
Page 1 of 3 
 

Operating System Lab 
 

Exp 8 - part 1 :   Shared Memory 

 
 

 
1. Objectives: 

    Be familiar with the concept of shared memory. 
   Learn the implementation of shared memory using bounded buffer shared memory. 

 
2. Introduction: 

 
1-  A  general  scheme  of  using  shared  memory  between  producer  and  consumer 
processes: 
For a producer, it should be started before any consumer. The producer should perform 
the following tasks: 

 Ask for a shared memory with a memory key and memorize the returned shared 
memory ID. 
    This is performed by system call shmget( ). 
    Attach  this  shared  memory to  the  producer’s  address  space with  system  call 
shmat(). 
    Initialize the shared memory, if necessary. 
    Do something and wait for all consumer’s completion. 
    Detach the shared memory with system call shmdt( ). 
    Remove the shared memory with system call shmctl( ). 
 
For the consumer part, the procedure is almost the same: 
 Ask for a shared memory with the same memory key and memorize the returned 
shared memory ID. 
    Attach this shared memory to the consumer's address space. 
    Use the memory. 
    Detach all shared memory segments, if necessary. 

    Exit. 
 
2- Asking for a Shared Memory Segment - shmget( ) : 
The system call that requests a shared memory segment is shmget( ). It is defined as 
follows: 

 
shm_id = shmget ( 
key_t k, /* the key for the segment */ int size, /* the size of the 
segment */ int flag 
); /* create/use flag */



Page 2 of 3 
 

In the above definition, k is of type key_t or int. It is the numeric key to be assigned to 
the returned shared memory segment. size is the size of the requested shared memory. 
The purpose of flag is to specify the way that the shared memory will be used. For our 
purpose, only the following two values are important: 
IPC_CREAT | 0666 for a producer (i.e., creating and granting read and write access to 
the  producer)  0666  for  any  consumer  (i.e.,  granting  read  and  write  access  to  the 
consumer) 

 
If shmget( ) can successfully get the requested shared memory, its function value is a 
non-negative integer, the shared memory ID; otherwise, the function value is negative. 

 
 
 
3- Attaching a Shared Memory Segment - shmat( ) : 
Suppose process 1, a producer, uses shmget( ) to request a shared memory segment 
successfully. That shared memory segment exists somewhere in the memory, but is not 
yet part of the address space of process 1. To make a requested shared memory segment 
part of the address space of a process, use shmat( ). 
After a shared memory ID is returned, the next step is to attach it to the address space of a 
process. This is done with system call shmat(). The use of shmat( ) is as follows: 

 

 
shm_ptr = shmat ( 
int shm_id, /* shared memory ID */ 
char *ptr, /* a character pointer */ 
int flag 
); /* access flag */ 

 
 
System call shmat( ) accepts a shared memory ID, shm_id, and attaches the indicated 
shared memory to the program's address space. The returned value is a pointer of type 
(void *) to the attached shared memory. Thus, casting is usually necessary. If this call is 
unsuccessful, the return value is -1. Normally, the second parameter is NULL. If the flag 
is SHM_RDONLY, this shared memory is attached as a read-only memory; otherwise, it 
is readable and writable. 

 
4- Detaching and Removing a Shared Memory Segment - shmdt( ) and shmctl( ): 
System call shmdt( ) is used to detach a shared memory. After a shared memory is 
detached, it cannot be used. However, it is still there and can be re-attached back to a 
process's address space, perhaps at a different address. The only argument to shmdt( ) is 
the shared memory address returned by shmat( ). Thus, the following code detaches the 
shared memory from a program: 

 
shmdt (shm_ptr); 

 
where shm_ptr is the pointer to the shared memory. This pointer is returned by shmat() 
when the shared memory is attached. If the detach operation fails, the returned function 
value is non-zero. To remove a shared memory segment, use the following code:



Page 3 of 3 
 

shmctl (shm_id, IPC_RMID, NULL); 
 
 
 
Where  shm_id  is  the  shared  memory  ID.  IPC_RMID  indicates  this  is  a  remove 
operation. Note that after the removal of a shared memory segment, if you want to use it 
again, you should use shmget( ) followed by shmat( ). 

 
5- Example 
 

//The producer process 
#include <sys/ipc.h> 
#include <sys/shm.h> 
#include <stdio.h> 
void main() 

{ 
key_t key= 1234; 
int shm_id; 

char *shm; 
/* Get shared memory ID */ 
shm_id = shmget(key,10*sizeof(char),0644|IPC_CREAT); 

/* Attach to shared memory */ 
shm = (char*)shmat(shm_id,(void*)0,0); 
strcpy(shm,"Hello"); 

} 
 
 

//Consumer process 
#include <sys/ipc.h> 
#include <sys/shm.h> 
#include <stdio.h> 
void main() { 

key_t key=1234; 
int shm_id; 
char *shm; 
char buffer[10]; 
/* Get shared memory ID */ 
shm_id = shmget(key,10*sizeof(char),0); 
/* Attach to shared memory */ 
shm = (char*)shmat(shm_id,(void*)0,0); 
/* Print the message from Shm to buffer */ 
strcpy(buffer,shm); 
/* Print buffer to the screen */ 
printf("Read from shared memory: %s", buffer); 

} 


