

 Embedded system

 Internal Lab Manual

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 1

Introduction to PIC Microcontroller & MPLAB IDE

1.1 Objectives:
1. Introduce the PIC16F84A microcontroller.
2. Microchip MPLAB Integrated Development Environment (IDE) and the

whole process of building a project, writing simple codes, and compiling the
project.

3. Code simulation.
1.2 Pre-lab Preparation:

 Read the experiment thoroughly BEFORE coming to the lab.

1.3 Equipment:
 Personal computer.

1.4 Theoretical background::

First: PIC16F84A Features:

 Only 35 single word instructions

 Operating speed: DC - 20 MHz clock input

 1024 words of program memory

 14-bit wide instruction words

 8-bit wide data bytes
 15 Special Function Hardware registers

 Eight-level deep hardware stack

 13 I/O pins with individual direction control

 High current sink/source for direct LED drive

 10,000 erase/write cycles Enhanced FLASH
Program memory typical

 Low power, high speed technology

PIC 16F84A Block diagram

Second: Before starting up with MPLAB

Before using MPLAB you have to make sure of the following:

1. All your files should be stored in a short path:

The total number of characters in a path should not exceed 64 Char No.

C:\ or D:\ or … 3

D:\Interfacing \ 11

D:\ Interfacing \Lab 14

D:\Engineer\Year_Three\Summer_Semester\Interfacing_Lab\Experiment_1\MyProgram.as
76

m

Any file on Desktop

2. All programs written, simulated and debugged in MPLAB should be stored in
files with .asm extension. Initially open a notepad file and proceed to change
the file extension in either one of the following two ways:

a. Before saving the file in notepad and in the save dialog box, name the file

as “Lab1exp.asm” WITH THE DOUBLE QUATATIONS MARKS, this
will instruct Notepad to save the file in .asm format.

b. In windows XP and earlier, in your current folder, go to Tools Folder

Options View and then uncheck the option “hide extension for known
file types”. Then rename your file from xxxxx.txt to myFirstFile.asm

In windows Vista, in your current folder, go to Organize Folder and

Search Options View and then uncheck the option “hide extension for known file

types”. Then rename your file from xxxxxx.txt to myFirstFile.asm

Third: Starting MPLAB

THIS PART ASSUMES YOU HAVE ALREADY SAVED A FILE IN AN ASM
EXTENSION

Create a project in MPLAB by following these simple steps:

1. Select the Project Project Wizard menu item Next.

2. In the device selection menu, choose 16F84A (or your target PIC) Next

3. In the Active Toolsuite, choose Microchip MPASM Toolsuite Click next.
DO NOT CHANGE ANYTHING IN THIS SCREEN

4. Browse to the directory where you saved your ASM

file. Give your project a name Save Next.

5. If, in Step 4, you navigated correctly to your file destination you should see it in the
left pane otherwise choose back and browse to the correct path. When done Click add
your file to the project (here: myFirstFile.asm). Make sure that the letter A is beside
your file and not any other letter Click next Click Finish.

6. You should see your ASM file under Source file, now you are ready to begin.
Double click on the myFirstFile.asm file in the project file tree to open. This is where
you will write your programs, debug and simulate them.

Now we will simulate a program in MPLAB and check the results

In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register
Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)
Movlw 2 ; move the constant 2 to the working register
Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)
Movf 01, 0 ; copy back the value 5 from TMR0 to working register
Nop ; this instruction does nothing, but it is important to write for
 ; now.
End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing

build

An output window should show: BUILD SUCCEDDED

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 2

MPLAP Introduction to PIC Assembly Instruction Set

1.1 Objectives:
1. The MOV instructions

2. Writing simple codes, compiling the project and Code simulation

3. The concept of bank switching

4. The MPASM directives

5. Microcontroller Flags

6. Arithmetic and logical operations

1.2 Pre-lab Preparation:
 Read the experiment thoroughly BEFORE coming to the lab.

 Read the PIC16F84A data sheet chapters 1, 2 especially (2.1, 2.2, 2.3).

 Before starting this experiment, you should have already acquired the MPLAB
software and the related PIC datasheets from drive D on any of the lab PC‟s.

 Read Appendix C.(very important)

1.3 Equipments:
 Personal computer with MPLAB software installed on it.

1.4 Introduction:

First: Starting up with instructions

Movement instructions
You should know by now that most PIC instructions (logical and arithmetic) work
through the working register “W”, that is one of their operands must always be the
working register “W”, the other operand might be either a constant or a memory
location. Many operations store their result in the working register; therefore we can
conclude that we need the following movement operations:

1. Moving constants to the working register (Loading)

2. Moving values from the data memory to the working register (Loading)

3. Moving values from the working register to the data memory (Storing)

 MOVLW: moves a literal (constant) to the working register (final destination).

The constant is specified by the instruction. You can directly load constants as
decimal, binary, hexadecimal, octal and ASCII. The following examples
illustrate:

DEFAULT INPUT IS HEXADECIMAL

Interfacing Lab

10
Prepared by: Eng. Ezya Khader

1. MOVLW 05 ; moves the constant 5 to the working register
2. MOVLW 10 ; moves the constant 16 to the working register.
3. MOVLW 0xAB ; moves the constant ABh to the working register
4. MOVLW H’7F’ ; moves the constant 7Fh to the working register
5. MOVLW CD ; WRONG, if a hexadecimal number starts with a

character, you should write it as 0CD or 0xCD or H’CD’
6. MOVLW d’10’ ; moves the decimal value 10 to the working register.
7. MOVLW .10 ; moves the decimal value 10 to the working register.
8. MOVLW b ’10011110’ ; moves the binary value 10011110 to the working

register.
9. MOVLW O ’76’ ; moves the octal value 76 to the working register.

10. MOVLW A’g’ ; moves the ASCII value g to the working register.

 MOVWF: COPIES the value found in the working register into the data

memory, but to which location? The location is specified along with the
instruction and according to the memory map.

So what is the memory map?
A memory map shows all available registers (in data memory) of a certain PIC along
with their addresses, it is organized as a table format and has two parts:

1. Upper part: which lists all the Special Function Registers (SFR) in a PIC; these
registers normally have specific functions and are used to control the PIC operation

2. Lower part: which shows the General Purpose Registers (GPR) in a PIC; GPRs
are data memory locations that the user is free to use as he wishes.

Figure 1: Data memory organization

Memory Maps of different PICs are different. Refer to the datasheets for the
appropriate data map

Examples:

1. MOVWF 01 ; COPIES the value found in W to TMR0
2. MOVWF 05 ; COPIES the value found in W to PORTA
3. MOVWF 06 ; COPIES the value found in W to PORTB
4. MOVWF 0C ; COPIES the value found in W to a GPR (location 0C)
5. MOVWF 32 ; COPIES the value found in W to a GPR (location 32)
6. MOVWF 52 ; WRONG, out of data memory range of the PIC 16F84a (GPR

range is from 0C-4F and 8C to CF)

 MOVF: COPIES a value found in the data memory to the working register

OR to itself.
Therefore we expect a second operand to specify whether the destination is the
working register or the register itself.
For now: a 0 means the W, a 1 means the register itself.

Examples:

1. MOVF 05, 0 ; copies the content of PORTA to the working register
2. MOVF 2D, 0 ; copies the content of the GPR 2D the working register
3. MOVF 05, 1 ; copies the content of PORTA to itself
4. MOVF 2D, 1 ; copies the content of the GPR 2D to itself

Now we will simulate a program in MPLAB and check the
results In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register
Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)
Movlw 2 ; move the constant 2 to the working register
Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)
Movf 01, 0 ; copy back the value 5 from TMR0 to working register
Nop ; this instruction does nothing, but it is important to write fornow
End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing

build

An output window should show: BUILD SUCCEDDED

BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT,

IT SIMPLY MEANS THAT THERE ARE NO SYNTAX ERRORS FOUND, SO

WATCH OUT FOR ANY LOGICAL ERRORS YOU MIGHT MAKE.

Notice that there are several warnings after building the file, warnings do not affect

the execution of the program but they are worth reading. This warning reads: “Found

opcode in column 1”.

Preparing for simulation

Go to View Menu Watch

From the drop out menu choose the registers we want to watch during simulation and
click ADD SFR for each one
Add the following:

 WREG: working register

 TMR0

 INTCON
You should have the following:

From the Debugger Menu choose Select Tool then MPLAB SIM.

Now new buttons will appear in the toolbar:

1. To begin the simulation, we will start by resetting the PIC; do so by pressing the
yellow reset button. A green arrow will appear next to the first instruction.
The green arrow means that the program counter is pointing to this instruction which
has not been executed yet.
Notice the status bar below:

Keep an eye on the value of the program counter (pc: initially 0), see how it
changes as we simulate the program

2. Press the “Step Into” button one at a time and check the Watch window each time
an instruction executes; keep pressing “Step Into” until you reach the NOP instruction
then STOP.
Compare the results as seen in the Watch window with those expected.

Directives

Directives are not instructions. They are assembler commands that appear in

the source code but are not usually translated directly into opcodes. They are used to

control the assembler: its input, output, and data allocation. They are not converted to

machine code (.hex file) and therefore not downloaded to the PIC.

The “END” directive

If you refer to the Appendix at the end of this experiment, you will notice that
there is no end instruction among the PIC 16 series instructions, so what is “END”?
The “END” command is a directive which tells the MPLAB IDE that we have
finished our program. It has nothing to do with neither the actual program nor the
PIC. The END should always be the last statement in your program
Anything which is written after the end command will not be executed and any
variable names will be undefined.

Making your program easier to understand: the “equ” and “include” directives
As you have just noticed, it is difficult to write, read, debug or understand programs
while dealing with memory addresses as numbers. Therefore, we will learn to use new
directives to facilitate program reading.

The “EQU” directive
The equate directive is used to assign labels to numeric values. They are used

to DEFINE CONSTANTS or to ASSIGN NAMES TO MEMORY ADDRESSES OR
INDIVIDUAL BITS IN A REGISTER and then use the name instead of the numeric
address.
Timer0 equ 01
Intcon equ 0B
Workrg equ 0

Movlw 5 ; move the constant 5 to the working register
Movwf Timer0 ; copy the value 5 from working register to TMR0 (address 01)
Movlw 2 ; move the constant 2 to the working register
Movwf Intcon ; copy the value 2 from working register to INTCON (address 0B)
Movf Timer0, Workrg ; copy back the value 5 from TMR0 to working register
Nop ; this instruction does nothing
End

Notice how it is easier now to read and understand the program, you can

directly know the actions executed by the program without referring back to the
memory map by simply giving each address a name at the beginning of your program.

DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE
LABELS YOU DEFINE ARE. SO YOU MUST USE THE NAME AS YOU HAVE
DEFINED IT SINCE IT IS CASE-SENSITIVE.

As you have already seen, the GPRs in a memory map (lower part) do not
have names as the SFRs (Upper part), so it would be difficult to use their addresses
each time we want to use them. Here, the “equate” statement proves helpful.

Num1 equ 20 ;GPR @ location 20
Num2 equ 40 ;GPR @ location 40
Workrg equ 0

Movlw 5 ; move the constant 5 to the working register
Movwf Num1 ; copy the value 5 from working register to Num1 (address 20)
Movlw 2 ; move the constant 2 to the working register
Movwf Num2 ; copy the value 2 from working register to Num2 (address 40)
Movf Num1, Workrg ; copy back the value 5 from Num1 to working register
Nop ; this instruction does nothing,
End

When simulating the above code, you need to add Num1, Num2 to the

watch window, however, since Num1 and Num2 are not SFRs but GPRs, you will
not find them in the drop out menu of the “Add SFR”, instead you will find them in
the drop out menu of the “Add symbol”.

The “INCLUDE” directive
Suppose we are to write a huge program that uses all registers. It will be a

tiresome task to define all Special Function Registers (SFR) and bit names using
“equate” statements. Therefore we use the include directive. The include directive
calls a file which has all the equate statements defined for you and ready to use, its
syntax is
#include “PXXXXXXX.inc” where XXXXXX is the PIC part number

Older version of include without #, still supported.

Example: #include “P16F84A.inc”

The only condition when using the include directive is to use the names as Microchip

defined them which are ALL CAPITAL LETTERS and AS WRITTEN IN THE

DATA SHEET. If you don‟t do so, the MPLAB will tell you that the variable is

undefined!

#include “P16F84A.inc”
Movlw 5 ; move the constant 5 to the working register
Movwf TMR0 ; copy the value 5 from working register to TMR0 (address 01)
Movlw 2 ; move the constant 2 to the working register
Movwf INTCON ; copy the value 2 from working register to INTCON (address 0B)
Movf TMR0, W ; copy back the value 5 from TMR0 to working register
Nop ; this instruction does nothing
End

The “Cblock” directive
You have learnt that you can assign GPR locations names using the equate statements to
facilitate dealing with them. Though this is correct, it is not recommended by Microchip
as a good programming practice. Instead you are instructed to use cblocks when defining
and declaring GPRs. So then, what is the use of the “equ” directive?

From now on, follow these two simple programming rules:

1. The “EQU” directive is used to define constants

2. The “cblock” is used to define variables in the data memory.

The cblock defines variables in sequential locations, see the following declaration

Cblock 0x35
VarX
VarY
VarZ
endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the
sequential address 0x36 and VarZ the address of 0x37
What if I want to define variable at locations which are not sequential, that is some
addresses are at 0x25 others at 0x40?
Simply use another cblock statement, you can add as many cblock statements as you
need

The Origin “org” directive
The origin directive is used to place the instruction which exactly comes after it at the
location it specifies.

Examples:

Org 0x00
Movlw 05 ;This instruction has address 0 in program memory
Addwf TMR0 ;This instruction has address 1 in program memory
Org 0x04 ;Program memory locations 2 and 3 are empty, skip to address 4

where it contains
Addlw 08 ;this instruction
Org 0x13 ;WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04,
Changing Instructions’ Locations In The Program Memory Can Lead To
Numerous Errors.

The Concept of Bank Switching
Write, build and simulate the following program in your MPLAB editor. This

program is very similar to the ones discussed above but with a change of memory
locations.

#include “P16F84A.inc”
Movlw 5 ; move the constant 5 to the working register
Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register
Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register
Nop ; this instruction does nothing
End

After simulation, you will notice that both TRISA and OPTION_REG were not filled
with the values 5 and 2 respectively! But why?
Notice that the memory map is divided into two columns, each column is called a
bank, here we have two banks: bank 0 and bank 1. In order to access bank 1, we have
to switch to that bank first and same for bank 0. But how do we make the switch?
Look at the details of the STATUS register in the figure below, there are two bits RP0
and RP1, these bits control which bank we are in:

 If RP0 is 0 then we are in bank 0

 If RP1 is 1 then we are in bank 1

We can change RP0 by using the bcf/bsf instructions

 BCF STATUS, RP0 RP0 in STATUS is 0 switch to bank 0

 BSF STATUS, RP0 RP0 in STATUS is 1 switch to bank 1

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)
BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

The “Banksel” directive
When using medium-range and high-end microcontrollers, it will be a hard task to
check the memory map for each register we will use. Therefore the BANKSEL
directive is used instead to simplify this issue. This directive is a command to the
assembler and linker to generate bank selecting code to set the bank to the bank
containing the designated label

Example:
BANKSEL TRISA will be replaced by the assembler, which will automatically
know which bank the register is in and generate the appropriate bank selection
instructions: Bsf STATUS, RP0
Bcf STATUS, RP1

In the PIC16F877A, there are four banks; therefore you need two bits to make
the switch between any of them. An additional bit in the STATUS register is RP1,
which is used to make the change between the additional two banks.
One drawback of using BANKSEL is that it always generates two instructions even

when the switch is between bank0 and bank1 which only requires changing RP0. We

could write the code above in the same manner using Banksel

#include “P16F84A.inc”
Banksel TRISA
Movlw 5 ; move the constant 5 to the working register
Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register
Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register
Banksel PORTA
Nop ; this instruction does nothing
End

Check the program memory window to see how BANKSEL is replaced in the
above code and the difference in between the two codes in this page.

FLAGS
The PIC 16 series has three indicator flags found in the STATUS register; they

are the C, DC, and Z flags. See the description below. Not all instructions affect the
flags; some instructions affect some of the flags while others affect all the flags. Refer
to the Appendix at the end of this experiment and review which instructions affect
which flags.

The MOVLW and MOVWF do not affect any of the flags while the MOVF

instruction affects the zero flag. Copying the register to itself does make sense now

because if the file has the value of zero the zero flag will be one. Therefore the MOVF

instruction is used to affect the zero flag and consequently know if a register has the

value of 0. (Suppose you are having a down counter and want to check if the result is

zero or not).

Types of Logical and Arithmetic Instructions and Result Destination

The PIC16 series logical and arithmetic instructions are easy to understand by

just reading the instruction, for from the name you readily know what this instruction

does. There are the ADD, SUB, AND, XOR, IOR (the ordinary Inclusive OR). They

only differ by their operands and the result destination.

Many other instructions of the PIC16 series instruction set are of Type II; refer back
to the Appendix at the end of this experiment for study.

Starting Up with basic program:

Example Program: Implementing the function Result = (X + Y) Z
This example is quite an easy one, initially the variable X, Y, Z are loaded with the
values which make the truth table

1. Start a new MPLAB session; add the file example1.asm to your project

2. Build the project

3. Select Debugger

Select Tool

MPLAB SIM

4. Add the necessary variables and the working register to the watch window
(remember that user defined variables are found under the “Add Symbol” list)
5. Simulate the program step by step, analyze and study the function of
each instruction. Stop at the “nop” instruction
6. Study the comments and compare them to the results at each stage and
after executing the instructions
7. As you simulate your code, keep an eye on the MPLAB status bar below (the

results shown in this status bar are not related to the program, they are for
demo purposes only)

The status bar below allows you to instantly check the value of the flags after
each instruction is executed
In the figure above, the flags are z, DC, C

 A capital letter means that the value of the flag is one; meanwhile a small letter

means a value of zero. In this case, the result is not zero; however, digit carry
and a carry are present.

The code:

include "p16F84A.inc"

cblock 0x25

VarX

VarY

VarZ

Result

endc

org 0x00

Main ;loading the truth table
movlw B'01010101' ;ZYX Result
movwf VarX ;000 0 (bit7_VarZ, bit7_VarY, bit7_VarX)
movlw B'00110011' ;001 1 (bit6_VarZ, bit6_VarY, bit6_VarX)
movwf VarY ;010 1 .
movlw B'00001111' ;011 1 .
movwf VarZ ;100 1 .

 ;101 0 .
 ;110 0 .
 ;111 0 (bit0_VarZ, bit0_VarY, bit0_VarX)

movf VarX, w

iorwf VarY, w

xorwf VarZ, w
movwf Result
nop
end

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 3

PIC Assembly Instruction Set (2)

1.1 Objectives:
7. Program flow control instructions

8. Conditional and repetition structures

9. The concept of modular programming

10. Macros and Subroutines

1.2 Pre-lab Preparation:
 Read the experiment thoroughly BEFORE coming to the lab.

 Read the PIC16F84A data sheet chapters 1, 2 especially (2.1, 2.2, 2.3).

 Study the two code examples 3.1& 3.2 carefully.

1.3 Equipments:
 Personal computer with MPLAB software installed on it.

1.4 Theoretical backgrounds:

Introducing conditionals
The PIC 16series instruction set has four instructions which implement a

sort of conditional statement: btfsc , btfss, decfsz and incfsz instructions.
1. btfsc checks for the condition that a bit is clear: 0 (Bit Test File, Skip if Clear)
2. btfss checks for the condition that a bit is set one: 1 (Bit Test File, Skip if Set)
3. Review decfsz and incfsz functions from the datasheet

Example 1:

movlw 0x09
btfsc PORTA, 0
movwf Num1
movwf Num2

The above instruction tests bit 0 of PORTA and checks whether it is clear (0) or not

 If it is clear (0), the program will skip “movwf Num1” and will only execute
“movwf Num2” Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “movwf Num1” and then proceed to

“movwf Num2” In the end, both Num1 and Num2 have the value of 0x09

You have seen above that if the condition fails, the code will continue normally
and both instructions will be executed.

Example 2:

movlw 0x09
btfsc PORTA, 0
goto firstcondition
goto secondCondition

Proceed
…….. your remaining

code firstcondition
movwf Num1
goto Proceed

secondCondition
movwf Num2
goto Proceed

Example 2 is basically the same as Example 1 with one main difference:

 If it is clear (0), the program will skip “goto firstcondition” and will only

execute “goto secondCondition”, the program will then execute “movwf
Num2” and then “gotoProceed” Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “goto firstcondition”, the program

will then execute “movwf Num1” and then “gotoProceed” Only Num1has
the value 0x09 Firstcondition, secondCondition, and Proceed are called
Labels, Labels are used to give names for a specific block of instructions
and are referred to as shown above to change the program execution order

Coding for efficiency: The repetition structures
Now we will introduce the repetition structures, similar in function to the

“for” and “while” loops you have learnt in high level languages.
Program#1:

#include "p16f84a.inc"

cblock 0x20
testNum
tempNum

endc

cblock 0x30
 numOfOnes

 counter ;since repetition structures require a counter, one is declared
endc

org 0x00
clrf numOfOnes
movlw 0x04 ;counter is initialized by 4, the number of the bits to be tested
movwf counter
movf testNum, W
andlw 0x0F
movwf tempNum

Again

rrf tempNum, F

btfsc STATUS, C

incf numOfOnes, F

decfsz counter, F ; after each test the counter is decremented,
goto Again ; if the counter reaches 0, it will skip to “nop” and program ends
nop ; if the counter is > 0, it will repeat “goto Again”
end

Introducing the Concept of Modular Programming
Modular programming is a software design technique in which the software is

divided into several separate parts, where each part accomplishes a certain
independent function. This “Divide and Conquer” approach allows for easier
program development, debugging as well as easier future maintenance and upgrade.
Modular programming is like writing C++ or Java functions, where you can use the
function many times only differing in the parameters. Two structures which are
similar to functions are Macros and Subroutines which are used to implement

modular programming.
Subroutines;

Subroutines are the closest equivalent to functions

 Subroutines start with a Label giving them a name and end with the
instruction return.
Example:

doMath Process
Instruction 1 Instruction 1
Instruction 2 Instruction 2
. .
. .
Instruction n Calculate
return Instruction 7

 Instruction 8
 return

 Note: This is still one subroutine, no
 matter the number of labels in between

 Subroutines can be written anywhere in the program after the org and before

the end directives
 Subroutines are used in the following way: Call subroutineName

 Subroutines are stored once in the program memory, each time they are used,

they are executed from that location
 Subroutines alter the flow of the program, thus they affect the stack

Macros;
Macros are declared in the following way:

macroName macro

Instruction 1
Instruction 2
.
.
Instruction n

endm
 Macros should be declared before writing the code instructions. It is

not recommended to declare macros in the middle of your program.
 Macros are used by only writing their name: macroName

 Each time you use a macro, it will be replaced by its body, refer to the

example below. Therefore, the program will execute sequentially, the flow
of the program will not change. The Stack is not affected

How to think Modular Programming?
Initially, you will have to read and analyze the problem statement

carefully, based on this you will have to :
1. Divide the problem into several separate tasks,
2. Look for similar required functionality

Notes: on passing parameters to macros and subroutines:
Subroutines and macros are general codes; they work on many variables and

generate results. So how do we tell the macro/subroutine that we want to work on this
specific variable? We have two approaches:

Approach#1 Approach#2

Place the input at the working register Store the input(s) in external variables
Take the output from the working register Load the output(s) from external

 variables

This approach is useful when the This approach is useful when the
subroutine/macro has only one input and subroutine/macro takes many inputs and

one output produces multiple outputs

Special types of subroutines:
Look up tables: Look up tables are a special type of subroutines which are

used to retrieve values depending on the input they receive. They are invoked in the
same as any subroutine: Call tableName They work on the basis that they change the
program counter value and therefore alter the flow of instruction execution The retlw
instruction is a return instruction with the benefit that it returns a value in W when it
is executed.
Syntax:

lookUpTableName

addwf PCL, F ;add the number found in the program counter to PCL

nop

retlw Value ;if W has 1, execute this

retlw Value ;if W has 2, execute this

retlw Value

…

retlw Value

Value can be in any format: decimal, hexadecimal, octal, binary and ASCII. It
depends on the application you want to use this look-up table in.

The General structure of a complete program :(Very Important)

;Program Title, description of its function, its inputs and outputs and the programmer name
;**
;* FUNCTION:
;* PROGRAMED BY: ENG. EZYA
KHADER ;* INPUTS:
;* OUTPUTS:
;* **
#include "P16F84A.inc"
; --

; Local equates for your own symbolic designators
; --

NUM1 equ 20h ; The NUM1 number is in File 20h

; --
; General Purpose RAM Assignments (Cblock definitions) ; -

cblock 0x30
MY_VAR ; MY_VAR is in File 30h

endc

; --
; Macro Definitions
; --
MY_MACRO macro

Instruction 1
:
nop

endm
; --
; Vector definition
; --

org 0x000
nop
goto Main

INT_Routine org 0x004

goto INT_Routine
; --
; The main Program
; --
Main

Instruction x
Instruction y
Call MY_FUN
:
Instruction z
:
Instruction n
goto Finish

; --
 Sub Routine Definitions
 --
MY_FUN

Instruction w
Instruction xx

return

 --
 The main Program end
 --
Finish

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 4

Introduction to Proteus & I/O Interfacing

1.1 Objectives:
1. I/O ports of the Microcontroller.
2. Stressing software and hardware co-design techniques by introducing

the Proteus IDE package.

1.2 Equipments:
 Personal computer with MPLAB and Proteus software installed on it.

1.3 Theoretical backgrounds:

First: Light Emitting Diodes
Light emitting diodes or LEDs are semiconductor light sources used as

indicator lamps in many electronic devices. Modern versions are available across the
visible, ultraviolet and infrared wavelengths, with very high brightness and come in a
variety of shapes and sizes. The physics behind LED operation is covered in the
Electronics I course and will not be offered here.

In order to switch a LED on, forward current must pass from the anode to the
cathode, but how to determine which pin of the LED is anode and which is cathode,
generally, there are two ways:

1. The longer lead is anode, the shorter is cathode.
2. The cathode has a flat surface as shown in Figure 1.

Resistors with values in between 220Ω to 1kΩ are placed in
between the voltage source (often 5 to 9V or even more) and the
anode to limit the current entering the LED or else it will burn. The
lesser the resistor value, the brighter the LED shines (Ohms Law).
In this case these resistors are called current limiting resistors.
Figure 2 shows how to interface a LED to the PORTC pin 1

I/O ports of Microcontroller:
PIC microcontrollers’ ports are general-purpose bi-directional digital

ports. The state of TRISx Register controls the direction of the PORTx bits. A
logic one in a bit position configures the PIC to act as an input and if it has a zero
to act as an output. However, a pin can only act as either input or output at any
one time but not simultaneously. This means that each pin has a distinct
direction state. See the following figure.

Examples:

Movlw 0x0F Clrf TRISC Clrf TRISD Movlw B’00110011’
Movwf TRISB Comf TRISD, F Movwf TRISB

The high nibble of Whole PORTC Whole PORTD as Bits 2, 3, 6, 7 as output
PORTB is output, as output input Bits 0, 1, 4, 5 as input

low nibble is input

How to decide whether microcontroller’s ports must be configured as inputs or
outputs?
Input ports “Get Data” from the outside world into the microcontroller while output
ports “Send Data” to the outside world.

 LEDs, 7-Segment displays, motors, and LCDs (write mode) that are

interfaced to microcontroller‟s ports should be configured as output.

 Switches, push buttons, sensors, keypad and LCDs (read mode) that are
interfaced to microcontroller‟s ports should be configured as input.

Second: The PROTEUS Environment:
Proteus PIC Bundle is the complete solution for developing, testing and

virtually prototyping your system designs based around the Microchip Technology
series of Microcontroller. This software allows you to perform schematic capture and
to simulate the circuits you design.

Figure 1: A screen shot of the Proteus IDE

Proteus How to Start Drawing the Circuit
Start a fresh design, select New Design from File menu then the Create New Design
dialogue now appears as shown in Figure 2 and 3. Select Default and press OK
.

Figure 2

Figure 3

From the Library menu select Pick Device/Symbol see Figure 4 or left click on the
letter 'P' above the Object Selector as shown in Figure 5 to launch the Library
Browser or Press the 'P' button on the keyboard. The Library Browser will now
appear over the Editing Window see Figure 6.

Figure 4

Figure 5

Figure 6

Type in ' PIC16F877A ' in the Key words field and double click on the result to place
the PIC16F877A into the Object Selector. Do the same for the LEDs, Buttons, Crystal
oscillator, capacitors, 7 SEG-COM-Cathode, Resistors.
Once you have selected all components into the design close the Library Browser and
left click once on any component in the Object Selector (This should highlight your
selection and a preview of the component will appear in the Overview Window at the
top right of the screen see Figure 7). Now left click on the Editing Window to place

the component on the schematic - repeat the process to all components on the
schematic.

Figure 7

In order to place ground or 5 voltage right click on the Editing Window ,select place
then terminal then select ground(0 V)or power (5V).Connect the components to obtain
the circuit you need.

Figure 8

Attaching the Source File
The next stage is to attach the source file to our design in order to successfully

simulate the design. We do this through the commands on the Source Menu.
Go to the Source Menu now and select the Add/Remove Source Files Command as
shown down.

Figure 9

Click on the New button, browse until you reach the desired directory and select

your ASM file.

Figure 10

Click open and the file should now appear in the Source Code Filename drop down
listbox.

Figure 11

Figure 12

Select the Build All command from the source
menu as shown in Figure 13, this provides an
excellent way to check that everything has built
without errors or warnings.

We now need to select
the code generation
tool for the file. For our
purposes the MPASM
tool will suffice. This
option should be
available from the drop
down listbox and so
left clicking will select
it in the usual fashion.

Figure 13
Finally, it is necessary to specify which file the processor is to run. In our example
this will be filename.hex (the hex file produced from MPASM subsequent to
assembling filename.asm). To attach this file to the processor, right click on the
schematic part for the PIC and then left click on the part. This will bring up the Edit
Component dialogue form which contains a field for Program File. If it is not already
specified as filename.hex either enter the path to the file manually or browse to the
location of the file via the button to the right of the field. Once you have specified the
hex file to be run press ok to exit the dialogue form. We have now attached the source
file to the design and specified which Code Generation Tool will be used.

Figure 14

Debugging the Program Simulating the Circuit
In order to simulate the circuit point the mouse over the Play Button on the animation
panel at the bottom right of the screen see Figure 1 and click left. The status bar
should appear with the time that the animation has been active for.

Working on your Source Code
To edit a source file:

 Select the source file it will be Filename.asm from the Source menu.

 Edit the source file.

 Select the Build All command from the Source menu.
You should see a small window showing details of the compilation process and the
following message "Source code build completed OK".

Figure 15

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 5

7-Segment Display

1.1 Objectives:
1. Learn how to interface the 7-segment display with PIC Microcontroller.

2. Learn how to distinguish between the common anode and the common cathode of the 7-

segment.

1.2 Pre-lab Preparation:
• Read the experiment thoroughly BEFORE coming to the lab.

1.3 Equipments:

 Personal computer with MPLAB and Proteus software installed on it.

1.4 Theoretical backgrounds:

Seven-Segment Display

A Seven-Segment display, as its name

implies, is composed of seven segments (or

technically of seven LEDs) which can be

individually switched on or off. This ability to

individually control each segment and the layout

in which these segments are distributed allows

for the representation of the numerals and some

characters. If the anode ends of all LEDs are

connected together, it is called common anode

display. If the cathodes of all LEDs are

connected together, it is

called a common cathode display. To switch a LED on in a common cathode

configuration, you have to send logic high to the segment pin. Conversely, to

switch a LED on in a common anode configuration, you have to send logic low to

the segment pin.

Interfacing a Seven-Segment display is independent of the type of the

module, whether it is common anode or common cathode, only the logic level sent

to the display differs. Finally, since the display is basically LEDs, current limiting

resistors are used for each segment.

