (b) Is any piece of data 
unnecessary?

 40. Two balls with masses M and m are connected by a 
rigid rod of length L and negligible mass as shown in 
Figure P10.40. For an axis perpendicular to the rod, 
(a) show that the system has the minimum moment 
of inertia when the axis passes through the center of 
mass. (b) Show that this moment of inertia is I 5 mL2, 
where m 5 mM/(m 1 M).

L

L � xx
M m

Figure P10.40

 41. Figure P10.41 shows a side view of a car tire before it 
is mounted on a wheel. Model it as having two side-
walls of uniform thickness 0.635 cm and a tread wall of  
uniform thickness 2.50 cm and width 20.0 cm. Assume 
the rubber has uniform density 1.10 3 103 kg/m3. Find 
its moment of inertia about an axis perpendicular to 
the page through its center.

Tread

Sidewall
33.0 cm

30.5 cm

16.5 cm

Figure P10.41

 42. Following the procedure used in Example 10.7, prove 
that the moment of inertia about the y axis of the rigid 
rod in Figure 10.15 is 13ML2.
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 31. A 150-kg merry-go-round in the shape of a uniform, 
solid, horizontal disk of radius 1.50 m is set in motion 
by wrapping a rope about the rim of the disk and pull-
ing on the rope. What constant force must be exerted 
on the rope to bring the merry-go-round from rest to 
an angular speed of 0.500 rev/s in 2.00 s?

 32. Review. A block of mass m1 5 2.00 kg and a block of 
mass m2 5 6.00 kg are connected by a massless string 
over a pulley in the shape of a solid disk having radius 
R 5 0.250 m and mass M 5 10.0 kg. The fixed, wedge-
shaped ramp makes an angle of u 5 30.08 as shown 
in Figure P10.32. The coefficient of kinetic friction is 
0.360 for both blocks. (a) Draw force diagrams of both 
blocks and of the pulley. Determine (b) the accelera-
tion of the two blocks and (c) the tensions in the string 
on both sides of the pulley.

m1

m2

M, R

u

Figure P10.32

 33. A model airplane with mass 0.750 kg is tethered to the 
ground by a wire so that it flies in a horizontal circle 
30.0 m in radius. The airplane engine provides a net 
thrust of 0.800 N perpendicular to the tethering wire. 
(a) Find the torque the net thrust produces about the 
center of the circle. (b) Find the angular acceleration 
of the airplane. (c) Find the translational acceleration 
of the airplane tangent to its flight path.

 34. A disk having moment of inertia 100 kg ? m2 is free to 
rotate without friction, starting from rest, about a fixed 
axis through its center. A tangential force whose magni-
tude can range from F 5 0 to F 5 50.0 N can be applied 
at any distance ranging from R 5 0 to R 5 3.00 m from 
the axis of rotation. (a) Find a pair of values of F and R 
that cause the disk to complete 2.00 rev in 10.0 s. (b) Is 
your answer for part (a) a unique answer? How many 
answers exist?

 35. The combination of an applied force and a friction 
force produces a constant total torque of 36.0 N ? m on 
a wheel rotating about a fixed axis. 
The applied force acts for 6.00 s.  
During this time, the angular 
speed of the wheel increases from 
0 to 10.0 rad/s. The applied force 
is then removed, and the wheel 
comes to rest in 60.0 s. Find (a) the 
moment of inertia of the wheel, 
(b) the magnitude of the torque 
due to friction, and (c) the total 
number of revolutions of the wheel 
during the entire interval of 66.0 s.

 36. Review. Consider the system shown 
in Figure P10.36 with m1 5 20.0 kg, 
m2 5 12.5 kg, R 5 0.200 m, and the 
mass of the pulley M 5 5.00  kg. 
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m1

m2

Figure P10.36



328 chapter 10 Rotation of a Rigid Object About a Fixed Axis

hole does not pass through the center of the disk. The 
cam with the hole cut out has mass M. The cam is 
mounted on a uniform, solid, cylindrical shaft of diam-
eter R and also of mass M. What is the kinetic energy of 
the cam–shaft combination when it is rotating with 
angular speed v about the shaft’s axis?

 47. A war-wolf or trebuchet is a device used during the Mid-
dle Ages to throw rocks at castles and now sometimes 
used to fling large vegetables and pianos as a sport. A 
simple trebuchet is shown in Figure P10.47. Model it 
as a stiff rod of negligible mass, 3.00 m long, joining 
particles of mass m1 5 0.120 kg and m2 5 60.0 kg at its 
ends. It can turn on a frictionless, horizontal axle per-
pendicular to the rod and 14.0 cm from the large-mass 
particle. The operator releases the trebuchet from rest 
in a horizontal orientation. (a) Find the maximum 
speed that the small-mass object attains. (b) While the 
small-mass object is gaining speed, does it move with 
constant acceleration? (c) Does it move with constant 
tangential acceleration? (d) Does the trebuchet move 
with constant angular acceleration? (e) Does it have 
constant momentum? (f) Does the trebuchet–Earth 
system have constant mechanical energy?

3.00 m

m1 m2

Figure P10.47

Section 10.8 Energy Considerations in Rotational Motion

 48. A horizontal 800-N merry-go-round is a solid disk of 
radius 1.50 m and is started from rest by a constant 
horizontal force of 50.0 N applied tangentially to the 
edge of the disk. Find the kinetic energy of the disk 
after 3.00 s.

 49. Big Ben, the nickname for the clock in Elizabeth Tower 
(named after the Queen in 2012) in London, has an 
hour hand 2.70 m long with a mass of 60.0 kg and a 
minute hand 4.50 m long with a mass of 100 kg (Fig. 
P10.49). Calculate the total rotational kinetic energy of 
the two hands about the axis of rotation. (You may 

Q/C

 43. Three identical thin rods, each 
of length L and mass m, are 
welded perpendicular to one 
another as shown in Figure 
P10.43. The assembly is rotated 
about an axis that passes 
through the end of one rod and 
is parallel to another. Deter-
mine the moment of inertia of 
this structure about this axis.

Section 10.7 Rotational  
Kinetic Energy

 44. Rigid rods of negligible mass lying along the y axis con-
nect three particles (Fig. P10.44). The system rotates 
about the x axis with an 
angular speed of 2.00 rad/s. 
Find (a)  the moment of iner-
tia about the x axis, (b) the 
total rotational kinetic energy 
evaluated from 1

2Iv2, (c) the 
tangential speed of each 
particle, and (d)  the total 
kinetic energy evaluated from 

a
1
2mivi

2. (e) Compare the 
answers for kinetic energy in 
parts (a) and (b).

 45. The four particles in Figure P10.45 are connected by 
rigid rods of negligible mass. The origin is at the cen-
ter of the rectangle. The system rotates in the xy plane 
about the z axis with an angular speed of 6.00 rad/s. Cal-
culate (a) the moment of inertia of the system about the 
z axis and (b) the rotational kinetic energy of the system.

3.00 kg 2.00 kg

4.00 kg
2.00 kg

6.00 m

4.00 m

y

x
O

Figure P10.45

 46. Many machines employ cams for various purposes, 
such as opening and closing valves. In Figure P10.46, 
the cam is a circular disk of radius R with a hole of 
diameter R cut through it. As shown in the figure, the 
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x
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y � 3.00 m4.00 kg

3.00 kg

2.00 kg

y

y � �2.00 m

y � �4.00 m

Figure P10.44
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and the pulley is a hollow cylinder with a mass of M 5 
0.350  kg, an inner radius of R1 5 0.020 0  m, and an 
outer radius of R2 5 0.030 0 m. Assume the mass of the 
spokes is negligible. The coefficient of kinetic friction 
between the block and the horizontal surface is mk 5 
0.250. The pulley turns without friction on its axle. The 
light cord does not stretch and does not slip on the pul-
ley. The block has a velocity of vi 5 0.820 m/s toward 
the pulley when it passes a reference point on the table. 
(a) Use energy methods to predict its speed after it has 
moved to a second point, 0.700 m away. (b) Find the 
angular speed of the pulley at the same moment.

 54. Review. A thin, cylindri-
cal rod , 5 24.0  cm long 
with mass m 5 1.20 kg has  
a ball of diameter d 5 
8.00  cm and mass M 5  
2.00 kg attached to one 
end. The arrangement 
is originally vertical and 
stationary, with the ball 
at the top as shown in 
Figure P10.54. The com-
bination is free to pivot 
about the bottom end of 
the rod after being given a 
slight nudge. (a) After the combination rotates through 
90 degrees, what is its rotational kinetic energy? (b) What 
is the angular speed of the rod and ball? (c) What is the 
linear speed of the center of mass of the ball? (d) How 
does it compare with the speed had the ball fallen freely 
through the same distance of 28 cm?

 55. Review. An object with a mass of m 5 5.10 kg is 
attached to the free end of a light string wrapped 
around a reel of radius R 5 0.250  m and mass M 5 
3.00 kg. The reel is a solid disk, free to rotate in a ver-
tical plane about the horizontal axis passing through 
its center as shown in Figure  P10.55. The suspended 
object is released from rest 6.00  m above the floor. 
Determine (a) the tension in the string, (b) the accel-
eration of the object, and (c) the speed with which the 
object hits the floor. (d)  Verify your answer to part  
(c) by using the isolated system (energy) model.

d

m�

M

Figure P10.54
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model the hands as long, thin rods rotated about one 
end. Assume the hour and minute hands are rotating 
at a constant rate of one revolution per 12 hours and 
60 minutes, respectively.)

 50. Consider two objects with m1 . 
m2 connected by a light string 
that passes over a pulley having 
a moment of inertia of I about 
its axis of rotation as shown in 
Figure P10.50. The string does 
not slip on the pulley or stretch. 
The pulley turns without fric-
tion. The two objects are 
released from rest separated by 
a vertical distance 2h. (a) Use 
the principle of conservation of 
energy to find the translational 
speeds of the objects as they 
pass each other. (b) Find the angular speed of the pul-
ley at this time. 

 51. The top in Figure P10.51 has a moment of inertia of 
4.00 3 1024 kg ? m2 and is initially at rest. It is free to 
rotate about the stationary axis AA9. A string, wrapped 
around a peg along the axis 
of the top, is pulled in such 
a manner as to maintain a 
constant tension of 5.57 N. If 
the string does not slip while 
it is unwound from the peg, 
what is the angular speed 
of the top after 80.0 cm  
of string has been pulled off 
the peg?

 52. Why is the following situation 
impossible? In a large city with an air-pollution problem, 
a bus has no combustion engine. It runs over its citywide 
route on energy drawn from a large, rapidly rotating fly-
wheel under the floor of the bus. The flywheel is spun 
up to its maximum rotation rate of 3 000 rev/min by an 
electric motor at the bus terminal. Every time the bus 
speeds up, the flywheel slows down slightly. The bus is 
equipped with regenerative braking so that the flywheel 
can speed up when the bus slows down. The flywheel is 
a uniform solid cylinder with mass 1 200 kg and radius 
0.500 m. The bus body does work against air resistance 
and rolling resistance at the average rate of 25.0 hp as it 
travels its route with an average speed of 35.0 km/h.

 53. In Figure P10.53, the hanging object has a mass of m1 5 
0.420 kg; the sliding block has a mass of m2 5 0.850 kg; 

2h

I

m1

m2

R

Figure P10.50
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 56. This problem describes one 
experimental method for deter-
mining the moment of inertia 
of an irregularly shaped object 
such as the payload for a satel-
lite. Figure P10.56 shows a  
counterweight of mass m sus-
pended by a cord wound 
around a spool of radius r, 
forming part of a turntable sup-
porting the object. The turnta-
ble can rotate without friction. When the counter-
weight is released from rest, it descends through a 
distance h, acquiring a speed v. Show that the moment 
of inertia I of the rotating apparatus (including the 
turntable) is mr 2(2gh/v 2 2 1).

 57. A uniform solid disk of 
radius R and mass M is free 
to rotate on a frictionless 
pivot through a point on its 
rim (Fig. P10.57). If the disk 
is released from rest in the 
position shown by the copper- 
colored circle, (a) what is the 
speed of its center of mass 
when the disk reaches the 
position indicated by the dashed circle? (b) What 
is the speed of the lowest point on the disk in the 
dashed position? (c) What If? Repeat part (a) using a 
uniform hoop.

 58. The head of a grass string trimmer has 100 g of cord 
wound in a light, cylindrical spool with inside diam-
eter 3.00 cm and outside diameter 18.0 cm as shown 
in Figure P10.58. The cord has a linear density of 
10.0 g/m. A single strand of the cord extends 16.0 cm 
from the outer edge of the spool. (a) When switched 
on, the trimmer speeds up from 0 to 2 500 rev/min  
in 0.215 s. What average power is delivered to the 
head by the trimmer motor while it is accelerating? 
(b)  When the trimmer is cutting grass, it spins at 
2 000  rev/min and the grass exerts an average tan-
gential force of 7.65 N on the outer end of the cord, 
which is still at a radial distance of 16.0 cm from the 
outer edge of the spool. What is the power delivered 
to the head under load?

S
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Figure P10.57
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Section 10.9 Rolling Motion of a Rigid object

 59. A cylinder of mass 10.0 kg rolls without slipping on a 
horizontal surface. At a certain instant, its center of 
mass has a speed of 10.0 m/s. Determine (a) the trans-
lational kinetic energy of its center of mass, (b) the 
rotational kinetic energy about its center of mass, and 
(c) its total energy.

 60. A solid sphere is released from height h from the top 
of an incline making an angle u with the horizontal. 
Calculate the speed of the sphere when it reaches the 
bottom of the incline (a) in the case that it rolls with-
out slipping and (b) in the case that it slides friction-
lessly without rolling. (c) Compare the time intervals 
required to reach the bottom in cases (a) and (b).

 61. (a) Determine the acceleration of the center of mass 
of a uniform solid disk rolling down an incline making 
angle u with the horizontal. (b) Compare the accelera-
tion found in part (a) with that of a uniform hoop.  
(c) What is the minimum coefficient of friction 
required to maintain pure rolling motion for the disk?

 62. A smooth cube of mass m and edge length r slides with 
speed v on a horizontal surface with negligible friction. 
The cube then moves up a smooth incline that makes 
an angle u with the horizontal. A cylinder of mass m 
and radius r rolls without slipping with its center of 
mass moving with speed v and encounters an incline 
of the same angle of inclination but with sufficient fric-
tion that the cylinder continues to roll without slipping. 
(a) Which object will go the greater distance up the 
incline? (b) Find the difference between the maximum 
distances the objects travel up the incline. (c) Explain 
what accounts for this difference in distances traveled.

 63. A uniform solid disk and a uniform hoop are placed 
side by side at the top of an incline of height h. (a) If 
they are released from rest and roll without slipping, 
which object reaches the bottom first? (b) Verify your 
answer by calculating their speeds when they reach the 
bottom in terms of h.

 64. A tennis ball is a hollow sphere with a thin wall. It is set 
rolling without slipping at 4.03 m/s on a horizontal sec-
tion of a track as shown in Figure P10.64. It rolls around 
the inside of a vertical circular loop of radius r  5 
45.0 cm. As the ball nears the bottom of the loop, the 
shape of the track deviates from a perfect circle so that 
the ball leaves the track at a point h 5 20.0 cm below the 
horizontal section. (a) Find the ball’s speed at the top 
of the loop. (b) Demonstrate that the ball will not fall 
from the track at the top of the loop. (c) Find the ball’s 
speed as it leaves the track at the bottom. (d) What If? 
Suppose that static friction between ball and track were 

M

Q/C
S

S

Q/C
S

S

Q/C

m

Figure P10.56

18.0 cm
3.00 cm

16.0 cm

Figure P10.58

r

h

Figure P10.64



 problems 331

negligible so that the ball slid instead of rolling. Would 
its speed then be higher, lower, or the same at the top of 
the loop? (e) Explain your answer to part (d).

 65. A metal can containing condensed mushroom soup 
has mass 215 g, height 10.8 cm, and diameter 6.38 cm. 
It is placed at rest on its side at the top of a 3.00-m-long 
incline that is at 25.08 to the horizontal and is then 
released to roll straight down. It reaches the bottom 
of the incline after 1.50 s. (a) Assuming mechanical 
energy conservation, calculate the moment of inertia 
of the can. (b) Which pieces of data, if any, are unnec-
essary for calculating the solution? (c) Why can’t the 
moment of inertia be calculated from I 5 1

2mr 2 for the 
cylindrical can?

Additional Problems

 66. As shown in Figure 10.13 on page 306, toppling chim-
neys often break apart in midfall because the mor-
tar between the bricks cannot withstand much shear 
stress. As the chimney begins to fall, shear forces must 
act on the topmost sections to accelerate them tangen-
tially so that they can keep up with the rotation of the  
lower part of the stack. For simplicity, let us model  
the chimney as a uniform rod of length , pivoted at 
the lower end. The rod starts at rest in a vertical posi-
tion (with the frictionless pivot at the bottom) and falls 
over under the influence of gravity. What fraction of 
the length of the rod has a tangential acceleration 
greater than g sin u, where u is the angle the chimney 
makes with the vertical axis?

 67. Review. A 4.00-m length of light nylon cord is wound 
around a uniform cylindrical spool of radius 0.500 m 
and mass 1.00 kg. The spool is mounted on a friction-
less axle and is initially at rest. The cord is pulled from 
the spool with a constant acceleration of magnitude 
2.50 m/s2. (a) How much work has been done on the 
spool when it reaches an angular speed of 8.00 rad/s? 
(b) How long does it take the spool to reach this angu-
lar speed? (c) How much cord is left on the spool when 
it reaches this angular speed?

 68. An elevator system in a tall building consists of a  
800-kg car and a 950-kg counterweight joined by a light 
cable of constant length that passes over a pulley of 
mass 280 kg. The pulley, called a sheave, is a solid cylin-
der of radius 0.700 m turning on a horizontal axle. The 
cable does not slip on the sheave. A number n of peo-
ple, each of mass 80.0 kg, are riding in the elevator car, 
moving upward at 3.00 m/s and approaching the floor 
where the car should stop. As an energy-conservation  
measure, a computer disconnects the elevator motor 
at just the right moment so that the sheave–car– 
counterweight system then coasts freely without fric-
tion and comes to rest at the floor desired. There it is 
caught by a simple latch rather than by a massive brake. 
(a) Determine the distance d the car coasts upward as 
a function of n. Evaluate the distance for (b)  n  5 2,  
(c) n 5 12, and (d) n 5 0. (e) For what integer values 
of n does the expression in part (a) apply? (f) Explain 
your answer to part (e). (g) If an infinite number of 
people could fit on the elevator, what is the value of d ?
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 69. A shaft is turning at 65.0 rad/s at time t 5 0. Thereaf-
ter, its angular acceleration is given by

a 5 210.0 2 5.00t

  where a is in rad/s2 and t is in seconds. (a) Find the 
angular speed of the shaft at t 5 3.00 s. (b) Through 
what angle does it turn between t 5 0 and t 5 3.00 s?

 70. A shaft is turning at angular speed v at time t 5 0. 
Thereafter, its angular acceleration is given by

a 5 A 1 Bt

  (a) Find the angular speed of the shaft at time t. 
(b) Through what angle does it turn between t 5 0 and t ?

 71. Review. A mixing beater consists of three thin rods, 
each 10.0 cm long. The rods diverge from a central 
hub, separated from each other by 120°, and all turn 
in the same plane. A ball is attached to the end of each 
rod. Each ball has cross-sectional area 4.00 cm2 and is 
so shaped that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at  
1 000 rev/min (a) in air and (b) in water.

 72. The hour hand and the minute hand of Big Ben, the 
Elizabeth Tower clock in London, are 2.70 m and 4.50 m  
long and have masses of 60.0 kg and 100 kg, respec-
tively (see Fig. P10.49). (a) Determine the total torque 
due to the weight of these hands about the axis of rota-
tion when the time reads (i) 3:00, (ii) 5:15, (iii) 6:00, 
(iv) 8:20, and (v) 9:45. (You may model the hands as 
long, thin, uniform rods.) (b) Determine all times 
when the total torque about the axis of rotation is zero. 
Determine the times to the nearest second, solving a 
transcendental equation numerically.

 73. A long, uniform rod of length L and mass M is pivoted 
about a frictionless, horizontal pin through one end. 
The rod is nudged from rest in a vertical position as 
shown in Figure P10.73. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of 
its angular acceleration, (c) the x and y components of 
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

xPin

L

y

Figure P10.73

 74. A bicycle is turned upside down while its owner repairs 
a flat tire on the rear wheel. A friend spins the front 
wheel, of radius 0.381 m, and observes that drops 
of water fly off tangentially in an upward direction 
when the drops are at the same level as the center of 
the wheel. She measures the height reached by drops 
moving vertically (Fig. P10.74 on page 332). A drop 

S

S
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that breaks loose from the tire on one turn rises h 5  
54.0 cm above the tangent point. A drop that breaks 
loose on the next turn rises 51.0 cm above the tangent 
point. The height to which the drops rise decreases 
because the angular speed of the wheel decreases. 
From this information, determine the magnitude of 
the average angular acceleration of the wheel.

h

v  �  0

Figure P10.74 Problems 74 and 75.

 75. A bicycle is turned upside down while its owner repairs 
a flat tire on the rear wheel. A friend spins the front 
wheel, of radius R, and observes that drops of water 
fly off tangentially in an upward direction when the 
drops are at the same level as the center of the wheel. 
She measures the height reached by drops moving ver-
tically (Fig. P10.74). A drop that breaks loose from the 
tire on one turn rises a distance h1 above the tangent 
point. A drop that breaks loose on the next turn rises 
a distance h2 , h1 above the tangent point. The height 
to which the drops rise decreases because the angular 
speed of the wheel decreases. From this information, 
determine the magnitude of the average angular accel-
eration of the wheel.

 76. (a) What is the rotational kinetic energy of the Earth 
about its spin axis? Model the Earth as a uniform 
sphere and use data from the endpapers of this book. 
(b) The rotational kinetic energy of the Earth is 
decreasing steadily because of tidal friction. Assuming 
the rotational period decreases by 10.0 ms each year, 
find the change in one day.

 77. Review. As shown in Figure P10.77, two blocks are con-
nected by a string of negligible mass passing over a pul-
ley of radius r = 0.250 m and moment of inertia I. The 
block on the frictionless incline is moving with a con-
stant acceleration of magnitude a = 2.00  m/s2. From 
this information, we wish to find the moment of inertia 
of the pulley. (a)  What analysis model is appropriate 
for the blocks? (b) What analysis model is appropriate 

S

GP

for the pulley? (c) From the analysis model in part (a), 
find the tension T 1. (d) Similarly, find the tension T 2. 
(e) From the analysis model in part (b), find a symbolic 
expression for the moment of inertia of the pulley in 
terms of the tensions T1 and T2, the pulley radius r, and 
the acceleration a. (f) Find the numerical value of the 
moment of inertia of the pulley.

 78. Review. A string is wound around a 
uniform disk of radius R and mass 
M. The disk is released from rest 
with the string vertical and its top 
end tied to a fixed bar (Fig. P10.78). 
Show that (a)  the tension in the 
string is one third of the weight of 
the disk, (b) the magnitude of the 
acceleration of the center of mass is 
2g/3, and (c) the speed of the cen-
ter of mass is (4gh/3)1/2 after the disk has descended 
through distance h. (d) Verify your answer to part (c) 
using the energy approach.

 79. The reel shown in Figure P10.79 has radius R and 
moment of inertia I. One end of the block of mass m is 
connected to a spring of force constant k, and the other 
end is fastened to a cord wrapped around the reel. The 
reel axle and the incline are frictionless. The reel is 
wound counterclockwise so that the spring stretches a 
distance d from its unstretched position and the reel is 
then released from rest. Find the angular speed of the 
reel when the spring is again unstretched.

R
I

k

u

m

Figure P10.79

 80. A common demonstration, illustrated in Figure P10.80, 
consists of a ball resting at one end of a uniform board 
of length , that is hinged at the other end and elevated 
at an angle u. A light cup is attached to the board at 
rc so that it will catch the ball when the support stick 
is removed suddenly. (a) Show that the ball will lag 
behind the falling board when u is less than 35.38.  
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top end. Suddenly, a horizontal impulsive force 14.7 î N  
is applied to it. (a) Suppose the force acts at the bot-
tom end of the rod. Find the acceleration of its center 
of mass and (b) the horizontal force the hinge exerts. 
(c) Suppose the force acts at the midpoint of the rod. 
Find the acceleration of this point and (d) the horizon-
tal hinge reaction force. (e)  Where can the impulse 
be applied so that the hinge will exert no horizontal 
force? This point is called the center of percussion.

 85. A thin rod of length h and mass M is held vertically 
with its lower end resting on a frictionless, horizon-
tal surface. The rod is then released to fall freely.  
(a) Determine the speed of its center of mass just 
before it hits the horizontal surface. (b) What If? 
Now suppose the rod has a fixed pivot at its lower end. 
Determine the speed of the rod’s center of mass just 
before it hits the surface.

 86. Review. A clown balances a small spherical grape at 
the top of his bald head, which also has the shape of 
a sphere. After drawing sufficient applause, the grape 
starts from rest and rolls down without slipping. It will 
leave contact with the clown’s scalp when the radial 
line joining it to the center of curvature makes what 
angle with the vertical?

Challenge Problems

 87. A plank with a mass M 5 6.00 kg rests on top of two 
identical, solid, cylindrical rollers that have R 5 5.00 cm  
and m 5 2.00 kg (Fig. P10.87). The plank is pulled by a  
constant horizontal force F

S
 of magnitude 6.00 N 

applied to the end of the plank and perpendicular to 
the axes of the cylinders (which are parallel). The cyl-
inders roll without slipping on a flat surface. There is 
also no slipping between the cylinders and the plank. 
(a) Find the initial acceleration of the plank at the 
moment the rollers are equidistant from the ends of 
the plank. (b) Find the acceleration of the rollers at 
this moment. (c) What friction forces are acting at this 
moment?

M

R
m m

F
S

R

Figure P10.87

 88. As a gasoline engine operates, a flywheel turning with 
the crankshaft stores energy after each fuel explosion, 
providing the energy required to compress the next 
charge of fuel and air. For the engine of a certain lawn 
tractor, suppose a flywheel must be no more than  
18.0 cm in diameter. Its thickness, measured along its 
axis of rotation, must be no larger than 8.00 cm. The 
flywheel must release energy 60.0  J when its angular 
speed drops from 800 rev/min to 600 rev/min. Design 
a sturdy steel (density 7.85 3 103 kg/m3) flywheel to 
meet these requirements with the smallest mass you 
can reasonably attain. Specify the shape and mass of 
the flywheel.

S

(b) Assuming the board is 1.00 m long and is sup-
ported at this limiting angle, show that the cup must be 
18.4 cm from the moving end.

 81. A uniform solid sphere of radius r is placed on the 
inside surface of a hemispherical bowl with radius R. 
The sphere is released from rest at an angle u to the 
vertical and rolls without slipping (Fig. P10.81). Deter-
mine the angular speed of the sphere when it reaches 
the bottom of the bowl.

u
R

r

Figure P10.81

 82. Review. A spool of wire of mass M and radius R is 
unwound under a constant force F

S
 (Fig. P10.82). Assum-

ing the spool is a uniform, solid cylinder that doesn’t 
slip, show that (a) the acceleration of the center of mass 
is 4 F

S
/3M  and (b) the force of friction is to the right and 

equal in magnitude to F/3. (c) If the cylinder starts from 
rest and rolls without slipping, what is the speed of its 
center of mass after it has rolled through a distance d?

M

R

F
S

Figure P10.82

 83. A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P10.83. It starts 
from rest with the lowest point of the sphere at height h 
above the bottom of the loop of radius R, much larger 
than r. (a) What is the minimum value of h (in terms of 
R) such that the sphere completes the loop? (b) What 
are the force components on the sphere at the point P 
if h 5 3R?

h R

Solid sphere of mass m 
and radius r �� R.

P

Figure P10.83

 84. A thin rod of mass 0.630 kg and length 1.24 m is at 
rest, hanging vertically from a strong, fixed hinge at its 
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 92. A cord is wrapped around a pulley that is shaped like 
a disk of mass m and radius r. The cord’s free end is 
connected to a block of mass M. The block starts from 
rest and then slides down an incline that makes an 
angle u with the horizontal as shown in Figure P10.92. 
The coefficient of kinetic friction between block and 
incline is m. (a) Use energy methods to show that the 
block’s speed as a function of position d down the 
incline is

v 5 Å
4Mgd 1sin u 2 m cos u 2

m 1 2M

  (b) Find the magnitude of the acceleration of the block 
in terms of m, m, M, g, and u.

r
m

u

M

Figure P10.92

 93. A merry-go-round is stationary. A dog is running 
around the merry-go-round on the ground just out-
side its circumference, moving with a constant angu-
lar speed of 0.750 rad/s. The dog does not change his 
pace when he sees what he has been looking for: a 
bone resting on the edge of the merry-go-round one-
third of a revolution in front of him. At the instant the 
dog sees the bone (t 5 0), the merry-go-round begins 
to move in the direction the dog is running, with a 
constant angular acceleration of 0.015 0 rad/s2. (a) At 
what time will the dog first reach the bone? (b) The 
confused dog keeps running and passes the bone. 
How long after the merry-go-round starts to turn do 
the dog and the bone draw even with each other for 
the second time?

 94. A uniform, hollow, cylin-
drical spool has inside 
radius R/2, outside radius 
R, and mass M (Fig. 
P10.94). It is mounted so 
that it rotates on a fixed, 
horizontal axle. A coun-
terweight of mass m is 
connected to the end of a 
string wound around the 
spool. The counterweight 
falls from rest at t 5 0 to 
a position y at time t. Show 
that the torque due to the friction forces between spool 
and axle is

tf 5 R cmag 2
2y

t 2 b 2 M 
5y

4t 2 d

S

S

 89. As a result of friction, the angular speed of a wheel 
changes with time according to

du

dt
5 v0e

2st

  where v0 and s are constants. The angular speed 
changes from 3.50 rad/s at t 5 0 to 2.00 rad/s at t 5 
9.30 s. (a) Use this information to determine s and 
v0. Then determine (b) the magnitude of the angular 
acceleration at t 5 3.00 s, (c) the number of revolutions 
the wheel makes in the first 2.50 s, and (d) the number 
of revolutions it makes before coming to rest.

 90. To find the total angular displacement during the 
playing time of the compact disc in part (B) of Exam-
ple 10.2, the disc was modeled as a rigid object under 
constant angular acceleration. In reality, the angular 
acceleration of a disc is not constant. In this problem, 
let us explore the actual time dependence of the angu-
lar acceleration. (a) Assume the track on the disc is a 
spiral such that adjacent loops of the track are sepa-
rated by a small distance h. Show that the radius r of a 
given portion of the track is given by

r 5 ri 1
hu

2p

  where ri is the radius of the innermost portion of the 
track and u is the angle through which the disc turns to 
arrive at the location of the track of radius r. (b) Show 
that the rate of change of the angle u is given by

du

dt
5

v
ri 1 1hu/2p 2

  where v is the constant speed with which the disc sur-
face passes the laser. (c) From the result in part (b), use 
integration to find an expression for the angle u as a 
function of time. (d) From the result in part (c), use 
differentiation to find the angular acceleration of the 
disc as a function of time.

 91. A spool of thread consists of a cylinder of radius R1 with 
end caps of radius R2 as depicted in the end view shown 
in Figure P10.91. The mass of the spool, including the 
thread, is m, and its moment of inertia about an axis 
through its center is I. The spool is placed on a rough, 
horizontal surface so that it rolls without slipping when 
a force T

S
 acting to the right is applied to the free end 

of the thread. (a) Show that the magnitude of the fric-
tion force exerted by the surface on the spool is given by

f 5 aI 1 mR1R 2

I 1 mR 2
2 bT

  (b) Determine the direction of the force of friction.

S
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Figure P10.91
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Two motorcycle racers lean 
precariously into a turn around a 
racetrack. The analysis of such a 
leaning turn is based on principles 
associated with angular momentum. 
(Stuart Westmorland/The Image Bank/

Getty Images)

11.1 The Vector Product  
and Torque

11.2 Analysis Model: 
Nonisolated System 
(Angular Momentum)

11.3 Angular Momentum of  
a Rotating Rigid Object

11.4 Analysis Model:  
Isolated System  
(Angular Momentum)

11.5 The Motion of Gyroscopes 
and Tops

The central topic of this chapter is angular momentum, a quantity that plays a key role 
in rotational dynamics. In analogy to the principle of conservation of linear momentum, 
there is also a principle of conservation of angular momentum. The angular momentum of an 
isolated system is constant. For angular momentum, an isolated system is one for which no 
external torques act on the system. If a net external torque acts on a system, it is nonisolated. 
Like the law of conservation of linear momentum, the law of conservation of angular momen-
tum is a fundamental law of physics, equally valid for relativistic and quantum systems.

11.1 The Vector Product and Torque
An important consideration in defining angular momentum is the process of 
 multiplying two vectors by means of the operation called the vector product. We  
will introduce the vector product by considering the vector nature of torque.
 Consider a force F

S
 acting on a particle located at point P and described by the 

vector position rS (Fig. 11.1 on page 336). As we saw in Section 10.6, the magnitude 
of the torque due to this force about an axis through the origin is rF sin f, where f 
is the angle between rS and F

S
. The axis about which F

S
 tends to produce rotation is 

perpendicular to the plane formed by rS and F
S

.
 The torque vector tS is related to the two vectors rS and F

S
. We can establish a 

mathematical relationship between tS, rS, and F
S

 using a mathematical operation 
called the vector product:

 tS ; rS 3 F
S

 (11.1)

Angular Momentum
c h A p t e r 

11
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 We now give a formal definition of the vector product. Given any two vectors 
A
S

 and B
S

, the vector product A
S

3 B
S

 is defined as a third vector C
S

, which has a  
magnitude of AB sin u, where u is the angle between A

S
 and B

S
. That is, if C

S
 is 

given by

 C
S

5 A
S

3 B
S

 (11.2)

its magnitude is

 C 5 AB sin u (11.3)

The quantity AB sin u is equal to the area of the parallelogram formed by A
S

 and 
B
S

 as shown in Figure 11.2. The direction of C
S

 is perpendicular to the plane formed 
by A

S
 and B

S
, and the best way to determine this direction is to use the right-hand 

rule illustrated in Figure 11.2. The four fingers of the right hand are pointed along 
A
S

 and then “wrapped” in the direction that would rotate A
S

 into B
S

 through the 
angle u. The direction of the upright thumb is the direction of A

S
3 B

S
5 C

S
. 

Because of the notation, A
S

3 B
S

 is often read “ A
S

 cross B
S

,” so the vector product is 
also called the cross product.
 Some properties of the vector product that follow from its definition are as 
follows:

 1. Unlike the scalar product, the vector product is not commutative. Instead, 
the order in which the two vectors are multiplied in a vector product is 
important:

 A
S

3 B
S

5 2 B
S

3 A
S

 (11.4)
  Therefore, if you change the order of the vectors in a vector product, you 

must change the sign. You can easily verify this relationship with the right-
hand rule.

 2. If A
S

 is parallel to B
S

 (u 5 0 or 1808), then A
S

3 B
S

5 0; therefore, it follows 
that A

S
3 A

S
5 0.

 3. If A
S

 is perpendicular to B
S

, then 0 AS 3 B
S 0 5 AB.

 4. The vector product obeys the distributive law:

 A
S

3 1 B
S

1 C
S 2 5 A

S
3 B

S
1 A

S
3 C

S
 (11.5)

 5. The derivative of the vector product with respect to some variable such as t is

 
d
dt

1 A
S

3 B
S 2 5

d A
S

dt
3 B

S
1 A

S
3

d B
S

dt
 (11.6)

  where it is important to preserve the multiplicative order of the terms on 
the right side in view of Equation 11.4.

 It is left as an exercise (Problem 4) to show from Equations 11.3 and 11.4 and 
from the definition of unit vectors that the cross products of the unit vectors  î,  ĵ, 
and k̂ obey the following rules:

  î 3  î 5  ĵ 3  ĵ 5 k̂ 3 k̂ 5 0 (11.7a)

  î 3  ĵ 5 2 ĵ 3  î 5 k̂ (11.7b)

  ĵ 3 k̂ 5 2k̂ 3  ĵ 5  î (11.7c)

 k̂ 3  î 5 2 î 3 k̂ 5  ĵ (11.7d)

Signs are interchangeable in cross products. For example, A
S

3 12B
S 2 5 2 A

S
3 B

S
 

and  î 3 12 ĵ 2 5 2 î 3  ĵ.
 The cross product of any two vectors A

S
 and B

S
 can be expressed in the follow-

ing determinant form:

 A
S

3 B
S

5 †
 î  ĵ k̂
Ax Ay Az

Bx By Bz

† 5 `Ay Az

By Bz
`  î 1 `Az Ax

Bz Bx
`  ĵ 1 `Ax Ay

Bx By
` k̂

Properties of the 
vector product

Cross products of 
unit vectors

Pitfall Prevention 11.1
The Vector Product Is a Vector  
Remember that the result of tak-
ing a vector product between two 
vectors is a third vector. Equation 
11.3 gives only the magnitude of 
this vector.

Figure 11.1 The torque vector 
t
S

 lies in a direction perpendicular 
to the plane formed by the posi-
tion vector rS and the applied force 
vector F

S
. In the situation shown, 

rS and F
S

 lie in the xy plane, so the 
torque is along the z axis.

O

P

x

y

z

f

rS 

rS 

F
S

F
S

� �t
S
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� �

u
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S

B
S

C
S

A
S

B
S

A
S

B
S

C
S

S S

S

The direction of C is perpendicular 
to the plane formed by A and B,
and its direction is determined by 
the right-hand rule.

Figure 11.2  The vector product 
A
S

3 B
S

 is a third vector C
S

 having 
a magnitude AB sin u equal to the 
area of the parallelogram shown.
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Expanding these determinants gives the result

 A
S

3 B
S

5 1AyBz 2 AzBy 2   î 1 1AzBx 2 AxBz 2   ĵ 1 1AxBy 2 AyBx 2  k̂ (11.8)

Given the definition of the cross product, we can now assign a direction to the 
torque vector. If the force lies in the xy plane as in Figure 11.1, the torque tS is rep-
resented by a vector parallel to the z axis. The force in Figure 11.1 creates a torque 
that tends to rotate the particle counterclockwise about the z axis; the direction of 
tS is toward increasing z, and tS is therefore in the positive z direction. If we reversed 
the direction of F

S
 in Figure 11.1, tS would be in the negative z direction.

Q uick Quiz 11.1  Which of the following statements about the relationship between 
the magnitude of the cross product of two vectors and the product of the mag-
nitudes of the vectors is true? (a) 0 AS 3 B

S 0  is larger than AB. (b) 0 AS 3 B
S 0  is 

smaller than AB. (c) 0 AS 3 B
S 0  could be larger or smaller than AB, depending on 

the angle between the vectors. (d) 0 AS 3 B
S 0  could be equal to AB.

Example 11.1   The Vector Product

Two vectors lying in the xy plane are given by the equations A
S

5 2 î 1 3  ĵ and 
B
S

5 2  î 1 2  ĵ. Find A
S

3 B
S

 and verify that A
S

3 B
S

5 2 B
S

3 A
S

.

Conceptualize  Given the unit-vector notations of the vectors, think about the directions the vectors point in space. 
Draw them on graph paper and imagine the parallelogram shown in Figure 11.2 for these vectors.

Categorize  Because we use the definition of the cross product discussed in this section, we categorize this example as 
a substitution problem.

S o l u T I o n

Write the cross product of the two vectors: A
S

3 B
S

5 12  î 1 3  ĵ 2 3 12 î 1 2  ĵ 2

Perform the multiplication: A
S

3 B
S

5 2  î 3 12 î 2 1 2  î 3 2  ĵ 1 3  ĵ 3 12 î 2 1 3  ĵ 3 2  ĵ

Use Equations 11.7a through 11.7d to evaluate 
the various terms:

A
S

3 B
S

5 0 1 4 k̂ 1 3 k̂ 1 0 5 7 k̂

To verify that A
S

3 B
S

5 2 B
S

3 A
S

, evaluate 
B
S

3 A
S

:
B
S

3 A
S

5 12 î 1 2  ĵ 2 3 12  î 1 3  ĵ 2

Perform the multiplication: B
S

3 A
S

5  12 î 2 3 2  î 1 12 î 2 3 3  ĵ 1 2  ĵ 3 2  î 1 2  ĵ 3 3  ĵ

Use Equations 11.7a through 11.7d to evaluate 
the various terms:

B
S

3 A
S

5 0 2 3 k̂ 2 4 k̂ 1 0 5 27 k̂

Therefore, A
S

3 B
S

5 2 B
S

3 A
S

. As an alternative method for finding A
S

3 B
S

, you could use Equation 11.8. Try it!

 

Example 11.2   The Torque Vector

A force of F
S

5 12.00  î 1 3.00  ĵ 2  N is applied to an object that is pivoted about a fixed axis aligned along the z coordi-
nate axis. The force is applied at a point located at rS 5 14.00  î 1 5.00  ĵ 2  m. Find the torque tS applied to the object.

Conceptualize  Given the unit-vector notations, think about the directions of the force and position vectors. If this 
force were applied at this position, in what direction would an object pivoted at the origin turn?

S o l u T I o n

continued
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Categorize  Because we use the definition of the cross product discussed in this section, we categorize this example as 
a substitution problem.

Set up the torque vector using Equation 11.1: tS 5 rS 3 F
S

5 3 14.00  î 1 5.00  ĵ 2  m 4 3 3 12.00  î 1 3.00  ĵ 2  N 4

Perform the multiplication: tS 5 3 14.00 2 12.00 2   î 3  î 1 14.00 2 13.00 2   î 3  ĵ 

1 15.00 2 12.00 2  ĵ 3  î 1 15.00 2 13.00 2  ĵ 3  ĵ 4 N # m

Use Equations 11.7a through 11.7d to evaluate 
the various terms:

tS 5 30 1 12.0 k̂ 2 10.0 k̂ 1 0 4 N # m 5 2.0 k̂ N # m

Notice that both rS and F
S

 are in the xy plane. As expected, the torque vector is perpendicular to this plane, hav-
ing only a z component. We have followed the rules for significant figures discussed in Section 1.6, which lead to an 
answer with two significant figures. We have lost some precision because we ended up subtracting two numbers that 
are close.

11.2  Analysis Model: Nonisolated System  
(Angular Momentum)

Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.3). A 
skater glides rapidly toward the pole, aiming a little to the side so that she does 
not hit it. As she passes the pole, she reaches out to her side and grabs it, an action 
that causes her to move in a circular path around the pole. Just as the idea of lin-
ear momentum helps us analyze translational motion, a rotational analog—angular 
momentum—helps us analyze the motion of this skater and other objects undergo-
ing rotational motion.
 In Chapter 9, we developed the mathematical form of linear momentum and 
then proceeded to show how this new quantity was valuable in problem solving. We 
will follow a similar procedure for angular momentum.
 Consider a particle of mass m located at the vector position rS and moving with 
linear momentum pS as in Figure 11.4. In describing translational motion, we 
found that the net force on the particle equals the time rate of change of its linear 
momentum, g  F

S
5 d pS/dt (see Eq. 9.3). Let us take the cross product of each side 

of Equation 9.3 with rS, which gives the net torque on the particle on the left side of 
the equation:

rS 3 a F
S

5 a tS 5 rS 3
d pS

dt

Now let’s add to the right side the term 1d rS/dt 2 3 pS, which is zero because 
d rS/dt 5 vS and vS and pS are parallel. Therefore,

a tS 5 rS 3
d pS

dt
1

d rS

dt
3 pS

We recognize the right side of this equation as the derivative of rS 3 pS (see Eq. 
11.6). Therefore,

 a tS 5
d 1 rS 3 pS 2

dt
 (11.9)

which looks very similar in form to Equation 9.3, g  F
S

5 d pS/dt. Because torque 
plays the same role in rotational motion that force plays in translational motion, 
this result suggests that the combination rS 3 pS should play the same role in rota-

Figure 11.3 As the skater passes 
the pole, she grabs hold of it, 
which causes her to swing around 
the pole rapidly in a circular path.

 

▸ 11.2 c o n t i n u e d
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tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum L

S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine

WW  Angular momentum  
of a particle

Figure 11.4 The angular 
momentum L

S
 of a particle is a  

vector given by L
S

5 rS 3 pS.

O

z

m
y

x
f

The angular momentum L of a 
particle about an axis is a vector 
perpendicular to both the 
particle’s position r relative to 
the axis and its momentum p.

rS

S

rS

pS

S

pS

L
S

S
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Pitfall Prevention 11.2
Is Rotation necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S o l u T I o n

x

y

m

O

vS

rS 
Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued
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Categorize  We use the definition of the angular momentum of a particle discussed in this section, so we categorize 
this example as a substitution problem.

Use Equation 11.12 to evaluate the magnitude of L
S

: L 5 mvr sin 908 5   mvr

 This value of L is constant because all three factors on the right are constant. The direction of L
S

 also is constant, 
even though the direction of pS 5 m vS keeps changing. To verify this statement, apply the right-hand rule to find the 
direction of L

S
5 rS 3 pS 5 m rS 3 vS in Figure 11.5. Your thumb points out of the page, so that is the direction of L

S
. 

Hence, we can write the vector expression L
S

5 1mvr 2  k̂. If the particle were to move clockwise, L
S

 would point down-
ward and into the page and L

S
5 2 1mvr 2  k̂. A particle in uniform circular motion has a constant angular momentum 

about an axis through the center of its path.

Angular Momentum of a System of Particles
Using the techniques of Section 9.7, we can show that Newton’s second law for a 
system of particles is

a F
S

ext 5
d pStot

dt

This equation states that the net external force on a system of particles is equal to 
the time rate of change of the total linear momentum of the system. Let’s see if a 
similar statement can be made for rotational motion. The total angular momen-
tum of a system of particles about some axis is defined as the vector sum of the 
angular momenta of the individual particles:

L
S

tot 5 L
S

1 1 L
S

2 1 c1 L
S

n 5 a
i

L
S

i

where the vector sum is over all n particles in the system.
 Differentiating this equation with respect to time gives

d L
S

tot

dt
5 a

i

d L
S

i

dt
5 a

i
tSi

where we have used Equation 11.11 to replace the time rate of change of the angu-
lar momentum of each particle with the net torque on the particle.
 The torques acting on the particles of the system are those associated with inter-
nal forces between particles and those associated with external forces. The net 
torque associated with all internal forces, however, is zero. Recall that Newton’s 
third law tells us that internal forces between particles of the system are equal in 
magnitude and opposite in direction. If we assume these forces lie along the line 
of separation of each pair of particles, the total torque around some axis passing 
through an origin O due to each action–reaction force pair is zero (that is, the 
moment arm d from O to the line of action of the forces is equal for both particles, 
and the forces are in opposite directions). In the summation, therefore, the net 
internal torque is zero. We conclude that the total angular momentum of a system 
can vary with time only if a net external torque is acting on the system:

 a tSext 5
d L

S

tot

dt
 (11.13)

This equation is indeed the rotational analog of g  F
S

ext 5 d pS tot/dt for a system 
of particles. Equation 11.13 is the mathematical representation of the angular 
momentum version of the nonisolated system model. If a system is nonisolated 
in the sense that there is a net torque on it, the torque is equal to the time rate of 
change of angular momentum.
 Although we do not prove it here, this statement is true regardless of the motion 
of the center of mass. It applies even if the center of mass is accelerating, provided 

 The net external torque on a W
system equals the time rate 

of change of angular momen-
tum of the system

 

▸ 11.3 c o n t i n u e d
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the torque and angular momentum are evaluated relative to an axis through the 
center of mass.
 Equation 11.13 can be rearranged and integrated to give

D L
S

tot 5 3 1 a tSext 2dt

This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

Example 11.4    A System of Objects 

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 

AM
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m2

m1

R

vS

vS

Figure 11.6  (Example 11.4) 
When the system is released, the 
sphere moves downward and 
the block moves to the left.

continued

Analysis Model   Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:

 a tSext 5
d L

S

tot

dt
 (11.13)

Examples: 

•	 a	flywheel	in	an	automobile	engine	increases	its	angular	momentum	when	the	
engine applies torque to it

•	 the	tub	of	a	washing	machine	decreases	in	angular	momentum	due	to	frictional	
torque after the machine is turned off

•	 the	axis	of	the	Earth	undergoes	a	precessional	motion	due	to	the	torque	exerted	on	
the Earth by the gravitational force from the Sun 

•	 the	armature	of	a	motor	increases	its	angular	momentum	due	to	the	torque	exerted	by	a	surrounding	magnetic	
field (Chapter 31)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.
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Finalize  When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the 
objects because these forces are internal to the system under consideration. Instead, we analyzed the system as a 
whole. Only external torques contribute to the change in the system’s angular momentum. Let M S 0 in Equation (3) 
and call the result Equation A. Now go back to Equation (5) in Example 5.10, let u S 0, and call the result Equation B.  
Do Equations A and B match? Looking at Figures 5.15 and 11.6 in these limits, should the two equations match?

Substitute this expression and the total external torque 
into Equation 11.13, the mathematical representation of 
the nonisolated system model for angular momentum:

a text 5
dL
dt

m1gR 5
d
dt

 3 1m1 1 m2 1 M 2vR 4

(2)   m1gR 5 1m1 1 m2 1 M 2R 
dv
dt

Recognizing that dv/dt 5 a, solve Equation (2) for a : (3)   a 5 
m1g

m1 1 m2 1 M

11.3 Angular Momentum of a Rotating Rigid Object
In Example 11.4, we considered the angular momentum of a deformable system of 
particles. Let us now restrict our attention to a nondeformable system, a rigid object. 
Consider a rigid object rotating about a fixed axis that coincides with the z axis of a 
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum 
of this object. Each particle of the object rotates in the xy plane about the z axis with 
an angular speed v. The magnitude of the angular momentum of a particle of mass 
mi about the z axis is miviri . Because vi 5 ri v (Eq. 10.10), we can express the magni-
tude of the angular momentum of this particle as

Li 5 miri
2v

The vector L
S

i for this particle is directed along the z axis, as is the vector vS.
 We can now find the angular momentum (which in this situation has only a z 
component) of the whole object by taking the sum of Li over all particles:

Lz 5 a
i

Li 5 a
i

m iri
 2v 5 aa

i
m iri 2bv

 Lz 5 Iv (11.14)

where we have recognized oi miri
2 as the moment of inertia I of the object about the 

z axis (Eq. 10.19). Notice that Equation 11.14 is mathematically similar in form to 
Equation 9.2 for linear momentum: pS 5 mvS.
 Now let’s differentiate Equation 11.14 with respect to time, noting that I is con-
stant for a rigid object:

 
dLz

dt
5 I 

dv

dt
5 Ia (11.15)

y

z

x

mi
vi
S

L
S

rS 

v
S

Figure 11.7  When a rigid object 
rotates about an axis, the angu-
lar momentum L

S
 is in the same 

direction as the angular velocity 
v
S according to the expression 
L
S

5 I v
S .

Write an expression for the total angular momentum of 
the system:

(1)   L 5 m1vR 1 m2vR 1 MvR 5 (m1 1 m2 1 M)vR

acting on the block is balanced by the gravitational force m2gS, so these forces do not contribute to the torque. The 
gravitational force m1gS acting on the sphere produces a torque about the axle equal in magnitude to m1gR, where R 
is the moment arm of the force about the axle. This result is the total external torque about the pulley axle; that is, 
g  text 5 m1gR.

 

▸ 11.4 c o n t i n u e d



where a is the angular acceleration relative to the axis of rotation. Because dLz/dt 
is equal to the net external torque (see Eq. 11.13), we can express Equation 11.15 as

 o text 5 Ia (11.16)

That is, the net external torque acting on a rigid object rotating about a fixed axis 
equals the moment of inertia about the rotation axis multiplied by the object’s 
angular acceleration relative to that axis. This result is the same as Equation 10.18, 
which was derived using a force approach, but we derived Equation 11.16 using the 
concept of angular momentum. As we saw in Section 10.7, Equation 11.16 is the 
mathematical representation of the rigid object under a net torque analysis model. 
This equation is also valid for a rigid object rotating about a moving axis, provided 
the moving axis (1) passes through the center of mass and (2) is a symmetry axis.
 If a symmetrical object rotates about a fixed axis passing through its center  
of mass, you can write Equation 11.14 in vector form as L

S
5 I vS, where L

S
 is the 

total angular momentum of the object measured with respect to the axis of rota-
tion. Furthermore, the expression is valid for any object, regardless of its symmetry, 
if L

S
 stands for the component of angular momentum along the axis of rotation.1

Q uick Quiz 11.3  A solid sphere and a hollow sphere have the same mass and 
radius. They are rotating with the same angular speed. Which one has the 
higher angular momentum? (a) the solid sphere (b) the hollow sphere (c) both 
have the same angular momentum (d) impossible to determine

WW  Rotational form of  
newton’s second law
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1In general, the expression L
S

5 I vS is not always valid. If a rigid object rotates about an arbitrary axis, then L
S

 and vS 
may point in different directions. In this case, the moment of inertia cannot be treated as a scalar. Strictly speaking, 
L
S

5 I vS applies only to rigid objects of any shape that rotate about one of three mutually perpendicular axes (called 
principal axes) through the center of mass. This concept is discussed in more advanced texts on mechanics.

Example 11.5     Bowling Ball

Estimate the magnitude of the angular momentum  
of a bowling ball spinning at 10 rev/s as shown in Fig-
ure 11.8.

Conceptualize  Imagine spinning a bowling ball on 
the smooth floor of a bowling alley. Because a bowling 
ball is relatively heavy, the angular momentum should 
be relatively large.

Categorize  We evaluate the angular momentum 
using Equation 11.14, so we categorize this example as 
a substitution problem.
 We start by making some estimates of the relevant physical parameters and model the ball as a uniform solid sphere. 
A typical bowling ball might have a mass of 7.0 kg and a radius of 12 cm.
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z

y

x

L
S

Figure 11.8  (Example 11.5) 
A bowling ball that rotates 
about the z axis in the direc-
tion shown has an angular 
momentum L

S
 in the positive 

z direction. If the direction 
of rotation is reversed, then 
L
S

 points in the negative z 
direction.

Evaluate the moment of inertia of the 
ball about an axis through its center from 
Table 10.2:

I 5 2
5MR 2 5 2

5 17.0 kg 2 10.12 m 22 5 0.040 kg # m2

Evaluate the magnitude of the angular 
momentum from Equation 11.14:

Lz 5 Iv 5 10.040 kg # m2 2 110 rev/s 2 12p rad/rev 2 5 2.53 kg # m2/s

Because of the roughness of our estimates, we should keep only one significant figure, so Lz 5   3 kg ? m2/s.
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Example 11.6   The Seesaw 

A father of mass mf  and his daughter of mass md sit on 
opposite ends of a seesaw at equal distances from the 
pivot at the center (Fig. 11.9). The seesaw is modeled as 
a rigid rod of mass M and length , and is pivoted without 
friction. At a given moment, the combination rotates in a 
vertical plane with an angular speed v.

(A)  Find an expression for the magnitude of the system’s 
angular momentum.

Conceptualize  Identify the z axis through O as the axis of rotation in Figure 11.9. The rotating system has angular 
momentum about that axis.

Categorize  Ignore any movement of arms or legs of the father and daughter and model them both as particles. The 
system is therefore modeled as a rigid object. This first part of the example is categorized as a substitution problem.
 The moment of inertia of the system equals the sum of the moments of inertia of the three components: the seesaw 
and the two individuals. We can refer to Table 10.2 to obtain the expression for the moment of inertia of the rod and 
use the particle expression I 5 mr 2 for each person.

AM

S o l u T I o n
mf
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O

y

xu

mdgS 

gS 

Figure 11.9  (Example 
11.6) A father and 
daughter demonstrate 
angular momentum on 
a seesaw.

Find the total moment of inertia of the system about the 
z axis through O :

I 5 1
12M,2 1 mf a

,

2
b

2

1 mda
,

2
b

2

5
,2

4
aM

3
1 mf 1 mdb

Find the magnitude of the angular momentum of the 
system:

L 5 Iv 5 
,2

4
aM

3
1 mf 1 mdbv

(B)  Find an expression for the magnitude of the angular acceleration of the system when the seesaw makes an angle u 
with the horizontal.

Conceptualize  Generally, fathers are more massive than daughters, so the system is not in equilibrium and has an 
angular acceleration. We expect the angular acceleration to be positive in Figure 11.9.

Categorize  The combination of the board, father, and daughter is a rigid object under a net torque because of the external 
torque associated with the gravitational forces on the father and daughter. We again identify the axis of rotation as the 
z axis in Figure 11.9.

Analyze  To find the angular acceleration of the system at any angle u, we first calculate the net torque on the system 
and then use o text 5 Ia from the rigid object under a net torque model to obtain an expression for a.

S o l u T I o n

Evaluate the torque due to the gravitational force on the 
father:

tf 5 mf g  
,

2
  cos u 1 tSf out of page 2

Evaluate the torque due to the gravitational force on the 
daughter:

td 5 2mdg  
,

2
  cos u   1 tSd into page 2

Evaluate the net external torque exerted on the system: a text 5 tf 1 td 5 1
2 1mf 2 md 2g , cos u

Use Equation 11.16 and I from part (A) to find a: a 5
a text

I
5  

2 1mf 2 md 2g cos u

, 3 1M/3 2 1 mf 1 md 4

Finalize  For a father more massive than his daughter, the angular acceleration is positive as expected. If the seesaw 
begins in a horizontal orientation (u 5 0) and is released, the rotation is counterclockwise in Figure 11.9 and the 
father’s end of the seesaw drops, which is consistent with everyday experience.

Imagine the father moves inward on the seesaw to a distance d from the pivot to try to balance the two 
sides. What is the angular acceleration of the system in this case when it is released from an arbitrary angle u?
WhAT IF ?
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Find the total moment of inertia about the z axis 
through O for the modified system:

I 5 1
12M,2 1 mf d

2 1 md a,

2
b

2

5
,2

4
 aM

3
1 mdb 1 mf d

2

Find the net torque exerted on the system about an axis 
through O :

a text 5 tf 1 td 5 mf gd cos u 2 1
2mdg, cos u

Find the new angular acceleration of the system: a 5
a text

I
5

1mf d 2 1
2md, 2g cos u

1,2/4 2  3 1M/3 2 1 md 4 1 mf d
2

Find the required position of the father by setting a 5 0: a 5
1mf d 2 1

2md , 2g cos u

1,2/4 2 3 1M/3 2 1 md 4 1 mf d
2 5 0

 mf d 2 1
2md, 5 0  S   d 5 amd

mf
b ,

2

The seesaw is balanced when the angular acceleration is zero. In this situation, both father and daughter can push off 
the ground and rise to the highest possible point.

11.4  Analysis Model: Isolated System  
(Angular Momentum)

In Chapter 9, we found that the total linear momentum of a system of particles 
remains constant if the system is isolated, that is, if the net external force acting 
on the system is zero. We have an analogous conservation law in rotational motion:

The total angular momentum of a system is constant in both magnitude and 
direction if the net external torque acting on the system is zero, that is, if the 
system is isolated.

This statement is often called2 the principle of conservation of angular momentum 
and is the basis of the angular momentum version of the isolated system model. 
This principle follows directly from Equation 11.13, which indicates that if

 a tSext 5
d L

S

tot

dt
5 0 (11.17)

then

 D L
S

tot 5 0 (11.18)

Equation 11.18 can be written as

 L
S

tot 5 constant or L
S

i 5 L
S

f  

For an isolated system consisting of a small number of particles, we write this conser-
vation law as L

S

tot 5 g  L
S

n 5 constant, where the index n denotes the nth particle in 
the system.
 If an isolated rotating system is deformable so that its mass undergoes redistri-
bution in some way, the system’s moment of inertia changes. Because the magni-
tude of the angular momentum of the system is L 5 Iv (Eq. 11.14), conservation 

WW  Conservation of angular 
momentum 

2The most general conservation of angular momentum equation is Equation 11.13, which describes how the system 
interacts with its environment.

In the rare case that the father and daughter have the same mass, the father is located at the end of the seesaw, d 5 ,/2.

 

▸ 11.6 c o n t i n u e d

Answer  The angular acceleration of the system should decrease if the system is more balanced.
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of angular momentum requires that the product of I and v must remain constant. 
Therefore, a change in I for an isolated system requires a change in v. In this case, 
we can express the principle of conservation of angular momentum as

 Iivi 5 If vf 5 constant (11.19)

This expression is valid both for rotation about a fixed axis and for rotation about 
an axis through the center of mass of a moving system as long as that axis remains 
fixed in direction. We require only that the net external torque be zero.
 Many examples demonstrate conservation of angular momentum for a deform-
able system. You may have observed a figure skater spinning in the finale of a 
program (Fig. 11.10). The angular speed of the skater is large when his hands 
and feet are close to the trunk of his body. (Notice the skater’s hair!) Ignoring 
friction between skater and ice, there are no external torques on the skater. The 
moment of inertia of his body increases as his hands and feet are moved away 
from his body at the finish of the spin. According to the isolated system model for 
angular momentum, his angular speed must decrease. In a similar way, when div-
ers or acrobats wish to make several somersaults, they pull their hands and feet 
close to their bodies to rotate at a higher rate. In these cases, the external force 
due to gravity acts through the center of mass and hence exerts no torque about 
an axis through this point. Therefore, the angular momentum about the center 
of mass must be conserved; that is, Iivi 5 If vf . For example, when divers wish to 
double their angular speed, they must reduce their moment of inertia to half its 
initial value.
 In Equation 11.18, we have a third version of the isolated system model. We can 
now state that the energy, linear momentum, and angular momentum of an iso-
lated system are all constant:

 DEsystem 5 0 (if there are no energy transfers across the system boundary)

 DpStot 5 0 (if the net external force on the system is zero)

 DL
S

tot 5 0 (if the net external torque on the system is zero)

A system may be isolated in terms of one of these quantities but not in terms of 
another. If a system is nonisolated in terms of momentum or angular momentum, 
it will often be non iso lated also in terms of energy because the system has a net 
force or torque on it and the net force or torque will do work on the system. We 
can, however, identify systems that are nonisolated in terms of energy but isolated 
in terms of momentum. For example, imagine pushing inward on a balloon (the 
system) between your hands. Work is done in compressing the balloon, so the sys-
tem is nonisolated in terms of energy, but there is zero net force on the system, so 
the system is isolated in terms of momentum. A similar statement could be made 
about twisting the ends of a long, springy piece of metal with both hands. Work 
is done on the metal (the system), so energy is stored in the nonisolated system as 
elastic potential energy, but the net torque on the system is zero. Therefore, the 
system is isolated in terms of angular momentum. Other examples are collisions of 
macroscopic objects, which represent isolated systems in terms of momentum but 
nonisolated systems in terms of energy because of the output of energy from the 
system by mechanical waves (sound).

Q uick Quiz 11.4  A competitive diver leaves the diving board and falls toward 
the water with her body straight and rotating slowly. She pulls her arms and 
legs into a tight tuck position. What happens to her rotational kinetic energy? 
(a) It increases. (b) It decreases. (c) It stays the same. (d) It is impossible to 
determine. 

Figure 11.10  Angular momen-
tum is conserved as Russian 
gold medalist Evgeni Plushenko 
performs during the Turin 2006 
Winter Olympic Games. 

When his arms and legs are close 
to his body, the skater’s moment 
of inertia is small and his angular 
speed is large.
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To slow down for the finish of his 
spin, the skater moves his arms 
and legs outward, increasing his 
moment of inertia.
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Example 11.7   Formation of a Neutron Star 

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a 
point on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a 
supernova explosion, the stellar core, which had a radius of 1.0 3 104 km, collapses into a neutron star of radius 3.0 km. 
Determine the period of rotation of the neutron star.

Conceptualize  The change in the neutron star’s motion is similar to that of the skater described earlier, but in the 
reverse direction. As the mass of the star moves closer to the rotation axis, we expect the star to spin faster.

Categorize  Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) it remains 
spherical with the same relative mass distribution, and (3) its mass remains constant. We categorize the star as an iso-
lated system in terms of angular momentum. We do not know the mass distribution of the star, but we have assumed the 
distribution is symmetric, so the moment of inertia can be expressed as kMR2, where k is some numerical constant. 
(From Table 10.2, for example, we see that k 5 25 for a solid sphere and k 5 23 for a spherical shell.)

Analyze  Let’s use the symbol T for the period, with Ti being the initial period of the star and Tf being the period of the 
neutron star. The star’s angular speed is given by v 5 2p/T.

AM

S o l u T I o n

From the isolated system model for angular 
momentum, write Equation 11.19 for the star:

Iivi 5 If vf

Use v 5 2p/T to rewrite this equation in terms of 
the initial and final periods:

Ii a2p

Ti
b 5 If a2p

Tf
b

Substitute the moments of inertia in the preceding 
equation:

kMRi 2a2p

Ti
b 5 kMRf 2a2p

Tf
b

Solve for the final period of the star: Tf 5 a
Rf

Ri
b

2

Ti

Analysis Model   Isolated System (Angular Momentum)

Imagine a system rotates about 
an axis. If there is no net external 
torque on the system, there is no 
change in the angular momen-
tum of the system:

 DL
S

tot 5 0 (11.18)

Applying this law of conserva-
tion of angular momentum to a 
system whose moment of inertia 
changes gives

 Iivi 5 If vf 5 constant (11.19)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

Examples: 

•	 after	a	supernova	explosion,	the	core	of	a	
star collapses to a small radius and spins at a 
much higher rate

•	 the	square	of	the	orbital	period	of	a	planet	is	
proportional to the cube of its semimajor axis; 
Kepler’s third law  (Chapter 13)

•	 in	atomic	transitions,	selection	rules	on	the	
quantum numbers must be obeyed in order to 
conserve angular momentum (Chapter 42)

•	 in	beta	decay	of	a	radioactive	nucleus,	a	neu-
trino must be emitted in order to conserve 
angular momentum (Chapter 44)

Substitute numerical values: Tf 5 a 3.0 km
1.0 3 104 km

b
2

130 days 2 5 2.7 3 1026 days 5  0.23 s

Finalize  The neutron star does indeed rotate faster after it collapses, as predicted. It moves very fast, in fact, rotating 
about four times each second!
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Therefore, the kinetic energy of the system increases. The student must perform muscular activity to move herself 
closer to the center of rotation, so this extra kinetic energy comes from potential energy stored in the student’s body 
from previous meals. The system is isolated in terms of energy, but a transformation process within the system changes 
potential energy to kinetic energy.

Find the initial moment of inertia Ii of the 
system (student plus platform) about the 
axis of rotation:

Ii 5 Ipi 1 Isi 5 1
2MR 2 1 mR 2

Find the moment of inertia of the system 
when the student walks to the position r , R:

If 5 Ipf 1 Isf 5 1
2MR 2 1 mr 2

Write Equation 11.19 for the system: Iivi 5 If vf

Substitute the moments of inertia: 11
2 MR 2 1 mR 2 2vi 5 11

2MR 2 1 mr 2 2vf

Solve for the final angular speed: vf 5 a
1
2 MR 2 1 mR 2

1
2 MR 2 1 mr 2 bvi

Substitute numerical values: vf 5 c
1
2 1100 kg 2 12.0 m 22 1 160 kg 2 12.0 m 22

1
2 1100 kg 2 12.0 m 22 1 160 kg 2 10.50 m 22 d 12.0 rad/s 2  5  4.1 rad/s

Finalize  As expected, the angular speed increases. The fastest that this system could spin would be when the stu-
dent moves to the center of the platform. Do this calculation to show that this maximum angular speed is 4.4 rad/s. 
Notice that the activity described in this problem is dangerous as discussed with regard to the Coriolis force in  
Section 6.3.

What if you measured the kinetic energy of the system before and after the student walks inward? Are the 
initial kinetic energy and the final kinetic energy the same?

Answer  You may be tempted to say yes because the system is isolated. Remember, however, that energy can be trans-
formed among several forms, so we have to handle an energy question carefully.

WhAT IF ?

Find the initial kinetic energy: Ki 5 1
2Ii vi 2 5 1

2 1440 kg # m2 2 12.0 rad/s 22 5 880 J

Find the final kinetic energy: Kf 5 1
2 If vf

2 5 1
2 1215 kg # m2 2 14.1 rad/s 22 5 1.80 3 103 J

Example 11.8   The Merry-Go-Round 

A horizontal platform in the shape of a circular disk rotates freely in a horizon-
tal plane about a frictionless, vertical axle (Fig. 11.11). The platform has a mass 
M 5 100 kg and a radius R 5 2.0 m. A student whose mass is m 5 60 kg walks 
slowly from the rim of the disk toward its center. If the angular speed of the system 
is 2.0 rad/s when the student is at the rim, what is the angular speed when she 
reaches a point r 5 0.50 m from the center?

Conceptualize  The speed change here is similar to those of the spinning skater 
and the neutron star in preceding discussions. This problem is different because 
part of the moment of inertia of the system changes (that of the student) while 
part remains fixed (that of the platform).

Categorize  Because the platform rotates on a frictionless axle, we identify the 
system of the student and the platform as an isolated system in terms of angular 
momentum.

Analyze  Let us denote the moment of inertia of the platform as Ip and that of the student as Is. We model the student 
as a particle.

AM

S o l u T I o n
R

M

m

Figure 11.11  (Example 11.8) As 
the student walks toward the center 
of the rotating platform, the angu-
lar speed of the system increases 
because the angular momentum of 
the system remains constant.
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Example 11.9   Disk and Stick Collision 

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick of length 4.0 m that is lying flat 
on nearly frictionless ice as shown in the overhead view of Figure 11.12a. The disk 
strikes at the endpoint of the stick, at a distance r 5 2.0 m from the stick’s center. 
Assume the collision is elastic and the disk does not deviate from its original line of 
motion. Find the translational speed of the disk, the translational speed of the stick, 
and the angular speed of the stick after the collision. The moment of inertia of the 
stick about its center of mass is 1.33 kg ? m2.

Conceptualize  Examine Figure 11.12a and imagine what 
happens after the disk hits the stick. Figure 11.12b shows 
what you might expect: the disk continues to move at a slower 
speed, and the stick is in both translational and rotational 
motion. We assume the disk does not deviate from its origi-
nal line of motion because the force exerted by the stick on 
the disk is parallel to the original path of the disk.

Categorize  Because the ice is frictionless, the disk and stick 
form an isolated system in terms of momentum and angular momentum. Ignoring the sound made in the collision, we also 
model the system as an isolated system in terms of energy. In addition, because the collision is assumed to be elastic, the 
kinetic energy of the system is constant.

Analyze  First notice that we have three unknowns, so we need three equations to solve simultaneously.

AM

S o l u T I o n After

Before

v

a

b

vdf
S

vs
S

r

vdi
S

Figure 11.12  (Example 
11.9) Overhead view of 
a disk striking a stick 
in an elastic collision. 
(a) Before the collision, 
the disk moves toward the 
stick. (b) The collision 
causes the stick to rotate 
and move to the right.

Apply the isolated system model for momentum to 
the system and then rearrange the result:

DpStot 5 0   S   1mdvdf 1 msvs 2 2 md vdi 5 0

(1)   md(vdi 2 vdf) 5 msvs

Apply the isolated system model for angular momen-
tum to the system and rearrange the result. Use an 
axis passing through the center of the stick as the 
rotation axis so that the path of the disk is a distance 
r 5 2.0 m from the rotation axis:

D L
S

tot 5 0   S   12rmdvdf 1 Iv 2 2 12rmd vdi 2 5 0

(2)   2rmd(vdi 2 vdf) 5 Iv

Apply the isolated system model for energy to the 
system, rearrange the equation, and factor the com-
bination of terms related to the disk:

DK 5 0   S   11
2mdvdf

2 1 1
2msvs

2 1 1
2Iv2 2 2 1

2mdvdi
2 5 0

(3)   md(vdi 2 vdf)(vdi 1 vdf) 5 msvs
2 1 Iv2

Multiply Equation (1) by r and add to Equation (2): rmd(vdi 2 vdf) 5 rmsvs

2rmd(vdi 2 vdf) 5 Iv

0 5 rmsvs 1 Iv

Solve for v: (4)   v 5 2
rmsvs

I

Divide Equation (3) by Equation (1):
md 1vdi 2 vdf 2 1vdi 1 vdf 2

md 1vdi 2 vdf 2
5

msvs
2 1 Iv2

msvs

(5)   vdi 1 vdf 5 vs 1
Iv2

msvs

Substitute Equation (4) into Equation (5): (6)   vdi 1 vdf 5 vs a1 1
r 2ms

I
b

Substitute vdf from Equation (1) into 
Equation (6):

vdi 1 avdi 2
ms

md
 vsb 5 vsa1 1

r 2ms

I
b

continued
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11.5 The Motion of Gyroscopes and Tops
An unusual and fascinating type of motion you have probably observed is that of a 
top spinning about its axis of symmetry as shown in Figure 11.13a. If the top spins 
rapidly, the symmetry axis rotates about the z axis, sweeping out a cone (see Fig. 
11.13b). The motion of the symmetry axis about the vertical—known as preces-
sional motion—is usually slow relative to the spinning motion of the top.
 It is quite natural to wonder why the top does not fall over. Because the center 
of mass is not directly above the pivot point O, a net torque is acting on the top 
about an axis passing through O, a torque resulting from the gravitational force 
M gS. The top would certainly fall over if it were not spinning. Because it is spin-
ning, however, it has an angular momentum L

S
 directed along its symmetry axis. 

We shall show that this symmetry axis moves about the z axis (precessional motion 
occurs) because the torque produces a change in the direction of the symmetry axis. 
This illustration is an excellent example of the importance of the vector nature of 
angular momentum.
 The essential features of precessional motion can be illustrated by considering 
the simple gyroscope shown in Figure 11.14a. The two forces acting on the gyro-
scope are shown in Figure 11.14b: the downward gravitational force M gS and the 
normal force nS acting upward at the pivot point O. The normal force produces no 
torque about an axis passing through the pivot because its moment arm through 
that point is zero. The gravitational force, however, produces a torque tS 5 rS 3 M gS 
about an axis passing through O, where the direction of tS is perpendicular to the 
plane formed by rS and M gS. By necessity, the vector tS lies in a horizontal xy plane 

Table 11.1 Comparison of Values in Example 11.9 Before and After the Collision
 v (m/s) v (rad/s) p (kg ? m/s) L (kg ? m2/s) K trans ( J) K rot ( J)

Before
Disk 3.0 — 6.0 212 9.0 —
Stick 0 0 0 0 0 0
Total for system — — 6.0 212 9.0 0
After
Disk 2.3 — 4.7 29.3 5.4 —
Stick 1.3 22.0 1.3 22.7 0.9 2.7
Total for system — — 6.0 212 6.3 2.7

Note: Linear momentum, angular momentum, and total kinetic energy of the system are all conserved.

Solve for vs and substitute numerical 
values:

vs 5
2vdi

1 1 1ms/md 2 1 1r 2ms /I 2

5 
2 13.0 m/s 2

1 1 11.0 kg/2.0 kg 2 1 3 12.0 m 22 11.0 kg 2/1.33 kg # m2 4  5  1.3 m/s

Substitute numerical values into 
Equation (4):

v 5 2
12.0 m 2 11.0 kg 2 11.3 m/s 2

1.33 kg # m2 5 22.0 rad/s

Solve Equation (1) for vdf and substitute 
numerical values:

vdf 5 vdi 2
ms

md
 vs 5 3.0 m/s 2

1.0 kg

2.0 kg
11.3 m/s 2 5 2.3 m/s

Finalize  These values seem reasonable. The disk is moving more slowly after the collision than it was before the col-
lision, and the stick has a small translational speed. Table 11.1 summarizes the initial and final values of variables for 
the disk and the stick, and it verifies the conservation of linear momentum, angular momentum, and kinetic energy 
for the isolated system.

 

▸ 11.9 c o n t i n u e d
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:

a tSext 5
d L

S

dt

This expression shows that in the infinitesimal time interval dt, the nonzero torque 
produces a change in angular momentum d L

S
, a change that is in the same direc-

tion as tS. Therefore, like the torque vector, d L
S

 must also be perpendicular to L
S

. 
Figure 11.14c illustrates the resulting precessional motion of the symmetry axis of 
the gyroscope. In a time interval dt, the change in angular momentum is d L

S
 5 

L
S

f 2 L
S

i 5 tS dt. Because d L
S

 is perpendicular to L
S

, the magnitude of L
S

 does not 
change 1 0 LS i 0 5 0 LS f 0 2 . Rather, what is changing is the direction of L

S
. Because the 

change in angular momentum d L
S

 is in the direction of tS, which lies in the xy plane, 
the gyroscope undergoes precessional motion.
 To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum IvS due to the 
spinning and the angular momentum due to the motion of the center of mass 
about the pivot. In our treatment, we shall neglect the contribution from the center- 
of-mass motion and take the total angular momentum to be simply I vS. In practice, 
this approximation is good if vS is made very large.
 The vector diagram in Figure 11.14c shows that in the time interval dt, the angu-
lar momentum vector rotates through an angle df, which is also the angle through 
which the gyroscope axle rotates. From the vector triangle formed by the vectors 
L
S

i , L
S

f , and d L
S

, we see that

df 5
dL
L

5
a text dt

L
5

1MgrCM 2  dt

L

Dividing through by dt and using the relationship L 5 Iv, we find that the rate at 
which the axle rotates about the vertical axis is

 vp 5
df

dt
5

MgrCM

Iv
 (11.20)

f

df

O O

M

i

OOO

M

z

y

x

r CM

y

nS

L
S

gSLf
S

a b c

The gravitational force        in the 
negative z direction produces a 
torque on the gyroscope in the 
positive y direction about the pivot.

MgS The torque results in a change in angular 
momentum       in a direction parallel to the 
torque vector. The gyroscope axle sweeps 
out an angle df in a time interval dt.

L
S

d

L
S

L
S

iL
S

d
t
S 

t
S 

Figure 11.14  (a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking 
down the z axis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal 
time interval dt.
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The right-hand rule indicates 
that    �    �     �    �         is 
in the xy plane.          
 

F
S
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The direction of �    is parallel 
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S
L
S

a

Figure 11.13  Precessional 
motion of a top spinning about 
its symmetry axis. (a) The only 
external forces acting on the top 
are the normal force nS and the 
gravitational force M gS. The direc-
tion of the angular momentum 
L
S

 is along the axis of symmetry. 
(b) Because L

S

f 5 D L
S

1 L
S

i , the 
top precesses about the z axis.
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The angular speed vp is called the precessional frequency. This result is valid 
only when vp ,, v. Otherwise, a much more complicated motion is involved. As 
you can see from Equation 11.20, the condition vp ,, v is met when v is large, 
that is, when the wheel spins rapidly. Furthermore, notice that the precessional 
frequency decreases as v increases, that is, as the wheel spins faster about its axis 
of symmetry.
 As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in 
deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
scope a nonzero angular momentum. There is no external torque on the isolated 
system (spacecraft and gyroscope), so the angular momentum of this system must 
remain zero according to the isolated system (angular momentum) model. The 
zero value can be satisfied if the spacecraft rotates in the direction opposite that 
of the gyroscope so that the angular momentum vectors of the gyroscope and the 
spacecraft cancel, resulting in no angular momentum of the system. The result of 
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By 
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.
 This effect created an undesirable situation with the Voyager 2 spacecraft during 
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. 
Each time the tape recorder was turned on, the reels acted as gyroscopes and the 
spacecraft started an undesirable rotation in the opposite direction. This rotation 
had to be counteracted by Mission Control by using the sideward-firing jets to stop 
the rotation!Figure 11.15  (a) A spacecraft 

carries a gyroscope that is not 
spinning. (b) The gyroscope is set 
into rotation.

a

When the gyroscope
turns counterclockwise,
the spacecraft turns 
clockwise.

b

Summary

Definitions

 Given two vectors A
S

 and B
S

, the vec-
tor product A

S
3 B

S
 is a vector C

S
 having a 

magnitude

 C 5 AB sin u (11.3)

where u is the angle between A
S

 and B
S

. The 
direction of the vector C

S
5 A

S
3 B

S
 is per-

pendicular to the plane formed by A
S

 and B
S

, 
and this direction is determined by the right-
hand rule.

 The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

 tS ; rS 3 F
S

 (11.1)

 The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

 L
S

; rS 3 pS (11.10)

where rS is the vector position of the particle relative to the origin.



following questions. (iii) In this process, is the mechan-
ical energy of the mouse–turntable system constant? 
(iv) Is the momentum of the system constant? (v) Is the 
angular momentum of the system constant?

 3. Let us name three perpendicular directions as right, 
up, and toward you as you might name them when 
you are facing a television screen that lies in a vertical 
plane. Unit vectors for these directions are r̂, û, and t̂,  
respectively. Consider the quantity (23û 3 2t̂). (i) Is 
the magnitude of this vector (a) 6, (b) 3, (c) 2, or (d) 0?  
(ii) Is the direction of this vector (a) down, (b) toward 
you, (c) up, (d) away from you, or (e) left?

 4. Let the four compass directions north, east, south, 
and west be represented by unit vectors n̂, ê, ŝ, and ŵ, 
respectively. Vertically up and down are represented as 
û and d̂. Let us also identify unit vectors that are half-
way between these directions such as ne for northeast. 
Rank the magnitudes of the following cross products 
from largest to smallest. If any are equal in magnitude  

l
 1. An ice skater starts a spin with her arms stretched out 

to the sides. She balances on the tip of one skate to 
turn without friction. She then pulls her arms in so that 
her moment of inertia decreases by a factor of 2. In the 
process of her doing so, what happens to her kinetic 
energy? (a) It increases by a factor of 4. (b) It increases 
by a factor of 2. (c) It remains constant. (d) It decreases 
by a factor of 2. (e) It decreases by a factor of 4.

 2. A pet mouse sleeps near the eastern edge of a station-
ary, horizontal turntable that is supported by a friction-
less, vertical axle through its center. The mouse wakes 
up and starts to walk north on the turntable. (i) As it 
takes its first steps, what is the direction of the mouse’s 
displacement relative to the stationary ground below? 
(a) north (b) south (c) no displacement. (ii) In this 
process, the spot on the turntable where the mouse 
had been snoozing undergoes a displacement in what 
direction relative to the ground below? (a)  north  
(b) south (c) no displacement. Answer yes or no for the 
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continued

 The z component of angular momentum of a rigid object rotating about a fixed z axis is

 Lz 5 Iv (11.14)

where I is the moment of inertia of the object about the axis of rotation and v is its angular speed.

Concepts and Principles

Analysis Models for Problem Solving

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.

 Nonisolated System (Angular Momentum). If a sys-
tem interacts with its environment in the sense that 
there is an external torque on the system, the net exter-
nal torque acting on a system is equal to the time rate 
of change of its angular momentum:

 a tSext 5
d L

S

tot

dt
 (11.13)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

 Isolated System (Angular Momentum). If a system 
experiences no external torque from the environ-
ment, the total angular momentum of the system is 
conserved:

 D L
S

tot 5 0 (11.18)

Applying this law of conservation of angular momen-
tum to a system whose moment of inertia changes gives

 Iivi 5 If vf 5 constant (11.19)

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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they walk, what happens to the angular speed of the 
turntable? (a) It increases. (b) It decreases. (c) It stays 
constant. Consider the ponies–turntable system in this 
process and answer yes or no for the following ques-
tions. (ii) Is the mechanical energy of the system con-
served? (iii) Is the momentum of the system conserved? 
(iv) Is the angular momentum of the system conserved?

 8. Consider an isolated system moving through empty 
space. The system consists of objects that interact with 
each other and can change location with respect to 
one another. Which of the following quantities can 
change in time? (a) The angular momentum of the sys-
tem. (b) The linear momentum of the system. (c) Both 
the angular momentum and linear momentum of the 
system. (d) Neither the angular momentum nor linear 
momentum of the system.

or are equal to zero, show that in your ranking.  
(a) n̂ 3 n̂ (b) ŵ 3 ne (c) û 3 ne (d) n̂ 3 nw (e) n̂ 3 ê 

 5. Answer yes or no to the following questions. (a) Is it 
possible to calculate the torque acting on a rigid object 
without specifying an axis of rotation? (b) Is the torque 
independent of the location of the axis of rotation?

 6. Vector A
S

 is in the negative y direction, and vector B
S

 is in 
the negative x direction. (i) What is the direction of  A

S
3 

B
S

? (a) no direction because it is a scalar (b) x (c) 2y  
(d) z (e)  2z (ii) What is the direction of B

S
3 A

S
? 

Choose from the same possibilities (a) through (e).

 7. Two ponies of equal mass are initially at diametrically 
opposite points on the rim of a large horizontal turn-
table that is turning freely on a frictionless, vertical 
axle through its center. The ponies simultaneously start 
walking toward each other across the turntable. (i) As 

l ll

 1. Stars originate as large bodies of slowly rotating gas. 
Because of gravity, these clumps of gas slowly decrease 
in size. What happens to the angular speed of a star as 
it shrinks? Explain.

 2. A scientist arriving at a hotel asks a bellhop to carry 
a heavy suitcase. When the bellhop rounds a corner, 
the suitcase suddenly swings away from him for some 
unknown reason. The alarmed bellhop drops the suit-
case and runs away. What might be in the suitcase?

 3. Why does a long pole help a tightrope walker stay 
balanced?

 4. Two children are playing with a roll of paper towels. 
One child holds the roll between the index fingers 
of her hands so that it is free to rotate, and the sec-
ond child pulls at constant speed on the free end of 
the paper towels. As the child pulls the paper towels, 
the radius of the roll of remaining towels decreases.  
(a) How does the torque on the roll change with time? 
(b) How does the angular speed of the roll change 
in time? (c) If the child suddenly jerks the end paper 
towel with a large force, is the towel more likely to 
break from the others when it is being pulled from a 
nearly full roll or from a nearly empty roll?

 5. Both torque and work are products of force and dis-
placement. How are they different? Do they have the 
same units?

 6. In some motorcycle races, the riders drive over small 
hills and the motorcycle becomes airborne for a short 
time interval. If the motorcycle racer keeps the throttle 
open while leaving the hill and going into the air, the 
motorcycle tends to nose upward. Why?

 7. If the torque acting on a particle about an axis through 
a certain origin is zero, what can you say about its angu-
lar momentum about that axis?

 8. A ball is thrown in such a way that it does not spin 
about its own axis. Does this statement imply that the 
angular momentum is zero about an arbitrary axis? 
Explain.

 9. If global warming continues over the next one hun-
dred years, it is likely that some polar ice will melt and 
the water will be distributed closer to the equator.  
(a) How would that change the moment of inertia of 
the Earth? (b) Would the duration of the day (one rev-
olution) increase or decrease?

 10. A cat usually lands on its feet regardless of the position 
from which it is dropped. A slow-motion film of a cat 
falling shows that the upper half of its body twists in 
one direction while the lower half twists in the oppo-
site direction. (See Fig. CQ11.10.) Why does this type of 
rotation occur?

Figure CQ11.10
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 11. In Chapters 7 and 8, we made use of energy bar charts 
to analyze physical situations. Why have we not used 
bar charts for angular momentum in this chapter?

1. denotes answer available in Student Solutions Manual/Study GuideConceptual Questions
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Section 11.1 The Vector Product and Torque

 1. Given M
S

5 2 î 2 3 ĵ 1 k̂ and N
S

5 4 î 1 5 ĵ 2 2k̂, calcu-
late the vector product M

S
3 N

S
.

 2. The displacement vectors 42.0 cm at 15.08 and 23.0 cm  
at 65.08 both start from the origin and form two sides 
of a parallelogram. Both angles are measured coun-
terclockwise from the x axis. (a) Find the area of 
the parallelogram. (b)  Find the length of its longer 
diagonal.

 3. Two vectors are given by A
S

5  î 1 2 ĵ and B
S

5 22 î 1 3 ĵ.  
Find (a) A

S
3 B

S
 and (b) the angle between A

S
 and B

S
.

 4. Use the definition of the vector product and the defini-
tions of the unit vectors  î,  ĵ, and k̂ to prove Equations 
11.7. You may assume the x axis points to the right, the 
y axis up, and the z axis horizontally toward you (not 
away from you). This choice is said to make the coordi-
nate system a right-handed system.

 5. Calculate the net torque (magnitude and direction) on 
the beam in Figure P11.5 about (a) an axis through O 
perpendicular to the page and (b) an axis through C 
perpendicular to the page.

C

4.0 m

2.0 m45°

30 N

10 N

20°

30°

25 N

O

Figure P11.5

 6. Two vectors are given by these expressions: A
S

5 23 î 1
7 ĵ 2 4 k̂  and B

S
5 6 î 2 10 ĵ 1 9k̂. Evaluate the quanti-

ties (a) cos21[ A
S

 ?  B
S

/AB] and (b) sin21[ 0 AS 3 B
S 0/AB].  

(c) Which give(s) the angle between the vectors?

 7. If 0 AS 3 B
S 0 5 A

S
 ?  B

S
, what is the angle between A

S
 and B

S
?

 8. A particle is located at the vector position rS 5
14.00 î 1 6.00 ĵ 2  m, and a force exerted on it is given by 
F
S

5 13.00 î 1 2.00  ĵ 2  N. (a) What is the torque acting on 
the particle about the origin? (b) Can there be another 
point about which the torque caused by this force on 
this particle will be in the opposite direction and half 
as large in magnitude? (c) Can there be more than 
one such point? (d) Can such a point lie on the y axis?  
(e) Can more than one such point lie on the y axis?  
(f) Determine the position vector of one such point.
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 9. Two forces F
S

1 and F
S

2 act along the two sides of an equi-
lateral triangle as shown in Figure P11.9. Point O is the 
intersection of the altitudes of the triangle. (a) Find  
a third force F

S

3 to be applied at B and along BC that 
will make the total torque zero about the point O.  
(b) What If? Will the total torque change if F

S

3 is 
applied not at B but at any other point along BC?

A C

D
O

B

F1
S F2

S

F3
S

Figure P11.9

 10. A student claims that he has found a vector A
S

 such 
that 12 î 2 3 ĵ 1 4k̂ 2 3 A

S
5 14 î 1 3 ĵ 2 k̂ 2 . (a) Do you 

believe this claim? (b) Explain why or why not.

Section 11.2  Analysis Model: nonisolated System  
(Angular Momentum)
 11. A light, rigid rod of length , 5 1.00 m joins two par-

ticles, with masses m1 5 4.00 kg and m2 5 3.00 kg, at its 
ends. The combination rotates in the xy plane about a 
pivot through the center of the rod (Fig. P11.11). Deter-
mine the angular momentum of the system about the 
origin when the speed of each particle is 5.00 m/s.

x

y

m1

m2

,

vS

vS

Figure P11.11

 12. A 1.50-kg particle moves in the xy plane with a veloc-
ity of vS 5 14.20 î 2 3.60 ĵ 2  m/s. Determine the angular 
momentum of the particle about the origin when its 
position vector is rS 5 11.50 î 1 2.20 ĵ 2  m.

 13. A particle of mass m moves in the xy plane with a velocity 
of vS 5 vx î 1 vy ĵ. Determine the angular momentum  
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The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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 18. A counterweight of mass m 5 4.00 kg is attached to 
a light cord that is wound around a pulley as in Fig-
ure P11.18. The pulley is a thin hoop of radius R  5  
8.00 cm and mass M 5 2.00 kg. The spokes have neg-
ligible mass. (a)  What is the magnitude of the net 
torque on the system about the axle of the pulley? 
(b) When the counterweight has a speed v, the pulley 
has an angular speed v 5 v/R. Determine the mag-
nitude of the total angular momentum of the system 
about the axle of the pulley. (c) Using your result from 
part (b) and tS 5 d L

S
/dt, calculate the acceleration of 

the counterweight.

m

R

M

Figure P11.18

 19. The position vector of a particle of mass 2.00 kg as 
a function of time is given by rS 5 16.00 î 1 5.00t  ĵ 2 , 
where rS is in meters and t is in seconds. Determine the 
angular momentum of the particle about the origin as 
a function of time.

 20. A 5.00-kg particle starts from the origin at time zero. 
Its velocity as a function of time is given by

vS 5 6t2
 î 1 2t ĵ 

  where vS is in meters per second and t is in seconds. 
(a) Find its position as a function of time. (b) Describe 
its motion qualitatively. Find (c) its acceleration as a 
function of time, (d) the net force exerted on the par-
ticle as a function of time, (e) the net torque about the 
origin exerted on the particle as a function of time,  
(f) the angular momentum of the particle as a func-
tion of time, (g) the kinetic energy of the particle as a 
function of time, and (h) the power injected into the 
system of the particle as a function of time.

 21. A ball having mass m is fas-
tened at the end of a flagpole 
that is connected to the side 
of a tall building at point P as 
shown in Figure P11.21. The 
length of the flagpole is ,, and 
it makes an angle u with the x 
axis. The ball becomes loose 
and starts to fall with accelera-
tion 2g ĵ. (a)  Determine the 
angular momentum of the 
ball about point P as a function of time. (b) For what 
physical reason does the angular momentum change? 
(c) What is the rate of change of the angular momen-
tum of the ball about point P ?
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u

Figure P11.21
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of the particle about the origin when its position vector 
is rS 5 x î 1 y ĵ.

 14. Heading straight toward the summit of Pike’s Peak, an 
airplane of mass 12 000 kg flies over the plains of Kan-
sas at nearly constant altitude 4.30 km with constant 
velocity 175 m/s west. (a) What is the airplane’s vector 
angular momentum relative to a wheat farmer on the 
ground directly below the airplane? (b) Does this value 
change as the airplane continues its motion along a 
straight line? (c) What If? What is its angular momen-
tum relative to the summit of Pike’s Peak?

 15. Review. A projectile of mass m is launched with an ini-
tial velocity vSi making an angle u with the horizontal as 
shown in Figure P11.15. The projectile moves in the 
gravitational field of the Earth. Find the angular 
momentum of the projectile about the origin (a) when 
the projectile is at the origin, (b) when it is at the high-
est point of its trajectory, and (c) just before it hits the 
ground. (d) What torque causes its angular momen-
tum to change?

O R

vxi i

u

m
y

x

vi
S

v2
S

v1
S

�

Figure P11.15

 16. Review. A conical pendulum consists 
of a bob of mass m in motion in a cir-
cular path in a horizontal plane as 
shown in Figure P11.16. During the 
motion, the supporting wire of length 
, maintains a constant angle u with 
the vertical. Show that the magnitude 
of the angular momentum of the bob 
about the vertical dashed line is

L 5 am2g ,3 sin4 u

cos u
b

1/2

 17. A particle of mass m moves in a circle of radius R at a 
constant speed v as shown in Figure P11.17. The motion 
begins at point Q at time t 5 0. Determine the angular 
momentum of the particle about the axis perpendicu-
lar to the page through point P as a function of time.
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Figure P11.16
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Figure P11.17 Problems 17 and 32.
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the ring. (a) What angular momentum does the space 
station acquire? (b) For what time interval must the 
rockets be fired if each exerts a thrust of 125 N?

r

Figure P11.29 Problems 29 and 40.

Section 11.4  Analysis Model: Isolated System  
(Angular Momentum)

 30. A disk with moment of inertia I1 rotates about a fric-
tionless, vertical axle with angular speed vi. A second 
disk, this one having moment of inertia I2 and initially 
not rotating, drops onto the first disk (Fig. P11.30). 
Because of friction between the surfaces, the two even-
tually reach the same angular speed vf . (a) Calculate 
vf . (b) Calculate the ratio of the final to the initial 
rotational energy.

Before After

I2

I1

vi
S

vf
S

Figure P11.30

 31. A playground merry-go-round of radius R 5 2.00 m 
has a moment of inertia I 5 250 kg ? m2 and is rotating 
at 10.0 rev/min about a frictionless, vertical axle. Fac-
ing the axle, a 25.0-kg child hops onto the merry-go-
round and manages to sit down on the edge. What is 
the new angular speed of the merry-go-round?

 32. Figure P11.17 represents a small, flat puck with mass 
m 5 2.40 kg sliding on a frictionless, horizontal sur-
face. It is held in a circular orbit about a fixed axis by 
a rod with negligible mass and length R 5 1.50 m, piv-
oted at one end. Initially, the puck has a speed of v 5  
5.00 m/s. A 1.30-kg ball of putty is dropped verti-
cally onto the puck from a small distance above it and 
immediately sticks to the puck. (a) What is the new 
period of rotation? (b) Is the angular momentum of 
the puck–putty system about the axis of rotation con-
stant in this process? (c) Is the momentum of the sys-
tem constant in the process of the putty sticking to 
the puck? (d) Is the mechanical energy of the system 
constant in the process?
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Section 11.3  Angular Momentum of a Rotating Rigid object

 22. A uniform solid sphere of radius r 5 0.500 m and mass 
m 5 15.0 kg turns counterclockwise about a vertical axis 
through its center. Find its vector angular momentum 
about this axis when its angular speed is 3.00 rad/s.

 23. Big Ben (Fig. P10.49, page 328), the Parliament tower 
clock in London, has hour and minute hands with 
lengths of 2.70  m and 4.50 m and masses of 60.0 kg 
and 100 kg, respectively. Calculate the total angular 
momentum of these hands about the center point. 
(You may model the hands as long, thin rods rotating 
about one end. Assume the hour and minute hands 
are rotating at a constant rate of one revolution per  
12 hours and 60 minutes, respectively.)

 24. Show that the kinetic energy of an object rotating 
about a fixed axis with angular momentum L 5 Iv can 
be written as K 5 L2/2I.

 25. A uniform solid disk of mass m 5 3.00 kg and radius 
r 5 0.200 m rotates about a fixed axis perpendicular 
to its face with angular frequency 6.00 rad/s. Calcu-
late the magnitude of the angular momentum of the 
disk when the axis of rotation (a) passes through its 
center of mass and (b) passes through a point midway 
between the center and the rim.

 26. Model the Earth as a uniform sphere. (a) Calculate 
the angular momentum of the Earth due to its spin-
ning motion about its axis. (b) Calculate the angu-
lar momentum of the Earth due to its orbital motion 
about the Sun. (c) Explain why the answer in part (b) is 
larger than that in part (a) even though it takes signifi-
cantly longer for the Earth to go once around the Sun 
than to rotate once about its axis.

 27. A particle of mass 0.400 kg is attached to the 100-cm 
mark of a meterstick of mass 0.100 kg. The meterstick 
rotates on the surface of a frictionless, horizontal 
table with an angular speed of 4.00 rad/s. Calculate 
the angular momentum of the system when the stick 
is pivoted about an axis (a) perpendicular to the table 
through the 50.0-cm mark and (b)  perpendicular to 
the table through the 0-cm mark.

 28. The distance between the centers of the wheels of a 
motorcycle is 155 cm. The center of mass of the motor-
cycle, including the rider, is 88.0 cm above the ground 
and halfway between the wheels. Assume the mass of 
each wheel is small compared with the body of the 
motorcycle. The engine drives the rear wheel only. 
What horizontal acceleration of the motorcycle will 
make the front wheel rise off the ground?

 29. A space station is constructed in the shape of a hollow 
ring of mass 5.00 3 104 kg. Members of the crew walk 
on a deck formed by the inner surface of the outer 
cylindrical wall of the ring, with radius r 5 100 m. At 
rest when constructed, the ring is set rotating about 
its axis so that the people inside experience an effec-
tive free-fall acceleration equal to g. (See Fig. P11.29.) 
The rotation is achieved by firing two small rockets 
attached tangentially to opposite points on the rim of 
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the pucks stick together and rotate after the collision 
(Fig. P11.36b). (a) What is the angular momentum of 
the system relative to the center of mass? (b) What is 
the angular speed about the center of mass?

vS

m1

m2

a b

Figure P11.36

 37. A wooden block of mass M resting on a frictionless, 
horizontal surface is attached to a rigid rod of length , 
and of negligible mass (Fig. P11.37). The rod is pivoted 
at the other end. A bullet of mass m traveling parallel 
to the horizontal surface and perpendicular to the rod 
with speed v hits the block and becomes embedded in 
it. (a) What is the angular momentum of the bullet–
block system about a vertical axis through the pivot? 
(b) What fraction of the original kinetic energy of the 
bullet is converted into internal energy in the system 
during the collision?

vS
m

M
�

Figure P11.37

 38. Review. A thin, uniform, rectangular signboard hangs 
vertically above the door of a shop. The sign is hinged 
to a stationary horizontal rod along its top edge. The 
mass of the sign is 2.40 kg, and its vertical dimension 
is 50.0 cm. The sign is swinging without friction, so it 
is a tempting target for children armed with snowballs. 
The maximum angular displacement of the sign is 
25.08 on both sides of the vertical. At a moment when 
the sign is vertical and moving to the left, a snowball 
of mass 400 g, traveling horizontally with a velocity of 
160 cm/s to the right, strikes perpendicularly at the 
lower edge of the sign and sticks there. (a) Calculate 
the angular speed of the sign immediately before the 
impact. (b) Calculate its angular speed immediately 
after the impact. (c) The spattered sign will swing up 
through what maximum angle?

 39. A wad of sticky clay with mass m and velocity vSi is fired 
at a solid cylinder of mass M and radius R (Fig. P11.39). 
The cylinder is initially at rest and is mounted on a 
fixed horizontal axle that runs through its center of 
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d , R from the cen-
ter. (a) Find the angular speed of the system just after 
the clay strikes and sticks to the surface of the cylin-

S
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 33. A 60.0-kg woman stands at the western rim of a 
horizontal turntable having a moment of inertia of 
500 kg  ? m2 and a radius of 2.00 m. The turntable is 
initially at rest and is free to rotate about a friction-
less, vertical axle through its center. The woman then 
starts walking around the rim clockwise (as viewed 
from above the system) at a constant speed of 1.50 m/s  
relative to the Earth. Consider the woman–turntable 
system as motion begins. (a) Is the mechanical energy 
of the system constant? (b) Is the momentum of the 
system constant? (c) Is the angular momentum of the 
system constant? (d) In what direction and with what 
angular speed does the turntable rotate? (e) How much 
chemical energy does the woman’s body convert into 
mechanical energy of the woman–turntable system as 
the woman sets herself and the turntable into motion?

 34. A student sits on a freely rotating stool holding two 
dumbbells, each of mass 3.00 kg (Fig. P11.34). When 
his arms are extended horizontally (Fig. P11.34a), the 
dumbbells are 1.00 m from the axis of rotation and the 
student rotates with an angular speed of 0.750 rad/s. 
The moment of inertia of the student plus stool is  
3.00 kg · m2 and is assumed to be constant. The student 
pulls the dumbbells inward horizontally to a position 
0.300 m from the rotation axis (Fig. P11.34b). (a) Find 
the new angular speed of the student. (b) Find the 
kinetic energy of the rotating system before and after 
he pulls the dumbbells inward.

v vi f

a b

Figure P11.34

 35. A uniform cylindrical turntable of radius 1.90 m and 
mass 30.0 kg rotates counterclockwise in a horizontal 
plane with an initial angular speed of 4p rad/s. The 
fixed turntable bearing is frictionless. A lump of clay 
of mass 2.25 kg and negligible size is dropped onto the 
turntable from a small distance above it and immedi-
ately sticks to the turntable at a point 1.80 m to the 
east of the axis. (a) Find the final angular speed of the 
clay and turntable. (b) Is the mechanical energy of  
the turntable–clay system constant in this process? 
Explain and use numerical results to verify your 
answer. (c) Is the momentum of the system constant in 
this process? Explain your answer.

 36. A puck of mass m1 5 80.0 g and radius r1 5 4.00 cm 
glides across an air table at a speed of vS 5 1.50 m/s as 
shown in Figure P11.36a. It makes a glancing collision 
with a second puck of radius r2 5 6.00 cm and mass m2 5  
120 g (initially at rest) such that their rims just touch. 
Because their rims are coated with instant-acting glue, 
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of the spacecraft around the same axis is Is 5 5.00 3   
105 kg ? m2. Neither the spacecraft nor the gyroscope 
is originally rotating. The gyroscope can be powered 
up in a negligible period of time to an angular speed 
of 100 rad/s. If the orientation of the spacecraft is to 
be changed by 30.08, for what time interval should the 
gyroscope be operated?

 43. The angular momentum vector of a precessing gyro-
scope sweeps out a cone as shown in Figure P11.43. The 
angular speed of the tip of the angular momentum vec-
tor, called its precessional frequency, is given by vp 5 
t/L, where t is the magnitude of the torque on the gyro-
scope and L is the magnitude of its angular momen-
tum. In the motion called precession of the equinoxes, the 
Earth’s axis of rotation precesses about the perpendicu-
lar to its orbital plane with a period of 2.58 3 104 yr. 
Model the Earth as a uniform sphere and calculate the 
torque on the Earth that is causing this precession.
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Figure P11.43 A precessing 
angular momentum vector 
sweeps out a cone in space.

Additional Problems

 44. A light rope passes over a light, 
frictionless pulley. One end is fas-
tened to a bunch of bananas of 
mass M, and a monkey of mass M 
clings to the other end (Fig. P11.44). 
The monkey climbs the rope in 
an attempt to reach the bananas.  
(a) Treating the system as consist-
ing of the monkey, bananas, rope, 
and pulley, find the net torque on 
the system about the pulley axis.  
(b) Using the result of part (a), 
determine the total angular momen-
tum about the pulley axis and describe the motion of 
the system. (c) Will the monkey reach the bananas?

 45. Comet Halley moves about the Sun in an elliptical 
orbit, with its closest approach to the Sun being about 
0.590 AU and its greatest distance 35.0 AU (1 AU 5 the 
Earth–Sun distance). The angular momentum of the 
comet about the Sun is constant, and the gravitational 
force exerted by the Sun has zero moment arm. The 
comet’s speed at closest approach is 54.0 km/s. What is 
its speed when it is farthest from the Sun?

 46. Review. Two boys are sliding toward each other on a 
frictionless, ice-covered parking lot. Jacob, mass 45.0 kg,  
is gliding to the right at 8.00 m/s, and Ethan, mass 
31.0 kg, is gliding to the left at 11.0 m/s along the same 

M

M

Figure P11.44
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der. (b) Is the mechanical energy of the clay–cylinder 
system constant in this process? Explain your answer.  
(c) Is the momentum of the clay–cylinder system con-
stant in this process? Explain your answer.

M
R

m

d

vi
S

Figure P11.39

 40. Why is the following situation impossible? A space station 
shaped like a giant wheel has a radius of r 5 100 m and 
a moment of inertia of 5.00 3 108 kg ? m2. A crew of 
150 people of average mass 65.0 kg is living on the rim, 
and the station’s rotation causes the crew to experience 
an apparent free-fall acceleration of g (Fig. P11.29).  
A research technician is assigned to perform an experi-
ment in which a ball is dropped at the rim of the station 
every 15 minutes and the time interval for the ball to 
drop a given distance is measured as a test to make sure 
the apparent value of g is correctly maintained. One 
evening, 100 average people move to the center of the 
station for a union meeting. The research technician, 
who has already been performing his experiment for an 
hour before the meeting, is disappointed that he cannot 
attend the meeting, and his mood sours even further by 
his boring experiment in which every time interval for 
the dropped ball is identical for the entire evening.

 41. A 0.005 00-kg bullet traveling horizontally with speed  
1.00 3 103 m/s strikes an 18.0-kg door, embedding itself 
10.0 cm from the side opposite the hinges as shown in 
Figure P11.41. The 1.00-m wide door is free to swing 
on its frictionless hinges. (a) Before it hits the door, 
does the bullet have angular momentum relative to the 
door’s axis of rotation? (b) If so, evaluate this angu-
lar momentum. If not, explain why there is no angular 
momentum. (c) Is the mechanical energy of the bullet– 
door system constant during this collision? Answer 
without doing a calculation. (d) At what angular speed 
does the door swing open immediately after the colli-
sion? (e) Calculate the total energy of the bullet–door 
system and determine whether it is less than or equal 
to the kinetic energy of the bullet before the collision.

0.005 00 kg

18.0 kg

Hinge

Figure P11.41 An overhead view of a bullet striking a door.

Section 11.5  The Motion of Gyroscopes and Tops
 42. A spacecraft is in empty space. It carries on board a 

gyroscope with a moment of inertia of Ig 5 20.0 kg ? m2  
about the axis of the gyroscope. The moment of inertia 

Q/C
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Assuming m and d are known, find (a) the moment 
of inertia of the system of three particles about the 
pivot, (b) the torque acting on the system at t 5 0, 
(c) the angular acceleration of the system at t 5 0,  
(d) the linear acceleration of the particle labeled 3 at 
t 5 0, (e) the maximum kinetic energy of the system, 
(f) the maximum angular speed reached by the rod, 
(g) the maximum angular momentum of the system, 
and (h) the maximum speed reached by the particle 
labeled 2.

d

2d
3

mmm
P

d
31 2

Figure P11.49

 50. Two children are playing on stools at a restaurant coun-
ter. Their feet do not reach the footrests, and the tops 
of the stools are free to rotate without friction on ped-
estals fixed to the floor. One of the children catches a 
tossed ball, in a process described by the equation

10.730 kg # m2 2 12.40 ĵ rad/s 2
1 10.120 kg 2 10.350 î m 2 3 14.30 k̂ m/s 2

5 30.730 kg # m2 1 10.120 kg 2 10.350 m 22 4vS
  (a) Solve the equation for the unknown vS. (b) Com-

plete the statement of the problem to which this 
equation applies. Your statement must include the 
given numerical information and specification of the 
unknown to be determined. (c) Could the equation 
equally well describe the other child throwing the ball? 
Explain your answer.

 51. A projectile of mass m moves to the right with a speed vi 
(Fig. P11.51a). The projectile strikes and sticks to the end 
of a stationary rod of mass M, length d, pivoted about 
a frictionless axle perpendicular to the page through 
O (Fig. P11.51b). We wish to find the fractional change 
of kinetic energy in the system due to the collision.  
(a) What is the appropriate analysis model to describe 
the projectile and the rod? (b)  What is the angular 
momentum of the system before the collision about an 
axis through O? (c) What is the moment of inertia of 
the system about an axis through O after the projectile 
sticks to the rod? (d) If the angular speed of the system 
after the collision is v, what is the angular momentum 
of the system after the collision? (e) Find the angular 
speed v after the collision in terms of the given quanti-
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line. When they meet, they grab each other and hang 
on. (a) What is their velocity immediately thereafter? 
(b) What fraction of their original kinetic energy is 
still mechanical energy after their collision? That was 
so much fun that the boys repeat the collision with the 
same original velocities, this time moving along paral-
lel lines 1.20 m apart. At closest approach, they lock 
arms and start rotating about their common center of 
mass. Model the boys as particles and their arms as a 
cord that does not stretch. (c) Find the velocity of their 
center of mass. (d) Find their angular speed. (e) What 
fraction of their original kinetic energy is still mechani-
cal energy after they link arms? (f) Why are the answers 
to parts (b) and (e) so different?

 47. We have all complained that there aren’t enough hours 
in a day. In an attempt to fix that, suppose all the peo-
ple in the world line up at the equator and all start 
running east at 2.50 m/s relative to the surface of the 
Earth. By how much does the length of a day increase? 
Assume the world population to be 7.00 3 109 people 
with an average mass of 55.0 kg each and the Earth to 
be a solid homogeneous sphere. In addition, depend-
ing on the details of your solution, you may need to use 
the approximation 1/(1 2 x) < 1 1 x for small x.

 48. A skateboarder with his board can be modeled as a 
particle of mass 76.0 kg, located at his center of mass, 
0.500 m above the ground. As shown in Figure P11.48, 
the skateboarder starts from rest in a crouching posi-
tion at one lip of a half-pipe (point A). The half-pipe 
forms one half of a cylinder of radius 6.80 m with its 
axis horizontal. On his descent, the skateboarder moves 
without friction and maintains his crouch so that his 
center of mass moves through one quarter of a circle. 
(a) Find his speed at the bottom of the half-pipe (point 
B). (b) Find his angular momentum about the center 
of curvature at this point. (c) Immediately after passing 
point B, he stands up and raises his arms, lifting his 
center of gravity to 0.950 m above the concrete (point 
C). Explain why his angular momentum is constant in 
this maneuver, whereas the kinetic energy of his body 
is not constant. (d) Find his speed immediately after he 
stands up. (e) How much chemical energy in the skate-
boarder’s legs was converted into mechanical energy in 
the skateboarder–Earth system when he stood up?

A

B C

Figure P11.48

 49. A rigid, massless rod has three particles with equal 
masses attached to it as shown in Figure P11.49. The rod 
is free to rotate in a vertical plane about a frictionless 
axle perpendicular to the rod through the point P and 
is released from rest in the horizontal position at t 5 0.  
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Figure P11.51
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of mass at speeds of 5.00 m/s. Treating the astronauts 
as particles, calculate (a) the magnitude of the angu-
lar momentum of the two-astronaut system and (b) the 
rotational energy of the system. By pulling on the rope, 
one astronaut shortens the distance between them to 
5.00 m. (c) What is the new angular momentum of 
the system? (d) What are the astronauts’ new speeds?  
(e) What is the new rotational energy of the system? 
(f) How much chemical potential energy in the body 
of the astronaut was converted to mechanical energy in 
the system when he shortened the rope?

 56. Two astronauts (Fig. P11.55), each having a mass M, 
are connected by a rope of length d having negligible 
mass. They are isolated in space, orbiting their center 
of mass at speeds v. Treating the astronauts as particles, 
calculate (a)  the magnitude of the angular momen-
tum of the two-astronaut system and (b) the rotational 
energy of the system. By pulling on the rope, one of the 
astronauts shortens the distance between them to d/2.  
(c) What is the new angular momentum of the system? 
(d) What are the astronauts’ new speeds? (e) What is 
the new rotational energy of the system? (f) How much 
chemical potential energy in the body of the astronaut 
was converted to mechanical energy in the system 
when he shortened the rope?

 57. Native people throughout North and South America 
used a bola to hunt for birds and animals. A bola can 
consist of three stones, each with mass m, at the ends 
of three light cords, each with length ,. The other 
ends of the cords are tied together to form a Y. The 
hunter holds one stone and swings the other two above 
his head (Figure  P11.57a). Both these stones move 
together in a horizontal circle of radius 2, with speed 
v0. At a moment when the horizontal component of 
their velocity is directed toward the quarry, the hunter 
releases the stone in his hand. As the bola flies through 
the air, the cords quickly take a stable arrangement 
with constant 120-degree angles between them (Fig. 
P11.57b). In the vertical direction, the bola is in free 
fall. Gravitational forces exerted by the Earth make 
the junction of the cords move with the downward 
acceleration gS. You may ignore the vertical motion as 
you proceed to describe the horizontal motion of the 
bola. In terms of m, ,, and v0, calculate (a) the mag-
nitude of the momentum of the bola at the moment 
of release and, after release, (b) the horizontal speed 
of the center of mass of the bola and (c) the angu-
lar momentum of the bola about its center of mass.  
(d) Find the angular speed of the bola about its center 
of mass after it has settled into its Y shape. Calculate  
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ties. (f) What is the kinetic energy of the system before 
the collision? (g) What is the kinetic energy of the sys-
tem after the collision? (h)  Determine the fractional 
change of kinetic energy due to the collision.

 52. A puck of mass m 5 50.0 g is attached to a taut cord pass-
ing through a small hole in a frictionless, horizontal 
surface (Fig. P11.52). The puck is initially orbiting with 
speed vi 5 1.50 m/s in a circle of radius ri 5 0.300 m. 
The cord is then slowly pulled from below, decreasing 
the radius of the circle to r 5 0.100 m. (a) What is the 
puck’s speed at the smaller radius? (b) Find the tension 
in the cord at the smaller radius. (c) How much work is 
done by the hand in pulling the cord so that the radius 
of the puck’s motion changes from 0.300 m to 0.100 m?

ri

m
vi
S

Figure P11.52 Problems 52 and 53.

 53. A puck of mass m is attached to a taut cord passing 
through a small hole in a frictionless, horizontal sur-
face (Fig. P11.52). The puck is initially orbiting with 
speed vi in a circle of radius ri . The cord is then slowly 
pulled from below, decreasing the radius of the circle 
to r. (a) What is the puck’s speed when the radius is r?  
(b) Find the tension in the cord as a function of r.  
(c) How much work is done by the hand in pulling the 
cord so that the radius of the puck’s motion changes 
from ri to r?

 54. Why is the following situation impossible? A meteoroid strikes 
the Earth directly on the equator. At the time it lands, 
it is traveling exactly vertical and downward. Due to the 
impact, the time for the Earth to rotate once increases 
by 0.5 s, so the day is 0.5 s longer, undetectable to layper-
sons. After the impact, people on the Earth ignore the 
extra half-second each day and life goes on as normal. 
(Assume the density of the Earth is uniform.)

 55. Two astronauts (Fig. P11.55), each having a mass of 
75.0 kg, are connected by a 10.0-m rope of negligible 
mass. They are isolated in space, orbiting their center 
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rolling occurs. (c) Assume the coefficient of friction 
between disk and surface is m. What is the time inter-
val after setting the disk down before pure rolling 
motion begins? (d) How far does the disk travel before 
pure rolling begins?

M

Figure P11.61

 62. In Example 11.9, we investigated an elastic collision 
between a disk and a stick lying on a frictionless sur-
face. Suppose everything is the same as in the example 
except that the collision is perfectly inelastic so that 
the disk adheres to the stick at the endpoint at which it 
strikes. Find (a) the speed of the center of mass of the 
system and (b)  the angular speed of the system after 
the collision.

 63. A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity vS as shown in 
Figure  P11.63a. It hits a small obstacle at the end of 
the table that causes the cube to tilt as shown in Fig-
ure P11.63b. Find the minimum value of the magni-
tude of vS such that the cube tips over and falls off the 
table. Note: The cube undergoes an inelastic collision 
at the edge.

vS

2a

M v

a b

Figure P11.63

 64. A solid cube of wood of side 2a and mass M is resting 
on a horizontal surface. The cube is constrained to 
rotate about a fixed axis AB (Fig. P11.64). A bullet of 
mass m and speed v is shot at the face opposite ABCD at 
a height of 4a/3. The bullet becomes embedded in the 
cube. Find the minimum value of v required to tip the 
cube so that it falls on face ABCD. Assume m ,, M.

m

2a

A

B

C

vS

3
4a

D

Figure P11.64
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the kinetic energy of the bola (e) at the instant of 
release and (f) in its stable Y shape. (g) Explain how 
the conservation laws apply to the bola as its configu-
ration changes. Robert Beichner suggested the idea 
for this problem.

 58. A uniform rod of mass 300 g and length 50.0 cm 
rotates in a horizontal plane about a fixed, frictionless, 
vertical pin through its center. Two small, dense beads, 
each of mass m, are mounted on the rod so that they 
can slide without friction along its length. Initially, 
the beads are held by catches at positions 10.0 cm on 
each side of the center and the system is rotating at an 
angular speed of 36.0 rad/s. The catches are released 
simultaneously, and the beads slide outward along the 
rod. (a) Find an expression for the angular speed vf of 
the system at the instant the beads slide off the ends of 
the rod as it depends on m. (b) What are the maximum 
and the minimum possible values for vf and the values 
of m to which they correspond?

 59. Global warming is a cause for concern because even 
small changes in the Earth’s temperature can have sig-
nificant consequences. For example, if the Earth’s polar 
ice caps were to melt entirely, the resulting additional 
water in the oceans would flood many coastal areas. 
Model the polar ice as having mass 2.30 3 1019 kg and 
forming two flat disks of radius 6.00 3 105 m. Assume 
the water spreads into an unbroken thin, spherical shell 
after it melts. Calculate the resulting change in the dura-
tion of one day both in seconds and as a percentage.

 60. The puck in Figure P11.60 has a mass of 0.120 kg. The 
distance of the puck from the center of rotation is 
originally 40.0 cm, and the puck is sliding with a speed 
of 80.0 cm/s. The string is pulled downward 15.0 cm 
through the hole in the frictionless table. Determine 
the work done on the puck. (Suggestion: Consider the 
change of kinetic energy.)

m

F
S

ivSO R

Figure P11.60

Challenge Problems

 61. A uniform solid disk of radius R is set into rotation 
with an angular speed vi about an axis through its cen-
ter. While still rotating at this speed, the disk is placed 
into contact with a horizontal surface and immedi-
ately released as shown in Figure P11.61. (a) What is 
the angular speed of the disk once pure rolling takes 
place? (b) Find the fractional change in kinetic energy 
from the moment the disk is set down until pure  
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Balanced Rock in Arches National 
Park, Utah, is a 3 000 000-kg  
boulder that has been in stable 
equilibrium for several millennia.  
It had a smaller companion nearby, 
called “Chip Off the Old Block,” 
that fell during the winter of 1975. 
Balanced Rock appeared in an 
early scene of the movie Indiana 
Jones and the Last Crusade. We will 
study the conditions under which 
an object is in equilibrium in this 
chapter. (John W. Jewett, Jr.)

12.1 Analysis Model: Rigid 
Object in Equilibrium

12.2 More on the Center of 
Gravity

12.3 Examples of Rigid Objects 
in Static Equilibrium

12.4 Elastic Properties of Solids

c h a p t e r 

12Static equilibrium  
and elasticity

  363

In Chapters 10 and 11, we studied the dynamics of rigid objects. Part of this chapter 
addresses the conditions under which a rigid object is in equilibrium. The term equilibrium 
implies that the object moves with both constant velocity and constant angular velocity 
relative to an observer in an inertial reference frame. We deal here only with the special 
case in which both of these velocities are equal to zero. In this case, the object is in what 
is called static equilibrium. Static equilibrium represents a common situation in engineering 
practice, and the principles it involves are of special interest to civil engineers, architects, 
and mechanical engineers. If you are an engineering student, you will undoubtedly take an 
advanced course in statics in the near future.
 The last section of this chapter deals with how objects deform under load conditions. An 
elastic object returns to its original shape when the deforming forces are removed. Several 
elastic constants are defined, each corresponding to a different type of deformation.

12.1 Analysis Model: Rigid Object in Equilibrium
In Chapter 5, we discussed the particle in equilibrium model, in which a particle 
moves with constant velocity because the net force acting on it is zero. The situation 
with real (extended) objects is more complex because these objects often cannot be 
modeled as particles. For an extended object to be in equilibrium, a second condi-
tion must be satisfied. This second condition involves the rotational motion of the 
extended object.
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F2
S

 

F1
S

 

F3
S

 

Figure 12.3  (Quick Quiz 12.2) 
Three forces act on an object. 
Notice that the lines of action of 
all three forces pass through a 
common point.

 Consider a single force F
S

 acting on a rigid object as shown in Figure 12.1. Recall 
that the torque associated with the force F

S
 about an axis through O is given by 

Equation 11.1:

 tS 5 rS 3 F
S

 

The magnitude of tS is Fd (see Equation 10.14), where d is the moment arm shown 
in Figure 12.1. According to Equation 10.18, the net torque on a rigid object causes 
it to undergo an angular acceleration.
 In this discussion, we investigate those rotational situations in which the angular 
acceleration of a rigid object is zero. Such an object is in rotational equilibrium. 
Because o text 5 Ia for rotation about a fixed axis, the necessary condition for rota-
tional equilibrium is that the net torque about any axis must be zero. We now have 
two necessary conditions for equilibrium of a rigid object:

 1. The net external force on the object must equal zero:

 a F
S

ext 5 0 (12.1)

 2. The net external torque on the object about any axis must be zero:

 a tSext 5 0 (12.2)

These conditions describe the rigid object in equilibrium analysis model. The first 
condition is a statement of translational equilibrium; it states that the translational 
acceleration of the object’s center of mass must be zero when viewed from an iner-
tial reference frame. The second condition is a statement of rotational equilibrium; 
it states that the angular acceleration about any axis must be zero. In the special 
case of static equilibrium, which is the main subject of this chapter, the object in 
equilibrium is at rest relative to the observer and so has no translational or angular 
speed (that is, vCM 5 0 and v 5 0).

Q uick Quiz 12.1  Consider the object subject to the two forces of equal magnitude 
in Figure 12.2. Choose the correct statement with regard to this situation.  
(a) The object is in force equilibrium but not torque equilibrium. (b) The object 
is in torque equilibrium but not force equilibrium. (c) The object is in both 
force equilibrium and torque equilibrium. (d) The object is in neither force 
equilibrium nor torque equilibrium.

Q uick Quiz 12.2  Consider the object subject to the three forces in Figure 12.3. 
Choose the correct statement with regard to this situation. (a) The object is in 
force equilibrium but not torque equilibrium. (b) The object is in torque equi-
librium but not force equilibrium. (c) The object is in both force  equilibrium 
and torque equilibrium. (d) The object is in neither force equilibrium nor 
torque equilibrium.

 The two vector expressions given by Equations 12.1 and 12.2 are equivalent, 
in general, to six scalar equations: three from the first condition for equilibrium 
and three from the second (corresponding to x, y, and z components). Hence, in a 
complex system involving several forces acting in various directions, you could be 
faced with solving a set of equations with many unknowns. Here, we restrict our 
discussion to situations in which all the forces lie in the xy plane. (Forces whose 
vector representations are in the same plane are said to be coplanar.) With this 
restriction, we must deal with only three scalar equations. Two come from balanc-
ing the forces in the x and y directions. The third comes from the torque equa-
tion, namely that the net torque about a perpendicular axis through any point in 
the xy plane must be zero. This perpendicular axis will necessarily be parallel to 

F
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rS

P
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d

u

Figure 12.1  A single force F
S

 acts 
on a rigid object at the point P.

Pitfall Prevention 12.1
Zero Torque Zero net torque does 
not mean an absence of rotational 
motion. An object that is rotating 
at a constant angular speed can 
be under the influence of a net 
torque of zero. This possibility 
is analogous to the translational 
situation: zero net force does not 
mean an absence of translational 
motion.

F
S

d

d

CM

F
S

Figure 12.2  (Quick Quiz 12.1) 
Two forces of equal magnitude are 
applied at equal distances from 
the center of mass of a rigid object.
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12.2 More on the Center of Gravity
Whenever we deal with a rigid object, one of the forces we must consider is the grav-
itational force acting on it, and we must know the point of application of this force. 
As we learned in Section 9.5, associated with every object is a special point called its 
center of gravity. The combination of the various gravitational forces acting on all 
the various mass elements of the object is equivalent to a single gravitational force 
acting through this point. Therefore, to compute the torque due to the gravita-
tional force on an object of mass M, we need only consider the force M gS acting at 
the object’s center of gravity.
 How do we find this special point? As mentioned in Section 9.5, if we assume gS is 
uniform over the object, the center of gravity of the object coincides with its cen-
ter of mass. To see why, consider an object of arbitrary shape lying in the xy plane 
as illustrated in Figure 12.4. Suppose the object is divided into a large number of 
particles of masses m1, m2, m3, . . . having coordinates (x1, y1), (x2, y2), (x3, y3), . . . . In 
Equation 9.29, we defined the x coordinate of the center of mass of such an object 
to be

 xCM 5
m1x1 1 m2x2 1 m3x3 1 c

m1 1 m2 1 m3 1 c 5
a

i
mixi

a
i

mi

 

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.
 Let us now examine the situation from another point of view by considering the 
gravitational force exerted on each particle as shown in Figure 12.5. Each particle 
contributes a torque about an axis through the origin equal in magnitude to the 
particle’s weight mg multiplied by its moment arm. For example, the magnitude of 
the torque due to the force m1gS1 is m1g1x1, where g1 is the value of the gravitational 
acceleration at the position of the particle of mass m1. We wish to locate the center 
of gravity, the point at which application of the single gravitational force M gSCG 
(where M 5 m1 1 m2 1 m3 1 ??? is the total mass of the object and gSCG is the accel-
eration due to gravity at the location of the center of gravity) has the same effect on 

CM

y

x

(x1, y1) (x2, y2)

(x3, y3)
m1

m2

m3 

O

Each particle of the object has 
a specific mass and specific 
coordinates. 

Figure 12.4  An object can be 
divided into many small particles. 
These particles can be used to 
locate the center of mass.

the z axis, so the two conditions of the rigid object in equilibrium model provide 
the equations

 o Fx 5 0    o Fy 5 0    o tz 5 0 (12.3)

where the location of the axis of the torque equation is arbitrary.

Analysis Model   Rigid Object in Equilibrium

Imagine an object that can rotate, 
but is exhibiting no translational 
acceleration a and no rotational 
acceleration a. Such an object is in 
both translational and rotational 
equilibrium, so the net force and the 
net torque about any axis are both 
equal to zero:

 a F
S

ext 5 0 (12.1)

 a tSext 5 0 (12.2)

Examples: 

•	 a	balcony	juts	out	from	a	building	and	
must support the weight of several 
humans without collapsing

•	 a	gymnast	performs	the	difficult	iron cross 
maneuver in an Olympic event

•	 a	ship	moves	at	constant	speed	through	
calm water and maintains a perfectly 
level orientation (Chapter 14)

•	 polarized	molecules	in	a	dielectric	mate-
rial in a constant electric field take on an average equilibrium orienta-
tion that remains fixed in time (Chapter 26)

a � 0
�Fx � 0

a � 0
�tz � 0

�Fy � 0
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 � MFg
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g
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g
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m2g
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2m1g
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Figure 12.5  By dividing an 
object into many particles, we can 
find its center of gravity.
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rotation as does the combined effect of all the individual gravitational forces mi g
S

i . 
Equating the torque resulting from M gSCG acting at the center of gravity to the sum 
of the torques acting on the individual particles gives

 1m1 1 m2 1 m3 1 c2gCG xCG 5 m1g1x1 1 m2g2x2 1 m3g3x3 1 c

This expression accounts for the possibility that the value of g can in general vary 
over the object. If we assume uniform g over the object (as is usually the case), the g 
factors cancel and we obtain

 xCG 5
m1x1 1 m2x2 1 m3x3 1 c

m1 1 m2 1 m3 1 c  (12.4)

Comparing this result with Equation 9.29 shows that the center of gravity is located 
at the center of mass as long as gS is uniform over the entire object. Several exam-
ples in the next section deal with homogeneous, symmetric objects. The center of 
gravity for any such object coincides with its geometric center.

Q uick Quiz 12.3  A meterstick of uniform density is hung from a string tied at 
the 25-cm mark. A 0.50-kg object is hung from the zero end of the meterstick, 
and the meterstick is balanced horizontally. What is the mass of the meterstick?  
(a) 0.25 kg (b) 0.50 kg (c) 0.75 kg (d) 1.0 kg (e) 2.0 kg (f) impossible to 
determine

The center of gravity of the 
system (bottle plus holder) is 
directly over the support point.

Figure 12.6  This one-bottle 
wine holder is a surprising display 
of static equilibrium.
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12.3 Examples of Rigid Objects in Static Equilibrium
The photograph of the one-bottle wine holder in Figure 12.6 shows one example 
of a balanced mechanical system that seems to defy gravity. For the system (wine 
holder plus bottle) to be in equilibrium, the net external force must be zero (see 
Eq. 12.1) and the net external torque must be zero (see Eq. 12.2). The second con-
dition can be satisfied only when the center of gravity of the system is directly over 
the support point.

Problem-Solving Strategy   Rigid Object in Equilibrium

When analyzing a rigid object in equilibrium under the action of several external 
forces, use the following procedure.

1. Conceptualize.  Think about the object that is in equilibrium and identify all the 
forces on it. Imagine what effect each force would have on the rotation of the object 
if it were the only force acting.

2. Categorize. Confirm that the object under consideration is indeed a rigid object 
in equilibrium. The object must have zero translational acceleration and zero angu-
lar acceleration.

3. Analyze. Draw a diagram and label all external forces acting on the object. Try 
to guess the correct direction for any forces that are not specified. When using the 
particle under a net force model, the object on which forces act can be represented 
in a free-body diagram with a dot because it does not matter where on the object 
the forces are applied. When using the rigid object in equilibrium model, however, 
we cannot use a dot to represent the object because the location where forces act 
is important in the calculation. Therefore, in a diagram showing the forces on an 
object, we must show the actual object or a simplified version of it.
 Resolve all forces into rectangular components, choosing a convenient coordinate 
system. Then apply the first condition for equilibrium, Equation 12.1. Remember to 
keep track of the signs of the various force components.
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Example 12.1   The Seesaw Revisited 

A seesaw consisting of a uniform board of mass M and length , sup-
ports at rest a father and daughter with masses mf and md, respec-
tively, as shown in Figure 12.7. The support (called the fulcrum) is 
under the center of gravity of the board, the father is a distance d 
from the center, and the daughter is a distance ,/2 from the center.

(A)  Determine the magnitude of the upward force nS exerted by 
the support on the board.

Conceptualize  Let us focus our attention on the board and consider 
the gravitational forces on the father and daughter as forces applied directly to the board. The daughter would cause a 
clockwise rotation of the board around the support, whereas the father would cause a counterclockwise rotation.

Categorize  Because the text of the problem states that the system is at rest, we model the board as a rigid object in 
equilibrium. Because we will only need the first condition of equilibrium to solve this part of the problem, however, we 
could also simply model the board as a particle in equilibrium.

AM

S o l u t i o n

 Choose a convenient axis for calculating the net torque on the rigid object. 
Remember that the choice of the axis for the torque equation is arbitrary; therefore, 
choose an axis that simplifies your calculation as much as possible. Usually, the most 
convenient axis for calculating torques is one through a point through which the 
lines of action of several forces pass, so their torques around this axis are zero. If you 
don’t know a force or don’t need to know a force, it is often beneficial to choose an 
axis through the point at which this force acts. Apply the second condition for equi-
librium, Equation 12.2.
 Solve the simultaneous equations for the unknowns in terms of the known 
quantities.

4. Finalize.  Make sure your results are consistent with your diagram. If you selected a 
direction that leads to a negative sign in your solution for a force, do not be alarmed; 
it merely means that the direction of the force is the opposite of what you guessed. 
Add up the vertical and horizontal forces on the object and confirm that each set 
of components adds to zero. Add up the torques on the object and confirm that the 
sum equals zero.

d

M

mf
mdgS 

nS

gS 

gS 

2
�

Figure 12.7  (Example 12.1) A balanced system.

Analyze  Define upward as the positive y direction and 
substitute the forces on the board into Equation 12.1:

n 2 mf g  2 mdg  2 Mg 5 0

Solve for the magnitude of the force nS: (1)   n 5 mf g 1 mdg 1 Mg 5  (mf 1 md 1 M)g

(B)  Determine where the father should sit to balance the system at rest.

Categorize  This part of the problem requires the introduction of torque to find the position of the father, so we model 
the board as a rigid object in equilibrium.

Analyze The board’s center of gravity is at its geometric center because we are told that the board is uniform. If we 
choose a rotation axis perpendicular to the page through the center of gravity of the board, the torques produced by 
nS and the gravitational force on the board about this axis are zero.

S o l u t i o n

▸ Problem-Solving Strategy c o n t i n u e d

continued
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Finalize  This result is the same one we obtained in Example 11.6 by evaluating the angular acceleration of the system 
and setting the angular acceleration equal to zero.

Suppose we had chosen another point through which the rotation axis were to pass. For example, sup-
pose the axis is perpendicular to the page and passes through the location of the father. Does that change the results 
to parts (A) and (B)?

Answer  Part (A) is unaffected because the calculation of the net force does not involve a rotation axis. In part (B), we 
would conceptually expect there to be no change if a different rotation axis is chosen because the second condition of 
equilibrium claims that the torque is zero about any rotation axis.
 Let’s verify this answer mathematically. Recall that the sign of the torque associated with a force is positive if that 
force tends to rotate the system counterclockwise, whereas the sign of the torque is negative if the force tends to 
rotate the system clockwise. Let’s choose a rotation axis perpendicular to the page and passing through the location 
of the father.

WhaT IF ?

Substitute expressions for the torques on the board 
around this axis into Equation 12.2:

n 1d 2 2 1Mg 2 1d 2 2 1mdg 2 ad 1
,

2
b 5 0

Substitute from Equation (1) in part (A) and solve for d: 1mf 1 md 1 M 2g 1d 2 2 1Mg 2 1d 2 2 1mdg 2 ad 1
,

2
b 5 0

1mf g 2 1d 2 2 1mdg 2 a,

2
b 5 0 S d 5 amd

mf
b ,

2
This result is in agreement with the one obtained in part (B).

 

▸ 12.1 c o n t i n u e d

Example 12.2   Standing on a Horizontal Beam 

A uniform horizontal beam with a length of , 5  
8.00 m and a weight of Wb 5 200 N is attached to a 
wall by a pin connection. Its far end is supported by a 
cable that makes an angle of f 5 53.08 with the beam 
(Fig. 12.8a). A person of weight Wp 5 600 N stands a 
distance d 5 2.00 m from the wall. Find the tension 
in the cable as well as the magnitude and direction 
of the force exerted by the wall on the beam.

Conceptualize  Imagine the person in Figure 12.8a 
moving outward on the beam. It seems reasonable 
that the farther he moves outward, the larger the 
torque he applies about the pivot and the larger the 
tension in the cable must be to balance this torque.

Categorize  Because the system is at rest, we catego-
rize the beam as a rigid object in equilibrium.

Analyze  We identify all the external forces acting 
on the beam: the 200-N gravitational force, the 

AM

S o l u T I o n

u

f

f

�

Wb

Wp

Wb

Wp

R cos u  

R sin u  

T cos f

T sin f

d

R
S

T
S

a b

c

2
�

Figure 12.8  (Example 12.2)  
(a) A uniform beam sup-
ported by a cable. A person 
walks outward on the beam. 
(b) The force diagram for the 
beam. (c) The force diagram 
for the beam showing the 
components of R

S
 and T

S
.

Solve for d: d 5 amd

mf
b ,

2

Substitute expressions for the torques on the board due 
to the father and daughter into Equation 12.2:

1mf g 2 1d 2 2 1mdg 2 ,
2

5 0
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Applying the first condition of equilibrium, substitute 
expressions for the forces on the beam into component 
equations from Equation 12.1:

(1)   o Fx 5 R cos u 2 T cos f 5 0

(2)   o Fy 5 R sin u 1 T sin f 2 Wp 2 Wb 5 0

where we have chosen rightward and upward as our positive directions. Because R, T, and u are all unknown, we can-
not obtain a solution from these expressions alone. (To solve for the unknowns, the number of simultaneous equations 
must generally equal the number of unknowns.)
 Now let’s invoke the condition for rotational equilibrium. A convenient axis to choose for our torque equation is 
the one that passes through the pin connection. The feature that makes this axis so convenient is that the force R

S
 

and the horizontal component of T
S

 both have a moment arm of zero; hence, these forces produce no torque about 
this axis. 

Substitute expressions for the torques on 
the beam into Equation 12.2:

a tz 5 1T sin f 2 1, 2 2 Wpd 2 Wb a,

2
b 5 0

This equation contains only T as an 
unknown because of our choice of rota-
tion axis. Solve for T and substitute 
numerical values:

T 5
Wpd 1 Wb 1,/2 2

, sin f
5

1600 N 2 12.00 m 2 1 1200 N 2 14.00 m 2
18.00 m 2  sin 53.08

5 313 N

Rearrange Equations (1) and (2) and then 
divide:

R sin u
R cos u

5 tan u 5
Wp 1 Wb 2 T sin f

T cos f

Solve for u and substitute numerical 
values:

u 5 tan21a
Wp 1 Wb 2 T sin f

T cos f
b

5 tan21 c600 N 1 200 N 2 1313 N 2  sin 53.08

1313 N 2  cos 53.08
d 5 71.18

Solve Equation (1) for R and substitute 
numerical values:

R 5
T cos f

cos u
5

1313 N 2  cos 53.08

cos 71.18
5 581 N

Finalize  The positive value for the angle u indicates that our estimate of the direction of R
S

 was accurate.
 Had we selected some other axis for the torque equation, the solution might differ in the details but the answers 
would be the same. For example, had we chosen an axis through the center of gravity of the beam, the torque equation 
would involve both T and R. This equation, coupled with Equations (1) and (2), however, could still be solved for the 
unknowns. Try it!

 What if the person walks farther out on the beam? Does T change? Does R change? Does u change?

Answer  T must increase because the gravitational force on the person exerts a larger torque about the pin connection, 
which must be countered by a larger torque in the opposite direction due to an increased value of T. If T increases, the 
vertical component of R

S
 decreases to maintain force equilibrium in the vertical direction. Force equilibrium in the 

horizontal direction, however, requires an increased horizontal component of R
S

 to balance the horizontal component 
of the increased T

S
. This fact suggests that u becomes smaller, but it is hard to predict what happens to R . Problem 66 

asks you to explore the behavior of R.

WhaT IF ?

 

▸ 12.2 c o n t i n u e d

force T
S

 exerted by the cable, the force R
S

 exerted by the wall at the pivot, and the 600-N force that the person exerts 
on the beam. These forces are all indicated in the force diagram for the beam shown in Figure 12.8b. When we 
assign directions for forces, it is sometimes helpful to imagine what would happen if a force were suddenly removed. 
For example, if the wall were to vanish suddenly, the left end of the beam would move to the left as it begins to fall. 
This scenario tells us that the wall is not only holding the beam up but is also pressing outward against it. Therefore, 
we draw the vector R

S
 in the direction shown in Figure 12.8b. Figure 12.8c shows the horizontal and vertical compo-

nents of T 
S

 and R
S

.
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Finalize  Notice that the angle depends only on the coefficient of friction, not on the mass or length of the ladder.

Example 12.3   The Leaning Ladder 

A uniform ladder of length , rests against a smooth, vertical wall (Fig. 
12.9a). The mass of the ladder is m, and the coefficient of static friction 
between the ladder and the ground is ms 5 0.40. Find the minimum 
angle umin at which the ladder does not slip.

Conceptualize  Think about any ladders you have climbed. Do you want 
a large friction force between the bottom of the ladder and the surface 
or a small one? If the friction force is zero, will the ladder stay up? Simu-
late a ladder with a ruler leaning against a vertical surface. Does the 
ruler slip at some angles and stay up at others?

Categorize  We do not wish the ladder to slip, so we model it as a rigid 
object in equilibrium.

Analyze  A diagram showing all the external forces acting on the ladder is illustrated in Figure 12.9b. The force exerted 
by the ground on the ladder is the vector sum of a normal force nS and the force of static friction f

S

s . The wall exerts a 
normal force P

S
 on the top of the ladder, but there is no friction force here because the wall is smooth. So the net force 

on the top of the ladder is perpendicular to the wall and of magnitude P.

AM

S o l u T I o n
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P
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Figure 12.9  (Example 12.3) (a) A uniform 
ladder at rest, leaning against a smooth wall. The 
ground is rough. (b) The forces on the ladder.

Apply the first condition for equilibrium to the ladder in 
both the x and the y directions:

(1)   o  Fx 5 fs 2 P 5 0

(2)   o Fy 5 n 2 mg 5 0

Solve Equation (1) for P : (3)   P 5 fs

Solve Equation (2) for n: (4)   n 5 mg 

When the ladder is on the verge of slipping, the force 
of static friction must have its maximum value, which is 
given by fs,max 5 msn. Combine this equation with Equa-
tions (3) and (4):

(5)   Pmax 5 fs,max 5 msn 5 msmg

Apply the second condition for equilibrium to the lad-
der, evaluating torques about an axis perpendicular to 
the page through O :

a tO 5 P, sin u 2 mg 
,

2
 cos u 5 0

Solve for tan u:
sin u
cos u

5 tan u 5
mg

2P
   S   u 5 tan21 amg

2P
b

Under the conditions that the ladder is just ready 
to slip, u becomes umin and Pmax is given by Equa-
tion (5). Substitute:

umin 5 tan21 a mg

2Pmax
b 5 tan21 a 1

2ms
b 5 tan21 c 1

2 10.40 2 d 5 518

 

Example 12.4   Negotiating a Curb 

(A)  Estimate the magnitude of the force F
S

 a person must apply to a wheelchair’s main wheel to roll up over a side-
walk curb (Fig. 12.10a). This main wheel that comes in contact with the curb has a radius r, and the height of the curb 
is h.

AM

umin 5 tan21a mg

2Pmax
b 5 tan21 a 1

2ms
b 5 tan21 c 1

2 10.40 2 d 5

[&&]
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Conceptualize  Think about wheelchair access to build-
ings. Generally, there are ramps built for individuals in 
wheelchairs. Steplike structures such as curbs are seri-
ous barriers to a wheelchair.

Categorize  Imagine the person exerts enough force so 
that the bottom of the main wheel just loses contact with 
the lower surface and hovers at rest. We model the wheel 
in this situation as a rigid object in equilibrium.

Analyze  Usually, the person’s hands supply the required 
force to a slightly smaller wheel that is concentric with 
the main wheel. For simplicity, let’s assume the radius of 
this second wheel is the same as the radius of the main 
wheel. Let’s estimate a combined gravitational force of 
magnitude mg 5 1 400 N for the person and the wheel-
chair, acting along a line of action passing through the 
axle of the main wheel, and choose a wheel radius of r 5  
30 cm. We also pick a curb height of h 5 10 cm. Let’s also 
assume the wheelchair and occupant are symmetric and 
each wheel supports a weight of 700 N. We then proceed 
to analyze only one of the main wheels. Figure 12.10b 
shows the geometry for a single wheel.
 When the wheel is just about to be raised from the 
street, the normal force exerted by the ground on the 
wheel at point B goes to zero. Hence, at this time only three 
forces act on the wheel as shown in the force diagram in 
Figure 12.10c. The force R

S
, which is the force exerted by 

the curb on the wheel, acts at point A, so if we choose to 
have our axis of rotation be perpendicular to the page 
and pass through point A, we do not need to include  
R
S

 in our torque equation. The moment arm of F
S

 relative 
to an axis through A is given by 2r 2 h (see Fig. 12.10c).

S o l u T I o n
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Figure 12.10  (Example 12.4) (a) A person in a wheelchair 
attempts to roll up over a curb. (b) Details of the wheel and curb. 
The person applies a force F

S
 to the top of the wheel. (c) A force 

diagram for the wheel when it is just about to be raised. Three 
forces act on the wheel at this instant: F

S
, which is exerted by the 

hand; R
S

, which is exerted by the curb; and the gravitational force 
m gS. (d) The vector sum of the three external forces acting on the 
wheel is zero.

Use the triangle OAC in Figure 12.10b to find the 
moment arm d of the gravitational force m gS acting on 
the wheel relative to an axis through point A:

(1)   d 5 "r 2 2 1r 2 h 22 5 "2rh 2 h2

Apply the second condition for equilibrium to the wheel, 
taking torques about an axis through A:

(2)   a tA 5 mgd 2 F 12r 2 h 2 5 0

Substitute for d from Equation (1): mg"2rh 2 h2 2 F 12r 2 h 2 5 0

Substitute the known values: F 5 1700 N 2Å
0.1 m

2 10.3 m 2 2 0.1 m

5   3 3 102 N

▸ 12.4 c o n t i n u e d

continued

Solve for F : (3)   F 5
mg"2rh 2 h2

2r 2 h

Simplify: F 5 mg
"h "2r 2 h

2r 2 h
5 mg Å

h
2r 2 h
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(B)  Determine the magnitude and direction of R
S

.

S o l u T I o n

Apply the first condition for equilibrium to the x and y 
components of the forces on the wheel:

(4)   o Fx 5 F 2 R cos u 5 0

(5)   o Fy 5 R sin u 2 mg 5 0

Divide Equation (5) by Equation (4):
R sin u
 R cos u

5 tan u 5
mg

 F

Solve for the angle u: u 5 tan21 amg

F
b 5 tan21 a700 N

300 N
b 5 708

Solve Equation (5) for R and substitute numerical values: R 5
mg

sin u
5

700 N
sin 708

5 8 3 102 N

Finalize  Notice that we have kept only one digit as significant. (We have written the angle as 708 because 7 3 1018 is 
awkward!) The results indicate that the force that must be applied to each wheel is substantial. You may want to esti-
mate the force required to roll a wheelchair up a typical sidewalk accessibility ramp for comparison.

Would it be easier to negotiate the curb if the person grabbed the wheel at point D in Figure 12.10c and 
pulled upward?

Answer  If the force F
S

 in Figure 12.10c is rotated counterclockwise by 908 and applied at D, its moment arm about an 
axis through A is d 1 r. Let’s call the magnitude of this new force F9.

WhaT IF ?

Modify Equation (2) for this situation: o tA 5 mgd 2 F 9(d 1 r) 5 0

Solve this equation for F 9 and substitute for d: F r 5
mgd

d 1 r
5

mg"2rh 2 h2

"2rh 2 h2 1 r

Take the ratio of this force to the original force 
from Equation (3) and express the result in 
terms of h/r, the ratio of the curb height to the 
wheel radius:

F r
F

5

mg"2rh 2 h2

"2rh 2 h2 1 r

mg"2rh 2 h2

2r 2 h

5
2r 2 h

"2rh 2 h2 1 r
5

2 2 ah
r
b

Å2ah
r
b 2 ah

r
b

2

1 1

Substitute the ratio h/r 5 0.33 from the given 
values:

F r
F

5
2 2 0.33

"2 10.33 2 2 10.33 22 1 1
5 0.96

This result tells us that, for these values, it is slightly easier to pull upward at D than horizontally at the top of the wheel. 
For very high curbs, so that h/r is close to 1, the ratio F 9/F drops to about 0.5 because point A is located near the right 
edge of the wheel in Figure 12.10b. The force at D is applied at a distance of about 2r from A, whereas the force at the 
top of the wheel has a moment arm of only about r. For high curbs, then, it is best to pull upward at D, although a 
large value of the force is required. For small curbs, it is best to apply the force at the top of the wheel. The ratio F 9/F 
becomes larger than 1 at about h/r 5 0.3 because point A is now close to the bottom of the wheel and the force applied 
at the top of the wheel has a larger moment arm than when applied at D.
 Finally, let’s comment on the validity of these mathematical results. Consider Figure 12.10d and imagine that the 
vector F

S
 is upward instead of to the right. There is no way the three vectors can add to equal zero as required by the 

first equilibrium condition. Therefore, our results above may be qualitatively valid, but not exact quantitatively. To 
cancel the horizontal component of R

S
, the force at D must be applied at an angle to the vertical rather than straight 

upward. This feature makes the calculation more complicated and requires both conditions of equilibrium.

 

▸ 12.4 c o n t i n u e d
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12.4 Elastic Properties of Solids
Except for our discussion about springs in earlier chapters, we have assumed 
objects remain rigid when external forces act on them. In Section 9.8, we explored 
deformable systems. In reality, all objects are deformable to some extent. That is, it 
is possible to change the shape or the size (or both) of an object by applying exter-
nal forces. As these changes take place, however, internal forces in the object resist 
the deformation.
 We shall discuss the deformation of solids in terms of the concepts of stress and 
strain. Stress is a quantity that is proportional to the force causing a deformation; 
more specifically, stress is the external force acting on an object per unit cross-
sectional area. The result of a stress is strain, which is a measure of the degree of 
deformation. It is found that, for sufficiently small stresses, stress is proportional 
to strain; the constant of proportionality depends on the material being deformed 
and on the nature of the deformation. We call this proportionality constant the 
elastic modulus. The elastic modulus is therefore defined as the ratio of the stress 
to the resulting strain:

 Elastic modulus ;
stress
strain

 (12.5)

The elastic modulus in general relates what is done to a solid object (a force is 
applied) to how that object responds (it deforms to some extent). It is similar to the 
spring constant k in Hooke’s law (Eq. 7.9) that relates a force applied to a spring and 
the resultant deformation of the spring, measured by its extension or compression.
 We consider three types of deformation and define an elastic modulus for each:

1.  Young’s modulus measures the resistance of a solid to a change in its 
length.

2.  Shear modulus measures the resistance to motion of the planes within a 
solid parallel to each other.

3.  Bulk modulus measures the resistance of solids or liquids to changes in 
their volume.

Young’s Modulus: Elasticity in Length
Consider a long bar of cross-sectional area A and initial length Li that is clamped at 
one end as in Figure 12.11. When an external force is applied perpendicular to the 
cross section, internal molecular forces in the bar resist distortion (“stretching”), 
but the bar reaches an equilibrium situation in which its final length Lf is greater 
than Li and in which the external force is exactly balanced by the internal forces. 
In such a situation, the bar is said to be stressed. We define the tensile stress as the 
ratio of the magnitude of the external force F to the cross-sectional area A, where 
the cross section is perpendicular to the force vector. The tensile strain in this 
case is defined as the ratio of the change in length DL to the original length Li. We 
define Young’s modulus by a combination of these two ratios:

 Y ;
tensile stress
tensile strain

5
F/A

DL/Li
 (12.6)

Young’s modulus is typically used to characterize a rod or wire stressed under either 
tension or compression. Because strain is a dimensionless quantity, Y has units of 
force per unit area. Typical values are given in Table 12.1 on page 374.
 For relatively small stresses, the bar returns to its initial length when the force is 
removed. The elastic limit of a substance is defined as the maximum stress that can 
be applied to the substance before it becomes permanently deformed and does not 
return to its initial length. It is possible to exceed the elastic limit of a substance by 

WW Young’s modulus

Figure 12.11 A force F
S

 is 
applied to the free end of a bar 
clamped at the other end.

Li

�L

A

F
S

The amount by 
which the length
of the bar changes 
due to the applied
force is �L.
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applying a sufficiently large stress as seen in Figure 12.12. Initially, a stress-versus-
strain curve is a straight line. As the stress increases, however, the curve is no longer 
a straight line. When the stress exceeds the elastic limit, the object is permanently 
distorted and does not return to its original shape after the stress is removed. As 
the stress is increased even further, the material ultimately breaks.

Shear Modulus: Elasticity of Shape
Another type of deformation occurs when an object is subjected to a force paral-
lel to one of its faces while the opposite face is held fixed by another force (Fig. 
12.13a). The stress in this case is called a shear stress. If the object is originally a 
rectangular block, a shear stress results in a shape whose cross section is a paral-
lelogram. A book pushed sideways as shown in Figure 12.13b is an example of an 
object subjected to a shear stress. To a first approximation (for small distortions), 
no change in volume occurs with this deformation.
 We define the shear stress as F/A, the ratio of the tangential force to the area 
A of the face being sheared. The shear strain is defined as the ratio Dx/h, where 
Dx is the horizontal distance that the sheared face moves and h is the height of the 
object. In terms of these quantities, the shear modulus is

 S ;
shear stress
shear strain

5
F/A

Dx/h
 (12.7)

 Values of the shear modulus for some representative materials are given in Table 
12.1. Like Young’s modulus, the unit of shear modulus is the ratio of that for force 
to that for area.

Bulk Modulus: Volume Elasticity
Bulk modulus characterizes the response of an object to changes in a force of uni-
form magnitude applied perpendicularly over the entire surface of the object as 
shown in Figure 12.14. (We assume here the object is made of a single substance.) 

Shear modulus  

Table 12.1 Typical Values for Elastic Moduli
 Young’s Modulus Shear Modulus Bulk Modulus
Substance (N/m2) (N/m2) (N/m2)

Tungsten 35 3 1010 14 3 1010 20 3 1010

Steel 20 3 1010 8.4 3 1010 6 3 1010

Copper 11 3 1010 4.2 3 1010 14 3 1010

Brass 9.1 3 1010 3.5 3 1010 6.1 3 1010

Aluminum 7.0 3 1010 2.5 3 1010 7.0 3 1010

Glass 6.5–7.8 3 1010 2.6–3.2 3 1010 5.0–5.5 3 1010

Quartz 5.6 3 1010 2.6 3 1010 2.7 3 1010

Water — — 0.21 3 1010

Mercury — — 2.8 3 1010

Elastic
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point

Elastic
behavior
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Figure 12.12  Stress-versus-strain 
curve for an elastic solid.
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Figure 12.13 (a) A shear defor-
mation in which a rectangular 
block is distorted by two forces 
of equal magnitude but opposite 
directions applied to two parallel 
faces. (b) A book is under shear 
stress when a hand placed on the 
cover applies a horizontal force 
away from the spine.
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As we shall see in Chapter 14, such a uniform distribution of forces occurs when an 
object is immersed in a fluid. An object subject to this type of deformation undergoes 
a change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the sur-
face. The quantity P 5 F/A is called pressure, which we shall study in more detail in 
Chapter 14. If the pressure on an object changes by an amount DP 5 DF/A, the object 
experiences a volume change DV. The volume strain is equal to the change in volume 
DV divided by the initial volume Vi. Therefore, from Equation 12.5, we can character-
ize a volume (“bulk”) compression in terms of the bulk modulus, which is defined as

 B ;
volume stress
volume strain

5 2
DF/A
DV/Vi

5 2
DP

DV/Vi
 (12.8)

A negative sign is inserted in this defining equation so that B is a positive number. 
This maneuver is necessary because an increase in pressure (positive DP) causes a 
decrease in volume (negative DV) and vice versa.
 Table 12.1 lists bulk moduli for some materials. If you look up such values in a 
different source, you may find the reciprocal of the bulk modulus listed. The recip-
rocal of the bulk modulus is called the compressibility of the material.
 Notice from Table 12.1 that both solids and liquids have a bulk modulus. No 
shear modulus and no Young’s modulus are given for liquids, however, because a 
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a 
tensile force is applied to a liquid, the liquid simply flows in response.

Q uick Quiz 12.4  For the three parts of this Quick Quiz, choose from the fol-
lowing choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A tra-
peze artist swings through a circular arc. At the bottom of the swing, the wires 
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries 
a steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed Concrete
If the stress on a solid object exceeds a certain value, the object fractures. The max-
imum stress that can be applied before fracture occurs—called the tensile strength, 
compressive strength, or shear strength—depends on the nature of the material and 
on the type of applied stress. For example, concrete has a tensile strength of about  
2 3 106 N/m2, a compressive strength of 20 3 106 N/m2, and a shear strength of  
2 3 106 N/m2. If the applied stress exceeds these values, the concrete fractures. It is 
common practice to use large safety factors to prevent failure in concrete structures.
 Concrete is normally very brittle when it is cast in thin sections. Therefore, concrete 
slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. The slab 
can be strengthened by the use of steel rods to reinforce the concrete as illustrated 
in Figure 12.15b. Because concrete is much stronger under compression (squeezing) 
than under tension (stretching) or shear, vertical columns of concrete can support 

WW Bulk modulus

Figure 12.14 A cube is under 
uniform pressure and is therefore 
compressed on all sides by forces 
normal to its six faces. The arrow-
heads of force vectors on the sides 
of the cube that are not visible are 
hidden by the cube.

Vi

Vi � �V
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S

Fback
S

Fright
S

Fbottom
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The cube undergoes a change in 
volume but no change in shape.

a b c

Concrete Cracks

Load force Steel
reinforcing

rod

Steel rod
under

tension

Figure 12.15  (a) A concrete  
slab with no reinforcement tends  
to crack under a heavy load.  
(b) The strength of the concrete is 
increased by using steel reinforce-
ment rods. (c) The concrete is fur-
ther strengthened by prestressing 
it with steel rods under tension.
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Substitute numerical values: DV 5 2
10.50 m3 2 12.0 3 107 N/m2 2 1.0 3 105 N/m2 2

6.1 3 1010 N/m2

5   21.6 3 1024 m3

The negative sign indicates that the volume of the sphere decreases.

very heavy loads, whereas horizontal beams of concrete tend to sag and crack. A sig-
nificant increase in shear strength is achieved, however, if the reinforced concrete is 
prestressed as shown in Figure 12.15c. As the concrete is being poured, the steel rods 
are held under tension by external forces. The external forces are released after the 
concrete cures; the result is a permanent tension in the steel and hence a compressive 
stress on the concrete. The concrete slab can now support a much heavier load.

Example 12.5   Stage Design

In Example 8.2, we analyzed a cable used to support an actor as he swings onto the stage. Now suppose the tension in 
the cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-long steel cable have if we do not 
want it to stretch more than 0.50 cm under these conditions?

Conceptualize  Look back at Example 8.2 to recall what is happening in this situation. We ignored any stretching of 
the cable there, but we wish to address this phenomenon in this example.

Categorize  We perform a simple calculation involving Equation 12.6, so we categorize this example as a substitution 
problem.

S o l u T I o n

Solve Equation 12.6 for the cross-sectional 
area of the cable:

A 5
FLi

Y DL

Assuming the cross section is circular, find the 
diameter of the cable from d 5 2r and A 5 pr 2:

d 5 2r 5 2Å
A
p

5 2Å
FLi

pYDL

Substitute numerical values: d 5 2Å
1940 N 2 110 m 2

p 120 3 1010 N/m2 2 10.005 0 m 2 5 3.5 3 1023 m 5 3.5 mm

To provide a large margin of safety, you would probably use a flexible cable made up of many smaller wires having a 
total cross-sectional area substantially greater than our calculated value.

Example 12.6   Squeezing a Brass Sphere

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 1.0 3 105 N/m2 (normal atmo-
spheric pressure). The sphere is lowered into the ocean to a depth where the pressure is 2.0 3 107 N/m2. The volume of 
the sphere in air is 0.50 m3. By how much does this volume change once the sphere is submerged?

Conceptualize  Think about movies or television shows you have seen in which divers go to great depths in the water 
in submersible vessels. These vessels must be very strong to withstand the large pressure under water. This pressure 
squeezes the vessel and reduces its volume.

Categorize  We perform a simple calculation involving Equation 12.8, so we categorize this example as a substitution 
problem.

S o l u T I o n

Solve Equation 12.8 for the volume change of the sphere: DV 5 2
Vi DP

 B
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 2. A rod 7.0 m long is pivoted at a point 2.0 m from the 
left end. A downward force of 50 N acts at the left 
end, and a downward force of 200 N acts at the right 
end. At what distance to the right of the pivot can a 
third force of 300 N acting upward be placed to pro-
duce rotational equilibrium? Note: Neglect the weight 
of the rod. (a) 1.0 m (b)  2.0  m (c)  3.0 m (d) 4.0 m  
(e) 3.5 m

 3. Consider the object in Figure OQ12.3. A single force is 
exerted on the object. The line of action of the force 
does not pass through the object’s center of mass. The 
acceleration of the object’s center of mass due to this 
force (a) is the same as if the force were applied at the 

 1. The acceleration due to gravity becomes weaker by 
about three parts in ten million for each meter of 
increased elevation above the Earth’s surface. Suppose 
a skyscraper is 100 stories tall, with the same floor plan 
for each story and with uniform average density. Com-
pare the location of the building’s center of mass and 
the location of its center of gravity. Choose one: (a) Its 
center of mass is higher by a distance of several meters. 
(b) Its center of mass is higher by a distance of several 
millimeters. (c) Its center of mass and its center of grav-
ity are in the same location. (d) Its center of gravity is 
higher by a distance of several millimeters. (e) Its cen-
ter of gravity is higher by a distance of several meters.

Summary

Definitions

 The gravitational force exerted on 
an object can be considered as acting 
at a single point called the center of 
gravity. An object’s center of gravity 
coincides with its center of mass if 
the object is in a uniform gravita-
tional field.

 We can describe the elastic properties of a substance using the con-
cepts of stress and strain. Stress is a quantity proportional to the force 
producing a deformation; strain is a measure of the degree of deforma-
tion. Stress is proportional to strain, and the constant of proportionality 
is the elastic modulus:

 Elastic modulus ;
stress
strain

 (12.5)

Concepts and Principles

 Three common types of deformation are represented by (1) the resistance of a solid to elongation under a load, 
characterized by Young’s modulus Y; (2) the resistance of a solid to the motion of internal planes sliding past each 
other, characterized by the shear modulus S; and (3) the resistance of a solid or fluid to a volume change, character-
ized by the bulk modulus B.

Analysis Model for Problem Solving

 Rigid Object in Equilibrium  A rigid object in equilibrium exhibits no translational 
or angular acceleration. The net external force acting on it is zero, and the net external 
torque on it is zero about any axis:

 a F
S

ext 5 0 (12.1)

 a tSext 5 0 (12.2)

The first condition is the condition for translational equilibrium, and the second is the 
condition for rotational equilibrium.

a � 0
�Fx � 0

a � 0
�tz � 0

�Fy � 0

O

y

x

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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A through E, where E 
is the center of mass 
of the frame. Rank the 
torques tA, tB, tC , tD , 
and tE from largest to 
smallest, noting that 
zero is greater than a 
negative quantity. If 
two torques are equal, 
note their equality in 
your ranking.

 8. In analyzing the equi-
librium of a flat, rigid object, you are about to choose 
an axis about which you will calculate torques. Which 
of the following describes the choice you should make?  
(a) The axis should pass through the object’s center of 
mass. (b) The axis should pass through one end of the 
object. (c) The axis should be either the x axis or the  
y axis. (d) The axis should pass through any point 
within the object. (e) Any axis within or outside the 
object can be chosen.

 9. A certain wire, 3 m long, stretches by 1.2 mm when 
under tension 200 N. (i) Does an equally thick wire 6 m 
long, made of the same material and under the same 
tension, stretch by (a) 4.8 mm, (b) 2.4 mm, (c) 1.2 mm,  
(d) 0.6 mm, or (e) 0.3 mm? (ii) A wire with twice the 
diameter, 3 m long, made of the same material and 
under the same tension, stretches by what amount? 
Choose from the same possibilities (a) through (e).

 10. The center of gravity of an ax is on the centerline  
of the handle, close to the head. Assume you saw across 
the handle through the center of gravity and weigh the  
two parts. What will you discover? (a) The handle 
side is heavier than the head side. (b) The head side 
is heavier than the handle side. (c) The two parts are 
equally heavy. (d) Their comparative weights cannot 
be predicted.

center of mass, (b)  is larger 
than the acceleration would 
be if the force were applied 
at the center of mass, (c) is 
smaller than the accelera-
tion would be if the force 
were applied at the center of 
mass, or (d) is zero because 
the force causes only angu-
lar acceleration about the 
center of mass.

 4. Two forces are acting on an object. Which of the fol-
lowing statements is correct? (a) The object is in equi-
librium if the forces are equal in magnitude and oppo-
site in direction. (b) The object is in equilibrium if the 
net torque on the object is zero. (c)  The object is in 
equilibrium if the forces act at the same point on the 
object. (d) The object is in equilibrium if the net force 
and the net torque on the object are both zero. (e) The 
object cannot be in equilibrium because more than 
one force acts on it.

 5. In the cabin of a ship, a soda can rests in a saucer-
shaped indentation in a built-in counter. The can tilts 
as the ship slowly rolls. In which case is the can most 
stable against tipping over? (a) It is most stable when it 
is full. (b) It is most stable when it is half full. (c) It is 
most stable when it is empty. (d) It is most stable in two 
of these cases. (e) It is equally stable in all cases.

 6. A 20.0-kg horizontal plank 4.00 m long rests on two sup-
ports, one at the left end and a second 1.00 m from the 
right end. What is the magnitude of the force exerted on 
the plank by the support near the right end? (a) 32.0 N  
(b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 N

 7. Assume a single 300-N force is exerted on a bicycle 
frame as shown in Figure OQ12.7. Consider the torque 
produced by this force about axes perpendicular to 
the plane of the paper and through each of the points 

E
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Figure oQ12.7
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Figure oQ12.3

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. A ladder stands on the ground, leaning against a wall. 
Would you feel safer climbing up the ladder if you 
were told that the ground is frictionless but the wall 
is rough or if you were told that the wall is frictionless 
but the ground is rough? Explain your answer.

 2. The center of gravity of an object may be located out-
side the object. Give two examples for which that is the 
case.

 3. (a) Give an example in which the net force acting on 
an object is zero and yet the net torque is nonzero.  
(b) Give an example in which the net torque acting on 
an object is zero and yet the net force is nonzero.

 4. Stand with your back against a wall. Why can’t you put 
your heels firmly against the wall and then bend for-
ward without falling?

 5. An arbitrarily shaped piece of plywood can be suspended 
from a string attached to the ceiling. Explain how you 
could use a plumb bob to find its center of gravity.

 6. A girl has a large, docile dog she wishes to weigh on a 
small bathroom scale. She reasons that she can deter-
mine her dog’s weight with the following method. 
First she puts the dog’s two front feet on the scale and 
records the scale reading. Then she places only the 
dog’s two back feet on the scale and records the read-
ing. She thinks that the sum of the readings will be the 
dog’s weight. Is she correct? Explain your answer.

 7. Can an object be in equilibrium if it is in motion? 
Explain.

 8. What kind of deformation does a cube of Jell-O exhibit 
when it jiggles?



 4. Consider the following distribution of objects: a  
5.00-kg object with its center of gravity at (0, 0) m, a  
3.00-kg object at (0,  4.00) m, and a 4.00-kg object 
at (3.00, 0) m. Where should a fourth object of mass  
8.00 kg be placed so that the center of gravity of the 
four-object arrangement will be at (0, 0)?

 5. Pat builds a track for his model car out of solid wood 
as shown in Figure P12.5. The track is 5.00 cm wide,  
1.00 m high, and 3.00 m long. The runway is cut so that 
it forms a parabola with the equation y 5 (x 2 3)2/9. 
Locate the horizontal coordinate of the center of grav-
ity of this track.

y

3.00 m 
5.00 cm

x

y � 
(x � 3)2

9

1.00 m

Figure P12.5

 6. A circular pizza of radius R has a circular piece of 
radius R/2 removed from one side as shown in Fig-
ure P12.6. The center of gravity has moved from C to 
C9 along the x axis. Show that the distance from C to C9 
is R/6. Assume the thickness and density of the pizza 
are uniform throughout.

C C�

Figure P12.6

 7. Figure P12.7 on page 380 shows three uniform objects: a 
rod with m1 5 6.00 kg, a right triangle with m2 5 3.00 kg,  
and a square with m3 5 5.00 kg. Their coordinates in 
meters are given. Determine the center of gravity for 
the three-object system.

M

S

Section 12.1  analysis Model: Rigid object in Equilibrium

 1. What are the necessary condi-
tions for equilibrium of the 
object shown in Figure P12.1? 
Calculate torques about an 
axis through point O.

 2. Why is the following situation 
impossible? A uniform beam of 
mass mb 5 3.00 kg and length 
,  5 1.00 m supports blocks 
with masses m1 5 5.00 kg and 
m2 5 15.0 kg at two positions 
as shown in Figure P12.2. The beam rests on two trian-
gular blocks, with point P a distance d 5 0.300 m to the 
right of the center of gravity of the beam. The position of 
the object of mass m2 is adjusted along the length of the 
beam until the normal force on the beam at O is zero.

d

P

x

O

�
2

�

CG

m1
m2

Figure P12.2

Section 12.2  More on the Center of Gravity

Problems 45, 48, 49, and 92 in Chapter 9 can also be 
assigned with this section.

 3. A carpenter’s square has the shape of an L as shown in 
Figure P12.3. Locate its center of gravity.

S
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Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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Figure P12.1
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4.0 cm

4.0 cm

Figure P12.3
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Sam Joe

1.00 m 2.00 m

7.60 m

Figure P12.11

 12. A vaulter holds a 29.4-N pole in equilibrium by exert-
ing an upward force U

S
 with her leading hand and a 

downward force D
S

 with her trailing hand as shown in 
Figure P12.12. Point C is the center of gravity of the 
pole. What are the magnitudes of (a) U

S
 and (b) D

S
?

2.25 m
0.750 m

A

1.50 m

B
C

gF
S

 

U
S

 

D
S

Figure P12.12

 13. A 15.0-m uniform ladder weighing 500 N rests against 
a frictionless wall. The ladder makes a 60.08 angle 
with the horizontal. (a) Find the horizontal and verti-
cal forces the ground exerts on the base of the ladder 
when an 800-N firefighter has climbed 4.00 m along 
the ladder from the bottom. (b) If the ladder is just 
on the verge of slipping when the firefighter is 9.00 m 
from the bottom, what is the coefficient of static fric-
tion between ladder and ground?

 14. A uniform ladder of length L and mass m1 rests against 
a frictionless wall. The ladder makes an angle u with 
the horizontal. (a) Find the horizontal and vertical 
forces the ground exerts on the base of the ladder 
when a firefighter of mass m2 has climbed a distance 
x along the ladder from the bottom. (b) If the ladder 
is just on the verge of slipping when the firefighter is 
a distance d along the ladder from the bottom, what 
is the coefficient of static friction between ladder and 
ground?

 15. A flexible chain weighing 40.0 N hangs between two 
hooks located at the same height (Fig. P12.15). At each 
hook, the tangent to the chain makes an angle u 5 
42.08 with the horizontal. Find (a) the magnitude of 
the force each hook exerts on the chain and (b) the 

AMT
M

S

(4, 1)

(2, 7)
(8, 5)

(9, 7)

(–2, 2)

(–5, 5)

y (m)

x (m)

m1

m3 m2

Figure P12.7

Section 12.3  Examples of Rigid objects in Static Equilibrium

Problems 14, 26, 27, 28, 31, 33, 34, 60, 66, 85, 89, 97, and 
100 in Chapter 5 can also be assigned with this section.

 8. A 1 500-kg automobile has a wheel base (the distance 
between the axles) of 3.00 m. The automobile’s center 
of mass is on the centerline at a point 1.20 m behind 
the front axle. Find the force exerted by the ground on 
each wheel.

 9. Find the mass m of the counterweight needed to bal-
ance a truck with mass M 5 1 500 kg on an incline of 
u 5 458 (Fig. P12.9). Assume both pulleys are friction-
less and massless.

3r
r

u

m
M

Figure P12.9

 10. A mobile is constructed of light rods, light strings, and 
beach souvenirs as shown in Figure P12.10. If m4 5  
12.0 g, find values for (a) m1, (b) m2, and (c) m3.

3.00 cm

5.00 cm2.00 cm

4.00 cm 6.00 cm

m1

m4

m2

4.00 cm m3

Figure P12.10

 11. A uniform beam of length 7.60 m and weight 4.50 3 
102 N is carried by two workers, Sam and Joe, as shown 
in Figure P12.11. Determine the force that each person 
exerts on the beam.

AMT
M

W

W

u

Figure P12.15
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vertical component of this force. Now solve the same 
problem from the force diagram from part (a) by com-
puting torques around the junction between the cable 
and the beam at the right-hand end of the beam. Find 
(e) the vertical component of the force exerted by the 
pole on the beam, (f) the tension in the cable, and  
(g) the horizontal component of the force exerted 
by the pole on the beam. (h) Compare the solution 
to parts (b) through (d) with the solution to parts  
(e) through (g). Is either solution more accurate?

 19. Sir Lost-a-Lot dons his armor and sets out from the 
castle on his trusty steed (Fig. P12.19). Usually, the 
drawbridge is lowered to a horizontal position so that 
the end of the bridge rests on the stone ledge. Unfor-
tunately, Lost-a-Lot’s squire didn’t lower the draw-
bridge far enough and stopped it at u 5 20.08 above 
the horizontal. The knight and his horse stop when 
their combined center of mass is d 5 1.00 m from the 
end of the bridge. The uniform bridge is , 5 8.00 m 
long and has mass 2 000 kg. The lift cable is attached 
to the bridge 5.00 m from the hinge at the castle end 
and to a point on the castle wall h 5 12.0 m above the 
bridge. Lost-a-Lot’s mass combined with his armor 
and steed is 1 000 kg. Determine (a) the tension in the 
cable and (b) the horizontal and (c) the vertical force 
components acting on the bridge at the hinge.

u

h

d

�

Figure P12.19 Problems 19 and 20.

 20. Review. While Lost-a-Lot ponders his next move in 
the situation described in Problem 19 and illustrated 
in Figure P12.19, the enemy attacks! An incoming 
projectile breaks off the stone ledge so that the end 
of the drawbridge can be lowered past the wall where 
it usually rests. In addition, a fragment of the projec-
tile bounces up and cuts the drawbridge cable! The 
hinge between the castle wall and the bridge is fric-
tionless, and the bridge swings down freely until it is 
vertical and smacks into the vertical castle wall below 
the castle entrance. (a) How long does Lost-a-Lot stay 
in contact with the bridge while it swings downward?  
(b) Find the angular acceleration of the bridge just 
as it starts to move. (c) Find the angular speed of the 
bridge when it strikes the wall below the hinge. Find 
the force exerted by the hinge on the bridge (d) imme-
diately after the cable breaks and (e) immediately 
before it strikes the castle wall.

tension in the chain at its midpoint. Suggestion: For part 
(b), make a force diagram for half of the chain.

 16. A uniform beam of length L 
and mass m shown in Figure 
P12.16 is inclined at an angle 
u to the horizontal. Its upper 
end is connected to a wall by 
a rope, and its lower end rests 
on a rough, horizontal sur-
face. The coefficient of static 
friction between the beam 
and surface is ms. Assume 
the angle u is such that the static friction force is at its 
maximum value. (a) Draw a force diagram for the beam.  
(b) Using the condition of rotational equilibrium, 
find an expression for the tension T in the rope in 
terms of m, g, and u. (c) Using the condition of trans-
lational equilibrium, find a second expression for T in 
terms of ms , m, and g. (d) Using the results from parts  
(a) through (c), obtain an expression for ms involv-
ing only the angle u. (e) What happens if the ladder 
is lifted upward and its base is placed back on the 
ground slightly to the left of its position in Figure 
P12.16? Explain.

 17. Figure P12.17 shows a claw hammer being used to pull 
a nail out of a horizontal board. The mass of the ham-
mer is 1.00 kg. A force of 150 N is exerted horizontally 
as shown, and the nail does not yet move relative to  
the board. Find (a) the force exerted by the hammer 
claws on the nail and (b) the force exerted by the sur-
face on the point of contact with the hammer head. 
Assume the force the hammer exerts on the nail is par-
allel to the nail.

Single point
of contact

5.00 cm

30.0�

30.0 cm

F
S

 

Figure P12.17

 18. A 20.0-kg floodlight in a park is 
supported at the end of a horizon-
tal beam of negligible mass that is 
hinged to a pole as shown in Figure 
P12.18. A cable at an angle of u  5 
30.08 with the beam helps support 
the light. (a) Draw a force diagram 
for the beam. By computing torques 
about an axis at the hinge at the left-
hand end of the beam, find (b) the 
tension in the cable, (c) the horizontal component of 
the force exerted by the pole on the beam, and (d) the 

u

L

Figure P12.16
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and makes an angle of u 5 60.08 
with the ground. The upper and 
lower ends of the ladder rest on 
frictionless surfaces. The lower 
end is connected to the wall by a 
horizontal rope that is frayed and 
can support a maximum tension 
of only 80.0  N. (a)  Draw a force 
diagram for the ladder. (b)  Find 
the normal force exerted on the 
bottom of the ladder. (c) Find the 
tension in the rope when the monkey is two-thirds of 
the way up the ladder. (d) Find the maximum distance 
d that the monkey can climb up the ladder before the 
rope breaks. (e) If the horizontal surface were rough 
and the rope were removed, how would your analysis 
of the problem change? What other information would 
you need to answer parts (c) and (d)?

 25. A uniform plank of length 2.00 m and mass 30.0 kg is 
supported by three ropes as indicated by the blue vec-
tors in Figure P12.25. Find the tension in each rope 
when a 700-N person is d 5 0.500 m from the left end.

2.00 m
d

T3
S

T2
S

T1
S

40.0�

Figure P12.25

Section 12.4  Elastic Properties of Solids

 26. A steel wire of diameter 1 mm can support a tension 
of 0.2 kN. A steel cable to support a tension of 20 kN 
should have diameter of what order of magnitude?

 27. The deepest point in the ocean is in the Mariana Trench, 
about 11 km deep, in the Pacific. The pressure at this 
depth is huge, about 1.13 3 108 N/m2. (a) Calculate the 
change in volume of 1.00 m3 of seawater carried from 
the surface to this deepest point. (b) The density of sea-
water at the surface is 1.03 3 103 kg/m3. Find its density 
at the bottom. (c) Explain whether or when it is a good 
approximation to think of water as incompressible.

 28. Assume Young’s modulus for bone is 1.50 3 1010 N/m2. 
The bone breaks if stress greater than 1.50 3 108 N/m2 
is imposed on it. (a) What is the maximum force that 
can be exerted on the femur bone in the leg if it has 
a minimum effective diameter of 2.50 cm? (b) If this 
much force is applied compressively, by how much does 
the 25.0-cm-long bone shorten?

 29. A child slides across a floor in a pair of rubber-soled 
shoes. The friction force acting on each foot is 20.0 N. 
The footprint area of each shoe sole is 14.0 cm2, and 
the thickness of each sole is 5.00 mm. Find the hori-
zontal distance by which the upper and lower surfaces 
of each sole are offset. The shear modulus of the rub-
ber is 3.00 MN/m2.

Q/C
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 21. John is pushing his daughter Rachel in a wheelbarrow 
when it is stopped by a brick 8.00 cm high (Fig. P12.21). 
The handles make an angle of u 5 15.08 with the 
ground. Due to the weight of Rachel and the wheelbar-
row, a downward force of 400 N is exerted at the center 
of the wheel, which has a radius of 20.0 cm. (a) What 
force must John apply along the handles to just start the 
wheel over the brick? (b) What is the force (magnitude 
and direction) that the brick exerts on the wheel just as 
the wheel begins to lift over the brick? In both parts, 
assume the brick remains fixed and does not slide 
along the ground. Also assume the force applied by 
John is directed exactly toward the center of the wheel.

u

Figure P12.21 Problems 21 and 22.

 22. John is pushing his daughter Rachel in a wheelbarrow 
when it is stopped by a brick of height h (Fig. P12.21). 
The handles make an angle of u with the ground. Due 
to the weight of Rachel and the wheelbarrow, a down-
ward force mg is exerted at the center of the wheel, 
which has a radius R. (a) What force F must John apply 
along the handles to just start the wheel over the brick? 
(b) What are the components of the force that the 
brick exerts on the wheel just as the wheel begins to lift 
over the brick? In both parts, assume the brick remains 
fixed and does not slide along the ground. Also assume 
the force applied by John is directed exactly toward the 
center of the wheel.

 23. One end of a uniform 4.00-m-long rod of weight Fg is 
supported by a cable at an angle of u 5 378 with the rod. 
The other end rests against the wall, where it is held by 
friction as shown in Figure P12.23. The coefficient of 
static friction between the wall and the rod is ms 5 0.500. 
Determine the minimum distance x from point A at 
which an additional object, also with the same weight Fg , 
can be hung without causing the rod to slip at point A.

B

Fg

x
A

u

Figure P12.23

 24. A 10.0-kg monkey climbs a uniform ladder with 
weight 1.20 3 102 N and length L 5 3.00 m as shown 
in Figure P12.24. The ladder rests against the wall 
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Figure P12.24
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end exerts a normal force n1 on the beam, and the sec-
ond pivot located a distance , 5 4.00 m from the left 
end exerts a normal force n2. A woman of mass m 5  
55.0 kg steps onto the left end of the beam and begins 
walking to the right as in Figure P12.38. The goal is to 
find the woman’s position when the beam begins to tip. 
(a) What is the appropriate analysis model for the beam 
before it begins to tip? (b) Sketch a force diagram for 
the beam, labeling the gravitational and normal forces 
acting on the beam and placing the woman a distance  
x to the right of the first pivot, which is the origin.  
(c) Where is the woman when the normal force n1 is the 
greatest? (d) What is n1 when the beam is about to  
tip? (e) Use Equation 12.1 to find the value of n2 when 
the beam is about to tip. (f) Using the result of part  
(d) and Equation 12.2, with torques computed around 
the second pivot, find the woman’s position x when the 
beam is about to tip. (g) Check the answer to part (e) by 
computing torques around the first pivot point.

L

x
m

M

Figure P12.38

 39. In exercise physiology studies, it is sometimes impor-
tant to determine the location of a person’s center 
of mass. This determination can be done with the 
arrangement shown in Figure P12.39. A light plank 
rests on two scales, which read Fg1 5 380 N and Fg 2 5 
320 N. A distance of 1.65 m separates the scales. How 
far from the woman’s feet is her center of mass?

F g 1

1.65 m

F g 2

Figure P12.39

 40. The lintel of prestressed reinforced concrete in Fig-
ure  P12.40 is 1.50 m long. The concrete encloses 
one steel reinforcing rod with cross-sectional area 
1.50  cm2. The rod joins two strong end plates. The 
cross- sectional area of the concrete perpendicular to 
the rod is 50.0 cm2. Young’s modulus for the concrete 
is 30.0 3 109 N/m2. After the concrete cures and the 
original tension T1 in the rod is released, the con-
crete is to be under compres-
sive stress 8.00 3 106 N/m2.  
(a) By what distance will the 
rod compress the concrete 
when the original tension in 
the rod is released? (b) What 

W
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 30. Evaluate Young’s modulus for the material whose 
stress–strain curve is shown in Figure 12.12.

 31. Assume if the shear stress in steel exceeds about 4.00 3 
108  N/m2, the steel ruptures. Determine the shear-
ing force necessary to (a) shear a steel bolt 1.00 cm in 
diameter and (b) punch a 1.00-cm-diameter hole in a 
steel plate 0.500 cm thick.

 32. When water freezes, it expands by about 9.00%. What 
pressure increase would occur inside your automobile 
engine block if the water in it froze? (The bulk modu-
lus of ice is 2.00 3 109 N/m2.)

 33. A 200-kg load is hung on a wire of length 4.00 m, cross-
sectional area 0.200 3 1024 m2, and Young’s modulus 
8.00 3 1010 N/m2. What is its increase in length?

 34. A walkway suspended across a hotel lobby is supported at 
numerous points along its edges by a vertical cable above 
each point and a vertical column underneath. The steel 
cable is 1.27 cm in diameter and is 5.75 m long before 
loading. The aluminum column is a hollow cylinder 
with an inside diameter of 16.14 cm, an outside diameter 
of 16.24 cm, and an unloaded length of 3.25 m. When 
the walkway exerts a load force of 8 500 N on one of the 
support points, how much does the point move down?

 35. Review. A 2.00-m-long cylindrical 
steel wire with a cross-sectional diam-
eter of 4.00 mm is placed over a light, 
frictionless pulley. An object of mass 
m1 5 5.00 kg is hung from one end of 
the wire and an object of mass m2 5 
3.00 kg from the other end as shown 
in Figure P12.35. The objects are 
released and allowed to move freely. 
Compared with its length before the 
objects were attached, by how much 
has the wire stretched while the objects are in motion?

 36. Review. A 30.0-kg hammer, moving with speed 20.0 m/s, 
strikes a steel spike 2.30 cm in diameter. The hammer 
rebounds with speed 10.0 m/s after 0.110 s. What is the 
average strain in the spike during the impact?

additional Problems

 37. A bridge of length 50.0 m and mass 8.00 3 104 kg is 
supported on a smooth pier at each end as shown in 
Figure P12.37. A truck of mass 3.00 3 104 kg is located 
15.0 m from one end. What are the forces on the bridge 
at the points of support?

A B

15.0 m
50.0 m

Figure P12.37

 38. A uniform beam resting on two pivots has a length L 5 
6.00 m and mass M 5 90.0 kg. The pivot under the left 

M

M

AMT

M

GP

m1
m2

Figure P12.35

1.50 m

Figure P12.40
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form, weighs 200 N, and is 6.00 m long, and it is sup-
ported by a wire at an angle of u 5 60.0°. The basket 
weighs 80.0 N. (a) Draw a force diagram for the beam. 
(b) When the bear is at x 5 1.00 m, find the tension 
in the wire supporting the beam and the components 
of the force exerted by the wall on the left end of the 
beam. (c) What If? If the wire can withstand a maxi-
mum tension of 900 N, what is the maximum distance 
the bear can walk before the wire breaks?

 44. The following equations are obtained from a force 
diagram of a rectangular farm gate, supported by two 
hinges on the left-hand side. A bucket of grain is hang-
ing from the latch.

 2A  1 C 5 0

 1B 2 392 N 2 50.0 N 5 0

 A(0) 1 B(0) 1 C(1.80 m) 2 392 N(1.50 m)

2 50.0 N(3.00 m) 5 0

  (a) Draw the force diagram and complete the statement 
of the problem, specifying the unknowns. (b) Deter-
mine the values of the unknowns and state the physical 
meaning of each.

 45. A uniform sign of weight Fg and width 2L hangs from 
a light, horizontal beam hinged at the wall and sup-
ported by a cable (Fig. P12.45). Determine (a) the 
tension in the cable and (b) the components of the 
reaction force exerted by the wall on the beam in 
terms of Fg , d, L, and u.

u

d

2L

Lulu and Lisa’s 
Cafe

Figure P12.45
 46. A 1 200-N uniform boom at f 5 658 to the vertical is 

supported by a cable at an angle u 5 25.08 to the hori-
zontal as shown in Figure P12.46. The boom is pivoted 
at the bottom, and an object of weight m 5 2 000 N 
hangs from its top. Find (a) the tension in the support 
cable and (b) the components of the reaction force 
exerted by the floor on the boom.

�3
4 �

u

m

f

Figure P12.46

 47. A crane of mass m1 5 3 000 kg supports a load of mass 
m2 5 10 000 kg as shown in Figure P12.47. The crane 

S

is the new tension T2 in the rod? (c)  The rod will 
then be how much longer than its unstressed length? 
(d)  When the concrete was poured, the rod should 
have been stretched by what extension distance from 
its unstressed length? (e)  Find the required original 
tension T1 in the rod.

 41. The arm in Figure P12.41 weighs 41.5 N. The gravita-
tional force on the arm acts through point A. Deter-
mine the  magnitudes of the tension force F

S

t in the  
deltoid muscle and the force F

S

s exerted by the shoul-
der on the humerus (upper-arm bone) to hold the arm 
in the position shown.

Fs
S

Ft
S

Fg
S

29.0 cm
8.00 cm

12.0�

O
A

Figure P12.41

 42. When a person stands on tiptoe on one foot (a strenu-
ous position), the position of the foot is as shown in 
Figure P12.42a. The total gravitational force F

S

g on the 
body is supported by the normal force nS exerted by the 
floor on the toes of one foot. A mechanical model of 
the situation is shown in Figure P12.42b, where T

S
 is 

the force exerted on the foot by the Achilles tendon 
and R

S
 is the force exerted on the foot by the tibia. 

Find the values of T, R, and u when Fg 5 700 N.

18.0 cm
25.0 cm

15.0�

Tibia

Achilles
tendon

a b

nS

R
S T

S
u

Figure P12.42

 43. A hungry bear weighing 700  N walks out on a beam 
in an attempt to retrieve a basket of goodies hanging 
at the end of the beam (Fig. P12.43). The beam is uni-

BIO
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AMT

u

x

Goodies

Figure P12.43
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shown in Figure P12.50a. The rope make an angle u 5 
37.08 with the floor and is tied h1 5 10.0 cm from the 
bottom of the cabinet. The uniform rectangular cabi-
net has height , 5 100 cm and width w 5 60.0 cm, and 
it weighs 400 N. The cabinet slides with constant speed 
when a force F 5 300 N is applied through the rope. 
The worker tires of walking backward. He fastens the 
rope to a point on the cabinet h2  5 65.0 cm off the 
floor and lays the rope over his shoulder so that he can 
walk forward and pull as shown in Figure P12.50b. In 
this way, the rope again makes an angle of u 5 37.08 
with the horizontal and again has a tension of 300 N. 
Using this technique, the worker is able to slide the 
cabinet over a long distance on the floor without tiring.

a

F
S

b

h2

u
F
Sw

�

h1

u

w

�

Figure P12.50 Problems 50 and 62.

 51. A uniform beam of mass m is inclined at an angle u to 
the horizontal. Its upper end (point P) produces a 908 
bend in a very rough rope tied to a wall, and its lower 
end rests on a rough floor (Fig. P12.51). Let ms repre-
sent the coefficient of static friction between beam 
and floor. Assume ms is less than the cotangent of u.  
(a) Find an expression for the maximum mass M that 
can be suspended from the top before the beam slips. 
Determine (b) the magnitude of the reaction force at 
the floor and (c) the magnitude of the force exerted 
by the beam on the rope at P in terms of m, M, and ms.

P

m

u

M

Figure P12.51

 52. The large quadriceps muscle in the upper leg terminates 
at its lower end in a tendon attached to the upper end of 
the tibia (Fig. P12.52a, page 386). The forces on the lower 
leg when the leg is extended are modeled as in Figure 
P12.52b, where T

S
 is the force in the tendon, F

S

g,leg is 
the gravitational force acting on the lower leg, and  
F
S

g,foot is the gravitational force acting on the foot. Find 
T when the tendon is at an angle of f 5 25.08 with the 
tibia, assuming Fg,leg 5 30.0 N, Fg,foot 5 12.5 N, and the 
leg is extended at an angle u  5 40.08 with respect to  
the vertical. Also assume the center of gravity of the 

S
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is pivoted with a frictionless pin at A and rests against 
a smooth support at B. Find the reaction forces at 
(a) point A and (b) point B.

B

A

2.00 m
6.00 m

m2

1.00 m
Sm1g

Figure P12.47

 48. Assume a person bends forward to lift a load “with his 
back” as shown in Figure P12.48a. The spine pivots 
mainly at the fifth lumbar vertebra, with the princi-
pal supporting force provided by the erector spinalis 
muscle in the back. To see the magnitude of the forces 
involved, consider the model shown in Figure P12.48b 
for a person bending forward to lift a 200-N object. The 
spine and upper body are represented as a uniform hor-
izontal rod of weight 350 N, pivoted at the base of the 
spine. The erector spinalis muscle, attached at a point 
two-thirds of the way up the spine, maintains the posi-
tion of the back. The angle between the spine and this 
muscle is u 5 12.08. Find (a) the tension T in the back 
muscle and (b) the compressional force in the spine. 
(c) Is this method a good way to lift a load? Explain 
your answer, using the results of parts (a) and (b).  
(d) Can you suggest a better method to lift a load?

a b

Pivot

Back muscle

Ry

Rx

12.0�

200 N
350 N

T
S

Figure P12.48

 49. A 10 000-N shark is supported 
by a rope attached to a 4.00-m 
rod that can pivot at the base. 
(a) Calculate the tension in 
the cable between the rod 
and the wall, assuming the 
cable is holding the system  
in the position shown in Fig-
ure P12.49. Find (b) the hori-
zontal force and (c) the verti-
cal force exerted on the base 
of the rod. Ignore the weight 
of the rod.

 50. Why is the following situation impossible? A worker in a 
factory pulls a cabinet across the floor using a rope as 

Q/C
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M 20.0�

60.0�
10 000 N

Figure P12.49
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are smooth. (a) Given u1 5 30.0° and u2 5 45.08, find 
nA and nC. (b) One can show that the force any strut 
exerts on a pin must be directed along the length of 
the strut as a force of tension or compression. Use that 
fact to identify the directions of the forces that the 
struts exert on the pins joining them. Find the force of 
tension or of compression in each of the three bars.

B

CA

F
S

nC
S

nA
S

u1 u2

Figure P12.54

 55. One side of a plant shelf 
is supported by a bracket 
mounted on a vertical wall 
by a single screw as shown 
in Figure  P12.55. Ignore 
the weight of the bracket. 
(a) Find the horizontal 
component of the force 
that the screw exerts on 
the bracket when an 80.0 N 
vertical force is applied as 
shown. (b) As your grand-
father waters his geraniums, the 80.0-N load force is 
increasing at the rate 0.150 N/s. At what rate is the 
force exerted by the screw changing? Suggestion: Imag-
ine that the bracket is slightly loose.

 56. A stepladder of negligible 
weight is constructed as 
shown in Figure P12.56, 
with AC 5 BC 5 , 5 4.00 m.  
A painter of mass m 5  
70.0 kg stands on the lad-
der d  5 3.00  m from the 
bottom. Assuming the floor 
is frictionless, find (a)  the 
tension in the horizon-
tal bar DE connecting the 
two halves of the ladder,  
(b) the normal forces at 
A and B, and (c) the com-
ponents of the reaction 
force at the single hinge C 
that the left half of the ladder exerts on the right half.  
Suggestion: Treat the ladder as a single object, but also 
treat each half of the ladder separately.

 57. A stepladder of negligible weight is constructed as 
shown in Figure P12.56, with AC 5 BC 5 ,. A painter 
of mass m stands on the ladder a distance d from the 
bottom. Assuming the floor is frictionless, find (a) the 
tension in the horizontal bar DE connecting the two 

M

S

tibia is at its geometric center and the tendon attaches 
to the lower leg at a position one-fifth of the way down 
the leg.

Tibia

Quadriceps
Tendon
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Fg,leg
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Fg,foot
S

u
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Tibia

Quadriceps
Tendon

a

T
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Fg,foot
S

u

b

f

Figure P12.52

 53. When a gymnast performing on the rings executes the 
iron cross, he maintains the position at rest shown in 
Figure P12.53a. In this maneuver, the gymnast’s feet 
(not shown) are off the floor. The primary muscles 
involved in supporting this position are the latissimus 
dorsi (“lats”) and the pectoralis major (“pecs”). One 
of the rings exerts an upward force F

S

h on a hand as 
shown in Figure P12.53b. The force F

S

s is exerted by the  
shoulder joint on the arm. The latissimus dorsi and 
pectoralis major muscles exert a total force F

S

m on the 
arm. (a) Using the information in the figure, find the 
magnitude of the force F

S

m for an athlete of weight  
750 N. (b) Suppose an athlete in training cannot per-
form the iron cross but can hold a position similar to 
the figure in which the arms make a 458 angle with the 
horizontal rather than being horizontal. Why is this 
position easier for the athlete?

Figure P12.53
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 54. Figure P12.54 shows a light truss formed from three 
struts lying in a plane and joined by three smooth 
hinge pins at their ends. The truss supports a down-
ward force of F

S
 5 1 000  N applied at the point B. 

The truss has negligible weight. The piers at A and C 
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Figure P12.56  
Problems 56 and 57.

80.0 N
5.00 cm

3.00 cm

6.00 cm

Figure P12.55
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nents of force exerted on the left end of the rod by 
the hinge.

 64. A steel cable 3.00 cm2 in cross-sectional area has a 
mass of 2.40 kg per meter of length. If 500 m of the 
cable is hung over a vertical cliff, how much does the 
cable stretch under its own weight? Take Ysteel 5 2.00 3 
1011 N/m2.

Challenge Problems

 65. A uniform pole is propped between the floor and the 
ceiling of a room. The height of the room is 7.80 ft, 
and the coefficient of static friction between the pole 
and the ceiling is 0.576. The coefficient of static fric-
tion between the pole and the floor is greater than that 
between the pole and the ceiling. What is the length 
of the longest pole that can be propped between the 
floor and the ceiling?

 66. In the What If? section of Example 12.2, let d repre-
sent the distance in meters between the person and 
the hinge at the left end of the beam. (a) Show that 
the cable tension is given by T 5 93.9d 1 125, with T 
in newtons. (b) Show that the direction angle u of the 
hinge force is described by

tan u 5 a 32
3d 1 4

2 1b tan 53.08

  (c) Show that the magnitude of the hinge force is given 
by

R 5 "8.82 3 103d2 2 9.65 3 104d 1 4.96 3 105

  (d) Describe how the changes in T, u, and R as d 
increases differ from one another.

 67. Figure P12.67 shows a vertical force 
applied tangentially to a uniform cyl-
inder of weight Fg . The coefficient of 
static friction between the cylinder 
and all surfaces is 0.500. The force 
P
S

 is increased in magnitude until 
the cylinder begins to rotate. In 
terms of Fg, find the maximum force 
magnitude P that can be applied 
without causing the cylinder to rotate. Suggestion: Show 
that both friction forces will be at their maximum  
values when the cylinder is on the verge of slipping.

 68. A uniform rod of weight Fg and length L is supported 
at its ends by a frictionless trough as shown in Fig-
ure P12.68. (a) Show that the center of gravity of the 
rod must be vertically over point O when the rod is in 
equilibrium. (b)  Determine the equilibrium value of 
the angle u. (c) Is the equilibrium of the rod stable or 
unstable?

u

60.0�30.0�

O

Figure P12.68

P
S

Figure P12.67
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halves of the ladder, (b) the normal forces at A and B, 
and (c) the components of the reaction force at the 
single hinge C that the left half of the ladder exerts on 
the right half. Suggestion: Treat the ladder as a single 
object, but also treat each half of the ladder separately.

 58. (a) Estimate the force with which a karate master strikes 
a board, assuming the hand’s speed at the moment of 
impact is 10.0 m/s and decreases to 1.00 m/s during a 
0.002 00-s time interval of contact between the hand 
and the board. The mass of his hand and arm is 1.00 kg. 
(b) Estimate the shear stress, assuming this force is 
exerted on a 1.00-cm-thick pine board that is 10.0 cm 
wide. (c) If the maximum shear stress a pine board can 
support before breaking is 3.60 3 106 N/m2, will the 
board break?

 59. Two racquetballs, each having a 
mass of 170 g, are placed in a glass 
jar as shown in Figure P12.59. 
Their centers lie on a straight line 
that makes a 458 angle with the 
horizontal. (a)  Assume the walls 
are frictionless and determine 
P1, P2, and P3. (b) Determine the 
magnitude of the force exerted by 
the left ball on the right ball.

 60. Review. A wire of length L, 
Young’s modulus Y, and cross-sectional area A is 
stretched elastically by an amount DL. By Hooke’s law, 
the restoring force is 2k DL. (a) Show that k 5 YA/L. 
(b) Show that the work done in stretching the wire by 
an amount DL is W 5 1

2YA 1DL 22/L .

 61. Review. An aluminum wire is 0.850 m long and has 
a circular cross section of diameter 0.780 mm. Fixed 
at the top end, the wire supports a 1.20-kg object that 
swings in a horizontal circle. Determine the angular 
speed of the object required to produce a strain of  
1.00 3 1023.

 62. Consider the rectangular cabinet of Problem 50 shown 
in Figure P12.50, but with a force F

S
 applied horizon-

tally at the upper edge. (a) What is the minimum 
force required to start to tip the cabinet? (b) What is 
the minimum coefficient of static friction required for 
the cabinet not to slide with the application of a force 
of this magnitude? (c) Find the magnitude and direc-
tion of the minimum force required to tip the cabinet 
if the point of application can be chosen anywhere on 
the cabinet.

 63. A 500-N uniform rectangular 
sign 4.00 m wide and 3.00  m  
high is suspended from a hori-
zontal, 6.00-m-long, uniform, 
100-N rod as indicated in Figure 
P12.63. The left end of the rod 
is supported by a hinge, and the 
right end is supported by a thin 
cable making a 30.0° angle with 
the vertical. (a)  Find the ten-
sion T in the cable. (b)  Find the 
horizontal and vertical compo-

P1
S

P2
S

P3
S

45�

Figure P12.59

S

M

30.0°
T

ICE CREAM
SHOP

Figure P12.63
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Hubble Space Telescope image of 
the Whirlpool Galaxy, M51, taken 
in 2005. The arms of this spiral 
galaxy compress hydrogen gas 
and create new clusters of stars. 
Some astronomers believe that the 
arms are prominent due to a close 
encounter with the small, yellow 
galaxy, NGC 5195, at the tip of one 
of its arms. (NASA, Hubble Heritage Team, 

(STScI/AURA), ESA, S. Beckwith (STScI). 

Additional Processing: Robert Gendler)

Before 1687, a large amount of data had been collected on the motions of the Moon and 
the planets, but a clear understanding of the forces related to these motions was not available. 
In that year, Isaac Newton provided the key that unlocked the secrets of the heavens. He knew, 
from his first law, that a net force had to be acting on the Moon because without such a force 
the Moon would move in a straight-line path rather than in its almost circular orbit. Newton 
reasoned that this force was the gravitational attraction exerted by the Earth on the Moon. He 
realized that the forces involved in the Earth–Moon attraction and in the Sun–planet attrac-
tion were not something special to those systems, but rather were particular cases of a general 
and universal attraction between objects. In other words, Newton saw that the same force of 
attraction that causes the Moon to follow its path around the Earth also causes an apple to 
fall from a tree. It was the first time that “earthly” and “heavenly” motions were unified.
 In this chapter, we study the law of universal gravitation. We emphasize a description of 
planetary motion because astronomical data provide an important test of this law’s validity. 
We then show that the laws of planetary motion developed by Johannes Kepler follow from 
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the law of universal gravitation and the principle of conservation of angular momentum 
for an isolated system. We conclude by deriving a general expression for the gravitational 
potential energy of a system and examining the energetics of planetary and satellite motion.

13.1 Newton’s Law of Universal Gravitation
You may have heard the legend that, while napping under a tree, Newton was struck 
on the head by a falling apple. This alleged accident supposedly prompted him to 
imagine that perhaps all objects in the Universe were attracted to each other in the 
same way the apple was attracted to the Earth. Newton analyzed astronomical data 
on the motion of the Moon around the Earth. From that analysis, he made the bold 
assertion that the force law governing the motion of planets was the same as the 
force law that attracted a falling apple to the Earth.
 In 1687, Newton published his work on the law of gravity in his treatise Mathemati-
cal Principles of Natural Philosophy. Newton’s law of universal gravitation states that

every particle in the Universe attracts every other particle with a force that 
is directly proportional to the product of their masses and inversely propor-
tional to the square of the distance between them.

If the particles have masses m1 and m2 and are separated by a distance r, the magni-
tude of this gravitational force is

 Fg 5 G 
m1m 2

r 2  (13.1)

where G is a constant, called the universal gravitational constant. Its value in SI units is

 G 5 6.674 3 10211 N ? m2/kg2 (13.2)

 The universal gravitational constant G was first evaluated in the late nineteenth 
century, based on results of an important experiment by Sir Henry Cavendish (1731–
1810) in 1798. The law of universal gravitation was not expressed by Newton in the 
form of Equation 13.1, and Newton did not mention a constant such as G. In fact, 
even by the time of Cavendish, a unit of force had not yet been included in the exist-
ing system of units. Cavendish’s goal was to measure the density of the Earth. His 
results were then used by other scientists 100 years later to generate a value for G. 
 Cavendish’s apparatus consists of two small spheres, each of mass m, fixed to the 
ends of a light, horizontal rod suspended by a fine fiber or thin metal wire as illus-
trated in Figure 13.1. When two large spheres, each of mass M, are placed near the 
smaller ones, the attractive force between smaller and larger spheres causes the rod 
to rotate and twist the wire suspension to a new equilibrium orientation. The angle 
of rotation is measured by the deflection of a light beam reflected from a mirror 
attached to the vertical suspension.
 The form of the force law given by Equation 13.1 is often referred to as an 
inverse-square law because the magnitude of the force varies as the inverse square 
of the separation of the particles.1 We shall see other examples of this type of force 
law in subsequent chapters. We can express this force in vector form by defining a 
unit vector r̂12 (Fig. 13.2). Because this unit vector is directed from particle 1 toward 
particle 2, the force exerted by particle 1 on particle 2 is

 F
S

12 5 2G 
m 1m 2

r 2  r̂12 (13.3)

WW  The law of universal 
gravitation

Mirror

r
m

Light
source

The dashed line represents the 
original position of the rod.

M

Figure 13.1  Cavendish apparatus 
for measuring gravitational forces.

1An inverse proportionality between two quantities x and y is one in which y 5 k/x, where k is a constant. A direct pro-
portion between x and y exists when y 5 kx.

Figure 13.2 The gravitational 
force between two particles is 
attractive. The unit vector r̂12 is 
directed from particle 1 toward 
particle 2.

m1

m2
r

r̂12

F21
S

F12
S

Consistent with Newton’s 
third law, F21 � �F12.  

SS
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Example 13.1   Billiards, Anyone?

Three 0.300-kg billiard balls are placed on a table at the corners of a right triangle 
as shown in Figure 13.3. The sides of the triangle are of lengths a 5 0.400 m, b 5 
0.300 m, and c 5 0.500 m. Calculate the gravitational force vector on the cue ball 
(designated m1) resulting from the other two balls as well as the magnitude and direc-
tion of this force.

Conceptualize  Notice in Figure 13.3 that the cue ball is 
attracted to both other balls by the gravitational force. We 
can see graphically that the net force should point upward 
and toward the right. We locate our coordinate axes as 
shown in Figure 13.3, placing our origin at the position of 
the cue ball.

Categorize  This problem involves evaluating the gravitational forces on the cue ball using Equation 13.3. Once these 
forces are evaluated, it becomes a vector addition problem to find the net force.

S o l u T i o n

where the negative sign indicates that particle 2 is attracted to particle 1; hence, 
the force on particle 2 must be directed toward particle 1. By Newton’s third law, 
the force exerted by particle 2 on particle 1, designated F

S

21, is equal in magni-
tude to F

S

12 and in the opposite direction. That is, these forces form an action–
reaction pair, and F

S

21 5 2 F
S

12.
 Two features of Equation 13.3 deserve mention. First, the gravitational force is a 
field force that always exists between two particles, regardless of the medium that 
separates them. Second, because the force varies as the inverse square of the dis-
tance between the particles, it decreases rapidly with increasing separation.
 Equation 13.3 can also be used to show that the gravitational force exerted by a 
finite-size, spherically symmetric mass distribution on a particle outside the distri-
bution is the same as if the entire mass of the distribution were concentrated at the 
center. For example, the magnitude of the force exerted by the Earth on a particle 
of mass m near the Earth’s surface is

 Fg 5 G 
MEm

RE
2  (13.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the 
center of the Earth.

Q uick Quiz 13.1  A planet has two moons of equal mass. Moon 1 is in a circular 
orbit of radius r. Moon 2 is in a circular orbit of radius 2r. What is the magnitude 
of the gravitational force exerted by the planet on Moon 2? (a) four times as large 
as that on Moon 1 (b) twice as large as that on Moon 1 (c) equal to that on Moon 1  
(d) half as large as that on Moon 1 (e) one-fourth as large as that on Moon 1

Pitfall Prevention 13.1 
Be Clear on g and G The symbol g  
represents the magnitude of the 
free-fall acceleration near a planet. 
At the surface of the Earth, g has 
an average value of 9.80 m/s2.  
On the other hand, G is a uni-
versal constant that has the same 
value everywhere in the Universe.

a

m2

c

m1 b m3

x
21

31u

y

F
S F

S

F
SFigure 13.3  (Example 

13.1) The resultant gravita-
tional force acting on the 
cue ball is the vector sum 
F
S

21 1 F
S

31.

Analyze  Find the force exerted by m2 on the cue ball: F
S

21 5 G 
m2m1

a2   ĵ 

 5 16.674 3 10211 N # m2/kg2 2  10.300 kg 2 10.300 kg 2
10.400 m 22   ĵ

 5 3.75 3 10211
  ĵ N

Find the force exerted by m3 on the cue ball: F
S

31 5 G 
m3m1

b2   î 

 5 16.674 3 10211 N # m2/kg2 2  10.300 kg 2 10.300 kg 2
10.300 m 22   î

 5 6.67 3 10211
  î N
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13.2  Free-Fall Acceleration and the  
Gravitational Force

We have called the magnitude of the gravitational force on an object near the 
Earth’s surface the weight of the object, where the weight is given by Equation 5.6. 
Equation 13.4 is another expression for this force. Therefore, we can set Equations 
5.6 and 13.4 equal to each other to obtain

 mg 5 G 
MEm

RE
2  

 g 5 G 
ME

RE
2 (13.5)

Equation 13.5 relates the free-fall acceleration g to physical parameters of the 
Earth—its mass and radius—and explains the origin of the value of 9.80 m/s2 that 
we have used in earlier chapters. Now consider an object of mass m located a dis-
tance h above the Earth’s surface or a distance r from the Earth’s center, where r 5 
RE 1 h. The magnitude of the gravitational force acting on this object is

Fg 5 G 
MEm

r 2 5 G 
MEm

1RE 1 h 2 2

The magnitude of the gravitational force acting on the object at this position is also 
Fg 5 mg, where g is the value of the free-fall acceleration at the altitude h. Substitut-
ing this expression for Fg into the last equation shows that g is given by

 g 5
GME

r 2 5
GME

1RE 1 h 22  (13.6)

Therefore, it follows that g decreases with increasing altitude. Values of g for the Earth 
at various altitudes are listed in Table 13.1. Because an object’s weight is mg, we see 
that as r S ,̀ the weight of the object approaches zero.

Q uick Quiz 13.2  Superman stands on top of a very tall mountain and throws a 
baseball horizontally with a speed such that the baseball goes into a circular 
orbit around the Earth. While the baseball is in orbit, what is the magnitude of 
the acceleration of the ball? (a) It depends on how fast the baseball is thrown. 
(b) It is zero because the ball does not fall to the ground. (c) It is slightly less 
than 9.80 m/s2. (d) It is equal to 9.80 m/s2.

WW Variation of g with altitude

Finalize  The result for F shows that the gravitational forces between everyday objects have extremely small magnitudes.

Find the net gravitational force on the cue ball by add-
ing these force vectors:

F
S

5 F
S

31 1 F
S

21 5 16.67  î 1 3.75  ĵ 2 3 10211 N

Find the magnitude of this force: F 5 "F31
2 1 F21

2 5 "16.67 22 1 13.75 22 3 10211 N

5   7.66 3 10211 N

Find the tangent of the angle u for the net force vector: tan u 5
Fy

Fx
5

F21

F31
5

3.75 3 10211 N
6.67 3 10211 N

5 0.562

Evaluate the angle u: u 5 tan21 (0.562) 5   29.4° 

Table 13.1 Free-Fall 
Acceleration g at  
Various Altitudes Above  
the Earth’s Surface
 Altitude h (km) g (m/s2)

 1 000 7.33
 2 000 5.68
 3 000 4.53
 4 000 3.70
 5 000 3.08
 6 000 2.60
 7 000 2.23
 8 000 1.93
 9 000 1.69
 10 000 1.49
 50 000 0.13
 ` 0

 

▸ 13.1 c o n t i n u e d
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Example 13.2   The Density of the Earth

Using the known radius of the Earth and that g 5 9.80 m/s2 at the Earth’s surface, find the average density of the Earth.

Conceptualize  Assume the Earth is a perfect sphere. The density of material in the Earth varies, but let’s adopt a sim-
plified model in which we assume the density to be uniform throughout the Earth. The resulting density is the average 
density of the Earth.

Categorize  This example is a relatively simple substitution problem.

S o l u T i o n

Using Equation 13.5, solve for the mass 
of the Earth:

ME 5
gRE

2

G

Substitute this mass and the volume of  
a sphere into the definition of density 
(Eq. 1.1):

rE 5
ME

VE
5

gRE
2/G

4
3pRE

3 5 3
4 

g

pGRE

5 34 
9.80 m/s2

p 16.674 3 10211 N # m2/kg2 2 16.37 3 106 m2 5 5.50 3 103 kg/m3

What if you were told that a typical density of granite at the Earth’s surface is 2.75 3 103 kg/m3? What 
would you conclude about the density of the material in the Earth’s interior?

Answer  Because this value is about half the density we calculated as an average for the entire Earth, we would con-
clude that the inner core of the Earth has a density much higher than the average value. It is most amazing that the 
Cavendish experiment—which can be used to determine G and can be done today on a tabletop—combined with 
simple free-fall measurements of g provides information about the core of the Earth!

WhaT iF ?

13.3 Analysis Model: Particle in a Field (Gravitational)
When Newton published his theory of universal gravitation, it was considered a 
success because it satisfactorily explained the motion of the planets. It represented 
strong evidence that the same laws that describe phenomena on the Earth can be 
used on large objects like planets and throughout the Universe. Since 1687, New-
ton’s theory has been used to account for the motions of comets, the deflection of 
a Cavendish balance, the orbits of binary stars, and the rotation of galaxies. Nev-
ertheless, both Newton’s contemporaries and his successors found it difficult to 
accept the concept of a force that acts at a distance. They asked how it was possible 
for two objects such as the Sun and the Earth to interact when they were not in con-
tact with each other. Newton himself could not answer that question.
 An approach to describing interactions between objects that are not in contact 
came well after Newton’s death. This approach enables us to look at the gravita-
tional interaction in a different way, using the concept of a gravitational field that 
exists at every point in space. When a particle is placed at a point where the gravita-
tional field exists, the particle experiences a gravitational force. In other words, we 
imagine that the field exerts a force on the particle rather than consider a direct 
interaction between two particles. The gravitational field gS is defined as

 gS ;
F
S

g

m 0
 (13.7)

That is, the gravitational field at a point in space equals the gravitational force F
S

g 
experienced by a test particle placed at that point divided by the mass m0 of the test 
particle. We call the object creating the field the source particle. (Although the Earth 

Gravitational field 
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is not a particle, it is possible to show that we can model the Earth as a particle for 
the purpose of finding the gravitational field that it creates.) Notice that the pres-
ence of the test particle is not necessary for the field to exist: the source particle 
creates the gravitational field. We can detect the presence of the field and measure 
its strength by placing a test particle in the field and noting the force exerted on it. 
In essence, we are describing the “effect” that any object (in this case, the Earth) 
has on the empty space around itself in terms of the force that would be present if a 
second object were somewhere in that space.2

 The concept of a field is at the heart of the particle in a field analysis model. 
In the general version of this model, a particle resides in an area of space in which 
a field exists. Because of the existence of the field and a property of the particle, 
the particle experiences a force. In the gravitational version of the particle in a 
field model discussed here, the type of field is gravitational, and the property of 
the particle that results in the force is the particle’s mass m. The mathematical 
representation of the gravitational version of the particle in a field model is Equa-
tion 5.5:

 F
S

g 5 mgS  (5.5)

In future chapters, we will see two other versions of the particle in a field model. In 
the electric version, the property of a particle that results in a force is electric charge : 
when a charged particle is placed in an electric field, it experiences a force. The mag-
nitude of the force is the product of the electric charge and the field, in analogy 
with the gravitational force in Equation 5.5. In the magnetic version of the particle 
in a field model, a charged particle is placed in a magnetic field. One other property 
of this particle is required for the particle to experience a force: the particle must 
have a velocity at some nonzero angle to the magnetic field. The electric and mag-
netic versions of the particle in a field model are critical to the understanding of 
the principles of electromagnetism, which we will study in Chapters 23–34.
 Because the gravitational force acting on the object has a magnitude GMEm/r 2 
(see Eq. 13.4), the gravitational field gS at a distance r from the center of the Earth is

 gS 5
F
S

g

m
5 2

GME

r 2  r̂ (13.8)

where r̂ is a unit vector pointing radially outward from the Earth and the negative 
sign indicates that the field points toward the center of the Earth as illustrated 
in Figure 13.4a. The field vectors at different points surrounding the Earth vary 
in both direction and magnitude. In a small region near the Earth’s surface, the 
downward field gS is approximately constant and uniform as indicated in Figure 
13.4b. Equation 13.8 is valid at all points outside the Earth’s surface, assuming the 
Earth is spherical. At the Earth’s surface, where r 5 RE, gS has a magnitude of 
9.80 N/kg. (The unit N/kg is the same as m/s2.)

2We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of gravitation in 
Chapter 39.

a

b

The field vectors point in the 
direction of the acceleration a 
particle would experience if it 
were placed in the field. The 
magnitude of the field vector at 
any location is the magnitude 
of the free-fall acceleration at 
that location.

Figure 13.4  (a) The gravitational 
field vectors in the vicinity of a 
uniform spherical mass such as the 
Earth vary in both direction and 
magnitude. (b) The gravitational 
field vectors in a small region near 
the Earth’s surface are uniform in 
both direction and magnitude.

Analysis Model   Particle in a Field (Gravitational)

Imagine an object with mass that we call a source particle. The source particle establishes a gravita-
tional field gS  throughout space. The gravitational field is evaluated by measuring the force on a 
test particle of mass m 0 and then using Equation 13.7. Now imagine a particle of mass m is placed 
in that field. The particle interacts with the gravitational field so that it experiences a gravitational 
force given by

 F
S

g 5 mgS  (5.5)

mgS 

Fg � mg
S S

continued
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Example 13.3   The Weight of the Space Station 

The International Space Station operates at an altitude of 350 km. Plans for the final construction show that material 
of weight 4.22 3 106 N, measured at the Earth’s surface, will have been lifted off the surface by various spacecraft dur-
ing the construction process. What is the weight of the space station when in orbit?

Conceptualize The mass of the space station is fixed; it is independent of its location. Based on the discussions in this 
section and Section 13.2, we realize that the value of g will be reduced at the height of the space station’s orbit. There-
fore, the weight of the Space Station will be smaller than that at the surface of the Earth.

Categorize We model the Space Station as a particle in a gravitational field.

AM

S o l u T i o n

13.4 Kepler’s Laws and the Motion of Planets
Humans have observed the movements of the planets, stars, and other celestial 
objects for thousands of years. In early history, these observations led scientists to 
regard the Earth as the center of the Universe. This geocentric model was elaborated 
and formalized by the Greek astronomer Claudius Ptolemy (c. 100–c. 170) in the 
second century and was accepted for the next 1400 years. In 1543, Polish astrono-
mer Nicolaus Copernicus (1473–1543) suggested that the Earth and the other plan-
ets revolved in circular orbits around the Sun (the heliocentric model).
 Danish astronomer Tycho Brahe (1546–1601) wanted to determine how the 
heavens were constructed and pursued a project to determine the positions of both 

Analysis Model   Particle in a Field (Gravitational) (continued)

Examples: 

•	 an	object	of	mass	m near the surface of the Earth has a weight, which is the result of the gravitational field estab-
lished in space by the Earth

•	 a	planet	in	the	solar	system	is	in	orbit	around	the	Sun,	due	to	the	gravitational	force	on	the	planet	exerted	by	the	
gravitational field established by the Sun

•	 an	object	near	a	black	hole	is	drawn	into	the	black	hole,	never	to	escape,	due	to	the	tremendous	gravitational	field	
established by the black hole (Section 13.6)

•	 in	the	general	theory	of	relativity,	the	gravitational	field	of	a	massive	object	is	imagined	to	be	described	by	a	curva-
ture of space–time (Chapter 39)

•	 the	gravitational	field	of	a	massive	object	is	imagined	to	be	mediated	by	particles	called	gravitons, which have 
never been detected (Chapter 46)

Analyze From the particle in a field model, 
find the mass of the space station from its 
weight at the surface of the Earth:

m 5
Fg

g
5

4.22 3 106 N
9.80 m/s2 5 4.31 3 105 kg

Use Equation 13.6 with h 5 350 km to find 
the magnitude of the gravitational field at 
the orbital location:

g 5
GME

1RE 1 h 22

5
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2

16.37 3 106 m 1 0.350 3 106 m 22 5 8.82 m/s2

Use the particle in a field model again to 
find the space station’s weight in orbit:

Fg 5 mg 5 (4.31 3 105 kg)(8.82 m/s2) 5   3.80 3 106 N 

Finalize Notice that the weight of the Space Station is less when it is in orbit, as we expected. It has about 10% less 
weight than it has when on the Earth’s surface, representing a 10% decrease in the magnitude of the gravitational field.
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stars and planets. Those observations of the planets and 777 stars visible to the 
naked eye were carried out with only a large sextant and a compass. (The telescope 
had not yet been invented.)
 German astronomer Johannes Kepler was Brahe’s assistant for a short while 
before Brahe’s death, whereupon he acquired his mentor’s astronomical data and 
spent 16 years trying to deduce a mathematical model for the motion of the plan-
ets. Such data are difficult to sort out because the moving planets are observed 
from a moving Earth. After many laborious calculations, Kepler found that Brahe’s 
data on the revolution of Mars around the Sun led to a successful model.
 Kepler’s complete analysis of planetary motion is summarized in three state-
ments known as Kepler’s laws:

1.  All planets move in elliptical orbits with the Sun at one focus.
2.  The radius vector drawn from the Sun to a planet sweeps out equal areas 

in equal time intervals.
3.  The square of the orbital period of any planet is proportional to the cube 

of the semimajor axis of the elliptical orbit.

Kepler’s First Law
The geocentric and original heliocentric models of the solar system both suggested 
circular orbits for heavenly bodies. Kepler’s first law indicates that the circular orbit 
is a very special case and elliptical orbits are the general situation. This notion was 
difficult for scientists of the time to accept because they believed that perfect circu-
lar orbits of the planets reflected the perfection of heaven.
 Figure 13.5 shows the geometry of an ellipse, which serves as our model for the 
elliptical orbit of a planet. An ellipse is mathematically defined by choosing two 
points F1 and F2, each of which is a called a focus, and then drawing a curve through 
points for which the sum of the distances r1 and r2 from F1 and F2, respectively, is a 
constant. The longest distance through the center between points on the ellipse (and 
passing through each focus) is called the major axis, and this distance is 2a. In Fig-
ure 13.5, the major axis is drawn along the x direction. The distance a is called the 
semimajor axis. Similarly, the shortest distance through the center between points 
on the ellipse is called the minor axis of length 2b, where the distance b is the semi-
minor axis. Either focus of the ellipse is located at a distance c from the center of the 
ellipse, where a2 5 b2 1 c2. In the elliptical orbit of a planet around the Sun, the Sun 
is at one focus of the ellipse. There is nothing at the other focus.
 The eccentricity of an ellipse is defined as e 5 c/a, and it describes the general 
shape of the ellipse. For a circle, c 5 0, and the eccentricity is therefore zero. The 
smaller b is compared with a, the shorter the ellipse is along the y direction com-
pared with its extent in the x direction in Figure 13.5. As b decreases, c increases 
and the eccentricity e increases. Therefore, higher values of eccentricity correspond 
to longer and thinner ellipses. The range of values of the eccentricity for an ellipse 
is 0 , e , 1.
 Eccentricities for planetary orbits vary widely in the solar system. The eccentricity 
of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand, the 
eccentricity of Mercury’s orbit is 0.21, the highest of the eight planets. Figure 13.6a 
on page 396 shows an ellipse with an eccentricity equal to that of Mercury’s orbit. 
Notice that even this highest-eccentricity orbit is difficult to distinguish from a circle, 
which is one reason Kepler’s first law is an admirable accomplishment. The eccen-
tricity of the orbit of Comet Halley is 0.97, describing an orbit whose major axis is 
much longer than its minor axis, as shown in Figure 13.6b. As a result, Comet Halley 
spends much of its 76-year period far from the Sun and invisible from the Earth. It is 
only visible to the naked eye during a small part of its orbit when it is near the Sun.
 Now imagine a planet in an elliptical orbit such as that shown in Figure 13.5, with 
the Sun at focus F2. When the planet is at the far left in the diagram, the distance  

WW Kepler’s laws

Johannes Kepler
German astronomer (1571–1630)
Kepler is best known for developing the
laws of planetary motion based on the  
careful observations of Tycho Brahe.
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Figure 13.5 Plot of an ellipse.
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c b

F2F1

r1

r2

y

x

The semimajor axis has 
length a, and the semiminor 
axis has length b.

Each focus is located at a 
distance c from the center.

Pitfall Prevention 13.2
Where is the Sun? The Sun is 
located at one focus of the ellip-
tical orbit of a planet. It is not 
located at the center of the ellipse.
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between the planet and the Sun is a 1 c. At this point, called the aphelion, the 
planet is at its maximum distance from the Sun. (For an object in orbit around the 
Earth, this point is called the apogee.) Conversely, when the planet is at the right end 
of the ellipse, the distance between the planet and the Sun is a 2 c. At this point, 
called the perihelion (for an Earth orbit, the perigee), the planet is at its minimum 
distance from the Sun.
 Kepler’s first law is a direct result of the inverse-square nature of the gravita-
tional force. Circular and elliptical orbits correspond to objects that are bound to 
the gravitational force center. These objects include planets, asteroids, and comets 
that move repeatedly around the Sun as well as moons orbiting a planet. There 
are also unbound objects, such as a meteoroid from deep space that might pass by 
the Sun once and then never return. The gravitational force between the Sun and 
these objects also varies as the inverse square of the separation distance, and the 
allowed paths for these objects include parabolas (e 5 1) and hyperbolas (e . 1).

Kepler’s Second Law
Kepler’s second law can be shown to be a result of the isolated system model for 
angular momentum. Consider a planet of mass Mp moving about the Sun in an 
elliptical orbit (Fig. 13.7a). Let’s consider the planet as a system. We model the Sun 
to be so much more massive than the planet that the Sun does not move. The gravi-
tational force exerted by the Sun on the planet is a central force, always along the 
radius vector, directed toward the Sun (Fig. 13.7a). The torque on the planet due to 
this central force about an axis through the Sun is zero because F

S

g is parallel to rS.
 Therefore, because the external torque on the planet is zero, it is modeled as 
an isolated system for angular momentum, and the angular momentum L

S
 of the 

planet is a constant of the motion:

 D L
S

 5 0   S   L
S

 5 constant 

Evaluating L
S

 for the planet,

 L
S

 5 rS 3 pS 5 Mp rS 3 vS   S   L 5 Mp 0 rS 3  vS 0  (13.9)

 We can relate this result to the following geometric consideration. In a time inter-
val dt, the radius vector rS in Figure 13.7b sweeps out the area dA, which equals half 
the area 0 rS 3  d rS 0  of the parallelogram formed by the vectors rS and d rS. Because 
the displacement of the planet in the time interval dt is given by d rS 5 vS dt,

 dA 5 1
2 0 rS 3  d rS 0 5 1

2 0 rS 3  vSdt 0 5 1
2 0 rS 3  vS 0 dt 

Substitute for the absolute value of the cross product from Equation 13.9:

 dA 5 1
2a

L
Mp

bdt 

The Sun is located at a focus of the ellipse. There is 
nothing physical located at the center (the black dot) or 
the other focus (the blue dot).

Sun

Center

Sun

CenterOrbit of
Mercury

Orbit of
Comet Halley

Comet Halley

a b

Figure 13.6  (a) The shape of 
the orbit of Mercury, which has 
the highest eccentricity (e 5 0.21) 
among the eight planets in the 
solar system. (b) The shape of the 
orbit of Comet Halley. The shape 
of the orbit is correct; the comet 
and the Sun are shown larger 
than in reality for clarity.

Figure 13.7 (a) The gravita-
tional force acting on a planet  
is directed toward the Sun.  
(b) During a time interval dt,  
a parallelogram is formed by the 
vectors rS and d rS 5 vS dt.

Sun

MS

Mp

Sun

dA

Fg
S

rS
d  �  dtrS vS

vS

The area swept out by r in 
a time interval dt is half the 
area of the parallelogram.

S

a

b
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Divide both sides by dt to obtain

  
dA
dt

 5
L

2Mp
 (13.10)

where L and Mp are both constants. This result shows that that the derivative dA/dt 
is constant—the radius vector from the Sun to any planet sweeps out equal areas in 
equal time intervals as stated in Kepler’s second law.
 This conclusion is a result of the gravitational force being a central force, which 
in turn implies that angular momentum of the planet is constant. Therefore, the law 
applies to any situation that involves a central force, whether inverse square or not.

Kepler’s Third Law
Kepler’s third law can be predicted from the inverse-square law for circular orbits 
and our analysis models. Consider a planet of mass Mp that is assumed to be moving 
about the Sun (mass MS) in a circular orbit as in Figure 13.8. Because the gravita-
tional force provides the centripetal acceleration of the planet as it moves in a cir-
cle, we model the planet as a particle under a net force and as a particle in uniform 
circular motion and incorporate Newton’s law of universal gravitation,

 Fg 5 Mpa  S   
GMSMp

r 2 5 Mp a
v 2

r
b 

The orbital speed of the planet is 2pr/T, where T is the period; therefore, the pre-
ceding expression becomes

 
GMS

r 2 5
12pr/T 2 2

r
 

 T 2 5 a 4p2

GMS
br 3 5 KSr 3 

where KS is a constant given by

 KS 5
4p2

GMS
5 2.97 3 10219 s2/m3 

This equation is also valid for elliptical orbits if we replace r with the length a of the 
semimajor axis (Fig. 13.5):

 T 2 5 a 4p2

GMS
ba3 5 KSa

3 (13.11)

Equation 13.11 is Kepler’s third law: the square of the period is proportional to 
the cube of the semimajor axis. Because the semimajor axis of a circular orbit is its 
radius, this equation is valid for both circular and elliptical orbits. Notice that the 
constant of proportionality KS is independent of the mass of the planet.3 Equation 
13.11 is therefore valid for any planet. If we were to consider the orbit of a satellite 
such as the Moon about the Earth, the constant would have a different value, with 
the Sun’s mass replaced by the Earth’s mass; that is, KE 5 4p2/GME.
 Table 13.2 on page 398 is a collection of useful data for planets and other objects 
in the solar system. The far-right column verifies that the ratio T 2/r 3 is constant for 
all objects orbiting the Sun. The small variations in the values in this column are 
the result of uncertainties in the data measured for the periods and semimajor axes 
of the objects.
 Recent astronomical work has revealed the existence of a large number of solar 
system objects beyond the orbit of Neptune. In general, these objects lie in the Kuiper 
belt, a region that extends from about 30 AU (the orbital radius of Neptune) to 50 AU.  
(An AU is an astronomical unit, equal to the radius of the Earth’s orbit.) Current  

WW Kepler’s third law

3Equation 13.11 is indeed a proportion because the ratio of the two quantities T 2 and a3 is a constant. The variables 
in a proportion are not required to be limited to the first power only.

r

MS

Mp

vS

Figure 13.8  A planet of mass Mp 
moving in a circular orbit around 
the Sun. The orbits of all planets 
except Mercury are nearly circular.
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estimates identify at least 70 000 objects in this region with diameters larger than 
100 km. The first Kuiper belt object (KBO) is Pluto, discovered in 1930 and for-
merly classified as a planet. Starting in 1992, many more have been detected. Sev-
eral have diameters in the 1 000-km range, such as Varuna (discovered in 2000), 
Ixion (2001), Quaoar (2002), Sedna (2003), Haumea (2004), Orcus (2004), and 
Makemake (2005). One KBO, Eris, discovered in 2005, is believed to be signifi-
cantly larger than Pluto. Other KBOs do not yet have names, but are currently indi-
cated by their year of discovery and a code, such as 2009 YE7 and 2010 EK139.
 A subset of about 1 400 KBOs are called “Plutinos” because, like Pluto, they 
exhibit a resonance phenomenon, orbiting the Sun two times in the same time 
interval as Neptune revolves three times. The contemporary application of Kepler’s 
laws and such exotic proposals as planetary angular momentum exchange and 
migrating planets suggest the excitement of this active area of current research.

Q uick Quiz 13.3  An asteroid is in a highly eccentric elliptical orbit around the 
Sun. The period of the asteroid’s orbit is 90 days. Which of the following state-
ments is true about the possibility of a collision between this asteroid and the 
Earth? (a) There is no possible danger of a collision. (b) There is a possibility of 
a collision. (c) There is not enough information to determine whether there is 
danger of a collision.

Table 13.2 Useful Planetary Data
  Mean Period of Mean Distance
Body Mass (kg) Radius (m) Revolution (s) from the Sun (m)

 
T 2

r 3
1s2/m3 2

Mercury 3.30 3 1023 2.44 3 106 7.60 3 106 5.79 3 1010 2.98 3 10219

Venus 4.87 3 1024 6.05 3 106 1.94 3 107 1.08 3 1011 2.99 3 10219

Earth 5.97 3 1024 6.37 3 106 3.156 3 107 1.496 3 1011 2.97 3 10219

Mars 6.42 3 1023 3.39 3 106 5.94 3 107 2.28 3 1011 2.98 3 10219

Jupiter 1.90 3 1027 6.99 3 107 3.74 3 108 7.78 3 1011 2.97 3 10219

Saturn 5.68 3 1026 5.82 3 107 9.29 3 108 1.43 3 1012 2.95 3 10219

Uranus 8.68 3 1025 2.54 3 107 2.65 3 109 2.87 3 1012 2.97 3 10219

Neptune 1.02 3 1026 2.46 3 107 5.18 3 109 4.50 3 1012 2.94 3 10219

Plutoa 1.25 3 1022 1.20 3 106 7.82 3 109 5.91 3 1012 2.96 3 10219

Moon 7.35 3 1022 1.74 3 106 — — —
Sun 1.989 3 1030 6.96 3 108 — — —

aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as 
a “dwarf planet” like the asteroid Ceres.

Example 13.4   The Mass of the Sun

Calculate the mass of the Sun, noting that the period of the Earth’s orbit around the Sun is 3.156 3 107 s and its dis-
tance from the Sun is 1.496 3 1011 m.

Conceptualize  Based on the mathematical representation of Kepler’s third law expressed in Equation 13.11, we realize 
that the mass of the central object in a gravitational system is related to the orbital size and period of objects in orbit 
around the central object.

Categorize  This example is a relatively simple substitution problem.

S o l u T i o n

Solve Equation 13.11 for the mass of the Sun: MS 5
4p2r 3

GT 2

Substitute the known values: MS 5
4p2 11.496 3 1011 m 23

16.674 3 10211 N # m2/kg2 2 13.156 3 107 s 22 5  1.99 3 1030 kg
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In Example 13.2, an understanding of gravitational forces enabled us to find out something about the density of the 
Earth’s core, and now we have used this understanding to determine the mass of the Sun!

▸ 13.4 c o n t i n u e d

 

Example 13.5   A Geosynchronous Satellite 

Consider a satellite of mass m moving in a circular orbit around the Earth at a constant 
speed v and at an altitude h above the Earth’s surface as illustrated in Figure 13.9.

(A) Determine the speed of satellite in terms of G, h, RE (the radius of the Earth), 
and ME (the mass of the Earth).

Conceptualize  Imagine the satellite moving around the Earth in a circular orbit 
under the influence of the gravitational force. This motion is similar to that of the 
International Space Station, the Hubble Space Telescope, and other objects in orbit 
around the Earth.

Categorize  The satellite moves in a circular orbit at a constant speed. Therefore, we 
categorize the satellite as a particle in uniform circular motion as well as a particle under 
a net force.

Analyze  The only external force acting on the satellite is the gravitational force 
from the Earth, which acts toward the center of the Earth and keeps the satellite in 
its circular orbit.

AM

S o l u T i o n RE

Fg
S

vS

m

r

h

Figure 13.9  (Example 13.5) A 
satellite of mass m moving around 
the Earth in a circular orbit of 
radius r with constant speed v. 
The only force acting on the satel-
lite is the gravitational force F

S

g . 
(Not drawn to scale.)

Apply the particle under a net force and particle in uni-
form circular motion models to the satellite:

Fg 5 ma  S   G 
MEm

r 2 5 m av2

r
b

Solve for v, noting that the distance r from the center of 
the Earth to the satellite is r 5 RE 1 h:

(1)   v 5 Å
GME

r
5 Å

GME

RE 1 h

(B)  If the satellite is to be geosynchronous (that is, appearing to remain over a fixed position on the Earth), how fast is 
it moving through space?

To appear to remain over a fixed position on the Earth, the period of the satellite must be 24 h 5 86 400 s and the 
satellite must be in orbit directly over the equator.

S o l u T i o n

Solve Kepler’s third law (Equation 13.11, with  
a 5 r and MS S ME) for r :

r 5 aGMET
2

4p2 b
1/3

Substitute numerical values: r 5 c
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2 186 400 s 22

4p2 d
1/3

5 4.22 3 107 m

continued

Use Equation (1) to find the speed of the satellite:  v 5 Å
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2

4.22 3 107 m

5   3.07 3 103 m/s

Finalize  The value of r calculated here translates to a height of the satellite above the surface of the Earth of almost 
36 000 km. Therefore, geosynchronous satellites have the advantage of allowing an earthbound antenna to be aimed 
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13.5 Gravitational Potential Energy
In Chapter 8, we introduced the concept of gravitational potential energy, which is 
the energy associated with the configuration of a system of objects interacting via the 
gravitational force. We emphasized that the gravitational potential energy function 
U 5 mgy for a particle–Earth system is valid only when the particle of mass m is near 
the Earth’s surface, where the gravitational force is independent of y. This expression 
for the gravitational potential energy is also restricted to situations where a very mas-
sive object (such as the Earth) establishes a gravitational field of magnitude g and a 
particle of much smaller mass m resides in that field. Because the gravitational force 
between two particles varies as 1/r 2, we expect that a more general potential energy 
function—one that is valid without the restrictions mentioned above—will be differ-
ent from U 5 mgy.
 Recall from Equation 7.27 that the change in the potential energy of a system 
associated with a given displacement of a member of the system is defined as 
the negative of the internal work done by the force on that member during the 
displacement:

 DU 5 Uf 2 Ui 5 23
rf

ri

 F 1r 2  dr  (13.12)

We can use this result to evaluate the general gravitational potential energy func-
tion. Consider a particle of mass m moving between two points A and B above the 
Earth’s surface (Fig. 13.10). The particle is subject to the gravitational force given 
by Equation 13.1. We can express this force as

 F 1r 2 5 2
GMEm

r 2  

where the negative sign indicates that the force is attractive. Substituting this 
expression for F(r) into Equation 13.12, we can compute the change in the gravi-
tational potential energy function for the particle–Earth system as the separation 
distance r changes:

 Uf 2 Ui 5 GMEm 3
rf

ri

  
dr
r 2 5 GMEm c2 1

r
d

rf

ri

 

  Uf 2 Ui 5 2GMEm a1
rf

2
1
ri
b (13.13)

As always, the choice of a reference configuration for the potential energy is com-
pletely arbitrary. It is customary to choose the reference configuration for zero 

▸ 13.5 c o n t i n u e d

in a fixed direction, but there is a disadvantage in that the signals between the Earth and the satellite must travel a 
long distance. It is difficult to use geosynchronous satellites for optical observation of the Earth’s surface because of 
their high altitude.

 What if the satellite motion in part (A) were taking place at height h above the surface of another planet 
more massive than the Earth but of the same radius? Would the satellite be moving at a higher speed or a lower speed 
than it does around the Earth?

Answer  If the planet exerts a larger gravitational force on the satellite due to its larger mass, the satellite must move 
with a higher speed to avoid moving toward the surface. This conclusion is consistent with the predictions of Equa-
tion (1), which shows that because the speed v is proportional to the square root of the mass of the planet, the speed 
increases as the mass of the planet increases.

WhaT iF ?

 

A

B

m

rf

ri

ME

RE

Fg
S

Fg
S

Figure 13.10  As a particle of 
mass m moves from A to B above 
the Earth’s surface, the gravi-
tational potential energy of the 
particle–Earth system changes 
according to Equation 13.12.
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potential energy to be the same as that for which the force is zero. Taking Ui 5 0 at 
ri 5 ,̀ we obtain the important result

 U 1r 2 5 2
GMEm

r
 (13.14)

This expression applies when the particle is separated from the center of the Earth 
by a distance r, provided that r $ RE. The result is not valid for particles inside the 
Earth, where r , RE. Because of our choice of Ui, the function U is always negative 
(Fig. 13.11).
 Although Equation 13.14 was derived for the particle–Earth system, a similar 
form of the equation can be applied to any two particles. That is, the gravitational 
potential energy associated with any pair of particles of masses m1 and m2 sepa-
rated by a distance r is

 U 5 2
Gm1m 2

r
 (13.15)

This expression shows that the gravitational potential energy for any pair of par-
ticles varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, 
the potential energy is negative because the force is attractive and we have chosen 
the potential energy as zero when the particle separation is infinite. Because the 
force between the particles is attractive, an external agent must do positive work to 
increase the separation between the particles. The work done by the external agent 
produces an increase in the potential energy as the two particles are separated. 
That is, U becomes less negative as r increases.
 When two particles are at rest and separated by a distance r, an external agent has 
to supply an energy at least equal to 1Gm1m2/r to separate the particles to an infinite 
distance. It is therefore convenient to think of the absolute value of the potential 
energy as the binding energy of the system. If the external agent supplies an energy 
greater than the binding energy, the excess energy of the system is in the form of 
kinetic energy of the particles when the particles are at an infinite separation.
 We can extend this concept to three or more particles. In this case, the total 
potential energy of the system is the sum over all pairs of particles. Each pair con-
tributes a term of the form given by Equation 13.15. For example, if the system con-
tains three particles as in Figure 13.12,

 Utotal 5 U12 1 U13 1 U23 5 2G am1m2

r12
1

m1m3

r13
1

m2m3

r23
b 

The absolute value of Utotal represents the work needed to separate the particles by 
an infinite distance.

WW  Gravitational potential energy 
of the Earth–particle system

Earth

R E

O

GME m

U

r

R E

ME

�

The potential 
energy goes to 
zero as r 
approaches 
infinity.

Figure 13.11  Graph of the grav-
itational potential energy U versus 
r for the system of an object above 
the Earth’s surface. 

1

2

3r 13

r 12 r 23

Figure 13.12  Three interacting 
particles.

Example 13.6   The Change in Potential Energy

A particle of mass m is displaced through a small vertical distance Dy near the Earth’s surface. Show that in this situ-
ation the general expression for the change in gravitational potential energy given by Equation 13.13 reduces to the 
familiar relationship DU 5 mg Dy.

Conceptualize  Compare the two different situations for which we have developed expressions for gravitational poten-
tial energy: (1) a planet and an object that are far apart for which the energy expression is Equation 13.14 and (2) a 
small object at the surface of a planet for which the energy expression is Equation 7.19. We wish to show that these two 
expressions are equivalent.

S o l u T i o n

continued
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Evaluate rf 2 ri and rirf  if both the initial and final posi-
tions of the particle are close to the Earth’s surface:

rf 2 ri 5 Dy ri rf < R E
2

Substitute these expressions into Equation (1): DU <
GMEm

RE
2  Dy 5 mg Dy

where g 5 GME/RE
2 (Eq. 13.5).

▸ 13.6 c o n t i n u e d

Combine the fractions in Equation 13.13: (1)   DU 5 2GMEm a1
rf

2
1
ri
b 5 GMEm a

rf 2 ri

ri rf
b

Categorize  This example is a substitution problem.

 Suppose you are performing upper-atmosphere studies and are asked by your supervisor to find the 
height in the Earth’s atmosphere at which the “surface equation” DU 5 mg Dy gives a 1.0% error in the change in the 
potential energy. What is this height?

Answer  Because the surface equation assumes a constant value for g, it will give a DU value that is larger than the value 
given by the general equation, Equation 13.13.

WhaT iF ?

Set up a ratio reflecting a 1.0% error: DUsurface

DUgeneral
5 1.010

Substitute the expressions for each of these 
changes DU :

mg Dy

GMEm 1Dy/ri rf 2
5

gri rf

GME
5 1.010

Substitute for ri, rf , and g from Equation 13.5:
1GME/RE

2 2RE 1RE 1 Dy 2
GME

5
RE 1 Dy

RE
5 1 1

Dy

RE
5 1.010

13.6  Energy Considerations in Planetary  
and Satellite Motion

Given the general expression for gravitational potential energy developed in Sec-
tion 13.5, we can now apply our energy analysis models to gravitational systems. 
Consider an object of mass m moving with a speed v in the vicinity of a massive 
object of mass M, where M .. m. The system might be a planet moving around the 
Sun, a satellite in orbit around the Earth, or a comet making a one-time flyby of  
the Sun. If we assume the object of mass M is at rest in an inertial reference frame, 
the total mechanical energy E of the two-object system when the objects are sepa-
rated by a distance r is the sum of the kinetic energy of the object of mass m and the 
potential energy of the system, given by Equation 13.15:

 E 5 K 1 U 

 E 5 1
2mv2 2

GMm
r

 (13.16)

If the system of objects of mass m and M is isolated, and there are no nonconserva-
tive forces acting within the system, the mechanical energy of the system given by 
Equation 13.16 is the total energy of the system and this energy is conserved:

 DE system 5 0   S   DK 1 DUg 5 0   S   Ei 5 Ef 

Therefore, as the object of mass m moves from A to B in Figure 13.10, the total 
energy remains constant and Equation 13.16 gives

 1
2mvi

2 2
GMm

ri
5 1

2mvf 2 2
GMm

rf
 (13.17)

Solve for Dy: Dy 5 0.010RE 5 0.010 16.37 3 106 m 2 5 6.37 3 104 m 5 63.7 km
 



 13.6 energy considerations in planetary and Satellite Motion 403

Combining this statement of energy conservation with our earlier discussion of 
conservation of angular momentum, we see that both the total energy and the total 
angular momentum of a gravitationally bound, two-object system are constants of 
the motion.
 Equation 13.16 shows that E may be positive, negative, or zero, depending on the 
value of v. For a bound system such as the Earth–Sun system, however, E is necessar-
ily less than zero because we have chosen the convention that U S 0 as r S .̀
 We can easily establish that E , 0 for the system consisting of an object of mass 
m moving in a circular orbit about an object of mass M .. m (Fig. 13.13). Modeling 
the object of mass m as a particle under a net force and a particle in uniform circu-
lar motion gives

 Fg 5 ma  S   
GMm

r 2 5
mv2

r
 

Multiplying both sides by r and dividing by 2 gives

 1
2mv2 5

GMm
2r

 (13.18)

Substituting this equation into Equation 13.16, we obtain

 E 5
GMm

2r
2

GMm
r

 

 E 5 2
GMm

2r
 1circular orbits 2  (13.19)

This result shows that the total mechanical energy is negative in the case of circular 
orbits. Notice that the kinetic energy is positive and equal to half the absolute value 
of the potential energy. The absolute value of E is also equal to the binding energy 
of the system because this amount of energy must be provided to the system to 
move the two objects infinitely far apart.
 The total mechanical energy is also negative in the case of elliptical orbits. The 
expression for E for elliptical orbits is the same as Equation 13.19 with r replaced by 
the semimajor axis length a:

 E 5 2
GMm

2a
 1elliptical orbits 2  (13.20)

Q uick Quiz 13.4  A comet moves in an elliptical orbit around the Sun. Which 
point in its orbit (perihelion or aphelion) represents the highest value of (a) the 
speed of the comet, (b) the potential energy of the comet–Sun system, (c) the 
kinetic energy of the comet, and (d) the total energy of the comet–Sun system?

WW  Total energy for circular 
orbits of an object of  
mass m around an object of 
mass M g m

WW  Total energy for elliptical 
orbits of an object of  
mass m around an object of  
mass M g m

r

M

m

vS

Figure 13.13  An object of mass 
m moving in a circular orbit about 
a much larger object of mass M.

Example 13.7   Changing the Orbit of a Satellite

A space transportation vehicle releases a 470-kg communications satellite while in an orbit 280 km above the surface 
of the Earth. A rocket engine on the satellite boosts it into a geosynchronous orbit. How much energy does the engine 
have to provide?

Conceptualize  Notice that the height of 280 km is much lower than that for a geosynchronous satellite, 36 000 km, as 
mentioned in Example 13.5. Therefore, energy must be expended to raise the satellite to this much higher position.

Categorize  This example is a substitution problem.

S o l u T i o n

Find the initial radius of the satellite’s orbit when it is 
still in the vehicle’s cargo bay:

ri 5 RE 1 280 km 5 6.65 3 106 m
continued
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Escape Speed
Suppose an object of mass m is projected vertically upward from the Earth’s surface 
with an initial speed vi as illustrated in Figure 13.14. We can use energy considerations 
to find the value of the initial speed needed to allow the object to reach a certain dis-
tance away from the center of the Earth. Equation 13.16 gives the total energy of the 
system for any configuration. As the object is projected upward from the surface of 
the Earth, v 5 vi and r 5 ri 5 RE. When the object reaches its maximum altitude, v 5  
vf 5 0 and r 5 rf 5 rmax. Because the object–Earth system is isolated, we substitute 
these values into the isolated-system model expression given by Equation 13.17:

 1
2mvi

2 2
GME m

RE
5 2

GMEm
rmax

 

Solving for vi
2 gives

 vi
2 5 2GME a 1

RE
2

1
rmax

b (13.21)

For a given maximum altitude h 5 rmax 2 RE , we can use this equation to find the 
required initial speed.
 We are now in a position to calculate the escape speed, which is the minimum 
speed the object must have at the Earth’s surface to approach an infinite separa-
tion distance from the Earth. Traveling at this minimum speed, the object contin-
ues to move farther and farther away from the Earth as its speed asymptotically 
approaches zero. Letting rmax S ` in Equation 13.21 and identifying vi as vesc gives

 vesc 5 Å
2GME

RE
  (13.22)

This expression for vesc is independent of the mass of the object. In other words, 
a spacecraft has the same escape speed as a molecule. Furthermore, the result is 
independent of the direction of the velocity and ignores air resistance.
 If the object is given an initial speed equal to vesc, the total energy of the system 
is equal to zero. Notice that when r S ,̀ the object’s kinetic energy and the poten-
tial energy of the system are both zero. If vi is greater than vesc, however, the total 
energy of the system is greater than zero and the object has some residual kinetic 
energy as r S .̀

Escape speed from 
the Earth

Use Equation 13.19 to find the difference in ener-
gies for the satellite–Earth system with the satellite 
at the initial and final radii:

DE 5 Ef 2 Ei 5 2
GMEm

2rf
2 a2

GMEm
2ri

b 5 2
GMEm

2
 a1

rf
2

1
ri
b

Substitute numerical values, using rf 5 4.22 3 107 m 
from Example 13.5:

DE 5 2
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2 1470 kg 2

2
3

a 1
4.22 3 107 m

2
1

6.65 3 106 m
b 5   1.19 3 1010 J

which is the energy equivalent of 89 gal of gasoline. NASA engineers must account for the changing mass of the space-
craft as it ejects burned fuel, something we have not done here. Would you expect the calculation that includes the 
effect of this changing mass to yield a greater or a lesser amount of energy required from the engine?
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Figure 13.14  An object of  
mass m projected upward from 
the Earth’s surface with an initial 
speed vi reaches a maximum  
altitude h.

Example 13.8   Escape Speed of a Rocket

Calculate the escape speed from the Earth for a 5 000-kg spacecraft and determine the kinetic energy it must have at 
the Earth’s surface to move infinitely far away from the Earth.

Pitfall Prevention 13.3
You Can’t Really Escape Although 
Equation 13.22 provides the 
“escape speed” from the Earth, 
complete escape from the Earth’s 
gravitational influence is impos-
sible because the gravitational 
force is of infinite range. 
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 Equations 13.21 and 13.22 can be applied to objects projected from any planet. 
That is, in general, the escape speed from the surface of any planet of mass M and 
radius R is

 vesc 5 Å
2GM

R
 (13.23)

 Escape speeds for the planets, the Moon, and the Sun are provided in Table 13.3. 
The values vary from 2.3 km/s for the Moon to about 618 km/s for the Sun. These 
results, together with some ideas from the kinetic theory of gases (see Chapter 21), 
explain why some planets have atmospheres and others do not. As we shall see later, 
at a given temperature the average kinetic energy of a gas molecule depends only 
on the mass of the molecule. Lighter molecules, such as hydrogen and helium, have 
a higher average speed than heavier molecules at the same temperature. When the 
average speed of the lighter molecules is not much less than the escape speed of a 
planet, a significant fraction of them have a chance to escape.
 This mechanism also explains why the Earth does not retain hydrogen mole-
cules and helium atoms in its atmosphere but does retain heavier molecules, such 
as oxygen and nitrogen. On the other hand, the very large escape speed for Jupiter 
enables that planet to retain hydrogen, the primary constituent of its atmosphere.

Black Holes
In Example 11.7, we briefly described a rare event called a supernova, the cata-
strophic explosion of a very massive star. The material that remains in the central 
core of such an object continues to collapse, and the core’s ultimate fate depends 
on its mass. If the core has a mass less than 1.4 times the mass of our Sun, it gradu-
ally cools down and ends its life as a white dwarf star. If the core’s mass is greater 
than this value, however, it may collapse further due to gravitational forces. What 

WW  Escape speed from the sur-
face of a planet of mass M 
and radius R

Conceptualize  Imagine projecting the spacecraft from the Earth’s surface so that it moves farther and farther away, 
traveling more and more slowly, with its speed approaching zero. Its speed will never reach zero, however, so the object 
will never turn around and come back.

Categorize  This example is a substitution problem.

S o l u T i o n

Use Equation 13.22 to find the escape speed: vesc 5 Å
2GME

RE
5 Å

2 16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2
6.37 3 106 m

5   1.12 3 104 m/s

Evaluate the kinetic energy of the spacecraft 
from Equation 7.16:

K 5 1
2mv2

esc 5 1
2 15.00 3 103 kg 2 11.12 3 104 m/s 22

5   3.13 3 1011 J

The calculated escape speed corresponds to about 25 000 mi/h. The kinetic energy of the spacecraft is equivalent to 
the energy released by the combustion of about 2 300 gal of gasoline.

What if you want to launch a 1 000-kg spacecraft at the escape speed? How much energy would that 
require?

Answer  In Equation 13.22, the mass of the object moving with the escape speed does not appear. Therefore, the 
escape speed for the 1 000-kg spacecraft is the same as that for the 5 000-kg spacecraft. The only change in the kinetic 
energy is due to the mass, so the 1 000-kg spacecraft requires one-fifth of the energy of the 5 000-kg spacecraft:

K 5 1
5 13.13 3 1011 J 2 5 6.25 3 1010 J

WhaT iF ?

▸ 13.8 c o n t i n u e d

Table 13.3 Escape 
Speeds from the Surfaces 
of the Planets, Moon,  
and Sun
Planet vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Moon 2.3
Sun 618
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remains is a neutron star, discussed in Example 11.7, in which the mass of a star is 
compressed to a radius of about 10 km. (On the Earth, a teaspoon of this material 
would weigh about 5 billion tons!)
 An even more unusual star death may occur when the core has a mass greater 
than about three solar masses. The collapse may continue until the star becomes 
a very small object in space, commonly referred to as a black hole. In effect, black 
holes are remains of stars that have collapsed under their own gravitational force. If 
an object such as a spacecraft comes close to a black hole, the object experiences an 
extremely strong gravitational force and is trapped forever.
 The escape speed for a black hole is very high because of the concentration of 
the star’s mass into a sphere of very small radius (see Eq. 13.23). If the escape speed 
exceeds the speed of light c, radiation from the object (such as visible light) cannot 
escape and the object appears to be black (hence the origin of the terminology 
“black hole”). The critical radius R S at which the escape speed is c is called the 
Schwarzschild radius (Fig. 13.15). The imaginary surface of a sphere of this radius 
surrounding the black hole is called the event horizon, which is the limit of how 
close you can approach the black hole and hope to escape.
 There is evidence that supermassive black holes exist at the centers of galaxies, 
with masses very much larger than the Sun. (There is strong evidence of a super-
massive black hole of mass 2–3 million solar masses at the center of our galaxy.)

Dark Matter
Equation (1) in Example 13.5 shows that the speed of an object in orbit around the 
Earth decreases as the object is moved farther away from the Earth:

 v 5 Å
GME

r
 (13.24)

Using data in Table 13.2 to find the speeds of planets in their orbits around the 
Sun, we find the same behavior for the planets. Figure 13.16 shows this behavior for 
the eight planets of our solar system. The theoretical prediction of the planet speed 
as a function of distance from the Sun is shown by the red-brown curve, using Equa-
tion 13.24 with the mass of the Earth replaced by the mass of the Sun. Data for the 
individual planets lie right on this curve. This behavior results from the vast major-
ity of the mass of the solar system being concentrated in a small space, i.e., the Sun.
 Extending this concept further, we might expect the same behavior in a galaxy. 
Much of the visible galactic mass, including that of a supermassive black hole, is 
near the central core of a galaxy. The opening photograph for this chapter shows 
the central core of the Whirlpool galaxy as a very bright area surrounded by the 
“arms” of the galaxy, which contain material in orbit around the central core. Based 
on this distribution of matter in the galaxy, the speed of an object in the outer part 
of the galaxy would be smaller than that for objects closer to the center, just like for 
the planets of the solar system.
 That is not what is observed, however. Figure 13.17 shows the results of measure-
ments of the speeds of objects in the Andromeda galaxy as a function of distance 
from the galaxy’s center.4 The red-brown curve shows the expected speeds for these 
objects if they were traveling in circular orbits around the mass concentrated in the 
central core. The data for the individual objects in the galaxy shown by the black 
dots are all well above the theoretical curve. These data, as well as an extensive 
amount of data taken over the past half century, show that for objects outside the 
central core of the galaxy, the curve of speed versus distance from the center of the 
galaxy is approximately flat rather than decreasing at larger distances. Therefore, 
these objects (including our own Solar System in the Milky Way) are rotating faster 
than can be accounted for by gravity due to the visible galaxy! This surprising 

4V. C. Rubin and W. K. Ford, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,” 
Astrophysical Journal 159: 379–403 (1970).

Event
horizon

Black
hole

RS

Any event occurring within the  
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Figure 13.15  A black hole. The 
distance RS equals the Schwarzs-
child radius.
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Figure 13.16  The orbital speed 
v as a function of distance r from 
the Sun for the eight planets of 
the solar system. The theoretical 
curve is in red-brown, and the data 
points for the planets are in black.
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result means that there must be additional mass in a more extended distribution, 
causing these objects to orbit so fast, and has led scientists to propose the existence 
of dark matter. This matter is proposed to exist in a large halo around each galaxy 
(with a radius up to 10 times as large as the visible galaxy’s radius). Because it is not 
luminous (i.e., does not emit electromagnetic radiation) it must be either very cold 
or electrically neutral. Therefore, we cannot “see” dark matter, except through its 
gravitational effects.
 The proposed existence of dark matter is also implied by earlier observations 
made on larger gravitationally bound structures known as galaxy clusters.5 These 
observations show that the orbital speeds of galaxies in a cluster are, on average, 
too large to be explained by the luminous matter in the cluster alone. The speeds 
of the individual galaxies are so high, they suggest that there is 50 times as much 
dark matter in galaxy clusters as in the galaxies themselves!
 Why doesn’t dark matter affect the orbital speeds of planets like it does those 
of a galaxy? It seems that a solar system is too small a structure to contain enough 
dark matter to affect the behavior of orbital speeds. A galaxy or galaxy cluster, on 
the other hand, contains huge amounts of dark matter, resulting in the surprising 
behavior.
 What, though, is dark matter? At this time, no one knows. One theory claims 
that dark matter is based on a particle called a weakly interacting massive particle, 
or WIMP. If this theory is correct, calculations show that about 200 WIMPs pass 
through a human body at any given time. The new Large Hadron Collider in Europe 
(see Chapter 46) is the first particle accelerator with enough energy to possibly gen-
erate and detect the existence of WIMPs, which has generated much current interest 
in dark matter. Keeping an eye on this research in the future should be exciting.

5F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophysical Journal 86: 217–246 (1937).
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Figure 13.17  The orbital speed 
v of a galaxy object as a function 
of distance r from the center of 
the central core of the Androm-
eda galaxy. The theoretical curve 
is in red-brown, and the data 
points for the galaxy objects are 
in black. No data are provided 
on the left because the behavior 
inside the central core of the gal-
axy is more complicated.

Summary

Definitions

 The gravitational field at a point in space is defined as the gravitational force F
S

g  experienced by any test particle 
located at that point divided by the mass m0 of the test particle:

 gS ;
F
S

g

m0
 (13.7)

Concepts and Principles

 Newton’s law of universal gravitation states that the 
gravitational force of attraction between any two par-
ticles of masses m1 and m2 separated by a distance r has 
the magnitude

 Fg 5 G 
m1m2

r 2  (13.1)

where G 5 6.674 3 10211 N ? m2/kg2 is the universal 
gravitational constant. This equation enables us to 
calculate the force of attraction between masses under 
many circumstances.

 An object at a distance h above the Earth’s surface 
experiences a gravitational force of magnitude mg, 
where g is the free-fall acceleration at that elevation:

 g 5
GME

r 2 5
GME

1RE 1 h 22 (13.6)

In this expression, ME is the mass of the Earth and RE  
is its radius. Therefore, the weight of an object 
decreases as the object moves away from the Earth’s 
surface.
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 Kepler’s laws of planetary motion state:

 1. All planets move in elliptical orbits with the Sun 
at one focus.

 2. The radius vector drawn from the Sun to a planet 
sweeps out equal areas in equal time intervals.

 3. The square of the orbital period of any planet is 
proportional to the cube of the semimajor axis of 
the elliptical orbit.

Kepler’s third law can be expressed as

 T 2 5 a 4p2

GMS
ba 3 (13.11)

where MS is the mass of the Sun and a is the semimajor 
axis. For a circular orbit, a can be replaced in Equation 
13.11 by the radius r. Most planets have nearly circular 
orbits around the Sun.

 The gravitational potential energy associated with a 
system of two particles of mass m1 and m2 separated by 
a distance r is

 U 5 2
Gm1m2

r
 (13.15)

where U is taken to be zero as r S .̀

 If an isolated system consists of an object of mass m 
moving with a speed v in the vicinity of a massive object 
of mass M, the total energy E of the system is the sum 
of the kinetic and potential energies:

 E 5 1
2mv2 2

GMm
r

 (13.16)

The total energy of the system is a constant of the 
motion. If the object moves in an elliptical orbit of 
semimajor axis a around the massive object and  
M .. m, the total energy of the system is

 E 5 2
GMm

2a
 (13.20)

For a circular orbit, this same equation applies with  
a 5 r.

 The escape speed for an object projected from the 
surface of a planet of mass M and radius R is

 vesc 5 Å
2GM

R
 (13.23)

Analysis Model for Problem Solving

 Particle in a Field (Gravitational) A source particle with some mass establishes a gravitational 
field gS throughout space. When a particle of mass m is placed in that field, it experiences a gravita-
tional force given by

 F
S

g 5 mgS  (5.5)

mgS 

Fg � mg
S S

true? (a) No force acts on the satellite. (b) The satellite 
moves at constant speed and hence doesn’t accelerate. 
(c) The satellite has an acceleration directed away from 
the Earth. (d) The satellite has an acceleration directed 
toward the Earth. (e) Work is done on the satellite by 
the gravitational force.

 4. Suppose the gravitational acceleration at the surface 
of a certain moon A of Jupiter is 2 m/s2. Moon B has 
twice the mass and twice the radius of moon A. What 
is the gravitational acceleration at its surface? Neglect 
the gravitational acceleration due to Jupiter. (a) 8 m/s2 
(b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2

 1. A system consists of five particles. How many terms 
appear in the expression for the total gravitational 
potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 
(e) 25

 2. Rank the following quantities of energy from largest to 
smallest. State if any are equal. (a) the absolute value 
of the average potential energy of the Sun–Earth sys-
tem (b) the average kinetic energy of the Earth in its 
orbital motion relative to the Sun (c) the absolute value 
of the total energy of the Sun–Earth system

 3. A satellite moves in a circular orbit at a constant speed 
around the Earth. Which of the following statements is 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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September (autumnal) equinox (which contains the 
summer solstice) longer than the interval from the 
September to the March equinox rather than being 
equal to that interval? Choose one of the following 
reasons. (a) They are really the same, but the Earth 
spins faster during the “summer” interval, so the 
days are shorter. (b) Over the “summer” interval, the 
Earth moves slower because it is farther from the Sun. 
(c) Over the March-to-September interval, the Earth 
moves slower because it is closer to the Sun. (d) The 
Earth has less kinetic energy when it is warmer. 
(e)  The Earth has less orbital angular momentum 
when it is warmer.

 9. Rank the magnitudes of the following gravitational 
forces from largest to smallest. If two forces are equal, 
show their equality in your list. (a) the force exerted by 
a 2-kg object on a 3-kg object 1 m away (b) the force 
exerted by a 2-kg object on a 9-kg object 1 m away  
(c) the force exerted by a 2-kg object on a 9-kg object  
2 m away (d) the force exerted by a 9-kg object on a 
2-kg object 2 m away (e) the force exerted by a 4-kg 
object on another 4-kg object 2 m away

 10. The gravitational force exerted on an astronaut on 
the Earth’s surface is 650 N directed downward. When 
she is in the space station in orbit around the Earth, 
is the gravitational force on her (a) larger, (b) exactly 
the same, (c) smaller, (d) nearly but not exactly zero, or  
(e) exactly zero?

 11. Halley’s comet has a period of approximately 76 years, 
and it moves in an elliptical orbit in which its distance 
from the Sun at closest approach is a small fraction of 
its maximum distance. Estimate the comet’s maximum 
distance from the Sun in astronomical units (AUs) 
(the distance from the Earth to the Sun). (a) 6 AU  
(b) 12 AU (c) 20 AU (d) 28 AU (e) 35 AU

 5. Imagine that nitrogen and other atmospheric gases 
were more soluble in water so that the atmosphere of 
the Earth is entirely absorbed by the oceans. Atmo-
spheric pressure would then be zero, and outer space 
would start at the planet’s surface. Would the Earth 
then have a gravitational field? (a) Yes, and at the sur-
face it would be larger in magnitude than 9.8 N/kg. 
(b) Yes, and it would be essentially the same as the 
current value. (c) Yes, and it would be somewhat less 
than 9.8 N/kg. (d) Yes, and it would be much less than  
9.8 N/kg. (e) No, it would not.

 6. An object of mass m is located on the surface of a 
spherical planet of mass M and radius R . The escape 
speed from the planet does not depend on which 
of the following? (a) M (b) m (c) the density of the 
planet (d) R (e) the acceleration due to gravity on 
that planet

 7. A satellite originally moves in a circular orbit of radius 
R around the Earth. Suppose it is moved into a circu-
lar orbit of radius 4R . (i) What does the force exerted 
on the satellite then become? (a) eight times larger  
(b) four times larger (c) one-half as large (d) one-
eighth as large (e)  one-sixteenth as large (ii) What 
happens to the satellite’s speed? Choose from the 
same possibilities (a) through (e). (iii)  What hap-
pens to its period? Choose from the same possibilities  
(a) through (e).

 8. The vernal equinox and the autumnal equinox are 
associated with two points 180° apart in the Earth’s 
orbit. That is, the Earth is on precisely opposite sides 
of the Sun when it passes through these two points. 
From the vernal equinox, 185.4 days elapse before 
the autumnal equinox. Only 179.8  days elapse from 
the autumnal equinox until the next vernal equinox. 
Why is the interval from the March (vernal) to the 

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Each Voyager spacecraft was accelerated toward escape 
speed from the Sun by the gravitational force exerted by 
Jupiter on the spacecraft. (a) Is the gravitational force 
a conservative or a nonconservative force? (b) Does the 
interaction of the spacecraft with Jupiter meet the defi-
nition of an elastic collision? (c) How could the space-
craft be moving faster after the collision?

 2. In his 1798 experiment, Cavendish was said to have 
“weighed the Earth.” Explain this statement.

 3. Why don’t we put a geosynchronous weather satellite in 
orbit around the 45th parallel? Wouldn’t such a satel-
lite be more useful in the United States than one in 
orbit around the equator?

 4. (a) Explain why the force exerted on a particle by a 
uniform sphere must be directed toward the center 
of the sphere. (b) Would this statement be true if the 
mass distribution of the sphere were not spherically 
symmetric? Explain.

 5. (a) At what position in its elliptical orbit is the speed of 
a planet a maximum? (b) At what position is the speed 
a minimum?

 6. You are given the mass and radius of planet X. How 
would you calculate the free-fall acceleration on this 
planet’s surface?

 7. (a) If a hole could be dug to the center of the Earth, 
would the force on an object of mass m still obey Equa-
tion 13.1 there? (b) What do you think the force on m 
would be at the center of the Earth?

 8. Explain why it takes more fuel for a spacecraft to travel 
from the Earth to the Moon than for the return trip. 
Estimate the difference.

 9. A satellite in low-Earth orbit is not truly traveling 
through a vacuum. Rather, it moves through very thin 
air. Does the resulting air friction cause the satellite to 
slow down?
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magnitude of the gravitational force exerted by one 
particle on the other?

 8. Why is the following situation impossible? The centers of two 
homogeneous spheres are 1.00 m apart. The spheres 
are each made of the same element from the peri- 
odic table. The gravitational force between the spheres 
is 1.00 N.

 9. Two objects attract each other with a gravitational 
force of magnitude 1.00 3 1028 N when separated by 
20.0 cm. If the total mass of the two objects is 5.00 kg, 
what is the mass of each?

 10. Review. A student proposes to study the gravita-
tional force by suspending two 100.0-kg spherical 
objects at the lower ends of cables from the ceiling 
of a tall cathedral and measuring the deflection of 
the cables from the vertical. The 45.00-m-long cables 
are attached to the ceiling 1.000 m apart. The first 
object is suspended, and its position is carefully mea-
sured. The second object is suspended, and the two 
objects attract each other gravitationally. By what dis-
tance has the first object moved horizontally from its 
initial position due to the gravitational attraction to 
the other object? Suggestion: Keep in mind that this 
distance will be very small and make appropriate 
approximations.

Section 13.2 Free-Fall acceleration and  
the Gravitational Force

 11. When a falling meteoroid is at a distance above the 
Earth’s surface of 3.00 times the Earth’s radius, what is 
its acceleration due to the Earth’s gravitation?

 12. The free-fall acceleration on the surface of the Moon 
is about one-sixth that on the surface of the Earth. 
The radius of the Moon is about 0.250RE (RE 5 Earth’s 
radius 5 6.37 3 106 m). Find the ratio of their average 
densities, rMoon/rEarth.

 13. Review. Miranda, a satellite of Uranus, is shown in Fig-
ure P13.13a. It can be modeled as a sphere of radius 
242 km and mass 6.68 3 1019 kg. (a) Find the free-fall 
acceleration on its surface. (b) A cliff on Miranda is 
5.00 km high. It appears on the limb at the 11 o’clock 
position in Figure P13.13a and is magnified in Figure 
P13.13b. If a devotee of extreme sports runs horizon-
tally off the top of the cliff at 8.50 m/s, for what time 
interval is he in flight? (c) How far from the base of the 
vertical cliff does he strike the icy surface of Miranda? 
(d) What will be his vector impact velocity?

W

M

W

Section 13.1 newton’s law of universal Gravitation

Problem 12 in Chapter 1 can also be assigned with this 
section.

 1. In introductory physics laboratories, a typical Caven-
dish balance for measuring the gravitational constant 
G uses lead spheres with masses of 1.50 kg and 15.0 g 
whose centers are separated by about 4.50 cm. Calcu-
late the gravitational force between these spheres, treat-
ing each as a particle located at the sphere’s center.

 2. Determine the order of magnitude of the gravitational 
force that you exert on another person 2 m away. In 
your solution, state the quantities you measure or esti-
mate and their values.

 3. A 200-kg object and a 500-kg object are separated by 
4.00  m. (a) Find the net gravitational force exerted 
by these objects on a 50.0-kg object placed midway 
between them. (b) At what position (other than an infi-
nitely remote one) can the 50.0-kg object be placed so 
as to experience a net force of zero from the other two 
objects?

 4. During a solar eclipse, the Moon, the Earth, and the 
Sun all lie on the same line, with the Moon between 
the Earth and the Sun. (a) What force is exerted by 
the Sun on the Moon? (b) What force is exerted by the 
Earth on the Moon? (c) What force is exerted by the 
Sun on the Earth? (d) Compare the answers to parts 
(a) and (b). Why doesn’t the Sun capture the Moon 
away from the Earth?

 5. Two ocean liners, each with a mass of 40 000 metric 
tons, are moving on parallel courses 100 m apart. What 
is the magnitude of the acceleration of one of the lin-
ers toward the other due to their mutual gravitational 
attraction? Model the ships as particles.

 6. Three uniform spheres of 
masses m1 5 2.00 kg, m2 5 
4.00  kg, and m3 5 6.00 kg 
are placed at the corners of 
a right triangle as shown in 
Figure P13.6. Calculate the 
resultant gravitational force 
on the object of mass m2, 
assuming the spheres are 
isolated from the rest of the 
Universe.

 7. Two identical isolated particles, each of mass 2.00 kg, 
are separated by a distance of 30.0 cm. What is the 
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The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign
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tional fields acting on the occupants in the nose of the 
ship and on those in the rear of the ship, farthest from 
the black hole? (This difference in accelerations grows 
rapidly as the ship approaches the black hole. It puts 
the body of the ship under extreme tension and even-
tually tears it apart.)

10.0 km100 m

Black hole

Figure P13.16

Section 13.4 Kepler’s laws and the Motion of Planets

 17. An artificial satellite circles the Earth in a circular orbit 
at a location where the acceleration due to gravity is  
9.00 m/s2. Determine the orbital period of the satellite.

 18. Io, a satellite of Jupiter, has an orbital period of 1.77 days  
and an orbital radius of 4.22 3 105 km. From these 
data, determine the mass of Jupiter.

 19. A minimum-energy transfer orbit to an outer planet 
consists of putting a spacecraft on an elliptical trajec-
tory with the departure planet corresponding to the 
perihelion of the ellipse, or the closest point to the Sun, 
and the arrival planet at the aphelion, or the farthest 
point from the Sun. (a) Use Kepler’s third law to calcu-
late how long it would take to go from Earth to Mars on 
such an orbit as shown in Figure P13.19. (b) Can such 
an orbit be undertaken at any time? Explain.

Sun

Earth orbit

Mars orbit
Transfer orbit

Arrival at
Mars

Launch from
the Earth

Figure P13.19

 20. A particle of mass m moves along a straight line with 
constant velocity vS0 in the x direction, a distance b from 
the x axis (Fig. P13.20). (a) Does the particle possess any 
angular momentum about the origin? (b) Explain why 
the amount of its angular momentum should change or 
should stay constant. (c) Show that Kepler’s second law 
is satisfied by showing that the two shaded triangles in 
the figure have the same area when tD 2 tC 5 tB 2 tA.

Q/C

Q/C
S

Section 13.3  analysis Model: Particle in a Field (Gravitational)

 14. (a) Compute the vector gravitational field at a point P 
on the perpendicular bisector of the line joining two 
objects of equal mass separated by a distance 2a as 
shown in Figure P13.14. (b) Explain physically why the 
field should approach zero as r S 0. (c) Prove math-
ematically that the answer to part (a) behaves in this 
way. (d) Explain physically why the magnitude of the 
field should approach 2GM/r 2 as r S .̀ (e) Prove math-
ematically that the answer to part (a) behaves correctly 
in this limit.

a

M

M

Pr

a

Figure P13.14

 15. Three objects of equal mass are located at three cor-
ners of a square of edge length , as shown in Figure 
P13.15. Find the magnitude and direction of the gravi-
tational field at the fourth corner due to these objects.
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Figure P13.15

 16. A spacecraft in the shape of a long cylinder has a length 
of 100 m, and its mass with occupants is 1 000 kg.  
It has strayed too close to a black hole having a mass 
100 times that of the Sun (Fig. P13.16). The nose of 
the spacecraft points toward the black hole, and the 
distance between the nose and the center of the black 
hole is 10.0 km. (a) Determine the total force on the 
spacecraft. (b) What is the difference in the gravita-
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 21. Plaskett’s binary system consists of two stars that revolve 
in a circular orbit about a center of mass midway between 
them. This statement implies that the masses of the two 
stars are equal (Fig. P13.21). Assume the orbital speed 
of each star is 0 vS 0  5 220 km/s and the orbital period 
of each is 14.4 days. Find the mass M of each star. (For 
comparison, the mass of our Sun is 1.99 3 1030 kg.)

M

M

CM

vS

vS

Figure P13.21

 22. Two planets X and Y travel counterclockwise in circu-
lar orbits about a star as shown in Figure P13.22. The 
radii of their orbits are in the ratio 3:1. At one moment, 
they are aligned as shown in Figure P13.22a, making a 
straight line with the star. During the next five years, 
the angular displacement of planet X is 90.0° as shown 
in Figure P13.22b. What is the angular displacement of 
planet Y at this moment?

X

Y

X

a b

Y

Figure P13.22

 23. Comet Halley (Fig. P13.23) approaches the Sun to 
within 0.570 AU, and its orbital period is 75.6 yr. (AU is 
the symbol for astronomical unit, where 1 AU 5 1.50 3 
1011 m is the mean Earth–Sun distance.) How far from 
the Sun will Halley’s comet travel before it starts its 
return journey?

Sun

0.570 AU

2a

x

Figure P13.23 (Orbit is not drawn 
to scale.)

 24. The Explorer VIII satellite, placed into orbit November 3,  
1960, to investigate the ionosphere, had the following 

M

W

orbit parameters: perigee, 459 km; apogee, 2 289 km 
(both distances above the Earth’s surface); period, 
112.7 min. Find the ratio vp/va of the speed at perigee to 
that at apogee.

 25. Use Kepler’s third law to determine how many days it 
takes a spacecraft to travel in an elliptical orbit from a 
point 6 670 km from the Earth’s center to the Moon, 
385 000 km from the Earth’s center.

 26. Neutron stars are extremely dense objects formed from 
the remnants of supernova explosions. Many rotate 
very rapidly. Suppose the mass of a certain spherical 
neutron star is twice the mass of the Sun and its radius 
is 10.0 km. Determine the greatest possible angular 
speed it can have so that the matter at the surface of 
the star on its equator is just held in orbit by the gravi-
tational force.

 27. A synchronous satellite, which always remains above 
the same point on a planet’s equator, is put in orbit 
around Jupiter to study that planet’s famous red spot. 
Jupiter rotates once every 9.84 h. Use the data of Table 
13.2 to find the altitude of the satellite above the sur-
face of the planet.

 28. (a) Given that the period of the Moon’s orbit about the 
Earth is 27.32 days and the nearly constant distance 
between the center of the Earth and the center of the 
Moon is 3.84 3 108 m, use Equation 13.11 to calculate 
the mass of the Earth. (b) Why is the value you calcu-
late a bit too large?

 29. Suppose the Sun’s gravity were switched off. The plan-
ets would leave their orbits and fly away in straight lines 
as described by Newton’s first law. (a) Would Mercury 
ever be farther from the Sun than Pluto? (b) If so, find 
how long it would take Mercury to achieve this passage. 
If not, give a convincing argument that Pluto is always 
farther from the Sun than is Mercury.

Section 13.5  Gravitational Potential Energy

Note: In Problems 30 through 50, assume U 5 0 at r 5 .̀

 30. A satellite in Earth orbit has a mass of 100 kg and is 
at an altitude of 2.00 3 106 m. (a) What is the poten-
tial energy of the satellite–Earth system? (b) What is 
the magnitude of the gravitational force exerted by the 
Earth on the satellite? (c) What If? What force, if any, 
does the satellite exert on the Earth?

 31. How much work is done by the Moon’s gravitational 
field on a 1 000-kg meteor as it comes in from outer 
space and impacts on the Moon’s surface?

 32. How much energy is required to move a 1 000-kg 
object from the Earth’s surface to an altitude twice the 
Earth’s radius?

 33. After the Sun exhausts its nuclear fuel, its ultimate fate 
will be to collapse to a white dwarf state. In this state, 
it would have approximately the same mass as it has 
now, but its radius would be equal to the radius of the 
Earth. Calculate (a) the average density of the white 
dwarf, (b) the surface free-fall acceleration, and (c) the 

W

Q/C

Q/C

W



 problems 413

sphere will produce only a beautiful meteor shower. The 
astronaut finds that the density of the spherical asteroid 
is equal to the average density of the Earth. To ensure its 
pulverization, she incorporates into the explosives the 
rocket fuel and oxidizer intended for her return journey. 
What maximum radius can the asteroid have for her to 
be able to leave it entirely simply by jumping straight up? 
On Earth she can jump to a height of 0.500 m.

 42. Derive an expression for the work required to move an 
Earth satellite of mass m from a circular orbit of radius 
2RE to one of radius 3RE.

 43. (a) Determine the amount of work that must be done 
on a 100-kg payload to elevate it to a height of 1 000 km 
above the Earth’s surface. (b) Determine the amount 
of additional work that is required to put the payload 
into circular orbit at this elevation.

 44. (a) What is the minimum speed, relative to the Sun, 
necessary for a spacecraft to escape the solar system if 
it starts at the Earth’s orbit? (b) Voyager 1 achieved a 
maximum speed of 125 000 km/h on its way to pho-
tograph Jupiter. Beyond what distance from the Sun is 
this speed sufficient to escape the solar system?

 45. A satellite of mass 200 kg is placed into Earth orbit 
at a height of 200 km above the surface. (a) Assum-
ing a circular orbit, how long does the satellite take to 
complete one orbit? (b) What is the satellite’s speed?  
(c) Starting from the satellite on the Earth’s surface, 
what is the minimum energy input necessary to place 
this satellite in orbit? Ignore air resistance but include 
the effect of the planet’s daily rotation.

 46. A satellite of mass m, originally on the surface of 
the Earth, is placed into Earth orbit at an altitude h.  
(a) Assuming a circular orbit, how long does the sat-
ellite take to complete one orbit? (b) What is the sat-
ellite’s speed? (c) What is the minimum energy input 
necessary to place this satellite in orbit? Ignore air 
resistance but include the effect of the planet’s daily 
rotation. Represent the mass and radius of the Earth as 
ME and RE, respectively.

 47. Ganymede is the largest of Jupiter’s moons. Consider 
a rocket on the surface of Ganymede, at the point far-
thest from the planet (Fig. P13.47). Model the rocket as 
a particle. (a) Does the presence of Ganymede make 
Jupiter exert a larger, smaller, or same size force on the 
rocket compared with the force it would exert if Gany-
mede were not interposed? (b) Determine the escape 
speed for the rocket from the planet–satellite system. 
The radius of Ganymede is 2.64 3 106 m, and its mass 
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gravitational potential energy associated with a 1.00-kg  
object at the surface of the white dwarf.

 34. An object is released from rest at an altitude h above the 
surface of the Earth. (a) Show that its speed at a distance 
r from the Earth’s center, where RE # r # RE 1 h, is

v 5 Å2GME a1
r

2
1

R E 1 h
b

  (b) Assume the release altitude is 500 km. Perform the 
integral

Dt 5 3
f

i
dt 5 2 3

f

i

dr
v

  to find the time of fall as the object moves from the 
release point to the Earth’s surface. The negative sign 
appears because the object is moving opposite to the 
radial direction, so its speed is v 5 2dr/dt. Perform the 
integral numerically.

 35. A system consists of three particles, each of mass 5.00 g, 
located at the corners of an equilateral triangle with 
sides of 30.0 cm. (a) Calculate the potential energy 
of the system. (b) Assume the particles are released 
simultaneously. Describe the subsequent motion of 
each. Will any collisions take place? Explain.

Section 13.6  Energy Considerations in Planetary  
and Satellite Motion
 36. A space probe is fired as a projectile from the Earth’s 

surface with an initial speed of 2.00 3 104 m/s. What will 
its speed be when it is very far from the Earth? Ignore 
atmospheric friction and the rotation of the Earth.

 37. A 500-kg satellite is in a circular orbit at an altitude of 
500 km above the Earth’s surface. Because of air fric-
tion, the satellite eventually falls to the Earth’s surface, 
where it hits the ground with a speed of 2.00 km/s. How 
much energy was transformed into internal energy by 
means of air friction?

 38. A “treetop satellite” moves in a circular orbit just above 
the surface of a planet, assumed to offer no air resis-
tance. Show that its orbital speed v and the escape speed 
from the planet are related by the expression vesc 5 !2v.

 39. A 1 000-kg satellite orbits the Earth at a constant alti-
tude of 100 km. (a) How much energy must be added 
to the system to move the satellite into a circular orbit 
with altitude 200 km? What are the changes in the sys-
tem’s (b) kinetic energy and (c) potential energy?

 40. A comet of mass 1.20 3 1010 kg moves in an elliptical 
orbit around the Sun. Its distance from the Sun ranges 
between 0.500 AU and 50.0 AU. (a) What is the eccen-
tricity of its orbit? (b) What is its period? (c) At aphelion, 
what is the potential energy of the comet–Sun system?  
Note: 1 AU 5 one astronomical unit 5 the average dis-
tance from the Sun to the Earth 5 1.496 3 1011 m.

 41. An asteroid is on a collision course with Earth. An astro-
naut lands on the rock to bury explosive charges that 
will blow the asteroid apart. Most of the small fragments 
will miss the Earth, and those that fall into the atmo-
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around the hub axis, which is connected to the rest of 
the spacecraft to generate artificial gravity in the cab-
ins. A space traveler lies in a bed parallel to the outer 
wall as shown in Figure P13.56. (a) With r 5 10.0 m, 
what would the angular speed of the 60.0-kg traveler 
need to be if he is to experience half his normal Earth 
weight? (b) If the astronaut stands up perpendicular 
to the bed, without holding on to anything with his 
hands, will his head be moving at a faster, a slower, or 
the same tangential speed as his feet? Why? (c) Why is 
the action in part (b) dangerous?

r

ω

Figure P13.56

 57. (a) A space vehicle is launched vertically upward from 
the Earth’s surface with an initial speed of 8.76 km/s, 
which is less than the escape speed of 11.2 km/s. What 
maximum height does it attain? (b) A meteoroid falls 
toward the Earth. It is essentially at rest with respect to 
the Earth when it is at a height of 2.51 3 107 m above 
the Earth’s surface. With what speed does the meteor-
ite (a meteoroid that survives to impact the Earth’s sur-
face) strike the Earth?

 58. (a) A space vehicle is launched vertically upward from 
the Earth’s surface with an initial speed of vi that is 
comparable to but less than the escape speed vesc. What 
maximum height does it attain? (b) A meteoroid falls 
toward the Earth. It is essentially at rest with respect 
to the Earth when it is at a height h above the Earth’s 
surface. With what speed does the meteorite (a meteor-
oid that survives to impact the Earth’s surface) strike 
the Earth? (c) What If? Assume a baseball is tossed up 
with an initial speed that is very small compared to the 
escape speed. Show that the result from part (a) is con-
sistent with Equation 4.12.

 59. Assume you are agile enough to run across a horizon-
tal surface at 8.50 m/s, independently of the value of 
the gravitational field. What would be (a) the radius 
and (b)  the mass of an airless spherical asteroid of 
uniform density 1.10 3 103 kg/m3 on which you could 
launch yourself into orbit by running? (c) What would 
be your period? (d) Would your running significantly 
affect the rotation of the asteroid? Explain.

 60. Two spheres having masses M and 2M and radii R and 
3R, respectively, are simultaneously released from 
rest when the distance between their centers is 12R. 
Assume the two spheres interact only with each other 
and we wish to find the speeds with which they collide. 
(a) What two isolated system models are appropriate for 
this system? (b) Write an equation from one of the mod-
els and solve it for vS1, the velocity of the sphere of mass 
M at any time after release in terms of vS2, the veloc-
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is 1.495 3 1023 kg. The distance between Jupiter and 
Ganymede is 1.071 3 109 m, and the mass of Jupiter is 
1.90 3 1027 kg. Ignore the motion of Jupiter and Gany-
mede as they revolve about their center of mass.

 48. A satellite moves around the Earth in a circular orbit 
of radius r. (a) What is the speed vi of the satellite?  
(b) Suddenly, an explosion breaks the satellite into 
two pieces, with masses m and 4m. Immediately after 
the explosion, the smaller piece of mass m is stationary 
with respect to the Earth and falls directly toward the 
Earth. What is the speed v of the larger piece immedi-
ately after the explosion? (c) Because of the increase in 
its speed, this larger piece now moves in a new ellipti-
cal orbit. Find its distance away from the center of the 
Earth when it reaches the other end of the ellipse.

 49. At the Earth’s surface, a projectile is launched straight 
up at a speed of 10.0 km/s. To what height will it rise? 
Ignore air resistance.

additional Problems

 50. A rocket is fired straight up through the atmosphere 
from the South Pole, burning out at an altitude of  
250 km when traveling at 6.00 km/s. (a) What maxi-
mum distance from the Earth’s surface does it travel 
before falling back to the Earth? (b) Would its maxi-
mum distance from the surface be larger if the same 
rocket were fired with the same fuel load from a launch 
site on the equator? Why or why not?

 51. Review. A cylindrical habitat in space 6.00 km in diam-
eter and 30.0 km long has been proposed (by G. K. 
O’Neill, 1974). Such a habitat would have cities, land, 
and lakes on the inside surface and air and clouds in 
the center. They would all be held in place by rotation 
of the cylinder about its long axis. How fast would the 
cylinder have to rotate to imitate the Earth’s gravita-
tional field at the walls of the cylinder?

 52. Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s 
moon Io and photographed active volcanoes spewing 
liquid sulfur to heights of 70 km above the surface of 
this moon. Find the speed with which the liquid sul-
fur left the volcano. Io’s mass is 8.9 3 1022 kg, and its 
radius is 1 820 km.

 53. A satellite is in a circular orbit around the Earth at an 
altitude of 2.80 3 106 m. Find (a) the period of the 
orbit, (b) the speed of the satellite, and (c) the accel-
eration of the satellite.

 54. Why is the following situation impossible? A spacecraft is 
launched into a circular orbit around the Earth and 
circles the Earth once an hour.

 55. Let DgM represent the difference in the gravitational 
fields produced by the Moon at the points on the 
Earth’s surface nearest to and farthest from the Moon. 
Find the fraction DgM/g, where g is the Earth’s gravi-
tational field. (This difference is responsible for the 
occurrence of the lunar tides on the Earth.)

 56. A sleeping area for a long space voyage consists of two 
cabins each connected by a cable to a central hub as 
shown in Figure P13.56. The cabins are set spinning 
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potential energy of the object–ring system when the 
object is at A. (b) Calculate the gravitational potential 
energy of the system when the object is at B. (c) Calcu-
late the speed of the object as it passes through B.

 64. A spacecraft of mass 1.00 3 104 kg is in a circular orbit 
at an altitude of 500 km above the Earth’s surface. Mis-
sion Control wants to fire the engines in a direction 
tangent to the orbit so as to put the spacecraft in an 
elliptical orbit around the Earth with an apogee of 
2.00 3 104 km, measured from the Earth’s center. How 
much energy must be used from the fuel to achieve 
this orbit? (Assume that all the fuel energy goes into 
increasing the orbital energy. This model will give a 
lower limit to the required energy because some of the 
energy from the fuel will appear as internal energy in 
the hot exhaust gases and engine parts.)

 65. Review. As an astronaut, you observe a small planet 
to be spherical. After landing on the planet, you set 
off, walking always straight ahead, and find yourself 
returning to your spacecraft from the opposite side 
after completing a lap of 25.0 km. You hold a hammer 
and a falcon feather at a height of 1.40 m, release them, 
and observe that they fall together to the surface in 
29.2 s. Determine the mass of the planet.

 66. A certain quaternary star system consists of three stars, 
each of mass m, moving in the same circular orbit 
of radius r about a central star of mass M. The stars 
orbit in the same sense and are positioned one-third 
of a revolution apart from one another. Show that the 
period of each of the three stars is given by

T 5 2p Å
r 3

G 1M 1 m/"3 2
 67. Studies of the relationship of the Sun to our galaxy—

the Milky Way—have revealed that the Sun is located 
near the outer edge of the galactic disc, about 30 000 ly  
(1 ly 5 9.46 3 1015 m) from the center. The Sun has 
an orbital speed of approximately 250 km/s around 
the galactic center. (a) What is the period of the Sun’s 
galactic motion? (b) What is the order of magnitude of 
the mass of the Milky Way galaxy? (c) Suppose the gal-
axy is made mostly of stars of which the Sun is typical. 
What is the order of magnitude of the number of stars 
in the Milky Way?

 68. Review. Two identical hard spheres, each of mass m 
and radius r, are released from rest in otherwise empty 
space with their centers separated by the distance R. 
They are allowed to collide under the influence of 
their gravitational attraction. (a) Show that the mag-
nitude of the impulse received by each sphere before 
they make contact is given by [Gm3(1/2r 2 1/R)]1/2. 
(b) What If? Find the magnitude of the impulse each 
receives during their contact if they collide elastically.

 69. The maximum distance from the Earth to the Sun (at 
aphelion) is 1.521 3 1011 m, and the distance of closest 
approach (at perihelion) is 1.471 3 1011 m. The Earth’s 
orbital speed at perihelion is 3.027 3 104 m/s. Deter-
mine (a) the Earth’s orbital speed at aphelion and the 
kinetic and potential energies of the Earth–Sun system 

AMT

S

S

ity of 2M. (c) Write an equation from the other model 
and solve it for speed v1 in terms of speed v2 when the 
spheres collide. (d) Combine the two equations to find 
the two speeds v1 and v2 when the spheres collide.

 61. Two hypothetical planets of masses m1 and m2 and 
radii r1 and r2, respectively, are nearly at rest when they 
are an infinite distance apart. Because of their gravi-
tational attraction, they head toward each other on a 
collision course. (a) When their center-to-center separa-
tion is d, find expressions for the speed of each planet 
and for their relative speed. (b) Find the kinetic ener-
gy of each planet just before they collide, taking m1 5  
2.00 3 1024 kg, m2 5 8.00 3 1024 kg, r1 5 3.00 3 106 m,  
and r2 5 5.00 3 106 m. Note: Both the energy and mo-
mentum of the isolated two-planet system are constant.

 62. (a) Show that the rate of change of the free-fall accel-
eration with vertical position near the Earth’s surface is

dg

dr
5 2

2GME

R E
3

  This rate of change with position is called a gradient. 
(b) Assuming h is small in comparison to the radius of 
the Earth, show that the difference in free-fall accel-
eration between two points separated by vertical dis-
tance h is

0Dg 0 5
2GMEh

R E
3

  (c) Evaluate this difference for h 5 6.00 m, a typical 
height for a two-story building.

 63. A ring of matter is a familiar structure in planetary and 
stellar astronomy. Examples include Saturn’s rings and 
a ring nebula. Consider a uniform ring of mass 2.36 3  
1020  kg and radius 1.00 3 108 m. An object of mass  
1 000 kg is placed at a point A on the axis of the ring, 
2.00 3 108 m from the center of the ring (Fig. P13.63). 
When the object is released, the attraction of the ring 
makes the object move along the axis toward the cen-
ter of the ring (point B). (a) Calculate the gravitational 
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particles, isolated from the rest of the Universe. (a) Find 
the magnitude of the acceleration arel with which each 
starts to move relative to the other as a function of m. 
Evaluate the acceleration (b) for m 5 5.00 kg, (c) for m 5  
2 000 kg, and (d) for m 5 2.00 3 1024 kg. (e) Describe 
the pattern of variation of arel with m.

 77. As thermonuclear fusion proceeds in its core, the Sun 
loses mass at a rate of 3.64 3 109 kg/s. During the  
5 000-yr period of recorded history, by how much has 
the length of the year changed due to the loss of mass 
from the Sun? Suggestions: Assume the Earth’s orbit is 
circular. No external torque acts on the Earth–Sun 
system, so the angular momentum of the Earth is 
constant.

Challenge Problems

 78. The Solar and Heliospheric Observatory (SOHO) 
spacecraft has a special orbit, located between the 
Earth and the Sun along the line joining them, and 
it is always close enough to the Earth to transmit data 
easily. Both objects exert gravitational forces on the 
observatory. It moves around the Sun in a near-circular  
orbit that is smaller than the Earth’s circular orbit. Its 
period, however, is not less than 1 yr but just equal to  
1 yr. Show that its distance from the Earth must be  
1.48 3 109 m. In 1772, Joseph Louis Lagrange deter-
mined theoretically the special location allowing this 
orbit. Suggestions: Use data that are precise to four dig-
its. The mass of the Earth is 5.974 3 1024 kg. You will 
not be able to easily solve the equation you generate; 
instead, use a computer to verify that 1.48 3 109 m is 
the correct value.

 79. The oldest artificial satellite still in orbit is Vanguard I, 
launched March 3, 1958. Its mass is 1.60 kg. Neglecting 
atmospheric drag, the satellite would still be in its ini-
tial orbit, with a minimum distance from the center of 
the Earth of 7.02 Mm and a speed at this perigee point 
of 8.23 km/s. For this orbit, find (a) the total energy of  
the satellite–Earth system and (b) the magnitude of 
the angular momentum of the satellite. (c) At apo-
gee, find the satellite’s speed and its distance from the 
center of the Earth. (d) Find the semimajor axis of its 
orbit. (e) Determine its period.

 80. A spacecraft is approaching Mars after a long trip 
from the Earth. Its velocity is such that it is traveling 
along a parabolic trajectory under the influence of the 
gravitational force from Mars. The distance of closest 
approach will be 300 km above the Martian surface. At 
this point of closest approach, the engines will be fired 
to slow down the spacecraft and place it in a circular 
orbit 300 km above the surface. (a) By what percentage 
must the speed of the spacecraft be reduced to achieve 
the desired orbit? (b) How would the answer to part 
(a) change if the distance of closest approach and the 
desired circular orbit altitude were 600 km instead of 
300 km? (Note: The energy of the spacecraft–Mars sys-
tem for a parabolic orbit is E 5 0.)

(b) at perihelion and (c) at aphelion. (d) Is the total 
energy of the system constant? Explain. Ignore the 
effect of the Moon and other planets.

 70. Many people assume air resistance acting on a mov-
ing object will always make the object slow down. It 
can, however, actually be responsible for making the 
object speed up. Consider a 100-kg Earth satellite in 
a circular orbit at an altitude of 200 km. A small force 
of air resistance makes the satellite drop into a circu-
lar orbit with an altitude of 100 km. (a) Calculate the 
satellite’s initial speed. (b) Calculate its final speed 
in this process. (c) Calculate the initial energy of the  
satellite–Earth system. (d) Calculate the final energy 
of the system. (e) Show that the system has lost 
mechanical energy and find the amount of the loss 
due to friction. (f) What force makes the satellite’s 
speed increase? Hint: You will find a free-body dia-
gram useful in explaining your answer.

 71. X-ray pulses from Cygnus X-1, the first black hole to 
be identified and a celestial x-ray source, have been 
recorded during high-altitude rocket flights. The sig-
nals can be interpreted as originating when a blob 
of ionized matter orbits a black hole with a period of  
5.0 ms. If the blob is in a circular orbit about a black 
hole whose mass is 20MSun, what is the orbit radius?

 72. Show that the minimum period for a satellite in orbit 
around a spherical planet of uniform density r is

Tmin 5 Å
3p

Gr

  independent of the planet’s radius.

 73. Astronomers detect a distant meteoroid moving along 
a straight line that, if extended, would pass at a dis-
tance 3RE from the center of the Earth, where RE is the 
Earth’s radius. What minimum speed must the meteor-
oid have if it is not to collide with the Earth?

 74. Two stars of masses M and 
m, separated by a distance 
d, revolve in circular orbits 
about their center of mass 
(Fig. P13.74). Show that each 
star has a period given by

T 2 5
4p2d 3

G 1M 1 m 2
 75. Two identical particles, each 

of mass 1 000 kg, are coast-
ing in free space along the same path, one in front of 
the other by 20.0 m. At the instant their separation 
distance has this value, each particle has precisely the 
same velocity of 800  î m/s. What are their precise veloc-
ities when they are 2.00 m apart?

 76. Consider an object of mass m, not necessarily small  
compared with the mass of the Earth, released at a dis-
tance of 1.20 3 107 m from the center of the Earth. 
Assume the Earth and the object behave as a pair of 
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Fish congregate around a reef in 
Hawaii searching for food. How do 
fish such as the lined butterflyfish 
(Chaetodon lineolatus) at the upper 
left control their movements up and 
down in the water? We’ll find out in 
this chapter.  (Vlad61/Shutterstock.com) 
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Matter is normally classified as being in one of three states: solid, liquid, or gas. From 
everyday experience we know that a solid has a definite volume and shape, a liquid has a 
definite volume but no definite shape, and an unconfined gas has neither a definite volume 
nor a definite shape. These descriptions help us picture the states of matter, but they are 
somewhat artificial. For example, asphalt and plastics are normally considered solids, but 
over long time intervals they tend to flow like liquids. Likewise, most substances can be a 
solid, a liquid, or a gas (or a combination of any of these three), depending on the tempera-
ture and pressure. In general, the time interval required for a particular substance to change 
its shape in response to an external force determines whether we treat the substance as a 
solid, a liquid, or a gas.
 A fluid is a collection of molecules that are randomly arranged and held together by 
weak cohesive forces and by forces exerted by the walls of a container. Both liquids and 
gases are fluids.
 In our treatment of the mechanics of fluids, we’ll be applying principles and analysis 
models that we have already discussed. First, we consider the mechanics of a fluid at rest, 
that is, fluid statics, and then study fluids in motion, that is, fluid dynamics.

14.1 Pressure
Fluids do not sustain shearing stresses or tensile stresses such as those discussed in 
Chapter 12; therefore, the only stress that can be exerted on an object submerged in 
a static fluid is one that tends to compress the object from all sides. In other words, 
the force exerted by a static fluid on an object is always perpendicular to the surfaces 
of the object as shown in Figure 14.1. We discussed this situation in Section 12.4.

At any point on the surface of 
the object, the force exerted by 
the fluid is perpendicular to the 
surface of the object.

Figure 14.1  The forces exerted 
by a fluid on the surfaces of a sub-
merged object.

 



418 chapter 14 Fluid Mechanics

Find the volume of the water filling the mattress: V 5 (2.00 m)(2.00 m)(0.300 m) 5 1.20 m3

Use Equation 1.1 and the density of fresh water (see 
Table 14.1) to find the mass of the water bed:

M 5 rV 5 (1 000 kg/m3)(1.20 m3) 5 1.20 3 103 kg

Find the weight of the bed: Mg 5 (1.20 3 103 kg)(9.80 m/s2) 5  1.18 3 104 N

 The pressure in a fluid can be measured with the device pictured in Figure 14.2. 
The device consists of an evacuated cylinder that encloses a light piston connected 
to a spring. As the device is submerged in a fluid, the fluid presses on the top of 
the piston and compresses the spring until the inward force exerted by the fluid 
is balanced by the outward force exerted by the spring. The fluid pressure can be 
measured directly if the spring is calibrated in advance. If F is the magnitude of the 
force exerted on the piston and A is the surface area of the piston, the pressure P of 
the fluid at the level to which the device has been submerged is defined as the ratio 
of the force to the area:

 P ;
F
A

  (14.1)

Pressure is a scalar quantity because it is proportional to the magnitude of the force 
on the piston.
 If the pressure varies over an area, the infinitesimal force dF on an infinitesimal 
surface element of area dA is

 dF 5 P dA (14.2)

where P is the pressure at the location of the area dA. To calculate the total force 
exerted on a surface of a container, we must integrate Equation 14.2 over the surface.
 The units of pressure are newtons per square meter (N/m2) in the SI system. 
Another name for the SI unit of pressure is the pascal (Pa):

 1 Pa ; 1 N/m2 (14.3)

 For a tactile demonstration of the definition of pressure, hold a tack between 
your thumb and forefinger, with the point of the tack on your thumb and the 
head of the tack on your forefinger. Now gently press your thumb and forefinger 
together. Your thumb will begin to feel pain immediately while your forefinger will 
not. The tack is exerting the same force on both your thumb and forefinger, but 
the pressure on your thumb is much larger because of the small area over which 
the force is applied.

Q uick Quiz 14.1  Suppose you are standing directly behind someone who steps 
back and accidentally stomps on your foot with the heel of one shoe. Would you 
be better off if that person were (a) a large, male professional basketball player 
wearing sneakers or (b) a petite woman wearing spike-heeled shoes?

Vacuum

A

F
S

Figure 14.2  A simple device for 
measuring the pressure exerted 
by a fluid.

Pitfall Prevention 14.1
Force and Pressure Equations 
14.1 and 14.2 make a clear distinc-
tion between force and pressure. 
Another important distinction 
is that force is a vector and pressure 
is a scalar. There is no direction 
associated with pressure, but the 
direction of the force associated 
with the pressure is perpendicular 
to the surface on which the pres-
sure acts.

Example 14.1   The Water Bed

The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep.

(A)  Find the weight of the water in the mattress.

Conceptualize  Think about carrying a jug of water and how heavy it is. Now imagine a sample of water the size of a 
water bed. We expect the weight to be relatively large.

Categorize  This example is a substitution problem.

S o l u t i o n

which is approximately 2 650 lb. (A regular bed, including mattress, box spring, and metal frame, weighs approximately 
300 lb.) Because this load is so great, it is best to place a water bed in the basement or on a sturdy, well- supported floor.
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(B)  Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the 
entire lower surface of the bed makes contact with the floor.

S o l u t i o n

When the water bed is in its normal position, the area in 
contact with the floor is 4.00 m2. Use Equation 14.1 to 
find the pressure:

P 5
1.18 3 104 N

4.00 m2 5 2.94 3 103 Pa

 What if the water bed is replaced by a 300-lb regular bed that is supported by four legs? Each leg has a 
circular cross section of radius 2.00 cm. What pressure does this bed exert on the floor?

Answer  The weight of the regular bed is distributed over four circular cross sections at the bottom of the legs. There-
fore, the pressure is

 P 5
F
A

5
mg

4 1pr 2 2  5
300 lb

4p 10.020 0 m 22 a 1 N
0.225 lb

b

 5 2.65 3 105 Pa

This result is almost 100 times larger than the pressure due to the water bed! The weight of the regular bed, even 
though it is much less than the weight of the water bed, is applied over the very small area of the four legs. The high 
pressure on the floor at the feet of a regular bed could cause dents in wood floors or permanently crush carpet pile.

What iF ?

14.2 Variation of Pressure with Depth
As divers well know, water pressure increases with depth. Likewise, atmospheric 
pressure decreases with increasing altitude; for this reason, aircraft flying at high 
altitudes must have pressurized cabins for the comfort of the passengers.
 We now show how the pressure in a liquid increases with depth. As Equation 1.1 
describes, the density of a substance is defined as its mass per unit volume; Table 
14.1 lists the densities of various substances. These values vary slightly with temper-
ature because the volume of a substance is dependent on temperature (as shown in 
Chapter 19). Under standard conditions (at 08C and at atmospheric pressure), the 
densities of gases are about 1

1 000 the densities of solids and liquids. This difference 
in densities implies that the average molecular spacing in a gas under these condi-
tions is about ten times greater than that in a solid or liquid.

Table 14.1 Densities of Some Common Substances at Standard 
Temperature (08C) and Pressure (Atmospheric)
Substance r (kg/m3) Substance r (kg/m3)

Air 1.29 
Air (at 20°C and 
 atmospheric pressure) 1.20
Aluminum 2.70 3 103

Benzene 0.879 3 103

Brass 8.4 3 103

Copper 8.92 3 103

Ethyl alcohol 0.806 3 103

Fresh water 1.00 3 103

Glycerin 1.26 3 103

Gold 19.3 3 103

Helium gas 1.79 3 1021

Hydrogen gas 8.99 3 1022

Ice 0.917 3 103

Iron 7.86 3 103

Lead 11.3 3 103

Mercury 13.6 3 103

Nitrogen gas 1.25
Oak 0.710 3 103

Osmium 22.6 3 103

Oxygen gas 1.43
Pine 0.373 3 103

Platinum 21.4 3 103

Seawater 1.03 3 103

Silver 10.5 3 103

Tin 7.30 3 103

Uranium 19.1 3 103

 

▸ 14.1 c o n t i n u e d
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Figure 14.4  (a) Diagram of 
a hydraulic press. (b) A vehicle 
 undergoing repair is supported  
by a hydraulic lift in a garage.
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Because the increase in 
pressure is the same on 
the two sides, a small
force F1 at the left 
produces a much greater 
force F2 at the right.
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 Now consider a liquid of density r at rest as shown in Figure 14.3. We assume r 
is uniform throughout the liquid, which means the liquid is incompressible. Let us 
select a parcel of the liquid contained within an imaginary block of cross-sectional 
area A extending from depth d to depth d 1 h. The liquid external to our parcel 
exerts forces at all points on the surface of the parcel, perpendicular to the surface. 
The pressure exerted by the liquid on the bottom face of the parcel is P, and the pres-
sure on the top face is P0. Therefore, the upward force exerted by the outside fluid on 
the bottom of the parcel has a magnitude PA, and the downward force exerted on the 
top has a magnitude P0A. The mass of liquid in the parcel is M 5 rV 5 rAh; therefore, 
the weight of the liquid in the parcel is Mg 5 rAhg. Because the parcel is at rest and 
remains at rest, it can be modeled as a particle in equilibrium, so that the net force 
acting on it must be zero. Choosing upward to be the positive y direction, we see that

 a F
S

5 PA ĵ 2 P0A ĵ 2 Mg ĵ 5 0 

or

 PA 2 P0A 2 rAhg 5 0 

 P 5 P0 1 rgh (14.4)

That is, the pressure P at a depth h below a point in the liquid at which the pressure 
is P0 is greater by an amount rgh. If the liquid is open to the atmosphere and P0 is 
the pressure at the surface of the liquid, then P0 is atmospheric pressure. In our 
calculations and working of end-of-chapter problems, we usually take atmospheric 
pressure to be

 P0 5 1.00 atm 5 1.013 3 105 Pa 

Equation 14.4 implies that the pressure is the same at all points having the same 
depth, independent of the shape of the container.
 Because the pressure in a fluid depends on depth and on the value of P0, any 
increase in pressure at the surface must be transmitted to every other point in the 
fluid. This concept was first recognized by French scientist Blaise Pascal (1623–
1662) and is called Pascal’s law: a change in the pressure applied to a fluid is trans-
mitted undiminished to every point of the fluid and to the walls of the container.
 An important application of Pascal’s law is the hydraulic press illustrated 
in Figure 14.4a. A force of magnitude F1 is applied to a small piston of surface 
area A1. The pressure is transmitted through an incompressible liquid to a larger 
piston of surface area A2. Because the pressure must be the same on both sides,  
P 5 F1/A1 5 F2/A2. Therefore, the force F2 is greater than the force F1 by a factor of  
A2/A1. By designing a hydraulic press with appropriate areas A1 and A2, a large out-

 Variation of pressure 
with depth

Pascal’s law 

�Mg PA j

�P0A j

d

d � h 

ˆ

ˆĵ

The parcel of fluid is in 
equilibrium, so the net 
force on it is zero.

Figure 14.3  A parcel of fluid in a 
larger volume of fluid is singled out.
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put force can be applied by means of a small input force. Hydraulic brakes, car lifts, 
hydraulic jacks, and forklifts all make use of this principle (Fig. 14.4b).
 Because liquid is neither added to nor removed from the system, the volume of liq-
uid pushed down on the left in Figure 14.4a as the piston moves downward through a 
displacement Dx1 equals the volume of liquid pushed up on the right as the right pis-
ton moves upward through a displacement Dx2. That is, A1 Dx1 5 A2 Dx2; therefore, 
A2/A1 5 Dx1/Dx2. We have already shown that A2/A1 5 F2/F1. Therefore, F2/F1 5 
Dx1/Dx2, so F1 Dx1 5 F2 Dx2. Each side of this equation is the work done by the force 
on its respective piston. Therefore, the work done by F

S

1 on the input piston equals 
the work done by F

S

2 on the output piston, as it must to conserve energy. (The process 
can be modeled as a special case of the nonisolated system model: the nonisolated 
system in steady state. There is energy transfer into and out of the system, but these 
energy transfers balance, so that there is no net change in the  energy of the system.)

Q uick Quiz 14.2  The pressure at the bottom of a filled glass of water (r 5  
1 000 kg/m3) is P. The water is poured out, and the glass is filled with ethyl alco-
hol (r 5 806 kg/m3). What is the pressure at the bottom of the glass? (a) smaller 
than P   (b) equal to P   (c) larger than P   (d) indeterminate

Example 14.2   The Car Lift

In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular cross section of 
radius 5.00 cm. This pressure is transmitted by a liquid to a piston that has a radius of 15.0 cm. 

(A) What force must the compressed air exert to lift a car weighing 13 300 N?

Conceptualize  Review the material just discussed about Pascal’s law to understand the operation of a car lift.

Categorize  This example is a substitution problem.

S o l u t i o n

Solve F1/A1 5 F2/A2 for F1:  F1 5 aA1

A2
bF2 5

p 15.00 3 1022 m 22

p 115.0 3 1022 m 22 11.33 3 104 N 2

5  1.48 3 103 N

Use Equation 14.1 to find the air pressure that produces 
this force:

S o l u t i o n

 P 5
F1

A1
5

1.48 3 103 N
p 15.00 3 1022 m 22

5  1.88 3 105 Pa

This pressure is approximately twice atmospheric pressure.

Example 14.3   A Pain in Your Ear

Estimate the force exerted on your eardrum due to the water when you are swimming at the bottom of a pool that is 
5.0 m deep.

Conceptualize  As you descend in the water, the pressure increases. You may have noticed this increased pressure in 
your ears while diving in a swimming pool, a lake, or the ocean. We can find the pressure difference exerted on the 

S o l u t i o n

 

(B) What air pressure produces this force?

continued
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eardrum from the depth given in the problem; then, after estimating the ear drum’s surface area, we can determine 
the net force the water exerts on it.

Categorize  This example is a substitution problem.
The air inside the middle ear is normally at atmospheric pressure P0. Therefore, to find the net force on the eardrum, 
we must consider the difference between the total pressure at the bottom of the pool and atmospheric pressure. Let’s 
estimate the surface area of the eardrum to be approximately 1 cm2 5 1 3 1024 m2.

Use Equation 14.4 to find this pressure 
difference:

Pbot 2 P0 5 rgh

5 (1.00 3 103 kg/m3)(9.80 m/s2)(5.0 m) 5 4.9 3 104 Pa

Use Equation 14.1 to find the magnitude of the 
net force on the ear:

F 5 (Pbot 2 P0)A 5 (4.9 3 104 Pa)(1 3 1024 m2) <  5 N

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers often “pop their ears” while 
under water, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure 
on the two sides of the eardrum and relieves the discomfort.

Example 14.4   The Force on a Dam

Water is filled to a height H behind a dam of width w (Fig. 14.5). Determine the 
resultant force exerted by the water on the dam.

Conceptualize  Because pressure varies with depth, we cannot calculate the 
force simply by multiplying the area by the pressure. As the pressure in the water 
increases with depth, the force on the adjacent portion of the dam also increases.

Categorize  Because of the variation of pressure with depth, we must use integra-
tion to solve this example, so we categorize it as an analysis problem.

Analyze  Let’s imagine a vertical y axis, with y 5 0 at the bottom of the dam. We 
divide the face of the dam into narrow horizontal strips at a distance y above the 
bottom, such as the red strip in Figure 14.5. The pressure on each such strip is 
due only to the water; atmospheric pressure acts on both sides of the dam.

S o l u t i o n

O

dy

y

h

w

H

y

x

Figure 14.5  (Example 14.4) Water 
exerts a force on a dam.

Use Equation 14.4 to calculate the pressure due to the 
water at the depth h :

P 5 rgh 5 rg(H 2 y)

Use Equation 14.2 to find the force exerted on the 
shaded strip of area dA 5 w dy :

dF 5 P dA 5 rg(H 2 y)w dy

Integrate to find the total force on the dam: F 5 3P dA 5 3
H

0
rg 1H 2 y 2w dy 5 1

2rgwH 2

Finalize  Notice that the thickness of the dam shown in Figure 14.5 increases with depth. This design accounts for the 
greater force the water exerts on the dam at greater depths.

What if you were asked to find this force without using calculus? How could you determine its value?

Answer  We know from Equation 14.4 that pressure varies linearly with depth. Therefore, the average pressure due to 
the water over the face of the dam is the average of the pressure at the top and the pressure at the bottom:

Pavg 5
Ptop 1 Pbottom

2
5

0 1 rgH

2
5 1

2rgH

What iF ?

 

▸ 14.3 c o n t i n u e d



 14.4 Buoyant Forces and archimedes’s principle 423

14.3 Pressure Measurements
During the weather report on a television news program, the barometric pressure is 
often provided. This reading is the current local pressure of the atmosphere, which 
varies over a small range from the standard value provided earlier. How is this pres-
sure measured?
 One instrument used to measure atmospheric pressure is the common barom-
eter, invented by Evangelista Torricelli (1608–1647). A long tube closed at one end 
is filled with mercury and then inverted into a dish of mercury (Fig. 14.6a). The 
closed end of the tube is nearly a vacuum, so the pressure at the top of the mer-
cury column can be taken as zero. In Figure 14.6a, the pressure at point A, due 
to the column of mercury, must equal the pressure at point B, due to the atmo-
sphere. If that were not the case, there would be a net force that would move mer-
cury from one point to the other until equilibrium is established. Therefore, P0 5 
rHggh, where rHg is the density of the mercury and h is the height of the mercury 
column. As atmospheric pressure varies, the height of the mercury column varies, 
so the height can be calibrated to measure atmospheric pressure. Let us determine 
the height of a mercury column for one atmosphere of pressure, P0 5 1 atm 5  
1.013 3 105 Pa:

 P0 5 rHggh S h 5
P0

rHgg
5

1.013 3 105 Pa
113.6 3 103 kg/m3 2 19.80 m/s2 2 5 0.760 m

Based on such a calculation, one atmosphere of pressure is defined to be the pres-
sure equivalent of a column of mercury that is exactly 0.760 0 m in height at 08C.
 A device for measuring the pressure of a gas contained in a vessel is the open-
tube manometer illustrated in Figure 14.6b. One end of a U-shaped tube containing 
a liquid is open to the atmosphere, and the other end is connected to a container of 
gas at pressure P. In an equilibrium situation, the pressures at points A and B must 
be the same (otherwise, the curved portion of the liquid would experience a net 
force and would accelerate), and the pressure at A is the unknown pressure of the 
gas. Therefore, equating the unknown pressure P to the pressure at point B, we see 
that P 5 P0 1 rgh. Again, we can calibrate the height h to the pressure P.
 The difference in the pressures in each part of Figure 14.6 (that is, P 2 P0) is 
equal to rgh. The pressure P is called the absolute pressure, and the difference 
P 2 P0 is called the gauge pressure. For example, the pressure you measure in your 
bicycle tire is gauge pressure.

Q uick Quiz 14.3  Several common barometers are built, with a variety of fluids. 
For which of the following fluids will the column of fluid in the barometer be 
the highest? (a) mercury   (b) water   (c) ethyl alcohol   (d) benzene

14.4 Buoyant Forces and Archimedes’s Principle
Have you ever tried to push a beach ball down under water (Fig. 14.7a, p. 424)? It 
is extremely difficult to do because of the large upward force exerted by the water 
on the ball. The upward force exerted by a fluid on any immersed object is called 

The total force on the dam is equal to the product of the average pressure and the area of the face of the dam:

F 5 PavgA 5 11
2rgH 2 1Hw 2 5 1

2rgwH 2

which is the same result we obtained using calculus.

a

P � 0

P

P0

P0

A B

h

h

A B

b

Figure 14.6  Two devices for 
measuring pressure: (a) a mercury 
barometer and (b) an open-tube 
manometer.

 

▸ 14.4 c o n t i n u e d
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a buoyant force. We can determine the magnitude of a buoyant force by applying 
some logic. Imagine a beach ball–sized parcel of water beneath the water surface 
as in Figure 14.7b. Because this parcel is in equilibrium, there must be an upward 
force that balances the downward gravitational force on the parcel. This upward 
force is the buoyant force, and its magnitude is equal to the weight of the water in 
the parcel. The buoyant force is the resultant force on the parcel due to all forces 
applied by the fluid surrounding the parcel.
 Now imagine replacing the beach ball–sized parcel of water with a beach ball 
of the same size. The net force applied by the fluid surrounding the beach ball is 
the same, regardless of whether it is applied to a beach ball or to a parcel of water. 
Consequently, the magnitude of the buoyant force on an object always equals the 
weight of the fluid displaced by the object. This statement is known as Archime-
des’s principle.
 With the beach ball under water, the buoyant force, equal to the weight of a 
beach ball–sized parcel of water, is much larger than the weight of the beach ball. 
Therefore, there is a large net upward force, which explains why it is so hard to hold 
the beach ball under the water. Note that Archimedes’s principle does not refer to 
the makeup of the object experiencing the buoyant force. The object’s composition 
is not a factor in the buoyant force because the buoyant force is exerted by the sur-
rounding fluid.
 To better understand the origin of the buoyant force, consider a cube of solid 
material immersed in a liquid as in Figure 14.8. According to Equation 14.4, the 
pressure Pbot at the bottom of the cube is greater than the pressure Ptop at the top 
by an amount  rfluidgh, where h is the height of the cube and rfluid is the density of 
the fluid. The pressure at the bottom of the cube causes an upward force equal to 
PbotA, where A is the area of the bottom face. The pressure at the top of the cube 
causes a downward force equal to PtopA. The resultant of these two forces is the 
buoyant force B

S
 with magnitude

 B 5 (Pbot 2 Ptop)A 5 (rfluidgh)A 

 B 5 rfluidgVdisp (14.5)

where Vdisp 5 Ah is the volume of the fluid displaced by the cube. Because the prod-
uct rfluidVdisp is equal to the mass of fluid displaced by the object,

 B 5 Mg 

where Mg is the weight of the fluid displaced by the cube. This result is consistent 
with our initial statement about Archimedes’s principle above, based on the discus-
sion of the beach ball.
 Under normal conditions, the weight of a fish in the opening photograph for 
this chapter is slightly greater than the buoyant force on the fish. Hence, the fish 
would sink if it did not have some mechanism for adjusting the buoyant force. The 

a b

The buoyant force B 
on a beach ball that 
replaces this parcel 
of water is exactly the 
same as the buoyant 
force on the parcel.

B
S

Fg
S

S

Figure 14.7  (a) A swimmer pushes a beach ball under water. (b) The forces on a beach ball–sized 
parcel of water.

Archimedes
Greek Mathematician, Physicist, and 
Engineer (c. 287–212 BC)
Archimedes was perhaps the greatest 
scientist of antiquity. He was the first 
to compute accurately the ratio of a 
circle’s circumference to its diameter, 
and he also showed how to calcu-
late the volume and surface area of 
spheres, cylinders, and other geometric 
shapes. He is well known for discover-
ing the nature of the buoyant force and 
was also a gifted inventor. One of his 
practical inventions, still in use today, 
is Archimedes’s screw, an inclined, 
rotating, coiled tube used originally to 
lift water from the holds of ships. He 
also invented the catapult and devised 
systems of levers, pulleys, and weights 
for raising heavy loads. Such inventions 
were successfully used to defend his 
native city, Syracuse, during a two-year 
siege by Romans.
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The buoyant force on the 
cube is the resultant of the 
forces exerted on its top and 
bottom faces by the liquid.

Figure 14.8  The external forces 
acting on an immersed cube are 
the gravitational force F

S

g and the 
buoyant force B

S
.
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fish accomplishes that by internally regulating the size of its air-filled swim bladder 
to increase its volume and the magnitude of the buoyant force acting on it, accord-
ing to Equation 14.5. In this manner, fish are able to swim to various depths.
 Before we proceed with a few examples, it is instructive to discuss two common 
situations: a totally submerged object and a floating (partly submerged) object.
 Case 1: Totally Submerged Object When an object is totally submerged in a fluid 
of density rfluid, the volume Vdisp of the displaced fluid is equal to the volume Vobj of 
the object; so, from Equation 14.5, the magnitude of the upward buoyant force is 
B 5 rfluidgVobj. If the object has a mass M and density robj, its weight is equal to Fg 5 
Mg 5 robjgVobj, and the net force on the object is B 2 Fg 5 (rfluid 2 robj)gVobj. Hence, 
if the density of the object is less than the density of the fluid, the downward gravi-
tational force is less than the buoyant force and the unsupported object accelerates 
upward (Fig. 14.9a). If the density of the object is greater than the density of the 
fluid, the upward buoyant force is less than the downward gravitational force and 
the unsupported object sinks (Fig. 14.9b). If the density of the submerged object 
equals the density of the fluid, the net force on the object is zero and the object 
remains in equilibrium. Therefore, the direction of motion of an object submerged 
in a fluid is determined only by the densities of the object and the fluid.
 Case 2: Floating Object Now consider an object of volume Vobj and density robj ,  
rfluid in static equilibrium floating on the surface of a fluid, that is, an object that 
is only partially submerged (Fig. 14.10). In this case, the upward buoyant force is 
balanced by the downward gravitational force acting on the object. If Vdisp is the 
volume of the fluid displaced by the object (this volume is the same as the volume 
of that part of the object beneath the surface of the fluid), the buoyant force has a 
magnitude B 5 rfluidgVdisp. Because the weight of the object is Fg 5 Mg 5 robjgVobj 
and because Fg 5 B, we see that rfluidgVdisp 5 robjgVobj, or

 
Vdisp

Vobj
5

robj

rfluid
 (14.6)

This equation shows that the fraction of the volume of a floating object that is 
below the fluid surface is equal to the ratio of the density of the object to that of 
the fluid.

Q uick Quiz 14.4  You are shipwrecked and floating in the middle of the ocean on 
a raft. Your cargo on the raft includes a treasure chest full of gold that you found 
before your ship sank, and the raft is just barely afloat. To keep you floating as 
high as possible in the water, should you (a) leave the treasure chest on top of 
the raft, (b) secure the treasure chest to the underside of the raft, or (c) hang 
the treasure chest in the water with a rope attached to the raft? (Assume throw-
ing the treasure chest overboard is not an option you wish to consider.)

Figure 14.9 (a) A totally submerged object that is less dense than 
the fluid in which it is submerged experiences a net upward force 
and rises to the surface after it is released. (b) A totally submerged 
object that is denser than the fluid experiences a net downward 
force and sinks.
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a b

robj � rfluid robj � rfluid

Figure 14.10 An object floating on the 
surface of a fluid experiences two forces, 
the gravitational force F

S

g and the buoyant 
force B

S
.

Fg
S

B
S

Because the object f loats 
in equilibrium, B � Fg .

Pitfall Prevention 14.2
Buoyant Force is Exerted by the 
Fluid Remember that the buoyant 
force is exerted by the fluid. It is 
not determined by properties of 
the object except for the amount 
of fluid displaced by the object. 
Therefore, if several objects of 
different densities but the same 
volume are immersed in a fluid, 
they will all experience the same 
buoyant force. Whether they sink 
or float is determined by the 
relationship between the buoyant 
force and the gravitational force.
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Example 14.5   Eureka! 

Archimedes supposedly was asked to determine whether a crown 
made for the king consisted of pure gold. According to legend, he 
solved this problem by weighing the crown first in air and then 
in water as shown in Figure 14.11. Suppose the scale read 7.84 N 
when the crown was in air and 6.84 N when it was in water. What 
should Archimedes have told the king?

Conceptualize  Figure 14.11 helps us imagine what is happening 
in this example. Because of the buoyant force, the scale reading is 
smaller in Figure 14.11b than in Figure 14.11a.

Categorize  This problem is an example of Case 1 discussed ear-
lier because the crown is completely submerged. The scale read-
ing is a measure of one of the forces on the crown, and the crown 
is stationary. Therefore, we can categorize the crown as a particle 
in equilibrium.

Analyze  When the crown is suspended in air, the scale reads the 
true weight T1 5 Fg (neglecting the small buoyant force due to the 
surrounding air). When the crown is immersed in water, the buoy-
ant force B

S
 reduces the scale reading to an apparent weight of  

T2 5 Fg 2 B.

AM

S o l u t i o n

B
S

Fg
S

T2
S

T1
S

Fg
S

a b

Figure 14.11  (Example 14.5) (a) When the crown 
is suspended in air, the scale reads its true weight 
because T1 5 Fg (the buoyancy of air is negligible). 
(b) When the crown is immersed in water, the buoyant 
force B

S
 changes the scale reading to a lower value  

T 2 5 Fg 2 B.

Apply the particle in equilibrium model to the crown in 
water:

o F 5 B 1 T2 2 Fg 5 0

Solve for B : B 5 Fg 2 T2

Because this buoyant force is equal in magnitude to the weight of the displaced water, B 5 rw gVdisp, where Vdisp is the 
volume of the displaced water and rw is its density. Also, the volume of the crown Vc is equal to the volume of the dis-
placed water because the crown is completely submerged, so B 5 rw gVc.

Find the density of the crown from Equation 1.1:  rc 5
mc

Vc
5

mcg

Vc g
5

mc g

1B/rw 2
5

mc g rw

B
5

mc g rw

Fg 2 T2

Substitute numerical values: rc 5
17.84 N 2 11 000 kg/m3 2

7.84 N 2 6.84 N
5 7.84 3 103 kg/m3

Finalize  From Table 14.1, we see that the density of gold is 19.3 3 103 kg/m3. Therefore, Archimedes should have 
reported that the king had been cheated. Either the crown was hollow, or it was not made of pure gold.

 Suppose the crown has the same weight but is indeed pure gold and not hollow. What would the scale 
reading be when the crown is immersed in water?
What iF ?

Answer  Find the buoyant force on the crown:  B 5 rw gVw 5 rw gVc 5 rw g amc

rc
b 5 rwa

mc g
rc

b

Substitute numerical values: B 5 11.00 3 103 kg/m3 2 7.84 N
19.3 3 103 kg/m3 5 0.406 N

Find the tension in the string hanging from the scale: T2 5 Fg 2 B 5 7.84 N 2 0.406 N 5 7.43 N
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Example 14.6   A Titanic Surprise

An iceberg floating in seawater as shown in Figure 14.12a 
is extremely dangerous because most of the ice is below 
the surface. This hidden ice can damage a ship that is 
still a considerable distance from the visible ice. What 
fraction of the iceberg lies below the water level?

Conceptualize  You are likely familiar with the phrase, 
“That’s only the tip of the iceberg.” The origin of this 
popular saying is that most of the volume of a floating 
iceberg is beneath the surface of the water (Fig. 14.12b).

Categorize  This example corresponds to Case 2 because only part of the iceberg is underneath the water. It is also a 
simple substitution problem involving Equation 14.6.

S o l u t i o n
a b
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Figure 14.12  (Example 14.6) (a) Much of the volume of this 
iceberg is beneath the water. (b) A ship can be damaged even 
when it is not near the visible ice.

Evaluate Equation 14.6 using the densities of ice and 
seawater (Table 14.1):

f 5
Vdisp

Vice
5

rice

rseawater
5

917 kg/m3

1 030 kg/m3 5   0.890 or 89.0%

Therefore, the visible fraction of ice above the water’s surface is about 11%. It is the unseen 89% below the water that 
represents the danger to a passing ship.

14.5 Fluid Dynamics
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our 
attention to fluids in motion. When fluid is in motion, its flow can be characterized 
as being one of two main types. The flow is said to be steady, or laminar, if each 
particle of the fluid follows a smooth path such that the paths of different particles 
never cross each other as shown in Figure 14.13. In steady flow, every fluid particle 
arriving at a given point in space has the same velocity.
 Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow is 
irregular flow characterized by small whirlpool-like regions as shown in Figure 14.14.
 The term viscosity is commonly used in the description of fluid flow to charac-
terize the degree of internal friction in the fluid. This internal friction, or viscous 
force, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the fluid’s kinetic energy to be 
transformed to internal energy. This mechanism is similar to the one by which the 
kinetic energy of an object sliding over a rough, horizontal surface decreases as 
discussed in Sections 8.3 and 8.4.
 Because the motion of real fluids is very complex and not fully understood, we 
make some simplifying assumptions in our approach. In our simplification model 
of ideal fluid flow, we make the following four assumptions:

 1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected. 
An object moving through the fluid experiences no viscous force.

 2. The flow is steady. In steady (laminar) flow, all particles passing through a 
point have the same velocity.

 3. The fluid is incompressible. The density of an incompressible fluid is 
constant.

 4. The flow is irrotational. In irrotational flow, the fluid has no angular 
momentum about any point. If a small paddle wheel placed anywhere in the 
fluid does not rotate about the wheel’s center of mass, the flow is irrotational.

Figure 14.13  Laminar flow 
around an automobile in a test 
wind tunnel.
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Figure 14.14  Hot gases from a 
cigarette made visible by smoke 
particles. The smoke first moves 
in laminar flow at the bottom and 
then in turbulent flow above.
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 The path taken by a fluid particle under steady flow is called a streamline. The 
velocity of the particle is always tangent to the streamline as shown in Figure 14.15. 
A set of streamlines like the ones shown in Figure 14.15 form a tube of flow. Fluid 
particles cannot flow into or out of the sides of this tube; if they could, the stream-
lines would cross one another.
 Consider ideal fluid flow through a pipe of nonuniform size as illustrated in Fig-
ure 14.16. Let’s focus our attention on a segment of fluid in the pipe. Figure 14.16a 
shows the segment at time t 5 0 consisting of the gray portion between point 1 and 
point 2 and the short blue portion to the left of point 1. At this time, the fluid in the 
short blue portion is flowing through a cross section of area A1 at speed v1. During 
the time interval Dt, the small length Dx1 of fluid in the blue portion moves past 
point 1. During the same time interval, fluid at the right end of the segment moves 
past point 2 in the pipe. Figure 14.16b shows the situation at the end of the time 
interval Dt. The blue portion at the right end represents the fluid that has moved 
past point 2 through an area A2 at a speed v2.
 The mass of fluid contained in the blue portion in Figure 14.16a is given by m1 5 
rA1 Dx1 5 rA1v1 Dt, where r is the (unchanging) density of the ideal fluid. Similarly, 
the fluid in the blue portion in Figure 14.16b has a mass m2 5 rA2 Dx2 5 rA2v2 Dt. 
Because the fluid is incompressible and the flow is steady, however, the mass of fluid 
that passes point 1 in a time interval Dt must equal the mass that passes point 2 in 
the same time interval. That is, m1 5 m2 or rA1v1 Dt 5 rA2v2 Dt, which means that

 A1v1 5 A2v2 5 constant (14.7)

This expression is called the equation of continuity for fluids. It states that the 
product of the area and the fluid speed at all points along a pipe is constant for an 
incompressible fluid. Equation 14.7 shows that the speed is high where the tube 
is constricted (small A) and low where the tube is wide (large A). The product Av, 
which has the dimensions of volume per unit time, is called either the volume flux or 
the flow rate. The condition Av 5 constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume 
leaving the other end of the tube in the same time interval if no leaks are present.
 You demonstrate the equation of continuity each time you water your garden 
with your thumb over the end of a garden hose as in Figure 14.17. By partially block-

Equation of Continuity 
for Fluids

Figure 14.17  The speed of water spraying from 
the end of a garden hose increases as the size of 
the opening is decreased with the thumb.©
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At each point along its path, 
the particle’s velocity is 
tangent to the streamline.

Figure 14.15  A particle 
in laminar flow follows a 
streamline.

v2

v1

At t � 0, fluid in the blue
portion is moving past
point 1 at velocity v1.

After a time interval �t,
the fluid in the blue 
portion is moving past 
point 2 at velocity v2.

�x1

�x2

Point 2

Point 1

A1

A2

a

S

S

S

S

b

Figure 14.16  A fluid moving 
with steady flow through a pipe  
of varying cross-sectional area.  
(a) At t 5 0, the small blue-
colored portion of the fluid at the 
left is moving through area A1.  
(b) After a time interval Dt, the 
blue-colored portion shown 
here is that fluid that has moved 
through area A2.
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Example 14.7   Watering a Garden 

A gardener uses a water hose to fill a 30.0-L bucket. The gardener notes that it takes 1.00 min to fill the bucket. A nozzle 
with an opening of cross-sectional area 0.500 cm2 is then attached to the hose. The nozzle is held so that water is pro-
jected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

Conceptualize  Imagine any past experience you have with projecting water from a horizontal hose or a pipe using 
either your thumb or a nozzle, which can be attached to the end of the hose. The faster the water is traveling as it leaves 
the hose, the farther it will land on the ground from the end of the hose.

Categorize  Once the water leaves the hose, it is in free fall. Therefore, we categorize a given element of the water as a 
projectile. The element is modeled as a particle under constant acceleration (due to gravity) in the vertical direction and a 
particle under constant velocity in the horizontal direction. The horizontal distance over which the element is projected 
depends on the speed with which it is projected. This example involves a change in area for the pipe, so we also catego-
rize it as one in which we use the continuity equation for fluids.

Analyze

AM

S o l u t i o n

Express the volume flow rate R in terms of area and 
speed of the water in the hose: 

R 5 A1v1

Solve for the speed of the water in the hose: v1 5 
R
A1

We have labeled this speed v1 because we identify point 1 within the hose. We identify point 2 in the air just outside the 
nozzle. We must find the speed v2 5 vxi with which the water exits the nozzle. The subscript i anticipates that it will be 
the initial velocity component of the water projected from the hose, and the subscript x indicates that the initial veloc-
ity vector of the projected water is horizontal.

Solve the continuity equation for fluids for v2: (1)   v2 5 vxi 5
A1

A2
 v1 5 

A1

A2
aR

A1
b 5

R
A2

We now shift our thinking away from fluids and to projectile motion. In the vertical direction, an element of the water 
starts from rest and falls through a vertical distance of 1.00 m.

Use Equation 2.7 to find the horizontal position of the 
element at this time, modeled as a particle under con-
stant velocity:

xf 5 xi 1 vxit 5 0 1 v2t 5 v2t

Substitute from Equations (1) and (2): xf 5
R
A 2 Å

22yf

g

Substitute numerical values: xf 5
30.0 L/min
0.500 cm2 Å

22 121.00 m 2
9.80 m/s2 a103 cm3

1 L
b a1 min

60 s
b 5 452 cm 5 4.52 m

Call the initial position of the water yi 5 0 and recognize 
that the water begins with a vertical velocity component 
of zero. Solve for the time at which the water reaches the 
ground:

(2)   yf 5 0 1 0 2 1
2gt 2   S   t 5 Å

22yf

g

Write Equation 2.16 for the vertical position of an ele-
ment of water, modeled as a particle under constant 
acceleration:

yf 5 yi 1 vyi t 2 1
2gt 2

ing the opening with your thumb, you reduce the cross-sectional area through 
which the water passes. As a result, the speed of the water increases as it exits the 
hose, and the water can be sprayed over a long distance.

continued
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14.6 Bernoulli’s Equation
You have probably experienced driving on a highway and having a large truck pass 
you at high speed. In this situation, you may have had the frightening feeling that your  
car was being pulled in toward the truck as it passed. We will investigate the origin 
of this effect in this section.
 As a fluid moves through a region where its speed or elevation above the 
Earth’s surface changes, the pressure in the fluid varies with these changes. The 
relationship between fluid speed, pressure, and elevation was first derived in 1738 
by Swiss physicist Daniel Bernoulli. Consider the flow of a segment of an ideal 
fluid through a nonuniform pipe in a time interval Dt as illustrated in Figure 
14.18. This figure is very similar to Figure 14.16, which we used to develop the 
continuity equation. We have added two features: the forces on the outer ends of 
the blue portions of fluid and the heights of these portions above the reference 
position y 5 0.
 The force exerted on the segment by the fluid to the left of the blue portion in 
Figure 14.18a has a magnitude P1A1. The work done by this force on the segment 
in a time interval Dt is W1 5 F1 Dx1 5 P1A1 Dx1 5 P1V, where V is the volume of the 
blue portion of fluid passing point 1 in Figure 14.18a. In a similar manner, the 
work done on the segment by the fluid to the right of the segment in the same time 
interval Dt is W2 5 2P2A2 Dx2 5 2P2V, where V is the volume of the blue portion of 
fluid passing point 2 in Figure 14.18b. (The volumes of the blue portions of fluid in 
Figures 14.18a and 14.18b are equal because the fluid is incompressible.) This work 
is negative because the force on the segment of fluid is to the left and the displace-
ment of the point of application of the force is to the right. Therefore, the net work 
done on the segment by these forces in the time interval Dt is

 W 5 (P1 2 P2)V 

Finalize  The time interval for the element of water to fall to the ground is unchanged if the projection speed is 
changed because the projection is horizontal. Increasing the projection speed results in the water hitting the ground 
farther from the end of the hose, but requires the same time interval to strike the ground.

y1

y2

The pressure at
point 1 is P1. 

P1A1 i

The pressure at
point 2 is P2. v2

v1
�x1

�x2

Point 2

Point 1
a

S

S

�P2A2 i

ˆ

ˆ

b

Figure 14.18  A fluid in laminar 
flow through a pipe. (a) A segment 
of the fluid at time t 5 0. A small 
portion of the blue-colored fluid 
is at height y1 above a reference 
position. (b) After a time interval 
Dt, the entire segment has moved 
to the right. The blue-colored por-
tion of the fluid is that which has 
passed point 2 and is at height y2.

 

▸ 14.7 c o n t i n u e d

Daniel Bernoulli
Swiss physicist (1700–1782)
Bernoulli made important discoveries  
in fluid dynamics. Bernoulli’s most 
famous work, Hydrodynamica, was 
published in 1738; it is both a theoreti-
cal and a practical study of equilibrium, 
pressure, and speed in fluids. He showed 
that as the speed of a fluid increases, 
its pressure decreases. Referred to as 
“Bernoulli’s principle,” Bernoulli’s work 
is used to produce a partial vacuum in 
chemical laboratories by connecting a 
vessel to a tube through which water is 
running rapidly.
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Part of this work goes into changing the kinetic energy of the segment of fluid, and 
part goes into changing the gravitational potential energy of the segment–Earth 
system. Because we are assuming streamline flow, the kinetic energy Kgray of the 
gray portion of the segment is the same in both parts of Figure 14.18. Therefore, 
the change in the kinetic energy of the segment of fluid is

DK 5 11
2mv2

2 1 K gray 2 2 11
2mv1

2 1 K gray 2 5 1
2mv2

2 2 1
2mv1

2

where m is the mass of the blue portions of fluid in both parts of Figure 14.18. 
(Because the volumes of both portions are the same, they also have the same mass.)
 Considering the gravitational potential energy of the segment–Earth system, 
once again there is no change during the time interval for the gravitational poten-
tial energy Ugray associated with the gray portion of the fluid. Consequently, the 
change in gravitational potential energy of the system is

DU 5 1mgy2 1 Ugray 2 2 1mgy1 1 Ugray 2 5 mgy2 2 mgy1 

 From Equation 8.2, the total work done on the system by the fluid outside the 
segment is equal to the change in mechanical energy of the system: W 5 DK 1 DU. 
Substituting for each of these terms gives

1P1 2 P2 2V 5 1
2mv2

2 2 1
2mv1

2 1 mgy2 2 mgy1

If we divide each term by the portion volume V and recall that r 5 m/V, this expres-
sion reduces to

P1 2 P2 5 1
2rv2

2 2 1
2rv1

2 1 rgy2 2 rgy1

Rearranging terms gives

 P1 1 1
2rv1

2 1 rgy1 5 P2 1 1
2rv2

2 1 rgy2 (14.8)

which is Bernoulli’s equation as applied to an ideal fluid. This equation is often 
expressed as

 P 1 1
2rv2 1 rgy 5 constant (14.9)

Bernoulli’s equation shows that the pressure of a fluid decreases as the speed of 
the fluid increases. In addition, the pressure decreases as the elevation increases. 
This latter point explains why water pressure from faucets on the upper floors of a 
tall building is weak unless measures are taken to provide higher pressure for these 
upper floors.
 When the fluid is at rest, v1 5 v2 5 0 and Equation 14.8 becomes

 P1 2 P2 5 rg 1y2 2 y1 2 5 rgh 

This result is in agreement with Equation 14.4.
 Although Equation 14.9 was derived for an incompressible fluid, the general 
behavior of pressure with speed is true even for gases: as the speed increases, the 
pressure decreases. This Bernoulli effect explains the experience with the truck on 
the highway at the opening of this section. As air passes between you and the truck, 
it must pass through a relatively narrow channel. According to the continuity equa-
tion, the speed of the air is higher. According to the Bernoulli effect, this higher-
speed air exerts less pressure on your car than the slower-moving air on the other 
side of your car. Therefore, there is a net force pushing you toward the truck!

Q uick Quiz 14.5  You observe two helium balloons floating next to each other at 
the ends of strings secured to a table. The facing surfaces of the balloons are 
separated by 1–2 cm. You blow through the small space between the balloons. 
What happens to the balloons? (a) They move toward each other. (b) They move 
away from each other. (c) They are unaffected.

WW  Bernoulli’s equation
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Example 14.8   The Venturi Tube

The horizontal constricted pipe illustrated in Figure 14.19, 
known as a Venturi tube, can be used to measure the flow speed 
of an incompressible fluid. Determine the flow speed at point 
2 of Figure 14.19a if the pressure difference P1 2 P2 is known.

Conceptualize  Bernoulli’s equation shows how the pressure of 
an ideal fluid decreases as its speed increases. Therefore, we 
should be able to calibrate a device to give us the fluid speed if 
we can measure pressure.

Categorize  Because the problem states that the fluid is incom-
pressible, we can categorize it as one in which we can use the 
equation of continuity for fluids and Bernoulli’s equation.

S o l u t i o n

Analyze  Apply Equation 14.8 to points 1 and 2, noting 
that y1 5 y2 because the pipe is horizontal:

(1)   P1 1 1
2rv1

2 5 P2 1 1
2rv2

2

Solve the equation of continuity for v1: v1 5
A2

A1
 v2

a

P1 P2

A2

A1

v1
S v2

S




b
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Figure 14.19  (Example 14.8) (a) Pressure P1 is greater 
than pressure P2 because v1 , v2. This device can be used 
to measure the speed of fluid flow. (b) A Venturi tube, 
located at the top of the photograph. The higher level of 
fluid in the middle column shows that the pressure at the 
top of the column, which is in the constricted region of 
the Venturi tube, is lower.

Finalize  From the design of the tube (areas A1 and A2) and measurements of the pressure difference P1 2 P2, we can 
calculate the speed of the fluid with this equation. To see the relationship between fluid speed and pressure differ-
ence, place two empty soda cans on their sides about 2 cm apart on a table. Gently blow a stream of air horizontally 
between the cans and watch them roll together slowly due to a modest pressure difference between the stagnant air on 
their outside edges and the moving air between them. Now blow more strongly and watch the increased pressure dif-
ference move the cans together more rapidly.

Substitute this expression into Equation (1): P1 1 1
2raA2

A1

b
2

v2
2 5 P2 1 1

2rv2
2

Solve for v2: v2 5 A1Å
2 1P1 2 P2 2

r 1A1
2 2 A2

2 2

Example 14.9   Torricelli’s Law 

An enclosed tank containing a liquid of density r has a hole in its side at a distance 
y1 from the tank’s bottom (Fig. 14.20). The hole is open to the atmosphere, and its 
diameter is much smaller than the diameter of the tank. The air above the liquid is 
maintained at a pressure P. Determine the speed of the liquid as it leaves the hole 
when the liquid’s level is a distance h above the hole.

Conceptualize  Imagine that the tank is a fire extinguisher. When the hole is 
opened, liquid leaves the hole with a certain speed. If the pressure P at the top 
of the liquid is increased, the liquid leaves with a higher speed. If the pressure 
P falls too low, the liquid leaves with a low speed and the extinguisher must be 
replaced.

AM

S o l u t i o n

A2

A1

P0

h

P

y2

y1

v1
S

Point 2 is the surface 
of the liquid.

Point 1 is 
the exit 
point of 
the hole.

Figure 14.20  (Example 14.9) 
A liquid leaves a hole in a tank at 
speed v1.
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Apply Bernoulli’s equation between points 1 and 2: P0 1 1
2 rv1

2 1 rgy1 5 P 1 rgy2

Solve for v1, noting that y2 2 y1 5 h: v1 5 Å
2 1P 2 P0 2

r
1 2gh

Finalize  When P is much greater than P0 (so that the term 2gh can be neglected), the exit speed of the water is mainly 
a function of P. If the tank is open to the atmosphere, then P 5 P0 and v1 5 !2gh. In other words, for an open tank, 
the speed of the liquid leaving a hole a distance h below the surface is equal to that acquired by an object falling freely 
through a vertical distance h. This phenomenon is known as Torricelli’s law.

What if the position of the hole in Figure 14.20 could be adjusted vertically? If the tank is open to the 
atmosphere and sitting on a table, what position of the hole would cause the water to land on the table at the farthest 
distance from the tank?

What iF ?

Categorize  Looking at Figure 14.20, we know the pressure at two points and the velocity at one of those points. We wish to 
find the velocity at the second point. Therefore, we can categorize this example as one in which we can apply Bernoulli’s 
equation.

Analyze  Because A2 .. A1, the liquid is approximately at rest at the top of the tank, where the pressure is P. At the 
hole, P1 is equal to atmospheric pressure P0.

Therefore, to maximize the horizontal distance, the hole should be halfway between the bottom of the tank and the 
upper surface of the water. Below this location, the water is projected at a higher speed but falls for a short time inter-
val, reducing the horizontal range. Above this point, the water is in the air for a longer time interval but is projected 
with a smaller horizontal speed.

Answer  Model a parcel of water exiting the hole as a 
projectile. From the particle under constant acceleration 
model, find the time at which the parcel strikes the table 
from a hole at an arbitrary position y1:

 yf 5 yi 1 vyit 2 1
2gt 2

 0 5 y1 1 0 2 1
2gt 2

 t 5 Å
2y1

g

From the particle under constant velocity model, find the 
horizontal position of the parcel at the time it strikes  
the table:

 xf 5 xi 1 vxit 5 0 1 "2g 1y2 2 y1 2  Å
2y1

g

 5 2"1y2y1 2 y1
2 2

Maximize the horizontal position by taking the deriva-
tive of xf with respect to y1 (because y1, the height of the 
hole, is the variable that can be adjusted) and setting it 
equal to zero:

dxf

dy1
5 1

2 12 2 1y2y1 2 y1
2 221/2 1y2 2 2y1 2 5 0

Solve for y1: y1 5 1
2 y2

 

▸ 14.9 c o n t i n u e d

14.7 Other Applications of Fluid Dynamics
Consider the streamlines that flow around an airplane wing as shown in Figure 
14.21 on page 434. Let’s assume the airstream approaches the wing horizontally 
from the right with a velocity vS1. The tilt of the wing causes the airstream to be 
deflected downward with a velocity vS2. Because the airstream is deflected by the 
wing, the wing must exert a force on the airstream. According to Newton’s third 
law, the airstream exerts a force F

S
 on the wing that is equal in magnitude and 
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opposite in direction. This force has a vertical component called lift (or aerody-
namic lift) and a horizontal component called drag. The lift depends on several 
factors, such as the speed of the airplane, the area of the wing, the wing’s curva-
ture, and the angle between the wing and the horizontal. The curvature of the wing 
surfaces causes the pressure above the wing to be lower than that below the wing  
due to the Bernoulli effect. This pressure difference assists with the lift on the 
wing. As the angle between the wing and the horizontal increases, turbulent flow 
can set in above the wing to reduce the lift.
 In general, an object moving through a fluid experiences lift as the result of any 
effect that causes the fluid to change its direction as it flows past the object. Some 
factors that influence lift are the shape of the object, its orientation with respect to 
the fluid flow, any spinning motion it might have, and the texture of its surface. For 
example, a golf ball struck with a club is given a rapid backspin due to the slant of 
the club. The dimples on the ball increase the friction force between the ball and 
the air so that air adheres to the ball’s surface. Figure 14.22 shows air adhering to the 
ball and being deflected downward as a result. Because the ball pushes the air down, 
the air must push up on the ball. Without the dimples, the friction force is lower and 
the golf ball does not travel as far. It may seem counterintuitive to increase the range 
by increasing the friction force, but the lift gained by spinning the ball more than 
compensates for the loss of range due to the effect of friction on the translational 
motion of the ball. For the same reason, a baseball’s cover helps the spinning ball 
“grab” the air rushing by and helps deflect it when a “curve ball” is thrown.
 A number of devices operate by means of the pressure differentials that result 
from differences in a fluid’s speed. For example, a stream of air passing over one 
end of an open tube, the other end of which is immersed in a liquid, reduces the 
pressure above the tube as illustrated in Figure 14.23. This reduction in pressure 
causes the liquid to rise into the airstream. The liquid is then dispersed into a fine 
spray of droplets. You might recognize that this atomizer is used in perfume bottles 
and paint sprayers.

F
S

Drag

Lift

Figure 14.22  Because of the 
deflection of air, a spinning golf 
ball experiences a lifting force that 
allows it to travel much farther than 
it would if it were not spinning.

Drag

LiftF
S

The air approaching from 
the right is deflected 
downward by the wing.

Figure 14.21  Streamline flow 
around a moving airplane wing. 
By Newton’s third law, the air 
deflected by the wing results in 
an upward force on the wing from 
the air: lift. Because of air resis-
tance, there is also a force oppo-
site the velocity of the wing: drag.

Summary

Definitions

 The pressure P in a fluid is the force per unit area exerted by the fluid on a surface:

 P ;
F

A
   (14.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 1 N/m2 5 1 pascal (Pa).

Figure 14.23  A stream of air pass-
ing over a tube dipped into a liquid 
causes the liquid to rise in the tube.
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Concepts and Principles

 The pressure in a fluid at rest varies with depth h in the fluid 
according to the expression

 P 5 P0 1 rgh (14.4)

where P0 is the pressure at h 5 0 and r is the density of the fluid, 
assumed uniform.
 Pascal’s law states that when pressure is applied to an enclosed 
fluid, the pressure is transmitted undiminished to every point in 
the fluid and to every point on the walls of the container.

 When an object is partially or fully sub-
merged in a fluid, the fluid exerts on the 
object an upward force called the buoyant 
force. According to Archimedes’s prin-
ciple, the magnitude of the buoyant force is 
equal to the weight of the fluid displaced by 
the object:

 B 5 rfluid gV disp (14.5)

 The flow rate (volume flux) through a pipe that var-
ies in cross-sectional area is constant; that is equivalent 
to stating that the product of the cross-sectional area A 
and the speed v at any point is a constant. This result is 
expressed in the equation of continuity for fluids:

 A1v1 5 A2v2 5 constant (14.7)

 The sum of the pressure, kinetic energy per unit 
volume, and gravitational potential energy per unit vol-
ume has the same value at all points along a streamline 
for an ideal fluid. This result is summarized in Ber-
noulli’s equation:

 P 1 1
2rv2 1 rgy 5 constant (14.9)

of the following statements are valid? (Choose all cor-
rect statements.) (a) The buoyant force on the steel 
object is equal to its weight. (b) The buoyant force on 
the block is equal to its weight. (c) The tension in the 
string is equal to the weight of the steel object. (d) The 
tension in the string is less than the weight of the steel 
object. (e) The buoyant force on the block is equal to 
the volume of water it displaces.

Figure oQ14.3

 4. An apple is held completely submerged just below 
the surface of water in a container. The apple is then 
moved to a deeper point in the water. Compared with 
the force needed to hold the apple just below the sur-
face, what is the force needed to hold it at the deeper 
point? (a) larger (b)  the same (c) smaller (d) impos-
sible to determine

 5. A beach ball is made of thin plastic. It has been 
inflated with air, but the plastic is not stretched. By 
swimming with fins on, you manage to take the ball 
from the surface of a pool to the bottom. Once the ball 
is completely submerged, what happens to the buoyant 
force exerted on the beach ball as you take it deeper?  
(a) It increases. (b) It remains constant. (c) It decreases. 
(d) It is impossible to determine.

 1. Figure OQ14.1 shows aerial views from directly above 
two dams. Both dams are equally wide (the vertical 
dimension in the diagram) and equally high (into the 
page in the diagram). The dam on the left holds back 
a very large lake, and the dam on the right holds back a 
narrow river. Which dam has to be built more strongly? 
(a) the dam on the left (b) the dam on the right (c) both 
the same (d) cannot be predicted

Dam Dam

Figure oQ14.1

 2. A beach ball filled with air is pushed about 1 m below 
the surface of a swimming pool and released from rest. 
Which of the following statements are valid, assum-
ing the size of the ball remains the same? (Choose all 
correct statements.) (a) As the ball rises in the pool, 
the buoyant force on it increases. (b) When the ball 
is released, the buoyant force exceeds the gravitational 
force, and the ball accelerates upward. (c) The buoyant 
force on the ball decreases as the ball approaches the 
surface of the pool. (d) The buoyant force on the ball 
equals its weight and remains constant as the ball rises. 
(e) The buoyant force on the ball while it is submerged 
is approximately equal to the weight of a volume of 
water that could fill the ball.

 3. A wooden block floats in water, and a steel object is 
attached to the bottom of the block by a string as in 
Figure OQ14.3. If the block remains floating, which 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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the weight of the boat (d) equal to the weight of the dis-
placed water (e) equal to the buoyant force on the boat

 10. A small piece of steel is tied to a block of wood. When 
the wood is placed in a tub of water with the steel on top, 
half of the block is submerged. Now the block is inverted 
so that the steel is under water. (i) Does the amount 
of the block submerged (a) increase, (b) decrease, or  
(c) remain the same? (ii) What happens to the water 
level in the tub when the block is inverted? (a) It rises. 
(b) It falls. (c) It remains the same.

 11. A piece of unpainted porous wood barely floats in an 
open container partly filled with water. The container 
is then sealed and pressurized above atmospheric pres-
sure. What happens to the wood? (a) It rises in the 
water. (b) It sinks lower in the water. (c) It remains at 
the same level.

 12. A person in a boat floating in a small pond throws an 
anchor overboard. What happens to the level of the 
pond? (a) It rises. (b) It falls. (c) It remains the same.

 13. Rank the buoyant forces exerted on the following five 
objects of equal volume from the largest to the smallest. 
Assume the objects have been dropped into a swimming 
pool and allowed to come to mechanical equilibrium. 
If any buoyant forces are equal, state that in your rank-
ing. (a) a block of solid oak (b) an aluminum block (c) a  
beach ball made of thin plastic and inflated with air  
(d) an iron block (e) a thin-walled, sealed bottle of water

 14. A water supply maintains a constant rate of flow for water 
in a hose. You want to change the opening of the nozzle 
so that water leaving the nozzle will reach a height that 
is four times the current maximum height the water 
reaches with the nozzle vertical. To do so, should you  
(a) decrease the area of the opening by a factor of 16, 
(b) decrease the area by a factor of 8, (c) decrease the 
area by a factor of 4, (d) decrease the area by a factor of 
2, or (e) give up because it cannot be done?

 15. A glass of water contains floating ice cubes. When the ice 
melts, does the water level in the glass (a) go up, (b) go  
down, or (c) remain the same?

 16. An ideal fluid flows through a horizontal pipe whose 
diameter varies along its length. Measurements would 
indicate that the sum of the kinetic energy per unit 
volume and pressure at different sections of the pipe 
would (a)  decrease as the pipe diameter increases,  
(b) increase as the pipe diameter increases, (c) increase 
as the pipe diameter decreases, (d) decrease as the 
pipe diameter decreases, or (e) remain the same as the 
pipe diameter changes.

 6. A solid iron sphere and a solid lead sphere of the 
same size are each suspended by strings and are sub-
merged in a tank of water. (Note that the density of 
lead is greater than that of iron.) Which of the fol-
lowing statements are valid? (Choose all correct state-
ments.) (a) The buoyant force on each is the same.  
(b) The buoyant force on the lead sphere is greater 
than the buoyant force on the iron sphere because lead 
has the greater density. (c) The tension in the string 
supporting the lead sphere is greater than the tension 
in the string supporting the iron sphere. (d) The buoy-
ant force on the iron sphere is greater than the buoy-
ant force on the lead sphere because lead displaces 
more water. (e) None of those statements is true.

 7. Three vessels of different shapes are filled to the same 
level with water as in Figure OQ14.7. The area of the 
base is the same for all three vessels. Which of the fol-
lowing statements are valid? (Choose all correct state-
ments.) (a) The pressure at the top surface of vessel 
A is greatest because it has the largest surface area. 
(b) The pressure at the bottom of vessel A is greatest 
because it contains the most water. (c) The pressure at 
the bottom of each vessel is the same. (d) The force on 
the bottom of each vessel is not the same. (e) At a given 
depth below the surface of each vessel, the pressure on 
the side of vessel A is greatest because of its slope.

A B C

Figure oQ14.7

 8. One of the predicted problems due to global warm-
ing is that ice in the polar ice caps will melt and raise 
sea levels everywhere in the world. Is that more of a 
worry for ice (a) at the north pole, where most of the 
ice floats on water; (b) at the south pole, where most 
of the ice sits on land; (c) both at the north and south 
pole equally; or (d) at neither pole?

 9. A boat develops a leak and, after its passengers are res-
cued, eventually sinks to the bottom of a lake. When 
the boat is at the bottom, what is the force of the lake 
bottom on the boat? (a) greater than the weight of the 
boat (b) equal to the weight of the boat (c) less than 

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. When an object is immersed in a liquid at rest, why is 
the net force on the object in the horizontal direction 
equal to zero?

 2. Two thin-walled drinking glasses having equal base 
areas but different shapes, with very different cross- 
sectional areas above the base, are filled to the same 

level with water. According to the expression P 5 P0 1  
rgh, the pressure is the same at the bottom of both 
glasses. In view of this equality, why does one weigh 
more than the other?

 3. Because atmospheric pressure is about 105 N/m2 and the 
area of a person’s chest is about 0.13 m2, the force of the 
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 14. Does a ship float higher in the water of an inland lake 
or in the ocean? Why?

 15. When ski jumpers are airborne (Fig. CQ14.15), they 
bend their bodies forward and keep their hands at 
their sides. Why?

Figure CQ14.15
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 16. Why do airplane pilots prefer to take off with the air-
plane facing into the wind?

 17. Prairie dogs ventilate their burrows by building a mound 
around one entrance, which is open to a stream of air 
when wind blows from any direction. A second entrance 
at ground level is open to almost stagnant air. How does 
this construction create an airflow through the burrow?

 18. In Figure CQ14.18, an airstream moves from right to 
left through a tube that is constricted at the middle. 
Three table-tennis balls are levitated in equilibrium 
above the vertical columns through which the air 
escapes. (a) Why is the ball at the right higher than the 
one in the middle? (b) Why is the ball at the left lower 
than the ball at the right even though the horizontal 
tube has the same dimensions at these two points?

Figure CQ14.18
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 19. A typical silo on a farm has many metal bands wrapped 
around its perimeter for support as shown in Figure 
CQ14.19. Why is the spacing between successive bands 
smaller for the lower portions of the silo on the left, 
and why are double bands used at lower portions of the 
silo on the right?

atmosphere on one’s chest is around 13 000 N. In view of 
this enormous force, why don’t our bodies collapse?

 4. A fish rests on the bottom of a bucket of water while 
the bucket is being weighed on a scale. When the fish 
begins to swim around, does the scale reading change? 
Explain your answer.

 5. You are a passenger on a spacecraft. For your survival 
and comfort, the interior contains air just like that at 
the surface of the Earth. The craft is coasting through 
a very empty region of space. That is, a nearly perfect 
vacuum exists just outside the wall. Suddenly, a mete-
oroid pokes a hole, about the size of a large coin, right 
through the wall next to your seat. (a) What happens? 
(b) Is there anything you can or should do about it?

 6. If the airstream from a hair dryer is directed over a 
table-tennis ball, the ball can be levitated. Explain.

 7. A water tower is a common sight in many communities. 
Figure CQ14.7 shows a collection of colorful water tow-
ers in Kuwait City, Kuwait. Notice that the large weight 
of the water results in the center of mass of the system 
being high above the ground. Why is it desirable for a 
water tower to have this highly unstable shape rather 
than being shaped as a tall cylinder?

Figure CQ14.7
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 8. If you release a ball while inside a freely falling eleva-
tor, the ball remains in front of you rather than falling 
to the floor because the ball, the elevator, and you all 
experience the same downward gravitational accelera-
tion. What happens if you repeat this experiment with 
a helium-filled balloon?

 9. (a) Is the buoyant force a conservative force? (b) Is a 
potential energy associated with the buoyant force?  
(c) Explain your answers to parts (a) and (b).

 10. An empty metal soap dish barely floats in water. A bar 
of Ivory soap floats in water. When the soap is stuck in 
the soap dish, the combination sinks. Explain why.

 11. How would you determine the density of an irregularly 
shaped rock?

 12. Place two cans of soft drinks, one regular and one diet, 
in a container of water. You will find that the diet drink 
floats while the regular one sinks. Use Archimedes’s 
principle to devise an explanation.

 13. The water supply for a city is often provided from res-
ervoirs built on high ground. Water flows from the 
reservoir, through pipes, and into your home when 
you turn the tap on your faucet. Why does water flow 
more rapidly out of a faucet on the first floor of a 
building than in an apartment on a higher floor? Figure CQ14.19
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Note: In all problems, assume the density of air is the 
20°C value from Table 14.1, 1.20 kg/m3, unless noted 
otherwise.

Section 14.1 Pressure

 1. A large man sits on a four-legged chair with his feet off 
the floor. The combined mass of the man and chair is 
95.0 kg. If the chair legs are circular and have a radius 
of 0.500 cm at the bottom, what pressure does each leg 
exert on the floor?

 2. The nucleus of an atom can be modeled as several pro-
tons and neutrons closely packed together. Each par-
ticle has a mass of 1.67 3 10227 kg and radius on the 
order of 10215 m. (a) Use this model and the data pro-
vided to estimate the density of the nucleus of an atom. 
(b) Compare your result with the density of a material 
such as iron. What do your result and comparison sug-
gest concerning the structure of matter?

 3. A 50.0-kg woman wearing high-heeled shoes is invited 
into a home in which the kitchen has vinyl floor cover-
ing. The heel on each shoe is circular and has a radius 
of 0.500  cm. (a) If the woman balances on one heel, 
what pressure does she exert on the floor? (b) Should 
the home owner be concerned? Explain your answer.

 4. Estimate the total mass of the Earth’s atmosphere. 
(The radius of the Earth is 6.37 3 106 m, and atmo-
spheric pressure at the surface is 1.013 3 105 Pa.)

 5. Calculate the mass of a solid gold rectangular bar that 
has dimensions of 4.50 cm 3 11.0 cm 3 26.0 cm.

Section 14.2 Variation of Pressure with Depth

 6. (a) A very powerful vacuum cleaner has a hose 2.86 cm 
in diameter. With the end of the hose placed perpen-
dicularly on the flat face of a brick, what is the weight 
of the heaviest brick that the cleaner can lift? (b) What 
If? An octopus uses one sucker of diameter 2.86 cm on 
each of the two shells of a clam in an attempt to pull 
the shells apart. Find the greatest force the octopus 
can exert on a clamshell in salt water 32.3 m deep.

 7. The spring of the pressure gauge shown in Figure 
P14.7 has a force constant of 1 250 N/m, and the piston 
has a diameter of 1.20 cm. As the gauge is lowered into 
water in a lake, what change in depth causes the piston 
to move in by 0.750 cm?
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 8. The small piston of a hydraulic lift (Fig. P14.8) has a 
cross-sectional area of 3.00 cm2, and its large piston 
has a cross-sectional area of 200 cm2. What downward 
force of magnitude F1 must be applied to the small 
piston for the lift to raise a load whose weight is Fg 5  
15.0 kN?

F1
S

Fg � 15.0 kN

Figure P14.8

 9. What must be the contact area between a suction cup 
(completely evacuated) and a ceiling if the cup is to 
support the weight of an 80.0-kg student?

 10. A swimming pool has dimensions 30.0 m 3 10.0 m and a 
flat bottom. When the pool is filled to a depth of 2.00 m  
with fresh water, what is the force exerted by the water 
on (a) the bottom? (b) On each end? (c) On each side?

 11. (a) Calculate the absolute pressure at the bottom of 
a freshwater lake at a point whose depth is 27.5 m. 
Assume the density of the water is 1.00 3 103 kg/m3 
and that the air above is at a pressure of 101.3 kPa.  
(b) What force is exerted by the water on the window 
of an underwater vehicle at this depth if the window is 
circular and has a diameter of 35.0 cm?

 12. Why is the following situation impossible? Figure P14.12 
shows Superman attempting to drink cold water 
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 17. Review. Piston  in Figure P14.17 has a diameter of 
0.250 in. Piston  has a diameter of 1.50 in. Determine 
the magnitude F of the force necessary to support the 
500-lb load in the absence of friction.

500 lb

2.0 in.
10 in.





F
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Figure P14.17

 18. Review. A solid sphere of brass (bulk modulus of  
14.0 3 1010 N/m2) with a diameter of 3.00 m is thrown 
into the ocean. By how much does the diameter of the 
sphere decrease as it sinks to a depth of 1.00 km?

Section 14.3 Pressure Measurements

 19. Normal atmospheric pressure is 1.013 3 105 Pa. The 
approach of a storm causes the height of a mercury 
barometer to drop by 20.0 mm from the normal height. 
What is the atmospheric pressure?

 20. The human brain and spinal cord are immersed in the 
cerebrospinal fluid. The fluid is normally continuous 
between the cranial and spinal cavities and exerts a 
pressure of 100 to 200 mm of H2O above the prevail-
ing atmospheric pressure. In medical work, pressures 
are often measured in units of millimeters of H2O 
because body fluids, including the cerebrospinal fluid, 
typically have the same density as water. The pressure 
of the cerebrospinal fluid can be measured by means 
of a spinal tap as illustrated in Figure P14.20. A hollow 
tube is inserted into the spinal column, and the height 
to which the fluid rises is observed. If the fluid rises 
to a height of 160 mm, we write its gauge pressure as 
160 mm H2O. (a) Express this pressure in pascals, in 
atmospheres, and in millimeters of mercury. (b) Some 
conditions that block or inhibit the flow of cerebrospi-
nal fluid can be investigated by means of Queckenstedt’s 
test. In this procedure, the veins in the patient’s neck 
are compressed to make the blood pressure rise in the 
brain, which in turn should be transmitted to the cere-
brospinal fluid. Explain how the level of fluid in the 
spinal tap can be used as a diagnostic tool for the con-
dition of the patient’s spine.

BIO
Q/C

through a straw of length , 5 12.0 m. The walls of the 
tubular straw are very strong and do not collapse. With 
his great strength, he achieves maximum possible suc-
tion and enjoys drinking the cold water.

�

Figure P14.12

 13. For the cellar of a new house, a hole is dug in the 
ground, with vertical sides going down 2.40 m. A con-
crete foundation wall is built all the way across the 
9.60-m width of the excavation. This foundation wall 
is 0.183 m away from the front of the cellar hole. Dur-
ing a rainstorm, drainage from the street fills up the 
space in front of the concrete wall, but not the cellar 
behind the wall. The water does not soak into the clay 
soil. Find the force the water causes on the founda-
tion wall. For comparison, the weight of the water is 
given by 2.40 m 3 9.60 m 3 0.183 m 3 1 000 kg/m3 3  
9.80 m/s2 5 41.3 kN.

 14. A container is filled to a depth of 20.0 cm with water. 
On top of the water floats a 30.0-cm-thick layer of oil 
with specific gravity 0.700. What is the absolute pres-
sure at the bottom of the container?

 15. Review. The tank in Figure P14.15 is filled with water 
of depth d 5 2.00 m. At the bottom of one sidewall is a 
rectangular hatch of height h 5 1.00 m and width w 5  
2.00 m that is hinged at the top of the hatch. (a) Deter-
mine the magnitude of the force the water exerts 
on the hatch. (b)  Find the magnitude of the torque 
exerted by the water about the hinges.

d

w

h

Figure P14.15  
Problems 15 and 16.

 16. Review. The tank in Figure P14.15 is filled with water of 
depth d. At the bottom of one sidewall is a rectangular 
hatch of height h and width w that is hinged at the top 
of the hatch. (a) Determine the magnitude of the force 
the water exerts on the hatch. (b) Find the magnitude 
of the torque exerted by the water about the hinges.

S

Figure P14.20
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scale and submerged in water, the scale reads 3.50 N 
(Fig. P14.26). Find the density of the object.

Scale

a b

Figure P14.26 Problems 26 and 27.

 27. A 10.0-kg block of metal measuring 12.0 cm by 10.0 cm 
by 10.0 cm is suspended from a scale and immersed in 
water as shown in Figure P14.26b. The 12.0-cm dimen-
sion is vertical, and the top of the block is 5.00 cm below 
the surface of the water. (a) What are the magnitudes of 
the forces acting on the top and on the bottom of the 
block due to the surrounding water? (b) What is the 
reading of the spring scale? (c) Show that the buoyant 
force equals the difference between the forces at the top 
and bottom of the block.

 28. A light balloon is filled with 400 m3 of helium at atmo-
spheric pressure. (a) At 0°C, the balloon can lift a pay-
load of what mass? (b) What If? In Table 14.1, observe 
that the density of hydrogen is nearly half the density 
of helium. What load can the balloon lift if filled with 
hydrogen?

 29. A cube of wood having an edge dimension of 20.0 cm 
and a density of 650 kg/m3 floats on water. (a) What 
is the distance from the horizontal top surface of the 
cube to the water level? (b) What mass of lead should 
be placed on the cube so that the top of the cube will 
be just level with the water surface?

 30. The United States possesses the ten largest warships 
in the world, aircraft carriers of the Nimitz class. Sup-
pose one of the ships bobs up to float 11.0 cm higher 
in the ocean water when 50 fighters take off from it in 
a time interval of 25 min, at a location where the free-
fall acceleration is 9.78 m/s2. The planes have an aver-
age laden mass of 29 000 kg. Find the horizontal area 
enclosed by the waterline of the ship.

 31. A plastic sphere floats in water with 50.0% of its vol-
ume submerged. This same sphere floats in glycerin 
with 40.0% of its volume submerged. Determine the 
densities of (a) the glycerin and (b) the sphere.

 32. A spherical vessel used for deep-sea exploration has a 
radius of 1.50 m and a mass of 1.20 3 104 kg. To dive, 
the vessel takes on mass in the form of seawater. Deter-
mine the mass the vessel must take on if it is to descend 
at a constant speed of 1.20 m/s, when the resistive force 
on it is 1 100 N in the upward direction. The density of 
seawater is equal to 1.03 3 103 kg/m3.

 33. A wooden block of volume 5.24 3 1024 m3 floats in 
water, and a small steel object of mass m is placed on 
top of the block. When m 5 0.310 kg, the system is in 
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 21. Blaise Pascal duplicated Torricelli’s barometer using a 
red Bordeaux wine, of density 984 kg/m3, as the work-
ing liquid (Fig. P14.21). (a) What was the height h of 
the wine column for normal atmospheric pressure?  
(b) Would you expect the vacuum above the column to 
be as good as for mercury?

P0

h

Figure P14.21

 22. Mercury is poured into a U-tube as shown in Figure 
P14.22a. The left arm of the tube has cross-sectional 
area A1 of 10.0  cm2, and the right arm has a cross- 
sectional area A2 of 5.00 cm2. One hundred grams of 
water are then poured into the right arm as shown in 
Figure P14.22b. (a) Determine the length of the water 
column in the right arm of the U-tube. (b) Given that 
the density of mercury is 13.6 g/cm3, what distance h 
does the mercury rise in the left arm?

h

Mercury

A1 A2 A1 A2
Water

a b

Figure P14.22

 23. A backyard swimming pool with a circular base of 
diameter 6.00 m is filled to depth 1.50 m. (a) Find the 
absolute pressure at the bottom of the pool. (b) Two 
persons with combined mass 150 kg enter the pool and 
float quietly there. No water overflows. Find the pres-
sure increase at the bottom of the pool after they enter 
the pool and float.

 24. A tank with a flat bottom of area A and vertical sides is 
filled to a depth h with water. The pressure is P0 at the 
top surface. (a) What is the absolute pressure at the bot-
tom of the tank? (b) Suppose an object of mass M and 
density less than the density of water is placed into the 
tank and floats. No water overflows. What is the result-
ing increase in pressure at the bottom of the tank?

Section 14.4 Buoyant Forces and archimedes’s Principle

 25. A table-tennis ball has a diameter of 3.80 cm and aver-
age density of 0.084 0 g/cm3. What force is required to 
hold it completely submerged under water?

 26. The gravitational force exerted on a solid object is  
5.00 N. When the object is suspended from a spring 
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fiduciary marks are to be placed along the rod to indi-
cate densities of 0.98 g/cm3, 1.00 g/cm3, 1.02 g/cm3, 
1.04 g/cm3, . . . , 1.14 g/cm3. The row of marks is to start 
0.200 cm from the top end of the rod and end 1.80 cm 
from the top end. (a) What is the required length of the 
rod? (b) What must be its average density? (c) Should 
the marks be equally spaced? Explain your answer.

 38. On October 21, 2001, Ian Ashpole of the United King-
dom achieved a record altitude of 3.35 km (11 000 ft) 
powered by 600 toy balloons filled with helium. Each 
filled balloon had a radius of about 0.50 m and an esti-
mated mass of 0.30 kg. (a) Estimate the total buoyant 
force on the 600 balloons. (b) Estimate the net upward 
force on all 600  balloons. (c) Ashpole parachuted to 
the Earth after the balloons began to burst at the high 
altitude and the buoyant force decreased. Why did the 
balloons burst?

 39. How many cubic meters of helium are required to lift 
a light balloon with a 400-kg payload to a height of 
8 000 m? Take rHe 5 0.179 kg/m3. Assume the balloon 
maintains a constant volume and the density of air 
decreases with the altitude z according to the expres-
sion rair 5 r0e2z/8 000, where z is in meters and r0 5  
1.20 kg/m3 is the density of air at sea level.

Section 14.5 Fluid Dynamics
Section 14.6 Bernoulli’s Equation
 40. Water flowing through a garden hose of diameter 

2.74 cm fills a 25-L bucket in 1.50 min. (a) What is the 
speed of the water leaving the end of the hose? (b) A 
nozzle is now attached to the end of the hose. If the 
nozzle diameter is one-third the diameter of the hose, 
what is the speed of the water leaving the nozzle?

 41. A large storage tank, open at the top and filled with 
water, develops a small hole in its side at a point 16.0 m  
below the water level. The rate of flow from the leak 
is found to be 2.50 3 1023 m3/min. Determine (a) the 
speed at which the water leaves the hole and (b) the 
diameter of the hole.

 42. Water moves through a constricted pipe in steady, ideal 
flow. At the lower point shown in Figure P14.42, the 
pressure is P1 5 1.75 3 104 Pa and the pipe diameter 
is 6.00 cm. At another point y 5 0.250 m higher, the 
pressure is P2 5 1.20 3 104 Pa and the pipe diameter is  
3.00 cm. Find the speed of flow (a) in the lower section 
and (b) in the upper section. (c) Find the volume flow 
rate through the pipe.

P1

P2

y

Figure P14.42

 43. Figure P14.43 on page 442 shows a stream of water in 
steady flow from a kitchen faucet. At the faucet, the 
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equilibrium and the top of the wooden block is at the 
level of the water. (a) What is the density of the wood? 
(b) What happens to the block when the steel object is 
replaced by an object whose mass is less than 0.310 kg? 
(c) What happens to the block when the steel object 
is replaced by an object whose mass is greater than  
0.310 kg?

 34. The weight of a rectangular block of low-density mate-
rial is 15.0 N. With a thin string, the center of the hori-
zontal bottom face of the block is tied to the bottom of 
a beaker partly filled with water. When 25.0% of the 
block’s volume is submerged, the tension in the string is 
10.0 N. (a) Find the buoyant force on the block. (b) Oil  
of density 800 kg/m3 is now steadily added to the bea-
ker, forming a layer above the water and surround-
ing the block. The oil exerts forces on each of the 
four sidewalls of the block that the oil touches. What 
are the directions of these forces? (c) What happens 
to the string tension as the oil is added? Explain how 
the oil has this effect on the string tension. (d) The 
string breaks when its tension reaches 60.0 N. At this 
moment, 25.0% of the block’s volume is still below the 
water line. What additional fraction of the block’s vol-
ume is below the top surface of the oil?

 35. A large weather balloon whose mass is 226 kg is filled 
with helium gas until its volume is 325 m3. Assume the 
density of air is 1.20 kg/m3 and the density of helium is 
0.179 kg/m3. (a) Calculate the buoyant force acting on 
the balloon. (b) Find the net force on the balloon and 
determine whether the balloon will rise or fall after it 
is released. (c) What additional mass can the balloon 
support in equilibrium?

 36. A hydrometer is an instrument used to determine liquid 
density. A simple one is sketched in Figure P14.36. The 
bulb of a syringe is squeezed and released to let the 
atmosphere lift a sample of the liquid of interest into a 
tube containing a calibrated rod of known density. The 
rod, of length L and average density r0, floats partially 
immersed in the liquid of density r. A length h of the 
rod protrudes above the surface of the liquid. Show 
that the density of the liquid is given by

r 5
r0L

L 2 h

96

98

102

104

100

L

h96

98
100
102
104

Figure P14.36 Problems 36 and 37.

 37. Refer to Problem 36 and Figure P14.36. A hydrometer is 
to be constructed with a cylindrical floating rod. Nine 
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water must be pumped if it is to arrive at the village? 
(b) If 4 500 m3 of water is pumped per day, what is 
the speed of the water in the pipe? Note: Assume the 
free-fall acceleration and the density of air are con-
stant over this range of elevations. The pressures you 
calculate are too high for an ordinary pipe. The water 
is actually lifted in stages by several pumps through 
shorter pipes.

 48. In ideal flow, a liquid of density 850 kg/m3 moves from 
a horizontal tube of radius 1.00 cm into a second hori-
zontal tube of radius 0.500 cm at the same elevation as 
the first tube. The pressure differs by DP between the 
liquid in one tube and the liquid in the second tube. 
(a) Find the volume flow rate as a function of DP. Eval-
uate the volume flow rate for (b) DP 5 6.00 kPa and  
(c) DP 5 12.0 kPa.

 49. The Venturi tube discussed in Example 14.8 and shown 
in Figure P14.49 may be used as a fluid flowmeter. 
Suppose the device is used at a service station to mea-
sure the flow rate of gasoline (r 5 7.00 3 102 kg/m3) 
through a hose having an outlet radius of 1.20 cm. If 
the difference in pressure is measured to be P1 2 P2 5 
1.20 kPa and the radius of the inlet tube to the meter 
is 2.40 cm, find (a) the speed of the gasoline as it leaves 
the hose and (b) the fluid flow rate in cubic meters per 
second.

P1 P2

Figure P14.49

 50. Review. Old Faithful Geyser in Yellowstone National 
Park erupts at approximately one-hour intervals, 
and the height of the water column reaches 40.0 m 
(Fig. P14.50). (a)  Model the rising stream as a series 
of  separate  droplets. Analyze the free-fall motion of 
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diameter of the stream is 0.960 cm. The stream fills a 
125-cm3 container in 16.3 s. Find the diameter of the 
stream 13.0 cm below the opening of the faucet.

Figure P14.43
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 44. A village maintains a large tank with an open top, con-
taining water for emergencies. The water can drain 
from the tank through a hose of diameter 6.60 cm. The 
hose ends with a nozzle of diameter 2.20 cm. A rubber 
stopper is inserted into the nozzle. The water level in 
the tank is kept 7.50 m above the nozzle. (a) Calculate 
the friction force exerted on the stopper by the nozzle. 
(b) The stopper is removed. What mass of water flows 
from the nozzle in 2.00 h? (c) Calculate the gauge pres-
sure of the flowing water in the hose just behind the 
nozzle.

 45. A legendary Dutch boy saved Holland by plugging a 
hole of diameter 1.20 cm in a dike with his finger. If 
the hole was 2.00 m below the surface of the North Sea 
(density 1 030 kg/m3), (a) what was the force on his fin-
ger? (b) If he pulled his finger out of the hole, during 
what time interval would the released water fill 1 acre 
of land to a depth of 1 ft? Assume the hole remained 
constant in size.

 46. Water falls over a dam of height h with a mass flow rate 
of R, in units of kilograms per second. (a) Show that 
the power available from the water is

P 5 Rgh

  where g is the free-fall acceleration. (b) Each hydro-
electric unit at the Grand Coulee Dam takes in water at 
a rate of 8.50 3 105 kg/s from a height of 87.0 m. The 
power developed by the falling water is converted to 
electric power with an efficiency of 85.0%. How much 
electric power does each hydroelectric unit produce?

 47. Water is pumped up from the Colorado River to sup-
ply Grand Canyon Village, located on the rim of the 
canyon. The river is at an elevation of 564 m, and the 
village is at an elevation of 2 096 m. Imagine that  
the water is pumped through a single long pipe 15.0 cm  
in diameter, driven by a single pump at the bottom 
end. (a) What is the minimum pressure at which the Figure P14.50
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4.00 m 3 1.50 m. Assume the density of the air to be 
constant at 1.20 kg/m3. The air inside the building is at 
atmospheric pressure. What is the total force exerted 
by air on the windowpane? (b) What If? If a second 
skyscraper is built nearby, the airspeed can be espe-
cially high where wind passes through the narrow sepa-
ration between the buildings. Solve part (a) again with 
a wind speed of 22.4 m/s, twice as high.

 55. A hypodermic syringe contains a medicine with the 
density of water (Fig. P14.55). The barrel of the syringe 
has a cross-sectional area A 5 2.50 3 1025 m2, and the 
needle has a cross-sectional area a 5 1.00 3 1028 m2. 
In the absence of a force on the plunger, the pressure 
everywhere is 1.00 atm. A force F

S
 of magnitude 2.00 N  

acts on the plunger, making medicine squirt hori-
zontally from the needle. Determine the speed of the 
medicine as it leaves the needle’s tip.

A

a

F
S vS

Figure P14.55

additional Problems

 56. Decades ago, it was thought that huge herbivorous 
dinosaurs such as Apatosaurus and Brachiosaurus habit-
ually walked on the bottom of lakes, extending their 
long necks up to the surface to breathe. Brachiosaurus 
had its nostrils on the top of its head. In 1977, Knut 
Schmidt-Nielsen pointed out that breathing would be 
too much work for such a creature. For a simple model, 
consider a sample consisting of 10.0 L of air at absolute 
pressure 2.00 atm, with density 2.40 kg/m3, located at 
the surface of a freshwater lake. Find the work required 
to transport it to a depth of 10.3 m, with its tempera-
ture, volume, and pressure remaining constant. This 
energy investment is greater than the energy that can 
be obtained by metabolism of food with the oxygen in 
that quantity of air.

 57. (a) Calculate the absolute pressure at an ocean depth of 
1 000 m. Assume the density of seawater is 1 030 kg/m3  
and the air above exerts a pressure of 101.3 kPa. (b) At  
this depth, what is the buoyant force on a spherical 
submarine having a diameter of 5.00 m?

 58. In about 1657, Otto von Guericke, inventor of the air 
pump, evacuated a sphere made of two brass hemi-
spheres (Fig. P14.58). Two teams of eight horses each 
could pull the hemispheres apart only on some trials 
and then “with greatest difficulty,” with the resulting  

M
BIO

BIO

W

S

one of the droplets to determine the speed at which 
the water leaves the ground. (b) What If? Model the 
rising stream as an ideal fluid in streamline flow. 
Use Bernoulli’s equation to determine the speed of 
the water as it leaves ground level. (c) How does the 
answer from part (a) compare with the answer from 
part (b)? (d) What is the pressure (above atmospheric) 
in the heated underground chamber if its depth is  
175 m? Assume the chamber is large compared with 
the geyser’s vent.

Section 14.7 other applications of Fluid Dynamics

 51. An airplane is cruising at altitude 10 km. The pressure 
outside the craft is 0.287 atm; within the passenger 
compartment, the pressure is 1.00 atm and the temper-
ature is 208C. A small leak occurs in one of the window 
seals in the passenger compartment. Model the air as 
an ideal fluid to estimate the speed of the airstream 
flowing through the leak.

 52. An airplane has a mass of 1.60 3 104 kg, and each wing 
has an area of 40.0 m2. During level flight, the pressure 
on the lower wing surface is 7.00 3 104 Pa. (a) Suppose 
the lift on the airplane were due to a pressure differ-
ence alone. Determine the pressure on the upper wing 
surface. (b) More realistically, a significant part of the 
lift is due to deflection of air downward by the wing. 
Does the inclusion of this force mean that the pressure 
in part (a) is higher or lower? Explain.

 53. A siphon is used to drain water from a tank as illus-
trated in Figure P14.53. Assume steady flow without 
friction. (a) If h 5 1.00 m, find the speed of outflow at 
the end of the siphon. (b) What If? What is the limita-
tion on the height of the top of the siphon above the 
end of the siphon? Note: For the flow of the liquid to be 
continuous, its pressure must not drop below its vapor 
pressure. Assume the water is at 20.08C, at which the 
vapor pressure is 2.3 kPa.

h

y

�

vS

Figure P14.53

 54. The Bernoulli effect can have important consequences 
for the design of buildings. For example, wind can 
blow around a skyscraper at remarkably high speed, 
creating low pressure. The higher atmospheric pres-
sure in the still air inside the buildings can cause win-
dows to pop out. As originally constructed, the John 
Hancock Building in Boston popped windowpanes 
that fell many stories to the sidewalk below. (a) Sup-
pose a horizontal wind blows with a speed of 11.2 m/s 
outside a large pane of plate glass with dimensions 
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balance with the use of counterweights of density r. 
Representing the density of air as rair and the balance 
reading as F 9g , show that the true weight Fg is

Fg 5 F rg 1 aV 2
F rg
rg

brairg

 63. Water is forced out of a fire extinguisher by air pres-
sure as shown in Figure P14.63. How much gauge air 
pressure in the tank is required for the water jet to have 
a speed of 30.0  m/s when the water level is 0.500 m  
below the nozzle?

0.500 m

vS

Figure P14.63

 64. Review. Assume a certain liquid, with density  
1 230  kg/m3, exerts no friction force on spherical 
objects. A ball of mass 2.10 kg and radius 9.00 cm is 
dropped from rest into a deep tank of this liquid from a 
height of 3.30 m above the surface. (a) Find the speed at 
which the ball enters the liquid. (b) Evaluate the magni-
tudes of the two forces that are exerted on the ball as it 
moves through the liquid. (c) Explain why the ball 
moves down only a limited distance into the liquid and 
calculate this distance. (d) With what speed will the ball 
pop up out of the liquid? (e) How does the time interval 
Dtdown, during which the ball moves from the surface 
down to its lowest point, compare with the time interval 
Dtup for the return trip between the same two points? 
(f) What If? Now modify the model to suppose the liq-
uid exerts a small friction force on the ball, opposite in 
direction to its motion. In this case, how do the time 
intervals Dtdown and Dtup compare? Explain your answer 
with a conceptual argument rather than a numerical 
calculation.

 65. Review. A light spring of constant k 5 90.0 N/m is 
attached vertically to a table (Fig. P14.65a). A 2.00-g 
balloon is filled with helium (density 5 0.179 kg/m3) 
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sound likened to a cannon firing. Find the force F 
required to pull the thin-walled evacuated hemispheres  
apart in terms of R, the radius of the hemispheres; P, 
the pressure inside the hemispheres; and atmospheric 
pressure P0.

 59. A spherical aluminum ball of mass 1.26 kg contains an 
empty spherical cavity that is concentric with the ball. 
The ball barely floats in water. Calculate (a) the outer 
radius of the ball and (b) the radius of the cavity.

 60. A helium-filled balloon (whose envelope has a mass of 
mb 5 0.250 kg) is tied to a uniform string of length , 5 
2.00 m and mass m 5 0.050 0 kg. The balloon is spheri-
cal with a radius of r 5 0.400 m. When released in air 
of temperature 208C and density rair 5 1.20 kg/m3, it 
lifts a length h of string and then remains stationary as 
shown in Figure P14.60. We wish to find the length of 
string lifted by the balloon. (a)  When the balloon 
remains stationary, what is the appropriate analysis 
model to describe it? (b) Write a force equation for 
the balloon from this model in terms of the buoyant 
force B, the weight Fb of the balloon, the weight FHe of 
the helium, and the weight Fs of the segment of string 
of length h. (c) Make an appropriate substitution for 
each of these forces and solve symbolically for the 
mass ms of the segment of string of length h in terms 
of mb, r, rair, and the density of helium rHe. (d) Find 
the numerical value of the mass ms . (e) Find the length 
h numerically.

He

h

Figure P14.60

 61. Review. Figure P14.61 shows a valve separating a res-
ervoir from a water tank. If this valve is opened, what 
is the maximum height above point B attained by the 
water stream coming out of the right side of the tank? 
Assume h 5 10.0 m, L 5 2.00 m, and u 5 30.0°, and 
assume the cross-sectional area at A is very large com-
pared with that at B.

A

h

Valve L B

u

Figure P14.61

 62. The true weight of an object can be measured in a 
vacuum, where buoyant forces are absent. A measure-
ment in air, however, is disturbed by buoyant forces. An 
object of volume V is weighed in air on an equal-arm 
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Figure P14.65
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 70. Review. With reference to the dam studied in Example 
14.4 and shown in Figure 14.5, (a) show that the total 
torque exerted by the water behind the dam about a 
horizontal axis through O is 16 rgwH 3. (b) Show that the 
effective line of action of the total force exerted by the 
water is at a distance 13H  above O.

 71. A 1.00-kg beaker containing 2.00 kg of oil (density 5 
916.0 kg/m3) rests on a scale. A 2.00-kg block of iron 
suspended from a spring scale is completely submerged 
in the oil as shown in Figure P14.71. Determine the 
equilibrium readings of both scales.

Figure P14.71 Problems 71 and 72.

 72. A beaker of mass mb containing oil of mass mo and den-
sity ro rests on a scale. A block of iron of mass mFe sus-
pended from a spring scale is completely submerged in 
the oil as shown in Figure P14.71. Determine the equi-
librium readings of both scales.

 73. In 1983, the United States began coining the one-cent 
piece out of copper-clad zinc rather than pure cop-
per. The mass of the old copper penny is 3.083 g and 
that of the new cent is 2.517 g. The density of copper  
is 8.920 g/cm3 and that of zinc is 7.133 g/cm3. The new 
and old coins have the same volume. Calculate the  
percent of zinc (by volume) in the new cent.

 74. Review. A long, cylindrical rod of radius r is weighted 
on one end so that it floats upright in a fluid having a 
density r. It is pushed down a distance x from its equi-
librium position and released. Show that the rod will 
execute simple harmonic motion if the resistive effects 
of the fluid are negligible, and determine the period 
of the oscillations.

 75. Review. Figure P14.75 shows the essential parts of 
a hydraulic brake system. The area of the piston in 
the master cylinder is 1.8 cm2 and that of the piston 
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to a volume of 5.00 m3 and is then connected with a 
light cord to the spring, causing the spring to stretch 
as shown in Figure P14.65b. Determine the extension 
distance L when the balloon is in equilibrium.

 66. To an order of magnitude, how many helium-filled toy 
balloons would be required to lift you? Because helium 
is an irreplaceable resource, develop a theoretical 
answer rather than an experimental answer. In your 
solution, state what physical quantities you take as data 
and the values you measure or estimate for them.

 67. A 42.0-kg boy uses a solid block of Styrofoam as a raft 
while fishing on a pond. The Styrofoam has an area 
of 1.00 m2 and is 0.050 0 m thick. While sitting on the 
surface of the raft, the boy finds that the raft just sup-
ports him so that the top of the raft is at the level of the 
pond. Determine the density of the Styrofoam.

 68. A common parameter that can be used to predict tur-
bulence in fluid flow is called the Reynolds number. The 
Reynolds number for fluid flow in a pipe is a dimen-
sionless quantity defined as

Re 5
rvd
m

  where r is the density of the fluid, v is its speed, d is the 
inner diameter of the pipe, and m is the viscosity of the 
fluid. Viscosity is a measure of the internal resistance 
of a liquid to flow and has units of Pa · s. The criteria 
for the type of flow are as follows:

  •  If Re , 2 300, the flow is laminar.
  •   If  2  300 , Re , 4 000, the flow is in a transition 

region between laminar and turbulent.
  •  If Re . 4 000, the flow is turbulent.

  (a) Let’s model blood of density 1.06 3 103 kg/m3 
and viscosity 3.00 3 10–3 Pa · s as a pure liquid, that 
is, ignore the fact that it contains red blood cells. Sup-
pose it is flowing in a large artery of radius 1.50 cm 
with a speed of 0.067 0 m/s. Show that the flow is lami-
nar. (b) Imagine that the artery ends in a single capil-
lary so that the radius of the artery reduces to a much 
smaller value. What is the radius of the capillary that 
would cause the flow to become turbulent? (c) Actual 
capillaries have radii of about 5–10 micrometers, much 
smaller than the value in part (b). Why doesn’t the flow 
in actual capillaries become turbulent?

 69. Evangelista Torricelli was the first person to realize 
that we live at the bottom of an ocean of air. He cor-
rectly surmised that the pressure of our atmosphere is 
attributable to the weight of the air. The density of air 
at 08C at the Earth’s surface is 1.29 kg/m3. The den-
sity decreases with increasing altitude (as the atmo-
sphere thins). On the other hand, if we assume the 
density is constant at 1.29 kg/m3 up to some altitude 
h and is zero above that altitude, then h would repre-
sent the depth of the ocean of air. (a) Use this model 
to determine the value of h that gives a pressure of 
1.00 atm at the surface of the Earth. (b) Would the 
peak of Mount Everest rise above the surface of such 
an atmosphere?

BIO
Q/C

Wheel
drum

Shoe

Brake
cylinder

Master
cylinder

Pedal

Figure P14.75



446 chapter 14 Fluid Mechanics

travel from the nozzle to the ground. Neglect air resis-
tance and assume atmospheric pressure is 1.00 atm.  
(b) If the desired range of the stream is 8.00 m, with 
what speed v2 must the stream leave the nozzle? (c) At 
what speed v1 must the plunger be moved to achieve 
the desired range? (d) What is the pressure at the 
nozzle? (e) Find the pressure needed in the larger 
tube. (f) Calculate the force that must be exerted on 
the trigger to achieve the desired range. (The force 
that must be exerted is due to pressure over and above 
atmospheric pressure.)

F
S

v1
S

v2
S

A2

A1

Figure P14.78

 79. An incompressible, nonviscous fluid is initially at rest 
in the vertical portion of the pipe shown in Figure 
P14.79a, where L 5 2.00 m. When the valve is opened, 
the fluid flows into the horizontal section of the pipe. 
What is the fluid’s speed when all the fluid is in the 
horizontal section as shown in Figure P14.79b? 
Assume the cross-sectional area of the entire pipe is 
constant.

Valve
closed

Valve
opened

L

L

vS

a b

Figure P14.79

 80. The water supply of a building is fed through a main 
pipe 6.00 cm in diameter. A 2.00-cm-diameter faucet 
tap, located 2.00 m above the main pipe, is observed to 
fill a 25.0-L container in 30.0 s. (a) What is the speed at 
which the water leaves the faucet? (b) What is the 
gauge pressure in the 6-cm main pipe? Assume the 
faucet is the only “leak” in the building.

 81. A U-tube open at both ends is partially filled with 
water (Fig. P14.81a). Oil having a density 750 kg/m3 is 
then poured into the right arm and forms a column  
L 5 5.00 cm high (Fig. P14.81b). (a) Determine the 
difference h in the heights of the two liquid surfaces. 
(b) The right arm is then shielded from any air motion 
while air is blown across the top of the left arm until 
the surfaces of the two liquids are at the same height 
(Fig. P14.81c). Determine the speed of the air being 

in the brake cylinder is 6.4 cm2. The coefficient of fric-
tion between shoe and wheel drum is 0.50. If the wheel 
has a radius of 34 cm, determine the frictional torque 
about the axle when a force of 44 N is exerted on the 
brake pedal.

 76. The spirit-in-glass thermometer, invented in Florence, 
Italy, around 1654, consists of a tube of liquid (the 
spirit) containing a number of submerged glass 
spheres with slightly different masses (Fig. P14.76). At 
sufficiently low temperatures, all the spheres float, but 
as the temperature rises, the spheres sink one after 
another. The device is a crude but interesting tool for 
measuring temperature. Suppose the tube is filled 
with ethyl alcohol, whose density is 0.789 45 g/cm3  
at 20.0°C and decreases to 0.780 97 g/cm3 at 30.0°C. 
(a) Assuming that one of the spheres has a radius  
of 1.000 cm and is in equilibrium halfway up the  
tube at 20.0°C, determine its mass. (b) When the 
temperature increases to 30.0°C, what mass must a 
second sphere of the same radius have to be in equi-
librium at the halfway point? (c) At 30.0°C, the first 
sphere has fallen to the bottom of the tube. What 
upward force does the bottom of the tube exert on 
this sphere?

Figure P14.76
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 77. Review. A uniform disk of mass 10.0 kg and radius 
0.250 m spins at 300 rev/min on a low-friction axle. It 
must be brought to a stop in 1.00 min by a brake pad 
that makes contact with the disk at an average distance 
0.220 m from the axis. The coefficient of friction 
between pad and disk is 0.500. A piston in a cylinder of 
diameter 5.00 cm presses the brake pad against the 
disk. Find the pressure required for the brake fluid  
in the cylinder.

 78. Review. In a water pistol, a piston drives water through 
a large tube of area A1 into a smaller tube of area A2 as 
shown in Figure P14.78. The radius of the large tube 
is 1.00 cm and that of the small tube is 1.00 mm. The 
smaller tube is 3.00 cm above the larger tube. (a) If 
the pistol is fired horizontally at a height of 1.50 m, 
determine the time interval required for the water to 

Q/C
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  (b) The boat has mass M. Show that the liftoff speed is 
given by

v < Å
2Mg

1n2 2 1 2Ar

 84. A jet of water squirts out horizontally from a hole near 
the bottom of the tank shown in Figure P14.84. If the 
hole has a diameter of 3.50 mm, what is the height h of 
the water level in the tank?

h

0.600 m

1.00 m

Figure P14.84

Challenge Problems

 85. An ice cube whose edges measure 20.0 mm is float-
ing in a glass of ice-cold water, and one of the ice 
cube’s faces is parallel to the water’s surface. (a) How 
far below the water surface is the bottom face of the 
block? (b) Ice-cold ethyl alcohol is gently poured onto 
the water surface to form a layer 5.00 mm thick above 
the water. The alcohol does not mix with the water. 
When the ice cube again attains hydrostatic equilib-
rium, what is the distance from the top of the water 
to the bottom face of the block? (c) Additional cold 
ethyl alcohol is poured onto the water’s surface until 
the top surface of the alcohol coincides with the top 
surface of the ice cube (in hydrostatic equilibrium). 
How thick is the required layer of ethyl alcohol?

 86. Why is the following situation impossible? A barge is car-
rying a load of small pieces of iron along a river. 
The iron pile is in the shape of a cone for which the 
radius r of the base of the cone is equal to the central 
height h of the cone. The barge is square in shape, 
with vertical sides of length 2r, so that the pile of iron 
comes just up to the edges of the barge. The barge 
approaches a low bridge, and the captain realizes 
that the top of the pile of iron is not going to make 
it under the bridge. The captain orders the crew to 
shovel iron pieces from the pile into the water to 
reduce the height of the pile. As iron is shoveled from 
the pile, the pile always has the shape of a cone whose 
diameter is equal to the side length of the barge. 
After a certain volume of iron is removed from the 
barge, it makes it under the bridge without the top of 
the pile striking the bridge.

 87. Show that the variation of atmospheric pressure with 
altitude is given by P 5 P0e2ay, where a 5 r0g/P0, P0 

M

S

blown across the left arm. Take the density of air as 
constant at 1.20 kg/m3.

P0

Water

h
L

Oil

L

ShieldvS

a b c

Figure P14.81

 82. A woman is draining her fish tank by siphoning the 
water into an outdoor drain as shown in Figure P14.82.  
The rectangular tank has footprint area A and depth 
h. The drain is located a distance d below the surface 
of the water in the tank, where d .. h. The cross- 
sectional area of the siphon tube is A9. Model the water 
as flowing without friction. Show that the time interval 
required to empty the tank is given by

Dt 5
Ah

A r"2gd

d

h

Figure P14.82

 83. The hull of an experimental boat is to be lifted above 
the water by a hydrofoil mounted below its keel as 
shown in Figure P14.83. The hydrofoil has a shape like 
that of an airplane wing. Its area projected onto a  
horizontal surface is A. When the boat is towed at suf-
ficiently high speed, water of density r moves in stream-
line flow so that its average speed at the top of the 
hydrofoil is n times larger than its speed vb below the 
hydrofoil. (a) Ignoring the buoyant force, show that 
the upward lift force exerted by the water on the hydro-
foil has a magnitude

F <
1
2 1n2 2 1 2rvb

2A

S

S

M

Figure P14.83
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expressed from Equation 14.4 as dP 5 2rg dy. Also 
assume the density of air is proportional to the pres-
sure, which, as we will see in Chapter 20, is equivalent 
to assuming the temperature of the air is the same at 
all altitudes.

is atmospheric pressure at some reference level y 5 0, 
and r0 is the atmospheric density at this level. Assume 
the decrease in atmospheric pressure over an infinites-
imal change in altitude (so that the density is approxi-
mately uniform over the infinitesimal change) can be 
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Tables
a p p e n d i x 

A
Conversion Factors

Length

m cm km in. ft mi

1 meter 1 102 1023 39.37 3.281 6.214 3 1024

1 centimeter 1022 1 1025 0.393 7 3.281 3 1022 6.214 3 1026

1 kilometer 103 105 1 3.937 3 104 3.281 3 103 0.621 4

1 inch 2.540 3 1022 2.540 2.540 3 1025 1 8.333 3 1022 1.578 3 1025

1 foot 0.304 8 30.48 3.048 3 1024 12 1 1.894 3 1024

1 mile 1 609 1.609 3 105 1.609 6.336 3 104 5 280 1

Mass

kg g slug u

1 kilogram 1 103 6.852 3 1022 6.024 3 1026

1 gram 1023 1 6.852 3 1025 6.024 3 1023

1 slug 14.59 1.459 3 104 1 8.789 3 1027

1 atomic mass unit 1.660 3 10227 1.660 3 10224 1.137 3 10228 1
Note: 1 metric ton 5 1 000 kg.

Time

s min h day yr

1 second 1 1.667 3 1022 2.778 3 1024 1.157 3 1025 3.169 3 1028

1 minute 60 1 1.667 3 1022 6.994 3 1024 1.901 3 1026

1 hour 3 600 60 1 4.167 3 1022 1.141 3 1024

1 day 8.640 3 104 1 440 24 1 2.738 3 1025

1 year 3.156 3 107 5.259 3 105 8.766 3 103 365.2 1

Speed

m/s cm/s ft/s mi/h

1 meter per second 1 102 3.281 2.237

1 centimeter per second 1022 1 3.281 3 1022 2.237 3 1022

1 foot per second 0.304 8 30.48 1 0.681 8

1 mile per hour 0.447 0 44.70 1.467 1
Note: 1 mi/min 5 60 mi/h 5 88 ft/s.

Force

N lb

1 newton 1 0.224 8

1 pound 4.448 1

Table A.1

(Continued)



A-2 Appendix A Tables

Conversion Factors (continued)

Energy, Energy Transfer

 J ft ? lb eV

1 joule 1 0.737 6 6.242 3 1018

1 foot-pound 1.356 1 8.464 3 1018

1 electron volt 1.602 3 10219 1.182 3 10219 1

1 calorie 4.186 3.087 2.613 3 1019

1 British thermal unit 1.055 3 103 7.779 3 102 6.585 3 1021

1 kilowatt-hour 3.600 3 106 2.655 3 106 2.247 3 1025

 cal Btu kWh

1 joule 0.238 9 9.481 3 1024 2.778 3 1027

1 foot-pound 0.323 9 1.285 3 1023 3.766 3 1027

1 electron volt 3.827 3 10220 1.519 3 10222 4.450 3 10226

1 calorie 1 3.968 3 1023 1.163 3 1026

1 British thermal unit 2.520 3 102 1 2.930 3 1024

1 kilowatt-hour 8.601 3 105 3.413 3 102 1

Pressure

 Pa atm

1 pascal 1 9.869 3 1026

1 atmosphere 1.013 3 105 1

1 centimeter mercurya 1.333 3 103 1.316 3 1022

1 pound per square inch 6.895 3 103 6.805 3 1022

1 pound per square foot 47.88 4.725 3 1024

 cm Hg lb/in.2 lb/ft2

1 pascal 7.501 3 1024 1.450 3 1024 2.089 3 1022

1 atmosphere 76 14.70 2.116 3 103

1 centimeter mercurya 1 0.194 3 27.85

1 pound per square inch 5.171 1 144

1 pound per square foot 3.591 3 1022 6.944 3 1023 1
aAt 08C and at a location where the free-fall acceleration has its “standard” value, 9.806 65 m/s2.

Table A.1

Symbols, Dimensions, and Units of Physical Quantities
 Common   Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Acceleration aS m/s2 L/T2 m/s2

Amount of substance n MOLE  mol
Angle u, f radian (rad) 1 
Angular acceleration a

S rad/s2 T 22 s22

Angular frequency v rad/s T 21 s21

Angular momentum L
S

 kg ? m2/s ML2/T kg ? m2/s
Angular velocity v

S rad/s T 21 s21

Area A m2 L2 m2

Atomic number Z   
Capacitance C farad (F) Q2T2/ML2 A2 ? s4/kg ? m2

Charge q, Q , e coulomb (C) Q A ? s

Table A.2

(Continued)



Tables A-3

Symbols, Dimensions, and Units of Physical Quantities (continued)
Common Unit in Terms of

Quantity Symbol Unita Dimensionsb Base SI Units

Charge density 
 Line l C/m Q /L A ? s/m
 Surface s C/m2 Q /L2 A ? s/m2

 Volume r C/m3 Q /L3 A ? s/m3

Conductivity s 1/V ? m Q2T/ML3 A2 ? s3/kg ? m3

Current I AMPERE Q /T A
Current density J A/m2 Q /TL2 A/m2

Density r kg/m3 M/L3 kg/m3

Dielectric constant k

Electric dipole moment pS C ? m QL A ? s ? m
Electric field E

S

V/m ML/QT2 kg ? m/A ? s3

Electric flux FE V ? m ML3/QT2 kg ? m3/A ? s3

Electromotive force e volt (V) ML2/QT2 kg ? m2/A ? s3

Energy E, U, K joule ( J) ML2/T2 kg ? m2/s2

Entropy S J/K ML2/T2K kg ? m2/s2 ? K
Force F

S

 newton (N) ML/T2 kg ? m/s2

Frequency f hertz (Hz) T 21 s21

Heat Q joule ( J) ML2/T2 kg ? m2/s2

Inductance L henry (H) ML2/Q2 kg ? m2/A2 ? s2

Length ,, L METER L m
 Displacement Dx, D rS

 Distance d, h
 Position x, y, z, rS

Magnetic dipole moment m
S N ? m/T QL2/T A ? m2

Magnetic field B
S

 tesla (T) (5 Wb/m2) M/QT kg/A ? s2

Magnetic flux FB weber (Wb) ML2/QT kg ? m2/A ? s2

Mass m, M KILOGRAM M kg
Molar specific heat C J/mol ? K kg ? m2/s2 ? mol ? K
Moment of inertia I kg ? m2 ML2 kg ? m2

Momentum pS kg ? m/s ML/T kg ? m/s
Period T s T s
Permeability of free space m0 N/A2 (5 H/m) ML/Q2 kg ? m/A2 ? s2

Permittivity of free space P0 C2/N ? m2 (5 F/m) Q2T2/ML3 A2 ? s4/kg ? m3

Potential V volt (V)(5 J/C) ML2/QT2 kg ? m2/A ? s3

Power P watt (W)(5 J/s) ML2/T3 kg ? m2/s3

Pressure P pascal (Pa)(5 N/m2) M/LT2 kg/m ? s2

Resistance R ohm (V)(5 V/A) ML2/Q2T kg ? m2/A2 ? s3

Specific heat c J/kg ? K L2/T2K m2/s2 ? K
Speed v m/s L/T m/s
Temperature T KELVIN K K
Time t SECOND T s
Torque t

S N ? m ML2/T2 kg ? m2/s2

Velocity vS m/s L/T m/s
Volume V m3 L3 m3

Wavelength l m L m
Work W joule ( J)(5 N ? m) ML2/T2 kg ? m2/s2

aThe base SI units are given in uppercase letters.
bThe symbols M, L, T, K, and Q denote mass, length, time, temperature, and charge, respectively.

Table A.2
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