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Chapter 3 Overview
N

https:/ /www.youtube.com /watch2v=rB83DpBJQsE



ol B

Laws of Vector Algebra
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~ ~ a) Base vectors
A =alA| = aA @)

A =RA, +§A, + 24,

A=Al= A2+ A2+ A2

— =
\+/AJ2C + A2 + A2

&>
|

|

|

(b) Components of A



Properties of Vector Operations
—

Equality of Two Vectors
A=aA =XA, +JA, +ZA,, (3.6a) Commutative property
B=bB =%B, +§B, +iB,, (3.6b)

C=A+B=B+A

A

then A = B if and only if A = B and a = b, which requires
that Ay = By, Ay = By,and A, = B,.

Equality of two vectors does not necessarily imply that
they are identical; in Cartesian coordinates, two displaced

parallel vectors of equal magnitude and pointing in the same C A
direction are equal, but they are identical only if they lie on
fop of one another.
B
B
(a) Parallelogram rule (b) Head-to-tail rule

Figure 3-3: Vector addition by (a) the parallelogram rule and
(b) the head-to-tail rule.



Module 3.1 Vector Addition and Subtraction Display two vectors in rectangular or cylindrical coordinates, and
compute their sum and difference.

[ Module 3.1 Vector Addition and Subtraction

Input
Select coordinate system:  rectangular (xy)

EEE ~-S

Compute and display A alone
. B alone
@C=n+B
JC=4-B

Output
Vector C x~-8 y=--26




Position & Distance Vectors
B

Position Vector: From origin to point P

_> ~ Zz
Ry = 0P =Xx1+¥y1 +1274 A
)
Ry=0P, =Xx2+ V¥ + 77

Distance Vector: Between two points

Ri» _PP
— — Ry

~

=X(x2 —x1) + Y02 —y1) +2(z2 — 21)

the distance d between P; and P> equals the magnitude

of R122 ) ) N
Figure 3-4: Distance vectorRj» = P; P, = Ry—R|, whereR;

d =R and R» are the position vectors of points P and P>, respectively.

=[(2— x>+ —yD)*+ (2 —2)12 (3.12)



Vector Multiplication: Scalar Product or "Dot Product”

A-B=ABcosOup A=]Al= VA-A
oo ]
AB = COS
A B JA-A UB-B
HBA
AB B X-X=y-y=2-2=1,
(a) (b) A A A A A A
X-y=y-z=z2-x=0

Figure 3-5: The angle #4p is the angle between A and B,
measured from A to B between vector tails. The dot product
is positive if 0 <825 < 90°, as in (a), and it is negative if
90° < B4p5 < 180°, as in (b). IfA= (A, A,,A;)and B = (B,, By, B;), then
A-B=B-A (commutative property), Hence:

A-B+4+C)=A-B+A-C (distributive property)
A-B=A,B,+A,B,+ A,B,.



Vector Multiplication: Vector Product or "Cross Product”

AxB=nABsinOp AxB=-BxA (anticommutative)
Ax(B+C)=AxB+AxC (distributive)

® AxB=nABsin Oy AXA:O
B Fal ~ ~ ~ ~ ~ o~ -~ -~
y N XX Yy =1, y X Z =X, Zxx=y. (3.25)
048 RN
\ = ~. Note the cyclic order (xyzxyz...). Also,
A

ixk=§x§=2x2=0. (3.20)

(a) Cross product

AXB If A:(AX,A);,AZ) Ell’ld B:(BXsBysBZ)a
X VvV 1z
AxB= Ax Ay AZ
B, B, B,

A

(b) Right-hand rule



Example 3-1: Vectors and Angles

In Cartesian coordinates, vector A points from the origin to
point Py = (2, 3, 3), and vector B is directed from Pj to point (b) The angle B between A and the y-axis is obtained from
P>, = (1,-2,2). Find ' ]

(a) vector A. its magnitude A, and unit vector a, A= AlIR

© ' : V= | cos B = Acos g,

(b) the angle between A and the y-axis, y=IAlly p p
(¢) vector B,

(d) the angle 64p between A and B, and | A-¥ 1 3

(e) the perpendicular distance from the origin to vector B. p = cos™ ( Ab ) = COS~ (—) = 50.2°.

Solution: (a) Vector A is given by the position vector of
Py = (2,3, 3) as shown in Fig. 3-7. Thus,

A=%2+7¥3+123, B=xX(1-2)4+3(-2-3)+22-3)=—X—§5— 2.
A=Al=v224+32432=.22,

or

(c)

A (d)
a=—=@R2+§3+23)/V22.

o Oq_l[A-B] Oq_l[(—2—15—3)]
AB = COs —— | = COs

Yo, A AlIB] V2 77

1l AB_ ;4 .

T 2.3.3) = 145.1°.
P2:(15_2:2)

(e) The perpendicular distance between the origin and vector B

1s the distance | O P53 | shown in Fig. 3-7. From right triangle
O Py P3.

—
. | OP; | = |A|sin(180° — 845)
= /22 sin(180° — 145.1°) = 2.68.

Figure 3-7: Geometry of Example 3-1.



Example 3-2: Vector Triple Product

Triple PrOdUC'I'S Given A =X—V+72, B=V+17Z and C = —Xx2 + 73, find

(A x B) x C and compare it with A x (B x C).

B N, 0o

. Xy
Scalar Triple Product AKB_‘I e 2‘——5‘:3—j‘+i
0O 1 1
A-BxC)=B-(CxA)=C-(AxB).
and
Ax Ay Az X ¥ z
A-BxC)=| B, B, B, AxB)xC=|-3 —1 1 |=-834§7-%2.
g 2 0 3
C, C, (4
A similar procedure gives A X (Bx C) =Xx2 +y4 + Z.
Vector Triple Product Hence:

AXBxC)#A#AxB)xC

Ax (BxC)=BA-C)— CA-B),

which 1s known as the “bac-cab’ rule.



Cartesian Coordinate System
B

Differential length vector

dl=Xdly+Vdly+2dl,=Xdx+§dy+idz, (334)

where dl; = dx is a differential length along X. and similar
interpretations apply todl, = dy and dl, = dz.

z ds, =7 dx dy
a
dy
dx
Differential area vectors )
ds, =y dx dz
ds, =Xdlydl, =%dydz  (y-zplne), (3352 / &
.A\\dl dV = dx dy dz
with the subscript on ds denoting its direction. Similarly, ds, = % dv dz

dsy =Vdx dz (x—z plane), (3.35b) "
ds, =Zdx dy (x—y plane). (3.35¢) " . 7 -

A differential volume equals the product of all three differential x
lengths:
dV =dx dy dz. (3.36)



Table 3-1: Summary of vector relations.
Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X, V. Z r.g.z R.O,¢

Vector representation A =

XAy + 5’7‘1}' +ZA;

RAp —|—6A9 +$A¢

Magnitude of A |A| = A2+ A3+ A2 {{A%+Aé+ﬂ§ \{AE + A2+ A2
Position vector 0131 = Xx| + Vv + 2271, Iry + 2z, RR;,
for P = (x1, y1, 21) for P = (r1,¢1. 21) for P = (R1,61,¢1)
Base vectors properties X'X=V:¥y=2-2=1 i"-i“':ni;-(]h::i-izl ﬁ-ﬁ:ﬁ-é:n{)-n{::l
R y=V:2=2-%=0 | f-d=¢-2=2-F=0 R-6=06-¢=0-R=0
Ixy=1 Pxd=17 Rx0=¢
VyXi=X dxz="1 Oxd=R
IxX=1 ixF=60 dbxR=9
X ¥V 1z Poe R 6 ¢
Cross product A X B = Ax Ay Ag Ay Ap Az AR Ap Ay
Bx By B; B, By Bz Br By By

Differential length dl =

Xdx+Vdy+idz

Pdr+ordp+1idz

RdR +OR dO +dRsin0 do

Differential surface areas dsy =Xdydz dsy =Ttrdp dz dsp = RR2sind do do
dsy =y dx dz dsy =9 drdz dsy =ORsinf dR d¢
ds; =7dx dy ds; =1r dr d¢ dsy =R dR do

Differential volume dV = dx dy dz rdrde dz R%sin0 dR do dg




Cylindrical Coordinate System

~. z=1z1 plane e
~ - -
S _ -
LS T /P:(’”la(Ple)
- - ~
- - \\\ -
Pt S The position vector O P shown in Fig. 3-9 has components
P - R/ , along r and z only. Thus,
- ~
—_——- = = o -
1 "\
. ! 1 - - ~
r=r cylinder 0 1 | - R = 0P =rr| +12z. (3.40)
1 1 o
ol ok :
¢ L_._. ¢ = @1 plane
N !
~ 1
X Mol

The mutually perpendicular base vectors are T, ti; and 1,
with T pointing away from the origin along r, tﬁpoinﬁng ina
direction tangential to the cylindrical surface, and Z pointing
along the vertical. Unlike the Cartesian system, in which the
base vectors X, ¥, and Z are independent of the location of P,
in the cylindrical system both t aﬂ.dtf) are functions of ¢.



Cylindrical Coordinate System

The base unit vectors obey the following right-hand cyclic
relations:

=, (337

-
X
-~
|
N
>
X
N>
Il
=
>
X
>

and like all unit vectors, r-r=¢-¢=2z-z=1, and
IXr=¢xo=z2xz=0.

In cylindrical coordinates, a vector is expressed as

A = aJA| = A, + 0Ay + 24, (3.38)

dl, =dr, dlg=rdp, dl,=dz. (3.41)

Note that the differential length along ti; is r d¢, not just de.
The differential length 1 in cylindrical coordinates is given by

dl=tdl, +bdly +idl,=%dr+¢rdp+2dz. (3.42)

z
r 3
d= ds. = zr dr dp
dsy, = ¢ dr dz
= dV =rdrd) dz
ds, =t rd dz
) - > )

r

* dOrdc/)

Figure 3-10: Differential areas and volume in cylindrical
coordinates.



Example 3-3: Distance Vector in Cylindrical
Coordinates

Find an expression for the unit vector of vector A shown in

Fig.3-11 in cylindrical coordinaes. -

Solution: In triangle O Py P,,

Z
'y
OP, = OP; +A.
P1=(0,0,h)
a Hence,
h A=0P,— 0P
= rro — zh,
A
0 - and
o 7o \ A= i
Py = (ro, §o, 0) T A
rro — zh

=
I

‘M‘g—l—hz

We note that the expression for A is independent of ¢. That
is, all vectors from point Pj to any point on the circle defined by
r = ro in the x—y plane are equal in the cylindrical coordinate
system. The ambiguity can be eliminated by specifying that A
passes through a point whose ¢ = ¢.

Figure 3-11: Geometry of Example 3-3.



Example 3-4: Cylindrical Area

Find the area of a cylindrical surface described by r =3,

30° < ¢ < 60°, and 0 < 7 < 3 (Fig. 3-12). I

z
A Solution: The prescribed surface is shown in Fig. 3-12. Use
of Eq. (3.43a) for a surface element with constant r gives
S ~ 600
% -
i f dgp f dz
$=300  z=0
5 /3 3
B ¢|n/6 Z|o
S -V o7
0 \ - ~ T 2
30°
\__,/ Note that ¢ had to be converted to radians before evaluating the
X integration limits.

Figure 3-12: Cylindrical surface of Example 3-4.



Spherical Coordinate

System

I \'

-~ ~ ~

R x 0 =¢, éx¢=ﬁ, tf)xﬁ:é.

(3.45)

A vector with components Ag, Ay, and Ay is written as

A =4A| =RAg + 045 + $Ay.

and 1ts magnitude 1s

Al= VA-A= A} + A7+ 43

The position vector of point P = (Ry, 01, ¢1) 1s simply

R, ZWJZﬁRl,

(3.46)

(3.47)

(3.48)

(Ry, 01, 1)

0= 9]
conical
surface




Example 3-5: Surface Area in Spherical Coordinates Example 3-6: Charge in a Sphere

The spherical strip shown in Fig. 3-15 is a section of a sphere

: _ _ A sphere of radius 2 ¢m contains a volume charge density py
of radius 3 cm. Find the area of the strip.

given by

Find the total charge Q contained in the sphere.

oy = 4cos? 6 (C/m3).

Solution:
Q= [ pyv dV
-V %
2w 2x1072
— f (4cos’>O)R*sin® dR d6 d¢
$=060=0 R=0
o o o R3\ [2X1072
Figure 3-15: Spherical strip of Example 3-5. _ 4] f (_) sin O COSZ 0 do dgb
0 0 : 0
Solution: Use of Eq. (3.50b) for the area of an elemental 32 7 cos3 o\ |I*
spherical area with constant radius R gives 7 107 / ( ) . de¢
60° 2 0
S =R? f sinﬂdﬁ'qub o
o300 o2 — x107° [ do
60° |27 0
=9(-cost)| 9|, (em) 1287
= 18w (cos 30° — cos 60°) = 20.7 cm?. ~ 9 x 1077 = 44.68 (C).



Technology Brief 5: GPS

\_L\&‘

Figure TF5-2: GPS nominal satellite constellation.
Four satellites in each plane, 20,200 km altitudes, 55°
inclination.

>

Figure TF5-1: iPhone map feature.

How does a GPS receiver determine its location?



GPS: Minimum of 4 Satellites Needed
S

) SAT2
SAT3 &= 2 (2, 12, 22)
(x3,3,23)
d
Unknown: location of receiver (X0, Y0, Z0) SAT4
Also unknown: time offset of receiver clock ez o
so unknown: time offset of receiver clock 1 ps GLY121)

s
Quantities known with high precision:
locations of satellites and their atomic
clocks (satellites use expensive high

.. ] Time delay g e\ :
precision clocks, whereas receivers do not) ‘ \(yo )

Solving for 4 unknowns requires at least 4 1 J.L
equations ( four satellites) ‘ (Decewe] ‘ode

Satellite Code

di = (x1 — x0)> + (y1 — y0)* + (21 — 20)*> = c [(11 + 10)]*,
di = (x2 — x0)% + (2 — y0)? + (22 — 20)* = ¢ [(12 + 10)]%,
d? = (x3 — x0) + (y3 — y0)2 + (23 — 20) = ¢ [(13 + 10)]?,

di = (x4 — x0)> + (s — y0)> + (24 — 20)* = ¢ [(t4 + 10)]* .

Figure TF5-3: Automobile GPS receiver at location (xq, yo, Zg).



Coordinate Transformations: Coordinates
N

0 To solve a problem, we select the coordinate system that best
fits its geometry

0 Sometimes we need to transform between coordinate systems

and the inverse relations are

X = rcosao, y = rsing.

Figure 3-16: Interrelationships between Cartesian coordinates
(x, v, z) and cylindrical coordinates (r, ¢, 7).



Coordinate Transformations: Unit Vectors

>)




Table 3

-2: Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components
Cartesian to r= vVx2 4+ y? I'=Xcos¢ + ¥sing Ay = Ay cos¢ + Ay sing
cylindrical ¢ =tan—l(y/x) ¢ = —Xsing +ycose Ap = —Ayxsing + Aycos¢
L =2Z i=1 Ay = Ay
Cylindrical to X =rcosg X="rcos¢ — tfusin b Ay = Arcos¢ — Agsing
Cartesian y =rsing V=rsing +¢cose Ay = Apsing + Agcos¢
Z=2Z i - i Az = Az
Cartesian to R = vxz +y2 422 R = ksin@ CoS ¢ Ap = Aysinfcos ¢

spherical

0 =tan— [ /22 + y2/z]

+ vsin# sing + Zcos#
0 = Xcosf cosg
+ Vcosfsing — zsin#

+ Aysinfsing + Az cosf
Ap = Ay cost cosg
+ Ay costsing — Azsind

¢ = tan~1(y/x) ti): —Xsin¢ + ycos¢ Ap = —Aysing + Ay cos¢
Spherical to x = Rsinf cos¢ % =Rs 1119-::054: Ay = Apsinf cos ¢
Cartesian + 6 cos @ cos P — $sin @ + Agcosflcosgp — Ay sing
y = Rsin# sin ¢ ¥ = Rsinfsing¢ Ay = Apsin# sin¢
—|—Bc0595m¢—|—$cos¢ + Agcosé@sing + Ay cos g
z = Rcos@ 7 = Rcosd —Bsind Ay = Apcosf — Agsinf
Cylindrical to R= Vr2+ 22 R = fsind + Zcosd Ap = Apsinf + A cosé
spherical 6 = tan™! (r/z) 0 = fcosd — Zsin# Ag = A, cosl — A, sind
¢ =0 o=9 Ap = Ag
Spherical to r = Rsin# f = Rsinf +06cosd Ay = Apsind + Agcosf
cylindrical b =0 b=¢ Ap = Ay
7z = Rcos@ Z=Rcosfd —0Bsind Ay = Apcosf — Ag sinf




Example 3-7: Cartesian to Cylindrical Transformations

Given point P; = (3, —4,3) and vector A = X2 — y3 + 74,
defined in Cartesian coordinates, express P and A incylindrical
coordinates and evaluate A at P;.

Solution: For point P;, x =3, y = —4, and z = 3. Using
Eq. (3.51), we have

r=x24y2=5 ¢=tan"'L = _53.1° = 306.9°,
X

and z remains unchanged. Hence, Py = (5, 306.9°, 3) in

cylindrical coordinates.

The cylindrical components of vector A = A, —I—lilAEi, +ZA,
can be determined by applying Eqs. (3.58a) and (3.58b):

A =Aycos¢ + Aysing = 2cos¢ — 3sin g,
Ap = —Aysing + Aycos¢ = —2sin¢ — 3cos ¢,
A, =4.

Hence,
A=T(2cos¢ — 3sing) — $(2sin¢ + 3cos¢) + 74.
At point P, ¢ = 306.9°, which gives

A = £3.60 — $0.20 + 4.




Example 3-8: Cartesian to Spherical Transformation

Express vector A =301+ ) +3(y )+ 32 in spherical |

coordinates.

Solution: Using the transformation relation for Ag given in
Table 3-2, we have Using the relations:

AR = Aysinfcos¢ + Aysinésing + A, cosf x = Rsinf cos ¢,

= (x 4+ y)sinfcos¢ + (y —x)sinf sing + zcosh. ] ]
y = Rsinf sin ¢,

Using the expressions for x, vy, and z given by Eq. (3.61c), we 7= R cosé.
have
AR = (Rsmnfcos¢ + Rsinfsing)siné cos @ leads to:
+ (Rsin® sin¢— R sin 6 cos ¢) sin 6 sin ¢ + R cos” 6
— Rsin” 8 (cos” ¢ + sin® ¢) + R cos’ # Ag =0,
= Rsin’6 + Rcos’> 6 = R. A¢,:—Rsin9.
Similarly,
Ap=(x+y)cosfcos¢+ (v —x)cosfsing — zsinb, R n . . .
Agp=—(x +y)sing+ (y — x)cos g, A =RAR +045 + 044 =RR —QRsing.




Distance Between 2 Points
S
d = |Ry2|
=[(x2 —x1)* + (2 — y1)* + (22 — 21)?]"%. (3.66)

d = [(rg Cos ¢ — ry COS@’)])z
+ (r2singn — ry sing)? + (z2 — 21)2]1/2

1/2
— [r§+r‘f- —2r1m COS(sz—ff’l)"'(ZZ_Zl)z] f

(cylindrical). (3.67)

d= {R% - R% — 2R R>[cos B> cos O

+ sin 6 sin &, cos(¢r — t;sbl)]}l/2

(spherical). (3.68)



From differential calculus, the temperature difference between

Grqdienf of A SCCIICIr points P) and P>, dT =T, — Ty, 1s
Field at = L e 4 L gy 1 81 4 (3.70)
ox dy dz

Because dx =X -dl, dy =y-dl, and dz =1Z-dl, Eq. (3.70)
Py=(x+dx,y+dyz+dz)

\ " can be rewritten as
dy
d aoT oT aT
i V90 AT = %5 dl 4§ -dl il
| dl =3 dx 0z
- piinieii oT oT 0T
S Pir=(xy 2) =[X—+V— +12 -dl (3.71)
0x ay 3z
-
x o7 9T dT
VT=gradT=X3 —I—ya -|—Za—. (3.72)
Figure 3-19: Differential distance vector dl between points P * Y “
and P.
Equation (3.71) can then be expressed as
dT = VT -dl. (3.73)
The symbol V is called the del or gradient operator and is
defined as
d d d
V=x—+y—+z2— (Cartesian).  (3.74)
d.x ay 0z




Example 3-9: Directional Derivative

G r q d i e n-I- C O n-l- Find the directional derivative of T = x2 + y>z along direction
. X2 + ¥3 — 72 and evaluate it at (1, —1, 2).
Solution: First, we find the gradient of T

d
With d1 = a;dl, where a; is the unit vector of d1, the directional VT = ( I +y

.0
+ Z) (x* +y*2)
derivative of T along ay is

0
ay 0z

=X2x +y2yz + zyz.

dT N
al = VT -a. (3.75) We denote I as the given direction,

We can find the difference (7> — T7), where T1 = T (x1, y1. 21) I=x2+4y3 -z

and T = T(x2, y2,22) are the values of T at points [ts unit vector is
= (x1, y1,21) and P> = (x2, y2, z2) not necessarily in-

- 4

finitesimally close to one another, by integrating both sides of a = : Vy3-2  x+y3-2 _
Eq. (3.73). Thus, [T e V17
Py Application of Eq. (3.75) gives
T, — T =[VT-dl. (3.76)  dT . . . . 2 (§2+y3—22)
- — =VT-a,=X2x +y2yvz+1zy°)-
P di ! J17
_Ax+6yz— 2y?
a V17
At (1, -1, 2),
dT 4—-12-2 —10

dl | _1y N1 V1T



Module 3.2 Gradient Select a scalar function f(x, y, z), evaluate its gradient, and display both in an appropriate 2-D
plane.

| Module 3.2 Gradient

Input
Select function: sinusoidal —

cos coefficent I] 1

» N W s O

9.4 -
sin coefficent [J | ]
cos parameter ll ]
sin parameter g | > |
0 A e o
fooy) 427 cosll  x) + 5.7 sind-2  y)
-1k
-3 9.4
-4
Output
-5 P

5 4 3 -2 <1 0 1 2 3 4 5
f(x,y) in color
Vrin arrows

V= -3.7sin(x)x + 11.4cos(-2y)y




Divergence of a Vector Field

4
I
w ”
h I
1 (]

%E-ds
JS (3.95)

2

=

- divE £ lim
AV>0 AV

where S encloses the elemental volume AV. Instead of denoting
the divergence of E by div E, it is common practice to denote

D Imaginary

spherical
’/ surface itas V - E. That is,
} E
. JoE oE JE
' V-E=divE="%4222 L 722 (39
dx ady 0z
Figure 3-20: Flux lines of the electric field E due to a positive
charge q. . . .
e for a vector E 1n Cartesian coordinates.

At a surface boundary, flux density is defined as the amount

of outward flux crossing a unit surface ds: From the definition of the divergence of E given by Eq. (3.95),

field E has positive divergence if the net flux out of surface S
E-ds E-nds . is positive, which may be “viewed” as if volume AV contains

|ds| - as E-n. (385 ;source of field lines. If the divergence is negative, AV may
be viewed as containing a sink of field lines because the net
where fi is the normal to ds. The fotal flux outwardly crossinga  flux is into AV. For a uniform field E, the same amount of
closed surface S, such as the enclosed surface of the imaginary  flux enters AV as leaves it; hence, its divergence is zero and
sphere outlined in Fig. 3-20, is the field is said to be divergenceless.

Flux density of E =

Total flux = %E - ds. (3.86)
S



Divergence Theorem
N

/ V-EdV = f E-ds (divergence theorem).
1% S

(3.98)

Useful tool for converting integration over a volume to
one over the surface enclosing that volume, and vice versa



Example 3-11: Calculating the Divergence

Determine the divergence of each of the following vector fields

and then evaluate them at the indicated points:

(a) E=%3x> +§2z +2x’z at (2, =2, 0);

(b) E = R(a’ cos#/R?) —0(a’sin@/R?) at (a/2, 0, 7).

Solution:
oE oFE oF
v °E: X y z
(@) gx * ay a+ 0z 5
= —GxH+ —Q22) + —(x%2)
dx ay 0z
=6x +0+ x2
g + 6x.

At (2,-2,0), V-E

(2,-2,0)

16.

(b) From the expression given on the inside of the back cover of
the book for the divergence of a vector in spherical coordinates,
it follows that

18, 5
V-E=——(R’E 2 (Egsin®
R2aR T ER T ng ag (BN

1 0Ey
Rsinf 0d¢

1 9
=——(a’cosb) +

| d a’ sin% 6
R2OR R sin 6 060 R?

AtR=a/2andb =0, V-E = —16.
(a/2,0,m)



Module 3.3 Divergence Select a vector function f(x, y, z), evaluate its divergence, and display both in an appropriate

2-D plane.

Module 3,3

Divergence

-1 0 1 2 3 4 5

Fim arrows
V- Fin color

Input

Saelect function:  palynomlal

¥ coefficent I o

v coefficent I |

® exponent | .. |

y exponent IJ ]

SIS | S ) SNy S

Cutput

V-r= 1.2 % 12y




=V

Curl of a Vector Field HH ] | comonrc
N

Circulation = @ B - dl. i ' B

X
(a) Uniform field
C
\ Z
[
\ -
s "
V xB=curl B Contour C
. 1 ~ >V
= lim — [n¢®p B-dl . (3.103)
As—0 As
C max
X
Thus, curl B is the circulation of B per unit area, with
the area As of the contour C being oriented such that the *
circulation is maximum. (b) Azimuthal field

T —— —

Figure 3-22: Circulation is zero for the uniform field in (a), but
it is not zero for the azimuthal field in (b).



Stokes’s Theorem
B

Stokes’s theorem converts the surface integral of the curl of
a vector over an open surface S into a line integral of the
vector along the contour C bounding the surface S.

For the geometry shown in Fig. 3-23, Stokes’s theorem states

f(V X B)-ds = fB -dl (Stokes’s theorem),
S C
(3.107)

dl

—__

contour C

Figure 3-23: The direction of the unit vector h is along the
thumb when the other four fingers of the right hand follow d1.



Module 3.4 Curl Select a vector f(x, y), evaluate its curl, and display both in the x-y plane.

| Module 3.4

Curl

-1 0 1
fin arrows
Vx fin color

2

Input

Select function: sinusoidal

cos coefficent [l !

sin coefficent ll |

cos parameter [l

sin parameter r] |

. ‘

f=%[10 cosfl ¥+ y65 sin( x

Output

Vx = z(6.5c0s(-1x) - 4.8sin(y))




Laplacian Operator
N

Laplacian of a Scalar Field

R VAN o VAR R V4

dx? T dy? T 07>

V>V =V-(VV) = (3.110)

Laplacian of a Vector Field

V2E_ 82 N 82 N 82 o
\ox2  9y? 9z2

=X V°E, +yV°E, +2V°E,

Useful Relation

V’E=V(V-E)—Vx (VxE). (3.113)




Tech Brief 6: X-Ray Computed Tomography
—

How does a CT scanner generate a 3-D image?

JT“& ¢ e Gﬁill
4 \ - , {

Figure TF6-2 CT scanner.

Figure TF6-1 2-D X-ray image.




Tech Brief 6: X-Ray Computed Tomography

0 For each anatomical slice, the

CT scanner generates on the
order of 7 x 10°
measurements (1,000
angular orientations x 700
detector channels)

1 Use of vector calculus allows

(] C t
the extraction of the 2-D it
imdge Of d Slice (a) CT scanner (b) Detector measures integrated attenuation

along anatomical path
0 Combining multiple slices
generates a 3-D scan

(c) CT image of a normal brain

[Figure TF6-3 Basic elements of a CT scanner.




Chapter 3 Relationships

Distance Between Two Points Vector Operators
d =[(x2 —x1)? + (o2 — y1)? + (22 — z1)*]'/? VT — izT + 5.3;" + izT
x , z
d = [r3+r} = 2riry cos(ga—d) + (2 —21)*] "/ e or  ap
_ X y ¥4
d:{R%JrR‘]?—2R1R2[c0592005911f2 V-E= ax + 3y + 37
+ sin 6y sin 62 cos(¢2 — ¢1)]1} /9B, 9B, /3B, 9B,
VxB=x5r % )PV G T
Coordinate Systems Table 3-1 ) g g *
Coordinate Transformations Table 3-2 +Z 9By — i
0x ay
Vector Products s 3%V a*tv 9%V
VoV = + +
A-B = ABcosfagp ax?z  ay?  9z2
AxB=nABsinf,p (see back cover for cylindrical
A-BxC) =B-(CxA) =C-A xB) and spherical coordinates)
Ax(BxC) =BA-C)—-CA-B) Stokes’s Theorem
Divergence Theorem j(V x B)-ds = §£B - dl
S C

fV-EdV:fE-dS

V S



About 30 electric/electronic systems and
more than 100
Sensors

DTR CDI AAC RCU PTS LWR ECT ESP ZV ABCTPM ABS

System Abbrev. Sensors System Abbrev. Sensors
Distronic DTR Common-rail diesel injection CDI 1
Electronic controlled transmission  ECT Automatic air condition AAC 13
Roof control unit RCU Active body control ABC 12
Antilock braking system ABS Tire pressure monitoring TPM 11
Central locking system Vv Elektron. stability program ESP 14
Dyn. beam levelling LWR Parktronic system PTS 12

Figure TF7-1: Most cars use on the order of 100 sensors. (Courtesy Mercedes-Benz.)

4. ELECTROSTATICS

/e Applied EM by Ulaby and Ravaioli



Chapter 4 Overview




Maxwell’'s Equations
—

Under stafic conditions, none of the quantities appearing in

. Maxwell’s equations are functions of time (1.e., /9t = 0). This

GOd SCIId: happens when all charges are permanently fixed in space,
or, if they move, they do so at a steady rate so that p, and
J are constant in time. Under these circumstances, the time
derivatives of B and D in Egs. (4.1b) and (4.1d) vanish, and

Maxwell’s equations reduce to

Electrostatics
VD =py, (4.2a)
VxE=0. (4.2b)
Magnetostatics
V-B=0, (4.3a)
VxH=]. (4.3b)

And there was light!

Electric and magnetic fields become decoupled under static
conditions.



Charge Distributions

Volume charge density:

: Agq dg 3 10 cm Line charge py
Pv= Alﬁgo AV dV (C/m) 1
>)
Total Charge in a Volume
X
Q = / py dV (C) (a) Line charge distribution
V

Surface and Line Charge Densities Surface charge p,

. Agq dg
— ] — C/m?
ps = lim == (Cm)

>V

. Agq dq
pe = lim =

Al—0 Al dl (C/m)



Current DenSiII.y \/olu/mc charge p,

:‘a '/ .. .. .. . : : .
6 A —u’. . : .’ ( Aq'=p.u As' At
.y N . e a . -

The amount of charge that crosses the tube’s cross-sectional F_N —1
surface As’ in time At is therefore (a)
Aq' = p, AV = p, Al As" = pyu As" At. (4.8)
P — A Ac
Y v As =n As
. :|'. . o.o. ... o. e
For a surface with any orientation: OA= 3 B Ag = pyu-As Al
ettt 00, = pu As At cos 0

Ag = pyu- As At, (4.9)

where As = n As and the corresponding total current flowing

in the tube is Figure 4-2: Charges with velocity u moving through a cross

Ag section As’ in (a) and As in (b).
Al = — =pu-As=]J-As, (4.10)
At
where
J=pu (Amd) @11 I:]J-ds A).  (4.12)

J is called the current densit
7 When a current is due to the actual movement of electrically

charged matter, it is called a convection current, and J is
called a convection current density.



Convection vs. Conduction
B

When a current is due to the movement of charged particles
relative to their host material. J 1s called a conduction current
density.

This movement of electrons from atom to atom constitutes
a conduction current. The electrons that emerge from the
wire are not necessarily the same electrons that entered the
wire at the other end.

Conduction current, which 1s discussed in more detail in
Section 4-6, obeys Ohm’s law, whereas convection current does

1 |
1 1
' !
! Atom s ’ Electron
1 I

1
not. '




Coulomb’s Law

Electric field at point P due to single charge

. g
E—RkR -1 _ vy
TR (V/m)

Electric force on a test charge placed at P

F=¢'E (N)

Figure 4-3: Electric-field lines due to a charge g.

Electric flux density D

D = <E If € is independent of the magnitude of E, then the material
is said to be linear because D and E are related linearly,
and if it is independent of the direction of E, the material is
said to be isotropic.

& = &r€0,

g0 = 8.85 x 10712 ~ (1/367) x 1077 (F/m)



Electric Field Due to 2 Charges

with R, the distance between ¢ and P, replaced with |R — R
and the unit vector R replaced with (R — Rj)/|R — Ry|. Thus,

_ q(R—Ry)
' = 4zeR—R P

(V/m). (4.17a)

Similarly, the electric field at P due to g2 alone is

R-R,
E, = 92( 2) (V/m). (4.17b)
47¢R — Ro3

The electric field obeys the principle of linear superposition.

Hence, the total electric field E at P due to g; and ¢» 1s
E=E +E;

1 91(R—R1)+Q2(R—R2)
dre | R—R;P | [R—Ry[

(4.18)

Figure 4-4: The electric field E at P due to two charges is equal
to the vector sum of E; and E,.



Electric Field due to
Multiple Charges

Example 4-3: Electric Field Due to Two Point Charges

Two point charges with ¢ =2x 10" C and
g = —4 x 1072 C are located in free space at points
with Cartesian coordinates (1,3, —1) and (—3,1,-2),
respectively. Find (a) the electric field E at (3, 1, —2) and (b)
the force on a 8 x 107 C charge located at that point. All
distances are in meters.

Solution: (a) From Eq. (4.18), the electric field E with e = &g
(free space) is
(R—-Ry)

. (R — Ry)
~ dze [T IRZR, P

IR Ry

] (V/m).

The vectors Ry, Rz, and R are
Ry =x+y3—1,
Ry =—-xX3+y—122,
R=%3+§y-72.

Hence,
I [2R2—§2—2) 4(%6) P
E= _ 10~
dreg [ 27 216 } 8
R—§4-2
_ 10 V/m).
108760 (V/m)
(b)
K —§4—22
F=qgE=8x10°x — 3" "% 105
1087 &0
R — §8 — 74
Bt S AV T) o LN

27:?7,'80



Electric Field Due to Charge Distributions
B

Field due to:

a differential amount of charge dg = p, dV' contained in a
differential volume 4V’ is

o dg s opydV N
B=R ek = freg Y
E=de=_1 ) @V
4 e R?
v/ &

(volume distribution).  (4.21a) 1
E=——
dre

1
E=—
dme

~r ps ds’ o
R (surface distribution),
S!
(4.21b)
n dl’
L2 (line distribution).

(4.21¢)



Example 4-4: Electric Field of a Ring of Charge

A ring of charge of radius b is characterized by a uniform line
charge density of positive polarity py. The ring resides in free
space and 1s positioned 1n the x—y plane as shown in Fig. 4-6.
Determine the electric field intensity E at a point P = (0, 0, 1) [l
along the axis of the ring at a distance h from its center.

Solution: We start by considering the electric field generated
by a differential ring segment with cylindrical coordinates
(b, ¢, 0) in Fig. 4-6(a). The segment has length d/ = b d¢ and
contains charge dg = p¢ dl = p¢b d¢. The distance vector R
from segment | to point P = (0,0, /) 1s

R = —fb + 2h,

from which it follows that

. R’ —rb + zh
Rl = |R|| = Vb2 +h?, R = L _ ,
1 = IRyl TR Vr a2

The electric field at P = (0, 0, /) due to the charge in segment |
therefore 1s

L oropedl _ pib (—Fb+ )

dE| = =
'Tdmeg 'R dmeg (07 + 02

JEI ﬂFEI:
P =(0,0,h)

1

(b)

Figure 4-6: Ring of charge with line density py. (a) The
field dE| due to infinitesimal segment 1 and (b) the fields dE
and dE» due to segments at diametrically opposite locations
(Example 4-4). Cont.



1 & pedl  peb (—th + zh)

dE; = _
'Tdmey ' RE T dmeg (B2 + W2

de.

The field dE; has component dE;, along —r and compo-
nent dEy, along z. From symmetry considerations, the

Iﬁeld dE, generated by differential segment 2 in Fig. 4—6(]3}.-

which 1s located diametrically opposite to segment 1, 1s
identical to dE| except that the r-component of dE is opposite
that of dE|. Hence, the F-components in the sum cancel and
the z-contributions add. The sum of the two contributions is

. pebh d¢
¥/ .
2eg (b 4 h2)3/2

dE = dE; + dE» (4.22)

Since for every ring segment in the semicircle defined over the
azimuthal range 0 < ¢ < m (the right-hand half of the circular
ring) there is a corresponding segment located diametrically

opposite at (¢ + m), we can obtain the total field generated by
the ring by integrating Eq. (4.22) over a semicircle as

T

. pebh
E=12 d
2ren(b? 4+ h?)3/? ] ¢
0
. pebh
=17
260(b? + h?)3/?
h
—7 (4.23)

4rreq(b? + h?)3/2 e

where Q = 2mwbpy 1s the total charge on the ring.

A
dEI ﬂiEI:
P =(0,0,h)

ks

Lt L({E dE| +dE2
. “(sz

X

(b)

Figure 4-6: Ring of charge with line density pg. (a) The
field dE| due to infinitesimal segment 1 and (b) the fields dE
and dE, due to segments at diametrically opposite locations
(Example 4-4).




Example 4-5: Electric Field of a Circular Disk of Charge

Find the electric field at point P with Cartesian coordinates
(0, 0, 1) due to a circular disk of radius @ and uniform charge
density pg residing in the x—y plane (Fig. 4-7). Also, evaluate E

due to an infinite sheet of charge density pg by letting @ — 00. _

Solution: Building on the expression obtained in Example
4-4 for the on-axis electric field due to a circular ring of charge,
we can determine the field due to the circular disk by treating

Z
the disk as a set of concentric rings. A ring of radius r 1
E

and width dr has an area ds = 27r dr and contains charge
dqg = psds =2mpgr dr.  Upon using this expression in P =(0,0.7)
Eq. (4.23) and also replacing b with r, we obtain the following h
expression for the field due to the ring: Ds dy = 2mpr dr

dE =3 " Qrpor dr)

T A 0 dr).
Areo(r? + h?)3/2 Ps
r ~ >\
dr

Figure 4-7: Circular disk of charge with surface charge
density pg. The electric field at P = (0, 0, ) points along the
z-direction (Example 4-5).

Cont.



Example 4-5 cont.
The total field at P is obtained by integrating the expression _

over the limits r = 0tor = a:

[«

. psh rdr z
E =
¥/ 25[) (rz +k2)3f2 1
0 E
- h P=(0,0,h
-+ 5 [1 B ] (4.24) ©.0.%)
2e0 Var+h? h
Ps — -
with the plus sign for A = 0 (P above the disk) and the minus dq = 2mpsr i
sign when h < O (P below the disk).
For an infinite sheet of charge with a = o0,
/"_\ " a >y

/ E=+47 > \ (infinite sheet of charge).  (4.25)

dr

We note T m infinite sheet of charge E is the same at all
points above the x—y plane, and a similar statement applies for

points below the x-y plane. Figure 4-7: Circular disk of charge with surface charge

density ps. The electric field at P = (0, 0, i) points along the
z-direction (Example 4-5).



Gauss’s Law

_
V-D=p,

(Differential form of Gauss’s law),

fV-DdV:fpvdV=Q

1% 1%

Total charge
my

D-ds

Gaussian surface S
enclosing volume V

Application of the divergence theorem gives:

fV'DdV:%D-dS.

v 5

Comparison of Eq. (4.27) with Eq. (4.28) leads to

%D -ds = Q (4.29)
S
(Integral form of Gauss’s law).

(4.28)

The integral form of Gauss'’s law is illustrated diagrammati-
cally in Fig. 4-8; for each differential surface element ds,
D -ds is the electric field flux flowing outward of V
through ds, and the total flux through surface S equals the
enclosed charge Q. The surface S is called a Gaussian

surface.

Figure 4-8: The integral form of Gauss’s law states that the
outward flux of D through a surface is proportional to the
enclosed charge Q.



Applying Gauss’s Law

(Integral form of Gauss’s law).

Gauss’s law, as given by Eq. (4.29), provides a convenient
method for determining the flux density D when the charge
distribution possesses symmetry properties that allow us to
infer the variations of the magnitude and direction of D
as a function of spatial location, thereby facilitating the

%D e ds = 0 (4.29) _ Example 4-6: Electric Field of an Infinite Line Charge

S Use Gauss’s law to obtain an expression for E due to an infinitely
long line with uniform charge density p, that resides along the
z-axis in free space.

Construct an imaginary Gaussian cylinder

integration of D over a cleverly chosen Gaussian surface. of radius r and height h:

z

b

__—uniform line
_ _ charge py

—L )
-F-" 1 or

AT T T T T T T T N

|
I
M which yields
D /

h 27
[[fDr-frdqbdZ:,th

7=0 =0

27hD,r = pgh,

S|

) 2 egr

(inﬁnﬁ% line chargey—




Electric Scalar Potential
B

The term “voltage™ is short for “voltage potential” and

synonymous with electric potential.

" F ext
'V

LA

= X

Figure 4-11: Work done in moving a charge ¢ a distance dy
against the electric field E 1s dW =g E dy.

Minimum force needed to move charge
against E field:

Feyi = —F. = —¢E. (4.34)

The work done, or energy expended, in moving any object a
vector differential distance dl while exerting a force Fqy 1s

dW = Fexi -dl = —gE - dl (J). (4.35)

Work, or energy, is measured in joules (J). If the charge is
moved a distance dy along y, then

dW = —q(—VE)-ydy = qE dy. (4.36)

The differential electric potential energy d W per unit charge
is called the differential electric potential (or differential
voltage) d V. That is,

dW
dV=""—_E-dl  (J/ICorV). (4.37)

q



Electric Scalar Potential
—

E £ Py P
‘ b [ dV = — f E-dl,
Ci : Py P
&)
Vor=Vo—=Vi=— | E-dl 4.3

Figure 4-12: In electrostatics, the potential difference between
P> and Pj is the same irrespective of the path used for calculating
the line integral of the electric field between them.

f E-dl=0 (Electrostatics).  (4.40)
C

A vector field whose line integral along any closed path is
zero is called a conservative or anirrotational field. Hence,
the electrostatic field E is conservative.



Electric Potential Due to Charges

P, P
[dV:—/E-dl,
P P

P
Vo=V, — V| = —fE -dl, (4.39)
P

In electric circuits, we usually select a
convenient node that we call ground and
assign it zero reference voltage. In free
space and material media, we choose infinity
as reference with V = 0. Hence, at a point P

P
V= —fE-dl (V). (4.43)
o0

For a point charge, V at range R is:

R
. q - q )
V=— ( ) RdR = V).  (4.45)
f 4 e R? 4reR (V).
oo
For continuous charge distributions:
1 pV r . . .
V=— [ —dV" (volume distribution), (4.48a)
dre | R’
v:'
1
V=— L] ds’  (surface distribution), (4.48b)
e ) R’
Sf
1 e . ST
V=—|[ —dl" (linedistribution). (4.48¢)
dre | R’
Ef




Relating E to V

I
AV = —E-dl. (4.49)

For a scalar function V, Eq. (3.73) gives
dV =VV -dl, (4.50)

where V'V is the gradient of V. Comparison of Eq. (4.49) with
Eq. (4.50) leads to

E=-VV. (5]

This differential relationship between V and E allows us to
determine K for any charge distribution by first calculating
V and then taking the negative gradient of 'V to find E.



Example 4-7: Electric Field of an Electric Dipole

] P=® 0,0

Solution: To simplify the derivation, we align the dipole z

along the z-axis and center it at the origin [Fig. 4-13(a)]. For

the two charges shown in Fig. 4-13(a), application of Eq. (4.47)

gives

)= Cre)
V = — 4+ — )
dmreog \ Ry R 4 ep R R»

Since d < R, the lines labeled R; and R> in Fig. 4-13(a)
are approximately parallel to each other, in which case the (a) Electric dipole
following approximations apply:

R> — Ry ~ d cos b, RiR>» ~ R%.
Hence, @i
d cos @
v q .

4regR? o IR<=

(b) Electric-field pattern

dcos

https:/ /www.youtube.com /watch2v=LB8Rhcb4e QM&t=68s Cont



Example 4-7: Electric Field of an Electric Dipole (cont.)

gdcos® = gd-R=p-R,

where p = ¢d is called the dipole moment. Using Eq. (4.53)

in Eq. (4.52) then gives

~

_ PR
~ 4megR2

(electric dipole).

(4.54)

In spherical coordinates, Eq. (4.51) is given by

E=-VV
oV o~ 1

oV

(f{ v +6 :
IR R

__ 44
 4meyR3

g0 7O

E (R2cos@ + 0sind)

Rsinf d¢

) , (4.55)

(V/m).

P=(R, 0, ¢)

dcos @

(a) Electric dipole

//,,

& -

()

 p——
"“----_..--'l’e

(b) Electric-field pattern



Poisson’s & Laplace’s Equations

With D = ¢E, the differential form of Gauss’s law given by
- Eq. (4.26) may be cast as

V-E=2. (4.57)
£
Inserting Eq. (4.51) in Eq. (4.57) gives In the absence of charges:
V. (Vv)=-2 (4.58) ViV =0 (Laplace’s equation),
, |

Given Eq. (3.110) for the Laplacian of a scalar function V,

92V 9tv 8%V
V2V =V.(VV) = , 4.59)
(VV) 6w2+a}12+ﬁm2 ( _ . /% f\’%%
Eq. (4.58) can be cast in the abbreviated form / — /5‘

Viv = _P (Poisson’s equation).  (4.60)

£

This is known as Poisson’s equation. For a volume V'
containing a volume charge density distribution py, the solution
for V derived previously and expressed by Eq. (4.48a) as

1 , |
Ve — [ 2 av 4.61)
dre R’
'l-’”



I Module 4.1 Fields due to Charges

Input

charge value: _7 g e

) add charge
) edit charge value
delete charge
) drag charge
(=) display electric field
and voltage at cursor:

V= 796905E-1 Volis
E= 121498E-2 V/m {

Plot Characteristics:

E‘I Potential field
E‘I Electric field

E‘I Equipotential lines:

less more
lines lines

Clear

Y[nm‘

!
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Conduction Current
B 5

The conductivity of a material is a measure of how easily Table 4-1: Conductivity of some common materials at 20°C.
electrons can travel through the material under the influence

of an externally applied electric field. Material Conductivity, o (S/m)
Conductors
Silver 6.2 % 107
Copper 5.8 x 10;
: i/ Gold 4.1 x 10
ction current density: O s o7
) [ron 107
(Mm ) (Ohm’s law), Mercury 106
OV'.'-j‘V\U\L Carbon 3 % 10*
1 \I Semiconductors
Pure germanium 2.2
A perfect dielectric is a material with o = 0. In contrast, Pure silicon 441071
a perfect conductor is a material with o = oo. Some Insulators b
materials, called superconductors, exhibit such a behavior. Glass 10_1 5
Paraffin 10
Mica 10=1
Fused quartz 10—

Note how wide the range is, over 24 orders
of magnitude



Conductivity

B\,

O

e

0 = —Pvelle T Pvh/in
= (Nefte + Nupn)e

(S/m) (semiconductor),

(4.67a)

and its unit is siemens per meter (S/m). For a good conductor,

Npptp << Nepte, and Eq. (4.67a) reduces to

0 = —pPvefle = Neptee

(S/m)
(conductor). (4.67b)

Inview of Eq. (4.66), ina perfect dielectric withe = 0,J = 0

regardless of E, and in a perfect conductor with o = 00,

E = J/o = 0 regardless of J.

That 1s,

J=0E (A/m?

Perfect dielectric: J=0,

Perfect conductor: E = 0.

P.. = volume charge density of
electrons

Phe = volume charge density of
holes

U, = electron mobility

L, = hole mobility

. = number of electrons per unit

volume

N, = number of holes per unit
volume

(Ohm’s law),



Example 4-8: Conduction Current in a Copper Wire

A 2-mm-diameter copper wire with conductivity of
5.8 x 107 S/m and electron mobility of 0.0032 (m?/V-s)

is subjected to an electric field of 20 (mV/m). Find (a) the

volume charge density of the free electrons, (b) the current _

density, (c) the current flowing in the wire, (d) the electron

drift velocity, and (e) the volume density of the free electrons.
Solution:

(a)
o 5.8 x 107

= —— =—2 " — 181 x 10" (C/m?).
e == 0.0032 x 107 (G

(b)
J=0E=58x10"x20x 1073 =1.16 x 10° (A/m?).

£ 4 % 10-5
=J(”—)=1.|6><|06(”X : ):3.64A.

(d)
e = —pioE = —0.0032 x 20 x 1073 = —6.4 x 107> m/s.

The minus sign indicates that u, is in the opposite direction
of E.

(e)
Pve 1.81 x 1010

= T < 1019 = 1.13 x 10* electrons/m°.
e b6 x 10~

N. = —



Resistance

Longitudinal Resistor

X1

V=V1—V2=—fE-dl

x2

X1
__ f RE,-Rdl=EJd (V). (468

X2

Using Eq. (4.63), the current flowing through the cross
section A at x» 18

I=[J-ds=[crE-ds=aExA (A). (4.69)
A A

From R = V//I, the ratio of Eq. (4.68) to Eq. (4.69) gives

R = oy (£2). (4.70)

For any conductor:

V
R=—=
I

—fE-dl

—fE-dl
!

I —
/J-ds
S

/aE-dS
S




Example 4-9: Conductance of Coaxial Cable

The radii of the inner and outer conductors of a coaxial cable
of length / are a and b, respectively (Fig. 4-15). The insulation
material has conductivity o. Obtain an expression for G’, the
conductance per unit length of the insulation layer.

Solution: Let / be the total current flowing radially (along )
from the inner conductor to the outer conductor through the
insulation material. At any radial distance r from the axis of
the center conductor, the area through which the current flows
1s A = 2mrl. Hence,

conductor must be at a higher potential than the outer conductor.

Y A | Accordingly, the voltage difference between the conductors is
J=r—=r \ (4.73)
A 2mrl ; ;
and from J = oE, Vab=_/E°dl=—f I t-tdr
I 2ol r
E=r : (4.74) b b
2rorl ; "
In a resistor, the current flows from higher electric potential - In () . (4.75)
to lower potential. Hence, if J is in the -direction, the inner 2ol a

The conductance per unit length is then

G | / 2mo

G ! K T TR T VT Inth/a)

G’=0 if the insulating material is air or a

(S/m).  (4.76)

perfect dielectric with zero conductivity.



Joule’s Law
—

The power dissipated in a

volume containing electric field E )
, , For a coaxial cable:
and current density J is:

S
P =1%In(b/a)/2rol)
P = [E-Jdv (W) (Joule’s law)

v Ju

O ey
P

For a resistor, Joule’s law reduces to:

2

P=1I°R (W)



Tech Brief 7: Resistive Sensors

An electrical sensor is a device About 30 electric/electronic systems and
more than 100

sensors

capable of responding to an applied
stimulus by generating an electrical

signal whose voltage, current, or some
other attribute is related to the
intensity of the stimulus.

° ° ° R / /
Typical stimuli :  temperature, DTR CDI AAC RCU PTS LWR ECT ESP ZV ABC TPM ABS

p ressure’ pOS”Ion’ d IS‘I'CInce, monon’ System Abbrev. Sensors System Abbrev. Sensors

o . o Distronic DTR 3 Common-rail diesel injection CDI 1

velocn.y, acce I e rqhon, Concentran on Electronic controlled transmission ~ ECT 9 Automatic air condition AAC 13

f I' 'd bl d fl Roof control unit RCU 7 Active body control ABC 12

Antilock braking system ABS 4 Tire pressure monitoring TPM 1

(O a gqs or IqUI )' oo OW’ e1'C. Central locking system yAY) 8 Elektron. stability program ESP 14

Dyn. beam levelling LWR 6 Parktronic system PTS 12

Sensing process I‘elies on meqsuring Figure TF7-1: Most cars use on the order of 100 sensors. (Courtesy Mercedes-Benz.)
resistance, capacitance, inductance,

induced electromotive force (emf),

oscillation frequency or time delay,

etc.



Piezoresistivity
—

The Greek word piezein means to press

AR Q)

/ Stretching

F—g—F F +——u——n— F

Compression
P Force (N)

Figure TF7-2: Piezoresistance varies with applied force.

o F
R=R0(l—|——)

R, = resistance when F = 0

F = applied force

A, = cross-section when F = 0

a = piezoresistive coefficient of material



Piezoresistors
—

Film I
N\ z
i | Nl e —
O Fa [ {7 T
F=0 Stretched Ohmic

contacts

Figure TF7-3: Piezoresistor films.

Silicon
piezoresistor

7

Metal wire

(a) Serpentine wire (b) Silicon piezoresistor

Figure TF7-4: Metal and silicon piezoresistors.



Wheatstone Bridge

Wheatstone bridge is a high
sensitivity circuit for measuring

r,+ar  Small changes in resistance

Flexible
resistor

Figure TF7-5: Wheatstone bridge circuit with piezoresistor.



Dielectric Materials

Electron

Positive surface charge Polarized molecule
E E
A A
Nucleus
(a) External Eqx =0
Nucleus
E E
q
‘d
-
Center of electron cloud
(b) External Eqx¢ # 0 (c) Electric dipole
Negative surface charge
Figure 4-16: In the absence of an external electric field E. the
center of the electron cloud is co-located with the center of the Figure 4-17: A dielectric medium polarized by an external

nucleus, but when a field is applied. the two centers are separated electric field E.
by a distance d.



Polarization Field

I
D=¢E+P

P = electric flux density induced by E

P = SOXeEs (4-84)

where y. is called the electric susceptibility of the material.
Inserting Eq. (4.84) into Eq. (4.83), we have

D = ¢oE + g9 xE
= e0(1 + xe)E = ¢E, (4.85)



Electric Breakdown
B

The dielectric strength E g is the largest magnitude of E that
the material can sustain without breakdown.

Table 4-2: Relative permittivity (dielectric constant) and dielectric strength of common materials.

Material Relative Permittivity, &  Dielectric Strength, Ej; (MV/m)
Air (at sea level) 1.0006 3

Petroleum oil 2.1 12

Polystyrene 2.6 20

Glass 4.5-10 25-40

Quartz 3.8-5 30

Bakelite 5 20

Mica 5.4-6 200

£ = ereg and g9 = 8.854 x 10712 F/m.



Boundary Conditions
- Medium 1 T

E\ - Ei b
\Zr‘E 1t
—
/-—_.-—— P Egt
EZni ¢
E; )
Figure 4-18: Interface between two dielectric media.
Enw=Ex (V/m). (4.90) (D) —Dy) =p;  (C/m?).
Din—Dy=ps (Cim?). (4.94)
Dy Dy
—=—". (491
€1 €2 The normal component of D changes abruptly at a charged

boundary between two different media in an amount equal
fo the surface charge density.



Summary of Boundary Conditions
B

Table 4-3: Boundary conditions for the electric fields.

Field Component Any Two Media Dl:ifizf; ;] (l;:ul)enddiEE:jr
Tangential E E|t = Eo¢ Eit=Ey =0

Tangential D Dii/e1 =Dy /e Dii=Dy=0

Normal E e1E1q — & Exy = ps En = ps/el Eryy=0
Normal D D1y — Doy = ps Diq = ps D>y, =0
Notes: (1) ps is the surface charge density at the boundary; (2) normal components of
E;.D,. E,. and D5 are along n», the outward normal unit vector of medium 2.

Remember E = 0 in a good conductor



I Module 4.2 Charges in Adjacent Dielectrics

Input 4 &1 = 2.5 £r2 = 4 Instructions

N\

Er)
charge value: | _2 g e 5

) add charge
) edit charge value
) delete charge

) drag charge 27

(=) display electric field

\

and voltage at cursor: 17

/
/
/
/
/

V= 253587E-1 Volts P A ; . Tl Ml Wil
E= 253076E-2 V/m "4 e L 1] WL WP SV I LN
e N R T T T S -
I A e e e T T T ”
Plot Characteristics:
V2R B T T W W R P U S
™ Potential field _3—; ;o | Ly N N NS - .
EI Electric field
@I Equipotential lines: 444 | | e T T T " .
less more T S L A N T T O O
lines lines -5
] | l l \ b T T

®(nim)




Conductors
B 5

Net electric field inside a conductor is zero

E E ) E;
1 =gk
Ps — £1£1
+ + + |+ + + + + |+ + + + + |+ + o+
4, 4 4
' ' 'y
Conducting slab — E, L E; E, LK Ei, K
' ' 'y
I I I
1 * 1 * | | t
€l Ps

Figure 4-20: When a conducting slab is placed in an external electric field Eq, charges that accumulate on the conductor surfaces induce
an internal electric field E; = —E;. Consequently, the total field inside the conductor is zero.



Field Lines at Conductor Boundary

Figure 4-21: Metal sphere placed in an external electric field Ey.

At conductor boundary, E field direction is always
perpendicular to conductor surface



I Module 4.3 Charges above Conducting Plane

Input

charge = | § e

|

( place charge

change charge value

remove charge

' move charge

(*) show voltage, electric field,
and charge density at cursor:

v= 343513F-2 Volts
E= 2294882 Vim ¥
p= -2.9087E-3 C/m?

Plot Characteristics:

™
o
™
o

less
lines

Potential field
Electric field
Charge density
Equipotential lines:

more
lines

Clear

View Image Charges

AW W T R |
A WL U T R |
S N T N &
~ NNt
~ N Nt
-~ 5N 1 /

1 2 3
Conductor

e T

L

N M

A\
]

4
¥

1

“u
\
\
}

1

12 1

Instructions

4
'y

s

-

3xinm]




I Module 4.4 Charges near Conducting Sphere
|I"ID|J|: '.rinmj View Image Charges r= 2.3 Instructions
12
. e e “u \ \I
charge=  -2.6 e NANAMNY B -
| nds N s T T Y S R e N
) place charge ~ N\ N Y 1 s NV
) change charge value NN \ /7 o A" T |
) remove charge N \ |
) move charge
J o - N Vo
i*) show voltage, electric field, B
and charge density at cursor: . h /
7l A"
v= 2.14238E-2 Volts /
E= 217693E-3 Vim ¥ s \ /
p= 3.34842E-4 C/m? 4 \ s
537 7/
Plot Characteristics: 4 !
™ Potential field 4 / J ol
™  Electric field / .
™ Charge density [ o
™ Equipotential lines: 1 .
less more
lines lines \
1_ A\
- ~
0 T T T 1 1 T 1 T T T T T T '!-
1 2 3 4 5 6 7 8 9 10 11 12 13 em)




Capacitance

Surface S
~t/ + 4 +/‘+/_
/—h-

When a conductor has excess charge, it distributes the +
charge on its surface in such a manner as to maintain a
zero electric field everywhere within the conductor, thereby
ensuring that the electric potential is the same at every point
in the conductor. =

The capacitance of a two-conductor configuration is defined as

C = % (C/V or F), (4.105)

Figure 4-23: A dc voltage source connected to a capacitor
composed of two conducting bodies.



Capacitance
—

For any two-conductor configuration:

/8E'dS

JS

—[E-dl
/

For any resistor: 1_/ \/

—fE-dl
R=—" (@

jSoE-dS\)‘ I

For a medium with uniform o and ¢, the product of Egs. (4.109)
and (4.110) gives

C = (F)a

(4.110)

rc=LX. @i
o

This simple relation allows us to find R if C is known, or vice
versa.

Surface S
~t/ + 4 +f+/_
/—h-

Figure 4-23: A dc voltage source connected to a capacitor
composed of two conducting bodies.



Example 4-11: Capacitance and Breakdown Voltage of
Parallel-Plate Capacitor

z Conducting plate
Iy /
< 1 {AreaA N
\ Fringing
I ) e
s +Q A ,"
z=d ’
+ S3Ed R ] B B2 R
— Dielectric &
V—= ds E|E |E
z=0 —— —— ————— -0
Ps Conducting plate
Figure 4-24: A dc voltage source connected to a parallel-plate capacitor (Example 4-11).
d d
V:—/E-dl:—f(—iE)-idz:Ed, (4.112)
0 0
and the capacitance is |>\ 'L]Q
e_2_#M 4 ~
V. Ed d’ ' b\

where use was made of the relation E = Q/cA.

From V = Ed, as given by Eq. (4.112), V =V}, when
E = Egs, the dielectric strength of the material. According to
Table 4-2, Eys = 30 (MV/m) for quartz. Hence, the breakdown

voltage is

Vipg = Eqed =30 x 10° x 1002 =3 x 10° V.



Example 4-12: Capacitance Per Unit Length of Coaxial
Line

Inner conductor

Dielectric material &

. . . Y 3 i 3
Application of Gauss’s law gives: AELRTELE, CIER 1L,

Q

2merl Figure 4-25: Coaxial capacitor filled with insulating material of permittivity ¢ (Example 4-12).

-
"~ Outer conductor

E=—-r

The potential difference V between the outer and inner
conductors is

b b
V=—fE-dl=—f(—i‘-2 O l)-{f'dr)
7 ’ er Q is total charge on inside of outer
o (b s cylinder, and —Q is on outside surface of
= mel (5)' S nner cylinder

The capacitance C is then given by

2mel
_2_ %" e
vV~ In(b/a)

and the capacitance per unit length of the coaxial line is

, C 2we

I~ In(b/a)

(F/m). (4.117)



Tech Brief 8: Supercapacitors
—

For a traditional parallel-plate capacitor,

what is the maximum attainable energy

Mica has one of the highest dielectric strengths
density? ~2 x 10**8 V /m,

Conducting plate

If we select a voltage rating of 1 V and a

N Fringing breakdown voltage of 2 V (50% safety), this
' will require that d be no smaller than 10 nm.

piecric.  For mica, € = 6&y and p = 3 x 10**3 kg/m? .

| +
i

Conducting plate Hence:

Energy density is given by: W' =90 J/kg = 2.5 x10%**—2 Wh /kg.

, gV?
W' = ol (J/kg) By comparison, a lithium-ion battery has
p W' = 1.5 x 10**2 Wh /kg, almost 4 orders of
£ = permittivity of insulation material magnitude greater

V = applied voltage
0 = density of insulation material
d = separation between plates



A supercapacitor is a “hybrid” battery /capacitor
_

Porous, high-surface
area carbon

Figure TF8-1: Cross-sectional view of an electrochemical double-layer capacitor
(EDLC), otherwise known as a supercapacitor. (Courtesy of Ultracapacitor.org.)



Users of Supercapacitors

Figure TF8-2: Examples of systems that use supercapacitors.
(Courtesy of Railway Gazette International; BMW; NASA; Applied
Innovative Technologies.)



Energy Comparison

Energy Storage Devices

Feature Traditional Capacitor  Supercapacitor Battery
Energy density W' (Wh/kg) ~1072 1to 10 5to 150
Power density P* (W/kg) 1,000 to 10,000 1,000 to 5,000 10 to 500
Charge and discharge rate T 1073 sec ~1lsectol min ~1to5hrs
Cycle life N, oo ~10% ~10?

1000 Future

_ Fuel cells developments

=11]

=~ 1004

: -~ %

=~ Batteries

= 10 -

‘%‘ Supercapacitors

5 1 -

=i

g 0.1

3 T Traditional

capacitors
0.01 T T ]
10 100 1000 10,000

Power density P’ (W/kg)

Figure TF8-3: Comparison of energy storage devices.



Electrostatic Potential Energy
—

Electrostatic potential energy density (Joules/volume)

We = % — % gEz (J/II]S) Energy stored in a capacitor
We=3CV> ().
:://F
Total electrostatic energy stored in a volume < '\\l
1 A

v



Image Method

Electric field

(a) Charge Q above grounded plane (b) Equivalent configuration

Figure 4-26: By image theory, a charge @ above a grounded perfectly conducting plane is equivalent to  and its image — () with the
ground plane removed.

Image method simplifies calculation for E and V due
to charges near conducting planes.

1. For each charge Q, add an image charge —Q
2. Remove conducting plane
3. Calculate field due to all charges



Example 4-13: Image Method for Charge Above
Conducting Plane

Use image theory to determine E at an arbitrary point
P = (x,y, z)intheregion z > 0due toacharge Q in free space

at a distance d above a grounded conducting plate residing in I

the z = 0 plane.

Solution: In Fig. 4-28, charge Q 1s at (0,0,d) and 1its
image —Q is at (0, 0, —d). From Eq. (4.19), the electric field
at point P = (x, y, z) due to the two charges 1s given by

1 R —
F_ OR + OR>
dmreg R? R%
0 Xx +¥y+2(z —d)
T dmeg | [x2+ Y2+ (z —d)?2P?
R+ iy+iz+4d)
[x2 + y2 + (z + d)2]3/2

forz=0. e e e e e = =

_Q - (0: 0: _d)

Figure 4-28: Application of the image method for finding E :
point P (Example 4-13).



° To capacitive bridge circuit
Tech Brief 9: =

.
Capacitive Sensors

I i/ e
w
Fluid = ’ Cp (empty tank)
i Q) R
v
‘ £ g_’\/ .
Tank —— 1 R
K C Vout
P i
(a) Fluid tank

(b) Bridge circuit with 150 kHz ac source

Figure TF9-1: Fluid gauge and associated bridge circuit, with Cy being the capacitance that an empty tank would have
and C the capacitance of the tank under test.

Fluid Gauge

The two metal electrodes in Fig. TF9-1(a), usually rods or plates, form a capacitor whose capacitance is directly
proportional to the permittivity of the material between them. If the fluid section is of height 2 and the height of the
empty space above it is (h — hy), then the overall capacitance is equivalent to two capacitors in parallel, or

(h — hy)

d 3
where w is the electrode plate width, d is the spacing between electrodes, and ¢; and &, are the permittivities of the
fluid and air, respectively. Rearranging the expression as a linear equation yields

h
C:Cf—{—Ca:waFf—}—é‘aw

C = khs + Cy,



Humidity Sensor
N

Silicon substrate Elj/ctrodes

Figure TF9-2: Interdigital capacitor used as a humidity
sensor.



Pressure Sensor

Conducting
plate

Flexible
metallic
membrane

Conducting
plate

(a) Pressure sensor

Plate I | | r
d .
Membrane e 7 °) 2I — Bridge circuit
Plate I 3 3 L
P=P C1 G
(b) €=
Plate [ B
Membrane d lP 2 2 ¢ . ..
'\__/ T ! — Bridge circuit
2 G
Plate I 3 3
P=>FEy Ci <G
) Ci<G

Figure TF9-3: Pressure sensor responds to deflection of metallic membrane.




Planar capacitors
—

External object

Conductive plates _ ‘
Electric field lines

‘ C.O | C#Cy

C
° (a) Adjacent-plates (b) Perturbation
Insulator capacitor field
Figure TF9-4: Concentric-plate capacitor. Figure TF9-5: (a) Adjacent-plates capacitor; (b)

perturbation field.



Fingerprint Imager

Figure TF9-6: Elements of a fingerprint matching system. (Courtesy of IEEE Spectrum.)

> r ~65u/ -
cr Si oxide
50 {>¢ sensor cell
2 :
Vo
SP et J_ 2 metal plates

= Ccl Cout

Figure TF9-7: Fingerprint representation. (Courtesy of Dr. M. Tartagni,
University of Bologna, Italy.)



I d

Chapter 4 Relationships

Maxwell’s Equations for Electrostatics

Name Differential Form Integral Form

Gauss’s law V-D=p, fD-ds = Q

Kirchhoff’s law VxE=0 %E -dl=0
C
Electric Field
Current density J=pvu Point charge E=R 1
- c 4 e R?
Poisson’s equation vy =-2 N
£
. - I qi(R—R;)
Laplace’s equation V2V =0 Many point charges i 2 IR — R;|?
i=1
_ . 1 N dv’
: f Lol Volume distribution E=—[R 2 >
Resistance R=—/71— drre R
E-ds v
SG - = = l a0 pS dS
Surface distribution E=— =
Boundary conditions  Table 4-3 4re : R
L 1 N dl
fsE'dS Line distribution E= Tme i =
Capacitance L e e 1 R
B ];E.dl Infinite sheet of charce E =1 L)
€0
: e D
RC relation RC = — Infinite line of charge E=—=§f—_ =# i
= £0 £0 2w egr
Energy density we = %sEz qd

Dipole

Relation to V

= yr—— (R2cosé +§sin6‘)
TEQ

E=-VV



Primary coil

Push rod

e e —— F erromaﬁetic core

e

Secondary coils

N

o Vout +

Figure TF11-1: Linear variable differential transformer (LVDT) circuit.

5. MAGNETOSTATICS

- /e Applied EM by Ulaby and Ravaioli




Chapter 5 Overview




Electric vs Magnetic Comparison

Table 5-1: Attributes of electrostatics and magnetostatics.

Attribute Electrostatics Magnetostatics
Sources Stationary charges p, Steady currents J
Fields and Fluxes Eand D Hand B
Constitutive e and o I
parameter(s)

Governing equations

e Differential form VD =p, V:-B=0
VxE=0 VxH=]

e Integral form #;SD ds=Q Cﬁ‘B rds =0

jéH-dl=I
C

Potential Scalar V., with Vector A, with
E=-VV B=VxA
Energy density — 1.2 1 2
gy density We = Z;SE Wy = j,u,H
Force on charge ¢ Fe. = gE Fn=quxB
Circuit element(s) C and R L




Electric & Magnetic Forces
=

Magnetic force o
Fn=quxB (N) ar Fin=quB sin §
(@) \L}
{4 B

Electromagnetic (Lorentz)

force

F=F.4+F,=¢gE+qguxB=¢(E+uxB).

(b)

Figure 5-1: The direction of the magnetic force exerted on a
charged particle moving in a magnetic field is (a) perpendicular
to both B and u and (b) depends on the charge polarity (positive
or negative).



Magnetic Force on a Current Element

B
e © ele e
Differential force dFm on a differential current | dl: ® ®|© ©
® @I ®
dF,=1dlx B (N). (5.9) ® ®|1® @
=0
For a closed circuit of contour C carrying a current /, the total R
magnetic force is
. (a) (b)

Fn = I%dl x B N).  (5.10)
©

If the closed wire shown in Fig. 5-3(a) resides in a uniform
external magnetic field B, then B can be taken outside the
integral in Eq. (5.10), in which case

Fn=1 ?le x B=0. (5.11)
C

(c)

This resul hich is onseauence of the fact 1l he Figure 5-2: When a slightly flexible vertical wire is placed in a
s result, which is a consequence of the fact that the magnetic field directed into the page (as denoted by the crosses),

vector sum of the infinitesimal vectors dl over a closed path it is (a) not deflected when the current through it is zero, (b)
equals zero, states that the total magnetic force on any closed — deflected to the left when 7 is upward, and (c) deflected to the
current loop in a uniform magnetic field is zero. right when 7 is downward.



Torque

T=dxF (N-m)

d = moment arm
F = force

T = torque

Figure 5-5: The force F acting on a circular disk that can pivot
along the z-axis generates a torque T = d x F that causes the
disk to rotate.

These directions are governed by the following right-hand
rule: when the thumb of the right hand points along the
direction of the torque, the four fingers indicate the direction
that the torque tries to rotate the body.



Magnetic Torque on Current Loop

¥
4
N Lo
i B
F| = 1(=yb) x (xBy) = z1b By, o Oi____é):t by
: B
Fs = I (¥b) x (XBy) = —21bBy. @ |1
| a I
No forces on arms 2 and 4 ( because | Pivot axis —
and B are parallel, or anti-parallel) (a)

Magnetic torque: |-—a2—] [
T:d1XF1+d3XF3 Looparml E L 3
4 ) L ) 00p arm
— (% 3) x (216B0) + (% 5) x (~21bBo)

=vylabBy = j}l,%Bo, (b)

Figure 5-6: Rectangular loop pivoted along the y-axis: (a) front
view and (b) bottom view. The combination of forces Fy and

Area of LOOp F3 on the loop generates a torque that tends to rotate the loop in
a clockwise direction as shown in (b).



/e
t

Pivot axis

Inclined Loop
I

For a loop with N turns and whose surface
normal is at angle theta relative to B direction:

T'=NIABysiné. (5.18)
The quantity NI A is called the magnetic moment m of the
loop. Now, consider the vector @
_ — — A 2 m (magnetic
m=nN/A=nm (A-m~), (5.19) F, / moment)

where n is the surface normal of the loop and governed by the
following right-hand rule: when the four fingers of the right
hand advance in the direction of the current I, the direction (,;;2) sinf O
of the thumb specifies the direction of n. In terms of m, the
torque vector T can be written as

Arm 1

T=mxB (Nm). (520) (b)

Figure 5-7: Rectangular loop in a uniform magnetic field with
flux density B whose direction is perpendicular to the rotation
axis of the loop. but makes an angle 8 with the loop’s surface
normal n.




Biot-Savart Law (dH out of the page)
B

Magnetic field induced by
a differential current:

H I dlxR (A/m)
= m
47 R?
(dH 1nto the page)
Figure 5-8: Magnetic field dH generated by a current element
I dl. The direction of the field induced at point P is opposite to
For the entire length: that induced at point P’.

I [dlxR

H = A/ 5.22

[ wm o)
[

where / is the line path along which [ exists.



Magnetic Field due to Current Densities
—

1 [JsxR
H= o f 23 ds (surface current), S o
Ky (a) Volume current density J in A/m?2
1 fJIxR
H= e 22 dV  (volume current).

vV

(b) Surface current density J; in A/m

Figure 5-9: (a) The total current crossing the cross section § of
the cylinderis I = fs J-ds. (b) The total current flowing across
the surface of the conductor is I = [; J; dl.



Example 5-2: Magnetic Field of Linear Conductor

Solution: From Fig. 5-10, the differential length vector
~ ~ ~ ~ ~o (a) / II dly R
dl=17dz. Hence, dl x R=dz (zx R) =¢sinf dz, where r 4/
¢ is the azimuth direction and # is the angle between d1 and R. 0 /P
Application of Eq. (5.22) gives R Minto
PP T dt df  the page
7=1/2 X 12 -
I dlxR -~ [ sin
H=— =0 — dz. 5.25
4 f R? ¢ 4 f R? ’ ( : z
z=—1/2 —1/2 }

Both R and 6 are dependent on the integration variable z, but
the radial distance r is not. For convenience, we will convert (b)
the integration variable from z to € by using the transformations

R = rcsch, (5.26a)

Z = —rcoté, (5.26b)

=k

P o Figure 5-10: Linear conductor of length [ carrying a current /.
dz =rcsc™ 6 db. (5.26¢) (a) The field 4H at point P due to incremental current element
dl. (b) Limiting angles #; and &, each measured between
vector I dl and the vector connecting the end of the conductor
associated with that angle to point P (Example 5-2). Cont.



Upon inserting Egs. (5.26a) and (5.26¢) into Eq. (5.25), we have EX q m p I e 5 - 2 N MCI g ne.l.ic

92 [ ) [ ]
hg L [ reso ds Field of Linear Conductor
T ricsclf
& z
% ]
—— j siné do T
wr
8
L ;1] dly R
=¢ —(cosf| —cosbh), (5.27) @) I ’1/
4mr P
>
where #; and 6, are the limiting anglesatz = —{/2andz = [/2, At Vg ‘t’{g ]ialzltge
respectively. From the right triangle in Fig. 5-10(b), it follows 3
that
1/2 -
cost) = — (5.28a) z
Vri+(1/2)? 1
—1/2 -
costh = —cosfl| = ————— . (5.28b) T
Vri+1/2)?
b)
Hence, ( [
B — joH =  — 10" M (5.29) R
2ara/d4r? 412 {q

For an infinitely long wire with [ > r, Eq. (5.29) reduces to

Figure 5-10: Linear conductor of length [ carrying a current /.
(a) The field dH at point P due to incremental current element
dl. (b) Limiting angles #; and &, each measured between
vector I dl and the vector connecting the end of the conductor
associated with that angle to point P (Example 5-2).

=
|
L=
“'._:
(=1
—

(infinitely long wire).  (5.30)

[
= |
-




Magnetic Field of Long Conductor
N

1

-

Magnetic field — |48

~ ol
B=0

(infinitely long wire). =



Module 5.2
Magnetic Fields due to Line Sources

Input

line source = | _z17 A

) add line source
) edit current value
) delete line source
) drag line source
(e) display magnetic field
at cursor:

B= 212653E2 Afm !’

Clear

pmy Instructions
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Example 5-3: Magnetic Field of a Loop
N

Magnitude of field due to dl is

I dl

dl x R| =
| | 47t(a2 —|—22)

dH =

47 R?

dH is in the r—z plane , and therefore it has
components dHr and dHz

z-components of the magnetic fields due to dl and
dI’ add because they are in the same direction,
but their r-components cancel

>V

Hence for element dl:

X 1

I coso

dH =1z dHZ =zdHcost =12 43’1’(612 + Zz) dl Figure 5-12: Circular loop carrying a current / (Example 5-3).

Cont.



Example 5-3:Magnetic Field of a Loop (cont.)
S S

For the entire loop:

I cos# I cosé
H=2 " ddl=2——"  (2ma). (5.33)
4 (a + 7%) dr(a? + 72)

Upon using the relation cos § = a/(a” + z%)!/?, we obtain

. la*
=17
2(02 + 22)3/2

H (A/m). (5.34)

At the center of the loop (z = 0), Eq. (5.34) reduces to

H=1z2 (at z = 0), (5.35)

1
2a

>

and at points very far away from the loop such that z> > a2,
Eq. (5.34) simplifies to

X 1

la? _
- (at]z] > a). (5.36)
2 \Z | - Figure 5-12: Circular loop carrying a current / (Example 5-3).

H=12




Module 5.3 Magnetic Field of a
Current Loop

|

z-axis location = 0,05 [m]

1 F
W
L e LR e S R B B |

-0.2 -01 0.0 0.1 0.2
Loop Current 1=1.0[A] H
0.0 . 5.0 10.0

Loop Radius a = 0.05 [m]

; 1 1 1 v | 1 1 1 .: R
0.01 0.05 0.1

=\

¥ Show Labels on Graph !
(=) Total H Field () Integrand dH h

H(0,0,2) =3.535534 [A/m]
H,. =H(0,00)=100[A/m]

R=0.070711 [m]
#=450°

Instructions




Magnetic Dipole

E H
H [
\ / ;
/
$
(a) Electric dipole (b) Magnetic dipole (¢c) Bar magnet

Figure 5-13: Patterns of (a) the electric field of an electric dipole, (b) the magnetic field of a magnetic dipole, and (c) the magnetic field of
a bar magnet. Far away from the sources, the field patterns are similar in all three cases.

Because a circular loop exhibits a magnetic field pattern similar to the
electric field of an electric dipole, it is called a magnetic dipole



Forces on Parallel Conductors

]

. ol

X — .
2md

The force F> exerted on a length / of wire 7, due to its presence
in field B; may be obtained by applying Eq. (5.12):

B, =— (5.39)

I
Fr=Dhizx B = iz x (—X) HOTI
2nd
11 Dbl
=y B (5.40)
2md
and the corresponding force per unit length is
F> . ol
F,=—"=— : 541
2= T ona oAb

A similar analysis performed for the force per unit length
exerted on the wire carrying /| leads to

ol Iz
2nd

F, =%

Parallel wires attract if their currents are in the same
direction, and repel if currents are in opposite directions

z

A
I h
— £ Fi | £
A a2 | an>
N ]

>V

(5.42) Figure 5-14: Magnetic forces on parallel current-carrying
. conductors.



Module 5.4 Magnetic Force Between
Two Parallel Conductors

Distance d =0.5[m]

1 F
1 1 1 1 \I/ 1 1 1 1 |

[
0.0 0.5 1.0

Current || =1.0[A]

-10.0 0.0 10.0

Current b =1.0[A]

-10.0 0.0 10.0

Wire Length [ =0.5 [m]

| l
0.0 0.5 1.0

Magnetic Induction
By=-04x1068[T]

By =0.4x106%[T]

Total Magnetic Force on Wires
Fy=02x106§[N]
Fy=-02x106§[N]
Magnetic Force per Unit Length
F'y=04x105§[N/m]

F'y =-0.4%x 105§ [N/m]

Instructions O Ba ® Bz

A<
I I,
a2 2
r N T
| F]
[ __,,.«-"""-" - -:.:".!

Wires attract each other with equal force
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Tech Brief 10: Electromagnets
N

Switch N
I {
‘w T
Insulated wire
S

(a) Solenoid

Figure TF10-1:

Iron core +I|_

L

1N

bltlll"“ll 1 Iron core
| —
B B

YY ¢ : N
L

Magljllt;[};ﬁeld

(b) Horseshoe electromagnet

Solenoid and horseshoe magnets.



Magnetic Levitation

Compressor unit in car-mounted

X oo Bogie g e 3
Levitation f 9 helium refrigeration system
arscd rame
guidance

coil
Auxiliary supporting gear
Liquid nitrogen

= Quter vessel

Propulsion‘:‘7
coil . . :
Superconducting Liquid helium
coil Refrigerator
Supporter Radiation ~ Innervessel
shield
(a) Maglev train (b) Internal workings of the Maglev train

Figure TF10-5: Magnetic trains. (Courtesy Shanghai.com.)

https:/ /www.youtube.com /watch2v=Wor8C3ZIAu8



Ampére’s Law

H

VxH=] - fH-aw:I
C

(a) (b)

The sign convention for the direction of the contour path C in H

Ampere’s law is taken so that I and H satisfy the right-hand H
rule defined earlier in connection with the Biot—Savart law.

Thatis, if the direction of I is aligned with the direction of the ©
thumb of the right hand, then the direction of the contour C

should be chosen along that of the other four fingers. C

(c)

Figure 5-16: Ampere’s law states that the line integral of H
around a closed contour C 1s equal to the current traversing the
surface bounded by the contour. This is true for contours (a)
and (b), but the line integral of H is zero for the contour in (¢)
because the current / (denoted by the symbol () is not enclosed
by the contour C.



Internal Magnetic Field of Long

Conductor
.

Forr <a

le-d11=h,
2

?gH] -dl] = f Hl(lil-ﬁ)rl d¢ = 2mri Hy.
0

Ci

The current /7 flowing through the area enclosed by Cj is equ:
to the total current I multiplied by the ratio of the area enclose
by C; to the total cross-sectional area of the wire:

(5.49;

Contour C,
form >a \‘

r
_+ Contour C,
forri<a

Cont.

(b) Wire cross section




External Magnetic Field of Long

Conductor
D
] o
A
Forr > a

(b) For r = rp > a. we choose path Cg, which encloses all the
current 7. Hence. Hy, = ¢H2 dé, = q)rz d¢. and

%Hg cdlb =2 Hy) = 1,
&)

which yields

- P |
H, = q]Hz = ql pr— (for m > a). (5.49b)




Magnetic Field of Toroid

Applying Ampere’s law over contour C:

fH-dEzI
C

Ampere’s law states that the line integral of
H around a closed contour C is equal to the

current traversing the surface bounded by the
contour.

27
56H-dl — f(—ciSH) -Or dpp = —27rH = —NI.  Ampérian contour
C 0

Figure 5-18: Toroidal coil with inner radius @ and outer radius b.
Hence, H = N1 /(23 r) and The wire loops usually are much more closely spaced than
shown in the figure (Example 5-5).

- ~ NI
H=—-0H=—-0—— (fora <r < b).

2mr
The magnetic field outside the toroid

is zero. Why?



Magnetic Vector Potential A
B

Electrostatics Magnetostatics
E=-VV B=VxA (Wb/m?),
V2V = —% V2A = —uJ.
1 Py 2
V=—80 | =dv A=— [ —=dV’ Wb/m).
dme J R’ Y 4 R’ ( m)

V! VI



Magnetic Properties of Materials
—r

The magnetic behavior of a material is governed by the
interaction of the magnetic dipole moments of its atoms
with an external magnetic field. The nature of the behavior
depends on the crystalline structure of the material and is
used as a basis for classifving materials as diamagnetic,
paramagnetic, or ferromagnetic.

B = poH + oM = po(H+ M)

M=y H

B =puoH+ xmH) = po(l + xm)H,

B = uH,



Table 5-2: Properties of magnetic materials.

Diamagnetism

Paramagnetism

Ferromagnetism

Permanent magnetic
dipole moment

No

Yes, but weak

Yes, and strong

Primary magnetization Electron orbital Electron spin Magnetized
mechanism magnetic moment magnetic moment domains
Direction of induced Opposite Same Hysteresis

magnetic field
(relative to external field)

(see Fig. 5-22)

Common substances Bismuth, copper, diamond, Aluminum, calcium, Iron,
gold, lead, mercury, silver, | chromium, magnesium, nickel,
silicon niobium, platinum, cobalt
tungsten
Typical value of ¥, ~ —1077 ~ 109 |xm| > 1 and hysteretic

Typical value of

~ 1

~ 1

|per| = 1 and hysteretic

Thus, i = 1 or u = o for diamagnetic and paramagnetic
substances, which include dielectric materials and most
metals. In contrast, || > 1 for ferromagnetic materials;
|\ | of purified iron, for example, is on the order of 2 x 10°.




Magnetic Hysteresis

(a) Unmagnetized domains A3 -

Ay

Figure 5-22: Typical hysteresis curve for a ferromagnetic
material.

AYRYRY!
VATV
VANV
NIV

(b) Magnetized domains



Boundary Conditions

£ :
Hin --- -‘H] - b nsu jrl Al fi, Me(}zl?m 1
|/ o oo
H Ho; A —— 2
2HVI - Al - Medium 2
: 5]

S

— Dop = ps.

(5.78)

n; x (H; — Hy) = Js.

By analogy, application of Gauss’s law for magnetism, as
expressed by Eq. (5.44), leads to the conclusion that

Surface currents can exist only on the surfaces of perfect
conductors and superconductors.
fB'dSZO * Bln:an.

Hence, at the interface
(5.79 between media with finite conductivities, J; = 0 and
S Hy = Hy. (5.89)
Thus the normal component of B is continuous across the
boundary between two adjacent media




Solenoid

|

Inside the solenoid:

B~>~zunl

_ ZuNI
]

(a) Loosely wound
solenoid

(b) Tightly wound
solenoid

(long solenoid with //a > 1)



and for two-conductor configurations similar to those of

Fig. 5-27.
Inductance —
I S
Magnetic Flux {

d)sz-ds (Wh).
S

Radius a

Flux Linkage

N2

Inductance

A

L==— () i S

Solenoid
(b) Coaxial transmission line
2
L=pu—S (solenoid), (3.95) Figure 5-27: To compute the inductance per unit length of
a two-conductor transmission line, we need to determine the

magnetic flux through the area S between the conductors.



Example 5-7: Inductance of Coaxial Cable

The magnetic field in the region S between i i i

the two conductors is approximately ;
|

— I —————

-l ©ole ®,

B=¢p — : I !

27 CNOINH IRENCN

w1 E ’J;

— |

Total magnetic flux through S: © O n : ® ®b:

Ouer = | | © ©® : ® ®! Outer

a /
Inner

conductor

1
I
Il b ST T !
d _Z/B dr —l/ Lakl B M—ln( ) conductor : conductor
I

Inductance per unit length:
Figure 5-28: Cross-sectional view of coaxial transmission line

L )] 7 b (Example 5-7).
p_ - _ X _® |
E=r=u=al (a)



Tech Brief 11: Inductive Sensors

LVDT can measure displacement with submillimeter precision

Vin

Primary coil

Secondary coils

- Vout +

Figure TF11-1: Linear variable differential transformer (LVDT) circuit.

= Phase
&
=
o
[b]
&
=
™
g Amplitude
O
i
=
g
-10 -5 0 5 10
Distance Traveled

Figure TF11-2: Amplitude and phase responses as
a function of the distance by which the magnetic core
is moved away from the center position.



Proximity Sensor

_ y
C )+ — Nt Eddy currents

Primary coil Sensing coil

Conductive object

Figure TF11-5: Eddy-current proximity sensor.



Magnetic Energy Density

Wm

Example 5-8: Magnetic Energy in a Coaxial Cable

Magnetic field in the insulating material is

The magnetic energy stored in the

|
_2
%

coaxial cable is

l[ H? 4y =
5 [~

V

Wm=

Outer
conductor

W =

e
- N
i

OO

OO
wo

© 0O
OO

Inner / f

conductor ]

QOuter
conductor

b
wl* [ 1

82 2

-2mrl dr




Summary
N

Chapter 5 Relationships

Maxwell’s Magnetostatics Equations Magnetic Field
] = "y I
Gauss’s Law for Magnetism Infinitely Long Wire B=¢ gi (Wb/m?)
nr
V-B=0 == %B'dS:O
) - la?
S Circular Loop H=1z2 ——— (A/m)
Ampere’s Law 2(a® + z2)%/
ZuNI
VxH=] <= fﬂﬂﬂ:f Solenoid Bx~iunl = z,u} (Wb/m?)
c
Lorentz Force on Charge g Vector Magnetic Potential
F=g(E+uxB) B=VxA (Wb/m?)
Magnetic Force on Wire Vector Poisson’s Equation
Fm=ffmx3 (N) VA = —u]
c Inductance
Magnetic Torque on Loop A @ 1
L:—:—:—fB'dS (H)
T=mxB (N-m) rr 1
S
_ = 2
m=nNIA (A-m~) Magnetic Energy Density
Biot-Savart Law

! 2 3
I [dlxR Wm =5 uHT o (m)

[
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\Axis of rotation
(b) ac generator

6. MAXWELL'S EQUATIONS IN TIME-VARYING FIELDS

- /e Applied EM by Ulaby and Ravaioli



Chapter 6 Overview




Maxwell’'s Equations
B

Table 6-1: Maxwell’s equations.

Reference Differential Form Integral Form
Gauss’s law VD =p, ?gD ~ds = Q (6.1)
S
oB B .
Faraday’s law VxXE=—— fE cdl = — / —+ds (6.2)*
ot ot
C S
Gauss’s law for magnetism V:-B=0 % B:ds=0 (6.3)
S
oD oD .
Ampere’s law VxH=]+ o éH ~dl = f (J 4+ E) - ds (6.4)
C S
*For a stationary surface S.

In this chapter, we will examine Faraday’s and Ampére’s laws



Loop Coil

Faraday’s Law < /

B

Electromotive force (voltage) induced by A 1
time-varying magnetic flux:

dd d f) ° 3
Vor=—N-—"=-NZ [B-ds (V) T
dt dt Galvanometer Battery

S

Figure 6-1: The galvanometer (predecessor of the ammeter)
shows a deflection whenever the magnetic flux passing through
the square loop changes with time.

Magnetic fields can produce an electric current in a closed
loop, but only if the magnetic flux linking the surface area of
the loop changes with time.The key to the induction process
is change.



Three types of EMF

1. A time-varying magnetic field linking a stationary loop;
the induced emf is then called the transformer emf, V"

emf"*

2. A moving loop with a time-varying surface area (relative to

the normal component of B) in a static field B; the induced
emf is then called the motional emf, V..

3. A moving loop in a time-varying field B.

The total emf is given by

Vemt = Veme + Vemes (6.7)



Stationary Loop in

It is important to remember that Bi,q serves to oppose the

Tl me'vq l’)’ [ ng B change in B(t), and not necessarily B(t) itself.
S

B
Vi =—N = -ds (transformer emf), Changing B(?)
S

The connection between the direction of ds and the polarity
tr o - : - ' . o i,

of 'Vt__mf is governed by the fO!lqwzrzg right-hand m/»{:‘. zj.ds

points along the thumb of the right hand, then the direction

of the contour C indicated Dy the four fingers is such that it

always passes across the opening from the positive terminal
tr - \ . -

of Vs o the negative terminal.

Bind

Vlr -
= _emf (6.9)
R + R;
For good conductors, R; usually is very small, and it may be RZ Veme (1)
ignored in comparison with practical values of R. -
2
The polarity of V! . and hence the direction of 1 is governed (b) Equivalent circuit

by Lenz’s law, which states that the current in the loop is _
always in a direction that opposes the change of magnetic Yigure 6-2: (a) Stationary circular loop in a changing magnetic
ﬂu-r d (1) that pmduced I field B(#). and (b) its equivalent circuit.



Example 6-1: Inductor in a Changing Magnetic Field

An inductor is formed by winding N turns of a thin conducting
wire into a circular loop of radius a. The inductor loop is in
the x—y plane with its center at the origin, and connected to a -
resistor R, as shown in Fig. 6-3. In the presence of a magnetic
field B = B((y2+23) sin wt, where w is the angular frequency,
find
(a) the magnetic flux linking a single turn of the inductor,
(b) the transformer emf, given that N =10, By =0.2 T,
a = 10 cm., and w = 103 rad/s,
(¢) the polarity of VI - att = 0, and
(d) the induced current in the circuit for R = 1 k2 (assume
the wire resistance to be much smaller than R).

R

— Yemf >)

/ \N turns

Figure 6-3: Circular loop with N turns in the x—y plane. The

magnetic field is B = By (¥2 + 23) sin wr (Example 6-1).
cont.



Example 6-1 Solution ’
B
Solution: (a) The magnetic flux linking each turn of the >
inductor 1s a
AN
¢ = [ B-ds N turns
S
Figure 6-3: Circular loop with N turns in the x—y plane. The
— [[Bo(ii 2+73)sinwt] -7 ds magnetic field is B = By (¥2 + 23) sin wr (Example 6-1).
S

(c)Atr =0, dd/dr > 0 and V;{';lf = —188.5 V. Since the flux
— 37a’ By sin wt. is increasing, the current / must be in the direction shown in

Fig. 6-3 in order to satisty Lenz’s law. Consequently, terminal 2

(b) To find V' .. we can apply Eq. (6.8) or we can apply is at a higher potential than terminal 1 and
the general expression given by Eq. (6.6) directly. The latter
approach gives

Vi =Vi—Va
. dd — 5
Vetllnf =—N 188.° (V)
dt
d 5 )
= ——3nNa" By sin wt) o
dt (d) The current / is given by

= —37 Na)a280 CoSs wft.

Vo — V)
For N =10, a = 0.1 m, @ = 103 rad/s. and Byp=0.2T, I'= R
188.5

= TE cos 10°¢

VT — _188.5cos 107 (V). —0.19cos 10’ (A).

emf —




I Module 6.1 Circular Loop in Time-varying Magnetic Field

Demonstration of Faraday's Law

The circular wire loop shown in the figure is connected
to a simple circuit composed of a resistor R in series
with a current meter. The time-varying magnetic

flux linking the surface of the loop induces a V.

and hence a current through R, The purpose of this
demo is to illustrate, in the form of a slow-motion
video, how the current [ varies with time, in both
magnitude and direction, when B(t)=Bjcoswt.

B I Note that I(t) is @ maximum when the slope of B(t) is
a maximum, which occurs when B itselfis zero. The

\ direction of I{t) is dictated by Lenz's Law.
\\Y/ N

u I I =

=4 slower faster ==

START
I:: I; @ Applet Design: Janice Richards




Example 6-2: Lenz’s Law

Determine voltages V; and V; across the 2-2 and 4- resistors
shown in Fig. 6-4. The loop is located in the x—y plane, its area
is 4 m2. the magnetic flux density is B = —Z0.37 (T). and the
internal resistance of the wire may be ignored.

Solution: The flux flowing through the loop is

q::fB-ds:f(—io.sz}-id:
5

S
=—03tx4=—-1.2¢ (Wb),

and the corresponding transformer emf is

dd

% =12 (V).

emf — dt

4Q§h

/
=i}
®

+ ®
®
®

mgzg

B —— Area =4 m?

Y

L.

Figure 6-4: Circuit for Example 6-2.

in series. Consequently,

and

th'

| = emf
Ri + R»
1.2

.

2+4

=0.2A,

Vi=IR =02x2=04V,
Vo=IR; =02 x4=08V.

The total voltage of 1.2 V 1s distributed across two resistors



ldeal Transformer

!
N e — _ \

A similar relation holds true on the secondary side:

Vi N
Vo, N
Rin:E

L

Va
Rin = (

Va

= —N, — .
2dr

Iy M

L N

N 2 N 2
— ) =|— ] RL.
N> N>

(6.20)

When the load is an impedance Z; and V| is a sinusoidal source,
the phasor-domain equivalent of Eq. (6.20) is

N
Zin =

1

Nj

2
) ZL. (6.21)

o @
s ‘---.-—"-'--.
" : IE
_QVl(r} : N = o
! \F)- m— :Vz(l)RLI
] —
l\ '
h_____-___._',
D -
(a)
4 ,'———2____h

T N> A V_r?.(f) Ry
= ¥
|\ | '
- o - L -’)
- L -
(b)

Figure 6-5: In a transformer, the directions of [ and [, are
such that the flux & generated by one of them is opposite to that
generated by the other. The direction of the secondary winding
in (b) is opposite to that in (a). and so are the direction of [, and
the polarity of V5.



o BO © O OB
Motional EMF
1 :
o oflo o |
I . u
Magnetic force on charge g moving with JBNO) e ® 0 v
zZ
velocity v in a magnetic field B: u
Fn =¢q(uxB). O o1 o
] . . ] A 2 \Magnctic field line
This magnetic force is equivalent to the Moving (out of the page)
electrical force that would be exerted on wire © © © ©
the particle by the electric field Em given
b Figure 6-7: Conducting wire moving with velocity u in a static
Y Fm magnetic field.
Em = — = ll X B.
o ] 1 For the conducting wire, u X B = Xu x 2By = —yu By and
This, in turn, induces a voltage dl = ¥ dl. Hence,

difference between ends 1 and 2,
with end 2 being at the higher

Ve[rl;']f = Vi» = —uByl. (6.25)
potential. The induced voltage is

|

m—Vu—/E ﬂ—/mxmcﬂ

2



Motional EMF

In general, if any segment of a closed circuit with contour C
moves with a velocity u across a static magnetic field B, then
the induced motional emf 1s given by

Vi = f (ux B)-dl  (motional emf). (6.26)
C

Only those segments of the circuit that cross magnetic field

M M m
lines contribute to Vemf.



Example 6-3: Sliding Bar

4

VeTnf:V12:V43:[(l]XB)'dl

3
Note that B increases with x

4
= f(f(u X iBox()) 5\7 dl = —uByxgl.
3

B = zByx
© 4_ © O |
The length of the loop is T o Y
related to u by xo = ut. Hence I : O " [ONENNO ‘
| + — U z X
[ R %i Vems . ON N [OJENO)
2 — u
. ® ® (©-<—Magnetic ficld B
e =—Bou’lt  (V).L ﬂ % .
0 o'leo o

A |

I: X0



Example 6-5: Moving Rod Next to a Wire

The wire shown in Fig. 6-10 carries a current / = 10 A. A
30-cm-long metal rod moves with a constant velocity u = z5

m/s. Find V».

Metal rod

1/

B=¢p —
0 27Tr
i
BO ®B
I= 10Afr
p— ]
BO Wire 1®B
BO ®B

10 cm=}+——30 cm ———

10 cm
Vi = f (llXB)'dl
40 cm
10 cm
= f (25 X ¢
40 cm
10 em
~ Spol dr
T 27 r
40 cm

~ ol
2y

5x 47 x 1077 x 10

)-f’dr

27

= 13.9 (V).

xln(

10

40

)



EM Motor/ Generator Reciprocity

S
B 2,7
1 . 3
1y, -
7
’/
. mf} f N
qﬁ Magnet

%
\Axis of rotation

(b) ac generator

Axis of rotation

(a) ac motor

Motor: Electrical to mechanical Generator: Mechanical to
energy conversion electrical energy conversion



EM Generator EMF

As the loop rotates with an angular velocity

=

_.

NN

w about its own axis, sesgment 1—2 moves

with velocity u given by Loop surface

normal

u = hw

| S

Also: nxz=Xsinca.

Figure 6-12: Aloop rotating in a magnetic field induces an emf.

Segment 3-4 moves with velocity —u. Hence:

1 3 . .
Vemt = Via = f(u x B) - dl+ f(u x B) - dl omi = WlwBpsina = AwBy sina,
2[/2 ! o = wt _I_ CO,
- [ [(na)%) x iBO] % dx
—z/z_m Ve[:‘rllf = AwBy sin(wt + Cop) (V).

~ W ~ ~
+ f [(—na)j)szo]-xdx.

1/2



I Module 6.2

Rotating Wire Loop in Constant Magnetic Field

™~

» B
|1
R
* time
X
= ] -
a4 clower faster ==

L

Demonstration of Motional EMF

A rectangular wire loop of area A rotates at an
angular frequency w in a constant magnetic flux
density B. The purpose of the demo is to illustrate
how the current varies in time relative to the loop's
position.

Mote the direction of the current and its magnitude,
as indicated by its brightness.

Ihax= wBjA

Applet Design: Janice Richards




Tech Brief 12: EMF Sensors

T > Vemf=0 Veme > 0 | 7 Vemf < 0
.l. ™ I ~ Dipole 1 /7 T
/ _A\/ | —— ——1 ——1
g +
iy — F F
(a) No force (b) Compressed crystal (¢) Stretched crystal

Figure TF12-1: Response of a piezoelectric crystal to an applied force.

* Piezoelectric crystals generate a voltage across them proportional to
the compression or tensile (stretching) force applied across them.

* Piezoelectric transducers are used in medical ultrasound,
microphones, loudspeakers, accelerometers, etc.

* Piezoelectric crystals are bidirectional: pressure generates emf, and
conversely, emf generates pressure (through shape distortion).



Faraday Accelerometer

_
Conducting 10@ Magnet
[ N
_I_
, [
Vems N
o N [)
X — q

U —

Figure TF12-3: In a Faraday accelerometer, the induced
emf is directly proportional to the velocity of the loop (into
and out of the magnet’s cavity).

The acceleration a is determined by differentiating
the velocity u with respect to time



The Thermocouple
N

Cold reference junction
Measurement Copper cTTTT “

junction

-,

- Bismuth

Figure TF12-4: Principle of the thermocouple.

* The thermocouple measures the unknown temperature T, at a junction
connecting two metals with different thermal conductivities, relative to a
reference temperature T,.

* In today’s temperature sensor designs, an artificial cold junction is used
instead. The artificial junction is an electric circuit that generates a voltage
equal to that expected from a reference junction at temperature T,.



Displacement Current
N

Ampere’s law in differential form is given by

oD |
VxH=J+ = (Ampere’s law). (6.41)

Integrating both sides of Eq. (6.41) over an arbitrary open
surface S with contour C, we have

/(VxH)+ds=[J+ds+/%-ds. (6.42)
S S S

(I

This term must

This term is
conduction represent a
current | current Application of Stokes’s theorem gives:

aD
%H ~dl= 1.+ f = -ds (Ampere’s law)
C S

Cont.



Displacement Current

aD
fH ~dl= 1.+ f = -ds (Ampere’s law)
C S

Define the displacement current as:

The displacement current does not
Iy = de cds = f L ds, (6.44) involve real charges;

S S a1 it is an equivalent current that
depends on 9D /dt

where Jg = 0D /0t represents a displacement current density.
In view of Eq. (6.44),

%H-dl:[c—l—ldzl, (6.45)
C



i
Capacitor Circuit | i

surface S
+
I I )

Given: Wires are perfect

Imaginary
surface S,

conductors and capacitor

insulator material is perfect

dielectric. |2 — |2C + |2d
For Surface S,: |2C = 0 (perfect dielectric)
E=5% Ve _4 Yo t
=y — =Y —COSw
I3 =1y + g a7
oD
he=c2e_cdyy CVowsi ha= [ 57 ds
lc = T Z( 0 coswt) = —C Vow sin wt /
d . 8V() ~
Iig =0 (D=0 in perfect conductor) = Y y — coswt | | -(y ds)
A
eA _ _
= —FVOa) sin wt = —C Vyw Ssin wt

Conclusion: |; =1,



Example 6-7: Displacement Current Density

The conduction current flowing through a wire with conductiv-
ity o =2 x 107 S/m and relative permittivity & = 1 is given
by I. = 2sinwt (mA). I[f w = 10 rad/s, find the displacement
| current. .

Solution: The conduction current I. = JA = o EA., where
A 1s the cross section of the wire. Hence,

Ie 2% 107 sinwr
oA 2x107A
_1x 10710

E =

sin wf (V/m).

Application of Eq. (6.44), with D = ¢E leads to

where we used @ = 10” rad/s and ¢ = g9 = 8.85 x 10~ 12 F/m.
la=JaA Note that /. and /4 are in phase quadrature (90° phase shift
— A E between them). Also, /4 is about nine orders of magnitude
ot smaller than /., which is why the displacement current usually
9 /1 x 1010 is ignored in good conductors.
=cA 3 (A sin wr)

—ewx 107 coswr = 0.885 x 1072 coswt  (A),



Boundary Conditions
N

Table 6-2: Boundary conditions for the electric and magnetic fields.

Field Components General Form I\-‘Ifetlilllll' 1 }-'I:E:dium.Z M'ed iu m. 1 Medium 2
Dielectric Dielectric Dielectric Conductor

Tangential E mx (Ej —E»)) =0 E1t = Eo Eit=Eyx=0

Normal D ny «(D; —D2) = ps Din — Doy = ps Din = ps Dy =0

Tangential H n» x (Hf —H»y) = Js Hyy = Hy Hy=Js Hy =0

Normal B n-(By—Bx)=0 Bin = B Bin=B)y =0

Notes: (1) ps is the surface charge density at the boundary; (2) Js is the surface current density at the boundary: (3) normal

components of all fields are along n», the outward unit vector of medium 2; (4) E; = E9¢ implies that the tangential

components are equal in magnitude and parallel in direction; (5) direction of J is orthogonal to (Hy — H»).




Charge Current Continuity Equation

Current | out of a volume is equal to rate of Charge density p,

decrease of charge Q contained in that volume:

J

S encloses v

dt dt J
V : . .
Figure 6-14: The total current flowing out of a volume V is equal
d to the flux of the current density J through the surface S, which
J ds = —— oy dV in turn is equal to the rate of decrease of the charge enclosed
dt inV.
S V
d
J:ds= [ V- JdV=—— [ p,dV
dt ;
S V V v.J=- " (654
1‘ ot
Used Divergence Theorem which is known as the charge-current continuity relation, or

simply the charge continuity equation.



Charge Dissipation

Question 1: What happens if you place a certain amount of free charge inside of a material?
Answer: The charge will move to the surface of the material, thereby returning its interior to a
neutral state.

Question 2: How fast will this happen?
Answer: It depends on the material; in a good conductor, the charge dissipates in less than a
femtosecond, whereas in a good dielectric, the process may take several hours.

_Derivation of charge density equation:

dpy
V-J=— :
J at

In a conductor, the point form of Ohm’s law, given by Eq. (4.63),
states that J = o E. Hence,

(6.58)

0Py
ot

oV-E=— (6.59)

Next, we use Eq. (6.1), V-E = p,/e, to obtain the partial
differential equation

a _ :

ot Cont.



Solution of Charge Dissipation Equation

+Zpy =0
or eV TV

Given that py, = pyo at r = 0, the solution of Eq. (6.60) 1s
pu(1) = pyoe™ 71 = poe T (Cm?),
where 7, = ¢/ is called the relaxation time constant.

For copper: 7. = 1.53 x 10717 s

For mica: 7, = 5.31 x 10* s = 15 hours



Charge

I
EM Potentials  distibuion, \K
S R’ V(R)
I Vi |

" - ." Ii-.. R
. o 0 . . @ 1
Static condition AR Y
.t . . * -—},
1 pV(RI) A ‘e . . e
V R — dvf y ., L 'o .
) 471’8/ R’ 2-.v.'
v/ v <L
Dynamic condition Figure 6-16: Electric potential V(R) due to a charge
VR, 1) = 1 pv(R;, 1) Iy distribution py over a volume V.
dre R’
V!

Dynamic condition with propagation delay: Similarly, for the magnetic vector potential:

- R//up)

T dv’ (Wb/m).

pv(Ri, 1 — R Jup) vV, AR = /J(Ri, t
4
v:’

1
VR, 1) =
4me R’
v.’



Time Harmonic Potentials

If charges and currents vary sinusoidally with time: o
Also: E=-VV — — (dynamic case).

pv(Ri, 1) = py(Ri) cos(wrf + ¢) ot
we can use phasor notation: ~ 1 -
H=—-—VxA.

L

pu(R;, 1) = Re | fy(R) €' |.

Maxwell’s equations become:

with
= R — N b - -
pv(Ri) = py(Rj) /7. VxE=—jouH
Expressions for potentials become: ~ 1 ~
N - o kR or H=-———VXE.
V(R) = 1 pv(Rj) e v w. Jwu
4re R’
v/ ~ ~ - 1 ~
VxH=jwecE or E=—V xH.
TR ek -
AR = 2~ f 1 dv’,
4 R’ w
% k=—



Example 6-8: Relating Eto H

In a nonconducting medium with & = 16gy and p = pg, the
electric field intensity of an electromagnetic wave 1s

E(z,t) = %10sin(10'% —kz)  (V/m). (6.88)

Determine the associated magnetic field intensity H and find
the value of k.

Solution: We begin by finding the phasor E(z) of E(z,1).
Since E(z, t) 1s given as a sine function and phasors are defined

in this book with reference to the cosine function, we rewrite
Eq. (6.88) as

E(z,t) =% 10cos(10'% — kz — 7/2) (V/m)
= NRe [ﬁ(z) efw’] , (6.89)

with @ = 1010 (rad/s) and

Cont.
E(z) = X 10e /%7712 — _5j10e /%2 (6.90)



Example 6-8: Relating E to H

To find both H(z) and k. we will perform a “circle™ we will

use the given expression for E(2)in Faraday’s law to find H(z):

then we will use H(z) in Ampere’s law to find E(z) which we_
will then compare with the original expression for E(2); and the

comparison will yield the value of k. Application of Eq. (6.87)

gives
1
Hz)=———VxE
jou
, X y 7
- d/0x 3/dy 3/0z
TOR Y _i10e=7%2 0 0
I
= ——|§ —(—j10e7/*
Py _y az( J 10e )]
10k .
=—yj — ek (6.91)
WL

Cont.



Example 6-8 cont.

So far, we have used Eq. (6.90) for E(Z) to find H(z), but k
remains unknown. To find k, we use H(z) in Eq. (6.86) to find

N N E(): I

- | -
E(z)=— VxH
Jwe

IR I (T
Jwe 0z oy

10k .
— % wzmg—ﬂ"z. (6.92)

Equating Egs. (6.90) and (6.92) leads to

k> = cuz,u,a,
or
k=i
— 4o /i0E
o _4x 100 (rad/m). (6.93)

c 3x 108 Cont.



Example 6-8 cont.
—r

With k known, the instantaneous magnetic field intensity is then
given by

H(z. 1) = Re | H(z) ef“”}

i 10k . :
— NRe _37] _e—]kzejwr]
om

=$0.11sin(10'% — 1332)  (A/m).  (6.94)

We note that k£ has the same expression as the phase constant
of a lossless transmission line [Eq. (2.49)].



Summary
N

Chapter 6 Relationships

Faraday’s Law EM Potentials
dd d A
Vemf=—?=—E/B'ds= Vcl:.'nf"' enl.;lf E=—VV—¥
S B=VxA
Transformer
9B . Sty
VE = _N / L (N Ioops) Current Density
S ot Conduction Jo=aR
: aD
Motional Displacement  Jg = ——
C

Conductor Charge Dissipation
Charge-Current Continuity

dpy
V . —_————
2 ot

py(t) = one_(ole)t = pvoe_t/Tr

https:/ /www.youtube.com /watch2v=bxHs9I3IbZc



