

Page 1 of 21

Operating System Lab

Exp 3 &4 : Bash scripting

$ which bash

#!/bin/bash

declare STRING variable

STRING="Hello World"

#print variable on a screen

echo $STRING

Navigate to a directory where your hello_world.sh is located and make the file
executable:

$ chmod +x hello_world.sh

Now you are ready to execute your first bash script:

./hello_world.sh

2. Simple Backup bash shell script

#!/bin/bash

tar -czf myhome_directory.tar.gz /home/linuxconfig

3. Variables

In this example we declare simple bash variable and print it on the screen (stdout) with
echo command.

Page 2 of 21

#!/bin/bash

 STRING="HELLO WORLD!!!"

 echo $STRING

Your backup script and variables:

#!/bin/bash

 OF=myhome_directory_$(date +%Y%m%d).tar.gz

 tar -czf $OF /home/linuxconfig

3.1. Global vs. Local variables

#!/bin/bash

#Define bash global variable

#This variable is global and can be used anywhere in this bash

script

VAR="global variable"

function bash {

#Define bash local variable

#This variable is local to bash function only

local VAR="local variable"

echo $VAR

}

echo $VAR

bash

Note the bash global variable did not change

"local" is bash reserved word

echo $VAR

4. Passing arguments to the bash script

#!/bin/bash

use predefined variables to access passed arguments

#echo arguments to the shell

echo $1 $2 $3 ' -> echo $1 $2 $3'

We can also store arguments from bash command line in special

array

Page 3 of 21

args=("$@")

#echo arguments to the shell

echo ${args[0]} ${args[1]} ${args[2]} ' -> args=("$@"); echo

${args[0]} ${args[1]} ${args[2]}'

#use $@ to print out all arguments at once

echo $@ ' -> echo $@'

use $# variable to print out

number of arguments passed to the bash script

echo Number of arguments passed: $# ' -> echo Number of

arguments passed: $#'

/arguments.sh Bash Scripting Tutorial

5. Executing shell commands with bash

#!/bin/bash

use backticks " ` ` " to execute shell command

echo `uname -o`

executing bash command without backticks

echo uname -o

6. Reading User Input

#!/bin/bash

echo -e "Hi, please type the word: \c "

read word

echo "The word you entered is: $word"

echo -e "Can you please enter two words? "

read word1 word2

echo "Here is your input: \"$word1\" \"$word2\""

echo -e "How do you feel about bash scripting? "

read command now stores a reply into the default build-in

variable $REPLY

read

echo "You said $REPLY, I'm glad to hear that! "

echo -e "What are your favorite colours ? "

Page 4 of 21

-a makes read command to read into an array

read -a colours

echo "My favorite colours are also ${colours[0]}, ${colours[1]}

and ${colours[2]}:-)"

8. Arrays

8.1. Declare simple bash array

#!/bin/bash

#Declare array with 4 elements

ARRAY=('Debian Linux' 'Redhat Linux' Ubuntu Linux)

get number of elements in the array

ELEMENTS=${#ARRAY[@]}

echo each element in array

for loop

for ((i=0;i<$ELEMENTS;i++)); do

 echo ${ARRAY[${i}]}

done

8.2. Read file into bash array

#!/bin/bash

Declare array

declare -a ARRAY

Link filedescriptor 10 with stdin

exec 10<&0

stdin replaced with a file supplied as a first argument

exec < $1

let count=0

while read LINE; do

 ARRAY[$count]=$LINE

 ((count++))

done

Page 5 of 21

echo Number of elements: ${#ARRAY[@]}

echo array's content

echo ${ARRAY[@]}

restore stdin from filedescriptor 10

and close filedescriptor 10

exec 0<&10 10<&-

Bash script execution with an output:

linuxconfig.org $ cat bash.txt

Bash

Scripting

Tutorial

Guide

linuxconfig.org $./bash-script.sh bash.txt

Number of elements: 4

Bash Scripting Tutorial Guide

linuxconfig.org $

9. Bash if / else / fi statements

9.1. Simple Bash if/else statement

Please note the spacing inside the [and] brackets! Without the spaces, it won't work!

#!/bin/bash

directory="./BashScripting"

bash check if directory exists

if [-d $directory]; then

 echo "Directory exists"

else

 echo "Directory does not exists"

fi

9.2. Nested if/else

Page 6 of 21

#!/bin/bash

Declare variable choice and assign value 4

choice=4

Print to stdout

 echo "1. Bash"

 echo "2. Scripting"

 echo "3. Tutorial"

 echo -n "Please choose a word [1,2 or 3]? "

Loop while the variable choice is equal 4

bash while loop

while [$choice -eq 4]; do

read user input

read choice

bash nested if/else

if [$choice -eq 1] ; then

 echo "You have chosen word: Bash"

else

 if [$choice -eq 2] ; then

 echo "You have chosen word: Scripting"

 else

 if [$choice -eq 3] ; then

 echo "You have chosen word: Tutorial"

 else

 echo "Please make a choice between 1-3

!"

 echo "1. Bash"

 echo "2. Scripting"

 echo "3. Tutorial"

 echo -n "Please choose a word [1,2 or

3]? "

 choice=4

 fi

 fi

fi

done

Page 7 of 21

 10. Bash Comparisons

10.1. Arithmetic Comparisons

-lt <

-gt >

-le <=

-ge >=

-eq ==

-ne !=

#!/bin/bash

declare integers

NUM1=2

NUM2=2

if [$NUM1 -eq $NUM2]; then

 echo "Both Values are equal"

else

 echo "Values are NOT equal"

fi

#!/bin/bash

declare integers

NUM1=2

NUM2=1

if [$NUM1 -eq $NUM2]; then

 echo "Both Values are equal"

else

 echo "Values are NOT equal"

fi

Page 8 of 21

#!/bin/bash

declare integers

NUM1=2

NUM2=1

if [$NUM1 -eq $NUM2]; then

 echo "Both Values are equal"

elif [$NUM1 -gt $NUM2]; then

 echo "NUM1 is greater then NUM2"

else

 echo "NUM2 is greater then NUM1"

fi

10.2. String Comparisons

= equal

!= not equal

< less then

> greater then

-n s1 string s1 is not empty

-z s1 string s1 is empty

#!/bin/bash

#Declare string S1

S1="Bash"

#Declare string S2

S2="Scripting"

if [$S1 = $S2]; then

 echo "Both Strings are equal"

else

 echo "Strings are NOT equal"

fi

Page 9 of 21

#!/bin/bash

#Declare string S1

S1="Bash"

#Declare string S2

S2="Bash"

if [$S1 = $S2]; then

 echo "Both Strings are equal"

else

 echo "Strings are NOT equal"

fi

11. Bash File Testing

-b filename Block special file

-c filename Special character file

-d directoryname Check for directory existence

-e filename Check for file existence

-f filename Check for regular file existence not a directory

-G filename Check if file exists and is owned by effective group ID.

-g filename true if file exists and is set-group-id.

-k filename Sticky bit

-L filename Symbolic link

-O filename True if file exists and is owned by the effective user id.

-r filename Check if file is a readable

-S filename Check if file is socket

-s filename Check if file is nonzero size

-u filename Check if file set-ser-id bit is set

Page 10 of 21

-w filename Check if file is writable

-x filename Check if file is executable

#!/bin/bash

file="./file"

if [-e $file]; then

 echo "File exists"

else

 echo "File does not exists"

fi

Similarly for example we can use while loop to check if file does not exists. This script
will sleep until file does exists. Note bash negator "!" which negates the -e option.

#!/bin/bash

while [! -e myfile]; do

Sleep until file does exists/is created

sleep 1

done

12. Loops

12.1. Bash for loop

#!/bin/bash

bash for loop

for f in $(ls /var/); do

 echo $f

done

Running for loop from bash shell command line:

$ for f in $(ls /var/); do echo $f; done

Page 11 of 21

12.2. Bash while loop

#!/bin/bash

COUNT=6

bash while loop

while [$COUNT -gt 0]; do

 echo Value of count is: $COUNT

 let COUNT=COUNT-1

done

12.3. Bash until loop

#!/bin/bash

COUNT=0

bash until loop

until [$COUNT -gt 5]; do

 echo Value of count is: $COUNT

 let COUNT=COUNT+1

done

12.4. Control bash loop with

Here is a example of while loop controlled by standard input. Until the redirection chain
from STDOUT to STDIN to the read command exists the while loop continues.

#!/bin/bash

This bash script will locate and replace spaces

in the filenames

DIR="."

Controlling a loop with bash read command by redirecting

STDOUT as

a STDIN to while loop

find will not truncate filenames containing spaces

find $DIR -type f | while read file; do

using POSIX class [:space:] to find space in the filename

if [["$file" = *[[:space:]]*]]; then

substitute space with "_" character and consequently rename

the file

Page 12 of 21

mv "$file" `echo $file | tr ' ' '_'`

fi;

end of while loop

done

13. Bash Functions

!/bin/bash

BASH FUNCTIONS CAN BE DECLARED IN ANY ORDER

function function_B {

 echo Function B.

}

function function_A {

 echo $1

}

function function_D {

 echo Function D.

}

function function_C {

 echo $1

}

FUNCTION CALLS

Pass parameter to function A

function_A "Function A."

function_B

Pass parameter to function C

function_C "Function C."

function_D

14. Bash Select

#!/bin/bash

PS3='Choose one word: '

bash select

select word in "linux" "bash" "scripting" "tutorial"

do

Page 13 of 21

 echo "The word you have selected is: $word"

Break, otherwise endless loop

 break

done

exit 0

15. Case statement conditional

#!/bin/bash

echo "What is your preferred programming / scripting language"

echo "1) bash"

echo "2) perl"

echo "3) phyton"

echo "4) c++"

echo "5) I do not know !"

read case;

#simple case bash structure

note in this case $case is variable and does not have to

be named case this is just an example

case $case in

 1) echo "You selected bash";;

 2) echo "You selected perl";;

 3) echo "You selected phyton";;

 4) echo "You selected c++";;

 5) exit

esac

16. Bash quotes and quotations

Quotations and quotes are important part of bash and bash scripting. Here are some
bash quotes and quotations basics.

16.1. Escaping Meta characters

Before we start with quotes and quotations we should know something about escaping
meta characters. Escaping will suppress a special meaning of meta characters and
therefore meta characters will be read by bash literally. To do this we need to use
backslash "\" character. Example:

Page 14 of 21

#!/bin/bash

#Declare bash string variable

BASH_VAR="Bash Script"

echo variable BASH_VAR

echo $BASH_VAR

#when meta character such us "$" is escaped with "\" it will be

read literally

echo \$BASH_VAR

backslash has also special meaning and it can be suppressed

with yet another "\"

echo "\\"

16.2. Single quotes

Single quotes in bash will suppress special meaning of every meta characters.
Therefore meta characters will be read literally. It is not possible to use another single
quote within two single quotes not even if the single quote is escaped by backslash.

#!/bin/bash

 #Declare bash string variable

 BASH_VAR="Bash Script"

 # echo variable BASH_VAR

 echo $BASH_VAR

 # meta characters special meaning in bash is suppressed when

using single quotes

 echo '$BASH_VAR "$BASH_VAR"'

16.3. Double Quotes

Double quotes in bash will suppress special meaning of every meta characters except
"$", "\" and "`". Any other meta characters will be read literally. It is also possible to use
single quote within double quotes. If we need to use double quotes within double quotes
bash can read them literally when escaping them with "\". Example:

Page 15 of 21

#!/bin/bash

#Declare bash string variable

BASH_VAR="Bash Script"

echo variable BASH_VAR

echo $BASH_VAR

meta characters and its special meaning in bash is

suppressed when using double quotes except "$", "\" and "`"

echo "It's $BASH_VAR and \"$BASH_VAR\" using backticks: `date`"

16.4. Bash quoting with ANSI-C style

There is also another type of quoting and that is ANSI-C. In this type of quoting
characters escaped with "\" will gain special meaning according to the ANSI-C standard.

\a alert (bell) \b Backspace

\e an escape character \f form feed

\n newline \r carriage return

\t horizontal tab \v vertical tab

\\ backslash \` single quote

\nnn
octal value of characters (see
[http://www.asciitable.com/ ASCII
table])

\xnn
hexadecimal value of characters (
see [http://www.asciitable.com/
ASCII table])

The syntax fo ansi-c bash quoting is: $'' . Here is an example:

#!/bin/bash

as a example we have used \n as a new line, \x40 is hex value

for @

and \56 is octal value for .

Page 16 of 21

echo $'web: www.linuxconfig.org\nemail:

web\x40linuxconfig\56org'

17. Arithmetic Operations

17.1. Bash Addition Calculator Example

#!/bin/bash

let RESULT1=$1+$2

echo $1+$2=$RESULT1 ' -> # let RESULT1=$1+$2'

declare -i RESULT2

RESULT2=$1+$2

echo $1+$2=$RESULT2 ' -> # declare -i RESULT2; RESULT2=$1+$2'

echo $1+$2=$(($1 + $2)) ' -> # $(($1 + $2))'

17.2. Bash Arithmetics

#!/bin/bash

echo '### let ###'

bash addition

let ADDITION=3+5

echo "3 + 5 =" $ADDITION

bash subtraction

let SUBTRACTION=7-8

echo "7 - 8 =" $SUBTRACTION

bash multiplication

let MULTIPLICATION=5*8

echo "5 * 8 =" $MULTIPLICATION

bash division

let DIVISION=4/2

echo "4 / 2 =" $DIVISION

bash modulus

Page 17 of 21

let MODULUS=9%4

echo "9 % 4 =" $MODULUS

bash power of two

let POWEROFTWO=2**2

echo "2 ^ 2 =" $POWEROFTWO

echo '### Bash Arithmetic Expansion ###'

There are two formats for arithmetic expansion: $[expression

]

and $((expression #)) its your choice which you use

echo 4 + 5 = $((4 + 5))

echo 7 - 7 = $[7 - 7]

echo 4 x 6 = $((3 * 2))

echo 6 / 3 = $((6 / 3))

echo 8 % 7 = $((8 % 7))

echo 2 ^ 8 = $[2 ** 8]

echo '### Declare ###'

echo -e "Please enter two numbers \c"

read user input

read num1 num2

declare -i result

result=$num1+$num2

echo "Result is:$result "

bash convert binary number 10001

result=2#10001

echo $result

bash convert octal number 16

result=8#16

echo $result

bash convert hex number 0xE6A

result=16#E6A

echo $result

Page 18 of 21

17.3. Round floating point number

#!/bin/bash

get floating point number

floating_point_number=3.3446

echo $floating_point_number

round floating point number with bash

for bash_rounded_number in $(printf %.0f

$floating_point_number); do

echo "Rounded number with bash:" $bash_rounded_number

done

17.4. Bash floating point calculations

#!/bin/bash

Simple linux bash calculator

echo "Enter input:"

read userinput

echo "Result with 2 digits after decimal point:"

echo "scale=2; ${userinput}" | bc

echo "Result with 10 digits after decimal point:"

echo "scale=10; ${userinput}" | bc

echo "Result as rounded integer:"

echo $userinput | bc

18. Redirections

18.1. STDOUT from bash script to STDERR

#!/bin/bash

 echo "Redirect this STDOUT to STDERR" 1>&2

To prove that STDOUT is redirected to STDERR we can redirect script's output to file:

18.2. STDERR from bash script to STDOUT

Page 19 of 21

#!/bin/bash

 cat $1 2>&1

To prove that STDERR is redirected to STDOUT we can redirect script's output to file:

18.3. stdout to screen

The simple way to redirect a standard output (stdout) is to simply use any command,
because by default stdout is automatically redirected to screen. First create a file "file1":

$ touch file1

$ ls file1

file1

As you can see from the example above execution of ls command produces STDOUT
which by default is redirected to screen.

18.4. stdout to file

The override the default behavior of STDOUT we can use ">" to redirect this output to
file:

$ ls file1 > STDOUT

$ cat STDOUT

file1

18.5. stderr to file

By default STDERR is displayed on the screen:

$ ls

file1 STDOUT

$ ls file2

ls: cannot access file2: No such file or directory

Page 20 of 21

In the following example we will redirect the standard error (stderr) to a file and stdout
to a screen as default. Please note that STDOUT is displayed on the screen, however
STDERR is redirected to a file called STDERR:

$ ls

file1 STDOUT

$ ls file1 file2 2> STDERR

file1

$ cat STDERR

ls: cannot access file2: No such file or directory

18.6. stdout to stderr

It is also possible to redirect STDOUT and STDERR to the same file. In the next
example we will redirect STDOUT to the same descriptor as STDERR. Both STDOUT
and STDERR will be redirected to file "STDERR_STDOUT".

$ ls

file1 STDERR STDOUT

$ ls file1 file2 2> STDERR_STDOUT 1>&2

$ cat STDERR_STDOUT

ls: cannot access file2: No such file or directory

file1

File STDERR_STDOUT now contains STDOUT and STDERR.

18.7. stderr to stdout

The above example can be reversed by redirecting STDERR to the same descriptor as
SDTOUT:

$ ls

file1 STDERR STDOUT

$ ls file1 file2 > STDERR_STDOUT 2>&1

$ cat STDERR_STDOUT

Page 21 of 21

ls: cannot access file2: No such file or directory

file1

18.8. stderr and stdout to file

Previous two examples redirected both STDOUT and STDERR to a file. Another way to
achieve the same effect is illustrated below:

$ ls

file1 STDERR STDOUT

$ ls file1 file2 &> STDERR_STDOUT

$ cat STDERR_STDOUT

ls: cannot access file2: No such file or directory

file1

or

ls file1 file2 >& STDERR_STDOUT

$ cat STDERR_STDOUT

ls: cannot access file2: No such file or directory

file1

