1. $i=C \frac{d v}{d t}$
(a) $i=0$
(b) $i=C \frac{d v}{d t}=-\left(10 \times 10^{-6}\right)(115 \sqrt{2})(120 \pi) \sin 120 \pi t=-613 \sin 120 \pi t \mathrm{~mA}$
(c) $i=C \frac{d v}{d t}=-\left(10 \times 10^{-6}\right)\left(4 \times 10^{-3}\right) e^{-t}=-40 e^{-t} \mathrm{nA}$
2. $i=C \frac{d v}{d t}$
$v=\frac{6-0}{0-6} t+6=6-t$, therefore $i=C \frac{d v}{d t}=-4.7 \times 10^{-6} \mu \mathrm{~A}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
3. $i=C \frac{d v}{d t}$
(a) $\frac{d v}{d t}=30\left[e^{-t}-t e^{-t}\right] \quad$ therefore $i=10^{-3} \frac{d v}{d t}=30(1-t) e^{-t} \mathrm{~mA}$
(b)

$$
\begin{aligned}
& \frac{d v}{d t}=4\left[-5 e^{-5 t} \sin 100 t+100 e^{-5 t} \cos 100 t\right] \\
& \text { therefore } \quad i=10^{-3} \frac{d v}{d t}=4 e^{-5 t}(100 \cos 100 t-5 \sin 100 t) \mathrm{mA}
\end{aligned}
$$

4. $W=\frac{1}{2} C V^{2}$
(a) $\left(\frac{1}{2}\right)\left(2000 \times 10^{-6}\right) 1600=1.6 \mathrm{~J}$
(b) $\left(\frac{1}{2}\right)\left(25 \times 10^{-3}\right)(35)^{2}=15.3 \mathrm{~J}$
(c) $\left(\frac{1}{2}\right)\left(10^{-4}\right)(63)^{2}=198 \mathrm{~mJ}$
(d) $\left(\frac{1}{2}\right)\left(2.2 \times 10^{-3}\right)(2500)=2.75 \mathrm{~J}$
(e) $\left(\frac{1}{2}\right)(55)(2.5)^{2}=171.9 \mathrm{~J}$
(f) $\left(\frac{1}{2}\right)\left(4.8 \times 10^{-3}\right)(50)^{2}=6 \mathrm{~J}$
5. (a) $C=\frac{\varepsilon A}{d}=\frac{8.854 \times 10^{-12}\left(78.54 \times 10^{-6}\right)}{100 \times 10^{-6}}=6.954 p F$
(b) Energy, $E=\frac{1}{2} C V^{2} \therefore V=\sqrt{\frac{2 E}{C}}=\sqrt{\frac{2\left(1 \times 10^{-3}\right)}{6.954 \times 10^{-12}}}=16.96 \mathrm{kV}$
(c) $E=\frac{1}{2} C V^{2} \therefore C=\frac{2 E}{V^{2}}=\frac{2\left(2.5 \times 10^{-6}\right)}{\left(100^{2}\right)}=500 p F$
$C=\frac{\varepsilon A}{d} \therefore \varepsilon=\frac{C d}{A}=\frac{\left(500 \times 10^{-12}\right)\left(100 \times 10^{-6}\right)}{\left(78.54 \times 10^{-6}\right)}=636.62 p F . \mathrm{m}^{-1}$
\backslash Relative permittivity : $\frac{\varepsilon}{\varepsilon_{0}}=\frac{636.62 \times 10^{-12}}{8.854 \times 10^{-12}}=71.9$
6. (a) For $\mathrm{V}_{\mathrm{A}}=-1 \mathrm{~V}, W=\sqrt{\frac{2 K_{s} \varepsilon_{0}}{q N}\left(V_{b i}-V_{A}\right)}=\sqrt{\frac{2(11.8)\left(8.854 \times 10^{-12}\right)}{\left(1.6 \times 10^{-19}\right)\left(1 \times 10^{24}\right)}(0.57+1)}$

$$
=45.281 \times 10^{-9} \mathrm{~m}
$$

$$
C_{j}=\frac{11.8\left(8.854 \times 10^{-12}\right)\left(1 \times 10^{-12}\right)}{45.281 \times 10^{-9}}=2.307 \mathrm{fF}
$$

(b) For $\mathrm{V}_{\mathrm{A}}=-5 \mathrm{~V}, W=\sqrt{\frac{2 K_{s} \varepsilon_{0}}{q N}\left(V_{b i}-V_{A}\right)}=\sqrt{\frac{2(11.8)\left(8.854 \times 10^{-12}\right)}{\left(1.6 \times 10^{-19}\right)\left(1 \times 10^{24}\right)}(0.57+5)}$

$$
=85.289 \times 10^{-9} \mathrm{~m}
$$

$$
C_{j}=\frac{11.8\left(8.854 \times 10^{-12}\right)\left(1 \times 10^{-12}\right)}{85.289 \times 10^{-9}}=1.225 \mathrm{fF}
$$

(c) For $\mathrm{V}_{\mathrm{A}}=-10 \mathrm{~V}$,

$$
\begin{aligned}
& W=\sqrt{\frac{2 K_{s} \varepsilon_{0}}{q N}\left(V_{b i}-V_{A}\right)}=\sqrt{\frac{2(11.8)\left(8.854 \times 10^{-12}\right)}{\left(1.6 \times 10^{-19}\right)\left(1 \times 10^{24}\right)}(0.57+10)} \\
&=117.491 \times 10^{-9} \mathrm{~m} \\
& C_{j}=\frac{11.8\left(8.854 \times 10^{-12}\right)\left(1 \times 10^{-12}\right)}{117.491 \times 10^{-9}}=889.239 a \mathrm{~F}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
7. We require a capacitor that may be manually varied between 100 and 1000 pF by rotation of a knob. Let's choose an air dielectric for simplicity of construction, and a series of 11 half-plates:

Side view with no overlap between plates

Side view with a small overlap between plates.

Constructed as shown, the half-plates are in parallel, so that each of the 10 pairs must have a capacitance of $1000 / 10=100 \mathrm{pF}$ when rotated such that they overlap completely. If we arbitrarily select an area of $1 \mathrm{~cm}^{2}$ for each half-plate, then the gap spacing between each plate is $\mathrm{d}=\varepsilon \mathrm{A} / \mathrm{C}=\left(8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)\left(1 \mathrm{~cm}^{2}\right) /\left(100 \times 10^{-12} \mathrm{~F}\right)=0.8854 \mathrm{~mm}$. This is tight, but not impossible to achieve. The final step is to determine the amount of overlap which corresponds to 100 pF for the total capacitor structure. A capacitance of 100 pF is equal to 10% of the capacitance when all of the plate areas are aligned, so we need a pieshaped wedge having an area of $0.1 \mathrm{~cm}^{2}$. If the middle figure above corresponds to an angle of 0° and the case of perfect alignment (maximum capacitance) corresponds to an angle of 180°, we need to set out minimum angle to be 18°.
8. (a) Energy stored $=\int_{t_{0}}^{t} v \cdot C \frac{d v}{d t}=C \int_{0}^{2 \times 10^{-3}} 3 e^{-\frac{t}{5}} \cdot\left(-\frac{3}{5} e^{-\frac{t}{5}}\right) d t=-1.080 \mu \mathrm{~J}$
(b) $\quad \mathrm{V}_{\text {max }}=3 \mathrm{~V}$

Max. energy at $\mathrm{t}=0,=\frac{1}{2} C V^{2}=1.35 m J \therefore 37 \% E_{\max }=499.5 \mu \mathrm{~J}$
V at $37 \% \mathrm{E}_{\text {max }}=1.825 \mathrm{~V}$
$v(t)=1.825=3 e^{-\frac{t}{5}} \therefore t=2.486 s \Rightarrow 2 \mathrm{~s}$
(c) $i=C \frac{d v}{d t}=300 \times 10^{-6}\left(-\frac{3}{5} e^{-\frac{1.2}{5}}\right)=-141.593 \mu \mathrm{~A}$
(d)

$$
P=v i=2.011\left(-120.658 \times 10^{-6}\right)=-242.6 \mu W
$$

9.

(a) $\quad v=\frac{1}{C} \cdot \frac{\pi}{2}\left(1 \times 10^{-3}\right)^{2}=\frac{1}{47 \times 10^{-6}} \cdot \frac{(3.14159)}{2}\left(1 \times 10^{-3}\right)^{2}=33.421 \mathrm{mV}$
(b) $\quad v=\frac{1}{C} \cdot\left(\frac{\pi}{2}\left(1 \times 10^{-3}\right)^{2}+0\right)=\frac{1}{47 \times 10^{-6}} \cdot \frac{(3.14159)}{2}\left(1 \times 10^{-3}\right)^{2}=33.421 \mathrm{mV}$
(c) $\quad v=\frac{1}{C} \cdot\left(\frac{\pi}{2}\left(1 \times 10^{-3}\right)^{2}+\frac{\pi}{4}\left(1 \times 10^{-3}\right)^{2}\right)=\frac{1}{47 \times 10^{-6}} \cdot\left(\frac{3 \pi}{4}\left(1 \times 10^{-3}\right)^{2}\right)=50.132 \mathrm{mV}$
10. $V=\frac{1}{C} \int_{0}^{200 m s} i d t=\frac{1}{C}\left[\left(-\frac{7 \times 10^{-3}}{\pi} \cos \pi t\right)\right]_{0}^{200 m s}=\frac{0.426}{C}$

$$
E=\frac{1}{2} C V^{2}=3 \times 10^{-6}=\frac{181.086 \times 10^{-9}}{2 C} \therefore C=\frac{181.086 \times 10^{-9}}{2\left(3 \times 10^{-6}\right)}=30181 \mu F
$$

11.

(a) $c=0.2 \mu \mathrm{~F}, v_{c}=5+3 \cos ^{2} 200 t \mathrm{~V} ; \therefore i_{c}=0.2 \times 10^{-6}(3)(-2) 200 \sin 200 t \cos 200 t$

$$
\therefore i_{c}=-0.12 \sin 400 \mathrm{tmA}
$$

(b) $\quad w_{c}=\frac{1}{2} c v_{c}^{2}=\frac{1}{2} \times 2 \times 10^{-7}\left(5+3 \cos ^{2} 200 t\right)^{2} \therefore w_{c \max }=10^{-7} \times 64=6.4 \mu \mathrm{~J}$
(c) $\quad v_{c}=\frac{1}{0.2} \times 10^{6} \int_{0}^{t} 8 e^{-100 t} \times 10^{-3} \mathrm{dt}=10^{3} \times 40(-0.01)\left(e^{-100 t}-1\right)=400\left(1-e^{100 t}\right) \mathrm{V}$
(d) $\quad v_{c}=500-400 e^{-100 t} \mathrm{~V}$
12. $v_{c}(0)=250 \mathrm{~V}, c=2 \mathrm{mF}(a) v_{c}(0.1)=250+500 \int_{0}^{0.1} 5 d t$

$$
\therefore v_{c}(0.1)=500 \mathrm{~V} ; v_{c}(0.2)=500 \int_{0.1}^{0.2} 10 d t=1000 \mathrm{~V}
$$

$$
\therefore v_{c}(0.6)=1750 \mathrm{~V}, v_{c}(0.9)=2000 \mathrm{~V}
$$

$$
\therefore 0.9<t<1: v_{c}=2000+500 \int_{0.9}^{t} 10 d t=2000+5000(t-0.9)
$$

$$
\therefore v_{c}=2100=2000+5000\left(t_{2}-0.9\right) \therefore t_{2}=0.92 \therefore 0.9<t<0.92 s
$$

13.

(a) $\quad w_{c}=\frac{1}{2} \mathrm{C} v^{2}=\frac{1}{2} \times 10^{-6} v^{2}=2 \times 10^{-2} e^{-1000 t} \therefore v= \pm 200 e^{-500 t} \mathrm{~V}$

$$
\begin{aligned}
& i=\mathrm{C} v^{\prime}=10^{-6}(\pm 200)(-500) e^{-500 t}=\mp 0.1 e^{-500 t} \\
& \therefore \mathrm{R}=\frac{-v}{i}=\frac{200}{0.1}=2 k \Omega
\end{aligned}
$$

(b) $\quad \mathrm{P}_{R}=i^{2} \mathrm{R}=0.01 \times 2000 e^{-1000 t}=20 e^{-1000 t} \mathrm{~W}$
$\therefore \mathrm{W}_{\mathrm{R}}=\int_{0}^{\infty} 20 e^{-1000 \mathrm{t}} d t=-\left.0.02 e^{-1000 t}\right|_{0} ^{\infty}=0.02 \mathrm{~J}$
14. (a) Left circuit:

By Voltage division, $V_{C}=\frac{1 k}{4.7 k+1 k}(5)=0.877 \mathrm{~V}$
Right circuit:
$V_{1}=1(1 / / 2)=\frac{2}{3} V$
By Voltage Division, $V_{2}=\frac{1}{3} V: V_{C}=-\frac{1}{3} V$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
15. $v=L \frac{d i}{d t}$
(a) $v=0$ since $i=$ constant (DC)
(b) $v=-10^{-8}(115 \sqrt{2})(120 \pi) \sin 120 \pi t=-613 \sin 120 \pi t \mu \mathrm{~V}$
(c) $v=-10^{-8}(115 \sqrt{2})\left(24 \times 10^{-3}\right) e^{-6 t}=-240 e^{-6 t} \mathrm{pV}$
16. $v=L \frac{d i}{d t}$
$i=\left[\frac{(6-0) \times 10^{-9}}{(0-6) \times 10^{-3}}\right] t+6 \times 10^{-9}=6 \times 10^{-9}-10^{-6} t$, therefore
$v=L \frac{d i}{d t}=-\left(10^{-12}\right)\left(10^{-6}\right)=-10^{-18} \mathrm{~V}=-1 \mathrm{aV}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
17. $v=L \frac{d i}{d t}$
(a) $L \frac{d i}{d t}=\left(5 \times 10^{-6}\right) 30 \times 10^{-9}\left[e^{-t}-t e^{-t}\right]=150(1-t) e^{-t} \quad \mathrm{fV}$
(b)

$$
\begin{aligned}
& L \frac{d i}{d t}=\left(5 \times 10^{-6}\right)\left(4 \times 10^{-3}\right)\left[-5 e^{-5 t} \sin 100 t+100 e^{-5 t} \cos 100 t\right] \\
& \text { therefore } v=100 e^{-5 t}(20 \cos 100 t-\sin 100 t) \quad \mathrm{pV}
\end{aligned}
$$

18. $W=\frac{1}{2} L I^{2}$. Maximum energy corresponds to maximum current flow, so

$$
W_{\max }=\frac{1}{2}\left(5 \times 10^{-3}\right)(1.5)^{2}=5.625 \mathrm{~mJ}
$$

19.

(a)
(b) $\quad \mathrm{P}_{L}=v_{L i_{L}} \therefore \mathrm{P}_{L \max }=(-100)(-5)=500 \mathrm{~W}$ at $t=40^{-} \mathrm{ms}$
(c) $\quad \mathrm{P}_{L \text { min }}=100(-5)=-500 \mathrm{~W}$ at $t=20^{+}$and $40^{+} \mathrm{ms}$
(d) $\mathrm{W}_{L}=\frac{1}{2} \mathrm{Li}_{L}^{2} \therefore \mathrm{~W}_{L}(40 \mathrm{~ms})=\frac{1}{2} \times 0.2(-5)^{2}=2.5 \mathrm{~J}$
20.

$$
\begin{aligned}
\mathrm{L} & =50 \times 10^{-3}, t<0: i=0 ; t>0 i=80 t e^{-100 t} \mathrm{~mA}=0.08 t e^{-100 t} \mathrm{~A} \\
& \therefore \mathrm{i}^{\prime}=0.08 \mathrm{e}^{-100 t}-8 t e^{-100 t} \therefore 0.08=8 t, t_{m},=0.01 s,|i|_{\max }=0.08 \times 0.01 e^{-1} \\
& \therefore|i|_{\max }=0.2943 \mathrm{~mA} ; v=0.05 i^{\prime}=e^{-100 t}(0.004-0.4 t) \\
& \therefore v^{\prime}=e^{-100 t}(-0.4)-100 e^{-100 t}(0.004-0.4 t) \therefore-0.4=0.4-40 t, t=\frac{0.8}{40}=0.02 \mathrm{~s} \\
v & =e^{-2}(0.004-0.008)=-0.5413 \mathrm{mV} \text { this is minimum } \therefore|v|_{\max }=0.004 \mathrm{~V} \text { at } \mathrm{t}=0
\end{aligned}
$$

21.

(a) $t>0: i_{s}=0.4 t^{2} \mathrm{~A} \therefore v_{i n}=10 i_{s}+5 i_{s}^{\prime}=4 t^{2}+4 t \mathrm{~V}$

(b) $i_{i n^{\prime}}=0.1 v_{s}+\frac{1}{5} \int_{0}^{t} 40 t d t+5=4 t+4 t^{2}+5 \mathrm{~A}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
22. $v_{L}=20 \cos 1000 t \mathrm{~V}, \mathrm{~L}=25 \mathrm{mH}, i_{L}(0)=0$
(a) $i_{L}=40 \int_{0}^{t} 20 \cos 1000 t d t=0.8 \sin 1000 t \mathrm{~A}: p=8 \sin 2000 t \mathrm{~W}$
(b) $\quad w=\frac{1}{2} \times 25 \times 10^{-3} \times 0.64 \sin ^{2} 1000 t=8 \sin ^{2} 1000 t \mathrm{~mJ}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
23.

(a) $0<t<10 \mathrm{~ms}: i_{L}=-2+5 \int_{0}^{t} 100 d t=-2+500 t \therefore i_{L}(10 \mathrm{~ms})=3 \mathrm{~A}, i_{L}(8 \mathrm{~ms})=2 \mathrm{~A}$
(b) $\quad i_{L}(0)=0 \therefore i_{L}(10 \mathrm{~ms})=500 \times 0.01=5 \mathrm{~A} \therefore i_{L}(20 \mathrm{~ms})=5+5 \int_{0.01}^{0.02} 10^{4}(0.02-t) d t$

$$
\begin{aligned}
& \therefore i_{L}(20 \mathrm{~ms})=5+5 \times 10^{4}(0.02 t-0.5 t)_{0.01}^{0.02}=5+5 \times 10^{4}(0.0002-0.00015)=7.5 \mathrm{~A} \\
& \therefore w_{L}=\frac{1}{2} \times 0.2 \times 7.5^{2}=5.625 \mathrm{~J}
\end{aligned}
$$

(c) If the circuit has been connected for a long time, L appears like short circuit.

$$
\begin{aligned}
& V_{8 \Omega}=\frac{8}{2+8}(100 \mathrm{~V})=80 \mathrm{~V} \\
& I_{2 \Omega}=\frac{20 \mathrm{~V}}{2 \Omega}=10 \mathrm{~A} \\
& \therefore i_{x}=\frac{80 \mathrm{~V}}{80 \Omega}=1 \mathrm{~A}
\end{aligned}
$$

24. After a very long time connected only to DC sources, the inductors act as short circuits. The circuit may thus be redrawn as

And we find that $i_{x}=\left(\frac{\frac{80}{9}}{80+\frac{80}{9}}\right)\left(\frac{100}{2+8}\right)=1 \mathrm{~A}$
25. $\mathrm{L}=5 \mathrm{H}, \mathrm{V}_{L}=10\left(e^{-t}-e^{-2 t}\right) \mathrm{V}, i_{L}(0)=0.08 \mathrm{~A}$
(a) $\quad v_{L}(1)=10\left(e^{-1}-e^{-2}\right)=2.325^{+} \mathrm{V}$
(b) $\quad i_{L}=0.08+0.2 \int_{0}^{t} 10\left(e^{-t}-e^{-2 t}\right) d t=0.08+2\left(-e^{-t}+0.5 e^{-2 t}\right)_{0}^{t}$
$i_{L}=0.08+2\left(-e^{-t}+0.5 e^{-2 t}+1-0.5\right)=1.08+e^{-2 t}-2 e^{-t} \therefore i_{L}(1)=0.4796 \mathrm{~A}$
(c) $i_{L}(\infty)=1.08 \mathrm{~A}$
26.
(a) $v_{x}=120 \times \frac{40}{12+20+40}+40 \times 5 \times \frac{12}{12+20+40}$

$$
=\frac{200}{3}+\frac{100}{3}=100 \mathrm{~V}
$$

(b)

$$
\begin{aligned}
v_{x} & =\frac{120}{12+15 \| 60} \times \frac{15}{15+60} \times 40+40 \times 5 \frac{15 \| 12}{15 \| 12+60} \\
& =\frac{120}{12+12} \times \frac{1}{5} \times 40+200 \frac{6.667}{66.667} \\
& =40+20=60 \mathrm{~V}
\end{aligned}
$$

27.

(a) $w_{L}=\frac{1}{2} \times 5 \times 1.6^{2}=6.4 \mathrm{~J}$
(b) $\quad w_{c}=\frac{1}{2} \times 20 \times 10^{-6} \times 100^{2}=0.1 \mathrm{~J}$
(c) Left to right (magnitudes): 100, 0, 100, 116, 16, 16, 0 (V)
(d) Left to right (magnitudes): 0, 0, 2, 2, 0.4, 1.6, 0 (A)

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
28.
(a) $\quad v_{s}=400 t^{2} \mathrm{~V}, t>0 ; i_{L}(0)=0.5 \mathrm{~A} ; t=0.4 \mathrm{~s}$

$$
v_{c}=400 \times 0.16=64 \mathrm{~V}, w_{c} \frac{1}{2} \times 10^{-5} \times 64^{2}=20.48 \mathrm{~mJ}
$$

(b) $\quad i_{L}=0.5+0.1 \int_{0}^{0.4} 400 t^{2} d t=0.5+40 \times \frac{1}{3} \times 0.4^{3}=1.3533 \mathrm{~A}$

$$
\therefore w_{L}=\frac{1}{2} \times 10 \times 1.3533^{2}=9.1581 \mathrm{~J}
$$

(c) $i_{R}=4 t^{2}, \mathrm{P}_{R}=100 \times 16 t^{4} \therefore w_{R}=\int_{0}^{0.4} 1600 t^{4} d t=320 \times 0.4^{5}=3.277 \mathrm{~J}$
29. (a) $P_{7 \Omega}=0 W ; P_{10 \Omega}=\frac{V^{2}}{R}=\frac{(2)^{2}}{10}=0.4 W$
(b) PSpice verification

We see from the PSpice simulation that the voltage across the $10-\Omega$ resistor is -2 V , so that it is dissipating 4/10 $=400 \mathrm{~mW}$.

The $7-\Omega$ resistor has zero volts across its terminals, and hence dissipates zero power.

Both results agree with the hand calculations.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
30. (a) We find R_{TH} by first short-circuiting the voltage source, removing the inductor, and looking into the open terminals.

Simplifying the network from the right, $3 \| 6+4=6 \Omega$, which is in parallel with 7Ω. $6\left|\mid 7+5=8.23 \Omega\right.$. Thus, $\mathrm{R}_{\mathrm{TH}}=8.23 \| 8=4.06 \Omega$. To find V_{TH}, we remove the inductor:

Writing the nodal equations required:
$\left(\mathrm{V}_{1}-9\right) / 3+\mathrm{V}_{1} / 6+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 4=0$
$\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 4+\mathrm{V}_{2} / 7+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) / 5=0$
$\mathrm{V}_{3} / 8+\left(\mathrm{V}_{3}-\mathrm{V}_{2}\right) / 5=0$
Solving, $\mathrm{V}_{3}=1.592 \mathrm{~V}$, therefore $\mathrm{V}_{\mathrm{TH}}=9-\mathrm{V}_{3}=7.408 \mathrm{~V}$.
(b) $i_{\mathrm{L}}=7.408 / 4.06=1.825 \mathrm{~A}$ (inductor acts like a short circuit to DC).
(c)

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
31.

$$
\begin{gathered}
C_{\text {equiv }} \equiv 10 \mu+\left(\frac{1}{\frac{1}{10 \mu}+\frac{1}{10 \mu}}\right) \text { in series with } 10 \mu \text { in series with } 10 \mu+\left(\frac{1}{\frac{1}{10 \mu}+\frac{1}{10 \mu}}\right) \\
\equiv 4.286 \mu \mathrm{~F}
\end{gathered}
$$

32. $L_{\text {equiv }} \equiv(77 p / /(77 p+77 p))+77 p+(77 p / /(77 p+77 p))=179 . \dot{6} p H$
33. (a) Assuming all resistors have value R , all inductors have value L , and all capacitors have value C ,

(b) At dc, $20 \mu \mathrm{~F}$ is open circuit; $500 \mu \mathrm{H}$ is short circuit.

Using voltage division, $V_{x}=\frac{10 k}{10 k+15 k}(9) \neq 3.6 \mathrm{~V}$
34. (a) As all resistors have value R , all inductors value L , and all capacitors value C ,

(b) $\quad V_{x}=0 \mathrm{~V}$ as L is short circuit at dc.
35. $\mathrm{C}_{\text {equiv }}=\{[(100 \mathrm{n}+40 \mathrm{n}) \| 12 \mathrm{n}]+75 \mathrm{n}\} \|\{7 \mu+(2 \mu \| 12 \mu)\}$

$$
C_{\text {equiv }} \equiv 85.211 n F
$$

36. $\mathrm{L}_{\text {equiv }}=\{[(17 \mathrm{p} \| 4 \mathrm{n})+77 \mathrm{p}] \| 12 \mathrm{n}\}+\{1 \mathrm{n} \|(72 \mathrm{p}+14 \mathrm{p})\}$
$L_{\text {equiv }} \equiv 172.388 \mathrm{pH}$
37. $C_{T}-C_{x}=(7+47+1+16+100)=171 \mu \mathrm{~F}$

$$
\begin{aligned}
& E_{C_{r}-C_{x}}=\frac{1}{2}\left(C_{T}-C_{x}\right) V^{2}=\frac{1}{2}(171 \mu)(2.5)^{2}=534.375 \mu \mathrm{~J} \\
& E_{C_{x}}=E_{C_{T}}-E_{C_{T}-C_{x}}=(534.8-534.375) \mu \mathrm{J}=425 n \mathrm{~J} \\
& \therefore E_{C_{x}}=425 n=\frac{1}{2} C_{\chi} V^{2} \Rightarrow C_{x}=\frac{425 n(2)}{(2.5)^{2}}=136 n F
\end{aligned}
$$

38.

(a) For all $\mathrm{L}=1.5 \mathrm{H}, L_{\text {equiv }}=1.5+\left(\frac{1}{\frac{1}{1.5}+\frac{1}{1.5}}\right)+\left(\frac{1}{\frac{1}{1.5}+\frac{1}{1.5}+\frac{1}{1.5}}\right)=2.75 \mathrm{H}$
(b) For a general network of this type, having N stages (and all L values equiv),

$$
L_{\text {equiv }}=\sum_{N=1}^{n} \frac{L^{N}}{N L^{N-1}}
$$

39.

(a) $\quad L_{\text {equiv }}=1+\left(\frac{1}{\frac{1}{2}+\frac{1}{2}}\right)+\left(\frac{1}{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}\right)=3 H$
(b) For a network of this type having 3 stages,

$$
L_{\text {equiv }}=1+\frac{1}{\frac{2+2}{(2)^{2}}}+\frac{1}{\frac{3+3}{(3)^{2}}+\frac{1}{3}}=1+\frac{(2)^{2}}{2(2)}+\frac{(3)^{3}}{3(3)^{2}}
$$

Extending for the general case of N stages,

$$
\begin{aligned}
L_{\text {equiv }} & =1+\frac{1}{\frac{1}{2}+\frac{1}{2}}+\frac{1}{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}+\ldots+\frac{1}{\frac{1}{N}+\ldots \frac{1}{N}} \\
& =1+\frac{1}{2(1 / 2)}+\frac{1}{3(1 / 3)}+\ldots+\frac{1}{N(1 / N)}=N
\end{aligned}
$$

40. $\quad C_{\text {equiv }}=\frac{(3 p)(0.25 p)}{3 p+0.25 p}=0.231 p F$
41. $L_{\text {equiv }}=\frac{(2 . \dot{3} n)(0 . \dot{3} n)}{2 . \dot{6} n}=0.291 \dot{6} n H$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
42. (a) Use $2 \times 1 \mu \mathrm{H}$ in series with $4 \times 1 \mu \mathrm{H}$ in parallel.
(b) Use $2 \times 1 \mu \mathrm{H}$ in parallel, in series with $4 \times 1 \mu \mathrm{H}$ in parallel.
(c) Use $5 \times 1 \mu \mathrm{H}$ in parallel, in series with $4 \times 1 \mu \mathrm{H}$ in parallel.
43.
(a) $\mathrm{R}=10 \Omega: 10\|10\| 10=\frac{10}{3}, \frac{10}{3}+10+10 \| 10=\frac{55}{3}$
$\therefore \mathrm{R}_{\text {eq }}=\frac{55}{3} \| 30=11.379 \Omega$
(b) $\mathrm{L}=10 \mathrm{H} \therefore \mathrm{L}_{e q}=11.379 \mathrm{H}$
(c) $\mathrm{C}=10 \mathrm{~F}: \frac{1}{1 / 30+1 / 10+1 / 20}=5.4545$
$\therefore \mathrm{C}_{e q}=5.4545+\frac{10}{3}=8.788 \mathrm{~F}$
44.
(a) $o c: \mathrm{L}_{e q}=6 \| 1+3=3.857 \mathrm{H}$

$$
s c: \mathrm{L}_{e q}=(3 \| 2+1) \| 4=2.2| | 4=1.4194 \mathrm{H}
$$

(b) \quad oc: $1+\frac{1}{1 / 4+1 / 2}=\frac{7}{3}, c_{e q}=\frac{1}{3 / 7+1 / 2}=1.3125 \mathrm{~F}$

$$
s c: \frac{1}{1 / 5+1}=\frac{5}{6}, \mathrm{C}_{e q}=4+\frac{5}{6}=4.833 \mathrm{~F}
$$

45.

(a)

(b)

(c)

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
46. $i_{s}=60 e^{-200 t} \mathrm{~mA}, i_{1}(0)=20 \mathrm{~mA}$
(a) $6 \| 4=2.4 \mathrm{H} \therefore v=\mathrm{L}_{e q} i_{s}^{\prime}=2.4 \times 0.06(-200) e^{-200 t}$
or $v=-28.8 e^{-200 t} \mathrm{~V}$
(b) $i_{1}=\frac{1}{6} \int_{o}^{t}-28.8 e^{-200 t} d t+0.02=\frac{4.8}{200}\left(e^{-200 t}-1\right)+0.02$
$=24 e^{-200 t}-4 \mathrm{~mA}(t>0)$
(c) $i_{2}=i_{s}-i_{1}=60 e^{-200 t}-24 e^{-200 t}+4=36 e^{-200 t}+4 \mathrm{~mA}(t>0)$
47. $v_{s}=100 e^{-80 t} V, v_{1}(0)=20 \mathrm{~V}$
(a) $i=\mathrm{C}_{e q} v_{s}^{\prime}=0.8 \times 10^{-6}(-80) 100 e^{-80 t}=-6.4 \times 10^{-3} e^{-80 t} \mathrm{~A}$
(b) $\quad v_{1}=10^{6}\left(-6.4 \times 10^{-3}\right) \int_{o}^{t} e^{-80 t} d t+20=\frac{6400}{80}\left(e^{-80 t}-1\right)+20$
$\therefore v_{1}=80 e^{-80 t}-60 \mathrm{~V}$
(c) $\quad v_{2} \frac{10^{6}}{4}\left(-6.4 \times 10^{-3}\right) \int_{0}^{t} e^{-80 t} d t+80=\frac{1600}{80}\left(e^{-80 t}-1\right)+80$

$$
=20 e^{-80 t}+60 \mathrm{~V}
$$

48.

(a)

$$
\begin{aligned}
& \frac{v_{c}-v_{s}}{20}+5 \times 10^{-6} v_{c}^{\prime}+\frac{v_{c}-v_{L}}{10}=0 \\
& \frac{v_{L}-v_{c}}{10}+\frac{1}{8 \times 10^{-3}} \int_{o}^{t} v_{L} d t+2=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 20 i_{20}+\frac{1}{5 \times 10^{-6}} \int_{o}^{t}\left(i_{20}-i_{L}\right) d t+12=v_{s} \\
& \frac{1}{5 \times 10^{-6}} \int_{o}^{t}\left(i_{L}-i_{20}\right) d t-12+10 i_{L}+8 \times 10^{-3} i_{L}^{\prime}=0
\end{aligned}
$$

49.

$v_{c}(t): 30 \mathrm{~mA}: 0.03 \times 20=0.6 \mathrm{~V}, v_{c}=0.6 \mathrm{~V}$
$9 \mathrm{~V}: v_{c}=9 \mathrm{~V}, 20 \mathrm{~mA}: v_{c}=-0.02 \times 20=0.4 \mathrm{~V}$
$0.04 \cos 10^{3} t: v_{c}=0$
$\therefore v_{c}(t)=9.2 \mathrm{~V}$
$v_{L}(t): 30 \mathrm{~mA}, 20 \mathrm{~mA}$,
$9 \mathrm{~V}: v_{L}=0 ; 0.04 \cos 10^{3} t: v_{L}=-0.06 \times 0.04(-1000) \sin 10^{3} t=2.4 \sin 10^{3} t \mathrm{~V}$
50. We begin by selecting the bottom node as the reference and assigning four nodal voltages:

1, 4 Supernode:

$$
\begin{equation*}
20 \times 10^{-3} e^{-20 t}=\frac{\mathrm{V}_{1}-\mathrm{V}_{2}}{50}+0.02 \times 10^{3} \int_{0}^{t}\left(\mathrm{~V}_{4}-40 e^{-20 t}\right) d t^{\prime} \tag{1}
\end{equation*}
$$

and:

$$
\begin{equation*}
\mathrm{V}_{1}-\mathrm{V}_{4}=0.2 \mathrm{~V}_{\mathrm{x}} \text { or } \quad 0.8 \mathrm{~V}_{1}+0.2 \mathrm{~V}_{2}-\mathrm{V}_{4}=0 \tag{2}
\end{equation*}
$$

Node 2:

$$
\begin{equation*}
0=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{50}+\frac{\mathrm{V}_{2}-40 e^{-20 t}}{100}+10^{-6} \frac{d \mathrm{~V}_{2}}{d t} \tag{3}
\end{equation*}
$$

51. (a) $\mathrm{R}_{i}=\infty, \mathrm{R}_{o}=0, \mathrm{~A}=\infty \therefore v_{i}=0 \therefore i=\mathrm{C} v_{s}^{\prime}$ also $0+\mathrm{Ri}+v_{o}=0 \therefore v_{o}=-\mathrm{RC} v_{s}^{\prime}$

$$
-v_{i}+\mathrm{R} i-\mathrm{A} v_{i}=0, v_{s}=\frac{1}{c} \int i d t+v_{i}
$$

(b) $\quad v_{o}=-\mathrm{A} v_{i} \therefore v_{i}=\frac{-1}{\mathrm{~A}} v_{o} \therefore i=\frac{1+\mathrm{A}}{\mathrm{R}} v_{i}$

$$
\therefore v_{s}=\frac{1}{c} \int i d t-\frac{1}{\mathrm{~A}} v_{o}=-\frac{1}{\mathrm{~A}} v_{o}+\frac{1+\mathrm{A}}{\mathrm{RC}} \int-\frac{v_{o}}{\mathrm{~A}} d t
$$

$$
\therefore \mathrm{A} v_{s}^{\prime}=-v_{o}^{\prime}-\frac{1+\mathrm{A}}{\mathrm{RC}} v_{o} \text { or } v_{o}^{\prime}+\frac{1+\mathrm{A}}{\mathrm{RC}} v_{o}+\mathrm{A} v_{s}^{\prime}=0
$$

52. Place a current source in parallel with a 1-M Ω resistor on the positive input of a buffer with output voltage, v. This feeds into an integrator stage with input resistor, R_{2}, of $1-\mathrm{M} \Omega$ and feedback capacitor, C_{f}, of $1 \mu \mathrm{~F}$.

$$
\begin{aligned}
& i=C_{f} \frac{d v_{c_{f}}}{d t}=1.602 \times 10^{-19} \times \frac{\text { ions }}{\mathrm{sec}} \\
& 0=\frac{V_{a}-V}{1 \times 10^{6}}+C_{f} \frac{d v_{c_{f}}}{d t}=\frac{V_{a}-V}{1 \times 10^{6}}+1.602 \times 10^{-19} \frac{\text { ions }}{\mathrm{sec}} \\
& 0=\frac{-V}{R_{2}}+C_{f} \frac{d v_{c_{f}}}{d t}=\frac{-V}{1 \times 10^{6}}+1.602 \times 10^{-19} \frac{\mathrm{ions}}{\mathrm{sec}}
\end{aligned}
$$

Integrating current with respect to $t, \frac{1}{R_{2}} \int_{0}^{t} v d t^{\prime}=C_{f}\left(V_{c_{f}}-V_{c_{f}}(0)\right)$

$$
\frac{1.602 \times 10^{-19} \times \text { ions }}{R_{2}}=C_{f} V_{c_{f}}
$$

$$
V_{c_{f}}=V_{a}-V_{\text {out }} \Rightarrow V_{\text {out }}=\frac{-R_{1}}{R_{2} C_{f}} \times 1.602 \times 10^{-19} \times \text { ions } \Rightarrow V_{\text {out }}=\frac{-1}{C_{f}} \times 1.602 \times 10^{-19} \times \text { ions }
$$

$$
\mathrm{R}_{1}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{f}}=1 \mu \mathrm{~F}
$$

53. $\mathrm{R}=0.5 \mathrm{M} \Omega, \mathrm{C}=2 \mu \mathrm{~F}, \mathrm{R}_{i}=\infty, \mathrm{R}_{o}=0, v_{o}=\cos 10 t-1 \mathrm{~V}$
(a) Eq. (16) is: $\left(1+\frac{1}{\mathrm{~A}}\right) v_{o}=-\frac{1}{\mathrm{RC}} \int_{o}^{t}\left(v_{s}+\frac{v_{o}}{\mathrm{~A}}\right) d t-v_{c}(0)$
$\therefore\left(1+\frac{1}{\mathrm{~A}}\right) v_{o}^{\prime}=-\frac{1}{\mathrm{RC}}\left(v_{s}+\frac{v_{o}}{\mathrm{~A}}\right) \therefore\left(1+\frac{1}{\mathrm{~A}}\right)(-10 \sin 10 t)=-1\left(v_{s}+\frac{1}{\mathrm{~A}} \cos 10 t-\frac{1}{\mathrm{~A}}\right)$
$\therefore v_{s}=\left(1+\frac{1}{\mathrm{~A}}\right) 10 \sin 10 t+\frac{1}{\mathrm{~A}}-\frac{1}{\mathrm{~A}} \cos 10 t$ Let $\mathrm{A}=2000$
$\therefore V_{s}=10.005 \sin 10 t+0.0005-0.0005 \cos 10 t$
(b) Let $\mathrm{A}=\infty \therefore v_{s}=10 \sin 10 t \mathrm{~V}$
54. Create a op-amp based differentiator using an ideal op amp with input capacitor C_{1} and feedback resistor R_{f} followed by inverter stage with unity gain.

$$
\begin{aligned}
& V_{\text {out }}=+\frac{R}{R} R_{f} C_{1} \frac{d v s}{d t}=60 \times \frac{1 \mathrm{mV}}{r p m} / \mathrm{min} \\
& \mathrm{R}_{\mathrm{f}} \mathrm{C}_{1}=60 \text { so choose } \mathrm{R}_{\mathrm{f}}=6 \mathrm{M} \Omega \text { and } \mathrm{C}_{1}=10 \mu \mathrm{~F} .
\end{aligned}
$$

55. (a) $0=\frac{1}{L} \int v d t+\frac{V_{a}-V_{\text {out }}}{R_{f}}$

$$
V_{a}=V=0, \therefore \frac{1}{L} \int v_{L} d t=\frac{V_{\text {out }}}{R_{f}} \Rightarrow V_{\text {out }}=\frac{-R_{f}}{L} \int_{0}^{t} v_{s} d t^{\prime}
$$

(b) In practice, capacitors are usually used as capacitor values are more readily available than inductor values.
56. One possible solution:

$v_{\text {out }}=-\frac{1}{R_{1} C_{f}} \int v_{\text {in }} d t$
we want $v_{\text {out }}=1 \mathrm{~V}$ for $v_{\text {in }}=1 \mathrm{mV}$ over 1 s .
In other words, $1=-\frac{1}{R_{1} C_{f}} \int_{0}^{1} 10^{-3} d t=-\frac{10^{-3}}{R_{1} C_{f}}$

Neglecting the sign (we can reverse terminals of output connection if needed), we therefore need $\mathrm{R}_{1} \mathrm{C}_{\mathrm{f}}=10^{-3}$.

Arbitrarily selecting $C_{f}=1 \mu \mathrm{~F}$, we find $\mathrm{R}_{1}=1 \mathrm{k} \Omega$.
57. One possible solution of many:

Arbitrarily selecting $\mathrm{C}=1000 \mu \mathrm{~F}$, we find that $\mathrm{R}=600 \mathrm{k} \Omega$.
58. One possible solution of many:

Arbitrarily selecting $\mathrm{C}=10 \mu \mathrm{~F}$, we find that $\mathrm{R}=1 \mathrm{M} \Omega$.
59. One possible solution:

The power into a 1Ω load is I^{2}, therefore energy $=W=I^{2} \Delta t$.
$\left|v_{\text {out }}\right|=\frac{1}{R_{1} C_{f}} \int I^{2} d t$
we want $v_{\text {out }}=1 \mathrm{mV}$ for $v_{\text {in }}=1 \mathrm{mV}$ (corresponding to $1 \mathrm{~A}^{2}$).
Thus, $10^{-3}=R C\left(10^{-3}\right)$, so $R C=1$
Arbitrarily selecting $C=1 \mu \mathrm{~F}$, we find that we need $\mathrm{R}=1 \mathrm{M} \Omega$.
60. One possible solution of many:

Input: $1 \mathrm{mV}=1 \mathrm{mph}, 1 \mathrm{mile}=1609$ metres.
Thus, on the input side, we see 1 mV corresponding to $1609 / 3600 \mathrm{~m} / \mathrm{s}$.
Output: 1 mV per m$/ \mathrm{s}^{2}$. Therefore,
$\left|v_{\text {out }}\right|=2.237 R C=1$
so $R C=0.447$
Arbitrarily selecting $\mathrm{C}=1 \mu \mathrm{~F}$, we find that $\mathrm{R}=447 \mathrm{k} \Omega$.
61.
(a)

(b)

$$
\begin{aligned}
& 20 v_{20}+\frac{1}{5 \times 10^{-6}} \int_{o}^{t}\left(v_{20}-v_{c}\right) d t+12=i_{s} \\
& \frac{1}{5 \times 10^{-6}} \int_{o}^{t}\left(v_{c}-v_{20}\right) d t-12+10 v_{c}+8 \times 10^{-3} v_{c}^{\prime}=0
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{i_{L}-i_{S}}{20}+5 \times 10^{-6} i_{L}^{\prime}+\frac{i_{L}-i_{c}}{10}=0 \\
& \frac{i_{c}-i_{L}}{10}+\frac{1}{8 \times 10^{-3}} \int_{o}^{t} i_{c} d t+2=0
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
62.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
63.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
64.
(a)

(b)
"Let $i_{s}=100 e^{-80 t} \mathrm{~A}$ and $i_{1}(0)=20 \mathrm{~A}$ in the circuit of (new) Fig. 7.62.
(a) Determine $v(t)$ for all t.
(b) Find $i_{1}(t)$ for $t \geq 0$.
(c) Find $v_{2}(t)$ for $t \geq 0$."
(c)
(a) $\mathrm{L}_{e q}=1 \| 4=0.8 \mu \mathrm{H} \therefore v(t)=\mathrm{L}_{e q} i_{s}^{\prime}=0.8 \times 10^{-6} \times 100(-80) r^{-80 t} \mathrm{~V}$

$$
\therefore \mathrm{v}(\mathrm{t})=-6.43^{-80 \mathrm{t}} \mathrm{mV}
$$

(b) $\quad i_{1}(t)=10^{6} \int_{o}^{t}-6.4 \times 10^{-3} e^{-80 t} d t+20 \therefore i_{1}(t)=\frac{6400}{80}\left(e^{-80 t}-1\right)=80 e^{-80 t}-60 \mathrm{~A}$
(c) $\quad i_{2}(t)=i_{s}-i_{1}(t) \therefore i_{2}(t)=20 e^{-80 t}+60 \mathrm{~A}$
65.

In creating the dual of the original circuit, we have lost both v_{s} and $v_{\text {out }}$. However, we may write the dual of the original transfer function: $i_{\text {out }} / i_{\text {s }}$. Performing nodal analysis,

$$
\begin{align*}
& i_{\mathrm{S}}=\frac{1}{\mathrm{~L}_{1}} \int_{0}^{t} \mathrm{~V}_{1} d t^{\prime}+\mathrm{G}_{\text {in }}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \tag{1}\\
& i_{\text {out }}=\mathrm{A} i_{\mathrm{d}}=\mathrm{G}_{\mathrm{f}} \mathrm{~V}_{2}+\mathrm{G}_{\text {in }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \tag{2}
\end{align*}
$$

Dividing, we find that

$$
\frac{i_{\text {out }}}{i_{\mathrm{S}}}=\frac{\mathrm{G}_{\text {in }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)+\mathrm{G}_{\mathrm{f}} \mathrm{~V}_{2}}{\frac{1}{\mathrm{~L}_{1}} \int_{0}^{t} \mathrm{~V}_{1} d t^{\prime}+\mathrm{G}_{\text {in }}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)}
$$

66. $\mathrm{I}_{\mathrm{L}}=4 / 10=400 \mathrm{~mA} . W=\frac{1}{2} L I_{L}^{2}=160 \mathrm{~mJ}$

PSpice verification:

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
67. $\mathrm{I}_{\mathrm{L}}=4 /(4 / 3)=3$ A. $W=\frac{1}{2} L L_{L}^{2}=31.5 \mathrm{~J}$

PSpice verification:

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
68. We choose the bottom node as the reference node, and label the nodal voltage at the top of the dependent source V_{A}.

Then, by KCL,
$\frac{V_{A}-4}{100}+\frac{V_{A}}{20}+\frac{V_{A}}{25}=0.8 \frac{V_{A}}{25}$
Solving, we find that $\mathrm{V}_{\mathrm{A}}=588 \mathrm{mV}$.
Therefore, V_{C}, the voltage on the capacitor, is 588 mV (no DC current can flow through the 75Ω resistor due to the presence of the capacitor.)

Hence, the energy stored in the capacitor is $\frac{1}{2} C V^{2}=\frac{1}{2}\left(10^{-3}\right)(0.588)^{2}=173 \mu \mathrm{~J}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
69. By inspection, noting that the capacitor is acting as an open circuit, the current through the $4 \mathrm{k} \Omega$ resistor is 8 mA . Thus, $\mathrm{Vc}=(8)(4)=32 \mathrm{~V}$.

Hence, the energy stored in the capacitor $=\frac{1}{2} C V^{2}=\frac{1}{2}\left(5 \times 10^{-6}\right)(32)^{2}=2.56 \mathrm{~mJ}$

PSpice verification:

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
70. $\mathrm{C}_{1}=5 \mathrm{nF}, \mathrm{R}_{\mathrm{f}}=100 \mathrm{M} \Omega$.

$$
v_{\text {out }}=-R_{f} C_{1} \frac{d v_{s}}{d t}=-\left(5 \times 10^{-9}\right)\left(10^{8}\right)(30 \cos 100 t)=-15 \cos 10 t \mathrm{~V}
$$

Verifying with PSpice, choosing the LF411 and $\pm 18 \mathrm{~V}$ supplies:

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
71. PSpice verification
$w=1 / 2 \mathrm{C} v^{2}=0.5\left(33 \times 10^{-6}\right)\left[5 \cos \left(75 \times 10^{-2}\right)\right]^{2}=220.8 \mu \mathrm{~J}$. This is in agreement with the PSpice simulation results shown below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

72. PSpice verification

$w=1 / 2 \mathrm{Li}^{2}=0.5\left(100 \times 10^{-12}\right)\left[5 \cos \left(75 \times 10^{-2}\right)\right]^{2}=669.2 \mathrm{pJ}$. This is in agreement with the PSpice simulation results shown below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.
73. $0=\frac{V_{a}-V_{s}}{R_{1}}+\frac{1}{L} \int v_{L_{f}} d t$
$V_{a}=V_{b}=0, \quad 0=\frac{-V_{s}}{R_{1}}+\frac{1}{L} \int v_{L_{f}} d t$
$V_{L_{f}}=V_{a}-V_{\text {out }}=0-V_{\text {out }}=\frac{L}{R_{1}} \frac{d V s}{d t}$
$V_{\text {out }}=-\frac{L_{f}}{R_{1}} \frac{d V s}{d t}=-\frac{L_{f}}{R_{1}} \frac{d}{d t}\left(A \cos 2 \pi 10^{3} t\right) \Rightarrow L_{f}=2 R_{1} ;$ Let $\mathrm{R}=1 \Omega$ and $\mathrm{L}=1 \mathrm{H}$.
PSpice Verification: clearly, something rather odd is occuring in the simulation of this particular circuit, since the output is not a pure sinusoid, but a combination of several sinusoids.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

74. PSpice verification

$w=1 / 2 \mathrm{C} v^{2}=0.5\left(33 \times 10^{-6}\right)\left[5 \cos \left(75 \times 10^{-2}\right)-7\right]^{2}=184.2 \mu \mathrm{~J}$. This is in reasonable agreement with the PSpice simulation results shown below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

75. PSpice verification

$w=1 / 2 \mathrm{Li}^{2}=0.5\left(100 \times 10^{-12}\right)\left[5 \cos \left(75 \times 10^{-2}\right)-7\right]^{2}=558.3 \mathrm{pJ}$. This is in agreement with the PSpice simulation results shown below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

