
Introduction to

Embedded Systems

Module 1:

Motivation: Cyber Physical Systems

Edward A. Lee
UC Berkeley

EECS 149/249A

Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.

All rights reserved.

EECS 149/249A, UC Berkeley: 2

It’s not just information technology anymore:
• Cyber + Physical
• Computation + Dynamics
• Security + Safety

Contradictions:
• Adaptability vs. Repeatability
• High connectivity vs. Security and Privacy
• High performance vs. Low Energy
• Asynchrony vs. Coordination/Cooperation
• Scalability vs. Reliability and Predictability
• Laws and Regulations vs. Technical Possibilities
• Economies of scale (cloud) vs. Locality (fog)
• Open vs. Proprietary
• Algorithms vs. Dynamics

Innovation:
Cyber-physical systems require new engineering
methods and models to address these contradictions.

Automotive

Focus on Cyber-Physical Systems

Full of Contradictory Requirements

Biomedical

Military

Energy

Manufacturing

Avionics

Buildings

Lee, Berkeley

EECS 149/249A, UC Berkeley: 3

E Pluribus Unum: Out of Many, One

Internet of
Things
(IoT)

Industry 4.0
The Industrial

Internet

Internet of
Everything

Smarter
Planet

Machine to
Machine
(M2M)

Cyber-Physical Systems

TSensors
(Trillion
Sensors)

The Fog

Lee, Berkeley

EECS 149/249A, UC Berkeley: 4

The Hype Around

The Internet of Things

Using Internet technology to connect

physical devices (“things”).

http://www.gartner.com/technology/research/hype-cycles/

Internet of Things

Peak of

Inflated

Expectations

Lee, Berkeley

EECS 149/249A, UC Berkeley: 5

The Hype Around

The Internet of Things

Using Internet technology to connect

physical devices (“things”).

http://www.gartner.com/technology/research/hype-cycles/

Internet of Things

Trough of

Disillusionment

Lee, Berkeley

EECS 149/249A, UC Berkeley: 6

IoT is the use of Internet technology for

Cyber-Physical Systems

Industrial automation

example from 2008:

Bosch-Rexroth printing

press.

The term “IoT” includes

the technical solution

“Internet technology” in

the problem statement

“connect things”.

The term CPS does not.

Lee, Berkeley 6

This Bosch Rexroth printing press is a cyber-

physical factory using Ethernet and TCP/IP

with high-precision clock synchronization

(IEEE 1588) on an isolated LAN.

EECS 149/249A, UC Berkeley: 7
Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

Example – Flying Paster

http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

EECS 149/249A, UC Berkeley: 8

Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

Flying Paster

http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

EECS 149/249A, UC Berkeley: 9

CPS Challenge Problem: Prevent This

EECS 149/249A, UC Berkeley: 10

x

The challenges of working

in a multidisciplinary area

EECS 149/249A, UC Berkeley: 11

x

Network

Small Computer

Big Complex

System

Connected Industrial

System

Advanced

Manufacturing Robot

The challenges of working

in a multidisciplinary area

EECS 149/249A, UC Berkeley: 12

Automotive CPS and Societal Challenges

• Safer Transportation

• Reduced Emissions

• Smart Transportation

• Energy Efficiency

• Climate Change

• Human-Robot Collaboration

EECS 149/249A, UC Berkeley: 13

Example: Air-Fuel ratio control to reduce emissions

 Catalytic converters reduce CH4, CO2, and NOx emissions

 Conversion efficiency optimal at stoichiometric value

See:

Jin. Kapinski. Deshmukh,

Ueda, Butts,

“Powertrain Control Verification

Benchmark,”

HSCC 2014

[Slide due to J. Deshmukh, Toyota]

EECS 149/249A, UC Berkeley: 14

Air-Fuel ratio control: Gasoline Engine setting

Intake manifold

Exhaust manifold

Measured
Air Flow

Measured
A/F

Fuel injectors

AIR

[Slide due to J. Deshmukh, Toyota]

Software

EECS 149/249A, UC Berkeley: 15

Report: McKinsey Global Institute

Disruptive technologies:

Advances that will transform life, business, and the global economy

May 2013 … with major CPS components

EECS 149/249A, UC Berkeley: 16

Economic Potential

EECS 149/249A, UC Berkeley: 17

Google Strategy

Google's robotic cars have about $150,000 in

equipment including a $70,000 LIDAR (laser radar)

system. The range finder mounted on the top is

a Velodyne 64-beam laser. This laser allows the vehicle

to generate a detailed 3D map of its environment.

The car then takes these generated maps and

combines them with high-resolution maps of the

world, producing different types of data models that

allow it to drive itself.

http://en.wikipedia.org/wiki/LIDAR
http://en.wikipedia.org/wiki/Velodyne

EECS 149/249A, UC Berkeley: 18

Google and Facebook

Wall Street Journal:

By Alistair Barr and Reed Albergotti

April 14, 2014

Google Inc. on Monday acquired a

maker of solar-powered drones—a

startup that Facebook Inc. had also

considered acquiring—as the

technology giants battle to extend

their influence and find new users in

the far corners of the earth.

Artist's rendering of Titan's Solara 50, which in

theory at least, can stay aloft for years.

http://quotes.wsj.com/GOOGL
http://quotes.wsj.com/GOOGL
http://quotes.wsj.com/FB
http://quotes.wsj.com/FB

EECS 149/249A, UC Berkeley: 19

Tesla Gigafactory

Artists conception of battery factory under construction in Nevada.

From: https://www.tesla.com/gigafactory

EECS 149/249A, UC Berkeley: 20

Apple iCar?

Macworld, Aug. 10, 2016:

Reports suggest that Apple is developing an electric iCar to rival Tesla. With reports

that Apple is negotiating with BMW, and poaching Samsung employees (especially

battery specialists) and reassigning large numbers of staff for its Project Titan, is

Apple manufacturing an iCar, and when will the iCar be launched?

EECS 149/249A, UC Berkeley: 21

The Emerging IT Scene

Infrastructural

core

Sensory

swarm

Mobile

access

21

The Cloud!

Courtesy: J. Rabaey

EECS 149/249A, UC Berkeley: 22

What this course is about

A principled, scientific approach to designing and

implementing embedded systems

Not just hacking!!

Hacking can be fun, but it can also be very painful when

things go wrong…

Focus on model-based system design, and

on embedded software

EECS 149/249A, UC Berkeley: 23

Modeling, Design, Analysis

Modeling is the process of

gaining a deeper understanding

of a system through imitation.

Models express what a system does

or should do.

Design is the structured creation of artifacts.

It specifies how a system does what it does.

Analysis is the process of gaining a deeper

understanding of a system through dissection.

It specifies why a system does what it does

(or fails to do what a model says it should do).

EECS 149/249A, UC Berkeley: 24

Your textbook, written for

this course, strives to

identify and introduce

the durable intellectual

ideas of embedded

systems as a technology

and as a subject of

study. The emphasis is

on modeling, design,

and analysis of cyber-

physical systems, which

integrate computing,

networking, and physical

processes.

http://LeeSeshia.org

EECS 149/249A, UC Berkeley: 25

Motivating Example of a Cyber-Physical System
(see Chapter 1 in book)

STARMAC quadrotor aircraft (Tomlin, et al.)

Modeling:

• Flight dynamics (ch2)

• Modes of operation (ch3)

• Transitions between modes (ch4)

• Composition of behaviors (ch5)

• Multi-vehicle interaction (ch6)

Design:

• Sensors and Actuators (ch7)

• Processors (ch8)

• Memory system (ch9)

• Sensor interfacing (ch10)

• Concurrent software (ch11)

• Real-time scheduling (ch12)

Analysis

• Specifying safe behavior (ch13)

• Achieving safe behavior (ch14)

• Verifying safe behavior (ch15)

• Guaranteeing timeliness (ch16)

• Security and privacy (ch17)

• Introductory Video:
http://www.youtube.com/watch?v=rJ9r2orcaYo

• Back-Flip Manuever:
http://www.youtube.com/watch?v=iD3QgGpzzIM

http://www.youtube.com/watch?v=rJ9r2orcaYo#t=140
http://www.youtube.com/watch?v=rJ9r2orcaYo
http://www.youtube.com/watch?v=iD3QgGpzzIM#t=17
http://www.youtube.com/watch?v=iD3QgGpzzIM

EECS 149/249A, UC Berkeley: 26

STARMAC Design Block Diagram

WiFi

802.11b
≤ 5 Mbps

ESC & Motors
Phoenix-25, Axi 2208/26

IMU
3DMG-X1

76 or 100 Hz

Ranger
SRF08

13 Hz Altitude

GPS
Superstar II

10 Hz

I2C

400 kbps

PPM
100 Hz

UART

19.2 kbps

Robostix
Atmega128

Low level control

UART

115 kbps

CF

100 Mbps

Stereo Cam
Videre STOC

30 fps 320x240

Firewire

480 Mbps

UART
115 Kbps

LIDAR
URG-04LX

10 Hz ranges

Ranger
Mini-AE

10-50 Hz Altitude

Beacon
Tracker/DTS

1 Hz

WiFi

802.11g+
≤ 54 Mbps

USB 2

480 Mbps

RS232

115 kbps

Timing/

Analog

Analog

RS232

UART

Stargate 1.0

Intel PXA255

64MB RAM, 400MHz

Supervisor, GPS

PC/104

Pentium M

1GB RAM, 1.8GHz

Est. & control

EECS 149/249A, UC Berkeley: 27

A Theme in This Course:

Think Critically

Any course that purports to teach you how to design

embedded systems is misleading you.

The technology will change!

Our goal is to teach you how things are done today, and

why that is not good enough. So you will not be surprised

by the changes that are coming.

Introduction to

Embedded Systems

Module 2: Model Based Design

Edward A. Lee
UC Berkeley

EECS 149/249A

Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.

All rights reserved.

EECS 149/249A, UC Berkeley: 2

Modeling, Design, Analysis:

An Iterative Process

Modeling is the process of

gaining a deeper understanding

of a system through imitation.

Models specify what a system does.

Design is the structured creation of

artifacts. It specifies how a system does

what it does. This includes optimization.

Analysis is the process of gaining a deeper

understanding of a system through dissection.

It specifies why a system does what it does

(or fails to do what a model says it should do).

EECS 149/249A, UC Berkeley: 3

Focus on Models

Lee, Berkeley

EECS 149/249A, UC Berkeley: 4

Models vs. Reality

In this example, the

modeling

framework is

calculus and

Newton’s laws.

Fidelity is how well

the model and its

target match

Lee, Berkeley

The model

The target

(the thing

being

modeled).

EECS 149/249A, UC Berkeley: 5

Solomon Wolf Golomb

You will never strike oil by

drilling through the map!

Lee, Berkeley

Engineers often confuse the

model with its target

But this does not in any way

diminish the value of a map!

EECS 149/249A, UC Berkeley: 6

Determinacy

Some of the most valuable models

are deterministic.

A model is deterministic if, given the initial state and the

inputs, the model defines exactly one behavior.

Deterministic models have proven extremely valuable in

the past.

Lee, Berkeley

EECS 149/249A, UC Berkeley: 7

Schematic of a simple CPS

Lee, Berkeley

EECS 149/249A, UC Berkeley: 8

Do deterministic models make sense for

Cyber-physical systems?

Lee, Berkeley

Physical noise

Imperfect actuationParts failures

Unknowable delays
Packet losses

Unknowable

execution times

Uncontrollable scheduling

EECS 149/249A, UC Berkeley: 9

A Model Need not

be True to be Useful

“Essentially, all models are wrong,

but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and

Response Surfaces. Wiley Series in Probability and Statistics, Wiley.

Lee, Berkeley

EECS 149/249A, UC Berkeley: 10

What kinds of models should we use?

Lee, Berkeley

Let’s look at the most successful kinds of models from

the cyber and the physical worlds.

EECS 149/249A, UC Berkeley: 11

Software is a Model

Physical System Model

Single-threaded imperative programs

are deterministic models
Lee, Berkeley

EECS 149/249A, UC Berkeley: 12

Consider single-threaded

imperative programs

The target of the model is

nondeterministic (electrons

sloshing around in silicon).

This program defines exactly one

behavior, given the input x.

Note that the modeling framework

(the C language, in this case)

defines “behavior” and “input.”

Lee, Berkeley

EECS 149/249A, UC Berkeley: 13

Software relies on another deterministic

model that abstracts the hardware

Physical System Model

Instruction Set Architectures (ISAs)

are deterministic models
Lee, Berkeley

Image: Wikimedia Commons
Waterman, et al., The RISC-V Instruction Set Manual,

UCB/EECS-2011-62, 2011

EECS 149/249A, UC Berkeley: 14

… which relies on yet another

deterministic model

Physical System Model

Synchronous digital logic

is a deterministic model
Lee, Berkeley

EECS 149/249A, UC Berkeley: 15

Deterministic Models for the

Physical Side of CPS

Physical System Model

Signal Signal

Differential Equations

are deterministic models
Lee, Berkeley

Image: Wikimedia Commons

EECS 149/249A, UC Berkeley: 16

Signal Signal

Image: Wikimedia CommonsLee, Berkeley

A Major Problem for CPS: Combinations of

Deterministic Models are Nondeterministic

EECS 149/249A, UC Berkeley: 17

A Story

In “fly by wire” aircraft,

computers control the

plane, mediating pilot

commands.

EECS 149/249A, UC Berkeley: 18

Abstraction Layers

The purpose of an

abstraction is to hide

details of the

implementation below

and provide a platform

for design from above.

EECS 149/249A, UC Berkeley: 19

Abstraction Layers

Every abstraction

layer has failed for

the aircraft designer.

The design is the

implementation.

EECS 149/249A, UC Berkeley: 20

Abstraction Layers

How about raising

the level of

abstraction to solve

these problems?

EECS 149/249A, UC Berkeley: 21

Higher abstractions rely on an

increasingly problematic fiction: WCET

A war story:

Ferdinand et al. [2001] determine the WCET of astonishingly
simple avionics code from Airbus running on a Motorola
ColdFire 5307, a pipelined CPU with a unified code and data
cache. Despite the software consisting of a fixed set of non-
interacting tasks containing only simple control structures, their
solution required detailed modeling of the seven-stage pipeline
and its precise interaction with the cache, generating a large
integer linear programming problem.

Fundamentally, the ISA of the processor has failed to provide
an adequate abstraction. And the problem has gotten worse
since 2001!

EECS 149/249A, UC Berkeley: 22

Correct execution of a program in all widely used

programming languages, and correct delivery of a network

message in all general-purpose networks has nothing to do

with how long it takes to do anything.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

Embedded software designers

have no map!
Lee, Berkeley

Timing is not Part of

Software and Network Semantics

EECS 149/249A, UC Berkeley: 23

Determinism? Really?

CPS applications operate in an intrinsically

nondeterministic world.

Does it really make sense to insist on deterministic

models?

Lee, Berkeley

EECS 149/249A, UC Berkeley: 24

In science, the value of a model lies in how well its

behavior matches that of the physical system.

In engineering, the value of the physical system lies

in how well its behavior matches that of the model.

Lee, Berkeley

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary

(but not sufficient) to be able to be able to

construct a faithful physical realization.

The Value of Models

EECS 149/249A, UC Berkeley: 25

A Model

Lee, Berkeley

EECS 149/249A, UC Berkeley: 26

A Physical Realization

Lee, Berkeley

EECS 149/249A, UC Berkeley: 27

Model Fidelity

To a scientist, the model is flawed.

To an engineer, the realization is flawed.

I’m an engineer…

Lee, Berkeley

EECS 149/249A, UC Berkeley: 28

For CPS, we need to

Change the Question

The question is not whether deterministic models can

describe the behavior of cyber-physical systems (with

high fidelity).

The question is whether we can build cyber-physical

systems whose behavior matches that of a deterministic

model (with high probability).

Lee, Berkeley

EECS 149/249A, UC Berkeley: 29

Determinism?

What about Resilience? Adaptability?

Deterministic models do not eliminate the need for

robust, fault-tolerant designs.

In fact, they enable such designs, because they make it

much clearer what it means to have a fault!

Lee, Berkeley

EECS 149/249A, UC Berkeley: 30

We have to fix the

models!

But how?

Lee, Berkeley

Introduction to

Embedded Systems

Module 2a: Modeling Physical Dynamics

Edward A. Lee
UC Berkeley

EECS 149/249A

Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.

All rights reserved.

EECS 149/249A, UC Berkeley: 2

Modeling Techniques in this Course

Models that are abstractions of system dynamics

(how system behavior changes over time)

 Modeling physical phenomena – differential equations

 Feedback control systems – time-domain modeling

 Modeling modal behavior – FSMs, hybrid automata, …

 Modeling sensors and actuators –calibration, noise, …

 Hardware and software – concurrency, timing, power, …

 Networks – latencies, error rates, packet losses, …

EECS 149/249A, UC Berkeley: 3

Today’s Lecture: Modeling of

Continuous Dynamics

Ordinary differential equations, Laplace

transforms, feedback control models, …

EECS 149/249A, UC Berkeley: 4

An Example: Helicopter Dynamics

EECS 149/249A, UC Berkeley: 5

Modeling Physical Motion

Six degrees of freedom:

 Position: x, y, z

 Orientation: pitch, yaw, roll

EECS 149/249A, UC Berkeley: 6

Notation

EECS 149/249A, UC Berkeley: 7

Notation

EECS 149/249A, UC Berkeley: 8

Newton’s Second Law

EECS 149/249A, UC Berkeley: 9

Orientation

EECS 149/249A, UC Berkeley: 10

Angular version of force is torque.

For a point mass rotating around a fixed axis:

Just as force is a push or a pull, a torque is a twist.

Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2p meters of circumference per 1

meter of radius), so as units, are optional.

Ty(t) = r f (t)

angular momentum, momentum

EECS 149/249A, UC Berkeley: 11

Rotational Version of Newton’s Second Law

EECS 149/249A, UC Berkeley: 12

Feedback Control Problem

A helicopter without a tail rotor, like the one

below, will spin uncontrollably due to the

torque induced by friction in the rotor shaft.

Control system problem:

Apply torque using the tail

rotor to counterbalance

the torque of the top rotor.

EECS 149/249A, UC Berkeley: 13

Simplified Model

EECS 149/249A, UC Berkeley: 14

“Plant” and Controller

EECS 149/249A, UC Berkeley: 15

Actor Model of Systems

A system is a function that

accepts an input signal and

yields an output signal.

The domain and range of

the system function are

sets of signals, which

themselves are functions.

Parameters may affect the

definition of the function S.

EECS 149/249A, UC Berkeley: 16

Actor Model of the Helicopter

Input is the net torque of

the tail rotor and the top

rotor. Output is the angular

velocity around the y axis.

Parameters of the

model are shown in

the box. The input

and output relation is

given by the equation

to the right.

EECS 149/249A, UC Berkeley: 17

Composition of Actor Models

EECS 149/249A, UC Berkeley: 18

Actor Models with Multiple Inputs

EECS 149/249A, UC Berkeley: 19

Proportional controller

desired

angular

velocity

error

signal

net

torque

Note that the angular

velocity appears on

both sides, so this

equation is not trivial

to solve.

EECS 149/249A, UC Berkeley: 20

Behavior of

the controller

Desired angular velocity:

Simplifies differential

equation to:

Which can be solved as

follows (see textbook):

EECS 149/249A, UC Berkeley: 22

Questions

 Can the behavior of this controller change when it is

implemented in software?

 How do we measure the angular velocity in practice?

How do we incorporate noise into this model?

 What happens when you have failures (sensors,

actuators, software, computers, or networks)

https://www.youtube.com/watch?v=MhEXXgiIVuY

Introduction to

Embedded Systems

Chapter 3: Discrete Dynamics, State Machines

Edward A. Lee
UC Berkeley

EECS 149/249A

Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.

All rights reserved.

EECS 149/249A, UC Berkeley: 2

Discrete Systems

Discrete = “individually separate / distinct”

A discrete system is one that operates in a sequence of

discrete steps or has signals taking discrete values.

It is said to have discrete dynamics.

EECS 149/249A, UC Berkeley: 3

Concepts covered in Today’s Lecture

Models = Programs

Actor Models of Discrete Systems: Types and Interfaces

States, Transitions, Guards

Determinism and Receptiveness

EECS 149/249A, UC Berkeley: 4

Discrete Systems: Example Design Problem

Count the number of cars that are present in a

parking garage by sensing cars enter and leave the

garage. Show this count on a display.

EECS 149/249A, UC Berkeley: 5

Discrete Systems

Example: count the number of cars in a parking garage

by sensing those that enter and leave:

EECS 149/249A, UC Berkeley: 6

Discrete Systems

Example: count the number of cars that enter and leave a

parking garage:

Pure signal:

EECS 149/249A, UC Berkeley: 7

Discrete Systems

Example: count the number of cars that enter and leave a

parking garage:

Pure signal:

Discrete actor:

EECS 149/249A, UC Berkeley: 8

Demonstration of Ptolemy II Model (“Program”)

EECS 149/249A, UC Berkeley: 9

Actor Modeling Languages / Frameworks

• LabVIEW

• Simulink

• Scade

• …

• Reactors

• StreamIT

• …

EECS 149/249A, UC Berkeley: 10

Reaction / Transition

State: condition of the system at a particular point in time
• Encodes everything about the past that influences the system’s

reaction to current input

EECS 149/249A, UC Berkeley: 11

Inputs and Outputs at a Reaction

EECS 149/249A, UC Berkeley: 12

Question

What are some scenarios that the given parking garage

(interface) design does not handle well?

EECS 149/249A, UC Berkeley: 13

State Space

EECS 149/249A, UC Berkeley: 14

Garage Counter Finite State Machine (FSM)

in Pictures

EECS 149/249A, UC Berkeley: 15

Garage Counter Finite State Machine (FSM)

in Pictures

Initial state

EECS 149/249A, UC Berkeley: 16

Garage Counter Finite State Machine (FSM)

in Pictures

Output

EECS 149/249A, UC Berkeley: 17

Ptolemy II Model

EECS 149/249A, UC Berkeley: 18

FSM Modeling Languages / Frameworks

• LabVIEW Statecharts

• Simulink Stateflow

• Scade

• …

EECS 149/249A, UC Berkeley: 19

Garage Counter Mathematical Model

The picture

above defines

the update

function.

EECS 149/249A, UC Berkeley: 21

FSM Notation in Lee & Seshia

transition

self loop

state

initial state

EECS 149/249A, UC Berkeley: 22

Examples of Guards for Pure Signals

EECS 149/249A, UC Berkeley: 23

Examples of Guards for Signals with Numerical

Values

EECS 149/249A, UC Berkeley: 24

Example of Modal Model: Thermostat

EECS 149/249A, UC Berkeley: 25

When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs

when any input is present. Then the above transition will

be taken whenever the current state is s1 and x is present.

This is an event-triggered model.

EECS 149/249A, UC Berkeley: 26

When does a reaction occur?

Suppose x and y are discrete and pure signals.

When does the transition occur?

Answer: when the environment triggers a reaction and x is absent.

If this is a (complete) event-triggered model, then the transition will

never be taken because the reaction will only occur when x is

present!

EECS 149/249A, UC Berkeley: 27

When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs on

the tick of an external clock.

This is a time-triggered model.

EECS 149/249A, UC Berkeley: 28

More Notation: Default Transitions

A default transition is enabled if no non-default transition

is enabled and it either has no guard or the guard

evaluates to true. When is the above default transition

enabled?

EECS 149/249A, UC Berkeley: 29

Only show default transitions if they are guarded

or produce outputs (or go to other states)

Example: Traffic Light Controller

EECS 149/249A, UC Berkeley: 30

Example where default transitions need not be

shown

Exercise: From this picture, construct the formal

mathematical model.

EECS 149/249A, UC Berkeley: 31

Some Definitions

• Stuttering transition: (possibly implicit) default

transition that is enabled when inputs are absent, that

does not change state, and that produces absent

outputs.

• Receptiveness: For any input values, some transition

is enabled. Our structure together with the implicit

default transition ensures that our FSMs are receptive.

• Determinism: In every state, for all input values,

exactly one (possibly implicit) transition is enabled.

EECS 149/249A, UC Berkeley: 32

Test Your Understanding: Three Kinds of

Transitions

Self-Loop

Default Transition

Stuttering Transition

1. Is a default transition always a self-loop?

2. Is a stuttering transition always a self-loop?

3. Is a self-loop always stuttering?

EECS 149/249A, UC Berkeley: 33

Example: Nondeterministic FSM

Model of the environment for a traffic light, abstracted

using nondeterminism:

Formally, the update function is replaced by a function

EECS 149/249A, UC Berkeley: 34

EECS 149/249A, UC Berkeley: 35

Uses of Nondeterminism

1. Modeling unknown aspects of the environment or

system

 Such as: how the environment changes a robot’s

orientation

2. Hiding detail in a specification of the system

 We will see an example of this later (see the text)

Any other reasons why nondeterministic FSMs might be

preferred over deterministic FSMs?

EECS 149/249A, UC Berkeley: 36

Behaviors and Traces

• FSM behavior is a sequence of (non-stuttering) steps.

• A trace is the record of inputs, states,

and outputs in a behavior.

• A computation tree is a graphical

representation of all

possible traces.

FSMs are suitable for formal

analysis. For example, safety

analysis might show that some unsafe

state is not reachable.

EECS 149/249A, UC Berkeley: 37

Size Matters

Non-deterministic FSMs are more compact than

deterministic FSMs

 A classic result in automata theory shows that a

nondeterministic FSM has a related deterministic FSM

that is equivalent in a technical sense (language

equivalence, covered in Chapter 13, for FSMs with

finite-length executions).

 But the deterministic machine has, in the worst case,

many more states (exponential in the number of states

of the nondeterministic machine, see Appendix B).

EECS 149/249A, UC Berkeley: 38

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

 A deterministic system exhibits a single behavior

 A non-deterministic system exhibits a set of behaviors

 visualized as a computation tree

. . .

. . .

. . .

. . .

. . .

Deterministic FSM behavior:

Non-deterministic FSM behavior:

EECS 149/249A, UC Berkeley: 39

Non-deterministic  Probabilistic (Stochastic)

In a probabilistic FSM, each transition has an associated

probability with which it is taken.

In a non-deterministic FSM, no such probability is known.

We just know that any of the enabled transitions from a

state can be taken.

EECS 149/249A, UC Berkeley: 40

Review: Concepts covered

Models = Programs

Actor Models of Discrete Systems: Types and Interfaces

States, Transitions, Guards

Determinism, Receptiveness, etc.

PROGRAMMABLE LOGIC DEVICES

� Read Only Memory (ROM) - a fixed array of AND gates and a programmable array of OR gates

� Programmable Array Logic (PAL) - a programmable array of AND gates feeding a fixed array of

OR gates.

� Programmable Logic Array (PLA) - a programmable array of AND gates feeding a programmable

array of OR gates.

� Complex Programmable Logic Device (CPLD) /Field- Programmable Gate Array (FPGA) -

complex enough to be called “architectures”

READ ONLY MEMORY

� Read Only Memories (ROM) or Programmable Read Only Memories (PROM) have:

• N input lines,

• M output lines, and

• 2N decoded minterms.

� Fixed AND array with 2N outputs implementing all N-literal minterms.

� Programmable OR Array with M outputs lines to form up to M sum of minterm expressions.

� A program for a ROM or PROM is simply a multiple-output truth table

• If a 1 entry, a connection is made to the corresponding minterm for the corresponding

output

• If a 0, no connection is made

� Can be viewed as a memory with the inputs as addresses of data (output values), hence ROM or

PROM names!

Figure: Block diagram and Internal Logic of a ROM

� Depending on the programming technology and approaches, read-only memories have different

names

1. ROM – mask programmed

2. PROM – fuse or antifuse programmed

3. EPROM – erasable floating gate programmed

4. EEPROM or E2PROM – electrically erasable floating gate programmed

5. FLASH memory: electrically erasable floating gate with multiple erasure and programming

modes.

� Example: A 8 X 4 ROM (N = 3 input lines, M= 4 output lines)

• The fixed "AND" array is a “decoder” with 3 inputs and 8 outputs implementing minterms.

• The programmable "OR“ array uses a single line to represent all inputs to an OR gate. An

“X” in the array corresponds to attaching the minterm to the OR

• Read Example: For input (A2,A1,A0) = 011, output is (F3,F2,F1,F0) = 0011.

• What are functions F3, F2 , F1 and F0 in terms of (A2, A1, A0)?

PROGRAMMABLE LOGIC ARRAY (PLA)

� Compared to a ROM and a PAL, a PLA is the most flexible having a programmable set of ANDs

combined with a programmable set of ORs.

� Advantages

• A PLA can have large N and M permitting implementation of equations that are impractical

for a ROM (because of the number of inputs, N, required

• A PLA has all of its product terms connectable to all outputs, overcoming the problem of

the limited inputs to the PAL Ors

• Some PLAs have outputs that can be complemented, adding POS functions

� Disadvantages

• Often, the product term count limits the application of a PLA.

• Two-level multiple-output optimization is required to reduce the number of product terms

in an implementation, helping to fit it into a PLA.

• Multi-level circuit capability available in PAL not available in PLA. PLA requires external

connections to do multi-level circuits.

Programmable Logic Array Example

F1=AB’ + AC + A’BC’

F2= (AC+BC)’

� What are the equations for F1 and F2?

� Could the PLA implement the functions without the XOR gates?

� 3-input, 3-output PLA with 4 product terms

Example 6-3 from Mano: Implementing a Combinational Circuit Using a PLA

F1(A,B,C)= Σm(3,5,6,7)

F2(A,B,C)= Σm(1,2,3,7)

The solution is:

PROGRAMMABLE ARRAY LOGIC (PAL)

� The PAL is the opposite of the ROM, having a programmable set of ANDs combined with fixed ORs.

� Disadvantage

• ROM guaranteed to implement any M functions of N inputs. PAL may have too few inputs

to the OR gates.

� Advantages

• For given internal complexity, a PAL can have larger N and M

• Some PALs have outputs that can be complemented, adding POS functions

• No multilevel circuit implementations in ROM (without external connections from output

to input). PAL has outputs from OR terms as internal inputs to all AND terms, making

implementation of multi-level circuits easier.

Programmable Array Logic Example

� 4-input, 3-output PAL with fixed, 3-input OR terms

� What are the equations for F1 through F4?

W(A,B,C,D) = Σm (2,12,13)

X(A,B,C,D) = Σm (7,8,9,10,11,12,13,14,15)

Y(A,B,C,D) = Σm (0,2,3,4,5,6,7,8,10,11,15)

Z(A,B,C,D) = Σm (1,2,8,12,13)

Simplifying the four function to a minimum number of terms results in the following Boolean functions

 W= ABC’+A’B’CD’

 X = A+BCD

 Y = A’B+CD+B’D’

 Z = ABC’+A’B’CD’+AC’D’+A’B’C’D = W+AC’D’+A’B’C’D

Introduction to
Embedded Systems

Chapter 7: Sensors and Actuators

Edward A. Lee
UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

EECS 149/249A, UC Berkeley: 2

What is a sensor? An actuator?

A sensor is a device that measures a physical quantity
→ Input / “Read from physical world”

An actuator is a device that modifies a physical quantity
→ Output / “Write to physical world”

EECS 149/249A, UC Berkeley: 3

Sensors and Actuators – The Bridge between
the Cyber and the Physical

Sensors:
• Cameras
• Accelerometers
• Gyroscopes
• Strain gauges
• Microphones
• Magnetometers
• Radar/Lidar
• Chemical sensors
• Pressure sensors
• Switches
• …

Actuators:
• Motor controllers
• Solenoids
• LEDs, lasers
• LCD and plasma displays
• Loudspeakers
• Switches
• Valves
• …

Modeling Issues:
• Physical dynamics
• Noise
• Bias
• Sampling
• Interactions
• Faults
• …

EECS 149/249A, UC Berkeley: 4

Self-Driving Cars

x

Berkeley PATH Project Demo,
1999, San Diego.

Google self-driving car 2.0

EECS 149/249A, UC Berkeley: 5

Kingvale Blower
Berkeley PATH Project, March, 2005

EECS 149/249A, UC Berkeley: 6

Sensor-Rich Cars

Source: Analog Devices

EECS 149/249A, UC Berkeley: 7

Sensor-Rich Cars

Source: Wired Magazine

EECS 149/249A, UC Berkeley: 8

Kingvale Blower: Technology Overview
Berkeley PATH Project, March, 2003

EECS 149/249A, UC Berkeley: 9

Magnetometers
A very common type is the
Hall Effect magnetometer.

Charge particles (electrons, 1)
flow through a conductor (2)
serving as a Hall sensor.
Magnets (3) induce a
magnetic field (4) that causes
the charged particles to
accumulate on one side of the
Hall sensor, inducing a
measurable voltage difference
from top to bottom.

The four drawings at the right
illustrate electron paths under
different current and magnetic
field polarities. Image source: Wikipedia

Commons
Edwin Hall discovered this effect in 1879.

EECS 149/249A, UC Berkeley: 10

Aliasing

Sampled data is
vulnerable to aliasing,
where high
frequency
components
masquerade as low
frequency
components.

Careful modeling of
the signal sources
and analog signal
conditioning or digital
oversampling are
necessary to counter
the effect.

A high frequency sinusoid sampled at a low rate looks
just like a low frequency sinusoid.

Digitally sampled images are vulnerable to aliasing as
well, where patterns and edges appear as a side effect
of the sampling. Optical blurring of the image prior to
sampling avoids aliasing, since blurring is spatial low-
pass filtering.

EECS 149/249A, UC Berkeley: 11

Roadmap

❑ How Accelerometers work

❑ Affine Model of Sensors

❑ Bias and Sensitivity

❑ Faults in Sensors

❑ Brief Overview of Actuators

EECS 149/249A, UC Berkeley: 12

Accelerometers

Uses:
• Navigation
• Orientation
• Drop detection
• Image stabilization
• Airbag systems

The most common design measures the distance
between a plate fixed to the platform and one
attached by a spring and damper. The measurement
is typically done by measuring capacitance.

EECS 149/249A, UC Berkeley: 13

Spring-Mass-Damper Accelerometer

By Newton’s second law, F=ma.

For example, F could be the
Earth’s gravitational force.

The force is balanced by the
restoring force of the spring.

EECS 149/249A, UC Berkeley: 14

Spring-Mass-Damper System

x

Exercise: Convert to an integral equation with initial
conditions.

EECS 149/249A, UC Berkeley: 15

Measuring tilt

x

θ

EECS 149/249A, UC Berkeley: 16

Feedback dramatically improves accuracy and
dynamic range of microaccelerometers.

The Berkeley Sensor and
Actuator Center (BSAC)
created the first silicon
microaccelerometers, MEMS
devices now used in airbag
systems, computer games,
disk drives (drop sensors), etc.

M. A. Lemkin, “Micro Accelerometer
Design with Digital Feedback Control”,
Ph.D. dissertation, EECS, University of
California, Berkeley, Fall 1997

EECS 149/249A, UC Berkeley: 17

Difficulties Using Accelerometers

• Separating tilt from acceleration
• Vibration
• Nonlinearities in the spring or damper
• Integrating twice to get position: Drift

Position is the integral of
velocity, which is the integral
of acceleration. Bias in the
measurement of
acceleration causes position
estimate error to increase
quadraticly.

EECS 149/249A, UC Berkeley: 18

Measuring Changes in Orientation:
Gyroscopes

Optical gyros: Leverage the Sagnac effect, where a laser light is sent
around a loop in opposite directions and the interference is measured.
When the loop is rotating, the distance the light travels in one direction is
smaller than the distance in the other. This shows up as a change in the
interference.

Images from the Wikipedia
Commons

EECS 149/249A, UC Berkeley: 19

Inertial Navigation Systems

Combinations of:
• GPS (for initialization and periodic correction).
• Three axis gyroscope measures orientation.
• Three axis accelerometer, double integrated for

position after correction for orientation.

Typical drift for systems used in aircraft have to be:
• 0.6 nautical miles per hour
• tenths of a degree per hour

Good enough? It depends on the application!

Dead reckoning
plus GPS.

EECS 149/249A, UC Berkeley: 20

Design Issues with Sensors

• Calibration
● Relating measurements to the physical phenomenon
● Can dramatically increase manufacturing costs

• Nonlinearity
● Measurements may not be proportional to physical phenomenon
● Correction may be required
● Feedback can be used to keep operating point in the linear region

• Sampling
● Aliasing
● Missed events

• Noise
● Analog signal conditioning
● Digital filtering
● Introduces latency

• Failures
● Redundancy (sensor fusion problem)
● Attacks (e.g. Stuxnet attack)

EECS 149/249A, UC Berkeley: 21

Sensor Calibration

Affine Sensor Model

Bias and Sensitivity

Example: Look at ADXL330 accelerometer datasheet

EECS 149/249A, UC Berkeley: 22

EECS 149/249A, UC Berkeley: 23

EECS 149/249A, UC Berkeley: 24

Analog Devices ADXL330 Data Sheet

EECS 149/249A, UC Berkeley: 25

Design Issues with Sensors

• Calibration
● Relating measurements to the physical phenomenon
● Can dramatically increase manufacturing costs

• Nonlinearity
● Measurements may not be proportional to physical phenomenon
● Correction may be required
● Feedback can be used to keep operating point in the linear region

• Sampling
● Aliasing
● Missed events

• Noise
● Analog signal conditioning
● Digital filtering
● Introduces latency

• Failures
● Redundancy (sensor fusion problem)
● Attacks (e.g. Stuxnet attack)

EECS 149/249A, UC Berkeley: 26

Faults in Sensors

Sensors are physical devices

Like all physical devices, they suffer wear and tear, and
can have manufacturing defects

Cannot assume that all sensors on a system will work
correctly at all times

Solution: Use redundancy
→ However, must be careful how you use it!

EECS 149/249A, UC Berkeley: 27

Violent Pitching of Qantas Flight 72 (VH-QPA)

An Airbus A330 en-route from Singapore to Perth on 7
October 2008
• Started pitching violently, unrestrained passengers hit

the ceiling, 12 serious injuries, so counts it as an
accident.

• Three Angle Of Attack (AOA)
sensors, one on left (#1),
two on right (#2, #3) of nose.

• Have to deal with inaccuracies,
different positions, gusts/spikes,
failures.

[Rushby, 2002]

EECS 149/249A, UC Berkeley: 28

A330 AOA Sensor Processing

❑ Sampled at 20Hz
❑ Compare each sensor to the median of the three
❑ If difference is larger than some threshold for more than 1

second, flag as faulty and ignore for remainder of flight
❑ Assuming all three are OK, use mean of #1 and #2 (because

they are on different sides)
❑ If the difference between #1 or #2 and the median is larger than

some (presumably smaller) threshold, use previous average
value for 1.2 seconds

❑ Failure scenario: two spikes in #1, first shorter than 1 second,
second still present 1.2 seconds after detection of first

❑ Result: flight control computers commanding a nose-down
aircraft movement, which resulted in the aircraft pitching down to
a maximum of about 8.5 degrees

[Rushby, 2002]

EECS 149/249A, UC Berkeley: 29

How to deal with Sensor Errors

Difficult Problem, still research to be done

Possible approach: Intelligent sensor communicates an
interval, not a point value
• Width of interval indicates confidence, health of sensor

[Rushby, 2002]

EECS 149/249A, UC Berkeley: 30

Sensor Fusion: Marzullo’s Algorithm

❑ Axiom: if sensor is non-faulty, its interval contains the true
value

❑ Observation: true value must be in overlap of non-faulty
intervals

❑ Consensus (fused) Interval to tolerate f faults in n:
Choose interval that contains all overlaps of n − f; i.e., from
least value contained in n − f intervals to largest value
contained in n − f

[Rushby, 2002]

EECS 149/249A, UC Berkeley: 31

Example: Four sensors, at most one faulty

• Interval reports range of possible values.
• Of S1 and S4, one must be faulty.
• Of S3 and S4, one must be faulty.
• Therefore, S4 is faulty.
• Sound estimate is the overlap of the remaining three.

[Rushby, 2002]

S
1

S
2

S
3

S
4Probable value

EECS 149/249A, UC Berkeley: 32

Example: Four sensors, at most one faulty

• Suppose S4’s reading moves to the left
• Which interval should we pick?

[Rushby, 2002]

S
1

S
2

S
3

S
4??

??

EECS 149/249A, UC Berkeley: 33

Example: Four sensors, at most one faulty

• Marzullo’s algorithm picks the smallest interval that is
sure to contain the true value, under the assumption
that at most one sensor failed.

• But this yields big discontinuities. Jumps!

[Rushby, 2002]

S
1

S
2

S
3

S
4

consensus

EECS 149/249A, UC Berkeley: 34

Schmid and Schossmaier’s Fusion Method

❑ Recall: n sensors, at most f faulty

❑ Choose interval from f+1st largest lower bound to f+1st

smallest upper bound

❑ Optimal among selections that satisfy continuity
conditions.

[Rushby, 2002]

EECS 149/249A, UC Berkeley: 35

Example: Four sensors, at most one faulty

• Assuming at most one faulty, Schmid and
Schossmaier’s method choose the interval between:
• Second largest lower bound
• Second smallest upper bound
• This preserves continuity, but not soundness

[Rushby, 2002]

S
1

S
2

S
3

S
4

consensus

EECS 149/249A, UC Berkeley: 36

Motor Controllers

Bionic hand from Touch Bionics
costs $18,500, has and five DC
motors, can grab a paper cup
without crushing it, and turn a
key in a lock. It is controlled by
nerve impulses of the user’s arm,
combined with autonomous
control to adapt to the shape of
whatever it is grasping. Source:
IEEE Spectrum, Oct. 2007.

EECS 149/249A, UC Berkeley: 37

Pulse-Width
Modulation (PWM)

Delivering power to
actuators can be
challenging. If the
device tolerates rapid
on-off controls (“bang-
bang” control), then
delivering power
becomes much easier.

Duty cycle around 10%

EECS 149/249A, UC Berkeley: 38

Model of a Motor

Electrical Model:

Mechanical Model (angular version of Newton’s second
law):

Back
electromagnetic
force constantAngular velocity

Moment of
inertia

Torque
constant

Friction Load
torque

EECS 149/249A, UC Berkeley: 39

Summary for Lecture

❑ Overview of Sensors and Actuators

❑ How Accelerometers work

❑ Affine Model of Sensors

❑ Bias and Sensitivity

❑ Faults in Sensors

❑ Brief Overview of Actuators

EECS 149/249A, UC Berkeley: 40

Extra Slides Follow

EECS 149/249A, UC Berkeley: 41

Strain Gauges

Mechanical strain gauge used to measure the
growth of a crack in a masonry foundation. This
one is installed on the Hudson-Athens
Lighthouse. Photo by Roy Smith, used with
permission.

Images from the Wikipedia
Commons

EECS 149/249A, UC Berkeley: 42

Noise & Signal Conditioning Example:
|Xd (ω)
|2

ω
|Xn (ω)
|2

F
(ω)

ω

Filter:

|Xd (ω) F (ω)
|2

ω
|Xn (ω) F (ω)
|2

Filtered signal:

A full treatement of
this requires
random processes.

EECS 149/249A, UC Berkeley: 43

References

John Rushby, “Formal Verification of Marzullo’s Sensor
Fusion Interval,” CSL Technical Report, January 2002,
SRI International, Menlo Park, CA.

http://www.csl.sri.com/users/rushby/papers/sensors.pdf

Embedded Processors

Ch8

Dheya Mustafa

Microprocessor

•A microprocessor is a single VLSI chip having a
CPU. In addition, it may also have other units

such as caches, floating point processing
arithmetic unit, and pipelining units that help

in faster processing of instructions.

•Earlier generation microprocessors’ fetch-and-
execute cycle was guided by a clock frequency
of order of ~1 MHz. Processors now operate at

a clock frequency of 2GHz

microcontroller

•A microcontroller (µC) is a small computer on
a single integrated circuit consisting of a

relatively simple central processing unit (CPU)
combined with peripheral devices such as

memories, I/O devices, and timers.

•Microcontrollers are particularly used in
embedded systems for real-time control

applications with on-chip program memory
and devices.

Microprocessor Microcontroller

Microprocessors are multitasking in nature. Can perform
multiple tasks at a time. For example, on computer we

can play music while writing text in text editor.

Single task oriented. For example, a washing machine is
designed for washing clothes only.

RAM, ROM, I/O Ports, and Timers can be added externally
and can vary in numbers.

RAM, ROM, I/O Ports, and Timers cannot be added
externally. These components are to be embedded

together on a chip and are fixed in numbers.

Designers can decide the number of memory or I/O ports
needed.

Fixed number for memory or I/O makes a microcontroller
ideal for a limited but specific task.

External support of external memory and I/O ports makes
a microprocessor-based system heavier and costlier.

Microcontrollers are lightweight and cheaper than a
microprocessor.

External devices require more space and their power
consumption is higher.

A microcontroller-based system consumes less power and
takes less space.

DSP Processors

•Processors designed specifically to support
numerically intensive signal processing

applications

•DSP processors normally add an extra stage or
two that performs a multiplication, provide
separate ALUs for address calculation, and

provide a dual data memory for simultaneous
access to two operands (this latter design is

known as a Harvard architecture).

•Multipy-add instruction ax+b

superscalar

•The DSP processors handle the radio, speech,
and media processing (audio, images, and

video). The other processors handle the user
interface, database functions, networking, and

downloadable applications. Specifically, the
OMAP4440 includes a 1 GHz dual-core ARM
Cortex processor, a c64x DSP, a GPU, and an

image signal processor

GPUS

•A graphics processing unit (GPU) is a
specialized processor designed especially to

perform the calculations required in graphics
rendering

•RGB pixel color: each is one byte .Apply same
operation on several byte to utilize 64bit

datapath .Vector processor MMX

Von Neumann Architecture

Harvard Architecture

•The Harvard architecture offers separate
storage and signal buses for instructions and

data. This architecture has data storage
entirely contained within the CPU, and there is

no access to the instruction storage as data.
Computers have separate memory areas for
program instructions and data using internal
data buses, allowing simultaneous access to

both instructions and data.

Von-Neumann Architecture Harvard Architecture

Single memory to be shared by both code and data. Separate memories for code and data.

Processor needs to fetch code in a separate clock cycle
and data in another clock cycle. So it requires two clock

cycles.

Single clock cycle is sufficient, as separate buses are
used to access code and data.

Higher speed, thus less time consuming. Slower in speed, thus more time-consuming.

Simple in design. Complex in design.

CISC RISC

Larger set of instructions. Easy to program Smaller set of Instructions. Difficult to program.

Simpler design of compiler, considering larger set of
instructions.

Complex design of compiler.

Many addressing modes causing complex instruction
formats.

Few addressing modes, fix instruction format.

Instruction length is variable. Instruction length varies.

Higher clock cycles per second. Low clock cycle per second.

Emphasis is on hardware. Emphasis is on software.

Control unit implements large instruction set using
micro-program unit.

Each instruction is to be executed by hardware.

Slower execution, as instructions are to be read from
memory and decoded by the decoder unit.

Faster execution, as each instruction is to be executed
by hardware.

Pipelining is not possible. Pipelining of instructions is possible, considering single
clock cycle.

Introduction to

Embedded Systems

Chapter 9: Memory Architectures

Edward A. Lee
UC Berkeley

EECS 149/249A

Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.

All rights reserved.

EECS 149/249A, UC Berkeley: 3

Memory Architecture: Issues

 Types of memory
 volatile vs. non-volatile, SRAM vs. DRAM

 Memory maps
 Harvard architecture

 Memory-mapped I/O

 Memory organization
 statically allocated

 stacks

 heaps (allocation, fragmentation, garbage collection)

 The memory model of C

 Memory hierarchies
 scratchpads, caches, virtual memory)

 Memory protection
 segmented spaces

These issues loom

larger in embedded

systems than in

general-purpose

computing.

EECS 149/249A, UC Berkeley: 4

Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory

• Invented by Dov Frohman of Intel in 1971

• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory

• Invented by George Perlegos at Intel in 1978

• Flash memory

• Invented by Dr. Fujio Masuoka at Toshiba around 1980

• Erased a “block” at a time

• Limited number of program/erase cycles (~ 100,000)

• Controllers can get quite complex

• Disk drives

• Not as well suited for embedded systems

USB Drive

Images from the Wikimedia Commons

EECS 149/249A, UC Berkeley: 5

Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory

• Fast, deterministic access time

• But more power hungry and less dense than DRAM

• Used for caches, scratchpads, and small embedded memories

• DRAM: dynamic random-access memory

• Slower than SRAM

• Access time depends on the sequence of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh (typically every 64msec)

• Typically used for main memory

• Boot loader

• On power up, transfers data from non-volatile to volatile memory.

EECS 149/249A, UC Berkeley: 6

Example:

Die of a

STM32F103VGT6

ARM Cortex-M3

microcontroller with

1 megabyte flash

memory by

STMicroelectronics.

Image from Wikimedia Commons

EECS 149/249A, UC Berkeley: 7

Memory Map

of an ARM

CortexTM - M3

architecture

Defines the

mapping of

addresses to

physical memory.

Note that this does

not define how

much physical

memory there is!

EECS 149/249A, UC Berkeley: 8

Another Example: AVR

The AVR is an 8-bit single chip microcontroller first developed

by Atmel in 1997. The AVR was one of the first microcontroller

families to use on-chip flash memory for program storage. It

has a modified Harvard architecture.1

AVR was conceived by two students at the Norwegian

Institute of Technology (NTH) Alf-Egil Bogen and Vegard

Wollan, who approached Atmel in Silicon Valley to produce it.

1 A Harvard architecture uses separate memory spaces for program and data. It

originated with the Harvard Mark I relay-based computer (used during World War

II), which stored the program on punched tape (24 bits wide) and the data in

electro-mechanical counters.

EECS 149/249A, UC Berkeley: 9

A Use of AVR: Arduino

Arduino is a family of open-source hardware boards built

around either 8-bit AVR processors or 32-bit ARM

processors.

Example:

Atmel AVR

Atmega328

28-pin DIP on an

Arduino Duemilanove

board

Image from Wikimedia Commons

EECS 149/249A, UC Berkeley: 10

Open-Source

Hardware and

the maker

movement

Massimo Banzi, founder of the Arduino project at

Ivrea, Italy, and Limor Fried, owner and founder

of Adafruit, showing one of the first board Arduino

Uno from the production lines of Adafruit.

[http://www.open-electronics.org]

EECS 149/249A, UC Berkeley: 11

Atmel ATMega 168

Microcontroller

Another example use

of an AVR processor

The

iRobot Create

Command Module

EECS 149/249A, UC Berkeley: 12

ATMega 168: An 8-bit microcontroller

with 16-bit addresses

Why is it called an 8-bit

microcontroller?

AVR microcontroller

architecture used in

iRobot command

module.

EECS 149/249A, UC Berkeley: 13

ATMega168 Memory Architecture
An 8-bit microcontroller with 16-bit addresses

iRobot

command

module has

16K bytes

flash memory

(14,336

available for

the user

program.

Includes

interrupt

vectors and

boot loader.)

1 k bytes RAM

Additional I/O on the

command module:

• Two 8-bit timer/counters

• One 16-bit timer/counter

• 6 PWM channels

• 8-channel, 10-bit ADC

• One serial UART

• 2-wire serial interface

Source: ATmega168 Reference Manual

The “8-bit data” is why

this is called an “8-bit

microcontroller.”

EECS 149/249A, UC Berkeley: 15

Memory Organization for Programs

• Statically-allocated memory

• Compiler chooses the address at which to store a

variable.

• Stack

• Dynamically allocated memory with a Last-in, First-out

(LIFO) strategy

• Heap

• Dynamically allocated memory

EECS 149/249A, UC Berkeley: 16

Statically-Allocated Memory in C

char x;

int main(void) {

x = 0x20;

…

}

Compiler chooses what address to use for x, and the variable

is accessible across procedures. The variable’s lifetime is the

total duration of the program execution.

EECS 149/249A, UC Berkeley: 17

Statically-Allocated Memory with Limited Scope

void foo(void) {

static char x;

x = 0x20;

…

}

Compiler chooses what address to use for x, but the variable

is meant to be accessible only in foo(). The variable’s lifetime

is the total duration of the program execution (values persist

across calls to foo()).

EECS 149/249A, UC Berkeley: 18

Variables on the Stack

(“automatic variables”)

void foo(void) {

char x;

x = 0x20;

…

}

When the procedure is called, x is assigned an address on the

stack (by decrementing the stack pointer). When the

procedure returns, the memory is freed (by incrementing the

stack pointer). The variable persists only for the duration of

the call to foo().

stack

As nested procedures get called, the

stack pointer moves to lower memory

addresses. When these procedures,

return, the pointer moves up.

EECS 149/249A, UC Berkeley: 19

Question 1

What is meant by the

following C code:

char x;

void foo(void) {

x = 0x20;

…

}

EECS 149/249A, UC Berkeley: 20

Answer 1

What is meant by the

following C code:

char x;

void foo(void) {

x = 0x20;

…

}

An 8-bit quantity (hex 0x20) is

stored at an address in statically

allocated memory in internal RAM

determined by the compiler.

EECS 149/249A, UC Berkeley: 21

Question 2

What is meant by the

following C code:

char *x;

void foo(void) {

x = 0x20;

…

}

EECS 149/249A, UC Berkeley: 22

Answer 2

What is meant by the

following C code:

char *x;

void foo(void) {

x = 0x20;

…

}

An 16-bit quantity (hex 0x0020) is

stored at an address in statically

allocated memory in internal RAM

determined by the compiler.

EECS 149/249A, UC Berkeley: 23

Question 3

What is meant by the

following C code:

char *x, y;

void foo(void) {

x = 0x20;

y = *x;

…

}

EECS 149/249A, UC Berkeley: 24

Answer 3

What is meant by the

following C code:

char *x, y;

void foo(void) {

x = 0x20;

y = *x;

…

}

The 8-bit quantity in the I/O

register at location 0x20 is loaded

into y, which is at a location in

internal SRAM determined by the

compiler.

EECS 149/249A, UC Berkeley: 25

Question 4
char foo() {

char *x, y;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

Where are x, y, z in memory?

EECS 149/249A, UC Berkeley: 26

Answer 4
char foo() {

char *x, y;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

x occupies 2 bytes on the

stack, y occupies 1 byte on

the stack, and z occupies 1

byte in static memory.

EECS 149/249A, UC Berkeley: 27

Question 5

What is meant by the

following C code:

void foo(void) {

char *x, y;

x = &y;

*x = 0x20;

…

}

EECS 149/249A, UC Berkeley: 28

Answer 5

What is meant by the

following C code:

void foo(void) {

char *x, y;

x = &y;

*x = 0x20;

…

}

16 bits for x and 8 bits for y are

allocated on the stack, then x is

loaded with the address of y, and

then y is loaded with the 8-bit

quantity 0x20.

EECS 149/249A, UC Berkeley: 29

Question 6
What goes into z in the

following program:

char foo() {

char y;

uint16_t x;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

EECS 149/249A, UC Berkeley: 30

Answer 6
What goes into z in the

following program:

char foo() {

char y;

uint16_t x;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

z is loaded with the 8-bit quantity in

the I/O register at location 0x20.

EECS 149/249A, UC Berkeley: 31

Quiz: Find the flaw in this program
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {

int z;

z = y * x;

return &z;

}

int main(void) {

int* result = foo(10);

...

}

EECS 149/249A, UC Berkeley: 32

Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {

int z;

z = y * x;

return &z;

}

int main(void) {

int* result = foo(10);

...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10,

and z go on the stack (and

possibly more, depending on the

compiler).

The procedure foo() returns a pointer to a variable

on the stack. What if another procedure call (or

interrupt) occurs before the returned pointer is

de-referenced?

EECS 149/249A, UC Berkeley: 33

Watch out for Recursion!!

Quiz: What is the Final Value of z?

void foo(uint16_t x) {

char y;

y = *x;

if (x > 0x100) {

foo(x – 1);

}

}

char z;

void main(…) {

z = 0x10;

foo(0x04FF);

…

}

EECS 149/249A, UC Berkeley: 34

Dynamically-Allocated Memory

The Heap

An operating system typically offers a way to dynamically

allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many

problems with embedded systems:

 Memory leaks (allocated memory is never freed)

 Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) often require

stopping everything and reorganizing the allocated memory.

This is deadly for real-time programs.

EECS 149/249A, UC Berkeley: 35

Memory Hierarchies

• Memory hierarchy

• Cache:

• A subset of memory addresses is mapped to SRAM

• Accessing an address not in SRAM results in cache miss

• A miss is handled by copying contents of DRAM to SRAM

• Scratchpad:

• SRAM and DRAM occupy disjoint regions of memory space

• Software manages what is stored where

• Segmentation
• Logical addresses are mapped to a subset of physical addresses

• Permissions regulate which tasks can access which memory

EECS 149/249A, UC Berkeley: 36

Memory Hierarchy

Here, the cache or scratchpad, main memory, and disk or

flash share the same address space.

CPU

registers
Cache Disk or Flash

register address fits

within one

instruction word

SRAM DRAM

Main memory

Memory-

mapped I/O

devices

EECS 149/249A, UC Berkeley: 37

Memory Hierarchy

Here, each distinct

piece of memory

hardware has its own

segment of the

address space.

This requires more

careful software

design, but gives

more direct control

over timing.

CPU

registers

scratch

pad

Disk or Flash

register address

fits within one

instruction word

SRAM

DRAM

Main

memory

Memory-

mapped I/O

devices

EECS 149/249A, UC Berkeley: 38

Direct-Mapped

Cache
Valid Tag Block

Valid Tag Block

Valid Tag Block

.
.

.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then

we have a “cache hit.”

Otherwise, the fetch goes to

main memory, updating the line.

EECS 149/249A, UC Berkeley: 39

Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

.
.

.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of

several “lines”

Tag matching is done using an

“associative memory” or

“content-addressable memory.”

EECS 149/249A, UC Berkeley: 40

Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

.
.

.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of

several “lines”

A “cache miss” requires a

replacement policy (like

LRU or FIFO).

EECS 149/249A, UC Berkeley: 41

Your Lab Hardware

(2014 - 2016)

myRIO 1950/1900

(National Instruments)

Xilinx Zynq Z-7010

• ARM Cortex-A9 MPCore dual core processor

• Real-time Linux

• Xilinx Artix-7 FPGA

• Preconfigured with a 32-bit MicroBlaze

microprocessor running without an

operating system (“bare metal”).

EECS 149/249A, UC Berkeley: 42

Xilinx Zynq

Dual-core

ARM

processor

+ FPGA

+ rich I/O

on a single

chip.

EECS 149/249A, UC Berkeley: 43

Microblaze I/O Architecture

Source:

Xilinx

EECS 149/249A, UC Berkeley: 45

Berkeley Microblaze

Personality Memory Map

MicroBlaze
50MHz

MEMORY
BRAM

UART0
UART1

ADC
Subsystem

TIMER

Debugger

0xFFFFFFFF

0x00000000

0x0000FFFF

Unmapped Area

ADC subsystem

Memory for
Instructions and Data

Interrupt controller
0x81800000

Interrupt
controller

0x8180FFFF

Unmapped Area

Timer
0x83C00000

0x83C0FFFF

Unmapped Area

UARTs

Unmapped Area
0x84000000

0x8402FFFF

Debugger

Unmapped Area

Unmapped Area

0x84400000

0x8440FFFF

0xC2200000

0xC220FFFF

EECS 149/249A, UC Berkeley: 46

Conclusion

Understanding memory architectures is essential to

programming embedded systems.

1

Hardware/Software Codesign

Tajana Simunic Rosing

Department of Computer Science and Engineering

University of California, San Diego.

2TSR

ES Design

Verification and Validation

HardwareHardware components

TSR

Class Application Processor Requirements

Data flow laser printers, X-

terminals, routers,

bridges, image

processing

R4600, I960,

29k, Coldfire,

PPC (403, 605)

Processes data and

passes it on. H igh

memory bw, high

throughput.

Interactive

video &

portable

set-top boxes, video

games, PDAs, portable

info appliances

R3900,

R4100/ 4300/ 4

600, ARM

6xx/ 7xx, V851,

SH1/ 2/ 3

Interactive, low

cost, low power,

high throughput.

Classic

embedded

controllers, d isk

controllers,

automotive, industrial

control

Piranha, ARM,

MIPS, Cores
mix of CPU power,

low cost, low

power, peripherals

Time-constrained computing systems.

ES Application Classes

4TSR

System Design Problem Areas

Interface

Processor ASIC

Memory

In
te

rf
a
c
e

Analog I/O

D
M

A

2. HDL Modeling

Architectural synthesis

Logic synthesis

Physical synthesis

3. Software synthesis,

Optimization,

Retargetable code gen.,

Debugging &

Programming environ.

1. Design environment, co-simulation

constraint analysis.

4. Test Issues

5TSR

System Architecture: Yesterday

PCB design

3M
H I G H D E N S I T Y

Graphics
External

Bus
I/OLAN

SCSI/

IDE

DRAM
VRAM

Processor

Cache/DRAM

Controller

Audio Motion

Video
VRAM

DRAM

Cache

VRAM
DRAM

PCI Bus

ISA/EISA

Add-in board

6TSR

A System Architecture: Today
HW/SW Codesign of a SoC

MEMORY

Cache/SRAM

Processor

Core

DSP

Processor

Core

Graphics Video

VRAM

Glue Glue

E
n
c
ry

p
ti
o

n
/

D
e
c
ry

p
ti
o
n

PCI Interface

EISA Interface
I/

O
 I

n
te

rf
ac

e

M
o

ti
o

n

L
A

N

In
te

rf
ac

e

SCSI

7TSR

HW-centric view of a Platform

Application
Space

HW-SW Kernel

MEM

FPGA
CPU Processor(s), RTOS(es)

and SW architecture

IP can be:

• HW or SW

• hard, soft or ‘firm’ (HW)

• source or object (SW)

Scaleable

bus, test, power, IO,

clock, timing architectures

+ Reference Design

Programmable

SW IP

Hardware IP

Pre-Qualified/Verified

Foundation-IP*

Foundry-Specific

HW Qualification

Reconfigurable Hardware Region

(FPGA, LPGA, …)

SW architecture

characterisation

Source: Grant Martin and Henry Chang, “Platform-Based Design:

A Tutorial,” ISQED 2002, 18 March 2002, San Jose, CA.

8TSR

SW-Centric View of Platforms

Output DevicesInput devices

Hardware Platform

I O

Hardware

Software

network

Software Platform

Application Software

Platform API

API

R
T

O
S

BIOS

Device Drivers
N

et
w

o
rk

C
o

m
m

u
n

ic
at

io
n

Source: Grant Martin and Henry Chang, “Platform-Based Design:

A Tutorial,” ISQED 2002, 18 March 2002, San Jose, CA.

9TSR

HW/SW Codesign: Motivations

Benefit from both HW and SW

HW:

 Parallelism -> better performance, lower power

 Higher implementation cost

SW

 Sequential implementation -> great for some

problems

 Lower implementation cost, but often slower and

higher power

10TSR

Software or hardware?

Decision based on hardware/ software partitioning,

11TSR

Hardware/software codesign

Processor
P1

Processor
P2 Hardware

Specification

Mapping

12TSR

System Partitioning

Good partitioning mechanism:

1) Minimize communication across bus

2) Allows parallelism -> both HW & CPU

operating concurrently

3) Near peak processor utilization at all times

process (a, b, c)

in port a, b;

out port c;

{

read(a);

…

write(c);

}

Specification

Line ()

{

a = …

…

detach

}

Processor

Capture

Model HW

Partition

Synthesize

Interface

13TSR

Determining Communication Level

Easier to program at application level

 (send, receive, wait) but difficult to predict

More difficult to specify at low level

 Difficult to extract from program but timing and

resources easier to predict

Application

Program

Operating

System

I/O driver

I/O bus

Application

hardware

(custom)

I/O driver

I/O bus

Send, Receive, Wait

Register reads/writes

Interrupt service

Bus transactions

Interrupts

14TSR

Partitioning Costs

Software Resources

Performance and power consumption

Lines of code – development and testing cost

Cost of components

Hardware Resources

Fixed number of gates, limited memory & I/O

Difficult to estimate timing for custom
hardware

Recent design shift towards IP
 Well-defined resource and timing characteristics

15TSR

Functional

Blocks

Feature

Points

Source Lines of

Code (SLOC)

Software

Development and

Testing Cost

Calibration

Language

Conversion

Equivalent SLOC

including reuse

Software

development effort

Software

maintenance effort

Software schedule

Software

Cost

Analysis

Process

16TSR

I/O Count

Die Area

Core Area

Gate Count

Wafer

Characteristics

Design Cost

Tooling Cost

Wafer Fabrication

and Sawing Cost

Single-Chip-

Package Cost

Feature Size

Interconnect

Length

Die Yield

Number Up

Die Cost

Chip Hardware

Cost

I/O Format

Rent’s Rule

Test Development Cost

Productivity, reuse

S/G Ratio

I/O Count

Die Area

Core Area

Gate Count

Wafer

Characteristics

Design Cost

Tooling Cost

Wafer Fabrication

and Sawing Cost

Single-Chip-

Package Cost

Feature Size

Interconnect

Length

Die Yield

Number Up

Die Cost

Chip Hardware

Cost

I/O Format

Rent’s Rule

Test Development Cost

Productivity, reuse

S/G Ratio
Hardware

Cost

Analysis

Process

17TSR

Hardware/Software Partitioning

memory

ASIC

ASIC

Processor

Simple architectural model: CPU + 1 or more ASICs on a bus

 Properties of classic partitioning algorithms

 Single rate; Single-thread: CPU waits for ASIC

 Type of CPU is known; ASIC is synthesized

TSR

HW/SW Partitioning Styles

HW first approach

start with all-ASIC solution which satisfies

constraints

migrate functions to software to reduce cost

SW first approach

start with all-software solution which does not

satisfy constraints

migrate functions to hardware to meet

constraints

19TSR

Partitioning - ILP
Ingredients:

 Cost function

 Constraints

Involving linear expressions of integer
variables from a set X

Def.: The problem of minimizing (1) subject to the constraints (2) is called
an integer programming (IP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said to be a 0/1

integer programming problem.

Cost function)1(,with NxRaxaC i

Xx

iii

i

 


Constraints:)2(,with: ,, RcbcxbJj
Xx

jjijiji

i

 


ℕ

ℝ

20TSR

FAQ on integer programming

Maximizing the cost done by setting C‘=-C

 Integer programming is NP-complete.

 Running times increase exponentially with problem size

 Commercial solvers can solve for thousands of variables

 IP models are a good starting point for modelling

even if in the end heuristics have to be used to

solve them.

21TSR

IP model for HW/SW partitioning
Notation:

Index set I denotes task graph nodes.

Index set L denotes task graph node types
e.g. square root, DCT or FFT

Index set KH denotes hardware component types.
e.g. hardware components for the DCT or the FFT.

Index set J of hardware component instances

Index set KP denotes processors.
All processors are assumed to be of the same type

T is a mapping from task graph nodes to their types

T: I L

Therefore:

 Xi,k: =1 if node vi is mapped to HW component type k  KH

 Yi,k: =1 if node vi is mapped to processor k  KP

 NY ℓ,k =1 if at least one node of type ℓ is mapped to processor k  KP

22TSR

Constraints
Operation assignment constraints

 
 


KHk KPk

kiki YXIi 1: ,,

All task graph nodes have to be mapped either in software or in hardware.

Variables are assumed to be integers.

Additional constraints to guarantee they are either 0 or 1:

1:: ,  kiXKHkIi

1:: ,  kiYKPkIi

23TSR

Operation assignment constraints

 ℓ L,  i:T(vi)=cℓ,  k  KP: NY ℓ,k  Yi,k

For all types ℓ of operations and for all nodes i of

this type:

 if i is mapped to some processor k, then that processor

must implement the functionality of ℓ.

Decision variables must also be 0/1 variables:

 ℓ L,  k  KP: NY ℓ,k  1.

24TSR

Resource & design constraints

•  k  KH, the cost for components of that type should not exceed its
maximum.

•  k  KP, the cost for associated data storage area should not exceed
its maximum.

•  k  KP the cost for storing instructions should not exceed its
maximum.

• The total cost (k  KH) of HW components should not exceed its
maximum

• The total cost of data memories (k  KP) should not exceed its maximum

• The total cost instruction memories (k  KP) should not exceed its
maximum

TSR

Scheduling

Processor

p1 ASIC h1

FIR1 FIR2

v1 v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

e3 e4

t

p1

v8 v7

v7 v8

or

...

... ...

...

t

c1

or

...

... ...

...e3

e3

e4

e4t

FIR2 on h1

v4 v3

v3 v4

or

...

... ...

...

Communication channel c1

26TSR

Scheduling / precedence constraints

For all nodes vi1 and vi2 that are potentially mapped to

the same processor or hardware component instance,

introduce a binary decision variable bi1,i2 with

bi1,i2=1 if vi1 is executed before vi2 and

= 0 otherwise.

Define constraints of the type

(end-time of vi1)  (start time of vi2) if bi1,i2=1 and

(end-time of vi2)  (start time of vi1) if bi1,i2=0

Ensure that the schedule for executing operations is

consistent with the precedence constraints in the task

graph.

Timing constraints need to be met

27TSR

Example
 HW types H1, H2 and H3

with costs of 20, 25, and 30.

 Processors of type P.

 Tasks T1 to T5.

 Execution times:

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

28TSR

Operation assignment constraint

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

X1,1+Y1,1=1 (task 1 mapped to H1 or to P)

X2,2+Y2,1=1

X3,3+Y3,1=1

X4,3+Y4,1=1

X5,1+Y5,1=1

 
 


KHk KPk

kiki YXIi 1: ,,

29TSR

Operation assignment constraint

Assume types of tasks are ℓ =1, 2, 3, 3, and 1.

 ℓ L,  i:T(vi)=c ℓ,  k  KP: NY ℓ,k  Yi,k

Functionality 3 to be
implemented on

processor if node 4 is
mapped to it.

30TSR

Other equations
Time constraint: Application specific hardware
required for time constraints under 100 time
units.

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Cost function:

C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) + cost(memory)

31TSR

Result
For a time constraint of 100 time units and cost(P)<cost(H3):

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Solution:
T1  H1

T2  H2

T3  P

T4  P

T5  H1

32TSR

Separation of scheduling and partitioning

Combined scheduling/partitioning very complex;

 Heuristic: Compute estimated schedule

Perform partitioning for estimated schedule

Perform final scheduling

If final schedule does not meet time constraint,

go to 1 using a reduced overall timing constraint.

2nd Iteration

t

specification

Actual execution time

1st Iteration

approx. execution time

t

Actual execution time

approx. execution time

New specification

33TSR

Codesign Verification

Run SW on the native

processor

Simulate HW (Verilog)

Verilog Simulator

Application-specific

hardware

Hardware

Process 1

Hardware

Process 1

Bus interface

Verilog PLI

Software

process 1

Software

process 2

Unix sockets

34TSR

SpecC

model

ProridiumTSR

Gate Count Lines of Code

Derived from

Foresight

I/O Count Number Up

Fab. Cost

Test Cost

Die Size

SCP Cost

HW SW

Dev. Cost Dev. Schedule

Maintenance Cost

Cost Analysis

(Ghost)

System Performance

Metrics

System

Cost

Outputs

Co-Design Process

System

Requirements

Capture

Functional

Behavior Block

Diagram

State

Machines

Mini-

specs

Library

Elements

User-

defined

Reusables

Resource

Specification

Architecture

Block Diagram

Data Flow

Monitors

System

Characteristics

Foresight Co-Design

Integrated Toolset

36TSR

Industry Initiatives
 Seamless Co-Verification Environment-CVE

 Proridium (Foresight)

 Customers: Boeing, Microsoft, Raytheon, Oracle etc.

 CoWare (now in Synopsys)

 Cosimulation and IP integration

 One of founding members of SystemC (language)

 New FPGA synthesis tools incorporate CPUs

 Platform-based design

 Platform: predesigned architecture that designers can use

to build systems for a given range of applications

37TSR

Summary

HW/SW codesign is complicated and limited

by performance estimates

Algorithms are in research and development,

much of the work is still done by expert designers

38TSR

Sources and References

 Peter Marwedel, “Embedded Systems

Design,” 2004.

 Giovanni De Micheli @ EPFL

 Vincent Mooney @ Gatech

 Nikil Dutt @ UCI

