
1

2

 Table of Content

Experiment 1: 3

Review of PIC Microcontroller & MPLAB IDE

Experiment 2: 13
I/O Interfacing & the 7-Segment Display

Experiment 3: 18

PIC Microcontroller Interrupts

Experiment 4: 23

Controlling the LCD

Experiment 5: 30

Interfacing the Keypad

Experiment 6: 35

Introduction to Android

Experiment 7: 47

Adding UI Components and Events

Experiment 8: 52

Multi Activity Applications, Intents and Filters

Experiment 9: 55

Introduction to PSPICE

Experiment 10: 60

Design and Conduct an Experiment

Appendix A 62

Appendix B 69

3

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 1

Review of PIC Microcontroller & MPLAB IDE

1.1 Objectives:
 Review of the PIC microcontroller.

 Microchip MPLAB Integrated Development Environment (IDE) and the whole process of
building a project, writing simple codes, and compiling the project.

 Code simulation.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly BEFORE coming to the lab.

1.3 Equipment:
 Personal computer with MPLAB software installed on it.

1. Review of PIC Microcontroller:

1.1: PIC Features:
 Only 35 single word instructions

 Operating speed: DC - 20 MHz clock input

 1024 words of program memory

 14-bit wide instruction words

 8-bit wide data bytes

 15 Special Function Hardware registers

 Eight-level deep hardware stack

 I/O pins with individual direction control

 High current sink/source for direct LED drive
 10,000 erase/write cycles Enhanced FLASH

Program memory typical

 Low power, high speed technology

4

1.2 Memory Map:

A memory map shows all available registers (in data memory) of a certain PIC along
with their addresses, it is organized as a table format and has two parts:

1. Upper part: which lists all the Special Function Registers (SFR) in a PIC; these

registers normally have specific functions and are used to control the PIC operation

2. Lower part: which shows the General Purpose Registers (GPR) in a PIC; GPRs
are data memory locations that the user is free to use as he wishes.

Figure 1: Data memory organization

Memory Maps of different PICs are different. Refer to the datasheets for the

appropriate data map

Notice that the memory map is divided into two columns, each column is called a
bank, here we have two banks: bank 0 and bank 1. In order to access bank 1, we have
to switch to that bank first and same for bank 0. But how do we make the switch?
Look at the details of the STATUS register in the figure below, there are two bits RP0 and RP1,
these bits control which bank we are in:

 If RP0 is 0 then we are in bank 0

 If RP1 is 1 then we are in bank 1

We can change RP0 by using the BCF/BSF instructions

 BCF STATUS, RP0 RP0 in STATUS is 0 switch to bank 0

5

 BSF STATUS, RP0 RP0 in STATUS is 1 switch to bank 1

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)
BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

1.2: Starting MPLAB

After Creating new project and writing the code instructions we should build the

project, do so by pressing build

An output window should show: BUILD SUCCEDDED

BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT,

IT SIMPLY MEANS THAT THERE ARE NO SYNTAX ERRORS FOUND, SO

WATCH OUT FOR ANY LOGICAL ERRORS YOU MIGHT MAKE.

Notice that there are several warnings after building the file, warnings do not affect

the execution of the program but they are worth reading. This warning reads: “Found

opcode in column 1”.

Preparing for simulation

Go to View Menu Watch

From the drop out menu choose the registers we want to watch during simulation and

click ADD SFR for each one

Add the following:

 WREG: working register

 TMR0

 INTCON

You should have the following:

6

1. To begin the simulation, we will start by resetting the PIC; do so by pressing the
yellow reset button. A green arrow will appear next to the first instruction.
The green arrow means that the program counter is pointing to this instruction which
has not been executed yet.

Notice the status bar below:

Keep an eye on the value of the program counter (pc: initially 0), see how it

changes as we simulate the program

2. Press the “Step Into” button one at a time and check the Watch window each time an

instruction executes; keep pressing “Step Into” until you reach the NOP instruction then

STOP.
Compare the results as seen in the Watch window with those expected.

1.3 PIC Instruction set:

1.3.1: Movement instructions:

Since most of the PIC instructions (logical and arithmetic) work through the
working register “W”, that is one of their operands must always be the working
register “W; therefore we need the following movement operations:

1. Moving constants to the working register (Loading) Using “MOVLW” instruction.

2. Moving values from the data memory to the working register (Loading) Using

“MOVF” instruction.

3. Moving values from the working register to the data memory (Storing) Using

“MOVF” instruction.

Examples:

1. MOVWF 01
2. MOVLW 10
3. MOVF 2D, 0
4. MOVF 05, 1

; COPIES the value found in W to TMR0
; moves the constant 16 to the working register.
; copies the content of the GPR 2D the working register
; copies the content of PORTA to itself

1.3.2 Conditional instructions:
The PIC 16series instruction set has four instructions which implement a

sort of conditional statement: btfsc , btfss, decfsz and incfsz instructions.
1. btfsc checks for the condition that a bit is clear: 0 (Bit Test File, Skip if Clear)
2. btfss checks for the condition that a bit is set one: 1 (Bit Test File, Skip if Set)
3. Review decfsz and incfsz functions from the datasheet

7

Example 1:
movlw 0x09
btfsc PORTA, 0
movwf Num1
movwf Num2

The above instruction tests bit 0 of PORTA and checks whether it is clear (0) or not

 If it is clear (0), the program will skip “movwf Num1” and will only execute
“movwf Num2” Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “movwf Num1” and then proceed to

“movwf Num2” In the end, both Num1 and Num2 have the value of 0x09

You have seen above that if the condition fails, the code will continue normally
and both instructions will be executed.

1.3.3 Directives:

Directives are not instructions. They are assembler commands that appear in

the source code but are not usually translated directly into machine code. They are

used to control the assembler: its input, output, and data allocation. They are not

converted to machine code (.hex file) and therefore not downloaded to the PIC.

DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE

LABELS YOU DEFINE ARE. SO YOU MUST USE THE NAME AS YOU HAVE
DEFINED IT SINCE IT IS CASE-SENSITIVE.

1- The “END” directive
The “END” command is a directive which tells the MPLAB IDE that we have

finished our program, anything which is written after the end command will not be
executed and any variable names will be undefined.

2- The “EQU” directive
The equate directive is used to assign labels to numeric values. They are used

to DEFINE CONSTANTS or to ASSIGN NAMES TO MEMORY ADDRESSES OR

INDIVIDUAL BITS IN A REGISTER and then use the name instead of the numeric
address as follow:
Var1 equ 01

3- The “INCLUDE” directive
Suppose we are to write a huge program that uses all registers. It will be a

tiresome task to. Therefore we use the include directive. The include directive calls a

file which has all Special Function Registers (SFR) and bit namesdefine using

“equate” statements for you and ready to use, and its syntax is :
#include “PXXXXXXX.inc” where XXXXXX is the PIC part number
Older version of include without #, still supported.

8

4- The “Cblock” directive

The cblock defines variables in sequential locations, see the following declaration:

Cblock 0x35
VarX
VarY
VarZ

endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the
sequential address 0x36 and VarZ the address of 0x37

5- The Origin “org” directive
The origin directive is used to place the instruction which exactly comes after it at the
location it specifies.

Examples:

Org 0x00
Movlw 05
Addwf TMR0
Org 0x13

;This instruction has address 0 in program memory

;This instruction has address 1 in program memory
;WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04,

Changing Instructions’ Locations In The Program Memory Can Lead To

Numerous Errors.

6- The “Banksel” directive
TheBANKSEL directive is a command to the assembler and linker to generate bank
selecting code to set the bank to the bank containing the designated label

Example:

BANKSEL TRISA will be replaced by the assembler, which will automatically know

which bank the register is in and generate the appropriate bank selection instructions:

Bsf STATUS, RP0

Bcf STATUS, RP1

9

FLAGS
The PIC 16 series has three indicator flags found in the STATUS register; they

are the C, DC, and Z flags. See the description below. Not all instructions affect the

flags; some instructions affect some of the flags while others affect all the flags. Refer
to the Appendix at the end of this experiment and review which instructions affect

which flags.

Types of Logical and Arithmetic Instructions and Result Destination

The PIC16 series logical and arithmetic instructions are easy to understand by

just reading the instruction, for from the name you readily know what this instruction

does. There are the ADD, SUB, AND, XOR, IOR (the ordinary Inclusive OR). They

only differ by their operands and the result destination.

Many other instructions of the PIC16 series instruction set are of Type II; refer back

to the Appendix at the end of this experiment for study.

10

1.3.4: Modular Programing:

1- Subroutines:

Subroutines are the closest equivalent to functions

 Subroutines start with a Label giving them a name and end with the
instruction return.
Example:

doMath Process

Instruction 1 Instruction 1

Instruction 2 Instruction 2

. .

. .

Instruction n Calculate

return Instruction 7

 Instruction 8

 return

 Note: This is still one subroutine, no

 matter the number of labels in between

 Subroutines can be written anywhere in the program after the org and before
the end directives

 Subroutines are used in the following way: Call subroutineName

 Subroutines are stored once in the program memory, each time they are used,
they are executed from that location

 Subroutines alter the flow of the program, thus they affect the stack

2- Macros:

Macros are declared in the following way:

macroName macro
Instruction 1

Instruction 2

.

.

Instruction n

endm

 Macros should be declared before writing the code instructions. It is
not recommended to declare macros in the middle of your program.

 Macros are used by only writing their name: macroName

 Each time you use a macro, it will be replaced by its body, refer to the
example below. Therefore, the program will execute sequentially, the flow
of the program will not change. The Stack is not affected

3- Look up tables:
Look up tables are a special type of subroutines which are used to retrieve values

depending on the input they receive. They are invoked in the same as any

subroutine: Call tableName They work on the basis that they change the program

counter value and therefore alter the flow of instruction execution The

11

retlw instruction is a return instruction with the benefit that it returns a value

in W when it is executed.
Syntax:

lookUpTableName

addwf PCL, F ;add the number found in the program counter to PCL

nop
retlw Value
retlw Value

;if W has 1, execute this
;if W has 2, execute this

12

The General structure of a complete program :(Very Important)

;Program Title, description of its function, its inputs and outputs and the programmer name

;**
;* FUNCTION:
;* PROGRAMED BY: ENG. EZYA KHADER

;* INPUTS:

;* OUTPUTS:

;* **

#include "P16F84A.inc"

; --

; Local equates for your own symbolic designators
; --

NUM1 equ 20h ; The NUM1 number is in File 20h

; --

; General Purpose RAM Assignments (Cblock definitions)

; --

cblock 0x30

MY_VAR ; MY_VAR is in File 30h

endc

; --

; Macro Definitions

; --

MY_MACROmacro

Instruction 1

:

nop

endm

; --

; Vector definition

; --
org 0x000

nop

goto Main

INT_Routine org 0x004

goto INT_Routine

; --

; The main Program

; --

Main
Instruction x

Instruction y

Call MY_FUN
:

Instruction z

:
Instruction n

goto Finish

; --

; Sub Routine Definitions

; --

MY_FUN

Instruction w

Instruction xx

return

; --

; The main Program end

13

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 2

I/O Interfacing & the 7-Segment Display

1.1 Objectives:
1. I/O ports of the Microcontroller.

2. Learn how to interface the 7-segment display with PIC Microcontroller.
3. Learn how to distinguish between the common anode and the common

cathode of the 7-segment.
4. Learn the Multiplexing technique of more than one digit of the 7-segment

display.
5. Stressing software and hardware co-design techniques by introducing

the Proteus IDE package.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly BEFORE coming to the lab.

 Review the PIC16F84A data sheet chapters 1, 2 especially (2.1, 2.2, 2.3).

 Review Experiment 3.

 Read Appendix B.(very important)

1.3 Equipments:
 Personal computer with MPLAB and Proteus software installed on it.

1.4 Theoretical backgrounds:

First: Light Emitting Diodes
Light emitting diodes or LEDs are semiconductor light sources used as

indicator lamps in many electronic devices. Modern versions are available across the

visible, ultraviolet and infrared wavelengths, with very high brightness and come in a

variety of shapes and sizes. The physics behind LED operation is covered in the
Electronics I course and will not be offered here.

In order to switch a LED on, forward current must pass from the anode to the
cathode, but how to determine which pin of the LED is anode and which is cathode,
generally, there are two ways:

1. The longer lead is anode, the shorter is cathode.
2. The cathode has a flat surface as shown in Figure 1.
Resistors with values in between 220Ω to 1kΩ are placed in

between the voltage source (often 5 to 9V or even more) and the

anode to limit the current entering the LED or else it will burn. The

lesser the resistor value, the brighter the LED shines (Ohms Law).
In this case these resistors are called current limiting resistors.
Figure 2 shows how to interface a LED to
the PORTC pin 1

14

Second: Seven-Segment Display

A Seven-Segment display, as its name

implies, is composed of seven segments (or

technically of seven LEDs) which can be individually

switched on or off. This ability to individually control

each segment and the layout in which these segments

are distributed allows for the representation of the

numerals and some characters. If the anode ends of all

LEDs are connected together, it is called common

anode display. If the cathodes of all LEDs are

connected together, it is called a

common cathode display. To switch a LED on in a common cathode configuration,

you have to send logic high to the segment pin. Conversely, to switch a LED on in a

common anode configuration, you have to send logic low to the segment pin.

Interfacing a Seven-Segment display is independent of the type of the module,

whether it is common anode or common cathode, only the logic level sent to the

display differs. Finally, since the display is basically LEDs, current limiting resistors

are used for each segment.

15

Multiplexing Technique of the 7-segment display

Multiplexing technique is based on the idea of Persistence of vision of the human eyes.

The sample schematic of 3 digits multiplexing is shown below (figure 3).

Figure 3: 7-segment multiplexing of 3 digits

Segment a-g of each digit are connected together. Each digit is switched on-

off by controlling signal at Digit 1, Digit 2 and Digit 3. For example, if Digit 1 is ‘1’,
Digit 1 will be on. If Digit 1 is '0', Digit 1 will be off. People will see all 3 digits

display in the same time if each digit switch on and off fast enough.

I/O ports of Microcontroller:

PIC microcontrollers’ ports are general-purpose bi-directional digital
ports. The state of TRISx Register controls the direction of the PORTx bits. A
logic one in a bit position configures the PICto act as an input and if it has a zero
to act as an output. However, a pin can only act as eitherinput or output at any
one time but not simultaneously. This means that each pin has a
distinctdirection state.See the following figure.

16

Examples:

Movlw 0x0F Clrf TRISC Clrf TRISD Movlw B’00110011’
Movwf TRISB Comf TRISD, F Movwf TRISB

The high nibble of Whole PORTC Whole PORTD Bits 2, 3, 6, 7 as

PORTB is output, as output as input output
low nibble is input Bits 0, 1, 4, 5 as input

How to decide whether microcontroller’s ports must be configured as inputs or

outputs?
Input ports “Get Data” from the outside world into the microcontroller while output
ports “Send Data” to the outside world.

 LEDs, 7-Segment displays, motors, and LCDs (write mode) that are interfaced
to microcontroller’s ports should be configured as output.

 Switches, push buttons, sensors, keypad and LCDs (read mode) that are
interfaced to microcontroller’s ports should be configured as input.

Software Introduction of QL200 Programming Module

QL200 programming software QL_PROG is what our company specifically
developed for programming module QL_PROG of QL200.The software can be

procured from the CD-ROM coming along with our product, or you may also

download the latest version from our website.

1. Installation of Software

Find file QL-PROGvXX.EXE under "soft" of CD, double click this file to access
installation interface of application software, and operate according to prompts to
finish the installation.

2．Installation of USB Driver

When you first use the USB of this programmer for communication, please connect
PC and programmer hardware through USB cable. Then, PC system will indicate to
find new hardware and request installation of driver for this hardware.
You can operate in regular way and designate path to install driver, which is under
directory “QL200 USB-driver” of attached CD.
After installation, a serial port will be added to your computer. Now the programmer
is connected to the serial port converted from USB.
When there is no system message to find new hardware after programmer hardware is
connected, please check:

 Any bad or broken connection for USB cable?

 Does USB of computer works smoothly?
 Maybe there is similar USB driver already installed in your computer. You may

connect programmer hardware, right click “My Computer”, select “Property” in

pop-up list, switch to “Hardware” from “System Property” window, and then

click “Device Manager” to check “Port (COM and LPT)”. If you can find “USB
Serial Port (COMX)”, the driver of this programmer has been installed in your
computer (this operation requests proper connection of hardware and PC).

17

3. Running of Software
After proper installation, shortcut of this software will appear on desktop. We can
double click it to run the software. (Note: Run the software after proper connection of
hardware so as to identify the hardware easily.)

Use of Software
1）Select Communication Port/Select Programmer Hardware: Connect hardware

and power up, run the software which will automatically search programmer

hardware. If search fails and indicates “Have not find board…”, you can set

programmer hardware manually. We offer two methods for user to select

communication port and programmer type. Directly select the port from the list of

“Port Selector” at top right of the software. (Note: Only existing ports of computer are

shown in the list. If only COM1 is installed at your computer, there is only COM1 for

your choice. If you have connected USB but can’t find it in the list, the reason may be

that the software is started too fast. You can shut down the software and restart it.)

2) Select Chip Type:

The control for selection of chip type is at top right of the software.
You may select the type to shorten the chip list for fast selection of proper chip.
If you don’t know exactly the device, please select “All Chip” in the list of “Chip
Family”

3) Select Chip

The control for selection of exact chip is at top right of the software, if the desired chip type is
not listed, please change the chip Family or select “All Chips” and try again.

4) Load Code

Run【File】-【Load File】, or press “Load” button on programming software panel to
load machine code file of the chip you desire to program.
This programmer software supports load of BIN files and HEX files.

5) Download code

Press "Program" button to begin programming. After completion, there will be messages of
"PASS" or "ERROR".

18

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 3

PIC Microcontroller Interrupts

1.2 Objectives:
 Interrupts and interrupt service routines.

 Interrupts control register and its flags.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly BEFORE coming to the lab.

 Read from the data sheet section 2.1 & 2.3 carefully.

1.3 Equipments:
 Personal computer with MPLAB and Proteus software installed on it.

1.4 Theoretical backgrounds:

There are 2 methods for communicatingbetween the Microcontroller and the
externalsystem:

 Polling

 Interrupts

First: Polling
In this method, microcontroller accesses at the exact time interval the external

device, and gets the required information, the time periods is determined by user. In

fact, you can say that, when using the method - polling, the processor must access the

device itself and request the desired information that is needed to be processed.

In fact we see that in this method, there is no independence for the external
systems themselves. They depend on the microcontroller. The processor may only
access the external device and get from it the information needed.
The main drawback writing program that uses this method is a waste of time. The
micro needs to wait and review whether new information arrived.

Second: Interrupts
Interrupts are a mechanism of a microcontroller which enables it to respond to

some events at the moment when they occur, regardless of what microcontroller is

doing at the time. This is a very important part, because it provides connection

between a microcontroller and environment which surrounds it. Generally, each

interrupt changes the program flow, interrupts it and after executing an interrupt

subprogram (interrupt routine) it continues from that same point on.

19

So an interrupt is an event that causes the microcontroller to halt the normal
flow of the program and execute another program called the interrupt service routine

Interrupts can be thought of as hardware‐initiated subroutine calls.
Usually, interrupts are generated by I/O devices such as timers or external devices.

General Hardware Structure for Interrupts
 Interrupts sources can be external and internal.

 Two types of interrupts: maskableand non‐maskable.
 Maskable can be enabled/disabled by setting/clearing some bits.

 Non‐maskable interrupts can't be disabled and they always interrupt the CPU.
 Usually, each interrupt has a flag (a bit) that is set whenever the interrupt occurs.

Note: No non-maskable interrupts in 16F84A

The 16F84A Interrupt Structure
Sources of interrupts:

1) External interrupt

 The only external interrupt input

 The input is multiplexed with RB0 pin of port B

 It is edge triggered
2) Timer overflow interrupt

 It is an internal interrupt that occurs when the 8‐bit
timer overflows

3) Port B interrupt change
 An interrupt occurs when a change is detected on any of the

upper 4 bits of port B
4) EEPROM write complete interrupt

20

There are two SFR register we must deal with if we have interrupts;

INTCON REGISTER

The INTCON register is a readable and writable register that contains the various

enable bits for all interrupt sources.

1) OPTION REGISTER
The OPTION register is a readable and writable register which contains various
control bits to configure the TMR0/WDT prescaler, the external INT interrupt,TMR0,
and the weak pull-ups on PORTB.

21

How to use interrupts?
1) Start the interrupt service routine at 0x0004
2) Clear the flag of the used interrupt in the INTCON register (if it is not cleared

on reset)
3) Enable the corresponding interrupt by setting its bit in INTCON register

4) Enable global interrupts by setting the GIE bit
5) End the interrupt subroutine with RETFIEinstruction to resume program

execution

Interrupt Operation:

22

Context Saving;
What if the main program is to preserve the W register and interrupt uses it?

 Save it temporarily in memory at the beginning of the ISR

MOVWFTEMP ; push

 Restore the value at the end of ISR

MOVFTEMP, W ; pop

Example Error if Registers are not saved before Executing ISR

Multiple Interrupts;
Note that there is only one interrupt vector for all types of interrupts, In other

words, regardless of the interrupt type, the microcontroller will start executing from
location 0x0004 on any interrupt.
How to determine the source of interrupt?
Check the interrupt flag bits in the INTCON register at the beginning of the interrupt
service routine to determine what source of the interrupt!

Example:

Interrupt_SR

btfsc INTCON,0 ;test RBIF

goto portb_int ;Port B Change routine

btfsc INTCON,1 ;test INTF

goto ext_int ;external interrupt routine

btfsc INTCON,2 ;test T0IF

goto timer_int ;timer overflow routine

btfsc EECON1,4 ;test EEPROM write complete flag

goto eeprom_int ;EEPROM write complete routine

23

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 4

Controlling the LCD

1.1 Objectives:
1. To become familiar with HD44780 controller based LCDs and how to use them.
2. Knowing the various modes of operation of the LCD (8-bit/4-bit interface, 2-

lines/1-line, CG-ROM).
3. Distinguishing between the commands for the instruction register and data

register.
4. Stressing software and hardware co-design techniques by using the Proteus

IDE package to simulate the LCD.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly and make a real effort to build the pre-lab

circuit.

1.3 Equipments:

 Personal computer with Proteus simulator installed on it.

1.4 Theoretical background:
What is an LCD?
A Liquid Crystal Displays (LCD) is a thin, flat display device made up of any number
of color or monochrome pixels arrayed in front of a light source or reflector. It is

often utilized in battery-powered electronic devices because it uses very small

amounts of electric power.

Figure 1: A typical LCD module

LCDs have the ability to display numbers, letters, words and a variety of
symbols. This experiment teaches you about LCDs which are based upon the Hitachi

HD44780 controller chipset. LCDs come in different shapes and sizes with 8, 16, 20,

24, 32, and 40 characters as standard in 1, 2 and 4–line versions.

24

Figure 2: Different LCD modules shapes and sizes

Figure 3: Display address assignments for HD44780 controller based LCDs

LCD I/O
Most LCD modules conform to a standard

interface specification. A 14-pin access is

provided having eight data lines, three

control lines and three power lines as

shown below. Some LCD modules have 16

pins where the two additional pins are

typically used for backlight purposes

Figure 4: LCD pin-out

Powering up the LCD requires connecting three lines: one for the positive

power Vdd (usually +5V), one for negative power (or ground) Vss. The Vee pin is
usually connected to a potentiometer which is used to vary the contrast of the LCD

display. We will connect this pin to the GND.

As you can see from Figure 4, the LCD connects to the microcontroller
through three control lines: RS, RW and E, and through eight data lines D0-D7.
With 16-pin LCDs, you can use the L+ and L- pins to turn the backlight (BL) on/off.

25

Figure 5: LCD pin-out details

When powered up, the LCD display should show a series of dark squares. These

cells are actually in their off state. When power is applied, the LCD is reset; therefore

we should issue a command to set it on. Moreover, you should issue some commands

which configure the LCD. (See the table which lists all possible configurations and

the explanation to each field)

Sending Commands/Data to the LCD
Using an LCD is a simple procedure once you learn it. Simply you will place a

value on the LCD lines D0-D7 (this value might be an ASCII value (character to be

displayed), or another hexadecimal value corresponding to a certain command). So

how will the LCD differentiate if this value on D0-D7 is corresponding to data or

command? Observe the figure below, as you might see the only difference is in the

RS signal (Register Select), this is the only way for the LCD controller to know

whether it is dealing with a character or a command!

Figure 7: Necessary control signals for Data/Commands

Steps to send character to LCD

1. Place the ASCII character on the D0-D7 lines
2. Register Select (RS) = 1 to send characters

3. "Enable" Pulse (Set High – Delay – Set Low)
4. Delay to give LCD the time needed to display the character

26

Steps to send a command to LCD

1. Place the command on the D0-D7 lines
2. Register Select (RS) = 0 to
send commands
3. "Enable" Pulse (Set High – Delay
– Set Low)
4. Delay to give LCD the time needed to

carry out the command

Displaying Characters
All English letters and numbers

(as well as special characters, Japanese

and Greek letters) are built in the LCD

module in such a way that it conforms

to the ASCII standard. In order to

display a character, you only need to

send its ASCII code to the LCD which it

uses to display the character.
Notice that from column 1 to D, the

character resolution is 5 characters wide

x 7 characters high (5x7) (column 0 is a

special case, it is 5x8, but considered as

5x7, more on this later) whereas the

character resolution of columns E and F

is 5 characters wide x 10 characters high

(5x10). We should change the resolution

if we are to use characters from different

resolution columns, this can be done

using a command discussed later. Figure 8: LCD Characters Map

Explaining the commands and their parameters in the LCD command table:

27

Clear Display
Clear the LCD display; however the cursor will remain at its last position, so any
future character writes will start from the last location, to reset the cursor position use
the Display and Cursor Home command.

Display and Cursor Home
Resets cursor location to position 00 of the LCD screen (Figure 3), future writes will
start at the first location of the first line.

Character Entry Mode

This command has two parameters 1/D and S:
1/D: By default, the cursor is automatically set to move from location 00 to 01 and so

on (Increment mode). Suppose now that you are to write from right to left (as in the
Arabic language), then you have to set the cursor to the Decrement mode.
S: Accompanies the D/C parameter, explained below

Display On/OFF and Cursor

This command has three parameters:
D: Turns on the display (when you see the black dots on the LCD, it means that it is
POWERED on, but not yet ready to operate), this command activates the LCD in
order to be ready to use.
U: This displays the cursor (in the form of a horizontal line at the bottom of the
character) when it is high and turns the cursor off when it is low
B: If the underline cursor option is enabled, this will blink the cursor if high.

Display/Cursor Shift
All LCDs based on the HD44780 format - whatever their actual physical size is - are

internally built in to be 40 characters x 2 lines with the upper row having the display

addresses 0-27H (27H = 39D → 0-39 = 40 Characters!!) and the lower row from 40H

-67H. Now suppose you bought an LCD with the physical size of 20 char. x 2 lines,

when you start writing to the LCD and the cursor reaches locations 20D, 21 D, and 22

D …, you will not see them BUT don’t worry, they are not lost. They were written in

their respective locations but you could not see them because your bought LCD is 20

visible Characters wide from the outside and 40 from the inside. All you have to do is

shift the display. So all you do is
1. Determine the direction of the shift (R/L)

2. Issue the shift Command D/C
R/L: Determines the direction of the shift, this might be useful if you are writing
Arabic characters …
D/C: if this bit has a value of 0, the display is not shifted and the cursor moves the same

way it was, if the its value is logic high, the display is shifted once, you might need to

issue this command multiple times in order to shift the display by multiple locations!

Function Set

This command has three parameters:
8/4: Eight/Four bits mode

8 – Bit interface: you send the whole command/character (8 bits) in one stage to the

D0-D7 lines
4 – Bit interface: you send the command/character in two stages as nibbles to D4-
D7 lines.

28

When to use the 4-bit mode?

1. Interfacing LCD with older devices which have 4-bit wide I/O Bus
2. You don’t have enough I/O pins remaining, or you want to conserve the I/O
pins for other HW
2/1: Line mode, determines whether you want to use the upper line of the LCD
or both lines
10/7: Dot format, based on the LCD built-in characters table, note the following:

* 5x7 format (Default) is used whenever you use the characters found in columns 1 to

D

* 5x7 format is also used whenever you use the built in characters in CG-RAM
(EVEN THOUGH THE CG-RAM CHARACTERs ARE 5X8!!!)

* 5x10 format is only used when displaying the characters found in columns E and F

Set Display Address command

Syntax: 1AAAAAAA
This command allows you to move the cursor to whichever location you want,
suppose you want to start writing in the middle of the display (assuming the visible

width of the LCD screen is 20), then from Figure 2 you will observe that location 06
is approximately in the middle so you replace the A’s with 06: 1AAAAAAA

→10000110→0x86
Moreover, suppose you wish to move to the second line which starts at location 40,
same as above 1AAAAAAA→ 11000000 → 0xC0

Set CG-RAM Address command

Syntax: 01AAAAAA
If you give a closer look at Figure 8, you will clearly see that the table only contains

English and Japanese characters, numbers, symbols as well as special characters!

Suppose now that you would like to display a character not found in the built-in table

of the LCD (i.e. an Arabic Character). In this case we will have to use what is called

the CG-RAM (Character Generation RAM), which is a reserved memory space in

which you could draw your own characters and later display them.
Observe column one in Figure 8, the locations inside this column are reserved for the

CG-RAM. Even though you see 16 locations (0 to F), you only have the possibility to
use the first 8 locations 0 to 7 because locations 8 to F are mirrors of locations 0 – 7.

So, to organize things, in order to use our own characters we have to do the following:
1. Draw and store our own defined characters in CG-RAM
2. Display the characters on the LCD screen as if it were any of the other

characters in the table

Drawing and storing our own defined characters in CG-RAM
As stated earlier, we have eight locations to store our characters in. So how do we

choose which location out of these to start drawing and building our characters in?
The answer is quite simple; follow this rule as stated in the datasheet of the HD44780

controller:
1. To write (build/store a character in location 00 (crossing of the row and

column)), you send the CG-RAM address command as follows: 01AAAAAA

→ 01000000 → 0x40
2. However, to write in any location from 01 to 07, you have to skip eight

locations (WHY?)

So the CG-RAM address command will send 0x48 (to store a character in location 1),
0x50 (to store a character in location 2) and so on...

29

So up to this point we have defined where to write our characters but not how to build

them! This is the fun part, draw a 5x8 Grid and start drawing your character inside,

then replace each shaded cell with one and not shaded ones with zero. Append three

zeros to the left (B5-B7) and finally transform the sequence into hexadecimal format.

This is the sequence which you will fill in the CG-RAM SEQUENTIALLY once you

have set the CG-RAM Address before.

Figure 11: calculated values to draw a Stick Man

30

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 5

Interfacing the Keypad

1.1 Objectives:

1. To become familiar with keypad Interfacing and usage
2. Stressing software and hardware co-design techniques by using the Proteus

IDE package to simulate a user built keypad

1.2 Pre-lab Preparation:

 Read the experiment thoroughly and make a real effort to build the pre-lab
circuit.

1.3 Equipments:

 Personal computer with Proteus simulator installed on it.

1.4 Theoretical background:
Keypads are essentially large switch arrays which allow data entries (numeric or

alphanumeric) into systems. Keypads are widely used in everyday applications such

as burglar alarms, cell phones and photocopiers. Keypads come in different shapes

and sizes with 4x3, 4x4 buttons as common examples. It is not practical to connect

each button in the keypad to its own port input as we previously did with switch and

push buttons; therefore keypads are normally constructed in a matrix format. An (n x

m) array can be read by (n + m) port bits.

Figure 1: A 4x4 keypad (left) and a 4x3 keypad (right), notice the 7 connections of the keypad (4+3)

31

General Keypad Operation
In general, a keypad is interfaced in a way such that initially if no key is pressed you
will read a certain logic level and when you press a button a signal with the negative
of the original level will be read. You have two cases:

1. Fix the initial button state to be read as logic 1 (through the use of pull-up
resistors), when you press a button you will read logic 0.

2. Fix the initial button state to be read as logic 0 (through the use of pull-down
resistors), when you press a button you will read logic 1.

 Pull-up and pull-down resistors are used to limit the amount of current and
protect the circuit. (not to read a floating state)

 Pull-up and pull-down resistors are normally connected externally, BUT you
can make use of the internal pull-up resistors found in Microchip’s PIC
devices such as those in implemented in PORTB. In this experiment we will
use the internal pull-up resistors.

Whether you use internal or external pull-up resistors the keypad will operate in the

same way.

Technique
*It does not matter whether you start scanning rows or columns first it depends on
your connections; the basic idea is the logic of the scanning technique is the same.

First the row bits are set to output, with the column bits as input. The output
rows are set to logic 0. If no button is pressed all column line inputs will be read as

logic 1 due to the action of the pull-up resistors. If, however, a button is pressed then
its corresponding switch will connect column and row lines, and the corresponding

column line will be read as low.

32

To detect this logic transition from high to low (that is to know whether a key has
been pressed or not), we have to either:

1. Keep pulling the inputs (columns) continuously until 0 is detected.

2. Make use of the interrupt (Here PORTB interrupt- on change will be beneficial)

Yet still, we have identified the column in which the key was pressed but not
the button itself. So what we do now is save the column and repeats the same

procedure above with the following minor modification:
Secondly the column bits are set to output, with the row bits as input. The output

columns are set to logic 0. Since the button is still pressed then its corresponding

switch is still connecting column and row lines, and the corresponding row line will
be read as low. If, however, the button is released all row line inputs will be read as

logic 1 due to the action of the pull-up resistors.
Now we have identified the row.

Example
Suppose we connect the columns to PORTB 4-7 as

input and the rows to PORTB 0-3 as output (with the

value of 0). If we continuously read the inputs they

will always be read as 1 because of the internal pull-

up resistors on PORTB. If one presses number “7”,

this will make us read logic 0 on RB4 (identified that

we have pressed a button in the first column).
Now let us exchange the inputs for the outputs that
is we connect the rows to PORTB 4-7 as input and

the columns to PORTB 0-3 as output (with the

value of 0).
If we read the input we will find that RB2 is 0. Now
we have identified the location of the pressed
button and ready to process what it means.

So what comes next?
The above scanning technique let us know the

position of the pressed button (in terms of its

row/column intersection) but not the value

corresponding to the button. So obviously the next

step is to use the location to retrieve the desired

value.

33

Most often, you will need to display the number on a 7-segment display, LCD
or use it in binary calculations. Therefore, it is natural to build a look-up table with

the 7-segment representations, ASCII code or binary equivalent and use the location
pattern which you saved (as in the table above) as an index to the look-up table.

The way one organizes the look-up table entries differs from one person to another,
therefore there is no specific way to translate the locations to their corresponding

values. One might use a series of btfsc or btfss instructions, or deduce a relationship
and use mathematical operations or a combination of both.

What have we done in this experiment?

Study the following flowchart which is based on the table above.
If the key pressed is in column 1, then X might take the values 0, 1, 2, 3

If the key pressed is in column 2, then X might take the values 4, 5, 6, 7

If the key pressed is in column 3, then X might take the values 8, 9, 10, 11

If the key pressed is in column 4, then X might take the values 12, 13, 14, 15

These values will be added to PCL to retrieve values from the look-up table.

See figure below

34

35

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 6

Introduction to Android

1.1 Objectives:

1. Introduce the Android Operating System and its basic components of Android.

2. Introduce the basic ingredients of an Android Application.

3. Provide a detailed description Environment setup process.

4. Creating simple HelloWorld application.

1.2 Pre-lab Preparation:

 Read the experiment thoroughly and make a real effort to build the pre-lab
circuit.

1.3 Equipments:

 Personal computer with Eclipse IDE and Android SDK installed on it.

2.1 Theoretical Background:

Android is an open source Linux-based Operating System for mobile devices
developed by the Open Handset Alliance, led by Google, and other companies, the

first beta version of the Android Software Development Kit (SDK) was released by
Google in 2007 where as the first commercial version, Android 1.0, was released in

September 2008.

The developers need to write their codes for Android in general, and their
applications should be able to run on different devices powered by Android. Android

applications are developed in the Java language using the Android Software
Development Kit (SDK) also it can be packaged easily and sold out either through a

store such as Google Play or the Amazon Appstore.

2.2 Features of Android:

Android is a powerful operating system competing with Apple 4GS and
supports great features. Few of them are listed below:

 Connectivity: GSM/EDGE, IDEN, CDMA, EV-DO, UMTS,
Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

 Storage: SQLite, a lightweight relational database, is used for data
storage purposes.

 Multi-touch: Android has native support for multi-touch which was
initially made available in handsets such as the HTC Hero.

36

 Multi-tasking: User can jump from one task to another and same time
various applications can run simultaneously.

 Media support: H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC,
HE-AAC, AAC 5.1, MP3, MIDI, OggVorbis, WAV, JPEG, PNG,
GIF, and BMP.

 Web browser: Based on the open-source WebKit layout engine,
coupled with Chrome's V8 JavaScript engine supporting HTML5 and
CSS3.

 Resizable widgets :Widgets are resizable, so users can expand them to
show more content or shrink them to save space

 Multi-Language: Supports single direction and bi-directional text.
 Wi-Fi Direct: A technology that lets apps discover and pair directly,

over a high-bandwidth peer-to-peer connection.
 GCM: Google Cloud Messaging (GCM) is a service that lets

developers send short message data to their users on Android devices,
without needing a proprietary sync solution.

3. Environment Setup:

All the required tools to develop Android applications are freely available and can
be downloaded from the Web. Following is the list of software's you will need before
you start your Android application programming.

 Java JDK

 Android SDK
 Eclipse IDE for Java Developers (optional you can use any IDE you want such

as Android studio or Inetiliji…etc.).
 Android Development Tools (ADT) Eclipse Plugin (optional)

3.1 Setup Java Development Kit (JDK):

The JDK provides tools, such as the Java compiler, used by IDEs and SDKs
for developing Java programs. The JDK also contains a Java Runtime Environment
(JRE), which enables Java programs, such as Eclipse, to run on your system.

You can download the JDK from Oracle’s site, you can find the JDK at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

The Downloads page will automatically detect your system and offer to download the
correct version. The installer you download is an executable file. Run the executable

installer file to install the JDK. After installing the JDK you may need to set PATH

and JAVA_HOME environment variables to refer to the directory that contains java
and javac, typically java_install_dir/bin and java_install_dir respectively.
To guarantee that everything is fine write the following command on the CMD:
javac -version

http://www.oracle.com/technetwork/java/javase/downloads/index.html

37

3.2 Setup Android SDK:

You can download the SDK (named installer_rXX-windows.exe) from the
android official website: http://developer.android.com/sdk/index.html, so just

download and run this exe which will launch Android SDK Tool Setup wizard to
guide you through out of the installation, so just follow the instructions carefully.

Finally you will have Android SDK Tools installed on your machine.
After installing the SDK launch Android SDK Manager by pressing Start> Programs >

Android SDK Tools > SDK Manager, this will give you following window:

Figure 1:SDK Manager

Once you launched SDK manager, it’s the time to install other required packages. By
default it will list down total 7packages to be installed, but I will suggest to de-select

Documentation for Android SDK and Samples for SDK packages to reduce

installation time. Next click Install 7 Packages button to proceed, which will display
following dialogue box:

38

Figure 2: Choose Package

If you agree to install all the packages, select Accept All radio button and proceed by

clicking Install button. Now let SDK manager do its work and you wait until all the

packages are installed. It may take some time depending on your internet connection.
Once all the packages are installed, you can close SDK manager using top-right cross

button.

3.3 Setup Eclipse IDE:

You can download the latest Eclipse exe from:
http://www.eclipse.org/downloads/
Once you downloaded the installation, unpack the binary distribution into a
convenient location.

3.3 Setup Android Development Tools (ADT) Plugin:

Launch Eclipse and then, choose Help > Software Updates > Install New
Software. This will display the following dialogue box:

39

Now use Add button to add ADT Plugin as name and https://dl-

ssl.google.com/android/eclipse/ as the location.
Then click OK to add this location, as soon as you will click OK button to add this
location, Eclipse starts searching for the plug-in available the given location and
finally lists down the found plugins.

Now select all the listed plug-ins using Select All button and click Next button
which will guide you ahead to install Android Development Tools and other required
plugins.

Figure 4: Install Plugin

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/

40

3.4 Create Android Virtual Device:

To test your Android applications you will need a virtual Android device. So

before we start writing our code, let us create an Android virtual device. Launch
Android AVD Manager using Eclipse menu options Window > AVDManager> which

will launch Android AVD Manager. Use New button to create a new Android Virtual
Device and enter the following information, before clicking Create AVD button:

Figure 5: Create AVD

If your AVD is created successfully it means your environment is ready for Android
application development.

41

4. Architecture Overview:

Android operating system is a stack of software components which is roughly
divided into five sections and four main layers as shown below in the architecture
diagram:

Figure 5: Create Androids components Stack

Linux kernel

At the bottom of the layers is Linux - Linux 2.6 with approximately 115

patches. This provides basic system functionality like process management, memory

management, device management (like camera, keypad, display etc). Also, the kernel
handles all the things that Linux is really good at such as networking and a vast array

of device drivers, which take the pain out of interfacing to peripheral hardware.

Libraries

On top of Linux kernel there is a set of libraries including open-source Web
browser engine WebKit, well known library libc, SQLite database which is a useful

repository for storage and sharing of application data, libraries to play and record
audio and video, SSL libraries responsible for Internet security etc.

42

Android Runtime

This is the third section of the architecture and available on the second layer

from the bottom. This section provides a key component called Dalvik Virtual

Machine which is a kind of Java Virtual Machine specially designed and optimized

for Android. The Dalvik VM makes use of Linux core features like memory

management and multi-threading, which is intrinsic in the Java language. The Dalvik

VM enables every Android application to run in its own process, with its own

instance of the Dalvik virtual machine. The Android runtime also provides a set of

core libraries which enable Android application developers to write Android

applications using standard Java programming language.

Application Framework

The Application Framework layer provides many higher-level services to
applications in the form of Java classes. Application developers are allowed to make
use of these services in their applications.

Applications
You will find all the Android application at the top layer. You will write your

application to be installed on this layer only. Examples of such applications are
Contacts Books, Browser, and Games etc.

5. Application Components
Application components are the essential building blocks of an Android application.
These components are loosely coupled by the application manifest

fileAndroidManifest.xml that describes each component of the application and how
they interact.

The following four components are the main components that can be used within an

Android application:

 Activities
An activity represents a single screen with a user interface. For example, an email

application might have one activity that shows a list of new emails, another activity to

compose an email. If an application has more than one activity, then one of them

should be marked as the activity that is presented when the application is launched.
An activity is implemented as a subclass of Activity class as follows:

public class MainActivity extends Activity {

}

43

 Services
A service is a component that runs in the background to perform long-running

operations. For example, a service might play music in the background while the user

is in a different application. A service is implemented as a subclass of Service class as
follows:

public class MyService extends Service {

}

 Broadcast Receivers:
They handle the communication between Android OS and applications. A

broadcast receiver is implemented as a subclass of BroadcastReceiver class and each
message is broadcasted as an Intent object.

public class MyReceiver extends BroadcastReceiver {

}

 Content Providers:
They handle data and database management issues. A content provider is

implemented as a subclass of ContentProvider class and must implement a standard
set of APIs that enable other applications to perform transactions.

public class MyContentProvider extends ContentProvider {

}

There are additional components which will be used in the construction of above

mentioned entities, their logic, and wiring between them. These components are:

Component Description

Fragments: Represents a behavior or a portion of user interface in an Activity.

Views: UI elements that are drawn onscreen including buttons, lists forms etc.

Layouts: View hierarchies that control screen format and appearance of the views

Intents: Messages wiring components together.

Resources: External elements, such as strings, constants and drawables pictures.

Manifest: Configuration file for the application.

6. Hello World Example:

44

Next, follow the instructions provided and keep all other entries as default till the final
step. As your project is created successfully, let’s take a look at the directories and

files in the Android project.in the left of your screen there is a Package
explorer that is shown in the figure below:

45

1- src: This contains the .java source files for your project. By default, it
includes an MainActivity.java source file having an activity class that runs
when your app is launched using the app icon.

2- gen: This contains the .R file, a compiler-generated file that references all
the resources found in your project. You should not modify this file.

3- bin: This folder contains the Android package files .apk built by the ADT
during the build process and everything else needed to run an Android
application.

4- res/drawable-hdpi: This is a directory for drawable objects that are
designed for high-density screens. everything else needed to run an Android
application.

5- res/layout: This is a directory for files that define your app's user interface.

46

6- res/values: This is a directory for other various XML files that contain a
collection of resources, such as strings and colors definitions.

7- AndroidManifest.xml: This is the manifest file which describes the
fundamental characteristics of the app and defines each of its components.

Running the Application:

To run the app from Eclipse, open one of your project's activity files and click

Run icon from the toolbar. Eclipse installs the app on your AVD and starts it and if

everything is fine with your setup and application, it will display following Emulator
window:

47

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 7

Adding UI Components and Events

1 Objectives:

At the end of this lab you will be expected to know:

 How to use Events and Event Listeners.

 What Views Buttons and text views.

 How to deal with What Views.

1.2 Pre-lab Preparation:

 Read the experiment thoroughly and make a real effort to build answer the
pre-lab quiz.

1.3 Equipments:

 Personal computer with Eclipse IDE and Android SDK installed on it.

2 Theory:

2.1 The Layout File:

Every single screen (with a user interface) in the Android Application is

represented by an Activity, there are two files related to each screen in the application

the first file is Layout file which is a .XML that represent the UI Components of this

screen and the second file is the Activity which is java file handles the user interaction

to the screen of the smart phone. The activity_main.xml is a layout file available in

res/layout directory that is referenced by the application when building its interface.

We will modify this file very frequently to change the layout of your application.
For The "Hello World!" application, this file will have following content related to
default layout:

<RelativeLayout
xmlns:android=http://schemas.android.com/apk/res/android

xmlns:tools=http://schemas.android.com/tools

android:layout_width="match_parent"

android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_centerVertical="true"

android:padding="@dimen/padding_medium"

android:text="@string/hello_world"

tools:context=".MainActivity" />
</RelativeLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

48

We can add UI components to the screen by writing the XML that represents the UI we

want and specify all its properties in this file, for example to add a button to any activity

we write the following XML in the corresponding layout file under res/layout directory:

<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/button_send"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/button_send"

android:onClick="sendMessage" />

However we can do the same job using the graphical interface by just dragging the
component from the toolbox in the left of the screen to the graphical designer of the
screen as the following figure describes:

Figure 1

To switch between

the Graphical designer

and the XML file.

49

2.2 Activity Life cycle:

The Activity base class defines a series of events that govern the life cycle of
an activity. The Activity class defines the following events:

 onCreate() — Called when the activity is first created

 onStart() — Called when the activity becomes visible to the user

 onResume() — Called when the activity starts interacting with the user
 onPause() — Called when the current activity is being paused and the

previous activity is being resumed
 onStop() — Called when the activity is no longer visible to the user
 onDestroy() — Called before the activity is destroyed by the system

(either manually or by the system to conserve memory
 onRestart() — Called when the activity has been stopped and is restarting

again

50

3 Adding Event handlers:

3.1 Using onClick attribute:

To define the click event handler for a button, add the android:onClick attribute

to the <Button> element in your XML layout. The value for this attribute must be the
name of the method you want to call in response to a click event. The Activity hosting

the layout must then implement the corresponding method.

For example, here's a button with click event handler using android:onClick:

<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/button_send"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/button_send"
android:onClick="sendMessage" />

Within the Activity that hosts this layout, the following method handles the click event:

/** Called when the user touches the button

*/ public void sendMessage(View view) {
// Do something in response to button click

}

The method you declare in the android:onClick attribute must have a signature exactly
as shown above. Specifically, the method must:

 Be public

 Return void

 Define a View as its only parameter (this will be the View that was clicked)

3.2 Using an OnClickListener:

You can also declare the click event handler programmatically rather than in an

XML layout. This might be necessary if you instantiate the Button at runtime or you

need to declare the click behavior in a Fragment subclass.
To declare the event handler programmatically, create an View.OnClickListener object

and assign it to the button by calling setOnClickListener(View.OnClickListener). As

follow:

Button button = (Button) findViewById(R.id.button_send);

button.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {

// Do something in response to button click

}

});

http://developer.android.com/reference/android/R.attr.html#onClick
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/R.attr.html#onClick
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/R.attr.html#onClick
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/view/View.OnClickListener.html
http://developer.android.com/reference/android/view/View.html#setOnClickListener(android.view.View.OnClickListener)

51

3.2 Using strings.xml file:

If you look to the attribute of the button we added in the previous steps you notice

the attribute android:text="@string/button_send" this attribute corresponds to

the text that will appear on the button when the user run the application, but what does

the "@string/button_send" means? Well this means that there is a string defined

inside the string.xml file called button_send and has some value to be assigned to

the button, pay attention that “button_send” is just the name of the string and the

value of that string is deferent form the name of it.

To add a string to the string.xml file go open it up, you will see something like this:

To add a string just click the Add button write a name and a value for your string
in the boxes in the right side of the screen.

52

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 8

Multi Activity Applications, Intents and Filters

1.1 Objectives:

At the end of this lab you will be expected to know:

 How to use Events and Event Listeners.

 What Views Buttons and text views.

 How to deal with What Views.

1.2 Pre-lab Preparation:

 Read the experiment thoroughly and make a real effort to build answer the
pre-lab quiz.

1.3 Equipments:

 Personal computer with Eclipse IDE and Android SDK installed on it.

2.1 Theory:

Most Android applications need to have more than one screen (and every
screen needs a Layout file for the user interface and an Activity file for the code

behind) so in this experiment we will learn how to define our own activity and how to

move between “screens”.

2.2 Adding Layout

The first thing we want to do is to add the layout file which will represent the

UI of our screen, to do so we will right click the Layout folder in the Package

Explorer to in left side of the Eclipse window then choose New > Other > Android
XML file (under Android section), you will see screen like this :

In the write the layout name in the “File” box and hit finish, make sure that
the Layout option is checked.

53

Now you added your layout file to the application so you can add the component you
want to that file but you should notify your application about this layout and how to
call it to be displayed to the user.

2.3 Intents and Filters

An Android Intent is an object carrying an intent i.e. message from one

component to another component with-in the application or outside the application.
The intents can communicate messages among any of the three core components of an

application - activities, services, and broadcast receivers. An Intent object, is a passive
data structure holding an abstract description of an operation to be performed.

In this lecture we will use the Intent and the filter to move from one activity to
the other and to achieve that we need an Intent to the “caller” Activity and a Filter to

be added to the target one but the question is how to do that and where exactly to but
the code of the Intent and Filter and that will be described in the following parts.

2.4 Altering the Manifest file

Once the layout xml file is created it’s the time to add it to the manifest file so

other activities can use it to do that, open the AndroidManefiest.xml file, you will see

xml tags like this:

<uses-sdk
android:minSdkVersion="8"

android:targetSdkVersion="21" />

It’s clear that this tag specify the target and the minimum SDK that the application will

run on. The important tag that we will describe is this:

<activity
android:name =".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

Clearly this tag (and sub tags) deal with an Activity, the first attribute android:name

specifies the name of the java file of that activity proceeded with “.” pay attention it is

case sensitive.

The second one specify the text that will be displayed on the title of the activity when

it displayed to the user (note that its references a string.xml file).

The sub-tag is the core of our interest here it’s the <intent-filter> tag which

determine the Intents that this activity will respond to, the <intent-filter> has two

sub tags the first one is <action> which determines the action name which the “caller”

activity should be call this one with. A good way to keep track of all your action names

is to make the action name as follow ="package.name.CLASSNAME"

53

54

The last tag we will talk about here is the <category> which specify the
category of the Intent that this filter will respond to. There are a lot of intent
categories we will describe two of them:

 android.intent.category.LAUNCHER: means that this activity should be
displayed in the top-level launcher, you will find it with the activitymain.xml
that will be created with the application.

 android.intent.category.DEFAULT: this type what we will use for any

activity we will add to our application.

2.5 Setup the Activity

You need to add the java file by right clicking the src folder and choose add > class
then specify the class name and click finish.
Once we have this class added we need to do some modifications, first of all let us make

this class represent an Activity by extending the Activity class by writing extends Activity

between the class name and the starting brace of the class body “{“ we need to import the

activity library by writing import android.app.Activity; before the class definition. Now

right click anywhere inside the class and choose Source > Override Implement Methods,

from the list under Activity choose onCreate(Bundle) method then you will have it setup

for you, now in side this method write the following line :

setContentView(R.layout.yourlayout);
in this line we called a built in method which will tie this java code to an xml file that

represent the user interface for this activity, as you see this method needs to know
which xml file is the chosen one so we used the R file in that way to I identify the

exact xml file to be used.

Now let us call our activity first we need to declare the Intent that will call it
like this:

Intent intentname = new Intent (“the.intent.name”);

Finally we will use this intent to bring up the wanted activity as follow :

stratActivity(intentname);

After the previous line of code being executed the previous screen will disappear and

the new one will show up instead, and by the same way you can add as many
Activities as you need to your application and you can move between them using the

Intent and the Filters.

55

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 9

Introduction to PSPICE

1.1 Objectives:

At the end of this lab you will be expected to know:

 How to use Events and Event Listeners.

 What Views Buttons and text views.

 How to deal with What Views.

1.2 Pre-lab Preparation:

 Read the experiment thoroughly and make a real effort to build answer the
pre-lab quiz.

1.3 Equipments:

 Personal computer with Eclipse IDE and Android SDK installed on it.

2.1 Background:

SPICE (Simulation Program with Integrated Circuit Emphasis) was originally
developed in the 1970s at Berkeley. It solves the nonlinear differential equations
describing components such as transistors, resistors, capacitors, and voltage sources.

PSPICE is commercial version with a free limited student version that allows

the user to simulate a circuit and extract key voltages and currents all versions of

SPICE read an input file and generate a list file with results, warnings, and error

messages. The input file is often called a SPICE deck and each line a card because it

was once provided to a mainframe as a deck of punch cards. The input file contains a

‘netlist’ consisting of components and nodes. It also contains simulation options,

analysis commands, and device models. The ‘netlist’ can be entered by hand or

extracted from a circuit schematic or layout in a CAD program.

2.2 How to write SPICE Deck:

The first line of a SPICE deck must be a comment, typically indicating the title of the

simulation. The comments is those lines that starts with (*).The last statement of a

SPICE deck must be (.end) the lines starts with dot (.) is Control statements. Here is
some control statements that is commonly used:

 .plot command generates a textual plot of the node variables specified

 .print statement prints the results in a multicolumn table

 .option post command generates a file (.tr0)containing the results of the
specified (transient) analysis

56

 .include reads another SPICE file from disk.
 .dc command varies certain voltage source DC voltage within a range in

increments of the amount specified by the user.
 .tran command specify the step size and the duration that the transient analysis

will be performed with when plotting the response of some circuit.

The lines that describes the circuit components should start whit specific letter

followed by a user-defined name and the component parameters separated by spaces
the following tables show the representation of the common SPICE elements and

SPICE unites.

Letter Element

R Resistor

C Capacitor

L Inductor

K Mutual inductor

V Independent voltage source

I Independent current source

M MOSFET

D Diode

Q Bipolar transistor

W Lossy transmission line

X Subcircuit

E Voltage-controlled voltage source

G Voltage-controlled current source

H Current-controlled voltage source

F Current-controlled current source

Letter Unit Magnitude

a atto 10^-18

f femto 10^–15

p pico 10^–12

n nano 10^–9

u micro 10^–6

m milli 10^–3

k kilo 10^3

x mega 10^6

g giga 10^9

Table 9.2: Spice unites

Table 9.1: Spice elements

As mentioned before the parameters of the component should be specified in the line

that represent that component, below is the parameters needed for every component.

Parameter Syntax

Resistor:

R<name> [+ node] [- node] [value]

Capacitor:

C<name> [+ node] [- node] [value] [IC = <initial value>, optional]

Inductor:

L<name> [+ node] [- node] [value] [IC = <initial value>, optional]

Independent Sources:
I<name> [- node] [+ node] [value] [type] [transient spec]
V<name> [+ node] [- node] [value] [type] [transient spec]

57

Dependent Sources:

VCVS: E<name> [+ node] [- node] [+controlling node] [-controlling node] [gain]
CCCS: F<name> [+ node] [- node] [Vbranch] [gain]

VCCS: G<name> [+ node] [- node] [+controlling node] [-controlling node] [gain]

CCVS: H<name> [+ node] [- node] [Vbranch] [gain]

For example to represent a Resistor the following line should be written:

R1 gnd abc 1k

This line represent a 1000 ohm resistor named R1 from ground (and) to node
called “abc”, notice that every node in the circuit should be named (user defined
name) the gnd is a special node name defined to be the 0 V reference.

2.3 Using OrCAD PSpice:

Now consider the following circuit:

This is a typical form of the RC circuits consists of voltage source (Vin), a resistor

(R1), and a capacitor (C1). Let’s call the node between the Vin and R “in” and the
node between the R and the C1 “out” so the value of the Vout will be the difference

between the “out” node and the ground (gnd). In addition we will consider that the
voltage source (Vin) is defined as a piecewise linear (PWL) source.

To write SPICE NetList that represent this circuit should be as follow:

Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0

R1 in out 2k

C1 out gnd 100f

The previous lines are the netlist only i.e. if we want to collect some other data about
the response of the circuit we should write the appropriate commands that will
command the PSpice to do so.
Suppose that we want to plot the values of the Vin and the Vout which is the result
that will be achieved by the following code.

58

* rc.sp

* Find the response of RC circuit to rising input

*--

* Parameters and models

*--

.option post

*--

* Simulation netlist

*--

Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0

R1 in out 2k

C1 out gnd 100f

*--

* Stimulus

*--

.tran 20ps 1ns

.plot v(in) v(out)

.end

Now the final question how to write this code in the application and how to
run it to show the desired result, and here is the steps to get the job done:

 Open PSPICE AD Student

 Goto File -> New -> Text File or Click on the New Icon and then New Text
File

 Write your PSPICE circuit. Make sure to have a label with a title, include all
circuit elements and include a .END statement.

 Goto File -> Save As and save the file with a .cir circuit extension.

59

 Goto Simulation -> Run Filename. If the option is not available you may
need to close the file and reopen it.

Once the program has run the output file may appear. If it doesn’t you can go to

View -> Output File or click on the Output File Icon on the left sidebar. The
output should look like this:

60

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 10: Design and Conduct an Experiment

1. Objectives :

 Design and Conduct an Experiment to verify that ….

 The ability to interpret and analyze given situation and plan solutions for it.

 The ability to choose the appropriate tools and instruments that suit the desired job.

 The ability to use the chosen tools and instruments to achieve the goals of the experiment.

2. Student proposal

You have to submit a proposal before starting your experiment. Your proposal will describe the

objective or the goal of the experiment in addition to the proposed experimental set-up, instruments,

tools, governing equations, etc.

Remember that your work does not based on the existing well-defined experimental procedure

(manual).

You have to develop a new technique in the lab, so that you can conduct a new experiment to

achieve the goal. In addition, you have to report the results. Students can use any of lab equipment,

tools, instrument to setup their own experiments.

The design of an experiment can be integrated in the lab through different approaches:

 Design-build-test approach.

 Modifying an existing experimental setup.

 Utilizing instrumentations from other experiment to study a certain phenomenon.

3. Deliverables:

 Each group (2-3 students) must deliver a report written using a word processor. The final report

should include:

 Objectives: Statement of what you are going to achieve.

 Designing experiments: develop a methodology which will produce high quality data that can

be used to evaluate specific process or parameter.

 Experimental setup: the apparatus, devices, and instruments used to conduct the experiment

should be clearly specified [figures or photos may be added].

 Theoretical background: the theory related to the experiment, including all assumptions and

equations.

 Conduct the experiment: clear procedure should be specified.

61

 Experimental results: represent all data.

 Analyze and interpret data: develop, if you can, a mathematical model or computer

simulation to correlate or interpret experimental results.

 Discussion and conclusions: list and discuss several possible reasons for deviations between

predicted and measured results from an experiment.

62

Appendix A

Introduction to Proteus

The PROTEUS Environment:
Proteus PIC Bundle is the complete solution for developing, testing and

virtually prototyping your system designs based around the Microchip Technology
series of Microcontroller. This software allows you to perform schematic capture and

to simulate the circuits you design.

Figure 1: A screen shot of the Proteus IDE

Proteus How to Start Drawing the Circuit
Start a fresh design, select New Design from File menu then the Create New
Design dialogue now appears as shown in Figure 2 and 3. Select Default and press
OK .

Figure 2

63

Figure 3

From the Library menu select Pick Device/Symbol see Figure 4 or left click on the

letter 'P' above the Object Selector as shown in Figure 5 to launch the Library
Browser or Press the 'P' button on the keyboard. The Library Browser will now

appear over the Editing Window see Figure 6.

Figure 4

64

Figure 5

Figure 6

Type in ' PIC16F877A ' in the Key words field and double click on the result to place
the PIC16F877A into the Object Selector. Do the same for the LEDs, Buttons, Crystal
oscillator, capacitors, 7 SEG-COM-Cathode, Resistors.
Once you have selected all components into the design close the Library Browser and
left click once on any component in the Object Selector (This should highlight your
selection and a preview of the component will appear in the Overview Window at the

65

top right of the screen see Figure 7). Now left click on the Editing Window to place the

component on the schematic - repeat the process to all components on the schematic.

Figure 7

In order to place ground or 5 voltage right click on the Editing Window, select place
then terminal then select ground(0 V)or power (5V).Connect the components to
obtain the circuit you need.

Figure 8

66

Attaching the Source File
The next stage is to attach the source file to our design in order to successfully

simulate the design. We do this through the commands on the Source Menu.
Go to the Source Menu now and select the Add/Remove Source Files Command as
shown down.

Figure 9
Click on the New button, browse until you reach the desired directory and select your
ASM file.

Figure 10

Click open and the file should now appear in the Source Code Filename drop down
listbox.

Figure 11

67

Figure 12

Select the Build All command from the source menu
as shown in Figure 13, this provides an excellent

way to check that everything has built without errors
or warnings.

We now need to select

the code generation

tool for the file. For our

purposes the MPASM

tool will suffice. This

option should be

available from the drop

down listbox and so

left clicking will select

it in the usual fashion.

Figure 13
Finally, it is necessary to specify which file the processor is to run. In our example

this will befilename.hex (the hex file produced from MPASM subsequent to

assembling filename.asm).To attach this file to the processor, right click on the

schematic part for the PIC and then left click on thepart. This will bring up the Edit

Component dialogue form which contains a field for Program File.If it is not already

specified as filename.hex either enter the path to the file manually or browse to the

location of the file via the button to the right of the field. Once you have specified the

hex file to be run press ok to exit the dialogue form.We have now attached the source

file to the design and specified which Code Generation Tool will be used.

Figure 14

68

Debugging the Program Simulating the Circuit
In order to simulate the circuit point the mouse over the Play Button on the animation
panel at the bottom right of the screen see Figure 1 and click left. The status bar
should appear with the time that the animation has been active for.

Working on your Source Code

To edit a source file:

 Select the source file it will be Filename.asm from the Source menu.

 Edit the source file.

 Select the Build All command from the Source menu.
You should see a small window showing details of the compilation process and the
following message "Source code build completed OK".

Figure 15

69

Appendix B

QL200 DEVELOPMENT BOARD

Overview:

QL200 PIC DEVELOPMENT BOARD (hereinafter referred to QL200) is a

multifunctional PIC microcontroller development platform designed and developed

by Shenzhen QSL Electronics Co., Ltd. based on our experience of many years’

development and our efforts of months’ design. It integrated the common external

resources and simulation interfaces. Particularly it is suitable for self-learning for

microcontroller beginners as well as electronic lovers. It has rich and flexible

hardware resources and the expansion feature as well as the free resource allocation,

which makes it a convenient debugging tool for PIC engineers to use especially in

their beginning period of designs.

Figure 1:QL200 Board.

1) Power Module.
2) 12864LCD and 1602 LCD module.
3) LED I/O module.
4) 4x4 matrix keyboard module.
5) Button module.
6) A/D converter module.

70

7) IIC communication module.
8) SPI communication module.
9) DS1302 module.
10) MCU reset module.
11) ICD / MCD online debugging interface.
12) On-board programming module (USB Communication).
13) Chip socket and system clock selection.
14) Digital LED display with 6 bit and 7 sections.
15) Remote control receiver and decoder module.
16) DS18B20 digital temperature measurement module.
17) Beeper experimental module.
18) USART serial communication module.
19) 10-bit D/A converter module.
20) Port output module.
21) Stepper Motor Module.
22) SD/MMC card Read/Write Module.

QL200 programming module QL-PROG:

The QL-PROG and PC are connected through "USB COMM" interface for

communication. The indicator BUSY keeps on during the whole process of

programming, and after the completion of programming it automatically become

off. Through ICSP interface, users can use QL-PROG to program other target

microcontrollers in other boards. The programming module gets power supply

from USB. During online programming the ICSP may not use external power, but

the jumper wires of power module should be set to the USB position. Through

jumper wires J5 and J6 to choose whether use QL_PROG to program target MCU

or use MCD2 to debug MCU (with modules 11) as shown in Figure 4-3. Through

jumper wires J7 and J8 to choose programming/debugging DIP40/28/18/16F57

chips or DIP20/14/8/10FXXX chips (because the PGD and PGC of DIP40 are

RB7 and RB6 ports, while the PGD and PGC of DIP20 are RA0 and RA1 ports).

As shown in the following Figures:

Figure 2: Choose MCD2 or QL-PROG Figure 3: Choose DIP40 or DIP20

71

MCU Port Resources and System Clock Selection

This module is the core portion of QL200 development board, as shown in Figure 4.
This module consists of the following main components:

1) 40-pin chip socket
2) PIC16F57 chip socket
3) 28-pin chip socket
4) 20-pin chip socket
5) 18-pin chip socket
6) 14-pin chip socket
7) 8-pin chip socket
8) PIC10FXXX chip socket
9) Clock source option OSCA (this clock source is used for DIP40/28 and PIC16F57).
10) Clock source option OSCB (this clock source is used for DIP18).
11) Clock source option OSCC (this clock source is used for DIP20/14/8).

Figure 4: MCU socket and clock sources

72

About the details of pin resources of each chip please refer to its respective manual,
and here we just list some specific pins used in this development board which needs
the user to pay attention to.

1) Pin 8 of PIC10FXXX is used for VPP and MCLR, and cannot be used as I/O GP.
2) Pin 4 of DIP8 is used for VPP and MCLR, and cannot be used as I/O GP3.
3) Pin 4 of DIP14 is used for VPP and MCLR, and cannot be used as I/O RA3.
4) Pin 4 of DIP18 is used for VPP and MCLR, and cannot be used as I/O RA5.

4) Pin 4 of DIP20 is used for VPP and MCLR, and cannot be used as I/O RA3.

6) TOCKI PIC16F57 must connect to the power supply.

7) Pin 7 of DIP28 may connect to RA5 or VDD through selection of jumpers (Pin 7 of
18FXX31 is VDD, and Pin 7 of other 28-pin PIC is RA5).

8) Pin 2 and 3 of DIP8/14/20 can not only be used as clock input and output, but they can
also be used as I/O port (in the condition that the internal clock mode is chosen at the point
of clock selection.)

9) GPIO port of 8-pin chip are connected to other chips.

10) Pin 15 and 16 of DIP20 section can not only be used as clock input, but they can also
be used as I/O port (in the condition that the internal clock mode is chosen at the point of
clock selection.)
11) There’s a 10K up-pull resistor on RA4 (which is controlled by the coding switch S10
next to the LED), for some chips the up-pull resistor must be activated so that the RA4 can

output high level voltage.

System Clock Selections:

1. PIC10FXXX clock selection. PIC10FXXX can only use the Internal RC oscillation.
2. DIP8/14/20 clock selection. As shown in Figure 5.

Figure 5: DIP8/14/20 Clock

3. DIP20 clock selection. As shown in Figure 6

73

Figure 6: DIP20 clock selection

4. DIP40/28/PIC16F57 clock selection. As shown in Figure 7:

Figure 7: DIP40/28/PIC16F57 clock selection

12864LCD and 1602LCD Modules

12864LCD and 1602LCD modules are shown in Figure 5-7. The modules consist of
the following components:

1) Character LCD1602 and contrast adjustment potentiometers.
2) Graphics array LCD12864, and contrast adjustment potentiometers.

Figure 5-7 12864LCD and 1602LCD

Modules

1) 12864LCD and 1602LCD both use the PORTA as the control bit and the PORTD as data bit.

2) All the pins of this module are jump connected to the pins of MCU without coding
switches to control it. It is recommended that the LCD is plugged off the socket.

3) In the experiment of LCD1602 or LCD12864, the up-pull resistor of RA4 required to be
activate, i.e., set the S10_4 ON.
4) Datasheets of 12864LCD and 1602LCD are included in the Datasheet directory of CD-

74

ROM that comes along with product.

5) Examples of 12864LCD and 1602LCD are included in the Example directory of CD-ROM
that comes along with product.

Schematics of these modules are shown in Figure 9:

Figure 9: Schematics of 12864LCD and 1602LCD

PORTA, I PORTB and the LED module PORTC

The module shown in Figure 10 and 11 consists of the following components:
1) 8 LED lights on PORTA, and PORTA of PIC16F628 etc. has 8 bits.
2) 8 LED lights on PORTB.
3) 8 LED lights on PORTC.

1) All the three ports have respective 8 bits output
2) All the three ports use separate coding switch to control them. It is recommended that if
this module is not in use, the corresponding bits should be shut off to avoid interference with
other functions.
3) Through the LED socket of PORTC, you can conduct the experiment of other ports (such
as PORTD and PORTE of 40-bit MCU). However, when this is in use, please make sure that
the coding switch must be switched off.
4) All LED are grounding with negative pole, and if you want to lit the LED, just output a high
level voltage at the corresponding pin of the port.
5) In the CD-ROM examples of "single LED light" and "play-in-turn" are included for reference.

75

Figure 10: Ports A/B LED schematic

76

Figure 10: PortC LED schematic

4x4 matrix keyboard

This module is shown in Figure 11. It consists of the following main components:
1) 16 keys.
2) Coding switching.
2) Interface socket.
2) Up-pull resistors.

77

Figure 11: The schematic of the 4x4 matrix keyboard

Descriptions about this module are as the following:
1) Keys are connected to the 8 bits of PORTC in 4 x4 array
2) This module uses coding switch to control it. It is recommended that if this module is not in
use, the corresponding bits should be shut off to avoid interference with other modules.
3) Through the interface socket you may practice the other matrix keyboards (you must make
sure the coding switch is off).
4) There’s a 10K up-pull or down-pull resistors to ensure the stability of voltage level of data
online.

PORTA0~3 and PORTB0~3 Key Module

This module is about single key functions.
This module consists of the following components:
1) 4 keys on PORTA0 ~ 3;
2) 4 keys on PORTB0 ~ 3;
3) 10K up-pull or down-pull resistors on 8 pins, and jumper select.
4) Coding switch
5) Interface socket

Descriptions of this module are as the following:
1) 8 keys are connected to the PORTA0 ~ 3 and PORTB0 ~ 3.
2) When the keys are pressed, the output level of voltage is LOW or HIGH (jumper
J17 select)
3) The 8 keys are controlled by the coding switches to decide whether they are connected to
the pins of MCU, and when this module is not in use please make sure the coding switches
are not connected to avoid the effect on other modules.
4) Through the interface socket, you can do other output experiment (with the coding
switches disconnected).
5) In case the keys on PORTB0 ~ 3 are used, if the internal up-pull resistors are activated,
you may use the jumper wire to switch them off to disconnect them from the internal up-pull
resistors. But for the keys on PORTA0~3, in order to keep the stable voltage level, the jumper
wires must always be ON.

78

Figure 12: Schematic of the keys

Six Digital LED Module

This module introduces the use of a multi digital LED, the module consists of the following
main components:
1) 6 digital LED
2) Coding switches for bit control and section control
3) Driving circuit
4) Interface socket

Descriptions of this module are as the following:
1) The section control of LED is connected to PORTD of MCU through coding switch.
2) The bit control of LED is connected to PORTA of MCU through coding switch. When this
module is in use please make sure that the coding switch are on, and when this module is not
in use please make sure the coding switches are off to avoid affect the other modules.
4) By using the interface socket, it is also possible to achieve the display of LED with
other MCU chips. (Please make sure that the coding switches are off.)
5) The six digital are connected to a common anode pole.

79

Figure 12: 7-segments schematic

