Satellite Communications

Chapter 9

Satellite-Related Terms

- Earth Stations antenna systems on or near earth
- Uplink transmission from an earth station to a satellite
- Downlink transmission from a satellite to an earth station
- Uplink frequency is greater than downlink cause Earth station has more power to compensate free space loss.
- Transponder electronics in the satellite that convert uplink signals to downlink signals

Ways to Categorize Communications Satellites

- Coverage area
 - Global, regional, national
- Service type
 - Fixed service satellite (FSS)
 - Broadcast service satellite (BSS)
 - Mobile service satellite (MSS)
- General usage
 - Commercial, military, amateur, experimental

Classification of Satellite Orbits

- Circular or elliptical orbit
 - Circular with center at earth's center
 - Elliptical with one foci at earth's center
- Orbit around earth in different planes
 - Equatorial orbit above earth's equator
 - Polar orbit passes over both poles
 - Other orbits referred to as inclined orbits
- Altitude of satellites
 - Geostationary orbit (GEO)
 - Medium earth orbit (MEO)
 - Low earth orbit (LEO)

Satellite Orbits

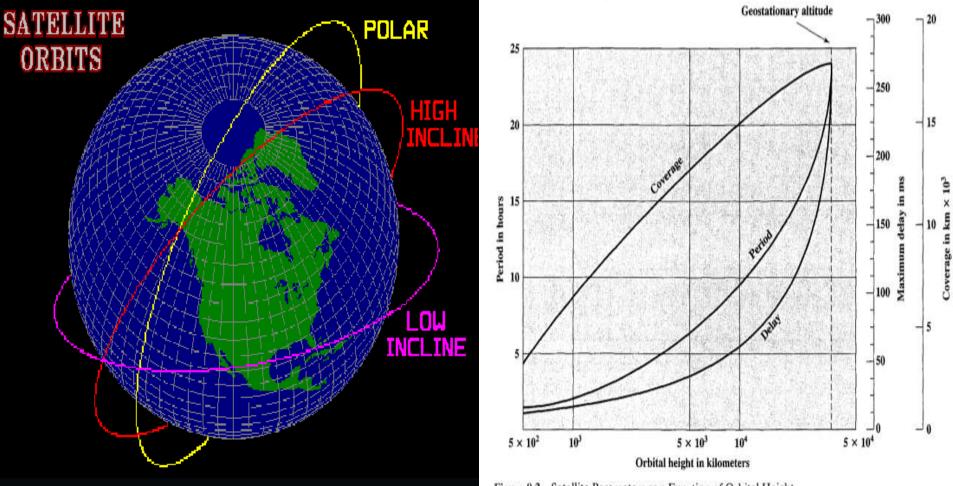


Figure 9.2 Satellite Parameters as a Function of Orbital Height

Geometry Terms

- Elevation angle (θ): the angle from the horizontal to the point on the center of the main beam of the antenna when the antenna is pointed directly at the satellite
- Minimum elevation angle is preferred
- Coverage angle (β): the measure of the portion of the earth's surface visible to the satellite
- Distance from satellite and farthest point:

$$d = \frac{(R+h)\sin\beta}{\cos\theta} = \frac{R\sin\beta}{\sin\alpha}$$

Round-trip transmission delay:

$$\frac{2h}{c} \le t \le \frac{2(R+h)\sin\beta}{c(\cos\theta)}$$

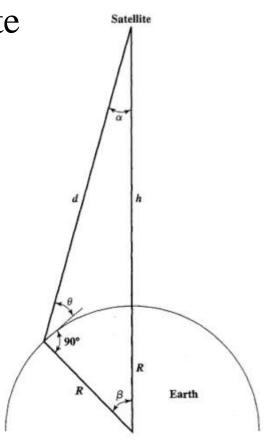


Figure 9.1 Coverage and Elevation Angles

Minimum Elevation Angle

- Reasons affecting minimum elevation angle of earth station's antenna (>0°)
 - Buildings, trees, and other terrestrial objects block the line of sight
 - Atmospheric attenuation is greater at low elevation angles
 - Electrical noise generated by the earth's heat near its surface adversely affects reception

GEO Satellite Characteristics

- The most common type of satellite communication
- Usually, the satellite is in a circular orbit 35,863 km above the earth's surface
- Diameter of coverage is about 16,000 km
- Rotate at exactly the same angular speed as the earth
- So, they remain above the same spot on the equator as the earth rotates.

GEO Orbit

Advantages:

- No problem with frequency changes
- Tracking of the satellite is simplified
- Large coverage area
- Disadvantages:
 - Weak signal after traveling over 35,000 km
 - Polar regions are poorly served
 - Signal sending delay is substantial (round trip delay 500 ms)

LEO Satellite Characteristics

- Often in polar orbit under 2000 km
- Orbit period ranges from 1.5 to 2 hours
- Diameter of coverage is about 8000 km
- Round-trip signal propagation delay less than 20 ms
- Maximum satellite visible time up to 20 min
- System must cope with large **Doppler** shifts

LEO Categories

Little LEOs

- Frequencies below 1 GHz
- 5MHz of bandwidth
- Data rates up to 10 kbps
- Aimed at paging, tracking, and low-rate messaging

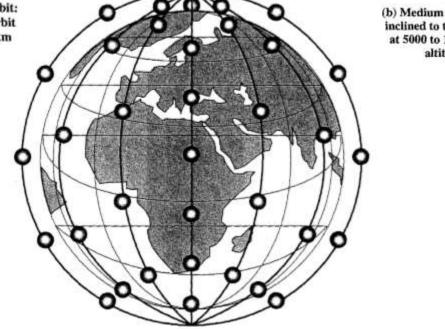
Big LEOs

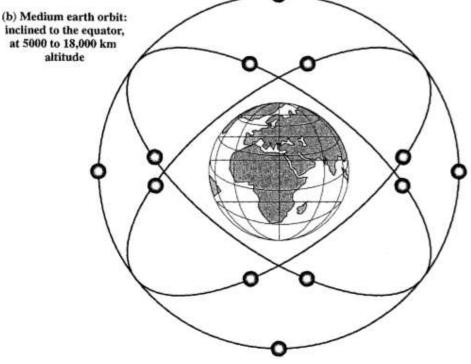
- Frequencies above 1 GHz
- Support data rates up to a few megabits per sec
- Offer same services as little LEOs in addition to voice and positioning services

LEO Orbit

- Advantages:
 - Reduced propagation delay
 - Strong received LEO signal compared with GEO
 - Localized small coverage so that the spectrum can be conserved (reused)
- Disadvantages:
 - Many satellites are needed for broad coverage over 24 hours
 - Problem with frequency changes

MEO Satellite Characteristics


- Inclined orbit at an altitude in the range of 5000 to 12,000 km
- Orbit period of 6 hours
- Diameter of coverage is 10,000 to 15,000 km
- Round trip signal propagation delay less than 50 ms
- Maximum satellite visible time is a few hours


Table 9.1	Orbital	Comparison for	or Satellite	Communications	Applications

Orbits	LEO	MEO	GEO
Orbital period	1.5 to 2 h	5 to 10 h	24 h
Altitude range	500 to 1500 km	8000 to 18,000 km	35,863 km
Visibility duration	15 to 20 min/pass	2 to 8 hr/pass	Permanent
Elevation	Rapid variations; high and low angles	Slow variations; high angles	No variation; low angles at high latitudes
Round-trip propagation delay	Several milliseconds	Tens of milliseconds	≈250ms
Instantaneous ground coverage (diameter at 10° elevation)	≈6000 km	≈12,000 to 15,000 km	16,000 km
Examples of systems	Iridium Globalstar Teledesic Skybridge, Orbcomm	Odyssey Inmarsat	Intelstat Interspoutnik Inmarsat

LEO and MEO Satellite

(a) Low earth orbit: often in polar orbit at 500 to 1500 km altitude

Frequency Bands Available for Satellite Communications

Band	Frequency Range	Total Bandwidth	General Application
L	1 to 2 GHz	1 GHz	Mobile satellite service (MSS)
S	2 to 4 GHz	2 GHz	MSS, NASA, deep space research
С	4 to 8 GHz	4 GHz	Fixed satellite service (FSS)
x	8 to 12.5 GHz	4.5 GHz	FSS military, terrestrial earth exploration, and meteorological satellites
Ku	12.5 to 18 GHz	5.5 GHz	FSS, broadcast satellite service (BSS)
К	18 to 26.5 GHz	8.5 GHz	BSS, FSS
Ka	26.5 to 40 GHz	13.5 GHz	FSS

Satellite Link Performance Factors

- Distance between earth station antenna and satellite antenna
 - Free space loss propagation model
- For downlink, terrestrial distance between earth station antenna and "aim point" of satellite
 - Displayed as a satellite footprint (Figure 9.6)
- Atmospheric attenuation
 - Affected by oxygen, water, angle of elevation, and higher frequencies

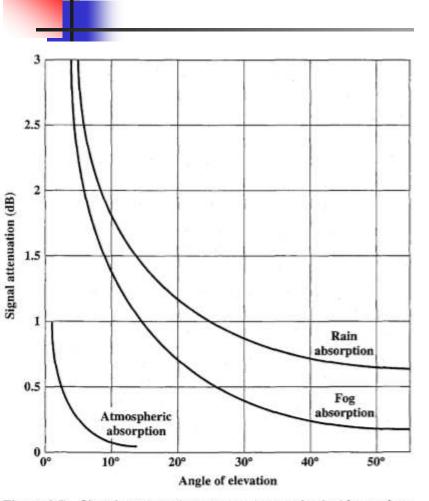


Figure 9.7 Signal Attenuation Due to Atmospheric Absorption (C Band)

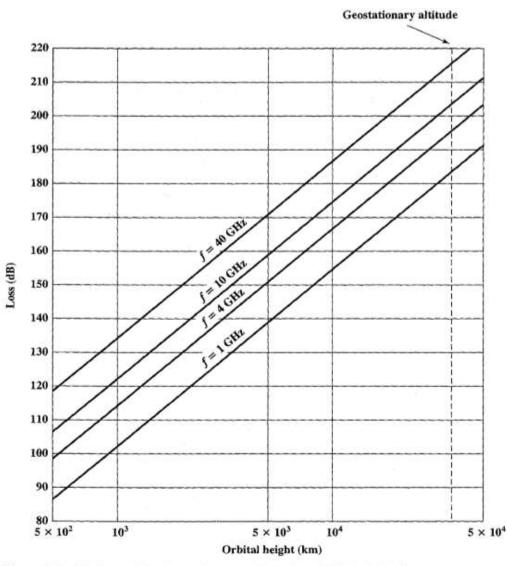


Figure 9.5 Minimum Free Space Loss as a Function of Orbital Height

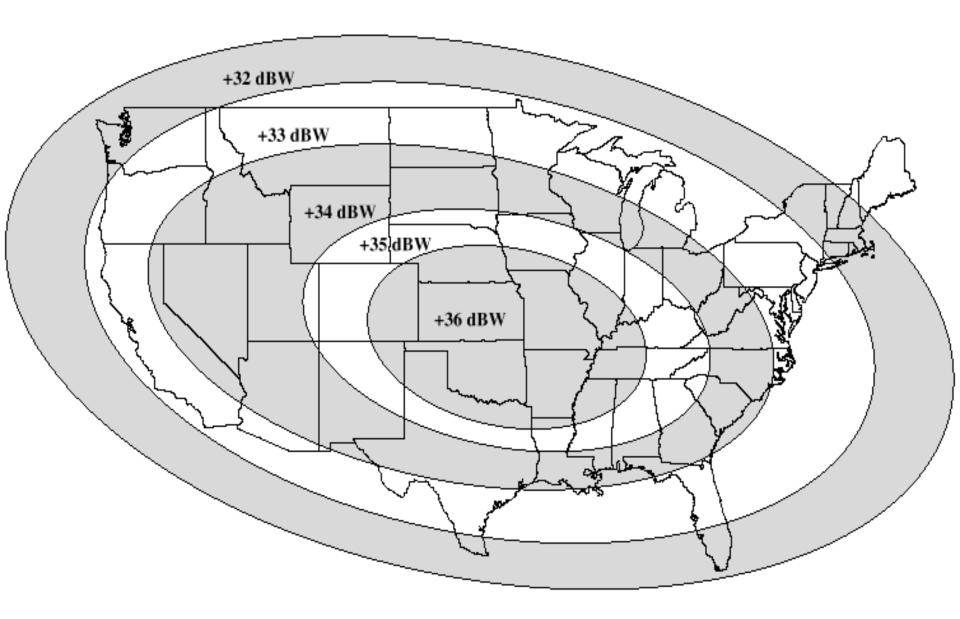
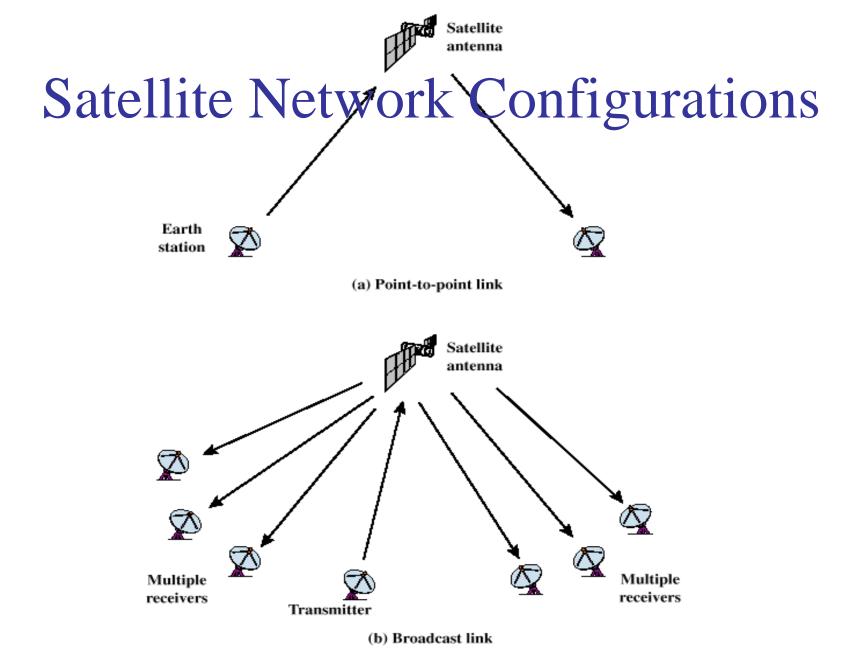



Figure 9.6 Typical Satellite Footprint

Figure 9.8 Satellite Communication Configurations

Capacity Allocation Strategies

- Frequency division multiple access (FDMA)
- Time division multiple access (TDMA)
- Code division multiple access (CDMA)

Frequency-Division Multiplexing

- Alternative uses of channels in point-to-point configuration:
 - 1200 voice-frequency (VF) voice channels
 - One 50-Mbps data stream
 - 16 channels of 1.544 Mbps each
 - 400 channels of 64 kbps each
 - 600 channels of 40 kbps each
 - One analog video signal
 - Six to nine digital video signals

Frequency-Division Multiple Access

- Factors which limit the number of subchannels provided within a satellite channel via FDMA:
 - Thermal noise
 - Intermodulation noise
 - Crosstalk

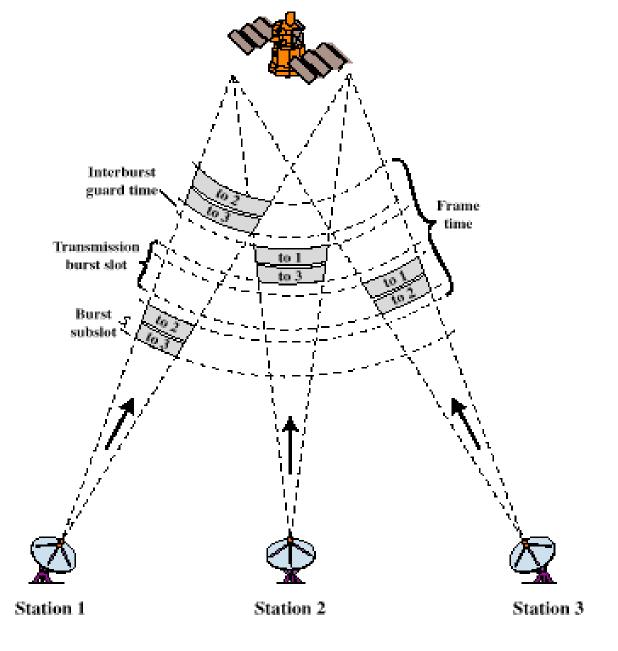
Forms of FDMA

- Fixed-assignment multiple access (FAMA)
 - The assignment of capacity is distributed in a fixed manner among multiple stations
 - Demand may fluctuate
 - Results in the significant underuse of capacity
- Demand-assignment multiple access (DAMA)
 - Capacity assignment is changed as needed to respond optimally to demand changes among the multiple stations

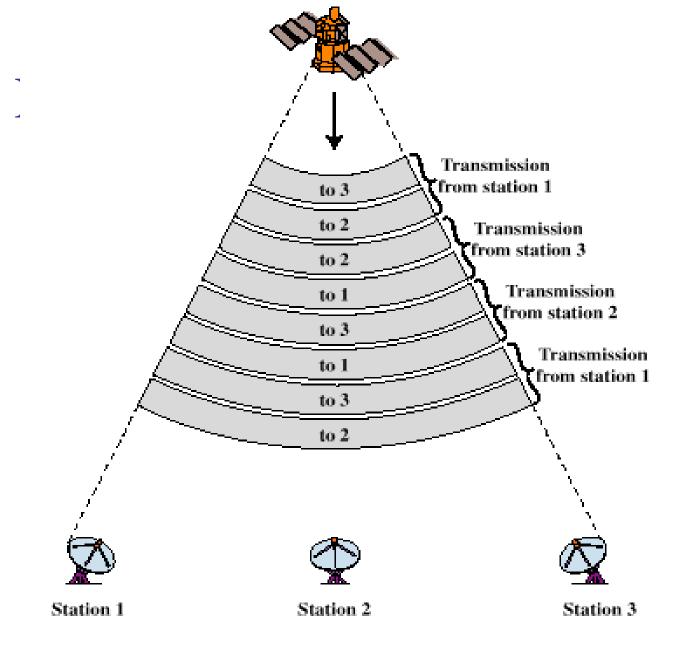
FAMA-DAMA

- FAMA logical links between stations are preassigned
- FAMA multiple stations access the satellite by using different frequency bands
- Uses considerable bandwidth
- DAMA set of subchannels in a channel is treated as a pool of available links:
 - For full-duplex between two earth stations, a pair of subchannels is dynamically assigned on demand
 - Demand assignment performed in a distributed fashion by earth stations or satellite

Reasons for Increasing Use of TDM Techniques


- Cost of digital components continues to drop
- Advantages of digital components:

Use of error correction


- Increased efficiency of TDM:
 - Lack of intermodulation noise

FAMA-TDMA Operation

- Transmission in the form of repetitive sequence of frames:
 - Each frame is divided into a number of time slots
 - Each slot is dedicated to a particular transmitter
- Earth stations take turns using uplink channel
 - Sends data in assigned time slot
- Satellite repeats incoming transmissions
 - Broadcast to all stations
- Stations must know which slot to use for transmission and which to use for reception

(a) Uplink Figure 9.14 FAMA-TDMA Operation

(b) Downlink Figure 9.14 FAMA-TDMA Operation