Introduction to
Embedded Systems

Edward A. Lee

UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

Module 1.
Motivation: Cyber Physical Systems

Focus on Cyber-Physical Systems
Full of Contradictory Requirements

It’s not just information technology anymore:

e Cyber + Physical
* Computation + Dynamics
* Security + Safety

Contradictions:

* Adaptability vs. Repeatability
* High connectivity vs. Security and Privacy

* High performance vs. Low Energy

* Asynchrony vs. Coordination/Cooperation

* Scalability vs. Reliability and Predictability

e Laws and Regulations vs. Technical Possibilities
* Economies of scale (cloud) vs. Locality (fog)

* Open vs. Proprietary

e Algorithms vs. Dynamics

Innovation:

Cyber-physical systems require new engineering
methods and models to address these contradictions.

Lee, Berkeley

E Pluribus Unum: Out of Many, One

Cyber-Physical Systems

Lee, Berkeley EECS 149/249A, UC Berkeley: 3

The Hype Around
The Internet of Things

Using Internet technology to connect
physical devices (“things”).

expectations

4

Speech-to-Speech Transiation
Autonomous Vehicles
SmanAdvsors

Data Science

Prescriptive Analytics
Neurobusiness

Biochips

= Internet of Things

—Natural-L anguage Questian Angiwering o
Waarable Userln!enac;:\ I nte n et Of T h IN g S
Consumer 3D Printing
Cryptocurrencies

Complex-EventProcessing

Big Data

In-Memaory Database Management Systems
ContentAnalytics

Hybrid Cloud Computing
Gamification

Affective Computing

Recognition
SmartRobots Augmented Really SpeechRecog!
3D Biopninting Systems Machine-to-Machine Consumer Telematics
Volumetric andHolographic Displays Communication 3D Scanners
Software-Defined Anything Senvices
Quantum Computin ;
Human Augmefﬂanog Quaniiied SeN ﬂgggs;ealm Enterprise 3D Printing
Brain-Computerinterface o 9 Activity Streams
Connected Home

In-Memory Analytics
Gesture Control

Virtual Reality

Cioud Computing
NFC

Virtual Personal Assistants
Digital Security

Bioacoustic Sensing

Smant Workspace

Peak of
R Lkl Inflated

Plateau of
Productivity

- Expectations

~ Peakof
Inflated
Expectations

Innovation

Trough of
Trigger

Disillusionment Slope of Enlightenment

time
Plateau will be reached in: obsolite
Olessthan 2years ©2toSyears @5to10years A morethan 10years @ before plateau

http://www.gartner.com/technology/research/hype-cycles/

Lee, Berkeley EECS 149/249A, UC Berkeley: 4

The Hype Around
The Internet of Things

Using Internet technology to connect
physical devices (“things”).

expectations

4

Speech-to-Speech Transiation
Autonomous Vehicles
SmanAdvsors

Data Science

Prescriptive Analytics
Neurobusiness

Biochips

= Internet of Things

—Natural-L anguage Questian Angiwering o
Waarable Userln!enac;:\ I nte n et Of T h IN g S
Consumer 3D Printing
Cryptocurrencies

Complex-EventProcessing

Big Data

In-Memaory Database Management Systems
ContentAnalytics

Hybrid Cloud Computing

Affactive Computing Gamification

SmartRobots Augmented Really SpeechRecognition
3D Biopninting Systems Machine-to-Machine Consumer Telematics
Volumetric and Holographic Displays Communication 3D Scanners
Software-Defined Anything Senvices
mj &
H%‘:ﬁ:;”&g,ﬂe.ﬂgggﬂ Quantified Self 53253,51?'"’ Enterpiiae 30 Printng
Brain-Computerinterface Activity Streams

Connected Home In-Memory Analytics

Gesture Control
Virtual Reality

Cioud Computing
NFC

Virtual Personal Assistants
Digital Security

Bioacoustic Sensing

Smant Workspace

~ Peakof
Inflated
Expectations

As of July 2014 Trough Of
DO | SiopeotEnlghtonment Flloauol Disillusionment

|

Innovation
Trigger

time
Plateau will be reached in: obsolete

Olessthan 2years ©2toSyears @5to10years A morethan 10years @ before plateau

http://www.gartner.com/technology/research/hype-cycles/

Lee, Berkeley EECS 149/249A, UC Berkeley: 5

loT Is the use of Internet technology for
Cyber-Physical Systems

Industrial automation
example from 2008:
Bosch-Rexroth printing
press.

The term “loT” includes
the technical solution
“Internet technology” in
the problem statement
“connect things”.

The term CPS does not.

Lee, Berkeley

Example — Flying Paster

Sensor top dead center Drive roller
Dancer

G Idle roller A

Idle roller

Reserve
paper feed

Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.htr

EECS 149/249A, UC Berkeley: 7

http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

o

Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

Flying Paster

EECS 149/249A, UC Berkeley: 8

http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

CPS Challenge Problem: Prevent This

The challenges of working
In a multidisciplinary area

m The challenges of working
In a multidisciplinary area

Small Computer

—_
-
-

It’s

Connected Industrial (It’SW
A System

Big Complex

o . System
N memy

Advanced
Manufacturing

Automotive CPS and Societal Challenges

Safer Transportation
Reduced Emissions
Smart Transportation
Energy Efficiency
Climate Change

Human-Robot Collaboration

EECS 149/249A, UC Berkeley: 12

Example: Air-Fuel ratio control to reduce emissions

» Catalytic converters reduce CH,, CO,, and NO, emissions
» Conversion efficiency optimal at stoichiometric value

— 100

3 See:

= 80 Jin. Kapinski. Deshmukh,
.3 Ueda, Butts,

E 60 “Powertrain Control Verification
o 40 Benchmark,”

£ HSCC 2014

c

£ 20

2

w 0

12 13 14 15 16 17
AF (Air-fuel ratio)

[Slide due to J. Deshmukh, Toyota] EECS 149/249A, UC Berkeley: 13

Air-Fuel ratio control: Gasoline Engine setting

! Exhaust manifold

l

Measured
A/F

Measured
Air Flow

FueI |nJectors

Q

Intake manifold

B
I
&

[Slide due to J. Deshmukh, Toyota] EECS 149/249A, UC Berkeley: 14

Report: McKinsey Global Institute

Disruptive technologies:
Advances that will transform life, business, and the global economy

. with major CPS components

May 2013

Twelve potentially economically disruptive technologies

’\ .
" Mobile Internet

Increasingly inexpensive and capable
mobile computing devices and Internet
connectivity

Next-generation genomics

/)
lo

Fast, low-cost gene sequencing,
advanced big data analytics, and
synthetic biology (“writing” DNA)

i Automation of knowledge

;@I} work

Intelligent software systems that can
perform knowledge work tasks involving
unstructured commands and subtle
judgments

@») Energy storage

é 3D printing

Devices or systems that store energy
for later use, including batteries

Additive manufacturing techniques to
create objects by printing layers of
material based on digital models

Advanced materials

Materials designed fo have superior
characteristics (e.g., strength, weight,
conductivity) or functionality

Y a 'JJ:? 'JJ The Internet of Things Networks of low-cost sensors anq _
\@<' \f-&o actuators for data collection, monitoring,
o y? decision making, and process
optimization
Cloud technology Use of computer hardware and software
resources delivered over a network or
the Intemet, often as a service
Advanced robotics Increasingly capable robots with
enhanced senses, dexterity, and
intelligence used to automate tasks or
augment humans
(« ?»)
Autonomous and Vehicles that can navigate and operate

f "\ near-autonomous vehicles

with reduced or no human intervention

Advanced oil and gas

exploration and recovery
/ Renewable energy
"
wo\ “\‘
W

Exploration and recovery techniques
that make extraction of unconventional
oil and gas economical

Generation of electricity from renewable
sources with reduced harmful climate
impact

EECS 149/249A, UC Berkeley: 15

Economic Potential

?)M,a.? The Internet ~ 300% 1 rillion $36 trllion
'&'g & i+ ofThings Increase in connected machine-to-machine devices Things that couid be connected to the ntemet - Operating coss ofkey afected
oyt over past § years across industries such as manufacturing, industries (manufacturing, health care,
80-90% heaith care, and mining and mining)
Price decline in MEMS (microelectromechanical 100 million
systems) sensors in past 5 years Global machine to machine (M2M) device
connections across sectors like ransportation,
security, health care, and utiites
Cloud 18 months 2 billion $1.7 trillion
technology Time to double server performance per doflar Global users of cloud-based email services GDP related to the Internet
N like Gmail, Yahoo, and Hotmail ” trillion
Monthly cost of owning a server vs. renting in 80% Enterprise [T spend
the cloud North Amenican institutions hosting or planning
to host cntical applications on the clovd
Advanced 75-85% 320 million $6 trillion
robotics Lower price for Baxter than a typical industrial robot ~ Manufactuning workers, 12% of global Manufacturing worker employment
170% workforce costs, 18% of global employment costs
Growth in sales of industrial robots, 2008-11 250 million $2-3 trillion
Annual major surgeries Cost of major surgenes
Autonomous 7 1 billion $4 trillion
andnear- Miles driven by top-performing driverless car in 2004 Cars and trucks globaly Automobile industry revenue
autonomous DARPA Grand Challenge along a 150-mile route 450,000 $155 billion
vehicles 4 5y Civilian, military, and general aviationaircrat Revenue from sales of civilian, military,
Miles cumulatively driven by cars competing in 2005 in the world and general aviation aircraft
Grand Challenge
300,000+
Miles driven by Google's autonomous cars with only

1 accident (which was human-caused)

T T T e e T e T e e

Google Strategy

CMET » Intemet » Google closes $3.2 billion purchase of Nest

theguardian | TheObserver

Google's drive ihto robotics should

Google CIOSeS $3.2 bﬂlion concern us all

purchase of Nest

The company's expansion into robotics was developed in tandem
with the US military. Where will its power play stop?

The acquisition brings with it the Learning Thermostat and the

Protect smoke and CO detector as Google looks 1o make its

mark in the smart home.

by Lance Whitney ~ @lancewhit / February 12, 2014 5:00 AM PST
{ Updated: February 12, 2014 5:19 AM PST

. John Naughton
The Observer, Sunday 29 December 2013

Google's robotic cars have about $150,000 in
equipment including a $70,000 LIDAR (laser radar)
system. The range finder mounted on the top is

a Velodyne 64-beam laser. This laser allows the vehicle
to generate a detailed 3D map of its environment.

The car then takes these generated maps and
combines them with high-resolution maps of the
world, producing different types of data models that
allow it to drive itself.

EECS 149/249A, UC Berkeley: 17

http://en.wikipedia.org/wiki/LIDAR
http://en.wikipedia.org/wiki/Velodyne

Google and Facebook
. Wall Street Journal:

By Alistair Barr and Reed Albergotti
April 14, 2014

Google Inc..on Monday acquired a
maker of solar-powered drones—a
startup that Facebook Inc._had also
considered acquiring—as the

y technology giants battle to extend
their influence and find new users in
the far corners of the earth.

Artist's rendering of Titan's Solara 50, which in
theory at least, can stay aloft for years.

EECS 149/249A, UC Berkeley: 18

http://quotes.wsj.com/GOOGL
http://quotes.wsj.com/GOOGL
http://quotes.wsj.com/FB
http://quotes.wsj.com/FB

Tesla Gigafactory

Artists conception of battery factory under construction in Nevada.
From: https://www.tesla.com/gigafactory

EECS 149/249A, UC Berkeley: 19

Apple iICar?

Macworld, Aug. 10, 2016:
Reports suggest that Apple is developing an electric iCar to rival Tesla. With reports

that Apple is negotiating with BMW, and poaching Samsung employees (especially
battery specialists) and reassigning large numbers of staff for its Project Titan, is
Apple manufacturing an iCar, and when will the iCar be launched?

EECS 149/249A, UC Berkeley: 20

The Emerging IT Scene

Infrastructural
core

Sensory
swarm
o404 o
m.l‘lmhlf
-
Mobile
access

Courtesy: J. Rabaey
EECS 149/249A, UC Berkeley: 21

What this course Is about

A principled, scientific approach to designing and
Implementing embedded systems

Not just hacking!!

Hacking can be fun, but it can also be very painful when
things go wrong...

Focus on model-based system design, and
on embedded software

EECS 149/249A, UC Berkeley: 22

~

Modeling, Design, Analysis -

rDesi n |
Modeling is the process of \ “ /_3 w

gaining a deeper understanding L Al
of a system through imitation. ‘ :
Models express what a system does L

or should do.

Design is the structured creation of artifacts.
It specifies how a system does what it does.

Analysis is the process of gaining a deeper
understanding of a system through dissection.
It specifies why a system does what it does

(or fails to do what a model says it should do).
EECS 149/249A, UC Berkeley: 23

e e S textbook, written for

[}
Introduction to s

identify and introduce

the durable intellectual
Embedded Systems ~ c.ioneaien

A Byher-Physical Systems Approach systems as a technology
and as a subject of
Second Edition study. The emphasis is

on modeling, design,
and analysis of cyber-
physical systems, which
Integrate computing,
networking, and physical

8 P o) processes.
T TR e |
Sanjit Arunkumar Seshia http://LeeSeshia.org
B O T T SR 0 :

EECS 149/249A, UC Berkeley: 24

Motivating Example of a Cyber-Physical System
(see Chapter 1 in book)

Modeling:

* Flight dynamics (ch2)

» Modes of operation (ch3)

* Transitions between modes (ch4)
« Composition of behaviors (ch5)
 Multi-vehicle interaction (ch6)

Design:

» Sensors and Actuators (ch7)
* Processors (ch8)

* Memory system (ch9)

» Sensor interfacing (ch10)

» Concurrent software (ch1l)
* Real-time scheduling (ch12)

Analysis
STARMAC quadrotor aircraft (Tomlin, et al.) :igﬁg%nggssa?;ebbeehha"’:/\i"oorr(gchhllzg)
* Verifying safe behavior (chl5)

* Introductory Video: « Guaranteeing timeliness (ch16)
http://www.youtube.com/watch?v=rJ9r2orcaYo « Security and privacy (ch17)

- Back-Flip Manuever:
http://www.youtube.com/watch?v=iD3QqGpzzIM EECS 149/249A, UC Berkeley: 25

http://www.youtube.com/watch?v=rJ9r2orcaYo#t=140
http://www.youtube.com/watch?v=rJ9r2orcaYo
http://www.youtube.com/watch?v=iD3QgGpzzIM#t=17
http://www.youtube.com/watch?v=iD3QgGpzzIM

STARMAC Design Block Diagram

LIDAR RS232 V
URG-04LX m’]

10 Hz ranges USB 2 Wi Fi

_ _ Pentium M H 802.11g+
Stereo Cam | Firewire 1GB RAM, 1.8GHz BOMDPS™ | < 54 Mbps
Videre STOC
30 fps 320x240 | 480 MPPS Est&contiol | @ e
GPS UART V
Superstar 11 [===t kbps < Stargate 1.0 c WiFi
10 Hz . F
. Intel PXA255 41_? 802.11b
UART :®°| 64MB RAM, 400MHz | 100MbpS | <5 ybps
IMU 115 Kbp UART:
UART : Supervisor, GPS

3DMG-X1 R ' 5
ObOS“X ...
76 or 100 Hz l 115 kbps » Atmegal28
Low level control
Ranger 12C r' PPM
SRFO08 400 kbps tAnajog 100 Hz

13 Hz Altitude

Ranger Beacon ESC & Motors
oo Timing/ Tracker/DTS Phoenix-25, Axi 2208/26
i 2 AllituCe Analog 1 Hz

EECS 149/249A, UC Berkeley: 26

A Theme in This Course:
Think Critically

Any course that purports to teach you how to design
embedded systems is misleading you.

The technology will change!

Our goal is to teach you how things are done today, and
why that is not good enough. So you will not be surprised
by the changes that are coming.

EECS 149/249A, UC Berkeley: 27

Introduction to
Embedded Systems

Edward A. Lee

UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

Module 2: Model Based Design

Modeling, Design, Analysis: N
An lterative Process Modeling

Design /_3

Modeling is the process of

gaining a deeper understanding - (Analysis
of a system through imitation. : '
Models specify what a system does. L

Design is the structured creation of
artifacts. It specifies how a system does
what it does. This includes optimization.

Analysis is the process of gaining a deeper
understanding of a system through dissection.
It specifies why a system does what it does
(or fails to do what a model says it should do).

EECS 149/249A, UC Berkeley: 2

Focus on Models

——y

Do 03 Coeete Taow [rsees Yincow

—
. . — Privie — -~
=2 A o e e = .
] e | e 3| = e S I e) W T e s = ‘/
i 1
P Saectn - —— gt
(L

= 2

X —— — —— |
e ~ = |
- S ~
m e || ~ : =TT -
sotecs P TR}) o 2 oL - - { 7.“0\ — —=
Pone Sowrim [e— ", N — N
= ——

- - — -
: — =~ s ——
e - = == . T= >
it 1z reamnate - -~ = E ”
sanpleg vaw [TE] 1o armf reamron ST - = -
o D - -
= = A o s = =
=5 a - s ~
" —— 1) (e = =
"mj.:)?.g | 3| ! - —— =

SCADE

et | - ' =) Flo Edb Vew Seudio Foms Toks Wek
= li= -1 e DEEd ¥ 9O RE.® -
—— Gata | \ . Ce "1 | ~
r— B 5 = - .

Tratied
Vg - - Sevapten

—k I . ~
\ . b = & IF—\"—" ol
[S O " -ré}] 'l | L <_ S Tve ; —l
_ Y. : i —— ay r B 70 e .
il W s l == b 3 = I,[,:’_' e }
| y \) — , — L t - oo n .
1[_9-..- \ \ e | a——c| | = — oul
Ly - ——) —
7] [\ o | 4 " I Tratist [SpSTE—
L R - - 1™ ubmrriers |
LQ I'_.___-——'T r »
— \ 8 —— = Mho— S T e [T 1o
| ¢ poi ' '
R T — N Esi—— o B T weguts T LT
. . - = ‘
Ry e AP s s et I
(asent s) D" T —

Simpie Cabin Covaul Gymens

Lee, Berkeley

EECS 149/249A, UC Berkeley: 3

Models vs. Reality

The target

(the thing
being
modeled).

Lee, Berkeley

In this example, the
modeling
framework Is
calculus and
Newton’s laws.

Fidelity is how well
the model and its
target match

EECS 149/249A, UC Berkeley: 4

Engineers often confuse the

model with its target

But this does not in any way
diminish the value of a map!

Solomon Wolf Golomb

Lee, Berkeley EECS 149/249A, UC Berkeley: 5

Determinacy

Some of the most valuable models
are deterministic.

A model is deterministic if, given the initial state and the
iInputs, the model defines exactly one behavior.

Deterministic models have proven extremely valuable in
the past.

Lee, Berkeley EECS 149/249A, UC Berkeley: 6

Schematic of a simple CPS

Computational Network Computational
Platform Fabric Platform

Physical

plant

Lee, Berkeley EECS 149/249A, UC Berkeley: 7

Do deterministic models make sense for
Cyber-physical systems?

Computational Network Computational
Platform Fabric Platform
Packet Io(Unknowable delays N

Uncontrollable scheduling

Physical

plant
Unknowable
execution times

Physical noise

Parts failures Imperfect actuation

Lee, Berkeley EECS 149/249A, UC Berkeley: 8

A Model Need not
be True to be Useful

“Essentially, all models are wrong,
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and
Response Surfaces. Wiley Series in Probability and Statistics, Wiley.

Lee, Berkeley EECS 149/249A, UC Berkeley: 9

What kinds of models should we use?

Computational Network Computational
Platform Fabric Platform

Physical

plant

Let's look at the most successful kinds of models from
the cyber and the physical worlds.

Lee, Berkeley EECS 149/249A, UC Berkeley: 10

Software 1s a Model

Physical System Model

/** Reset the output receivers, which are the inside receivers of
* the output ports of the container.
* Pexception IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<I0OPort> outputs = ((Actor) getContainer(}).outputPortlist();
for (I0Port output : outputs) {
if (_debugging) {
_debug{"Resetting inside receivers of output port:
+ output.getName());

Receiver[J[] receivers = output.getlnsideReceivers();
if (receivers != null) {
for {int 1 = B; 1 < receivers.length; 144} {
if (receivers[i] != null) {
for (int j = @; j < receivers[i].length; j++) {
if (receivers[i][j] instanceof FSMReceiver) {
receivers[1][j].reset(};

}

Single-threaded imperative programs
are deterministic models

Lee, Berkeley EECS 149/249A, UC Berkeley: 11

Consider single-threaded
iImperative programs

1 void foo(int32_t x) { I I

: e S This program deflne_s exactly one
3 x = 1000; behavior, given the input x.

‘ }

5 if (x > 0) { .

6 x = x + 1000; Note that the modeling framework
- if (x < 0) { i '

3 panic () ; (thg C Ia‘l‘nguag.e, ,|,n thls“.case)”

0 X } defines “behavior” and “input.

11 }

. The target of the model Is
& #8 nondeterministic (electrons
sloshing around in silicon).

EECS 149/249A, UC Berkeley: 12

Software relies on another deterministic
model that abstracts the hardware

Physical System Model

¥ Integer Register-Register Operations

, o RISC-V defines several arithmetic R-type operations. All operations read the rs! and rs2 registers
B as source operands and write the result into register rd. The funct field selects the type of operation.

31 27 26 22 21 17 16 76 0
rd | rsl - rs2 [funct10] opcode |
5 5 5 10 7

dest srcl src2 ADD/SUB/SLT/SLTU or

dest srel src2 AND/OR/XOR opP

dest srel sre2 SLL/SRL/SRA opP

dest srcl src2 ADDW/SUBW OP-32

dest srcl src2 SLLW/SRLW/SRAW OP-32

. 2 e Waterman, et al., The RISC-V Instruction Set Manual,
Image: Wikimedia Commons UCB/EECS-2011-62. 2011

Instruction Set Architectures (ISAS)
are deterministic models

Lee, Berkeley EECS 149/249A, UC Berkeley: 13

... which relies on yet another
deterministic model

Physical System Model

Srresn Carryn Qpératon
| 1

CareyOut

-l
\ i

Synchronous digital logic
IS a deterministic model

Lee, Berkeley EECS 149/249A, UC Berkeley: 14

Deterministic Models for the
Physical Side of CPS

Physical System Model

Signal Signal

—p+ Model p——

- t
N . . I
Image: Wikimedia Commons X(T) = X(O) + A_l /F(T)C[T
0

Differential Equations
are deterministic models

Lee, Berkeley EECS 149/249A, UC Berkeley: 15

A Major Problem for CPS: Combinations of
Deterministic Models are Nondeterministic

1 veoid initTimer(void) {

2 SysTickPeriodSet (SysCtlClockGet () / 1000);
SysTickEnable ();
SysTickIntEnable();

¢ veolatile uint timer_count = 0;

v void ISR(void) {
if(timer_count !'= 0) {

timer_count--;

10 }

1" }

2 int main(void) {
SysTickIntRegister (2ISR);
.. // other init
timer_count = 2000;

16 initTimer();
while(timer_count != 0) {
T ... code to run for 2 seconds
19 }
" . // other code
n }
Signal Signal

—pt Model

%(t) = x(0) + % / F(1)dr
0

Lee, Berkeley mage: wikimedia Commons EECS 149/249A, UC Berkeley: 16

A Story

In “fly by wire” aircraft,
computers control the
TR plane, mediating pilot
ANl A320_ =¥ = . commands.

Abstraction Layers

\ actor-onented \
models————_ ¢

performance
mode V‘DS‘X \\Lmuk processes
i task level models

The purpose of an

cmm abstraction is to hide
zn"ste;:z*:';.,s details of the
VHDL programs C++programs N Javaprogram implementation below

73 _program

and provide a platform
for design from above.

\
Sancad &va byte cpé/programs

cell
designs
FPGA configurations

executabfe\s / \ ¥\

\ASICchips \ \ P4-M 1.6GHz
FPGAs

m icroprocessors

silicon chips

EECS 149/249A, UC Berkeley: 18

Abstraction Layers

\ actor-OrieTRed

performancs

Every abstraction
layer has failed for
the aircraft designer.

The design is the
Implementation.

silicon chips

EECS 149/249A, UC Berkeley: 19

actor-oriented
performance {podels
models N’osix
\ / task-level models

\“ threads

.
synthesizable SystemC
VHDL programs programs

C++ programs

.
w
~ \
7
N

VHDL programs -
’ /o
) — |

::ll " . Java byte code programs

{ . designs \\ /

FPGA configurations \ Y-’VM\
* / x86 programs

| executables / : R

\ ASICchips \ P4-M 1.6GHz

MiCroprocessors

FPGAs

silicon chips

Abstraction Layers

How about raising
the level of
abstraction to solve
these problems?

EECS 149/249A, UC Berkeley: 20

Higher abstractions rely on an
iIncreasingly problematic fiction: WCET

A war story:

Ferdinand et al. [2001] determine the WCET of astonishingly
simple avionics code from Airbus running on a Motorola
ColdFire 5307, a pipelined CPU with a unified code and data
cache. Despite the software consisting of a fixed set of non-
Interacting tasks containing only simple control structures, their
solution required detailed modeling of the seven-stage pipeline
and its precise interaction with the cache, generating a large
Integer linear programming problem.

Fundamentally, the ISA of the processor has failed to provide

an adequate abstraction. And the problem has gotten worse
since 2001!

EECS 149/249A, UC Berkeley: 21

Timing Is not Part of
Software and Network Semantics

Correct execution of a program in all widely used
programming languages, and correct delivery of a network
message in all general-purpose networks has nothing to do
with how long it takes to do anything.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Embedded software designers
have no map!

Lee, Berkeley EECS 149/249A, UC Berkeley: 22

Determinism? Really?

CPS applications operate in an intrinsically
nondeterministic world.

Does it really make sense to insist on deterministic
models?

Lee, Berkeley EECS 149/249A, UC Berkeley: 23

The Value of Models

n science, the value of a model lies in how well its
pehavior matches that of the physical system.

n engineering, the value of the physical system lies
In how well its behavior matches that of the model.

In engineering, model fidelity is a two-way street!

For a model to be useful, it Is necessary
(but not sufficient) to be able to be able to
construct a faithful physical realization.

Lee, Berkeley EECS 149/249A, UC Berkeley: 24

A Model

Lee, Berkeley EECS 149/249A, UC Berkeley: 25

A Physical Realization

Lee, Berkeley EECS 149/249A, UC Berkeley: 26

Model Fidelity

To a scientist, the model is flawed.

To an engineer, the realization is flawed.

I’'m an engineer...

Lee, Berkeley EECS 149/249A, UC Berkeley: 27

For CPS, we need to
Change the Question

The guestion is not whether deterministic models can
describe the behavior of cyber-physical systems (with
high fidelity).

The guestion is whether we can build cyber-physical
systems whose behavior matches that of a deterministic

model (with high probability).

Lee, Berkeley EECS 149/249A, UC Berkeley: 28

Determinism?

What about Resilience? Adaptability?

Deterministic models do not eliminate the need for
robust, fault-tolerant designs.

In fact, they enable such designs, because they make it
much clearer what it means to have a fault!

Lee, Berkeley EECS 149/249A, UC Berkeley: 29

We have to fix the
models!

But how?

Lee, Berkeley EECS 149/249A, UC Berkeley: 30

Introduction to
Embedded Systems

Edward A. Lee

UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

Module 2a: Modeling Physical Dynamics

Modeling Techniques in this Course

Models that are abstractions of system dynamics
(how system behavior changes over time)

Modeling physical phenomena — differential equations
Feedback control systems — time-domain modeling
Modeling modal behavior — FSMs, hybrid automata, ...
Modeling sensors and actuators —calibration, noise, ...
Hardware and software — concurrency, timing, power, ...
Networks — latencies, error rates, packet losses, ...

O O O O O O

EECS 149/249A, UC Berkeley: 2

Today’s Lecture: Modeling of

Continuous Dynamics

Ordinary differential equations, Laplace = D mass

transforms, feedback control models, ...

damper —I |

i
E= 000025
0,05
. 4 2
| 0.1 0 |
=0 K=0 E=0 K=0

_}

1.4
| 2 K= 00025

- overshoot —

| ..-""""‘-\.._‘_‘_u_._._

| N
X = N w A | v
— : | [(5)= K, + K,/s + K.sF—3% H(5) = - »
| S . < Ms2+ Ds+C

:

PID controller Plant

EECS 149/249A, UC Berkeley: 3

An Example: Helicopter Dynamics

Ma||n Rolor

Drive Shaft — ~Tail

Sl Rolor
ockpit —
Tall Baom

T Engine, Transmission,
Fuel, etc.

Landing Skids
The Fundamental Parts of any Helicopter

EECS 149/249A, UC Berkeley: 4

Modeling Physical Motion

Six degrees of freedom:
o Position: X, Y, z
o Orientation: pitch, yaw, roll

X axis

Pitch

Z axis

EECS 149/249A, UC Berkeley: 5

Notation

Position is given by three functions:

r:R—R
y:R— R
z:R— R

where the domain R represents time and the co-domain

(range) R represents position along the axis. Collect-
Ing into a vector:

x: R — R?
Position at time ¢ € R is x(t) € R?.

EECS 149/249A, UC Berkeley: 6

Notation

Velocity
x: R — R’

IS the derivative, V¢t € R,

k(1) = (1)

Acceleration x: R — R” is the second derivative,

dQ

j’:{ — —X
dt?

Force on an objectis F: R — R3.

EECS 149/249A, UC Berkeley: 7

Newton’'s Second Law

Newton’s second law states V ¢ € R,
F(t) = Mx(t)

where M is the mass. To account for initial position
and velocity, convert this to an integral equation

x(t) = X(U)%—/i{(’r)dfr

1 S
Vi / / F((})d(}d?’

0 0O

= x(0) + tx(0) +

EECS 149/249A, UC Berkeley: 8

Orientation

e Orientation: 9: R — R?

e Angular velocity: 0: R — R?

e Angular acceleration: 6: R — R?

Z axis

e Torque: T: R — R3

KCAGHE roll
0(t)=| 0,(t) | = | yaw
| 60.(t)] L pitch _

EECS 149/249A, UC Berkeley: 9

Angular version of force Is torque.
For a point mass rotating around a fixed axis:

e radius ofthearm: r ¢ R

e force orthogonalto arm: f € R |

e mass of the object: m e R

=rf(t)

angular momentum, momentum

Just as force is a push or a pull, a torque is a twist.
Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2x meters of circumference per 1
meter of radius), so as units, are optional.

EECS 149/249A, UC Berkeley: 10

Rotational Version of Newton’s Second Law

= < (1(06(1)).

where I(t) i1s a 3 x 3 matrix called the moment of in-
ertia tensor.

CT(t)] g] Lee(®) Ley(D) La(t)][0a(t)
T,(1) ya Lyy(t) Iy:(t) {
I I..(t)

T(t)

S

AT TN TN
4 T

8

\":D- . .

3 =

S I
dt :
I; zy(t) “z 4 L

Here, for example, 7),(¢) is the net torque around the
y axis (which would cause changes in yaw), I,.(t) is
the inertia that determines how acceleration around
the 2 axis is related to torque around the y axis.

=

e N e
e e

EECS 149/249A, UC Berkeley: 11

Feedback Control Problem I

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shatft.

Control system problem:
Apply torque using the talil
rotor to counterbalance
the torque of the top rotor.

EECS 149/249A, UC Berkeley: 12

Simplified Model

s

—@

Yaw dynamics:
Ty(t) — Iyyéy (t)

To account for initial angular velocity, write as

t

0,(6) = 0,00) + — [Ty(ryar

vy

EECS 149/249A, UC Berkeley: 13

“Plant” and Controller

EECS 149/249A, UC Berkeley: 14

Actor Model of Systems

A system is a function that S
accepts an input signaland X parameters| Y

yields an output signal. —» D q —

The domain and range of xR—R, y2R—=R
the system function are '

sets of signals, which S: X =Y
themselves are functions.
X=Y=(R—R)

Parameters may affect the
definition of the function S.

EECS 149/249A, UC Berkeley: 15

Actor Model of the Helicopter

Helicopter
Input is the net torque of :
1 T; va 6 ’
the tail rotor and the top) e))
rotor. Output is the angular gy(())

velocity around the y axis.

Parameters of the

model are shown in _ . |

the box. The input g () =6,(0) A - /Ty('r)dfr
and output relation is Yy

given by the equation

to the right.

EECS 149/249A, UC Berkeley: 16

Helicopter

; Ly 0,
Composition of Actor Models > a0
y=a'
Helicopter y=4=
Scale Integrator
— X Yo x y
X S ﬂ — j ! ’ ‘y" — 91

EECS 149/249A, UC Berkeley: 17

Actor Models with Multiple Inputs

EECS 149/249A, UC Berkeley: 18

Proportional controller

Controller Helicopter
v ¢ L I LS
6,(0)

desired error net

angular signal torque

velocity .

e(t) =y(t) —6,() Ty(r) = Ke(t)

| | [Note that the angular

0,(r) = 6,(0) +I_ f Ty(t)dt velocity appears on
Y both sides, so this
P equation is not trivial

= 0,(0)+— [(w(t)—8y(t))dt tosolve.
EECS 149/249A, UC Berkeley: 19

Controller Helicopter

Behavior of v e nJ L [&
the controller ’ 0,(0)

Desired angular velocity: \p(t) — ()

Simplifies differential . K
equation to: 6,(1) =6,(0) — —

Which can be solved as g _Kt/I,,
follows (see textbook): (1) = 8y(0)e™™ "™ u(r)

EECS 149/249A, UC Berkeley: 20

Questions

o Can the behavior of this controller change when it is
Implemented in software?

o How do we measure the angular velocity in practice?
How do we incorporate noise into this model?

o What happens when you have failures (sensors,
actuators, software, computers, or networks)
https://www.youtube.com/watch?v=MhEXXgilVuY

EECS 149/249A, UC Berkeley: 22

Introduction to
Embedded Systems

Edward A. Lee

UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

Chapter 3: Discrete Dynamics, State Machines

Discrete Systems

Discrete = “individually separate / distinct”

A discrete system is one that operates in a sequence of
discrete steps or has signals taking discrete values.

It Is said to have discrete dynamics.

EECS 149/249A, UC Berkeley: 2

Concepts covered in Today's Lecture

Models = Programs
Actor Models of Discrete Systems: Types and Interfaces
States, Transitions, Guards

Determinism and Receptiveness

EECS 149/249A, UC Berkeley: 3

Discrete Systems: Example Design Problem

Count the number of cars that are present in a
parking garage by sensing cars enter and leave the
garage. Show this count on a display.

EECS 149/249A, UC Berkeley: 4

Discrete Systems

Example: count the number of cars in a parking garage
by sensing those that enter and leave:

ArrivalDetector
arrival

Counter Display

“e | count
Y i
DepartureDetector
down
depamtrJ
>

EECS 149/249A, UC Berkeley: 5

Discrete Systems
Example: count the number of cars that enter and leave a
parking garage:

ArrivalDetector
arrival

Counter Display

count

DepartureDetector

departure

Pure signal: up: R — {absent,present}

EECS 149/249A, UC Berkeley: 6

Discrete Systems
Example: count the number of cars that enter and leave a
parking garage:

ArrivalDetector
arrival

Counter Display

count

DepartureDetector

departure

Pure signal: up: R — {absent,present}

Discrete actor:
Counter: (R — {absent,present})’ — (R — {absent} UN)

P = {up,down}

EECS 149/249A, UC Berkeley: 7

Demonstration of Ptolemy Il Model ("Program”)

DE Director

ArrivalDetector
arrival

}

DepartureDetector

departure

I

d

do

Counter
. —
Dy |
7
wn
e e

TimPIotter

»

File Edit Special Help

Garage.TimedPlotter

ELELE

12t

10

ar 94
8l 8
ar el

i ﬁ'm]
o .
2k

at

-8_

v -
14
Kl

il

i

0 3 100 15 20 25 30 3% 40 45 SO

bme

EECS 149/249A, UC Berkeley: 8

Actor Modeling Languages / Frameworks

LabVIEW
Simulink
Scade

Reactors
StreamIT

o
1ot spmcasnrort (o | n’i{:][&;.‘]

] ,_;m A
R I 2R F {I~1
reseny o 80
hrvomc b J;al‘ =)
OO W
Bl ”m’"J (o)
Pone Sowrue l—nv\hm—'
1 =
- [.
=X [)EE% —
a«r ;_; [> ot freamron @@]

t Add SSM=m= 4

(l_’/; A

) erutse

HOD @ &

eone
Fle B Vew Sewioo Foms Tooks Welo

® o pE.® b

|
Toved
Vel barteny
0% ooedt

EECS 149/249A, UC Berkeley: 9

Reaction / Transition

For any t € R where up(t) # absent or down(t) # absent the
Counter reacts. It produces an output value in N and
changes its internal state.

State: condition of the system at a particular point in time
 Encodes everything about the past that influences the system’s
reaction to current input

ArrivalDetector

arrival

Counter Display

count

DepartureDetector

departure

EECS 149/249A, UC Berkeley: 10

Inputs and Outputs at a Reaction

Forr € R the inputs are in a set
Inputs = ({up,down} —{ absent,present})
and the outputs are in a set

Outputs = ({count} —{ absent} UN) |

ArrivalDetector
arrival

Counter i
up | Display
| count
R e
DepartureDetector
down
departure

D

EECS 149/249A, UC Berkeley: 11

Question

What are some scenarios that the given parking garage
(interface) design does not handle well?

For ¢ € R the inputs are in a set
Inputs = ({up, down} —{ absent,present})
and the outputs are in a set
Outputs = ({count} —{ absent} UN) |

ArrivalDetector
arrival

Counter Display

. count

DepartureDetector

departure

EECS 149/249A, UC Berkeley: 12

State Space

A practical parking garage has a finite number M of spaces,
so the state space for the counter is

States = {0,1,2,--- M} .

ArrivalDetector
arrival

Counter i
up | Display
| count
y
DepartureDetector
down
departure

D

EECS 149/249A, UC Berkeley: 13

Garage Counter Finite State Machine (FSM)
In Pictures

up /\ ﬂM/ Il upAN—down /2 upN\—-down /3 up/\—down | M

R 7N

down A—up /0 downAN—-up /1 downA—-up /2 downA\—-up | M—1

w g C Inputs is specified using the shorthand
up A ~down

which means

g=1{{up}} .

EECS 149/249A, UC Berkeley: 14

Garage Counter Finite State Machine (FSM)
In Pictures

up \—down / 1 upN—down /2 up/\—down /3 upA\—down | M

/N

N

down A—up /0 downAN—-up /1 downA—-up /2 downA\—-up | M—1

Initial state

EECS 149/249A, UC Berkeley: 15

Garage Counter Finite State Machine (FSM)
In Pictures

ip \N—down /2 up N\—down /3 upA\—down | M

down A—up /0 downAN—-up /1 downAN—-up /2 downA\—-up | M—1

EECS 149/249A, UC Berkeley: 16

Ptolemy Il Model

DE Director

ArrivalDetector
arrival

Counter

DepartureDetector

departure

bug Help

AT 1@ = > 0)

guard: down_isPresent && 'up_isPresent
output: count = 0

guard: down_isPresent && 'up_isPresent
output: count = 1

up

W guard: down_isPresent && 'up_isPresent
dl output; count = 2
count

guard: down_isPresent && lup_isPresent
output: count = 3

File Edit Special Help
Count E‘EE]EE
40 [T 7 Y T T T T T 7S "T £ T T “I]
st -
dpm 30rF % . LB & . . '
234 i . -
2099 s st . .
| <
_i 10F . 48 J N
'(Jl{ |
. 05 I .
— ool i 1L 1. Jl
0 5 10 15 20 25 30 35 40 45 S50
time |

9:8

)

guard: up_isPresent && !down_isPresent
output: count = 1

guard: up_isPresent && 'down_isPresent
output; count = 2

guard: up_isPresent && ldown_isPresent
output: count = 3

guard: up_isPresent && !'down_isPresent
output: count = 4

EECS 149/249A, UC Berkeley: 17

FSM Modeling Languages / Frameworks

LabVIEW Statecharts
Simulink Stateflow
Scade

o . | Add SSM

ScAbE W, o
O ['Sé e
'E-"'}f-»_f; ‘ &) ("omEEa h.®.. 20|

EECS 149/249A, UC Berkeley: 18

Garage Counter Mathematical Model

up \—down / 1 up AN—down /2 upN\—down /3 upA\—down | M

ST

downN\—up /| 0 downAN—-up /1 downA—up /2 downA\—-up | M—1

Formally: (States, Inputs, Outputs, update, initialState), where
o States ={0,1,--- M}

o Inputs = ({up,down} —{ absent,present} The picture

above defines
the update
function.

e Outputs = ({count} —{ absent} UN)

e update : States X Inputs — States X Qutputs

o initialState =0 EECS 149/249A, UC Berkeley: 19

FSM Notation In Lee & Seshia

State

guard / action

State?

initial state
Statel

transition

initial
ctate State3
indicator

self loop

EECS 149/249A, UC Berkeley: 21

Examples of Guards for Pure Signals

true Transition is always enabled.

D1 Transition is enabled if p; is present.

=P Transition is enabled if p; is absent.
p1Apy Transition is enabled if both p; and p, are present.
p1V py Transition is enabled if either p; or p, is present.
p1 A—py Transition is enabled if p; is present and p; is absent.

EECS 149/249A, UC Berkeley: 22

Examples of Guards for Signals with Numerical
Values

D3 Transition is enabled if p3 is present (not absent).
p3 = Transition is enabled if p; is present and has value 1.
p3 = 1A p; Transition is enabled if p3 has value 1 and p; is present.
p3 >S5 Transition is enabled if ps is present with value greater than 5.

EECS 149/249A, UC Berkeley: 23

Example of Modal Model: Thermostat

temperature < 18 / heat

temperature > 18 / temperature < 22 | heat

EECS 149/249A, UC Berkeley: 24

When does a reaction occur?

input: x € {present.absent}
output: y € {present,absent }

f_e

x/y

Suppose all inputs are discrete and a reaction occurs
when any input is present. Then the above transition will
be taken whenever the current state is s1 and x Is present.

This Is an event-triggered model.

EECS 149/249A, UC Berkeley: 25

When does a reaction occur?

input: x € {present.absent}
output: y € {present.absent }

Ao

X/ y

Suppose x and y are discrete and pure signals.
When does the transition occur?

Answer: when the environment triggers a reaction and x is absent.

If this is a (complete) event-triggered model, then the transition will
never be taken because the reaction will only occur when x is
present!

EECS 149/249A, UC Berkeley: 26

When does a reaction occur?

input: x € {present.absent } input: x € {present.absent}
output: y € {present,absent } output: y € {present.absent }

Suppose all inputs are discrete and a reaction occurs on
the tick of an external clock.

This is a time-triggered model.

EECS 149/249A, UC Berkeley: 27

More Notation: Default Transitions

up \ —~down / 1

- -
- -

-

down A —up /0

A default transition is enabled If no non-default transition
IS enabled and it either has no guard or the guard

evaluates to true. When is the above default transition
enabled?

EECS 149/249A, UC Berkeley: 28

Only show default transitions if they are guarded
or produce outputs (or go to other states)
Example: Traffic Light Controller

EECS 149/249A, UC Berkeley: 29

Example where default transitions need not be
shown

input: remperature : R
outputs: heatOn, heatOff : pure

temperature < 18 / heatOn

temperature > 22 | heatOff

Exercise: From this picture, construct the formal
mathematical model.

EECS 149/249A, UC Berkeley: 30

Some Definitions

Stuttering transition: (possibly implicit) default
transition that is enabled when inputs are absent, that
does not change state, and that produces absent
outputs.

Receptiveness: For any input values, some transition
IS enabled. Our structure together with the implicit
default transition ensures that our FSMs are receptive.

Determinism: In every state, for all input values,
exactly one (possibly implicit) transition is enabled.

EECS 149/249A, UC Berkeley: 31

Test Your Understanding: Three Kinds of
Transitions

Self-Loop

Default Transition

Stuttering Transition

1. Is a default transition always a self-loop?

2. |s a stuttering transition always a self-loop?
3. Is a self-loop always stuttering?

EECS 149/249A, UC Berkeley: 32

Example: Nondeterministic FSM

Model of the environment for a traffic light, abstracted
using nondeterminism:

—-sigG [isCar | ...
b
e ‘

frue / / isCar

sigG /

Formally, the update function is replaced by a function
possibleUpdates : States x Inputs — 2°5tatesxQuiputs

EECS 149/249A, UC Berkeley: 33

EECS 149/249A, UC Berkeley: 34

Uses of Nondeterminism

1. Modeling unknown aspects of the environment or
system

Such as: how the environment changes a robot’s
orientation

2. Hiding detail in a specification of the system
We will see an example of this later (see the text)

Any other reasons why nondeterministic FSMs might be
preferred over deterministic FSMs?

EECS 149/249A, UC Berkeley: 35

Behaviors and Traces

FSM behavior is a sequence of (non-stuttering) steps.

A trace is the record of inputs, states,
and outputs in a behavior.

A computation tree is a graphical
representation of all
possible traces.

sigR
\ _ T P
FSMs are suitable for formal g

red

analysis. For example, safety x
analysis might show that some unsafe =
state Is not reachable. ~

EECS 149/249A, UC Berkeley: 36

Size Matters

Non-deterministic FSMs are more compact than
deterministic FSMs

A classic result in automata theory shows that a
nondeterministic FSM has a related deterministic FSM
that is equivalent in a technical sense (language
equivalence, covered in Chapter 13, for FSMs with
finite-length executions).

But the deterministic machine has, in the worst case,
many more states (exponential in the number of states
of the nondeterministic machine, see Appendix B).

EECS 149/249A, UC Berkeley: 37

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:
o A deterministic system exhibits a single behavior

o A non-deterministic system exhibits a set of behaviors
visualized as a computation tree

Deterministic FSM behavior:
o —> @ —> @0 —> @ —> @ —>

Non-deterministic FSM behavior:
o — 0 — O — @ —8 * "

./
\./.—>Q—>

" "EECS 149/249A, UC Berkeley: 38

Non-deterministic = Probabilistic (Stochastic)

In a probabilistic FSM, each transition has an associated
probability with which it is taken.

In a non-deterministic FSM, no such probability is known.
We just know that any of the enabled transitions from a
state can be taken.

EECS 149/249A, UC Berkeley: 39

Review: Concepts covered

Models = Programs
Actor Models of Discrete Systems: Types and Interfaces
States, Transitions, Guards

Determinism, Receptiveness, etc.

EECS 149/249A, UC Berkeley: 40

PROGRAMMABLE LOGIC DEVICES

Read Only Memory (ROM) - a fixed array of AND gates and a programmable array of OR gates
Programmable Array Logic (PAL) - a programmable array of AND gates feeding a fixed array of
OR gates.

Programmable Logic Array (PLA) - a programmable array of AND gates feeding a programmable
array of OR gates.

Complex Programmable Logic Device (CPLD) /Field- Programmable Gate Array (FPGA) -
complex enough to be called “architectures”

Fixed Programmable _| Pro bl
- grammable |
g /?glech(;rear))l Connections OR array Outpits

{a} Prograrnmable read-only memaory (FROM)

Programmable_| Programmable > Fixed .
Inputs Connections AND array OR array Outputs
(b) Programmable array logic (PAL) device
le P bl Programmable
Inputs Pﬂgramm_ame. Programmable rogramma ey g L > Outputs
Connections AND array Connections OR array

(c) Programmable logic array (PLA) device

READ ONLY MEMORY

Read Only Memories (ROM) or Programmable Read Only Memories (PROM) have:
e Ninputlines,
* M output lines, and
e 2Ndecoded minterms.
Fixed AND array with 2N outputs implementing all N-literal minterms.
Programmable OR Array with M outputs lines to form up to M sum of minterm expressions.
A program for a ROM or PROM is simply a multiple-output truth table
e Ifal entry, a connection is made to the corresponding minterm for the corresponding
output
« Ifa0, noconnection is made

Can be viewed as a memory with the inputs as addresses of data (output values), hence ROM or
PROM names!

k inputs (address) ———— > 2% x nROM | noutputs (data)

(2)

s W N = O

5-to-32
decoder

L — 28
L 29
30
31

9909804

Ay
(b)
Figure: Block diagram and Internal Logic of a ROM

Depending on the programming technology and approaches, read-only memories have different

names

i e

ROM - mask programmed

PROM - fuse or antifuse programmed

EPROM - erasable floating gate programmed

EEPROM or E2PROM - electrically erasable floating gate programmed

FLASH memory: electrically erasable floating gate with multiple erasure and programming
modes.

Example: A 8 X4 ROM (N = 3 input lines, M= 4 output lines)

The fixed "AND" array is a “decoder” with 3 inputs and 8 outputs implementing minterms.
The programmable "OR" array uses a single line to represent all inputs to an OR gate. An
“X” in the array corresponds to attaching the minterm to the OR

Read Example: For input (A2,A1,A0) = 011, output is (F3,F2,F1,Fo) =0011.

What are functions F3, F2, F1 and Fo in terms of (A2, A1, Ao)?

====

D4 ¥
—J{Ap D3
A A202 *
B ——A1 D1 ¥ ¥
c —{ A0 DO ¥

F3 F2 F1 FO

PROGRAMMABLE LOGIC ARRAY (PLA)
= Compared to a ROM and a PAL, a PLA is the most flexible having a programmable set of ANDs
combined with a programmable set of ORs.
» Advantages
* APLA can have large N and M permitting implementation of equations that are impractical
for a ROM (because of the number of inputs, N, required
* APLAhasall of its product terms connectable to all outputs, overcoming the problem of
the limited inputs to the PAL Ors
* Some PLAs have outputs that can be complemented, adding POS functions
* Disadvantages
e Often, the product term count limits the application of a PLA.
e Two-level multiple-output optimization is required to reduce the number of product terms
in an implementation, helping to fit it into a PLA.
e Multi-level circuit capability available in PAL not available in PLA. PLA requires external
connections to do multi-level circuits.

Programmable Logic Array Example
F1=AB’ + AC + A'BC’
F2= (AC+BC)’

B*i S
]3]
II 1) AB
) .
I_ZJ AC X Closed
+ Open
II 4) ABC

» What are the equations for F1 and F2?
* Could the PLA implement the functions without the XOR gates?
» 3-input, 3-output PLA with 4 product terms

Example 6-3 from Mano: Implementing a Combinational Circuit Using a PLA
F1(A,B,C)=Xm(3,5,6,7)
F2(A,B,C)=Xm(1,2,3,7)

B F ope B
0 0l 11 10 N 00 0 11 10

o] 1| Lo] g 0

1 1 1 0 0

Fi pc
N

(=}

[<]

>
—_
>
—_
I»—t
[e]

F, = AB +CA§ +BC F, :513 +(3K_c +BC
F, = ABC + ABC + BC F,= ABC + ABC + BC
The solution is:
F, = ABC + ABC + BC
F,= ABC + ABC + BC

PROGRAMMABLE ARRAY LOGIC (PAL)

» The PAL is the opposite of the ROM, having a programmable set of ANDs combined with fixed ORs.

» Disadvantage
* ROM guaranteed to implement any M functions of N inputs. PAL may have too few inputs

to the OR gates.

= Advantages
* For given internal complexity, a PAL can have larger N and M

* Some PALs have outputs that can be complemented, adding POS functions
* No multilevel circuit implementations in ROM (without external connections from output
to input). PAL has outputs from OR terms as internal inputs to all AND terms, making
implementation of multi-level circuits easier.
Programmable Array Logic Example
» 4-input, 3-output PAL with fixed, 3-input OR terms
= What are the equations for F1 through F4?

W(A,B,C,D) =2m (2,12,13)
X(A,B,C,D) =2m (7,8,9,10,11,12,13,14,15)
Y(A,B,C,D) =2m (0,2,3,4,5,6,7,8,10,11,15)
Z(A,B,C,D) =¥m (1,2,8,12,13)

Simplifying the four function to a minimum number of terms results in the following Boolean functions
W= ABC'+A’'B'CD’
X =A+BCD
Y = A’'B+CD+B’D’
Z=ABC'+A’'B'CD’+AC’'D’'+A’B’'C’'D = W+AC'D’+A’B’C'D

AND gates inputs
Product — — — —
term — AABBCCDDWW

1

21X x

3

A—3 1 _ <

Introduction to
Embedded Systems

Edward A. Lee

UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

Chapter 7. Sensors and Actuators

What is a sensor? An actuator?

A sensor Is a device that measures a physical quantity
— Input / “Read from physical world”

An actuator is a device that modifies a physical quantity
— Qutput / “Write to physical world”

EECS 149/249A, UC Berkeley: 2

Sensors and Actuators — The Bridge between
the Cyber and the Physical

Actuators:
Sensors: - Motor controllers
ensors. . Solenoids
Cameras . LEDs, lasers
Accelerometers . LCD and plasma displays
Gyroscopes . LOUdSpeakerS
Strain gauges - Switches
_ Valves
Microphones
Magnetometers
Radar/Lidar Modeling Issues:
Chemical sensors - Physical dynamics
Pressure sensors - Npise
Switches Bias
Sampling
Interactions
Faults

EECS 149/249A, UC Berkeley: 3

Self-Driving Cars

T
'l —

¥ T

Berkeley PATH Project Demo,
1999, San Diego.

Google self-driving car 2.0

EECS 149/249A, UC Berkeley: 4

Kingvale Blower
Berkeley PATH Project, March, 2005

EECS 149/249A, UC Berkeley: 5

Sensor-Rich Cars

| RADAR APPLICATION
W ULTRASONIC

Source: Analog Devices

EECS 149/249A, UC Berkeley: 6

Sensor-Rich Cars

GPS (global positioning system)
combined with readings from tachometers,
altimeters and gyroscopes to provide the most
accurate positioning

Cost: $80-56,000

Ultrasonic sensors to
measure the position of objects very
close to the vehicle

Cost: $15-520

Odometry sensorsto
complement and improve GPS

information
Cost: $80-5120

Central computer analyzes all sensor input,
applies rules of the road and operates the steering,

accelerator and brakes
Cost: ~50-200% of sensor costs

Source: Wired Magazine

Lidar (light detection and ranging)
maonitor the vehicle's surroundings (road, vehicles,
pedestrians, efc.)

Cost: 590-8,000

Video cameras monitor the vehicle's
surroundings (road, vehicles, pedestrians,

etc.) and read traffic lights
Cost (Mono): $125-5150
Cost (Stereo): 5150-5200

Radar sensors monitor the
vehicle's surroundings (road, vehicles,
pedestrians, etc.)

Cost (Long Range): $125-5150

Cost (Short Range): $50-5100

EECS 149/249A, UC Berkeley: 7

Kingvale Blower: Technology Overview
Berkeley PATH Project, March, 2003

EECS 149/249A, UC Berkeley: 8

Magnetometers

A very common type is the
Hall Effect magnetometer.

Charge particles (electrons, 1)
flow through a conductor (2)
serving as a Hall sensor.
Magnets (3) induce a
magnetic field (4) that causes
the charged particles to
accumulate on one side of the
Hall sensor, inducing a
measurable voltage difference
from top to bottom.

The four drawings at the right
illustrate electron paths under

different current and magnetic
field polarities. Image source: Wikipedia
Commons

Edwin Hall discovered this effect in 1879.
EECS 149/249A, UC Berkeley: 9

Aliasing

Sampled data is
vulnerable to aliasing,
where high

frequency
components
masquerade as low
frequency
components.

Careful modeling of
the signal sources
and analog signal
conditioning or digital
oversampling are
necessary to counter
the effect.

_1 A

A high frequency sinusoid sampled at a low rate looks
just like a low frequency sinusoid.

Digitally sampled images are vulnerable to aliasing as
well, where patterns and edges appear as a side effect
of the sampling. Optical blurring of the image prior to
sampling avoids aliasing, since blurring is spatial low-
pass filtering.

EECS 149/249A, UC Berkeley: 10

Roadmap

a How Accelerometers work
a Affine Model of Sensors
a Bias and Sensitivity

a Faults in Sensors

a Brief Overview of Actuators

EECS 149/249A, UC Berkeley: 11

The most common design measures the distance

Acceleromete rs between a plate fixed to the platform and one

attached by a spring and damper. The measurement
is typically done by measuring capacitance.

U SesS. gravitational
)) _ force

. NaV|gat|On displacement

. Orientation

Drop detection
Image stabilization
Airbag systems

acceleration
measured

EECS 149/249A, UC Berkeley: 12

Spring-Mass-Damper Accelerometer

By Newton’s second law, F=ma.

For example, F could be the
Earth’s gravitational force.

The force is balanced by the
restoring force of the spring.

EECS 149/249A, UC Berkeley: 13

Spring-Mass-Damper System

e mass: M Force due to spring extension:

e spring constant: & Fi(t) = k(p — z(t))

e spring rest position: p Force due to viscous damping:

e position of mass: x Fs(t) = —ci(t)
2\l) = —cxr(l

e viscous damping constant: ¢ ,
Newton’s second law:

<£> Fi(t) + Fy(t) = Mi(t)

or

Mx(t) 4+ cx(t) + kx(t) = kp.

Exercise: Convert to an integral equation with initial

conditions. EECS 149/249A, UC Berkeley: 14

Measuring tilt

Component of gravitational force in the direction of the
accelerometer axis must equal the spring force:

Mgsin(f8) = k(p — x(t))

Given a measurement of -, you can solve for 6, up to
an ambiguity of .

EECS 149/249A, UC Berkeley: 15

Feedback dramatically improves accuracy and
dynamic range of microaccelerometers.

The Berkeley Sensor and
Actuator Center (BSAC)
created the first silicon
microaccelerometers, MEMS
devices now used in airbag
systems, computer games,
disk drives (drop sensors), etc.

WIF

Digital

M. A. Lemkin, “Micro Accelerometer
| Design with Digital Feedback Control”,

Ph.D. dissertation, EECS, University of
California, Berkeley, Fall 1997

EECS 149/249A, UC Berkeley: 16

Difficulties Using Accelerometers

Separating tilt from acceleration

- Vibration
Nonlinearities in the spring or damper
Integrating twice to get position: Drift

t
p(t) — p([]) -+ / ‘U(T)dq'j Position is the integral of
0

velocity, which is the integral
of acceleration. Bias in the
measurement of
acceleration causes position

t
U(t) — ’U(U) -+ / x('r)d'r. estimate error to increase
0 quadraticly.

EECS 149/249A, UC Berkeley: 17

Measuring Changes in Orientation:
Gyroscopes

Halfsilverad
mirgar

Light source

Wiewing screen

Optical gyros: Leverage the Sagnac effect, where a laser light is sent
around a loop in opposite directions and the interference is measured.
When the loop is rotating, the distance the light travels in one direction is
smaller than the distance in the other. This shows up as a change in the
interference.

Images from the Wikipedia EECS 149/249A, UC Berkeley: 18
Commons

Dead reckoning

Inertial Navigation Systems olus GPS.

Combinations of:
. GPS (for initialization and periodic correction).
. Three axis gyroscope measures orientation.

. Three axis accelerometer, double integrated for
position after correction for orientation.

Typical drift for systems used in aircraft have to be:
. 0.6 nautical miles per hour
. tenths of a degree per hour

Good enough? It depends on the application!

EECS 149/249A, UC Berkeley: 19

Design Issues with Sensors

Calibration
Relating measurements to the physical phenomenon
Can dramatically increase manufacturing costs
Nonlinearity
Measurements may not be proportional to physical phenomenon
Correction may be required
Feedback can be used to keep operating point in the linear region
Sampling
Aliasing
Missed events
Noise
Analog signal conditioning
Digital filtering
Introduces latency
Failures
Redundancy (sensor fusion problem)

Attacks (e.g. Stuxnet attack)
EECS 149/249A, UC Berkeley: 20

Sensor Calibration

Affine Sensor Model
Bias and Sensitivity

Example: Look at ADXL330 accelerometer datasheet

EECS 149/249A, UC Berkeley: 21

EECS 149/249A, UC Berkeley: 22

EECS 149/249A, UC Berkeley: 23

Analog Devices ADXL330 Data Sheet

SPECIFICATIONS

Ta =25°C, Vs =3V, Cx = Cy = Cz = 0.1 uF, acceleration = 0 g, unless otherwise noted. All minimum and maximum specificalions are

guaranteed. Typical specifications are nol guaranteed.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis
Measurement Range 13 3.6 g
Nonlinearity % of full scale +0.3 %o
Package Alignment Error 11 Degrees
Inter-Axis Alignment Error +0.1 Degrees
Cross Axis Sensitivity’ +1 To
SENSITIVITY (RATIOMETRIC)* Each axis
Sensitivity at Xour, Your, Zout Vs=3V | 270 300 330 mV/g
Sensitivity Change Due to Temperature? V=3V +0.015 %o/ "C
ZERQ g BIAS LEVEL (RATIOMETRIC) Each axis
0 g Voltage at Xour, Your, Zour Vs=3V 1.2 1.5 1.8 v
0 g Offset vs. Temperature +1 mg/“C
NOISE PERFORMANCE
Noise Density Xour, Your 280 ug/Hz rms
Noise Density Zour 350 ug/Hz rms
FREQUENCY RESPONSE?
Bandwidth Xour, Your No external filter 1600 Hz
Bandwidth Zour No external filter 550 Hz
Rrir Tolerance 32+15% k(2
Sensor Resonant Frequency 55 kHz

—— e ——r——

Design Issues with Sensors

Calibration
Relating measurements to the physical phenomenon
Can dramatically increase manufacturing costs
Nonlinearity
Measurements may not be proportional to physical phenomenon
Correction may be required
Feedback can be used to keep operating point in the linear region
Sampling
Aliasing
Missed events
Noise
Analog signal conditioning
Digital filtering
Introduces latency
Failures
Redundancy (sensor fusion problem)
Attacks (e.g. Stuxnet attack)

Faults in Sensors

Sensors are physical devices

Like all physical devices, they suffer wear and tear, and
can have manufacturing defects

Cannot assume that all sensors on a system will work
correctly at all times

Solution: Use redundancy
— However, must be careful how you use it!

EECS 149/249A, UC Berkeley: 26

Violent Pitching of Qantas Flight 72 (VH-QPA)

An Airbus A330 en-route from Singapore to Perth on 7
October 2008

« Started pitching violently, unrestrained passengers hit
the celling, 12 serious injuries, so counts it as an
accident.

* Three Angle Of Attack (AOA)
sensors, one on left (#1),
two on right (#2, #3) of nose.

 Have to deal with inaccuracies,
different positions, gusts/spikes,
failures.

[Rushby, 2002]

A330 AOA Sensor Processing

a2 Sampled at 20Hz
Compare each sensor to the median of the three

a If difference is larger than some threshold for more than 1
second, flag as faulty and ignore for remainder of flight

a Assuming all three are OK, use mean of #1 and #2 (because
they are on different sides)

a If the difference between #1 or #2 and the median is larger than
some (presumably smaller) threshold, use previous average
value for 1.2 seconds

a Failure scenario: two spikes in #1, first shorter than 1 second,
second still present 1.2 seconds after detection of first

o Result: flight control computers commanding a nose-down
aircraft movement, which resulted in the aircraft pitching down to
a maximum of about 8.5 degrees

D

[Rushby, 2002] EECS 149/249A, UC Berkeley: 28

How to deal with Sensor Errors

Difficult Problem, still research to be done
Possible approach: Intelligent sensor communicates an

interval, not a point value
 Width of interval indicates confidence, health of sensor

[Rushby, 2002] EECS 149/249A, UC Berkeley: 29

Sensor Fusion: Marzullo’s Algorithm

a Axiom: if sensor is non-faulty, its interval contains the true
value

a Observation: true value must be in overlap of non-faulty
intervals

a Consensus (fused) Interval to tolerate f faults in n:
Choose interval that contains all overlaps of n - f; i.e., from

least value contained in n — f intervals to largest value
containedinn — f

[Rushby, 2002] EECS 149/249A, UC Berkeley: 30

Example: Four sensors, at most one faulty

S
1

S
"2

S |
S

31
>

[
<

~w;m

Probable value

. Interval reports range of possible values.
. Of S1 and S4, one must be faulty.
. Of S3 and S4, one must be faulty.

- Therefore, S4 is faulty.
. Sound estimate is the overlap of the remaining three.

[Rushby, 2002] EECS 149/249A, UC Berkeley: 31

Example: Four sensors, at most one faulty

NI

W wm

27

A
Y
>~ w!m

27

. Suppose S4’'s reading moves to the left
- Which interval should we pick?

[Rushby, 2002] EECS 149/249A, UC Berkeley: 32

Example: Four sensors, at most one faulty

N

Wl wm

-
Y.

] __-;_&,_)______________________

consensus

Marzullo’s algorithm picks the smallest interval that is
sure to contain the true value, under the assumption

that at most one sensor failed.
But this yields big discontinuities. Jumps!

[Rushby, 2002] EECS 149/249A, UC Berkeley: 33

Schmid and Schossmaier’s Fusion Method

a Recall: n sensors, at most f faulty

a Choose interval from f+1° largest lower bound to f+1*
smallest upper bound

a Optimal among selections that satisfy continuity
conditions.

[Rushby, 2002] EECS 149/249A, UC Berkeley: 34

Example: Four sensors, at most one faulty

N

W wm

Sl K02/

5"
Y

consensus

- Assuming at most one faulty, Schmid and
Schossmaier’'s method choose the interval between:

Second largest lower bound
Second smallest upper bound
This preserves continuity, but not soundness

[Rushby, 2002] EECS 149/249A, UC Berkeley: 35

Motor Controllers

Bionic hand from Touch Bionics
costs $18,500, has and five DC
motors, can grab a paper cup
without crushing it, and turn a
key in a lock. It is controlled by
nerve impulses of the user’s arm,
combined with autonomous
control to adapt to the shape of
whatever it is grasping. Source:
IEEE Spectrum, Oct. 2007.

EECS 149/249A, UC Berkeley: 36

x10° Angular Velocity
I I 1 1 I 1 1

Pulse-Width ool
Modulation (PWM) &2
os
Delivering power to) 80 0z o4 06 08 10 12 1471418 20
actuators can be e
challenging. If the ol
device tolerates rapid Sl
on-off controls (“bang- =
bang” control), then g o 25 i e o
delivering power —
becomes much easier. Nl 1] i

1 1 1 1 1 1 1 1
0.2540 02545 02550 02555 02580 02565 02570 02575

Duty cycle around 10% —

EECS 149/249A, UC Berkeley: 37

Model of a Motor

electrgri(;kgnetlc
Electrical Model: f°“7/°”3ta”tAngularvelocuty
di(t
v(t) = Ri(t)+ L () - kpw(t)

dt

Mechanical Model (angular version of Newton’s second
law):

dw(t
I u;i) = k7i(t) — nw(t) — 7(t)
/ A
Mgmetpt of Torqtuet Friction tlc;?qaude

EECS 149/249A, UC Berkeley: 38

Summary for Lecture

a Overview of Sensors and Actuators
a How Accelerometers work

a Affine Model of Sensors

a Bias and Sensitivity

a Faults in Sensors

a Brief Overview of Actuators

EECS 149/249A, UC Berkeley: 39

Extra Slides Follow

EECS 149/249A, UC Berkeley: 40

Strain Gauges

. fﬁ

"o

Mechanical strain gauge used to measure the
growth of a crack in a masonry foundation. This
one is installed on the Hudson-Athens
Lighthouse. Photo by Roy Smith, used with
permission.

Images from the Wikipedia EECS 149/249A, UC Berkeley: 41
Commons

Noise & Signal Conditioning

Parsevals theorem relates the energy or the power in

a signal in the time and frequency domains. For a
finite energy signal z, the energy is

>0

/(t))2dt = /m

—

)2 dw

where X Is the Fourier transform. If there is a desired
part x4 and an undesired part (noise) x,,,

x(t) = xq(t) + x,(t)
then
X(w)=Xy(w)+ X, (w)
Suppose that x4 is a narrowband signal and =z, is

a broadband signal. Then the signal to noise ratio
(SNR) can be greatly improved with filtering.

Example:

/2Xd(w)
/X, (W)
W
Filter: J
A (w)
LW
Filtered signal:
/Xd(w)F(w)
/X (W) F(w)
W

A full treatement of
this requires
random processes.

EECS 149/249A, UC Berkeley: 42

References

John Rushby, “Formal Verification of Marzullo’s Sensor
Fusion Interval,” CSL Technical Report, January 2002,
SRI International, Menlo Park, CA.

http://www.csl.sri.com/users/rushby/papers/sensors.pdf

EECS 149/249A, UC Berkeley: 43

Embedded Processors

Ch8
Dheya Mustafa

Microprocessor

A microprocessor is a single VLS| chip having a
CPU. In addition, it may also have other units
such as caches, floating point processing
arithmetic unit, and pipelining units that help
in faster processing of instructions.

Earlier generation microprocessors’ fetch-and-
execute cycle was guided by a clock frequency
of order of ~1 MHz. Processors now operate at

a clock frequency of 2GHz

microcontroller

A microcontroller (uC) is a small computer on -
a single integrated circuit consisting of a
relatively simple central processing unit (CPU)
combined with peripheral devices such as
memories, 1/O devices, and timers.

Microcontrollers are particularly used in
embedded systems for real-time control
applications with on-chip program memory
and devices.

Microprocessor Microcontroller

Microprocessors are multitasking in nature. Can perform Single task oriented. For example, a washing machine is
multiple tasks at a time. For example, on computer we designed for washing clothes only.
can play music while writing text in text editor.

RAM, ROM, I/0 Ports, and Timers can be added externally RAM, ROM, I/0O Ports, and Timers cannot be added
and can vary in numbers. externally. These components are to be embedded
together on a chip and are fixed in numbers.

Designers can decide the number of memory or I/O ports Fixed number for memory or I/O makes a microcontroller

needed. ideal for a limited but specific task.
External support of external memory and I/O ports makes Microcontrollers are lightweight and cheaper than a
a microprocessor-based system heavier and costlier. microprocessor.

External devices require more space and their power A microcontroller-based system consumes less power and
consumption is higher. takes less space.

DSP Processors

Processors designed specifically to support
numerically intensive signal processing
applications

DSP processors normally add an extra stage or
two that performs a multiplication, provide
separate ALUs for address calculation, and
provide a dual data memory for simultaneous
access to two operands (this latter design is
known as a Harvard architecture).

Multipy-add instruction ax+b

superscalar

The DSP processors handle the radio, speech, -
and media processing (audio, images, and
video). The other processors handle the user
interface, database functions, networking, and
downloadable applications. Specifically, the
OMAP4440 includes a 1 GHz dual-core ARM
Cortex processor, a c64x DSP, a GPU, and an
image signal processor

GPUS

A graphics processing unit (GPU) isa -
specialized processor designed especially to
perform the calculations required in graphics
rendering

Apply same .RGB pixel color: each is one byte
bit 640peration on several byte to utilize
Vector processor MMX .datapath

Von Neumann Architecture

Memory space

Program —| Instruction Decode
ROM
Data
< >
i Memory
Variable Ll | Interface lg—p
RAM Unit Processor
and Built-in
Registers
Stack
RAM

Harvard Architecture

The Harvard architecture offers separate
storage and signal buses for instructions and
data. This architecture has data storage
entirely contained within the CPU, and there is
no access to the instruction storage as data.
Computers have separate memory areas for
program instructions and data using internal
data buses, allowing simultaneous access to
both instructions and data.

Von-Neumann Architecture

Single memory to be shared by both code and data.

Processor needs to fetch code in a separate clock cycle

and data in another clock cycle. So it requires two clock

cycles.

Higher speed, thus less time consuming.

Simple in design.

Harvard Architecture

Separate memories for code and data.

Single clock cycle is sufficient, as separate buses are
used to access code and data.

Slower in speed, thus more time-consuming.

Complex in design.

CISC
Larger set of instructions. Easy to program

Simpler design of compiler, considering larger set of
instructions.

Many addressing modes causing complex instruction
formats.

Instruction length is variable.
Higher clock cycles per second.
Emphasis is on hardware.

Control unit implements large instruction set using
micro-program unit.

Slower execution, as instructions are to be read from
memory and decoded by the decoder unit.

Pipelining is not possible.

RISC
Smaller set of Instructions. Difficult to program.

Complex design of compiler.

Few addressing modes, fix instruction format.

Instruction length varies.
Low clock cycle per second.
Emphasis is on software.

Each instruction is to be executed by hardware.

Faster execution, as each instruction is to be executed
by hardware.

Pipelining of instructions is possible, considering single

clock cycle.

Introduction to
Embedded Systems

Edward A. Lee

UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

Chapter 9: Memory Architectures

Memory Architecture: Issues

o

o

Types of memory

volatile vs. non-volatile, SRAM vs. DRAM
Memory maps

Harvard architecture

Memory-mapped I/O
Memory organization

statically allocated
stacks

These issues loom
larger in embedded
systems than in
general-purpose
computing.

heaps (allocation, fragmentation, garbage collection)

The memory model of C
Memory hierarchies
scratchpads, caches, virtual memory)

Memory protection
segmented spaces

EECS 149/249A, UC Berkeley: 3

Non-Volatile Memory
Preserves contents when power is off

EPROM: erasable programmable read only memory

Invented by Dov Frohman of Intel in 1971
Erase by exposing the chip to strong UV light

- EEPROM: electrically erasable programmable read-only memory
Invented by George Perlegos at Intel in 1978

Flash memory
Invented by Dr. Fujio Masuoka at Toshiba around 1980
Erased a “block” at a time
Limited number of program/erase cycles (~ 100,000)
Controllers can get quite complex

Disk drives

Not as well suited for embedded systems

USB Drive

Images from the Wikimedia Commons 2 .

Volatile Memory
Loses contents when power is off.

SRAM: static random-access memory
Fast, deterministic access time
But more power hungry and less dense than DRAM
Used for caches, scratchpads, and small embedded memories

DRAM: dynamic random-access memory
Slower than SRAM
Access time depends on the sequence of addresses
Denser than SRAM (higher capacity)
Requires periodic refresh (typically every 64msec)
Typically used for main memory
Boot loader
On power up, transfers data from non-volatile to volatile memory.

EECS 149/249A, UC Berkeley: 5

Example:

Die of a
STM32F103VGT6
ARM Cortex-M3
microcontroller with
1 megabyte flash
memory by
STMicroelectronics.

Image from Wikimedia Commons

EECS 149/249A, UC Berkeley: 6

Memory Map
of an ARM

Cortex™ - M3
architecture

Defines the
mapping of
addresses to
physical memory.

Note that this does
not define how
much physical
memory there is!

A

peripherals

private peripheral bus

external devices
(memory mapped)

data memory
(DRAM)

peripherals
(memory-mapped registers)

data memory
(SRAM)

program memory
(flash)

OxEFEFFFEFEFE

OxE0000000
O0xDFFFFFEF

O0xA0000000 }
O0x9FFFFEEE

O0x60000000 }
OX5FFFFFFF}

0x40000000
O0%x3EFFFFEE

0x20000000
0x1FFFFFEF

0x00000000

0.5GB

1.0GB

1.0GB

05GB 05GB 0.5GB

Another Example: AVR

|
N h
The AVR is an 8-bit single chip microcontroller first developed
by Atmel in 1997. The AVR was one of the first microcontroller
families to use on-chip flash memory for program storage. It

has a modified Harvard architecture.l

AVR was conceived by two students at the Norwegian
Institute of Technology (NTH) Alf-Egil Bogen and Vegard
Wollan, who approached Atmel in Silicon Valley to produce it.

1 A Harvard architecture uses separate memory spaces for program and data. It
originated with the Harvard Mark | relay-based computer (used during World War
II), which stored the program on punched tape (24 bits wide) and the data in

electro-mechanical counters. EECS 149/249A, UC Berkeley: 8

A Use of AVR: Arduino

Arduino is a family of open-source hardware boards built
around either 8-bit AVR processors or 32-bit ARM
Processors.

MADE IN
ITALY .\\

PQZA..

Example: — "
Atmel AVR " s Z .".:»
Atmega328 ___&_ f h‘."'

28-pin DIP on an
Arduino Duemilanove
board e @ o s @

Image from Wikimedia Commons EECS 149/249A, UC Berkeley: 9

.......

Open-Source [
Hardware and @
the maker
movement

Massimo Banzi, founder of the Arduino project at
lvrea, Italy, and Limor Fried, owner and founder
of Adafruit, showing one of the first board Arduino
Uno from the production lines of Adafruit.

[http://www.open-electronics.org]
EECS 149/249A, UC Berkeley: 10

Another example use
of an AVR processor.

ry
ﬂa‘w.... ‘C
Jm s
,}" ~ .hq_ "" ‘..‘2
u,..cn - 17 8 otk

IRobot Create
Command Module

Atmel ATMega 168
Microcontroller

ATMega 168: An 8-bit microcontroller
with 16-bit addresses

Data Bus 8-bit

, AVR microcontroller
Program Status . .
i Counter [*] | _and Contol [+ architecture used in
Memory - .
— IRobot command
£ > 32x8 < Unit
Instruction General m O d U Ie .
Register Purpose s 3P|
R Registrers “«> Unit
y
Instruction b Watchd
Decoder - y % y < T?mer °g . .]
] 2l 4 Why is it called an 8-bit
- ALU N Analog .
Control Lines § § Comparator MICIroco ntr0| |er’>
s °
g =
= E «> /0 Module1
Data =
SRAM <> /O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Reqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F .
WV&F@_ 0x0060 - 0xO0FF IO Lines [«

— | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 12

ATMegal68 Memory Architecture

An 8-bit microcontroller with 16-bit addresses

Data Bus 8-bit

iRobot <€ “Q I "
command : The “8-bit data” is why
™~\] Program . Status . . “« .
module has Program [+) __Counter and Control [~ this is called an “8-bit
Memory -« . ”
16K bytes - — microcontroller.
flash memory o > S?”:g') Unit
(1 4’336 Register P Regrgzseers p— LSJEIIt
available for e
the user Decoder . , | fes] Watchdog
P £ N
program. ! 5 -
: 8 5 < Analog
Includes Control Lines 3 2 Comparator
interrupt g & Sditional 16 on th
vectors and 3 = < I M oModuer | A |t|0naa| C(I)nl t. €
boot loader.) V. command module:
\ Dea > UOModue2 | * Two 8-bit timer/counters
1 k bytes RAM * One 16-bit timer/counter
5 “~—" || womesen| « 6 PWM channels
ata Memory EEPROM |« 3-ch | bi
32 Registers 0x0000 - 0x001F * o-C ann_e’ 10-bit ADC
64 1/0 Registers | 0x0020 - 0x005F e One serial UART
WEKI?&FBQ._ 0x0060 - OxO0FF Olines b : .
| ox0100 + 2-wire serial interface
Internal SRAM \
(512/1024/1024 x 8)
Ox02FF/0X04FF/OX04FF 5orce: ATmegal68 Reference Manual EECS 149/249A, UC Berkeley: 13

Memory Organization for Programs

Statically-allocated memory

Compiler chooses the address at which to store a
variable.

Stack

Dynamically allocated memory with a Last-in, First-out
(LIFO) strategy

Heap
Dynamically allocated memory

EECS 149/249A, UC Berkeley: 15

Statically-Allocated Memory in C

char x;
int main (void) {
x = 0x20;

Compiler chooses what address to use for x, and the variable
Is accessible across procedures. The variable’s lifetime is the
total duration of the program execution.

EECS 149/249A, UC Berkeley: 16

Statically-Allocated Memory with Limited Scope

vold foo(void) {
static char x;
x = 0x20;

Compiler chooses what address to use for x, but the variable
IS meant to be accessible only in foo(). The variable’s lifetime
IS the total duration of the program execution (values persist

across calls to foo()).

EECS 149/249A, UC Berkeley: 17

Variables on the Stack
(“automatic variables™)

Data Memory
32 Reqisters 0x0000 - Ox001F

64 1/0 Registers | 0x0020 - Ox005F
muﬂ‘nag— 0x0060 - 0x00FF

void foo (void) { R 00100
P AR stack
char x ; 0x02FF/0x04FF/0x04FF
x = 0x20; As nested procedures get called, the
stack pointer moves to lower memory
addresses. When these procedures,
} return, the pointer moves up.

When the procedure is called, x is assigned an address on the
stack (by decrementing the stack pointer). When the
procedure returns, the memory is freed (by incrementing the
stack pointer). The variable persists only for the duration of

the call to foo().
O EECS 149/249A, UC Berkeley: 18

Question 1

< Data Bus 8-bit
, What is meant by the
Program Status . .
e B Counter [| andContol [« following C code:
Memory -
Interrupt
4 > 32x8 < Unit
Instruction General .
Register Purpose [© 3Pl char x ’
B Registrers > Unit
—— ~ vold foo (void) {
I atchdog
Decoder - 4 N 4 I Timer
2l & x = 0x20;
é § ALU gl Analog
Control Lines 3 2 Comparator
g %
a = <« |10 Module1 }
Data 2
SRAM <> 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
mﬂgﬁ_ 0x0060 - 0xO0FF /O Lines >

— | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 19

Answer 1

< Data Bus 8-bit
y
Program Status
pﬂagf:m Counter [and Control |
Memory -
Interrupt
- 32x8 ~ Unit
Instruction General
Register Purpose s 3P|
B Registrers > Unit
y
Instruction
Decoder - ! ’ < V\%r;cgrdog
£ e il
l g § ALU | gtet Analog
Control Lines = Comparator
E <
g %
£ 35
2 = “—>| /O Module1
Data
SRAM < 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
B0 B0 Rag | 0x0060 - 0x00FF 1O Lines
_ — | 0x0100 v
Internal SRAM
(512/1024/1024 x 8)
Ox02FF/0x04FF/Ox04FF

What is meant by the
following C code:

char x;
void foo(void) {

x = 0x20;

An 8-bit quantity (hex 0x20) is
stored at an address in statically
allocated memory in internal RAM
determined by the compiler.

EECS 149/249A, UC Berkeley: 20

Question 2

< Data Bus 8-bit
, What is meant by the
Program Status . .
e B Counter [| andContol [« following C code:
Memory -
Interrupt
4 > 32x8 < Unit
Instruction General * .
Register Purpose [© 3Pl char Xy
B Registrers > Unit
—— ~ vold foo (void) {
I atchdog
Decoder - 4 N 4 I Timer
2l & x = 0x20;
é § ALU gl Analog
Control Lines 3 2 Comparator
g %
a = <« |10 Module1 }
Data 2
SRAM <> 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
mﬂgﬁ_ 0x0060 - 0xO0FF /O Lines >

— | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 21

Answer 2

< Data Bus 8-bit
y
Program Status
pﬂagf:m Counter [and Control |
Memory -
Interrupt
- 32x8 ~ Unit
Instruction General
Register Purpose s 3P|
B Registrers > Unit
y
Instruction
Decoder - ! ’ < V\%r;cgrdog
£ e il
l g § ALU | gtet Analog
Control Lines = Comparator
E <
g %
£ 35
2 = “—>| /O Module1
Data
SRAM < 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
B0 B0 Rag | 0x0060 - 0x00FF 1O Lines
_ — | 0x0100 v
Internal SRAM
(512/1024/1024 x 8)
Ox02FF/0x04FF/Ox04FF

What is meant by the
following C code:

char *x;
void foo (void) {

x = 0x20;

An 16-bit quantity (hex 0x0020) is
stored at an address in statically
allocated memory in internal RAM
determined by the compiler.

EECS 149/249A, UC Berkeley: 22

Question 3

< Data Bus 8-bit
, What is meant by the
Program Status . .
e B Counter [| andContol [« following C code:
Memory -
Interrupt
- > 32x8 ~ Unit
Instruction General * .
Register Purpose [© 3Pl char Xy, Vr
B Registrers > Unit
— vold foo (void) {
nstruction 1 Watchdog
Decoder - 4 N 4 I Timer
l 2§ x = 0x20;
g § ALU] Analog
Control Lines 3 E Comparator y — % X;
Q @
g E “—> /O Module1
Data 2 }
SRAM <> 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
mﬂgﬁ_ 0x0060 - 0xO0FF /O Lines >

— | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 23

Answer 3

< Data Bus 8-bit
y
Program Status
pﬂagf:m Counter [and Control |
Memory -
Interrupt
- 32x8 ~ Unit
Instruction General
Register Purpose s 3P|
B Registrers > Unit
y
Instruction
Decoder - ! ’ < V\%r;cgrdog
2 & g
l g § ALU | gtet Analog
Control Lines = Comparator
E <
g %
£ 35
2 = “>| /O Module1
Data
SRAM < 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
B0 B0 Rag | 0x0060 - 0x00FF 1O Lines
_ — | 0x0100 v
Internal SRAM
(512/1024/1024 x 8)
Ox02FF/0x04FF/Ox04FF

What is meant by the
following C code:

char *x, vy;
void foo (void) {
0x20;

X:

y:

}

The 8-bit quantity in the 1/0
register at location 0x20 is loaded
into y, which is at a location in
internal SRAM determined by the
compiler.

EECS 149/249A, UC Berkeley: 24

Question 4

char foo () {

< Data Bus 8-bit char *x, vy;
y —_ °
Flash Program | Status x = 0x20 ’
Progfam Counter and Control |
Memory < y = * Xy
i 328 Interrupt
> X ~ Unit o
Instruction General = re tU. rn y ’
Register Purpose B 3P|
R Registrers “«> Unit }
y
Instruction
Decoder - 4 4 il V\#r;cgrd - C h ar z;
2 g el
l g & ALU [Anakg int main (void) {
Control Lines g 2 Comparator
g £ z = fool();
- =)
a = “—>1 /0 Module1
Data 2
SRAM <> 1/O Module 2 }
<« /O Module n
Data Memory EEPROM |« h] "
32 Reqisters 0x0000 - Ox001F W ere are X1 y1 Z 1N memory .
64 I/O Registers | 0x0020 - Ox005F .
WE-X—K_V&W 0x0060 - 0x00FF /O Lines [«

~ | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 25

Answer 4

char foo () {

Data Bus 8-bit char *x, vy;
< 14
' x = 0x20;
Flash Program "3 Status <> ’r
Program Counter and Control
Memory < y = * Xy
' 2248 Interrppt
Instruction = General e re t urn y ’r
Register Purpose [* SP
< Registrers «> Unit }
y el I <> Wetchdog char z;
= ﬁ .) .
l_ g & ALU [Anakg int main (void) {
Control Lines 3 2 Comparator
5 § z = fool();
a = <> /O Module1
s%i\t?w e /0 Module 2 }
—{ omeaien [X OCCUpIES 2 bytes on the
Data Memory EEPROM |« .
32 Reqisters 0x0000 - Ox001F StaCk’ y occu pIeS 1 byte on
62 O Regiters _] 0x0020 - 0x005F — the stack, and z occupies 1
B 00100 / byte in static memory.
(512/1024/1024 x 8)
0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 26

Question 5

< Data Bus 8-bit
, What is meant by the
Program Status . .
e B Counter [| andContol [« following C code:
Memory -
Interrupt
4 > 32x8 < Unit
Instruction General : :
Register Pupose [* = volid foo (void) {
B Registrers > Unit
L * .
Instruction I Watchdog C h ar X 14 y I4
Decoder - 4 N 4 I Timer
g X = &y
w
g § ALU gl Analog
Control Lines 3 2 Comparator * X = O X 2 O ’.
Pt °
[
g E “—> /O Module1
Data 2 }
SRAM <> 1/O Module 2
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
mﬂgﬁ_ 0x0060 - 0xO0FF /O Lines >

— | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 27

Answer 5

< Data Bus 8-bit
y
Program Status
pﬂagf:m Counter [and Control |
Memory -
Interrupt
- 32x8 ~ Unit
Instruction General
Register Purpose s 3P|
R Registrers “«> Unit
y
Instruction
Decoder - ! ’ < V\%r;cgrdog
£ e il
l g § ALU | gtet Analog
Control Lines 3 < Comparator
g %
£ 35
2 = “—>| /O Module1
Data /0 Module 2
SRAM -
<« /O Module n
Data Memory EEPROM |«
32 Regqisters 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F . :
B0 B0 Rag | 0x0060 - 0x00FF 1O Lines
_ — | 0x0100 v
Internal SRAM
(512/1024/1024 x 8)
Ox02FF/0x04FF/Ox04FF

What is meant by the
following C code:

void foo(void) {

char *x, vy;
X = &y;
*x = 0x20;

}

16 bits for x and 8 bits for y are
allocated on the stack, then x is
loaded with the address of y, and
then y is loaded with the 8-bit
quantity 0x20.

EECS 149/249A, UC Berkeley: 28

What goes into z in the
Question 6 following program:

char foo () {

< Data Bus 8-bit
r char vy;
Program Status
Flash o= > .
i Counter and Control ulin t 1 6 t X7
Memory - _
: J 32x8 P A i x = 0x20;
Instruction g:neral
Reqgister rpose S _ .
< Registrers «> Ssult y = * Xy
y
Instruction I Watchd return ;
Decoder - i y < Tiner °g y ’
l E § ALU i Analog
Control Lines 3 2 Comparator
5| B char z;
£ 5
0 E S o . . 1
V) Morkse? int main (void) {
Data 2 z = fool();
G «> /O Module 2 () ;
<« /O Module n
Data Memory EEPROM |« }
32 Registers 0x0000 - Ox001F
64 I/O Registers | 0x0020 - Ox005F . :
WV&F@_ 0x0060 - 0xO0FF /O Lines >

— | 0x0100 v

Internal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 29

What goes into z in the
Answer 6 following program:

char foo () {

< Data Bus 8-bit
, char vy;
P Statu
b Counter [| andContol [uintlé t x;
Memory - —
' o 32xs < ot x = 0x20;
Instruction g:neral
R & B — .
egister 4 Regfigzzers e Szlt y — x X;
Instructi y
ns cneorn - i : < V\#r;cgrdog returl’l y,
l 2§ e }
g = ALU PR Analog
Control Lines 2 Comparator
% % char z;
Bl “] VO Modulet int main (void) {
Data 2 = ;
Dot ey /O Module 2 Z foo();
<« /O Module n
Data Memory EEPROM |« }
32 Regqisters 0x0000 - Ox001F
64 1/0 Regist 0x0020 - Ox005F)
mﬁgﬁ%:__ Bies i UOLines > Zis Ioaded_wnh the 8-b.|t quantity in
0x0100 \ the I/O register at location 0x20.
Internal SRAM
(512/1024/1024 x 8)
0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 30

Quiz: Find the flaw In this program

(begin by thinking about where each variable is allocated)

int x = 2;

int* foo (int y) {
int z;
z =y * xX;

return &z;

int main(void) {

int* result = foo (10);

EECS 149/249A, UC Berkeley: 31

Solution: Find the flaw In this program

statically allocated: compiler assigns a memory location.
arguments on the stack
int z;

automatic variables on the stack

return &z;

int main (void)
int* result foo (10) ; program counter, argument 10,
and z go on the stack (and
possibly more, depending on the
} compiler).

The procedure foo() returns a pointer to a variable
on the stack. What if another procedure call (or
interrupt) occurs before the returned pointer is
de-referenced?
EECS 149/249A, UC Berkeley: 32

Watch out for Recursion!!
Quiz: What is the Final Value of z?

Data Bus 8-bit VOld foo (ull’lth_t X)
ra Status
r |" | and Control I'_. Char y;
g | - T y = *x%;
i Rpeugri[s)?r?rs ’
g if (x > 0x100) {
%
b N/ foo(x - 1);
|
1 s o=
char z;
1/0 Lines ' '
y void main (..) {
z = 0x10;

foo (0x04FF) ;

Data Memory

32 Reqisters 0x0000 - Ox001F

64 1/0 Registers | 0x0020 - 0x005F
B0 Reg | 0+0060 - 0x00FF }
| 0x0100

__Intemal SRAM
(512/1024/1024 x 8)

0x02FF/0x04FF/0x04FF EECS 149/249A, UC Berkeley: 33

Data Memory
32 Regqisters 0x0000 - Ox001F

Dynamically-Allocated Memory || oooo- oo

| 0x0100

The Heap (15034024

0x02FF/0x04FF/Ox04FF

An operating system typically offers a way to dynamically
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many
problems with embedded systems:

o Memory leaks (allocated memory is never freed)
o Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection™) often require
stopping everything and reorganizing the allocated memory.
This is deadly for real-time programs.

EECS 149/249A, UC Berkeley: 34

Memory Hierarchies

Memory hierarchy

Cache:
A subset of memory addresses is mapped to SRAM
Accessing an address not in SRAM results in cache miss
A miss is handled by copying contents of DRAM to SRAM
Scratchpad:
SRAM and DRAM occupy disjoint regions of memory space
Software manages what is stored where

- Segmentation

Logical addresses are mapped to a subset of physical addresses
Permissions regulate which tasks can access which memory

EECS 149/249A, UC Berkeley: 35

Memory Hierarchy

registers

register address fits SRAM DRAM
within one
instruction word

Here, the cache or scratchpad, main memory, and disk or

flash share the same address space.
EECS 149/249A, UC Berkeley: 36

Memory Hierarchy

registers

register address
fits within one
instruction word

SRAM

DRAM

Here, each distinct
piece of memory
hardware has its own
segment of the
address space.

This requires more
careful software
design, but gives
more direct control
over timing.

EECS 149/249A, UC Berkeley: 37

Direct-Mapped

1valid bit ttag bits B = 2P bytes per block

Set O Valid Tag Block
Cache
A “set” consists of one “line”
v
» Set 1 Valid Tag Block
t bits S bits b bits
Tag Set index | Block offset
m-1 0
Address
If the tag of the address Set S Valid Tag Block
matches the tag of the line, then
we have a “cache hit.”
Otherwise, the fetch goes to
main memory, updating the line. CACHE

EECS 149/249A, UC Berkeley: 38

.. 1valid bit ttag bits B = 2P bytes per block
Set-Associative
Valid Tag Block
Cache
Set 0
A “set” consists of Valid Tag Block
several “lines”
v
Valid Tag Block
» Set 1
Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset
m-1 0
Address
Tag matching is done using an Valid Tag Block
“associative memory” or Set S
“content-addressable memory.” Valid Tag Block
CACHE

EECS 149/249A, UC Berkeley: 39

.. 1valid bit ttag bits B = 2P bytes per block
Set-Assoclative
Valid Tag Block
Cache
Set 0
A “set” consists of Valid Tag Block
several “lines”
v
Valid Tag Block
» Set 1
Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset
m-1 0
Address
A “cache miss” requires a Valid Tag Block
replacement policy (like Set S C
LRU or FIFO). Valid Tag Block
CACHE

EECS 149/249A, UC Berkeley: 40

Your Lab Hardware
(2014 - 2016)

myRIO 1950/1900
(National Instruments)

Xilinx Zynq Z-7010 ViTuineins

. ARM Cortex-A9 MPCore dual core processor
Real-time Linux

- Xilinx Artix-7 FPGA

Preconfigured with a 32-bit MicroBlaze
microprocessor running without an
operating system (“bare metal”).

EECS 149/249A, UC Berkeley: 41

Xilinx Zyng

Dual-core
ARM
processor
+ FPGA
+ rich 1/O

on a single
chip.

Processing System

Static Memory Controller

AMBA

2
. 5P .
I

IJLI oS Moo Tace
.é%. L L —

artes-AY MPCore™

"““ UART . 32/32¥B1/D Caches
6Pi0

. 2x SDI0 .

with DMA

2x USB
with DMA

2x Gigk
with DMA

SysMaon/ADC

Muiti Standards 105 (3.3V & High Speed 1.8Y)

32/3208 170 Caches

Dynamic Memary Controller
DORZ, DDR3, LPODRZ

Cortex-AS MPGore™

Multi Standards 10s (3.3V & High Speed 1.8V)

Multi Gigabit Transceivers

EECS 149/249A, UC Berkeley: 42

Microblaze 1/O Architecture

Source:
Xilinx

Instruction-side

bus interface

Data-side
bus interface

M_AXI_IC \:>

IXCL_M <
IXCL_S E>

IPLB

888

K = e

Memory Management Unit (MMU)

UTLB

DTLB

_l\
_l/

1

ft

{}

5 %
5 N
e Program v ALU
Counter ya
i Shift
Special N
Purpose :
@ Registers |\| Barrel Shift
EELEL | | Multipier
Target { }
Cache Divider
N
Bus /1 FPU
IF
—N] Instruction SN
—| Buffer |/ _ { } { }
Instruction
Decode
- N| Register File
—/ 32 X 32b
Optional MicroBlaze feature

Figure

o b

ayoen-g

Bus

<. M_AXI DP >
< DPLB >
K DLMB >

MO_AXIS..
M15_AXIS

S0_AXIS..
S15_AXIS

MFSL 0..15 or
DWFSL 0..15

SFSL 0..15 or

DRFSL 0..15

2-1:

MicroBlaze Core Block Diagram

EECS 149/249A, UC Berkeley: 43

Berkeley Microblaze
Personality Memory Map

A

\ -
g MEMORY
BRAM
J

ADC
Subsystem

Debugger

Interrupt
controller

OXFFFFFFFF

Unmapped Area

OXC220FFFF
ADC subsystem

Unmapped Area

0xC2200000
OX8440FFFF

Debugger

0x84400000
Unmapped Area

A IS

Unmapped Area

Timer

Unmapped Area

Interrupt controller

Unmapped Area

Memory for
Instructions and Data

EECS 149/249A, UC Berkeley: 45

Conclusion

Understanding memory architectures is essential to
programming embedded systems.

EECS 149/249A, UC Berkeley: 46

Hardware/Software Codesign

Tajana Simunic Rosing
Department of Computer Science and Engineering
University of California, San Diego.

"
ES Design

Hardware components Hardware

W
Estimation - /o
Exploration

HII

Software Components E

Verification and Validation

ES Application Classes
Class Application Processor Requirements

Data flow laser printers, X- R4600, 1960, Processes data and
terminals, routers, 29k, Coldfire, — ya55e5 it on. High
. ; PPC (403, 605) .
bridges, image memory bw, high

processing throughput.
Interactive set-top boxes, video R3900, Interactive, low
video & games, PDAs, portable gggOR/RﬁOO/ % cost, low power,
portable Info appliances Bxx/ 7%x. V851, high throughput.
SH1/ 2/ 3
Classic controllers, disk Piranha, ARM, mix of CPU power,
embedded controllers, MIPS, Cores Jow cost, low
automotive, industrial power, peripherals

control

Time-constrained computing systems.

"
System Design Problem Areas

2. HDL Modeling
1. Design environment, co-simulation Architectural synthesis

constraint analysis. Logic synthesis

Physical synthesis
\\ Interface Analog I/0 Ve

= i
N

1| 3. Software synthesis,

Optimization,

ASIC Retarge.table code gen.,
Debugging &
Programming environ.

e

N

N\

Processor

Interface

4. Test Issues

DMA

"
System Architecture: Yesterday
PCB design

Add-in board
Processor —I
Cache/DRAM —I
Controller DRAM F IRt
|

Graphics I

L

~ ISA/EISA

External

" S
A System Architecture: Today
HW/SW Codesign of a SoC

PCI Interface @
3
VRAM =
DSP =
Processor || —
Processor Glue Glue
Core _ Core g
S
@ g Video
3 S{oR]
f
= MEMORY
Z
< Cache/SRAM
]
EISA Interface

" I
HW-centric view of a Platform

Pre-Qualified/Verified HW-SW Kernel + Reference Design
Foundation-IP*

— —p

Hardware IP

Scaleable
bus, test, power, 10,
clock, timing architectures

Processor(s), RTOS(es)
and SW architecture

Reconfigurable Hardware Region
(FPGA, LPGA, ..))

ogrammable

IP can be:

* HW or SW Foundry-Specific ~ SW architecture
* hard, soft or ‘firm’ (HW) HW Quialification characterisation
* source or object (SW)

" SN
SW-Centric View of Platforms

Platform API

Application Software

Software Platform

| Input devices

4

Device Drivers

Network
Communication

HW/SW Codesign: Motivations

m Benefit from both HW and SW

HW:

» Parallelism -> better performance, lower power
= Higher implementation cost

SW

m Sequential implementation -> great for some
problems

= Lower implementation cost, but often slower and
higher power

e
\
f partitioning
compilation HW-synthesis
=1 simulation <

mDecision based on hardware/ software partitioning,

"
Hardware/software codesign

T <22765ns
4.. s s 1 e e e PR —— - 4

fet1 FO—0+q fet3 -0

Specification : A
204 A
Mapping /

Processor Processor
Pl P2 Hardware

| | I

i

fctb H0—0+ 0

" A
System Partitioning

process (a, b, ¢) Line ()
in port a, b; {
out port c; a=... .
{ .,
read(a); detach
} —
write(c);
}

Good partitioning mechanism:

1) Minimize communication across bus

2) Allows parallelism -> both HW & CPU
operating concurrently

3) Near peak processor utilization at all times

"
Determining Communication Level

Send, Receive, Wait

Application .
Application
P
rogram hardware
Operating (custom)
System

Register reads/writes
I/O driver ¢ _ > I/O driver
Interrupt service
Bus transactions
I/O bus ¢ > I/O bus
Interrupts

Easier to program at application level
» (send, receive, wait) but difficult to predict

More difficult to specify at low level

m Difficult to extract from program but timing and
resources easier to predict

"
Partitioning Costs

m Software Resources
Performance and power consumption
Lines of code — development and testing cost
Cost of components

m Hardware Resources
~iIxed number of gates, limited memory & 1/O

Difficult to estimate timing for custom
nardware

Recent design shift towards IP
= Well-defined resource and timing characteristics

" A
Software

Cost
Analysis

Calibration =——

Process pteowese_ |

Functional
Blocks

'

Feature
Points

v

Source Lines of
Code (SLOC)

— Software
! development effort

Equivalent SLOC
including reuse

maintenance effort

I
I
I
I
> Software I
I
I
___, Software schedule :

Development and
Testing Cost

Hardware
Cost
Analysis
Process

Gate Count S/G Ratio

Count
Rent’'s Rule —>

Single-Chip-
Package Cost
Feature Size
Interconnect ¢
Cenatn |~ Core ava]

1/0 Format

Die Area

Wafer Fabrication
and Sawing Cost

WETED
Characteristics

Chip Hardware
Cost

Tooling Cost
Test Development Cost

Productivity, reuse

" S
Hardware/Software Partitioning

Simple architectural model: CPU + 1 or more ASICs on a bus

Processor

m Properties of classic partitioning algorithms
Single rate; Single-thread: CPU waits for ASIC
Type of CPU is known; ASIC is synthesized

"
HW/SW Partitioning Styles

BMHW first approach

start with all-ASIC solution which satisfies
constraints

migrate functions to software to reduce cost

WS\ first approach

start with all-software solution which does not
satisfy constraints

migrate functions to hardware to meet
constraints

"
Partitioning - ILP

Ingredients:

- Involving linear expressions of integer
= Cost function } variables from a set X

m Constraints

Cost function C =) ax witha eR,x; € IV (1)

XiEX

Constraints:Vj e J:) b, X; = ¢, withb,

1,]?

c,c R (2)

XiEX

Def.: The problem of minimizing (1) subject to the constraints (2) is called
an integer programming (IP) problem.

If all x; are constrained to be either O or 1, the IP problem said to be a 0/1
Integer programming problem.

" A
FAQ on integer programming

» Maximizing the cost done by setting C=-C
= Integer programming is NP-complete.
Running times increase exponentially with problem size

Commercial solvers can solve for thousands of variables

« IP models are a good starting point for modelling
even If In the end heuristics have to be used to
solve them.

" A
IP model for HW/SW partitioning

«Notation:
«Index set | denotes task graph nodes.

«Index set L denotes task graph node types
e.g. square root, DCT or FFT

«Index set KH denotes hardware component types.
e.g. hardware components for the DCT or the FFT.

«Index set J of hardware component instances

«Index set KP denotes processors.
All processors are assumed to be of the same type

=T is a mapping from task graph nodes to their types
T. 1 -L

Therefore:

X; . =1 if node v; is mapped to HW component type k € KH
Y, . =1 if node v; is mapped to processor k € KP
NY . =11if at least one node of type ¢ is mapped to processor k € KP

" A
Constraints

«Operation assignment constraints

Viel: > X+ DY, =1

keKH keKP

All task graph nodes have to be mapped either in software or in hardware.
Variables are assumed to be integers.
Additional constraints to guarantee they are either O or 1:

Viel:VKkeKH: X;, <1
Viel:VkeKP:Y; <1

Operation assignment constraints

vW e el, VIET(v)=c, VkeKP:NY , =2Y;

mFor all types ¢ of operations and for all nodes | of
this type:

If 1 IS mapped to some processor k, then that processor
must implement the functionality of ¢.

mDecision variables must also be 0/1 variables:
vV ¢ elL, V k € KP: NYf’kﬁl.

"
Resource & design constraints

« V k € KH, the cost for components of that type should not exceed its
maximum.

* V k € KP, the cost for associated data storage area should not exceed
Its maximum.

» ¥ k € KP the cost for storing instructions should not exceed its
maximum.

 The total cost (%, .) of HW components should not exceed its
maximum

 The total cost of data memories (Z, _ «p) Should not exceed its maximum

 The total cost instruction memories (%, . «p) Should not exceed its
maximum

" A
QA
| Scheduling \ B/

ASIC h,

Communication channel c,

P1 Cq
or or

_ut B4 "|e3 R

Scheduling / precedence constraints

mFor all nodes v;, and v,, that are potentially mapped to
the same processor or hardware component instance,
introduce a binary decision variable b;, ;, with
b1 »=1 If v;; Is executed before v;, and

= 0 otherwise.

Define constraints of the type
(end-time of v;;) < (start time of v;,) If b;; ,=1 and
(end-time of v,,) < (start time of v;,) if b;; ,=0

mEnsure that the schedule for executing operations is

consistent with the precedence constraints in the task
graph.

m Timing constraints need to be met

" J
Example

m HW types H1, H2 and H3
with costs of 20, 25, and 30.

m Processors of type P.
. . m Tasks Tl to T5.
| @ o m Execution times:

| @ @ T H1I H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

"
Operation assignment constraint

T H1 H2 H3 P

1 20 100 Viel:) X+ DY, =1
2 20 100 KeKH KkekP

3 12 10

4 12 10

5 20 100

X11+Y1,=1 (task 1 mapped to H1 or to P)
XootY;,=1
X33t Y3,=1
Xp3t Y4171
X1+ Y5,=1

"
Operation assignment constraint

mAssume types of tasks are ¢ =1, 2, 3, 3, and 1.
vVt el, VIT(v)=Cc, VkeKP:NY, =Y

/ ™

Functionality 3 to be
NY\| > T implemented on
NY,, >Y,, | Processorifnode4is
mapped to It.

NY; 1 > Y3 7/ S
NY; 1 > Yy

NY|1 > Y5

"
Other equations

m [Ime constraint: Application specific hardware
required for time constraints under 100 time
units.

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Cost function:
C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) + cost(memory)

Result
mFor a time constraint of 100 time units and cost(P)<cost(H3):
T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100
Solution:
T1 > H1
T2 > H2 . ,
T3> P N
T4 > P P1
5 > H1

"
Separation of scheduling and partitioning
mCombined scheduling/partitioning very complex;
% Heuristic.: Compute estimated schedule
mPerform partitioning for estimated schedule

mPerform final scheduling

mlf final schedule does not meet time constraint,
go to 1 using a reduced overall timing constraint.

t t
Actual execution time —1—

o —T— Actual execution time
approx. execution time -

-~ approx. execution time

1st [teration 2nd [teration

Codesign Verification

B Run SW on the native Verilog Simulator
Application-specific
prOCeSSOr hardware

= Simulate HW (Verilog)
Process 1 § Process 1
Software

process 1 \
Bus interface

Unix sockets

sg;gvgggez Verilog PLI

Validation flow

Compilation Simulation
. model

Validation

SpecC :
m O d e I E Architecture exploration ;

Analysis e |
Estimation

e Simulation
Compilation @

Validation

¥
Architecture model

|
:
|
Communication synthesis :
|
|

Analysis e |
Estimation

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
ot Simulation :
Compilation Lo :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| Validation

Analysis "
Estimation

Implementation
Software Hardware

compilation| |compilation _ _
>l Compilation Simulation
model
L _ [Validation
- I Analysis <
V ' |Estimation
|
|

Manufacturing

= — ———

-i:oresight Co-Design

Metrics Cost

. User- State Mini- Library '
! System Functional - defined Machines specs Elements '
i Requirements » Behavior Block “| | Reusables .
; Capture Diagram Integrated Toolset
i Data Flow Architecture |, Resource .
i Monitors Block Diagram | Specification
i | e
i System |
: Characteristics '
. Derived from v v i
' Foresight Gate Count Lines of Code |
. Cost Analysis HW SW |
E (GhOSt) I/O Count Number Up Dev. Cost Dev. Schedule
i Die Size Fab. Cost Maintenance Cost .
. SCP Cost Test Cost '
' Outputs 5
' \ 4 . 1
» System Performance System CO'DeS|gn PI’OCESS '

"
Industry Initiatives

m Seamless Co-Verification Environment-CVE

m Proridium (Foresight)

Customers: Boeing, Microsoft, Raytheon, Oracle etc.
m CoWare (now Iin Synopsys)

Cosimulation and IP integration

One of founding members of SystemC (language)
m New FPGA synthesis tools incorporate CPUs

m Platform-based design

Platform: predesigned architecture that designers can use
to build systems for a given range of applications

Summary

m HW/SW codesign is complicated and limited
by performance estimates

m Algorithms are in research and development,
much of the work is still done by expert designers

B
Sources and References

m Peter Marwedel, "Embedded Systems
Design,” 2004.

m Giovanni De Micheli @ EPFL

m Vincent Mooney @ Gatech
m Nikil Dutt @ UCI

