Solutions to "Introduction to Algorithms, 3rd edition"

Jian Li (yinyanghu)

June 9, 2014

© 2014 Jian Li (yinyanghu) All rights reserved.

This work is **FREE** and may be distributed and/or modified under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License(@)(\$).

Acknowledgements

ii

Contents

Ι	Foundations													
1	The Role of Algorithms in Computing													
	1.1	Comparison of running times	4											
2	Getting Started													
	2.1	Insertion sort on small arrays in merge sort	6											
		2.1.1 a	6											
		2.1.2 b	6											
		2.1.3 c	7											
		2.1.4 d	7											
	2.2	Correctness of bubblesort	8											
		2.2.1 a	8											
		2.2.2 b	8											
		2.2.3 c	8											
		2.2.4 d	9											
	2.3	Correctness of Horner's rule	10											
		2.3.1 a	10											
		2.3.2 b	10											
		2.3.3 c	10											
		2.3.4 d	11											
	2.4	Inversions	12											
		2.4.1 a	12											
		2.4.2 b	12											
		2.4.3 c	12											
		2.4.4 d	12											

iv		CONTENTS
Π	Sorting and Order Statistics	15
III	Data Structures	17

Part I Foundations

Chapter 1

The Role of Algorithms in Computing

$\frac{\log(n)}{\sqrt{N}} = \frac{2^{10^6}}{(10^6)^2} \frac{2^{10^6} \cdot 60}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 30}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 365}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 36}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 36}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 36}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 36}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 36}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24 \cdot 36}{(10^6)^2} \frac{2^{10^6} \cdot 60 \cdot 60 \cdot 24$	
$\sqrt{N} = (10^{6})^{2} = (10^{6} \cdot 60)^{2} = (10^{6} \cdot 60)^{2} = (10^{6} \cdot 60 \cdot 60)^{2} = (10^{6}$	
	$(100)^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
n^2 1,000 7,746 60,000 293,939 1.6 · 10 ⁶ 5.6 · 10 ⁶ 5.6 · 10 ⁷	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
2^n 20 26 32 36 41 45 51	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Table 1.1: Solution to Problem 1.1

1.1 Comparison of running times

Table 1.1 shows the solution. We assume the base of log(n) is 2. And we also assume that there are 30 days in a month and 365 days in a year.

Note Thanks to Valery Cherepanov(Qumeric) who reported an error in the previous edition of solution.

Chapter 2

Getting Started

2.1 Insertion sort on small arrays in merge sort

2.1.1 a

The insertion sort can sort each sublist with length k in $\Theta(k^2)$ worst-case time. So sorting all n/k sublists could be completed in $\Theta(k^2 \cdot n/k) = \Theta(nk)$ worst-case time.

2.1.2 b

Naive We could easily find a naive method. Let us try to think n/k sublists as n/k sorted queues. We scan all head elements of n/k queues, and find the smallest element, then pop it from the queue. The running time of each scan is $\Theta(n/k)$. And we need pop all n elements from n/k queues. So this naive method costs $n \cdot \Theta(n/k) = \Theta(n^2/k)$ time.

Heap Sort If you do not know what the Heap Sort is, you could temporarily skip this method before you read **Chapter 6: Heapsort**.

Similarly, we could use a min-heap to maintain all head elements. There are at most n/k elements in the heap, so each *INSERT* and *EXTRACT-MIN* operation takes $\mathcal{O}(\log(n/k))$ worst-case time. And every element enters and leaves the heap just once. Therefore, the overall worst-case running time is $n \cdot \mathcal{O}(\log(n/k)) = \mathcal{O}(n \log(n/k))$.

Merge Sort We could use the same procedure in Merge Sort, except the base case is a sublist with k elements instead. We get the recurrence

$$T(m) = \begin{cases} \Theta(1) & \text{if } m \le k \\ 2T(m/2) + \Theta(m) & \text{otherwise} \end{cases}$$

Draw a recursion tree, and get the result

$$T(n) = 1/2 \cdot n/k \cdot 2k + 1/4 \cdot n/k \cdot 4k + \dots + n$$
$$= n \log(n/k)$$

Therefore, the worst-case running time is $\Theta(n \log(n/k))$.

2.1.3 c

The largest value of k is $\Theta(\log(n))$. The running time is $\Theta(nk+n\log(n/k)) = \Theta(n\log(n) + n\log(n/\log(n))) = \Theta(n\log(n))$, which has the same running time as standard merge sort.

2.1.4 d

Since k is the length of the sublist, we should choose the largest k that Insertion Sort can sort faster than Merge Sort on the list with length k.

In practice, Timsort, a hybrid sorting algorithm, use the exactly same idea with some complicated techniques.

2.2 Correctness of bubblesort

2.2.1 a

We also need to prove that A' is a permutation of A.

2.2.2 b

Lines 2-4 maintain the following loop invariant:

At the start of each iteration of the **for** loop of lines 2-4, A[j] is the smallest element of A[j..A.length]. Moreover, A[j..A.length]is a permutation of the initial A[j..A.length].

Initialization Prior to the first iteration of the loop, we have j = A.length, so that the subarray A[j..A.length] have only one element, A[A.length]. Trivially, A[A.length] is the smallest element as well as a permutation of itself.

Maintenance To see that each iteration maintains the loop invariant, we assume that A[j] is the smallest element of A[j..A.length]. For next iteration(decrementing j), if A[j-1] < A[j], i.e. A[j-1] is the smallest element of A[j-1..A.length], we have done and skip lines 3-4. Otherwise, lines 3-4 perform the exchange action to maintain the loop invariant. Also, it is still a valid permuation, since we only exchange two adjacent elements.

Termination At termination, j = i. By the loop invariant, A[i] is the smallest element of A[i..A.length] and A[i..A.length] is a permutation of the initial A[i..A.length].

2.2.3 c

Lines 1-4 maintain the following loop invariant:

At the start of each iteration of the **for** loop lines 1-4, the subarray A[1..i - 1] contains the smallest i - 1 elements of the initial array A[1..A.length]. And this subarray is sorted, i.e. $A[1] \leq A[2] \leq \cdots \leq A[i - 1]$.

Initialization Initially, i = 1, i.e. A[1..i-1] is empty. The loop invariant trivially holds.

Maintenance By loop invariant, A[1..i-1] contains the smallest i-1 elements and it is sorted. And lines 2-4 perform the action to move the smallest element of the subarray A[i..A.length] into A[i]. So incrementing i reestablishes the loop invariant for the next iteration.

Termination At termination, i = A.length. By the loop invariant, the subarray A[1..A.length - 1] contains the smallest A.length - 1 elements. Also, this subarray is sorted. So the element A[A.length] must be the largest element and the array A[1..A.length] is sorted.

2.2.4 d

The worst-case running time of Bubble Sort is $\Theta(n^2)$, which is the same as Insertion Sort.

2.3 Correctness of Horner's rule

2.3.1 a

The running time is $\Theta(n)$.

2.3.2 b

Naive-Polynomial-Evaluation shows the pseudocode of naive polynomialevaluation algorithm. The running time is $\Theta(n^2)$.

NAIVE-POLYNOMIAL-EVALUATION (P(x), x)

 $1 \quad y = 0$ $2 \quad \text{for } i = 0 \text{ to } n$ $3 \quad t = 1$ $4 \quad \text{for } j = 1 \text{ to } i$ $5 \quad t = t \cdot x$ $6 \quad y = y + t \cdot a_i$ $7 \quad \text{return } y$

2.3.3 c

Initialization Prior to the first iteration of the loop, we have i = n, so that $\sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k = \sum_{k=0}^{-1} a_{k+n+1} = 0$ consistent with k = 0. So loop invariant holds.

Maintenance By loop invariant, we have $y = \sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k$. Then lines 2-3 perform that

$$y' = a_i + x \cdot y$$

= $a_i + x \cdot (\sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k)$
= $a_i + \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^{k+1}$
= $\sum_{k=0}^{n-i} a_{k+i} x^k$

So decrementing i reestablishes the loop invariant for the next iteration.

10

Termination At termination, i = -1. By loop invariant, we get the result $y = \sum_{k=0}^{n} a_k x^k$.

2.3.4 d

The given code fragment correctly evaluates a polynomial characterized by the coefficients a_0, a_1, \cdots, a_n , i.e.

$$y = \sum_{k=0}^{n} a_k x^k = P(x)$$

2.4 Inversions

2.4.1 a

(1, 5), (2, 5), (3, 5), (4, 5), (3, 4)

2.4.2 b

Array $\langle n, n-1, n-2, \cdots, 1 \rangle$ has $\binom{n}{2} = n(n-1)/2$ inversions.

2.4.3 c

The running time of Insertion Sort and the number of inversions in the input array are exactly same, since each move action in Insertion Sort eliminates exact one inversion.

2.4.4 d

We could modify the Merge Sort algorithm to count the number of inversions in the array. The key point is that if we find L[i] > R[j], then each element of L[i..](represent the subarray from L[i]) would be as an inversion with R[j], since array L is sorted.

 $COUNTING\mathcal{inversions}$ and $INTER\mathcal{inversions}$ shows the pseudocode of this algorithm.

COUNTING-INVERSIONS(A, left, right)

- $1 \quad inversions = 0$
- 2 if left < right
- 3 $mid = \lfloor (left + right)/2 \rfloor$
- 4 inversions = inversions + COUNTING-INVERSIONS(A, left, mid)
- 5 inversions = inversions + COUNTING-INVERSIONS(A, mid + 1, right)
- 6 inversions = inversions + INTER-INVERSIONS(A, left, mid, right)
- 7 return inversions

INTER-INVERSIONS(A, left, mid, right)

 $1 \quad n_1 = mid - left + 1$ 2 $n_2 = right - mid$ 3 let $L[1 \dots n_1 + 1]$ and $R[1 \dots n_2 + 1]$ be new arrays 4 for i = 1 to n_1 5L[i] = A[left + i - 1]6 for i = 1 to n_2 7R[i] = A[mid + i]8 $L[n_1 + 1] = R[n_2 + 1] = \infty$ 9 i = j = 1 $10 \quad inversions = 0$ counted = FALSE11 for k = left to right 12if counted = FALSE and L[i] > R[j]13 $inversions = inversions + n_1 - i + 1$ 1415counted = trueif $L[i] \leq R[j]$ 1617A[k] = L[i]18 i = i + 1else A[k] = R[j]1920j = j + 121counted = FALSE22return inversions

We can call *COUNTING-INVERSIONS*(A, 1, n) to get the number of inversions in the array A. The worst-case running time is the same as Merge Sort, i.e. $\Theta(n \log(n))$.

Part II

Sorting and Order Statistics

Part III Data Structures

List of Figures

List of Tables

1.1	Solution to	o Problem	1.1																						4
-----	-------------	-----------	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---