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Chapter 3 Overview
N

https:/ /www.youtube.com /watch2v=rB83DpBJQsE
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Laws of Vector Algebra

. 1
A S— : — )
2 X
a \ 3
\*"‘i"' X
~ ~ a) Base vectors
A =alA| = aA @)

A =RA, +§A, + 24,

A=Al= A2+ A2+ A2

— =
\+/AJ2C + A2 + A2
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(b) Components of A



Properties of Vector Operations
—

Equality of Two Vectors
A=aA =XA, +JA, +ZA,, (3.6a) Commutative property
B=bB =%B, +§B, +iB,, (3.6b)

C=A+B=B+A

A

then A = B if and only if A = B and a = b, which requires
that Ay = By, Ay = By,and A, = B,.

Equality of two vectors does not necessarily imply that
they are identical; in Cartesian coordinates, two displaced

parallel vectors of equal magnitude and pointing in the same C A
direction are equal, but they are identical only if they lie on
fop of one another.
B
B
(a) Parallelogram rule (b) Head-to-tail rule

Figure 3-3: Vector addition by (a) the parallelogram rule and
(b) the head-to-tail rule.



Module 3.1 Vector Addition and Subtraction Display two vectors in rectangular or cylindrical coordinates, and
compute their sum and difference.

[ Module 3.1 Vector Addition and Subtraction

Input
Select coordinate system:  rectangular (xy)

EEE ~-S

Compute and display A alone
. B alone
@C=n+B
JC=4-B

Output
Vector C x~-8 y=--26




Position & Distance Vectors
B

Position Vector: From origin to point P

_> ~ Zz
Ry = 0P =Xx1+¥y1 +1274 A
)
Ry=0P, =Xx2+ V¥ + 77

Distance Vector: Between two points

Ri» _PP
— — Ry

~

=X(x2 —x1) + Y02 —y1) +2(z2 — 21)

the distance d between P; and P> equals the magnitude

of R122 ) ) N
Figure 3-4: Distance vectorRj» = P; P, = Ry—R|, whereR;

d =R and R» are the position vectors of points P and P>, respectively.

=[(2— x>+ —yD)*+ (2 —2)12 (3.12)



Vector Multiplication: Scalar Product or "Dot Product”

A-B=ABcosOup A=]Al= VA-A
oo ]
AB = COS
A B JA-A UB-B
HBA
AB B X-X=y-y=2-2=1,
(a) (b) A A A A A A
X-y=y-z=z2-x=0

Figure 3-5: The angle #4p is the angle between A and B,
measured from A to B between vector tails. The dot product
is positive if 0 <825 < 90°, as in (a), and it is negative if
90° < B4p5 < 180°, as in (b). IfA= (A, A,,A;)and B = (B,, By, B;), then
A-B=B-A (commutative property), Hence:

A-B+4+C)=A-B+A-C (distributive property)
A-B=A,B,+A,B,+ A,B,.



Vector Multiplication: Vector Product or "Cross Product”

AxB=nABsinOp AxB=-BxA (anticommutative)
Ax(B+C)=AxB+AxC (distributive)

® AxB=nABsin Oy AXA:O
B Fal ~ ~ ~ ~ ~ o~ -~ -~
y N XX Yy =1, y X Z =X, Zxx=y. (3.25)
048 RN
\ = ~. Note the cyclic order (xyzxyz...). Also,
A

ixk=§x§=2x2=0. (3.20)

(a) Cross product

AXB If A:(AX,A);,AZ) Ell’ld B:(BXsBysBZ)a
X VvV 1z
AxB= Ax Ay AZ
B, B, B,

A

(b) Right-hand rule



Example 3-1: Vectors and Angles

In Cartesian coordinates, vector A points from the origin to
point Py = (2, 3, 3), and vector B is directed from Pj to point (b) The angle B between A and the y-axis is obtained from
P>, = (1,-2,2). Find ' ]

(a) vector A. its magnitude A, and unit vector a, A= AlIR

© ' : V= | cos B = Acos g,

(b) the angle between A and the y-axis, y=IAlly p p
(¢) vector B,

(d) the angle 64p between A and B, and | A-¥ 1 3

(e) the perpendicular distance from the origin to vector B. p = cos™ ( Ab ) = COS~ (—) = 50.2°.

Solution: (a) Vector A is given by the position vector of
Py = (2,3, 3) as shown in Fig. 3-7. Thus,

A=%2+7¥3+123, B=xX(1-2)4+3(-2-3)+22-3)=—X—§5— 2.
A=Al=v224+32432=.22,

or

(c)

A (d)
a=—=@R2+§3+23)/V22.

o Oq_l[A-B] Oq_l[(—2—15—3)]
AB = COs —— | = COs

Yo, A AlIB] V2 77

1l AB_ ;4 .

T 2.3.3) = 145.1°.
P2:(15_2:2)

(e) The perpendicular distance between the origin and vector B

1s the distance | O P53 | shown in Fig. 3-7. From right triangle
O Py P3.

—
. | OP; | = |A|sin(180° — 845)
= /22 sin(180° — 145.1°) = 2.68.

Figure 3-7: Geometry of Example 3-1.



Example 3-2: Vector Triple Product

Triple PrOdUC'I'S Given A =X—V+72, B=V+17Z and C = —Xx2 + 73, find

(A x B) x C and compare it with A x (B x C).

B N, 0o

. Xy
Scalar Triple Product AKB_‘I e 2‘——5‘:3—j‘+i
0O 1 1
A-BxC)=B-(CxA)=C-(AxB).
and
Ax Ay Az X ¥ z
A-BxC)=| B, B, B, AxB)xC=|-3 —1 1 |=-834§7-%2.
g 2 0 3
C, C, (4
A similar procedure gives A X (Bx C) =Xx2 +y4 + Z.
Vector Triple Product Hence:

AXBxC)#A#AxB)xC

Ax (BxC)=BA-C)— CA-B),

which 1s known as the “bac-cab’ rule.



Cartesian Coordinate System
B

Differential length vector

dl=Xdly+Vdly+2dl,=Xdx+§dy+idz, (334)

where dl; = dx is a differential length along X. and similar
interpretations apply todl, = dy and dl, = dz.

z ds, =7 dx dy
a
dy
dx
Differential area vectors )
ds, =y dx dz
ds, =Xdlydl, =%dydz  (y-zplne), (3352 / &
.A\\dl dV = dx dy dz
with the subscript on ds denoting its direction. Similarly, ds, = % dv dz

dsy =Vdx dz (x—z plane), (3.35b) "
ds, =Zdx dy (x—y plane). (3.35¢) " . 7 -

A differential volume equals the product of all three differential x
lengths:
dV =dx dy dz. (3.36)



Table 3-1: Summary of vector relations.
Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X, V. Z r.g.z R.O,¢

Vector representation A =

XAy + 5’7‘1}' +ZA;

RAp —|—6A9 +$A¢

Magnitude of A |A| = A2+ A3+ A2 {{A%+Aé+ﬂ§ \{AE + A2+ A2
Position vector 0131 = Xx| + Vv + 2271, Iry + 2z, RR;,
for P = (x1, y1, 21) for P = (r1,¢1. 21) for P = (R1,61,¢1)
Base vectors properties X'X=V:¥y=2-2=1 i"-i“':ni;-(]h::i-izl ﬁ-ﬁ:ﬁ-é:n{)-n{::l
R y=V:2=2-%=0 | f-d=¢-2=2-F=0 R-6=06-¢=0-R=0
Ixy=1 Pxd=17 Rx0=¢
VyXi=X dxz="1 Oxd=R
IxX=1 ixF=60 dbxR=9
X ¥V 1z Poe R 6 ¢
Cross product A X B = Ax Ay Ag Ay Ap Az AR Ap Ay
Bx By B; B, By Bz Br By By

Differential length dl =

Xdx+Vdy+idz

Pdr+ordp+1idz

RdR +OR dO +dRsin0 do

Differential surface areas dsy =Xdydz dsy =Ttrdp dz dsp = RR2sind do do
dsy =y dx dz dsy =9 drdz dsy =ORsinf dR d¢
ds; =7dx dy ds; =1r dr d¢ dsy =R dR do

Differential volume dV = dx dy dz rdrde dz R%sin0 dR do dg




Cylindrical Coordinate System

~. z=1z1 plane e
~ - -
S _ -
LS T /P:(’”la(Ple)
- - ~
- - \\\ -
Pt S The position vector O P shown in Fig. 3-9 has components
P - R/ , along r and z only. Thus,
- ~
—_——- = = o -
1 "\
. ! 1 - - ~
r=r cylinder 0 1 | - R = 0P =rr| +12z. (3.40)
1 1 o
ol ok :
¢ L_._. ¢ = @1 plane
N !
~ 1
X Mol

The mutually perpendicular base vectors are T, ti; and 1,
with T pointing away from the origin along r, tﬁpoinﬁng ina
direction tangential to the cylindrical surface, and Z pointing
along the vertical. Unlike the Cartesian system, in which the
base vectors X, ¥, and Z are independent of the location of P,
in the cylindrical system both t aﬂ.dtf) are functions of ¢.



Cylindrical Coordinate System

The base unit vectors obey the following right-hand cyclic
relations:

=, (337

-
X
-~
|
N
>
X
N>
Il
=
>
X
>

and like all unit vectors, r-r=¢-¢=2z-z=1, and
IXr=¢xo=z2xz=0.

In cylindrical coordinates, a vector is expressed as

A = aJA| = A, + 0Ay + 24, (3.38)

dl, =dr, dlg=rdp, dl,=dz. (3.41)

Note that the differential length along ti; is r d¢, not just de.
The differential length 1 in cylindrical coordinates is given by

dl=tdl, +bdly +idl,=%dr+¢rdp+2dz. (3.42)

z
r 3
d= ds. = zr dr dp
dsy, = ¢ dr dz
= dV =rdrd) dz
ds, =t rd dz
) - > )

r

* dOrdc/)

Figure 3-10: Differential areas and volume in cylindrical
coordinates.



Example 3-3: Distance Vector in Cylindrical
Coordinates

Find an expression for the unit vector of vector A shown in

Fig.3-11 in cylindrical coordinaes. -

Solution: In triangle O Py P,,

Z
'y
OP, = OP; +A.
P1=(0,0,h)
a Hence,
h A=0P,— 0P
= rro — zh,
A
0 - and
o 7o \ A= i
Py = (ro, §o, 0) T A
rro — zh

=
I

‘M‘g—l—hz

We note that the expression for A is independent of ¢. That
is, all vectors from point Pj to any point on the circle defined by
r = ro in the x—y plane are equal in the cylindrical coordinate
system. The ambiguity can be eliminated by specifying that A
passes through a point whose ¢ = ¢.

Figure 3-11: Geometry of Example 3-3.



Example 3-4: Cylindrical Area

Find the area of a cylindrical surface described by r =3,

30° < ¢ < 60°, and 0 < 7 < 3 (Fig. 3-12). I

z
A Solution: The prescribed surface is shown in Fig. 3-12. Use
of Eq. (3.43a) for a surface element with constant r gives
S ~ 600
% -
i f dgp f dz
$=300  z=0
5 /3 3
B ¢|n/6 Z|o
S -V o7
0 \ - ~ T 2
30°
\__,/ Note that ¢ had to be converted to radians before evaluating the
X integration limits.

Figure 3-12: Cylindrical surface of Example 3-4.



Spherical Coordinate

System

I \'

-~ ~ ~

R x 0 =¢, éx¢=ﬁ, tf)xﬁ:é.

(3.45)

A vector with components Ag, Ay, and Ay is written as

A =4A| =RAg + 045 + $Ay.

and 1ts magnitude 1s

Al= VA-A= A} + A7+ 43

The position vector of point P = (Ry, 01, ¢1) 1s simply

R, ZWJZﬁRl,

(3.46)

(3.47)

(3.48)

(Ry, 01, 1)

0= 9]
conical
surface




Example 3-5: Surface Area in Spherical Coordinates Example 3-6: Charge in a Sphere

The spherical strip shown in Fig. 3-15 is a section of a sphere

: _ _ A sphere of radius 2 ¢m contains a volume charge density py
of radius 3 cm. Find the area of the strip.

given by

Find the total charge Q contained in the sphere.

oy = 4cos? 6 (C/m3).

Solution:
Q= [ pyv dV
-V %
2w 2x1072
— f (4cos’>O)R*sin® dR d6 d¢
$=060=0 R=0
o o o R3\ [2X1072
Figure 3-15: Spherical strip of Example 3-5. _ 4] f (_) sin O COSZ 0 do dgb
0 0 : 0
Solution: Use of Eq. (3.50b) for the area of an elemental 32 7 cos3 o\ |I*
spherical area with constant radius R gives 7 107 / ( ) . de¢
60° 2 0
S =R? f sinﬂdﬁ'qub o
o300 o2 — x107° [ do
60° |27 0
=9(-cost)| 9|, (em) 1287
= 18w (cos 30° — cos 60°) = 20.7 cm?. ~ 9 x 1077 = 44.68 (C).



Technology Brief 5: GPS

\_L\&‘

Figure TF5-2: GPS nominal satellite constellation.
Four satellites in each plane, 20,200 km altitudes, 55°
inclination.

>

Figure TF5-1: iPhone map feature.

How does a GPS receiver determine its location?



GPS: Minimum of 4 Satellites Needed
S

) SAT2
SAT3 &= 2 (2, 12, 22)
(x3,3,23)
d
Unknown: location of receiver (X0, Y0, Z0) SAT4
Also unknown: time offset of receiver clock ez o
so unknown: time offset of receiver clock 1 ps GLY121)

s
Quantities known with high precision:
locations of satellites and their atomic
clocks (satellites use expensive high

.. ] Time delay g e\ :
precision clocks, whereas receivers do not) ‘ \(yo )

Solving for 4 unknowns requires at least 4 1 J.L
equations ( four satellites) ‘ (Decewe] ‘ode

Satellite Code

di = (x1 — x0)> + (y1 — y0)* + (21 — 20)*> = c [(11 + 10)]*,
di = (x2 — x0)% + (2 — y0)? + (22 — 20)* = ¢ [(12 + 10)]%,
d? = (x3 — x0) + (y3 — y0)2 + (23 — 20) = ¢ [(13 + 10)]?,

di = (x4 — x0)> + (s — y0)> + (24 — 20)* = ¢ [(t4 + 10)]* .

Figure TF5-3: Automobile GPS receiver at location (xq, yo, Zg).



Coordinate Transformations: Coordinates
N

0 To solve a problem, we select the coordinate system that best
fits its geometry

0 Sometimes we need to transform between coordinate systems

and the inverse relations are

X = rcosao, y = rsing.

Figure 3-16: Interrelationships between Cartesian coordinates
(x, v, z) and cylindrical coordinates (r, ¢, 7).



Coordinate Transformations: Unit Vectors

>)




Table 3

-2: Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components
Cartesian to r= vVx2 4+ y? I'=Xcos¢ + ¥sing Ay = Ay cos¢ + Ay sing
cylindrical ¢ =tan—l(y/x) ¢ = —Xsing +ycose Ap = —Ayxsing + Aycos¢
L =2Z i=1 Ay = Ay
Cylindrical to X =rcosg X="rcos¢ — tfusin b Ay = Arcos¢ — Agsing
Cartesian y =rsing V=rsing +¢cose Ay = Apsing + Agcos¢
Z=2Z i - i Az = Az
Cartesian to R = vxz +y2 422 R = ksin@ CoS ¢ Ap = Aysinfcos ¢

spherical

0 =tan— [ /22 + y2/z]

+ vsin# sing + Zcos#
0 = Xcosf cosg
+ Vcosfsing — zsin#

+ Aysinfsing + Az cosf
Ap = Ay cost cosg
+ Ay costsing — Azsind

¢ = tan~1(y/x) ti): —Xsin¢ + ycos¢ Ap = —Aysing + Ay cos¢
Spherical to x = Rsinf cos¢ % =Rs 1119-::054: Ay = Apsinf cos ¢
Cartesian + 6 cos @ cos P — $sin @ + Agcosflcosgp — Ay sing
y = Rsin# sin ¢ ¥ = Rsinfsing¢ Ay = Apsin# sin¢
—|—Bc0595m¢—|—$cos¢ + Agcosé@sing + Ay cos g
z = Rcos@ 7 = Rcosd —Bsind Ay = Apcosf — Agsinf
Cylindrical to R= Vr2+ 22 R = fsind + Zcosd Ap = Apsinf + A cosé
spherical 6 = tan™! (r/z) 0 = fcosd — Zsin# Ag = A, cosl — A, sind
¢ =0 o=9 Ap = Ag
Spherical to r = Rsin# f = Rsinf +06cosd Ay = Apsind + Agcosf
cylindrical b =0 b=¢ Ap = Ay
7z = Rcos@ Z=Rcosfd —0Bsind Ay = Apcosf — Ag sinf




Example 3-7: Cartesian to Cylindrical Transformations

Given point P; = (3, —4,3) and vector A = X2 — y3 + 74,
defined in Cartesian coordinates, express P and A incylindrical
coordinates and evaluate A at P;.

Solution: For point P;, x =3, y = —4, and z = 3. Using
Eq. (3.51), we have

r=x24y2=5 ¢=tan"'L = _53.1° = 306.9°,
X

and z remains unchanged. Hence, Py = (5, 306.9°, 3) in

cylindrical coordinates.

The cylindrical components of vector A = A, —I—lilAEi, +ZA,
can be determined by applying Eqs. (3.58a) and (3.58b):

A =Aycos¢ + Aysing = 2cos¢ — 3sin g,
Ap = —Aysing + Aycos¢ = —2sin¢ — 3cos ¢,
A, =4.

Hence,
A=T(2cos¢ — 3sing) — $(2sin¢ + 3cos¢) + 74.
At point P, ¢ = 306.9°, which gives

A = £3.60 — $0.20 + 4.




Example 3-8: Cartesian to Spherical Transformation

Express vector A =301+ ) +3(y )+ 32 in spherical |

coordinates.

Solution: Using the transformation relation for Ag given in
Table 3-2, we have Using the relations:

AR = Aysinfcos¢ + Aysinésing + A, cosf x = Rsinf cos ¢,

= (x 4+ y)sinfcos¢ + (y —x)sinf sing + zcosh. ] ]
y = Rsinf sin ¢,

Using the expressions for x, vy, and z given by Eq. (3.61c), we 7= R cosé.
have
AR = (Rsmnfcos¢ + Rsinfsing)siné cos @ leads to:
+ (Rsin® sin¢— R sin 6 cos ¢) sin 6 sin ¢ + R cos” 6
— Rsin” 8 (cos” ¢ + sin® ¢) + R cos’ # Ag =0,
= Rsin’6 + Rcos’> 6 = R. A¢,:—Rsin9.
Similarly,
Ap=(x+y)cosfcos¢+ (v —x)cosfsing — zsinb, R n . . .
Agp=—(x +y)sing+ (y — x)cos g, A =RAR +045 + 044 =RR —QRsing.




Distance Between 2 Points
S
d = |Ry2|
=[(x2 —x1)* + (2 — y1)* + (22 — 21)?]"%. (3.66)

d = [(rg Cos ¢ — ry COS@’)])z
+ (r2singn — ry sing)? + (z2 — 21)2]1/2

1/2
— [r§+r‘f- —2r1m COS(sz—ff’l)"'(ZZ_Zl)z] f

(cylindrical). (3.67)

d= {R% - R% — 2R R>[cos B> cos O

+ sin 6 sin &, cos(¢r — t;sbl)]}l/2

(spherical). (3.68)



From differential calculus, the temperature difference between

Grqdienf of A SCCIICIr points P) and P>, dT =T, — Ty, 1s
Field at = L e 4 L gy 1 81 4 (3.70)
ox dy dz

Because dx =X -dl, dy =y-dl, and dz =1Z-dl, Eq. (3.70)
Py=(x+dx,y+dyz+dz)

\ " can be rewritten as
dy
d aoT oT aT
i V90 AT = %5 dl 4§ -dl il
| dl =3 dx 0z
- piinieii oT oT 0T
S Pir=(xy 2) =[X—+V— +12 -dl (3.71)
0x ay 3z
-
x o7 9T dT
VT=gradT=X3 —I—ya -|—Za—. (3.72)
Figure 3-19: Differential distance vector dl between points P * Y “
and P.
Equation (3.71) can then be expressed as
dT = VT -dl. (3.73)
The symbol V is called the del or gradient operator and is
defined as
d d d
V=x—+y—+z2— (Cartesian).  (3.74)
d.x ay 0z




Example 3-9: Directional Derivative

G r q d i e n-I- C O n-l- Find the directional derivative of T = x2 + y>z along direction
. X2 + ¥3 — 72 and evaluate it at (1, —1, 2).
Solution: First, we find the gradient of T

d
With d1 = a;dl, where a; is the unit vector of d1, the directional VT = ( I +y

.0
+ Z) (x* +y*2)
derivative of T along ay is

0
ay 0z

=X2x +y2yz + zyz.

dT N
al = VT -a. (3.75) We denote I as the given direction,

We can find the difference (7> — T7), where T1 = T (x1, y1. 21) I=x2+4y3 -z

and T = T(x2, y2,22) are the values of T at points [ts unit vector is
= (x1, y1,21) and P> = (x2, y2, z2) not necessarily in-

- 4

finitesimally close to one another, by integrating both sides of a = : Vy3-2  x+y3-2 _
Eq. (3.73). Thus, [T e V17
Py Application of Eq. (3.75) gives
T, — T =[VT-dl. (3.76)  dT . . . . 2 (§2+y3—22)
- — =VT-a,=X2x +y2yvz+1zy°)-
P di ! J17
_Ax+6yz— 2y?
a V17
At (1, -1, 2),
dT 4—-12-2 —10

dl | _1y N1 V1T



Module 3.2 Gradient Select a scalar function f(x, y, z), evaluate its gradient, and display both in an appropriate 2-D
plane.

| Module 3.2 Gradient

Input
Select function: sinusoidal —

cos coefficent I] 1

» N W s O

9.4 -
sin coefficent [J | ]
cos parameter ll ]
sin parameter g | > |
0 A e o
fooy) 427 cosll  x) + 5.7 sind-2  y)
-1k
-3 9.4
-4
Output
-5 P

5 4 3 -2 <1 0 1 2 3 4 5
f(x,y) in color
Vrin arrows

V= -3.7sin(x)x + 11.4cos(-2y)y




Divergence of a Vector Field

4
I
w ”
h I
1 (]

%E-ds
JS (3.95)

2

=

- divE £ lim
AV>0 AV

where S encloses the elemental volume AV. Instead of denoting
the divergence of E by div E, it is common practice to denote

D Imaginary

spherical
’/ surface itas V - E. That is,
} E
. JoE oE JE
' V-E=divE="%4222 L 722 (39
dx ady 0z
Figure 3-20: Flux lines of the electric field E due to a positive
charge q. . . .
e for a vector E 1n Cartesian coordinates.

At a surface boundary, flux density is defined as the amount

of outward flux crossing a unit surface ds: From the definition of the divergence of E given by Eq. (3.95),

field E has positive divergence if the net flux out of surface S
E-ds E-nds . is positive, which may be “viewed” as if volume AV contains

|ds| - as E-n. (385 ;source of field lines. If the divergence is negative, AV may
be viewed as containing a sink of field lines because the net
where fi is the normal to ds. The fotal flux outwardly crossinga  flux is into AV. For a uniform field E, the same amount of
closed surface S, such as the enclosed surface of the imaginary  flux enters AV as leaves it; hence, its divergence is zero and
sphere outlined in Fig. 3-20, is the field is said to be divergenceless.

Flux density of E =

Total flux = %E - ds. (3.86)
S



Divergence Theorem
N

/ V-EdV = f E-ds (divergence theorem).
1% S

(3.98)

Useful tool for converting integration over a volume to
one over the surface enclosing that volume, and vice versa



Example 3-11: Calculating the Divergence

Determine the divergence of each of the following vector fields

and then evaluate them at the indicated points:

(a) E=%3x> +§2z +2x’z at (2, =2, 0);

(b) E = R(a’ cos#/R?) —0(a’sin@/R?) at (a/2, 0, 7).

Solution:
oE oFE oF
v °E: X y z
(@) gx * ay a+ 0z 5
= —GxH+ —Q22) + —(x%2)
dx ay 0z
=6x +0+ x2
g + 6x.

At (2,-2,0), V-E

(2,-2,0)

16.

(b) From the expression given on the inside of the back cover of
the book for the divergence of a vector in spherical coordinates,
it follows that

18, 5
V-E=——(R’E 2 (Egsin®
R2aR T ER T ng ag (BN

1 0Ey
Rsinf 0d¢

1 9
=——(a’cosb) +

| d a’ sin% 6
R2OR R sin 6 060 R?

AtR=a/2andb =0, V-E = —16.
(a/2,0,m)



Module 3.3 Divergence Select a vector function f(x, y, z), evaluate its divergence, and display both in an appropriate

2-D plane.

Module 3,3

Divergence

-1 0 1 2 3 4 5

Fim arrows
V- Fin color

Input

Saelect function:  palynomlal

¥ coefficent I o

v coefficent I |

® exponent | .. |

y exponent IJ ]

SIS | S ) SNy S

Cutput

V-r= 1.2 % 12y




=V

Curl of a Vector Field HH ] | comonrc
N

Circulation = @ B - dl. i ' B

X
(a) Uniform field
C
\ Z
[
\ -
s A
V xB=curl B Contour C
. 1 ~ >V
= lim — [n¢®p B-dl . (3.103)
As—0 As
C max
X
Thus, curl B is the circulation of B per unit area, with
the area As of the contour C being oriented such that the *
circulation is maximum. (b) Azimuthal field

T—— —

Figure 3-22: Circulation is zero for the uniform field in (a), but
it is not zero for the azimuthal field in (b).



Stokes’s Theorem
B

Stokes’s theorem converts the surface integral of the curl of
a vector over an open surface S into a line integral of the
vector along the contour C bounding the surface S.

For the geometry shown in Fig. 3-23, Stokes’s theorem states

f(V X B)-ds = fB -dl (Stokes’s theorem),
S C
(3.107)

dl

—__

contour C

Figure 3-23: The direction of the unit vector h is along the
thumb when the other four fingers of the right hand follow d1.



Module 3.4 Curl Select a vector f(x, y), evaluate its curl, and display both in the x-y plane.

| Module 3.4

Curl

-1 0 1
fin arrows
Vx fin color

2

Input

Select function: sinusoidal

cos coefficent [l !

sin coefficent ll |

cos parameter [l

sin parameter r] |

. ‘

f=%[10 cosfl ¥+ y65 sin( x

Output

Vx = z(6.5c0s(-1x) - 4.8sin(y))




Laplacian Operator
N

Laplacian of a Scalar Field

R VAN o VAR R V4

dx? T dy? T 07>

V>V =V-(VV) = (3.110)

Laplacian of a Vector Field

V2E_ 82 N 82 N 82 o
\ox2  9y? 9z2

=X V°E, +yV°E, +2V°E,

Useful Relation

V’E=V(V-E)—Vx (VxE). (3.113)




Tech Brief 6: X-Ray Computed Tomography
—

How does a CT scanner generate a 3-D image?

JT“& ¢ e Gﬁill
4 \ - , {

Figure TF6-2 CT scanner.

Figure TF6-1 2-D X-ray image.




Tech Brief 6: X-Ray Computed Tomography

0 For each anatomical slice, the

CT scanner generates on the
order of 7 x 10°
measurements (1,000
angular orientations x 700
detector channels)

1 Use of vector calculus allows

(] C t
the extraction of the 2-D it
imdge Of d Slice (a) CT scanner (b) Detector measures integrated attenuation

along anatomical path
0 Combining multiple slices
generates a 3-D scan

(c) CT image of a normal brain

[Figure TF6-3 Basic elements of a CT scanner.




Chapter 3 Relationships

Distance Between Two Points Vector Operators
d =[(x2 —x1)? + (o2 — y1)? + (22 — z1)*]'/? VT — izT + 5.3;" + izT
x , z
d = [r3+r} = 2riry cos(ga—d) + (2 —21)*] "/ e or  ap
_ X y ¥4
d:{R%JrR‘]?—2R1R2[c0592005911f2 V-E= ax + 3y + 37
+ sin 6y sin 62 cos(¢2 — ¢1)]1} /9B, 9B, /3B, 9B,
VxB=x5r % )PV G T
Coordinate Systems Table 3-1 ) g g *
Coordinate Transformations Table 3-2 +Z 9By — i
0x ay
Vector Products s 3%V a*tv 9%V
VoV = + +
A-B = ABcosfagp ax?z  ay?  9z2
AxB=nABsinf,p (see back cover for cylindrical
A-BxC) =B-(CxA) =C-A xB) and spherical coordinates)
Ax(BxC) =BA-C)—-CA-B) Stokes’s Theorem
Divergence Theorem j(V x B)-ds = §£B - dl
S C

fV-EdV:fE-dS

V S



