Primary coil

Push rod

e e —— F erromaﬁetic core

e

Secondary coils

N

o Vout +

Figure TF11-1: Linear variable differential transformer (LVDT) circuit.
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Chapter 5 Overview




Electric vs Magnetic Comparison

Table 5-1: Attributes of electrostatics and magnetostatics.

Attribute Electrostatics Magnetostatics
Sources Stationary charges p, Steady currents J
Fields and Fluxes Eand D Hand B
Constitutive e and o I
parameter(s)

Governing equations

e Differential form VD =p, V:-B=0
VxE=0 VxH=]

e Integral form #;SD ds=Q Cﬁ‘B rds =0

jéH-dl=I
C

Potential Scalar V., with Vector A, with
E=-VV B=VxA
Energy density — 1.2 1 2
gy density We = Z;SE Wy = j,u,H
Force on charge ¢ Fe. = gE Fn=quxB
Circuit element(s) C and R L




Electric & Magnetic Forces
=

Magnetic force o
Fn=quxB (N) ar Fin=quB sin §
(@) \L}
{4 B

Electromagnetic (Lorentz)

force

F=F.4+F,=¢gE+qguxB=¢(E+uxB).

(b)

Figure 5-1: The direction of the magnetic force exerted on a
charged particle moving in a magnetic field is (a) perpendicular
to both B and u and (b) depends on the charge polarity (positive
or negative).



Magnetic Force on a Current Element

B
e © ele e
Differential force dFm on a differential current | dl: ® ®|© ©
® @I ®
dF,=1dlx B (N). (5.9) ® ®|1® @
=0
For a closed circuit of contour C carrying a current /, the total R
magnetic force is
. (a) (b)

Fn = I%dl x B N).  (5.10)
©

If the closed wire shown in Fig. 5-3(a) resides in a uniform
external magnetic field B, then B can be taken outside the
integral in Eq. (5.10), in which case

Fn=1 ?le x B=0. (5.11)
C

(c)

This resul hich is onseauence of the fact 1l he Figure 5-2: When a slightly flexible vertical wire is placed in a
s result, which is a consequence of the fact that the magnetic field directed into the page (as denoted by the crosses),

vector sum of the infinitesimal vectors dl over a closed path it is (a) not deflected when the current through it is zero, (b)
equals zero, states that the total magnetic force on any closed — deflected to the left when 7 is upward, and (c) deflected to the
current loop in a uniform magnetic field is zero. right when 7 is downward.



Torque

T=dxF (N-m)

d = moment arm
F = force

T = torque

Figure 5-5: The force F acting on a circular disk that can pivot
along the z-axis generates a torque T = d x F that causes the
disk to rotate.

These directions are governed by the following right-hand
rule: when the thumb of the right hand points along the
direction of the torque, the four fingers indicate the direction
that the torque tries to rotate the body.



Magnetic Torque on Current Loop

¥
4
N Lo
i B
F| = 1(=yb) x (xBy) = z1b By, o Oi____é):t by
: B
Fs = I (¥b) x (XBy) = —21bBy. @ |1
| a I
No forces on arms 2 and 4 ( because | Pivot axis —
and B are parallel, or anti-parallel) (a)

Magnetic torque: |-—a2—] [
T:d1XF1+d3XF3 Looparml E L 3
4 ) L ) 00p arm
— (% 3) x (216B0) + (% 5) x (~21bBo)

=vylabBy = j}l,%Bo, (b)

Figure 5-6: Rectangular loop pivoted along the y-axis: (a) front
view and (b) bottom view. The combination of forces Fy and

Area of LOOp F3 on the loop generates a torque that tends to rotate the loop in
a clockwise direction as shown in (b).



/e
t

Pivot axis

Inclined Loop
I

For a loop with N turns and whose surface
normal is at angle theta relative to B direction:

T'=NIABysiné. (5.18)
The quantity NI A is called the magnetic moment m of the
loop. Now, consider the vector @
_ — — A 2 m (magnetic
m=nN/A=nm (A-m~), (5.19) F, / moment)

where n is the surface normal of the loop and governed by the
following right-hand rule: when the four fingers of the right
hand advance in the direction of the current I, the direction (,;;2) sinf O
of the thumb specifies the direction of n. In terms of m, the
torque vector T can be written as

Arm 1

T=mxB (Nm). (520) (b)

Figure 5-7: Rectangular loop in a uniform magnetic field with
flux density B whose direction is perpendicular to the rotation
axis of the loop. but makes an angle 8 with the loop’s surface
normal n.




Biot-Savart Law (dH out of the page)
B

Magnetic field induced by
a differential current:

H I dlxR (A/m)
= m
47 R?
(dH 1nto the page)
Figure 5-8: Magnetic field dH generated by a current element
I dl. The direction of the field induced at point P is opposite to
For the entire length: that induced at point P’.

I [dlxR

H = A/ 5.22

[ wm o)
[

where / is the line path along which [ exists.



Magnetic Field due to Current Densities
—

1 [JsxR
H= o f 23 ds (surface current), S o
Ky (a) Volume current density J in A/m?2
1 fJIxR
H= e 22 dV  (volume current).

vV

(b) Surface current density J; in A/m

Figure 5-9: (a) The total current crossing the cross section § of
the cylinderis I = fs J-ds. (b) The total current flowing across
the surface of the conductor is I = [; J; dl.



Example 5-2: Magnetic Field of Linear Conductor

Solution: From Fig. 5-10, the differential length vector
~ ~ ~ ~ ~o (a) / II dly R
dl=17dz. Hence, dl x R=dz (zx R) =¢sinf dz, where r 4/
¢ is the azimuth direction and # is the angle between d1 and R. 0 /P
Application of Eq. (5.22) gives R Minto
PP T dt df  the page
7=1/2 X 12 -
I dlxR -~ [ sin
H=— =0 — dz. 5.25
4 f R? ¢ 4 f R? ’ ( : z
z=—1/2 —1/2 }

Both R and 6 are dependent on the integration variable z, but
the radial distance r is not. For convenience, we will convert (b)
the integration variable from z to € by using the transformations

R = rcsch, (5.26a)

Z = —rcoté, (5.26b)

=k

P o Figure 5-10: Linear conductor of length [ carrying a current /.
dz =rcsc™ 6 db. (5.26¢) (a) The field 4H at point P due to incremental current element
dl. (b) Limiting angles #; and &, each measured between
vector I dl and the vector connecting the end of the conductor
associated with that angle to point P (Example 5-2). Cont.



Upon inserting Egs. (5.26a) and (5.26¢) into Eq. (5.25), we have EX q m p I e 5 - 2 N MCI g ne.l.ic

92 [ ) [ ]
hg L [ reso ds Field of Linear Conductor
T ricsclf
& z
% ]
—— j siné do T
wr
8
L ;1] dly R
=¢ —(cosf| —cosbh), (5.27) @) I ’1/
4mr P
>
where #; and 6, are the limiting anglesatz = —{/2andz = [/2, At Vg ‘t’{g ]ialzltge
respectively. From the right triangle in Fig. 5-10(b), it follows 3
that
1/2 -
cost) = — (5.28a) z
Vri+(1/2)? 1
—1/2 -
costh = —cosfl| = ————— . (5.28b) T
Vri+1/2)?
b)
Hence, ( [
B — joH =  — 10" M (5.29) R
2ara/d4r? 412 {q

For an infinitely long wire with [ > r, Eq. (5.29) reduces to

Figure 5-10: Linear conductor of length [ carrying a current /.
(a) The field dH at point P due to incremental current element
dl. (b) Limiting angles #; and &, each measured between
vector I dl and the vector connecting the end of the conductor
associated with that angle to point P (Example 5-2).

=
|
L=
“'._:
(=1
—

(infinitely long wire).  (5.30)

[
= |
-




Magnetic Field of Long Conductor
N

1

-

Magnetic field — |48

~ ol
B=0

(infinitely long wire). =



Module 5.2
Magnetic Fields due to Line Sources

Input

line source = | _z17 A

) add line source
) edit current value
) delete line source
) drag line source
(e) display magnetic field
at cursor:

B= 212653E2 Afm !’

Clear

pmy Instructions
Bl » — - ~ S~ N NV VMV VLV PPy
N T T T O Y N B A A
L o= = = NN N LV Y L Ly
e L T T R A A SN SV S A A A
o/ 72 2=\ |\ 1 I J v /LSS A
;rrelrfsxzx/x///z/
3‘1 A S e ) S S i o o S
i A A A S S S
E_‘\ Yy P 4= o S f S S S P am e e e hm am e
" = = o S S e R N R R e = e
Sfe ~ == v 2 7 3 PR 4 A\ < -
=~ — -~ 727 /L 4 I N> 7 VNS =
— = =~ v L S ] ) NN = NN -
N - - 7NN S . P
b= = = » s /L ]V NN NSNS N s
R O O A A R T TR A Y W VR /
o 2 2 2 L L S U W U U S B A
. 1 2 3 5 7 8 o 11 12 13

3x[nm‘J




Example 5-3: Magnetic Field of a Loop
N

Magnitude of field due to dl is

I dl

dl x R| =
| | 47t(a2 —|—22)

dH =

47 R?

dH is in the r—z plane , and therefore it has
components dHr and dHz

z-components of the magnetic fields due to dl and
dI’ add because they are in the same direction,
but their r-components cancel

>V

Hence for element dl:

X 1

I coso

dH =1z dHZ =zdHcost =12 43’1’(612 + Zz) dl Figure 5-12: Circular loop carrying a current / (Example 5-3).

Cont.



Example 5-3:Magnetic Field of a Loop (cont.)
S S

For the entire loop:

I cos# I cosé
H=2 " ddl=2——"  (2ma). (5.33)
4 (a + 7%) dr(a? + 72)

Upon using the relation cos § = a/(a” + z%)!/?, we obtain

. la*
=17
2(02 + 22)3/2

H (A/m). (5.34)

At the center of the loop (z = 0), Eq. (5.34) reduces to

H=1z2 (at z = 0), (5.35)

1
2a

>

and at points very far away from the loop such that z> > a2,
Eq. (5.34) simplifies to

X 1

la? _
- (at]z] > a). (5.36)
2 \Z | - Figure 5-12: Circular loop carrying a current / (Example 5-3).

H=12




Module 5.3 Magnetic Field of a
Current Loop

|

z-axis location = 0,05 [m]

1 F
W
L e LR e S R B B |

-0.2 -01 0.0 0.1 0.2
Loop Current 1=1.0[A] H
0.0 . 5.0 10.0

Loop Radius a = 0.05 [m]

; 1 1 1 v | 1 1 1 .: R
0.01 0.05 0.1

=\

¥ Show Labels on Graph !
(=) Total H Field () Integrand dH h

H(0,0,2) =3.535534 [A/m]
H,. =H(0,00)=100[A/m]

R=0.070711 [m]
#=450°

Instructions




Magnetic Dipole

E H
H [
\ / ;
/
$
(a) Electric dipole (b) Magnetic dipole (¢c) Bar magnet

Figure 5-13: Patterns of (a) the electric field of an electric dipole, (b) the magnetic field of a magnetic dipole, and (c) the magnetic field of
a bar magnet. Far away from the sources, the field patterns are similar in all three cases.

Because a circular loop exhibits a magnetic field pattern similar to the
electric field of an electric dipole, it is called a magnetic dipole



Forces on Parallel Conductors

]

. ol

X — .
2md

The force F> exerted on a length / of wire 7, due to its presence
in field B; may be obtained by applying Eq. (5.12):

B, =— (5.39)

I
Fr=Dhizx B = iz x (—X) HOTI
2nd
11 Dbl
=y B (5.40)
2md
and the corresponding force per unit length is
F> . ol
F,=—"=— : 541
2= T ona oAb

A similar analysis performed for the force per unit length
exerted on the wire carrying /| leads to

ol Iz
2nd

F, =%

Parallel wires attract if their currents are in the same
direction, and repel if currents are in opposite directions

z

A
I h
— £ Fi | £
A a2 | an>
N ]

>V

(5.42) Figure 5-14: Magnetic forces on parallel current-carrying
. conductors.



Module 5.4 Magnetic Force Between
Two Parallel Conductors

Distance d =0.5[m]

1 F
1 1 1 1 \I/ 1 1 1 1 |

[
0.0 0.5 1.0

Current || =1.0[A]

-10.0 0.0 10.0

Current b =1.0[A]

-10.0 0.0 10.0

Wire Length [ =0.5 [m]

| l
0.0 0.5 1.0

Magnetic Induction
By=-04x1068[T]

By =0.4x106%[T]

Total Magnetic Force on Wires
Fy=02x106§[N]
Fy=-02x106§[N]
Magnetic Force per Unit Length
F'y=04x105§[N/m]

F'y =-0.4%x 105§ [N/m]

Instructions O Ba ® Bz

A<
I I,
a2 2
r N T
| F]
[ __,,.«-"""-" - -:.:".!

Wires attract each other with equal force
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Tech Brief 10: Electromagnets
N

Switch N
I {
‘w T
Insulated wire
S

(a) Solenoid

Figure TF10-1:

Iron core +I|_

L

1N

bltlll"“ll 1 Iron core
| —
B B

YY ¢ : N
L

Magljllt;[};ﬁeld

(b) Horseshoe electromagnet

Solenoid and horseshoe magnets.



Magnetic Levitation

Compressor unit in car-mounted

X oo Bogie g e 3
Levitation f 9 helium refrigeration system
arscd rame
guidance

coil
Auxiliary supporting gear
Liquid nitrogen

= Quter vessel

Propulsion‘:‘7
coil . . :
Superconducting Liquid helium
coil Refrigerator
Supporter Radiation ~ Innervessel
shield
(a) Maglev train (b) Internal workings of the Maglev train

Figure TF10-5: Magnetic trains. (Courtesy Shanghai.com.)

https:/ /www.youtube.com /watch2v=Wor8C3ZIAu8



Ampére’s Law

H

VxH=] - fH-aw:I
C

(a) (b)

The sign convention for the direction of the contour path C in H

Ampere’s law is taken so that I and H satisfy the right-hand H
rule defined earlier in connection with the Biot—Savart law.

Thatis, if the direction of I is aligned with the direction of the ©
thumb of the right hand, then the direction of the contour C

should be chosen along that of the other four fingers. C

(c)

Figure 5-16: Ampere’s law states that the line integral of H
around a closed contour C 1s equal to the current traversing the
surface bounded by the contour. This is true for contours (a)
and (b), but the line integral of H is zero for the contour in (¢)
because the current / (denoted by the symbol () is not enclosed
by the contour C.



Internal Magnetic Field of Long

Conductor
.

Forr <a

le-d11=h,
2

?gH] -dl] = f Hl(lil-ﬁ)rl d¢ = 2mri Hy.
0

Ci

The current /7 flowing through the area enclosed by Cj is equ:
to the total current I multiplied by the ratio of the area enclose
by C; to the total cross-sectional area of the wire:

(5.49;

Contour C,
form >a \‘

r
_+ Contour C,
forri<a

Cont.

(b) Wire cross section




External Magnetic Field of Long

Conductor
D
] o
A
Forr > a

(b) For r = rp > a. we choose path Cg, which encloses all the
current 7. Hence. Hy, = ¢H2 dé, = q)rz d¢. and

%Hg cdlb =2 Hy) = 1,
&)

which yields

- P |
H, = q]Hz = ql pr— (for m > a). (5.49b)




Magnetic Field of Toroid

Applying Ampere’s law over contour C:

fH-dEzI
C

Ampere’s law states that the line integral of
H around a closed contour C is equal to the

current traversing the surface bounded by the
contour.

27
56H-dl — f(—ciSH) -Or dpp = —27rH = —NI.  Ampérian contour
C 0

Figure 5-18: Toroidal coil with inner radius @ and outer radius b.
Hence, H = N1 /(23 r) and The wire loops usually are much more closely spaced than
shown in the figure (Example 5-5).

- ~ NI
H=—-0H=—-0—— (fora <r < b).

2mr
The magnetic field outside the toroid

is zero. Why?



Magnetic Vector Potential A
B

Electrostatics Magnetostatics
E=-VV B=VxA (Wb/m?),
V2V = —% V2A = —uJ.
1 Py 2
V=—80 | =dv A=— [ —=dV’ Wb/m).
dme J R’ Y 4 R’ ( m)

V! VI



Magnetic Properties of Materials
—r

The magnetic behavior of a material is governed by the
interaction of the magnetic dipole moments of its atoms
with an external magnetic field. The nature of the behavior
depends on the crystalline structure of the material and is
used as a basis for classifving materials as diamagnetic,
paramagnetic, or ferromagnetic.

B = poH + oM = po(H+ M)

M=y H

B =puoH+ xmH) = po(l + xm)H,

B = uH,



Table 5-2: Properties of magnetic materials.

Diamagnetism

Paramagnetism

Ferromagnetism

Permanent magnetic
dipole moment

No

Yes, but weak

Yes, and strong

Primary magnetization Electron orbital Electron spin Magnetized
mechanism magnetic moment magnetic moment domains
Direction of induced Opposite Same Hysteresis

magnetic field
(relative to external field)

(see Fig. 5-22)

Common substances Bismuth, copper, diamond, Aluminum, calcium, Iron,
gold, lead, mercury, silver, | chromium, magnesium, nickel,
silicon niobium, platinum, cobalt
tungsten
Typical value of ¥, ~ —1077 ~ 109 |xm| > 1 and hysteretic

Typical value of

~ 1

~ 1

|per| = 1 and hysteretic

Thus, i = 1 or u = o for diamagnetic and paramagnetic
substances, which include dielectric materials and most
metals. In contrast, || > 1 for ferromagnetic materials;
|\ | of purified iron, for example, is on the order of 2 x 10°.




Magnetic Hysteresis

(a) Unmagnetized domains A3 -

Ay

Figure 5-22: Typical hysteresis curve for a ferromagnetic
material.

AYRYRY!
VATV
VANV
NIV

(b) Magnetized domains



Boundary Conditions

£ :
Hin --- -‘H] - b nsu jrl Al fi, Me(}zl?m 1
|/ o oo
H Ho; A —— 2
2HVI - Al - Medium 2
: 5]

S

— Dop = ps.

(5.78)

n; x (H; — Hy) = Js.

By analogy, application of Gauss’s law for magnetism, as
expressed by Eq. (5.44), leads to the conclusion that

Surface currents can exist only on the surfaces of perfect
conductors and superconductors.
fB'dSZO * Bln:an.

Hence, at the interface
(5.79 between media with finite conductivities, J; = 0 and
S Hy = Hy. (5.89)
Thus the normal component of B is continuous across the
boundary between two adjacent media




Solenoid

|

Inside the solenoid:

B~>~zunl

_ ZuNI
]

(a) Loosely wound
solenoid

(b) Tightly wound
solenoid

(long solenoid with //a > 1)



and for two-conductor configurations similar to those of

Fig. 5-27.
Inductance —
I S
Magnetic Flux {

d)sz-ds (Wh).
S

Radius a

Flux Linkage

N2

Inductance

A

L==— () i S

Solenoid
(b) Coaxial transmission line
2
L=pu—S (solenoid), (3.95) Figure 5-27: To compute the inductance per unit length of
a two-conductor transmission line, we need to determine the

magnetic flux through the area S between the conductors.



Example 5-7: Inductance of Coaxial Cable

The magnetic field in the region S between i i i

the two conductors is approximately ;
|

— I —————

-l ©ole ®,

B=¢p — : I !

27 CNOINH IRENCN

w1 E ’J;

— |

Total magnetic flux through S: © O n : ® ®b:

Ouer = | | © ©® : ® ®! Outer

a /
Inner

conductor

1
I
Il b ST T !
d _Z/B dr —l/ Lakl B M—ln( ) conductor : conductor
I

Inductance per unit length:
Figure 5-28: Cross-sectional view of coaxial transmission line

L )] 7 b (Example 5-7).
p_ - _ X _® |
E=r=u=al (a)



Tech Brief 11: Inductive Sensors

LVDT can measure displacement with submillimeter precision

Vin

Primary coil

Secondary coils

- Vout +

Figure TF11-1: Linear variable differential transformer (LVDT) circuit.

= Phase
&
=
o
[b]
&
=
™
g Amplitude
O
i
=
g
-10 -5 0 5 10
Distance Traveled

Figure TF11-2: Amplitude and phase responses as
a function of the distance by which the magnetic core
is moved away from the center position.



Proximity Sensor

_ y
C )+ — Nt Eddy currents

Primary coil Sensing coil

Conductive object

Figure TF11-5: Eddy-current proximity sensor.



Magnetic Energy Density

Wm

Example 5-8: Magnetic Energy in a Coaxial Cable

Magnetic field in the insulating material is

The magnetic energy stored in the

|
_2
%

coaxial cable is

l[ H? 4y =
5 [~

V

Wm=

Outer
conductor

W =

e
- N
i

OO

OO
wo

© 0O
OO

Inner / f

conductor ]

QOuter
conductor

b
wl* [ 1

82 2

-2mrl dr




Summary
N

Chapter 5 Relationships

Maxwell’s Magnetostatics Equations Magnetic Field
] = "y I
Gauss’s Law for Magnetism Infinitely Long Wire B=¢ gi (Wb/m?)
nr
V-B=0 == %B'dS:O
) - la?
S Circular Loop H=1z2 ——— (A/m)
Ampere’s Law 2(a® + z2)%/
ZuNI
VxH=] <= fﬂﬂﬂ:f Solenoid Bx~iunl = z,u} (Wb/m?)
c
Lorentz Force on Charge g Vector Magnetic Potential
F=g(E+uxB) B=VxA (Wb/m?)
Magnetic Force on Wire Vector Poisson’s Equation
Fm=ffmx3 (N) VA = —u]
c Inductance
Magnetic Torque on Loop A @ 1
L:—:—:—fB'dS (H)
T=mxB (N-m) rr 1
S
_ = 2
m=nNIA (A-m~) Magnetic Energy Density
Biot-Savart Law

! 2 3
I [dlxR Wm =5 uHT o (m)

[



