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6. MAXWELL'S EQUATIONS IN TIME-VARYING FIELDS

- /e Applied EM by Ulaby and Ravaioli



Chapter 6 Overview




Maxwell’'s Equations
B

Table 6-1: Maxwell’s equations.

Reference Differential Form Integral Form
Gauss’s law VD =p, ?gD ~ds = Q (6.1)
S
oB B .
Faraday’s law VxXE=—— fE cdl = — / —+ds (6.2)*
ot ot
C S
Gauss’s law for magnetism V:-B=0 % B:ds=0 (6.3)
S
oD oD .
Ampere’s law VxH=]+ o éH ~dl = f (J 4+ E) - ds (6.4)
C S
*For a stationary surface S.

In this chapter, we will examine Faraday’s and Ampére’s laws



Loop Coil

Faraday’s Law < /

B

Electromotive force (voltage) induced by A 1
time-varying magnetic flux:

dd d f) ° 3
Vor=—N-—"=-NZ [B-ds (V) T
dt dt Galvanometer Battery

S

Figure 6-1: The galvanometer (predecessor of the ammeter)
shows a deflection whenever the magnetic flux passing through
the square loop changes with time.

Magnetic fields can produce an electric current in a closed
loop, but only if the magnetic flux linking the surface area of
the loop changes with time.The key to the induction process
is change.



Three types of EMF

1. A time-varying magnetic field linking a stationary loop;
the induced emf is then called the transformer emf, V"

emf"*

2. A moving loop with a time-varying surface area (relative to

the normal component of B) in a static field B; the induced
emf is then called the motional emf, V..

3. A moving loop in a time-varying field B.

The total emf is given by

Vemt = Veme + Vemes (6.7)



Stationary Loop in

It is important to remember that Bi,q serves to oppose the

Tl me'vq l’)’ [ ng B change in B(t), and not necessarily B(t) itself.
S

B
Vi =—N = -ds (transformer emf), Changing B(?)
S

The connection between the direction of ds and the polarity
tr o - : - ' . o i,

of 'Vt__mf is governed by the fO!lqwzrzg right-hand m/»{:‘. zj.ds

points along the thumb of the right hand, then the direction

of the contour C indicated Dy the four fingers is such that it

always passes across the opening from the positive terminal
tr - \ . -

of Vs o the negative terminal.

Bind

Vlr -
= _emf (6.9)
R + R;
For good conductors, R; usually is very small, and it may be RZ Veme (1)
ignored in comparison with practical values of R. -
2
The polarity of V! . and hence the direction of 1 is governed (b) Equivalent circuit

by Lenz’s law, which states that the current in the loop is _
always in a direction that opposes the change of magnetic Yigure 6-2: (a) Stationary circular loop in a changing magnetic
ﬂu-r d (1) that pmduced I field B(#). and (b) its equivalent circuit.



Example 6-1: Inductor in a Changing Magnetic Field

An inductor is formed by winding N turns of a thin conducting
wire into a circular loop of radius a. The inductor loop is in
the x—y plane with its center at the origin, and connected to a -
resistor R, as shown in Fig. 6-3. In the presence of a magnetic
field B = B((y2+23) sin wt, where w is the angular frequency,
find
(a) the magnetic flux linking a single turn of the inductor,
(b) the transformer emf, given that N =10, By =0.2 T,
a = 10 cm., and w = 103 rad/s,
(¢) the polarity of VI - att = 0, and
(d) the induced current in the circuit for R = 1 k2 (assume
the wire resistance to be much smaller than R).

R

— Yemf >)

/ \N turns

Figure 6-3: Circular loop with N turns in the x—y plane. The

magnetic field is B = By (¥2 + 23) sin wr (Example 6-1).
cont.



Example 6-1 Solution ’
B
Solution: (a) The magnetic flux linking each turn of the >
inductor 1s a
AN
¢ = [ B-ds N turns
S
Figure 6-3: Circular loop with N turns in the x—y plane. The
— [[Bo(ii 2+73)sinwt] -7 ds magnetic field is B = By (¥2 + 23) sin wr (Example 6-1).
S

(c)Atr =0, dd/dr > 0 and V;{';lf = —188.5 V. Since the flux
— 37a’ By sin wt. is increasing, the current / must be in the direction shown in

Fig. 6-3 in order to satisty Lenz’s law. Consequently, terminal 2

(b) To find V' .. we can apply Eq. (6.8) or we can apply is at a higher potential than terminal 1 and
the general expression given by Eq. (6.6) directly. The latter
approach gives

Vi =Vi—Va
. dd — 5
Vetllnf =—N 188.° (V)
dt
d 5 )
= ——3nNa" By sin wt) o
dt (d) The current / is given by

= —37 Na)a280 CoSs wft.

Vo — V)
For N =10, a = 0.1 m, @ = 103 rad/s. and Byp=0.2T, I'= R
188.5

= TE cos 10°¢

VT — _188.5cos 107 (V). —0.19cos 10’ (A).

emf —




I Module 6.1 Circular Loop in Time-varying Magnetic Field

Demonstration of Faraday's Law

The circular wire loop shown in the figure is connected
to a simple circuit composed of a resistor R in series
with a current meter. The time-varying magnetic

flux linking the surface of the loop induces a V.

and hence a current through R, The purpose of this
demo is to illustrate, in the form of a slow-motion
video, how the current [ varies with time, in both
magnitude and direction, when B(t)=Bjcoswt.

B I Note that I(t) is @ maximum when the slope of B(t) is
a maximum, which occurs when B itselfis zero. The

\ direction of I{t) is dictated by Lenz's Law.
\\Y/ N

u I I =

=4 slower faster ==

START
I:: I; @ Applet Design: Janice Richards




Example 6-2: Lenz’s Law

Determine voltages V; and V; across the 2-2 and 4- resistors
shown in Fig. 6-4. The loop is located in the x—y plane, its area
is 4 m2. the magnetic flux density is B = —Z0.37 (T). and the
internal resistance of the wire may be ignored.

Solution: The flux flowing through the loop is

q::fB-ds:f(—io.sz}-id:
5

S
=—03tx4=—-1.2¢ (Wb),

and the corresponding transformer emf is

dd

% =12 (V).

emf — dt

4Q§h

/
=i}
®

+ ®
®
®

mgzg

B —— Area =4 m?

Y

L.

Figure 6-4: Circuit for Example 6-2.

in series. Consequently,

and

th'

| = emf
Ri + R»
1.2

.

2+4

=0.2A,

Vi=IR =02x2=04V,
Vo=IR; =02 x4=08V.

The total voltage of 1.2 V 1s distributed across two resistors



ldeal Transformer

!
N e — _ \

A similar relation holds true on the secondary side:

Vi N
Vo, N
Rin:E

L

Va
Rin = (

Va

= —N, — .
2dr

Iy M

L N

N 2 N 2
— ) =|— ] RL.
N> N>

(6.20)

When the load is an impedance Z; and V| is a sinusoidal source,
the phasor-domain equivalent of Eq. (6.20) is

N
Zin =

1

Nj

2
) ZL. (6.21)

o @
s ‘---.-—"-'--.
" : IE
_QVl(r} : N = o
! \F)- m— :Vz(l)RLI
] —
l\ '
h_____-___._',
D -
(a)
4 ,'———2____h

T N> A V_r?.(f) Ry
= ¥
|\ | '
- o - L -’)
- L -
(b)

Figure 6-5: In a transformer, the directions of [ and [, are
such that the flux & generated by one of them is opposite to that
generated by the other. The direction of the secondary winding
in (b) is opposite to that in (a). and so are the direction of [, and
the polarity of V5.



o BO © O OB
Motional EMF
1 :
o oflo o |
I . u
Magnetic force on charge g moving with JBNO) e ® 0 v
zZ
velocity v in a magnetic field B: u
Fn =¢q(uxB). O o1 o
] . . ] A 2 \Magnctic field line
This magnetic force is equivalent to the Moving (out of the page)
electrical force that would be exerted on wire © © © ©
the particle by the electric field Em given
b Figure 6-7: Conducting wire moving with velocity u in a static
Y Fm magnetic field.
Em = — = ll X B.
o ] 1 For the conducting wire, u X B = Xu x 2By = —yu By and
This, in turn, induces a voltage dl = ¥ dl. Hence,

difference between ends 1 and 2,
with end 2 being at the higher

Ve[rl;']f = Vi» = —uByl. (6.25)
potential. The induced voltage is

|

m—Vu—/E ﬂ—/mxmcﬂ

2



Motional EMF

In general, if any segment of a closed circuit with contour C
moves with a velocity u across a static magnetic field B, then
the induced motional emf 1s given by

Vi = f (ux B)-dl  (motional emf). (6.26)
C

Only those segments of the circuit that cross magnetic field

M M m
lines contribute to Vemf.



Example 6-3: Sliding Bar

4

VeTnf:V12:V43:[(l]XB)'dl

3
Note that B increases with x

4
= f(f(u X iBox()) 5\7 dl = —uByxgl.
3

B = zByx
© 4_ © O |
The length of the loop is T o Y
related to u by xo = ut. Hence I : O " [ONENNO ‘
| + — U z X
[ R %i Vems . ON N [OJENO)
2 — u
. ® ® (©-<—Magnetic ficld B
e =—Bou’lt  (V).L ﬂ % .
0 o'leo o

A |

I: X0



Example 6-5: Moving Rod Next to a Wire

The wire shown in Fig. 6-10 carries a current / = 10 A. A
30-cm-long metal rod moves with a constant velocity u = z5

m/s. Find V».

Metal rod

1/

B=¢p —
0 27Tr
i
BO ®B
I= 10Afr
p— ]
BO Wire 1®B
BO ®B

10 cm=}+——30 cm ———

10 cm
Vi = f (llXB)'dl
40 cm
10 cm
= f (25 X ¢
40 cm
10 em
~ Spol dr
T 27 r
40 cm

~ ol
2y

5x 47 x 1077 x 10

)-f’dr

27

= 13.9 (V).

xln(

10

40

)



EM Motor/ Generator Reciprocity

S
B 2,7
1 . 3
1y, -
7
’/
. mf} f N
qﬁ Magnet

%
\Axis of rotation

(b) ac generator

Axis of rotation

(a) ac motor

Motor: Electrical to mechanical Generator: Mechanical to
energy conversion electrical energy conversion



EM Generator EMF

As the loop rotates with an angular velocity

=

_.

NN

w about its own axis, sesgment 1—2 moves

with velocity u given by Loop surface

normal

u = hw

| S

Also: nxz=Xsinca.

Figure 6-12: Aloop rotating in a magnetic field induces an emf.

Segment 3-4 moves with velocity —u. Hence:

1 3 . .
Vemt = Via = f(u x B) - dl+ f(u x B) - dl omi = WlwBpsina = AwBy sina,
2[/2 ! o = wt _I_ CO,
- [ [(na)%) x iBO] % dx
—z/z_m Ve[:‘rllf = AwBy sin(wt + Cop) (V).

~ W ~ ~
+ f [(—na)j)szo]-xdx.

1/2



I Module 6.2

Rotating Wire Loop in Constant Magnetic Field

™~

» B
|1
R
* time
X
= ] -
a4 clower faster ==

L

Demonstration of Motional EMF

A rectangular wire loop of area A rotates at an
angular frequency w in a constant magnetic flux
density B. The purpose of the demo is to illustrate
how the current varies in time relative to the loop's
position.

Mote the direction of the current and its magnitude,
as indicated by its brightness.

Ihax= wBjA

Applet Design: Janice Richards




Tech Brief 12: EMF Sensors

T > Vemf=0 Veme > 0 | 7 Vemf < 0
.l. ™ I ~ Dipole 1 /7 T
/ _A\/ | —— ——1 ——1
g +
iy — F F
(a) No force (b) Compressed crystal (¢) Stretched crystal

Figure TF12-1: Response of a piezoelectric crystal to an applied force.

* Piezoelectric crystals generate a voltage across them proportional to
the compression or tensile (stretching) force applied across them.

* Piezoelectric transducers are used in medical ultrasound,
microphones, loudspeakers, accelerometers, etc.

* Piezoelectric crystals are bidirectional: pressure generates emf, and
conversely, emf generates pressure (through shape distortion).



Faraday Accelerometer

_
Conducting 10@ Magnet
[ N
_I_
, [
Vems N
o N [)
X — q

U —

Figure TF12-3: In a Faraday accelerometer, the induced
emf is directly proportional to the velocity of the loop (into
and out of the magnet’s cavity).

The acceleration a is determined by differentiating
the velocity u with respect to time



The Thermocouple
N

Cold reference junction
Measurement Copper cTTTT “

junction

-,

- Bismuth

Figure TF12-4: Principle of the thermocouple.

* The thermocouple measures the unknown temperature T, at a junction
connecting two metals with different thermal conductivities, relative to a
reference temperature T,.

* In today’s temperature sensor designs, an artificial cold junction is used
instead. The artificial junction is an electric circuit that generates a voltage
equal to that expected from a reference junction at temperature T,.



Displacement Current
N

Ampere’s law in differential form is given by

oD |
VxH=J+ = (Ampere’s law). (6.41)

Integrating both sides of Eq. (6.41) over an arbitrary open
surface S with contour C, we have

/(VxH)+ds=[J+ds+/%-ds. (6.42)
S S S

(I

This term must

This term is
conduction represent a
current | current Application of Stokes’s theorem gives:

aD
%H ~dl= 1.+ f = -ds (Ampere’s law)
C S

Cont.



Displacement Current

aD
fH ~dl= 1.+ f = -ds (Ampere’s law)
C S

Define the displacement current as:

The displacement current does not
Iy = de cds = f L ds, (6.44) involve real charges;

S S a1 it is an equivalent current that
depends on 9D /dt

where Jg = 0D /0t represents a displacement current density.
In view of Eq. (6.44),

%H-dl:[c—l—ldzl, (6.45)
C



i
Capacitor Circuit | i

surface S
+
I I )

Given: Wires are perfect

Imaginary
surface S,

conductors and capacitor

insulator material is perfect

dielectric. |2 — |2C + |2d
For Surface S,: |2C = 0 (perfect dielectric)
E=5% Ve _4 Yo t
=y — =Y —COSw
I3 =1y + g a7
oD
he=c2e_cdyy CVowsi ha= [ 57 ds
lc = T Z( 0 coswt) = —C Vow sin wt /
d . 8V() ~
Iig =0 (D=0 in perfect conductor) = Y y — coswt | | -(y ds)
A
eA _ _
= —FVOa) sin wt = —C Vyw Ssin wt

Conclusion: |; =1,



Example 6-7: Displacement Current Density

The conduction current flowing through a wire with conductiv-
ity o =2 x 107 S/m and relative permittivity & = 1 is given
by I. = 2sinwt (mA). I[f w = 10 rad/s, find the displacement
| current. .

Solution: The conduction current I. = JA = o EA., where
A 1s the cross section of the wire. Hence,

Ie 2% 107 sinwr
oA 2x107A
_1x 10710

E =

sin wf (V/m).

Application of Eq. (6.44), with D = ¢E leads to

where we used @ = 10” rad/s and ¢ = g9 = 8.85 x 10~ 12 F/m.
la=JaA Note that /. and /4 are in phase quadrature (90° phase shift
— A E between them). Also, /4 is about nine orders of magnitude
ot smaller than /., which is why the displacement current usually
9 /1 x 1010 is ignored in good conductors.
=cA 3 (A sin wr)

—ewx 107 coswr = 0.885 x 1072 coswt  (A),



Boundary Conditions
N

Table 6-2: Boundary conditions for the electric and magnetic fields.

Field Components General Form I\-‘Ifetlilllll' 1 }-'I:E:dium.Z M'ed iu m. 1 Medium 2
Dielectric Dielectric Dielectric Conductor

Tangential E mx (Ej —E»)) =0 E1t = Eo Eit=Eyx=0

Normal D ny «(D; —D2) = ps Din — Doy = ps Din = ps Dy =0

Tangential H n» x (Hf —H»y) = Js Hyy = Hy Hy=Js Hy =0

Normal B n-(By—Bx)=0 Bin = B Bin=B)y =0

Notes: (1) ps is the surface charge density at the boundary; (2) Js is the surface current density at the boundary: (3) normal

components of all fields are along n», the outward unit vector of medium 2; (4) E; = E9¢ implies that the tangential

components are equal in magnitude and parallel in direction; (5) direction of J is orthogonal to (Hy — H»).




Charge Current Continuity Equation

Current | out of a volume is equal to rate of Charge density p,

decrease of charge Q contained in that volume:

J

S encloses v

dt dt J
V : . .
Figure 6-14: The total current flowing out of a volume V is equal
d to the flux of the current density J through the surface S, which
J ds = —— oy dV in turn is equal to the rate of decrease of the charge enclosed
dt inV.
S V
d
J:ds= [ V- JdV=—— [ p,dV
dt ;
S V V v.J=- " (654
1‘ ot
Used Divergence Theorem which is known as the charge-current continuity relation, or

simply the charge continuity equation.



Charge Dissipation

Question 1: What happens if you place a certain amount of free charge inside of a material?
Answer: The charge will move to the surface of the material, thereby returning its interior to a
neutral state.

Question 2: How fast will this happen?
Answer: It depends on the material; in a good conductor, the charge dissipates in less than a
femtosecond, whereas in a good dielectric, the process may take several hours.

_Derivation of charge density equation:

dpy
V-J=— :
J at

In a conductor, the point form of Ohm’s law, given by Eq. (4.63),
states that J = o E. Hence,

(6.58)

0Py
ot

oV-E=— (6.59)

Next, we use Eq. (6.1), V-E = p,/e, to obtain the partial
differential equation

a _ :

ot Cont.



Solution of Charge Dissipation Equation

+Zpy =0
or eV TV

Given that py, = pyo at r = 0, the solution of Eq. (6.60) 1s
pu(1) = pyoe™ 71 = poe T (Cm?),
where 7, = ¢/ is called the relaxation time constant.

For copper: 7. = 1.53 x 10717 s

For mica: 7, = 5.31 x 10* s = 15 hours



Charge

I
EM Potentials  distibuion, \K
S R’ V(R)
I Vi |

" - ." Ii-.. R
. o 0 . . @ 1
Static condition AR Y
.t . . * -—},
1 pV(RI) A ‘e . . e
V R — dvf y ., L 'o .
) 471’8/ R’ 2-.v.'
v/ v <L
Dynamic condition Figure 6-16: Electric potential V(R) due to a charge
VR, 1) = 1 pv(R;, 1) Iy distribution py over a volume V.
dre R’
V!

Dynamic condition with propagation delay: Similarly, for the magnetic vector potential:

- R//up)

T dv’ (Wb/m).

pv(Ri, 1 — R Jup) vV, AR = /J(Ri, t
4
v:’

1
VR, 1) =
4me R’
v.’



Time Harmonic Potentials

If charges and currents vary sinusoidally with time: o
Also: E=-VV — — (dynamic case).

pv(Ri, 1) = py(Ri) cos(wrf + ¢) ot
we can use phasor notation: ~ 1 -
H=—-—VxA.

L

pu(R;, 1) = Re | fy(R) €' |.

Maxwell’s equations become:

with
= R — N b - -
pv(Ri) = py(Rj) /7. VxE=—jouH
Expressions for potentials become: ~ 1 ~
N - o kR or H=-———VXE.
V(R) = 1 pv(Rj) e v w. Jwu
4re R’
v/ ~ ~ - 1 ~
VxH=jwecE or E=—V xH.
TR ek -
AR = 2~ f 1 dv’,
4 R’ w
% k=—



Example 6-8: Relating Eto H

In a nonconducting medium with & = 16gy and p = pg, the
electric field intensity of an electromagnetic wave 1s

E(z,t) = %10sin(10'% —kz)  (V/m). (6.88)

Determine the associated magnetic field intensity H and find
the value of k.

Solution: We begin by finding the phasor E(z) of E(z,1).
Since E(z, t) 1s given as a sine function and phasors are defined

in this book with reference to the cosine function, we rewrite
Eq. (6.88) as

E(z,t) =% 10cos(10'% — kz — 7/2) (V/m)
= NRe [ﬁ(z) efw’] , (6.89)

with @ = 1010 (rad/s) and

Cont.
E(z) = X 10e /%7712 — _5j10e /%2 (6.90)



Example 6-8: Relating E to H

To find both H(z) and k. we will perform a “circle™ we will

use the given expression for E(2)in Faraday’s law to find H(z):

then we will use H(z) in Ampere’s law to find E(z) which we_
will then compare with the original expression for E(2); and the

comparison will yield the value of k. Application of Eq. (6.87)

gives
1
Hz)=———VxE
jou
, X y 7
- d/0x 3/dy 3/0z
TOR Y _i10e=7%2 0 0
I
= ——|§ —(—j10e7/*
Py _y az( J 10e )]
10k .
=—yj — ek (6.91)
WL

Cont.



Example 6-8 cont.

So far, we have used Eq. (6.90) for E(Z) to find H(z), but k
remains unknown. To find k, we use H(z) in Eq. (6.86) to find

N N E(): I

- | -
E(z)=— VxH
Jwe

IR I (T
Jwe 0z oy

10k .
— % wzmg—ﬂ"z. (6.92)

Equating Egs. (6.90) and (6.92) leads to

k> = cuz,u,a,
or
k=i
— 4o /i0E
o _4x 100 (rad/m). (6.93)

c 3x 108 Cont.



Example 6-8 cont.
—r

With k known, the instantaneous magnetic field intensity is then
given by

H(z. 1) = Re | H(z) ef“”}

i 10k . :
— NRe _37] _e—]kzejwr]
om

=$0.11sin(10'% — 1332)  (A/m).  (6.94)

We note that k£ has the same expression as the phase constant
of a lossless transmission line [Eq. (2.49)].



Summary
N

Chapter 6 Relationships

Faraday’s Law EM Potentials
dd d A
Vemf=—?=—E/B'ds= Vcl:.'nf"' enl.;lf E=—VV—¥
S B=VxA
Transformer
9B . Sty
VE = _N / L (N Ioops) Current Density
S ot Conduction Jo=aR
: aD
Motional Displacement  Jg = ——
C

Conductor Charge Dissipation
Charge-Current Continuity

dpy
V . —_————
2 ot

py(t) = one_(ole)t = pvoe_t/Tr

https:/ /www.youtube.com /watch2v=bxHs9I3IbZc



