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Problem 1.4 A wave traveling along a string is given by

y(x, t) = 2sin(4πt +10πx) (cm),

where x is the distance along the string in meters and y is the vertical displacement. Determine: (a) the direction of wave
travel, (b) the reference phase φ0, (c) the frequency, (d) the wavelength, and (e) the phase velocity.

Solution:
(a) We start by converting the given expression into a cosine function of the form given by (1.17):

y(x, t) = 2cos
(

4πt +10πx− π

2

)
(cm).

Since the coefficients of t and x both have the same sign, the wave is traveling in the negative x-direction.
(b) From the cosine expression, φ0 =−π/2.
(c) ω = 2π f = 4π ,

f = 4π/2π = 2 Hz.

(d) 2π/λ = 10π ,
λ = 2π/10π = 0.2 m.

(e) up = f λ = 2×0.2 = 0.4 (m/s).
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Problem 1.7 A wave traveling along a string in the +x-direction is given by

y1(x, t) = Acos(ωt−βx),

where x = 0 is the end of the string, which is tied rigidly to a wall, as shown in Fig. (P1.7). When wave y1(x, t) arrives at the
wall, a reflected wave y2(x, t) is generated. Hence, at any location on the string, the vertical displacement ys will be the sum
of the incident and reflected waves:

ys(x, t) = y1(x, t)+ y2(x, t).

(a) Write down an expression for y2(x, t), keeping in mind its direction of travel and the fact that the end of the string
cannot move.

(b) Generate plots of y1(x, t), y2(x, t) and ys(x, t) versus x over the range −2λ ≤ x≤ 0 at ωt = π/4 and at ωt = π/2.

Figure P1.7: Wave on a string tied to a wall at x = 0 (Problem 1.7).

Solution:
(a) Since wave y2(x, t) was caused by wave y1(x, t), the two waves must have the same angular frequency ω , and since

y2(x, t) is traveling on the same string as y1(x, t), the two waves must have the same phase constant β . Hence, with its
direction being in the negative x-direction, y2(x, t) is given by the general form

y2(x, t) = Bcos(ωt +βx+φ0), (1.1)

where B and φ0 are yet-to-be-determined constants. The total displacement is

ys(x, t) = y1(x, t)+ y2(x, t) = Acos(ωt−βx)+Bcos(ωt +βx+φ0).

Since the string cannot move at x = 0, the point at which it is attached to the wall, ys(0, t) = 0 for all t. Thus,

ys(0, t) = Acosωt +Bcos(ωt +φ0) = 0. (1.2)

(i) Easy Solution: The physics of the problem suggests that a possible solution for (1.2) is B =−A and φ0 = 0, in which case
we have

y2(x, t) =−Acos(ωt +βx). (1.3)

(ii) Rigorous Solution: By expanding the second term in (1.2), we have

Acosωt +B(cosωt cosφ0− sinωt sinφ0) = 0,
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or
(A+Bcosφ0)cosωt− (Bsinφ0)sinωt = 0. (1.4)

This equation has to be satisfied for all values of t. At t = 0, it gives

A+Bcosφ0 = 0, (1.5)

and at ωt = π/2, (1.4) gives
Bsinφ0 = 0. (1.6)

Equations (1.5) and (1.6) can be satisfied simultaneously only if

A = B = 0 (1.7)

or
A =−B and φ0 = 0. (1.8)

Clearly (1.7) is not an acceptable solution because it means that y1(x, t) = 0, which is contrary to the statement of the problem.
The solution given by (1.8) leads to (1.3).

(b) At ωt = π/4,

y1(x, t) = Acos(π/4−βx) = Acos
(

π

4
− 2πx

λ

)
,

y2(x, t) =−Acos(ωt +βx) =−Acos
(

π

4
+

2πx
λ

)
.

Plots of y1, y2, and y3 are shown in Fig. P1.7(b).

Figure P1.7: (b) Plots of y1, y2, and ys versus x at ωt = π/4.
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At ωt = π/2,

y1(x, t) = Acos(π/2−βx) = Asinβx = Asin
2πx
λ

,

y2(x, t) =−Acos(π/2+βx) = Asinβx = Asin
2πx
λ

.

Plots of y1, y2, and y3 are shown in Fig. P1.7(c).

Figure P1.7: (c) Plots of y1, y2, and ys versus x at ωt = π/2.
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Problem 1.15 A laser beam traveling through fog was observed to have an intensity of 1 (µW/m2) at a distance of 2 m
from the laser gun and an intensity of 0.2 (µW/m2) at a distance of 3 m. Given that the intensity of an electromagnetic wave
is proportional to the square of its electric-field amplitude, find the attenuation constant α of fog.

Solution: If the electric field is of the form

E(x, t) = E0e−αx cos(ωt−βx),

then the intensity must have a form

I(x, t)≈ [E0e−αx cos(ωt−βx)]2

≈ E2
0 e−2αx cos2(ωt−βx)

or
I(x, t) = I0e−2αx cos2(ωt−βx)

where we define I0 ≈ E2
0 . We observe that the magnitude of the intensity varies as I0e−2αx. Hence,

at x = 2 m, I0e−4α = 1×10−6 (W/m2),

at x = 3 m, I0e−6α = 0.2×10−6 (W/m2).

I0e−4α

I0e−6α
=

10−6

0.2×10−6 = 5

e−4α · e6α = e2α = 5

α = 0.8 (NP/m).

Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics c©2010 Prentice Hall



Problem 1.18 Complex numbers z1 and z2 are given by

z1 =−3+ j2

z2 = 1− j2

Determine (a) z1z2, (b) z1/z∗2, (c) z2
1, and (d) z1z∗1, all all in polar form.

Solution:
(a) We first convert z1 and z2 to polar form:

z1 =−(3− j2) =−
(√

32 +22 e− j tan−1 2/3
)

=−
√

13 e− j33.7◦

=
√

13 e j(180◦−33.7◦)

=
√

13 e j146.3◦ .

z2 = 1− j2 =
√

1+4 e− j tan−1 2

=
√

5 e− j63.4◦ .

z1z2 =
√

13 e j146.3◦×
√

5 e− j63.4◦

=
√

65 e j82.9◦ .

(b)
z1

z∗2
=
√

13 e j146.3◦

√
5 e j63.4◦

=

√
13
5

e j82.9◦ .

(c)

z2
1 = (

√
13)2(e j146.3◦)2 = 13e j292.6◦

= 13e− j360◦e j292.6◦

= 13e− j67.4◦ .

(c)

z1z∗1 =
√

13 e j146.3◦×
√

13 e− j146.3◦

= 13.
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Problem 1.20 Find complex numbers t = z1 + z2 and s = z1− z2, both in polar form, for each of the following pairs:
(a) z1 = 2+ j3, z2 = 1− j3,
(b) z1 = 3, z2 =− j3,
(c) z1 = 3∠ 30◦ , z2 = 3∠−30◦ ,
(d) z1 = 3∠ 30◦ , z2 = 3∠−150◦ .

Solution:
(d)

t = z1 + z2 = 3∠30◦+3∠−150◦ = (2.6+ j1.5)+(−2.6− j1.5) = 0,

s = z1− z2 = (2.6+ j1.5)− (−2.6− j1.5) = 5.2+ j3 = 6e j30◦ .
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Problem 1.21 Complex numbers z1 and z2 are given by

z1 = 5∠−60◦ ,

z2 = 4∠45◦ .

(a) Determine the product z1z2 in polar form.
(b) Determine the product z1z∗2 in polar form.
(c) Determine the ratio z1/z2 in polar form.
(d) Determine the ratio z∗1/z∗2 in polar form.
(e) Determine

√
z1 in polar form.

Solution:

(c)
z1

z2
=

5e− j60◦

4e j45◦
= 1.25e− j105◦ .
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Problem 1.24 If z = 3e jπ/6, find the value of ez.

Solution:

z = 3e jπ/6 = 3cosπ/6+ j3sinπ/6

= 2.6+ j1.5

ez = e2.6+ j1.5 = e2.6× e j1.5

= e2.6(cos1.5+ j sin1.5)
= 13.46(0.07+ j0.98)
= 0.95+ j13.43.
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Problem 1.26 Find the phasors of the following time functions:
(a) υ(t) = 9cos(ωt−π/3) (V)
(b) υ(t) = 12sin(ωt +π/4) (V)
(c) i(x, t) = 5e−3x sin(ωt +π/6) (A)
(d) i(t) =−2cos(ωt +3π/4) (A)
(e) i(t) = 4sin(ωt +π/3)+3cos(ωt−π/6) (A)

Solution:
(d)

i(t) =−2cos(ωt +3π/4),
Ĩ =−2e j3π/4 = 2e− jπe j3π/4 = 2e− jπ/4 A.
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Problem 1.27 Find the instantaneous time sinusoidal functions corresponding to the following phasors:
(a) Ṽ =−5e jπ/3 (V)
(b) Ṽ = j6e− jπ/4 (V)
(c) Ĩ = (6+ j8) (A)
(d) Ĩ =−3+ j2 (A)
(e) Ĩ = j (A)
(f) Ĩ = 2e jπ/6 (A)

Solution:
(d)

Ĩ =−3+ j2 = 3.61e j146.31◦ ,

i(t) = Re{3.61e j146.31◦e jωt}= 3.61 cos(ωt +146.31◦) A.
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Problem 1.29 The voltage source of the circuit shown in Fig. P1.29 is given by

vs(t) = 25cos(4×104t−45◦) (V).

Obtain an expression for iL(t), the current flowing through the inductor.

Figure P1.29: Circuit for Problem 1.29.

Solution: Based on the given voltage expression, the phasor source voltage is

Ṽs = 25e− j45◦ (V). (1.9)

The voltage equation for the left-hand side loop is

R1i+R2iR2 = vs (1.10)

For the right-hand loop,

R2iR2 = L
diL
dt

, (1.11)

and at node A,
i = iR2 + iL. (1.12)

Next, we convert Eqs. (2)–(4) into phasor form:

R1Ĩ +R2ĨR2 = Ṽs (1.13)

R2ĨR2 = jωLĨL (1.14)

Ĩ = ĨR2 + ĨL (1.15)

Upon combining (6) and (7) to solve for ĨR2 in terms of Ĩ, we have:

ĨR2 =
jωL

R2 + jωL
I . (1.16)
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Substituting (8) in (5) and then solving for Ĩ leads to:

R1Ĩ +
jR2ωL

R2 + jωL
Ĩ = Ṽs

Ĩ
(

R1 +
jR2ωL

R2 + jωL

)
= Ṽs

Ĩ
(

R1R2 + jR1ωL+ jR2ωL
R2 + jωL

)
= Ṽs

Ĩ =
(

R2 + jωL
R1R2 + jωL(R1 +R2)

)
Ṽs. (1.17)

Combining (6) and (7) to solve for ĨL in terms of Ĩ gives

ĨL =
R2

R2 + jωL
Ĩ. (1.18)

Combining (9) and (10) leads to

ĨL =
(

R2

R2 + jωL

)(
R2 + jωL

R1R2 + jωL(R1 +R2)

)
Ṽs

=
R2

R1R2 ++ jωL(R1 +R2)
Ṽs.

Using (1) for Ṽs and replacing R1, R2, L and ω with their numerical values, we have

ĨL =
30

20×30+ j4×104×0.4×10−3(20+30)
25e− j45◦

=
30×25

600+ j800
e− j45◦

=
7.5

6+ j8
e− j45◦ =

7.5e− j45◦

10e j53.1◦ = 0.75e− j98.1◦ (A).

Finally,

iL(t) = Re[ĨLe jωt ]

= 0.75cos(4×104t−98.1◦) (A).
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Problem 2.5 For the parallel-plate transmission line of Problem 2.4, the line parameters are given by: R′ = 1 Ω/m,
L′ = 167 nH/m, G′ = 0, and C′ = 172 pF/m. Find α , β , up, and Z0 at 1 GHz.

Solution: At 1 GHz, ω = 2π f = 2π×109 rad/s. Application of (2.22) gives:

γ =
√

(R′+ jωL′)(G′+ jωC′)

= [(1+ j2π×109×167×10−9)(0+ j2π×109×172×10−12)]1/2

= [(1+ j1049)( j1.1)]1/2

=
[√

1+(1049)2 e j tan−1 1049×1.1e j90◦
]1/2

, ( j = e j90◦)

=
[
1049e j89.95◦×1.1e j90◦

]1/2

=
[
1154e j179.95◦

]1/2

= 34e j89.97◦ = 34cos89.97◦+ j34sin89.97◦ = 0.016+ j34.

Hence,

α = 0.016 Np/m,

β = 34 rad/m.

up =
ω

β
=

2π f
β

=
2π×109

34
= 1.85×108 m/s.

Z0 =
[

R′+ jωL′

G′+ jωC′

]1/2

=
[

1049e j89.95◦

1.1e j90◦

]1/2

=
[
954e− j0.05◦

]1/2

= 31e− j0.025◦ ' (31− j0.01) Ω.
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Problem 2.16 A transmission line operating at 125 MHz has Z0 = 40 Ω, α = 0.02 (Np/m), and β = 0.75 rad/m. Find the
line parameters R′, L′, G′, and C ′.

Solution: Given an arbitrary transmission line, f = 125 MHz, Z0 = 40 Ω, α = 0.02 Np/m, and β = 0.75 rad/m. Since Z0
is real and α 6= 0, the line is distortionless. From Problem 2.13, β = ω

√
L′C ′ and Z0 =

√
L′/C ′, therefore,

L′ =
βZ0

ω
=

0.75×40
2π×125×106 = 38.2 nH/m.

Then, from Z0 =
√

L′/C ′,

C ′ =
L′

Z2
0

=
38.2 nH/m

402 = 23.9 pF/m.

From α =
√

R′G′ and R′C ′ = L′G′,

R′ =
√

R′G′
√

R′

G′
=
√

R′G′
√

L′

C ′
= αZ0 = 0.02 Np/m×40 Ω = 0.6 Ω/m

and

G′ =
α2

R′
=

(0.02 Np/m)2

0.8 Ω/m
= 0.5 mS/m.
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Problem 2.34 A 50-Ω lossless line is terminated in a load impedance ZL = (30− j20) Ω.

Figure P2.34: Circuit for Problem 2.34.

(a) Calculate Γ and S.

(b) It has been proposed that by placing an appropriately selected resistor across the line at a distance dmax from the load
(as shown in Fig. P2.34(b)), where dmax is the distance from the load of a voltage maximum, then it is possible to
render Zi = Z0, thereby eliminating reflection back to the end. Show that the proposed approach is valid and find the
value of the shunt resistance.

Solution:
(a)

Γ =
ZL−Z0

ZL +Z0
=

30− j20−50
30− j20+50

=
−20− j20
80− j20

=
−(20+ j20)

80− j20
= 0.34e− j121◦ .

S =
1+ |Γ|
1−|Γ|

=
1+0.34
1−0.34

= 2.

(b) We start by finding dmax, the distance of the voltage maximum nearest to the load. Using (2.70) with n = 1,

dmax =
θrλ

4π
+

λ

2
=
(
−121◦π

180◦

)
λ

4π
+

λ

2
= 0.33λ .

Applying (2.79) at d = dmax = 0.33λ , for which β l = (2π/λ )× 0.33λ = 2.07 radians, the value of Zin before adding the
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shunt resistance is:

Zin = Z0

(
ZL + jZ0 tanβ l
Z0 + jZL tanβ l

)
= 50

(
(30− j20)+ j50tan2.07
50+ j(30− j20) tan2.07

)
= (102+ j0) Ω.

Thus, at the location A (at a distance dmax from the load), the input impedance is purely real. If we add a shunt resistor R in
parallel such that the combination is equal to Z0, then the new Zin at any point to the left of that location will be equal to Z0.

Hence, we need to select R such that
1
R

+
1

102
=

1
50

or R = 98 Ω.
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Problem 2.45 The circuit shown in Fig. P2.45 consists of a 100-Ω lossless transmission line terminated in a load with
ZL = (50+ j100) Ω. If the peak value of the load voltage was measured to be |ṼL|= 12 V, determine:

(a) the time-average power dissipated in the load,

(b) the time-average power incident on the line,

(c) the time-average power reflected by the load.

Figure P2.45: Circuit for Problem 2.45.

Solution:
(a)

Γ =
ZL−Z0

ZL +Z0
=

50+ j100−100
50+ j100+100

=
−50+ j100
150+ j100

= 0.62e j82.9◦ .

The time average power dissipated in the load is:

Pav =
1
2
|ĨL|2RL

=
1
2

∣∣∣∣∣ṼL

ZL

∣∣∣∣∣
2

RL

=
1
2
|ṼL|2

|ZL|2
RL =

1
2
×122× 50

502 +1002 = 0.29 W.

(b)
Pav = Pi

av(1−|Γ|2)

Hence,

Pi
av =

Pav

1−|Γ|2
=

0.29
1−0.622 = 0.47 W.

(c)
Pr

av =−|Γ|2Pi
av =−(0.62)2×0.47 =−0.18 W.
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Problem 2.48 Repeat Problem 2.47 using CD Module 2.6.

Solution:
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Problem 2.64 Use CD Module 2.7 to design a quarter-wavelength transformer to match a load with ZL = (100− j200) Ω

to a 50-Ω line.

Solution: Figure P2.64(a) displays the first solution of Module 2.7 where a λ/4 section of Z02 = 15.5015 Ω is inserted at
distance d1 = 0.21829λ from the load.

Figure P2.64(b) displays a summary of the two possible solutions for matching the load to the feedline with a λ/4
transformer.
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Problem 2.75 Generate a bounce diagram for the voltage V (z, t) for a 1-m–long lossless line characterized by Z0 = 50 Ω

and up = 2c/3 (where c is the velocity of light) if the line is fed by a step voltage applied at t = 0 by a generator circuit with
Vg = 60 V and Rg = 100 Ω. The line is terminated in a load RL = 25 Ω. Use the bounce diagram to plot V (t) at a point
midway along the length of the line from t = 0 to t = 25 ns.

Solution:

Γg =
Rg−Z0

Rg +Z0
=

100−50
100+50

=
50
150

=
1
3

,

ΓL =
ZL−Z0

ZL +Z0
=

25−50
25+50

=
−25
75

=
−1
3

.

From Eq. (2.149b),

V +
1 =

VgZ0

Rg +Z0
=

60×50
100+50

= 20 V.

Also,

T =
l

up
=

l
2c/3

=
3

2×3×108 = 5 ns.

The bounce diagram is shown in Fig. P2.75(a) and the plot of V (t) in Fig. P2.75(b).

Figure P2.75: (a) Bounce diagram for Problem 2.75.
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Figure P2.75: (b) Time response of voltage.
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Chapter 3 Solved Problems

Problem 3-9

Problem 3-17

Problem 3-19

Problem 3-20

Problem 3-22

Problem 3-23

Problem 3-25

Problem 3-33

Problem 3-35

Problem 3-36

Problem 3-41

Problem 3-50

Problem 3-55

Problem 3-57
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Problem 3.9 Find an expression for the unit vector directed toward the origin from an arbitrary point on the line described
by x = 1 and z = 2.

Solution: An arbitrary point on the given line is (1,y,2). The vector from this point to (0,0,0) is:

A = x̂(0−1)+ ŷ(0− y)+ ẑ(0−2) =−x̂− ŷy−2ẑ,

|A|=
√

1+ y2 +4 =
√

5+ y2 ,

â =
A
|A|

=
−x̂− ŷy− ẑ2√

5+ y2
.
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Problem 3.17 Find a vector G whose magnitude is 4 and whose direction is perpendicular to both vectors E and F, where
E = x̂+ ŷ2− ẑ2 and F = ŷ3− ẑ6.

Solution: The cross product of two vectors produces a third vector which is perpendicular to both of the original vectors.
Two vectors exist that satisfy the stated conditions, one along E×××F and another along the opposite direction. Hence,

G =±4
E×××F
|E×××F|

=±4
(x̂+ ŷ2− ẑ2)××× (ŷ3− ẑ6)
|(x̂+ ŷ2− ẑ2)××× (ŷ3− ẑ6)|

=±4
(−x̂6+ ŷ6+ ẑ3)√

36+36+9

=±4
9

(−x̂6+ ŷ6+ ẑ3) =±
(
−x̂

8
3

+ ŷ
8
3

+ ẑ
4
3

)
.
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Problem 3.19 Vector field E is given by

E = R̂ 5Rcosθ − θ̂θθ
12
R

sinθ cosφ + φ̂φφ3sinφ .

Determine the component of E tangential to the spherical surface R = 2 at point P = (2,30◦,60◦).

Solution: At P, E is given by

E = R̂ 5×2cos30◦− θ̂θθ
12
2

sin30◦ cos60◦+ φ̂φφ3sin60◦

= R̂ 8.67− θ̂θθ1.5+ φ̂φφ2.6.

The R̂ component is normal to the spherical surface while the other two are tangential. Hence,

Et =−θ̂θθ1.5+ φ̂φφ2.6.
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Problem 3.20 When sketching or demonstrating the spatial variation of a vector field, we often use arrows, as in
Fig. P3.20, wherein the length of the arrow is made to be proportional to the strength of the field and the direction of
the arrow is the same as that of the field’s. The sketch shown in Fig. P3.20, which represents the vector field E = r̂r, consists
of arrows pointing radially away from the origin and their lengths increase linearly in proportion to their distance away from
the origin. Using this arrow representation, sketch each of the following vector fields:

(a) E1 =−x̂y,

(b) E2 = ŷx,

(c) E3 = x̂x+ ŷy,

(d) E4 = x̂x+ ŷ2y,

(e) E5 = φ̂φφr,

(f) E6 = r̂sinφ .

Figure P3.20: Arrow representation for vector field E = r̂r (Problem 3.20).

Solution:
(b)
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Figure P3.20(b): E2 =−ŷx

(e)

Figure P3.20(e): E5 = φ̂φφ r
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Problem 3.22 Convert the coordinates of the following points from Cartesian to cylindrical and spherical coordinates:
(a) P1 = (1,2,0),
(b) P2 = (0,0,2),
(c) P3 = (1,1,3),
(d) P4 = (−2,2,−2).

Solution: Use the “coordinate variables” column in Table 3-2.
(a) In the cylindrical coordinate system,

P1 = (
√

12 +22, tan−1 (2/1),0) = (
√

5,1.107 rad,0)≈ (2.24,63.4◦,0).

In the spherical coordinate system,

P1 = (
√

12 +22 +02, tan−1(
√

12 +22/0), tan−1 (2/1))

= (
√

5,π/2 rad,1.107 rad)≈ (2.24,90.0◦,63.4◦).

Note that in both the cylindrical and spherical coordinates, φ is in Quadrant I.
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Problem 3.23 Convert the coordinates of the following points from cylindrical to Cartesian coordinates:

(a) P1 = (2,π/4,−3),
(b) P2 = (3,0,−2),
(c) P3 = (4,π,5).

Solution: (b) P2 = (x,y,z) = P2 = (3cos0,3sin0,−2) = P2 = (3,0,−2).
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Problem 3.25 Use the appropriate expression for the differential surface area ds to determine the area of each of the
following surfaces:

(a) r = 3; 0≤ φ ≤ π/3; −2≤ z≤ 2,
(b) 2≤ r ≤ 5; π/2≤ φ ≤ π; z = 0,
(c) 2≤ r ≤ 5; φ = π/4; −2≤ z≤ 2,
(d) R = 2; 0≤ θ ≤ π/3; 0≤ φ ≤ π ,
(e) 0≤ R≤ 5; θ = π/3; 0≤ φ ≤ 2π .

Also sketch the outlines of each of the surfaces.

Solution:

Figure P3.25: Surfaces described by Problem 3.25.

(d) Using Eq. (3.50b),

A =
∫

π/3

θ=0

∫
π

φ=0

(
R2 sinθ

)∣∣
R=2 dφ dθ =

(
(−4φ cosθ)|π/3

θ=0

)∣∣∣π
φ=0

= 2π.
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Problem 3.33 Transform the vector

A = R̂sin2
θ cosφ + θ̂θθ cos2

φ − φ̂φφ sinφ

into cylindrical coordinates and then evaluate it at P = (2,π/2,π/2).

Solution: From Table 3-2,

A = (r̂ sinθ + ẑcosθ)sin2
θ cosφ +(r̂ cosθ − ẑsinθ)cos2

φ − φ̂φφ sinφ

= r̂(sin3
θ cosφ + cosθ cos2

φ)− φ̂φφ sinφ + ẑ(cosθ sin2
θ cosφ − sinθ cos2

φ)

At P = (2,π/2,π/2),
A =−φ̂φφ .
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Problem 3.35 Transform the following vectors into spherical coordinates and then evaluate them at the indicated points:
(a) A = x̂y2 + ŷxz+ ẑ4 at P1 = (1,−1,2),
(b) B = ŷ(x2 + y2 + z2)− ẑ(x2 + y2) at P2 = (−1,0,2),
(c) C = r̂cosφ − φ̂φφ sinφ + ẑcosφ sinφ at P3 = (2,π/4,2), and
(d) D = x̂y2/(x2 + y2)− ŷx2/(x2 + y2)+ ẑ4 at P4 = (1,−1,2).

Solution: From Table 3-2:
(c)

C = (R̂sinθ + θ̂θθ cosθ)cosφ − φ̂φφ sinφ +(R̂cosθ − θ̂θθ sinθ)cosφ sinφ

= R̂cosφ(sinθ + cosθ sinφ)+ θ̂θθ cosφ(cosθ − sinθ sinφ)− φ̂φφ sinφ ,

P3 =
(√

22 +22, tan−1 (2/2),π/4
)

= (2
√

2,45◦,45◦),

C(P3)≈ R̂0.854+ θ̂θθ0.146− φ̂φφ0.707.
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Problem 3.36 Find the gradient of the following scalar functions:
(a) T = 3/(x2 + z2),
(b) V = xy2z4,
(c) U = zcosφ/(1+ r2),
(d) W = e−R sinθ ,
(e) S = 4x2e−z + y3,
(f) N = r2 cos2 φ ,
(g) M = Rcosθ sinφ .

Solution: (d) From Eq. (3.83),
∇W =−R̂e−R sinθ + θ̂θθ(e−R/R)cosθ .
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Problem 3.41 Evaluate the line integral of E = x̂x− ŷy along the segment P1 to P2 of the circular path shown in the figure.

Solution: We need to calculate: ∫ P2

P1

E ·d`̀̀.

Since the path is along the perimeter of a circle, it is best to use cylindrical coordinates, which requires expressing both E
and d`̀̀ in cylindrical coordinates. Using Table 3-2,

E = x̂x− ŷy = (r̂ cosφ − φ̂φφ sinφ)r cosφ − (r̂ sinφ + φ̂φφ cosφ)r sinφ

= r̂ r(cos2
φ − sin2

φ)− φ̂φφ2r sinφ cosφ

The designated path is along the φ -direction at a constant r = 3. From Table 3-1, the applicable component of d`̀̀ is:

d`̀̀ = φ̂φφ r dφ .

Hence, ∫ P2

P1

E ·d`̀̀ =
∫

φ=180◦

φ=90◦

[
r̂r(cos2

φ − sin2
φ)− φ̂φφ 2r sinφ cosφ

]
·φ̂φφ r dφ

∣∣∣
r=3

=
∫ 180◦

90◦
−2r2 sinφ cosφ dφ

∣∣
r=3

=−2r2 sin2
φ

2

∣∣∣∣180◦

φ=90◦

∣∣∣∣∣
r=3

= 9.
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Problem 3.50 For the vector field E = x̂xy− ŷ(x2 +2y2), calculate

(a) n
∫

C
E ·dl around the triangular contour shown in Fig. P3.50(a), and

(b)
∫

S
(∇×××E) ·ds over the area of the triangle.

Solution: In addition to the independent condition that z = 0, the three lines of the triangle are represented by the equations
y = 0, x = 1, and y = x, respectively.

Figure P3.50: Contours for (a) Problem 3.50 and (b) Problem 3.51.

(a)

n
∫

E ·dl = L1 +L2 +L3,

L1 =
∫

(x̂xy− ŷ(x2 +2y2)) · (x̂ dx+ ŷ dy+ ẑ dz)

=
∫ 1

x=0
(xy)|y=0,z=0 dx−

∫ 0

y=0

(
x2 +2y2)∣∣

z=0 dy+
∫ 0

z=0
(0)|y=0 dz = 0,

L2 =
∫

(x̂xy− ŷ(x2 +2y2)) · (x̂ dx+ ŷ dy+ ẑ dz)

=
∫ 1

x=1
(xy)|z=0 dx−

∫ 1

y=0

(
x2 +2y2)∣∣

x=1,z=0 dy+
∫ 0

z=0
(0)|x=1 dz

= 0−
(

y+
2y3

3

)∣∣∣∣1
y=0

+0 =
−5
3

,

L3 =
∫

(x̂xy− ŷ(x2 +2y2)) · (x̂ dx+ ŷ dy+ ẑ dz)

=
∫ 0

x=1
(xy)|y=x, z=0 dx−

∫ 0

y=1

(
x2 +2y2)∣∣

x=y, z=0 dy+
∫ 0

z=0
(0)|y=x dz

=
(

x3

3

)∣∣∣∣0
x=1
−
(
y3)∣∣0

y=1 +0 =
2
3

.

Therefore,
n
∫

E ·dl = 0− 5
3

+
2
3

=−1.
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(b) From Eq. (3.105), ∇×E =−ẑ3x, so that∫∫
∇×E ·ds =

∫ 1

x=0

∫ x

y=0
((−ẑ3x) · (ẑ dy dx))|z=0

=−
∫ 1

x=0

∫ x

y=0
3x dy dx =−

∫ 1

x=0
3x(x−0)dx =−

(
x3)∣∣1

0 =−1.
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Problem 3.55 Verify Stokes’s theorem for the vector field B = (r̂ cosφ + φ̂φφ sinφ) by evaluating:

(a) n
∫

C
B ·d`̀̀ over the path comprising a quarter section of a circle, as shown in Fig. P3.55, and

(b)
∫

S
(∇×××B) ·ds over the surface of the quarter section.

Solution:
(a)

n
∫

C
B ·d`̀̀ =

∫
L1

B ·d`̀̀ +
∫

L2

B ·d`̀̀ +
∫

L3

B ·d`̀̀

Given the shape of the path, it is best to use cylindrical coordinates. B is already expressed in cylindrical coordinates, and
we need to choose d`̀̀ in cylindrical coordinates:

d`̀̀ = r̂ dr + φ̂φφr dφ + ẑ dz.

Along path L1, dφ = 0 and dz = 0. Hence, d`̀̀ = r̂ dr and∫
L1

B ·d`̀̀ =
∫ r=3

r=0
(r̂ cosφ + φ̂φφ sinφ) · r̂ dr

∣∣∣∣
φ=90◦

=
∫ 3

r=0
cosφ dr

∣∣∣∣
φ=90◦

= r cosφ |3r=0

∣∣∣
φ=90◦

= 0.

Along L2, dr = dz = 0. Hence, d`̀̀ = φ̂φφr dφ and∫
L2

B ·d`̀̀ =
∫ 180◦

φ=90◦
(r̂ cosφ + φ̂φφ sinφ) · φ̂φφr dφ

∣∣∣
r=3

= −3cosφ |180◦
90◦ = 3.

Along L3, dz = 0 and dφ = 0. Hence, d`̀̀ = r̂ dr and∫
L3

B ·d`̀̀ =
∫ 0

r=3
(r̂ cosφ + φ̂φφ sinφ) · r̂ dr

∣∣∣
φ=180◦

=
∫ 0

r=3
cosφ dr|

φ=180◦ = −r|03 = 3.
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Hence,
n
∫

C
B ·d`̀̀ = 0+3+3 = 6.

(b)

∇×B = ẑ
1
r

(
∂

∂ r

(
rBφ −

∂Br

∂φ

))
= ẑ

1
r

(
∂

∂ r
(r sinφ)− ∂

∂φ
(cosφ)

)
= ẑ

1
r
(sinφ + sinφ) = ẑ

2
r

sinφ .∫
S
(∇×B) ·ds =

∫ 3

r=0

∫ 180◦

φ=90◦

(
ẑ

2
r

sinφ

)
· ẑr dr dφ

= −2r|3r=0 cosφ

∣∣∣180◦

φ=90◦
= 6.

Hence, Stokes’s theorem is verified.
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Problem 3.57 Find the Laplacian of the following scalar functions:
(a) V = 4xy2z3,
(b) V = xy+ yz+ zx,
(c) V = 3/(x2 + y2),
(d) V = 5e−r cosφ ,
(e) V = 10e−R sinθ .

Solution:
(a) From Eq. (3.110), ∇2(4xy2z3) = 8xz3 +24xy2z.
(b) ∇2(xy+ yz+ zx) = 0.
(c) From the inside back cover of the book,

∇
2
(

3
x2 + y2

)
= ∇

2(3r−2) = 12r−4 =
12

(x2 + y2)2 .

(d)

∇
2(5e−r cosφ) = 5e−r cosφ

(
1− 1

r
− 1

r2

)
.

(e)

∇
2(10e−R sinθ) = 10e−R

(
sinθ

(
1− 2

R

)
+

cos2 θ − sin2
θ

R2 sinθ

)
.
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Chapter 4 Solved Problems

Problem 4-5

Problem 4-9

Problem 4-12

Problem 4-29

Problem 4-37

Problem 4-47

Problem 4-57

Problem 4-60

Problem 4-62
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Problem 4.5 Find the total charge on a circular disk defined by r ≤ a and z = 0 if:

(a) ρs = ρs0 cosφ (C/m2)

(b) ρs = ρs0 sin2
φ (C/m2)

(c) ρs = ρs0e−r (C/m2)

(d) ρs = ρs0e−r sin2
φ (C/m2)

where ρs0 is a constant.

Solution:
(c)

Q =
∫ a

r=0

∫ 2π

φ=0
ρs0e−rr dr dφ = 2πρs0

∫ a

0
re−r dr

= 2πρs0
[
−re−r− e−r]a

0

= 2πρs0[1− e−a(1+a)].
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Problem 4.9 A circular beam of charge of radius a consists of electrons moving with a constant speed u along the
+z-direction. The beam’s axis is coincident with the z-axis and the electron charge density is given by

ρv =−cr2 (c/m3)

where c is a constant and r is the radial distance from the axis of the beam.

(a) Determine the charge density per unit length.

(b) Determine the current crossing the z-plane.

Solution:
(a)

ρl =
∫

ρv ds

=
∫ a

r=0

∫ 2π

φ=0
−cr2 · r dr dφ =−2πc

r4

4

∣∣∣∣a
0
=−πca4

2
(C/m).

(b)

J = ρvu =−ẑcr2u (A/m2)

I =
∫

J ·ds

=
∫ a

r=0

∫ 2π

φ=0
(−ẑcur2) · ẑr dr dφ

=−2πcu
∫ a

0
r3 dr =−πcua4

2
= ρlu. (A).
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Problem 4.12 Three point charges, each with q = 3 nC, are located at the corners of a triangle in the x–y plane, with one
corner at the origin, another at (2 cm,0,0), and the third at (0,2 cm,0). Find the force acting on the charge located at the
origin.

Solution: Use Eq. (4.19) to determine the electric field at the origin due to the other two point charges [Fig. P4.12]:

E =
1

4πε

[
3 nC (−x̂0.02)

(0.02)3

]
+

3 nC (−ŷ0.02)
(0.02)3 =−67.4(x̂+ ŷ) (kV/m) at R = 0.

Employ Eq. (4.14) to find the force F = qE =−202.2(x̂+ ŷ) (µN).

Figure P4.12: Locations of charges in Problem 4.12.
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Problem 4.29 A spherical shell with outer radius b surrounds a charge-free cavity of radius a < b (Fig. P4.29). If the
shell contains a charge density given by

ρv =−ρv0

R2 , a≤ R≤ b,

where ρv0 is a positive constant, determine D in all regions.

Figure P4.29: Problem 4.29.

Solution: Symmetry dictates that D is radially oriented. Thus,

D = R̂DR.

At any R, Gauss’s law gives

n
∫

S
D ·ds = Q∫

S
R̂DR · R̂ ds = Q

4πR2DR = Q

DR =
Q

4πR2 .

(a) For R < a, no charge is contained in the cavity. Hence, Q = 0, and

DR = 0, R≤ a.

(b) For a≤ R≤ b,

Q =
∫ R

R=a
ρv dV =

∫ R

R=a
−ρv0

R2 ·4πR2 dR

=−4πρv0(R−a).
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Hence,

DR =−ρv0(R−a)
R2 , a≤ R≤ b.

(c) For R≥ b,

Q =
∫ b

R=a
ρv dV =−4πρv0(b−a)

DR =−ρv0(b−a)
R2 , R≥ b.
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Problem 4.37 Two infinite lines of charge, both parallel to the z-axis, lie in the x–z plane, one with density ρ` and located
at x = a and the other with density −ρ` and located at x = −a. Obtain an expression for the electric potential V (x,y) at a
point P = (x,y) relative to the potential at the origin.

Figure P4.37: Problem 4.37.

Solution: According to the result of Problem 4.33, the electric potential difference between a point at a distance r1 and
another at a distance r2 from a line charge of density ρl is

V =
ρl

2πε0
ln
(

r2

r1

)
.

Applying this result to the line charge at x = a, which is at a distance a from the origin:

V ′ =
ρl

2πε0
ln
( a

r′

)
(r2 = a and r1 = r′)

=
ρl

2πε0
ln

(
a√

(x−a)2 + y2

)
.

Similarly, for the negative line charge at x =−a,

V ′′ =
−ρl

2πε0
ln
( a

r′′

)
(r2 = a and r1 = r′)

=
−ρl

2πε0
ln

(
a√

(x+a)2 + y2

)
.

The potential due to both lines is

V = V ′+V ′′ =
ρl

2πε0

[
ln

(
a√

(x−a)2 + y2

)
− ln

(
a√

(x+a)2 + y2

)]
.

At the origin, V = 0, as it should be since the origin is the reference point. The potential is also zero along all points on the
y-axis (x = 0).
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Problem 4.47 A cylinder-shaped carbon resistor is 8 cm in length and its circular cross section has a diameter d = 1 mm.

(a) Determine the resistance R.

(b) To reduce its resistance by 40%, the carbon resistor is coated with a layer of copper of thickness t. Use the result of
Problem 4.44 to determine t.

Solution: According to the result of Problem 4.33, the electric potential difference between a point at a distance r1 and
another at a distance r2 from a line charge of density ρl is

V =
ρl

2πε0
ln
(

r2

r1

)
.

Applying this result to the line charge at x = a, which is at a distance a from the origin:

V ′ =
ρl

2πε0
ln
( a

r′

)
(r2 = a and r1 = r′)

=
ρl

2πε0
ln

(
a√

(x−a)2 + y2

)
.

Similarly, for the negative line charge at x =−a,

V ′′ =
−ρl

2πε0
ln
( a

r′′

)
(r2 = a and r1 = r′)

=
−ρl

2πε0
ln

(
a√

(x+a)2 + y2

)
.

The potential due to both lines is

V = V ′+V ′′ =
ρl

2πε0

[
ln

(
a√

(x−a)2 + y2

)
− ln

(
a√

(x+a)2 + y2

)]
.

At the origin, V = 0, as it should be since the origin is the reference point. The potential is also zero along all points on the
y-axis (x = 0).
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Problem 4.57 Use the result of Problem 4.56 to determine the capacitance for each of the following configurations:

(a) Conducting plates are on top and bottom faces of the rectangular structure in Fig. P4.57(a).

(b) Conducting plates are on front and back faces of the structure in Fig. P4.57(a).

(c) Conducting plates are on top and bottom faces of the cylindrical structure in Fig. P4.57(b).

Solution:
(a) The two capacitors share the same voltage; hence they are in parallel.

C1 = ε1
A1

d
= 2ε0

(5×1)×10−4

2×10−2 = 5ε0×10−2,

C2 = ε2
A2

d
= 4ε0

(5×3)×10−4

2×10−2 = 30ε0×10−2,

C = C1 +C2 = (5ε0 +30ε0)×10−2 = 0.35ε0 = 3.1×10−12 F.

Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics c©2010 Prentice Hall



Figure P4.57: Dielectric sections for Problems 4.57 and 4.59.

Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics c©2010 Prentice Hall



Problem 4.60 A coaxial capacitor consists of two concentric, conducting, cylindrical surfaces, one of radius a and another
of radius b, as shown in Fig. P4.60. The insulating layer separating the two conducting surfaces is divided equally into two
semi-cylindrical sections, one filled with dielectric ε1 and the other filled with dielectric ε2.

(a) Develop an expression for C in terms of the length l and the given quantities.
(b) Evaluate the value of C for a = 2 mm, b = 6 mm, εr1 = 2, εr2 = 4, and l = 4 cm.

Figure P4.60: Problem 4.60.

Solution:
(a) For the indicated voltage polarity, the E field inside the capacitor exists in only the dielectric materials and points

radially inward. Let E1 be the field in dielectric ε1 and E2 be the field in dielectric ε2. At the interface between the two
dielectric sections, E1 is parallel to E2 and both are tangential to the interface. Since boundary conditions require that the
tangential components of E1 and E2 be the same, it follows that:

E1 = E2 =−r̂E.

At r = a (surface of inner conductor), in medium 1, the boundary condition on D, as stated by (4.101), leads to

D1 = ε1E1 = n̂ρs1

−r̂ε1E = r̂ρs1

or
ρs1 =−ε1E.

Similarly, in medium 2
ρs2 =−ε2E.
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Thus, the E fields will be the same in the two dielectrics, but the charge densities will be different along the two sides of the
inner conducting cylinder.

Since the same voltage applies for the two sections of the capacitor, we can treat them as two capacitors in parallel. For
the capacitor half that includes dielectric ε1, we can apply the results of Eqs. (4.114)–(4.116), but we have to keep in mind
that Q is now the charge on only one half of the inner cylinder. Hence,

C1 =
πε1l

ln(b/a)
.

Similarly,

C2 =
πε2l

ln(b/a)
,

and

C = C1 +C2 =
πl(ε1 + ε2)

ln(b/a)
.

(b)

C =
π×4×10−2(2+4)×8.85×10−12

ln(6/2)
= 6.07 pF.
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Problem 4.62 Conducting wires above a conducting plane carry currents I1 and I2 in the directions shown in Fig. P4.62.
Keeping in mind that the direction of a current is defined in terms of the movement of positive charges, what are the directions
of the image currents corresponding to I1 and I2?

Figure P4.62: Currents above a conducting plane
(Problem 4.62).

Solution:
(a) In the image current, movement of negative charges downward = movement of positive charges upward. Hence, image

of I1 is same as I1.

Figure P4.62: (a) Solution for part (a).

(b) In the image current, movement of negative charges to right = movement of positive charges to left.

Figure P4.62: (b) Solution for part (b).
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Chapter 5 Solved Problems

Problem 5-5

Problem 5-35
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Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire carrying a current of 5 A in the positive z-
direction is located at r = 4 cm, φ = π/2, and −1 m≤ z≤ 1 m.

(a) If B = r̂0.2cosφ (T), what is the magnetic force acting on the wire?

(b) How much work is required to rotate the wire once about the z-axis in the negative φ -direction (while maintaining
r = 4 cm)?

(c) At what angle φ is the force a maximum?

Solution:
(a)

F = I`̀̀×××B
= 5ẑ2××× [r̂0.2cosφ ]
= φ̂φφ 2cosφ .

At φ = π/2, φ̂φφ =−x̂. Hence,
F =−x̂2cos(π/2) = 0.

(b)

W =
∫ 2π

φ=0
F ·dl =

∫ 2π

0
φ̂φφ [2cosφ ] ·(−φ̂φφ)r dφ

∣∣∣∣
r=4 cm

=−2r
∫ 2π

0
cosφ dφ

∣∣∣∣
r=4 cm

=−8×10−2 [sinφ ]2π

0 = 0.

The force is in the +φ̂φφ -direction, which means that rotating it in the −φ̂φφ -direction would require work. However, the force
varies as cosφ , which means it is positive when−π/2≤ φ ≤ π/2 and negative over the second half of the circle. Thus, work
is provided by the force between φ = π/2 and φ = −π/2 (when rotated in the −φ̂φφ -direction), and work is supplied for the
second half of the rotation, resulting in a net work of zero.

(c) The force F is maximum when cosφ = 1, or φ = 0.
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Problem 5.35 The plane boundary defined by z = 0 separates air from a block of iron. If B1 = x̂4− ŷ6+ ẑ8 in air (z≥ 0),
find B2 in iron (z≤ 0), given that µ = 5000µ0 for iron.

Solution: From Eq. (5.2),

H1 =
B1

µ1
=

1
µ1

(x̂4− ŷ6+ ẑ8).

The z component is the normal component to the boundary at z = 0. Therefore, from Eq. (5.79), B2z = B1z = 8 while, from
Eq. (5.85),

H2x = H1x =
1
µ1

4, H2y = H1y =− 1
µ1

6,

or
B2x = µ2H2x =

µ2

µ1
4, B2y = µ2H2y =−µ2

µ1
6,

where µ2/µ1 = µr = 5000. Therefore,
B2 = x̂20000− ŷ30000+ ẑ8.
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Chapter 6 Solved Problems

Problem 6-8
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Problem 6.8 The transformer shown in Fig. P6.8 consists of a long wire coincident with the z-axis carrying a current
I = I0 cosωt, coupling magnetic energy to a toroidal coil situated in the x–y plane and centered at the origin. The toroidal
core uses iron material with relative permeability µr, around which 100 turns of a tightly wound coil serves to induce a
voltage Vemf, as shown in the figure.

Figure P6.8: Problem 6.8.

(a) Develop an expression for Vemf.

(b) Calculate Vemf for f = 60 Hz, µr = 4000, a = 5 cm, b = 6 cm, c = 2 cm, and I0 = 50 A.

Solution:
(a) We start by calculating the magnetic flux through the coil, noting that r, the distance from the wire varies from a to b

Φ =
∫

S
B ·ds =

∫ b

a
x̂

µI
2πr
· x̂c dr =

µcI
2π

ln
(

b
a

)
Vemf =−N

dΦ

dt
=−µcN

2π
ln
(

b
a

)
dI
dt

=
µcNωI0

2π
ln
(

b
a

)
sinωt (V).

(b)

Vemf =
4000×4π×10−7×2×10−2×100×2π×60×50ln(6/5)

2π
sin377t

= 5.5sin377t (V).
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Chapter 7 Solved Problems

Problem 7-7

Problem 7-23

Problem 7-28

Problem 7-33

Problem 7-36
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Problem 7.7 A 60-MHz plane wave traveling in the −x-direction in dry soil with relative permittivity εr = 4 has an
electric field polarized along the z-direction. Assuming dry soil to be approximately lossless, and given that the magnetic
field has a peak value of 10 (mA/m) and that its value was measured to be 7 (mA/m) at t = 0 and x = −0.75 m, develop
complete expressions for the wave’s electric and magnetic fields.

Solution: For f = 60 MHz = 6×107 Hz, εr = 4, µr = 1,

k =
ω

c
√

εr =
2π×6×107

3×108

√
4 = 0.8π (rad/m).

Given that E points along ẑ and wave travel is along −x̂, we can write

E(x, t) = ẑE0 cos(2π×60×106t +0.8πx+φ0) (V/m)

where E0 and φ0 are unknown constants at this time. The intrinsic impedance of the medium is

η =
η0√

εr
=

120π

2
= 60π (Ω).

With E along ẑ and k̂ along −x̂, (7.39) gives

H =
1
η

k̂×××E

or
H(x, t) = ŷ

E0

η
cos(1.2π×108t +0.8πx+φ0) (A/m).

Hence,

E0

η
= 10 (mA/m)

E0 = 10×60π×10−3 = 0.6π (V/m).

Also,
H(−0.75 m,0) = 7×10−3 = 10cos(−0.8π×0.75+φ0)×10−3

which leads to φ0 = 153.6◦.
Hence,

E(x, t) = ẑ0.6π cos(1.2π×108t +0.8πx+153.6◦) (V/m).

H(x, t) = ŷ10cos(1.2π×108t +0.8πx+153.6◦) (mA/m).
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Problem 7.23 At 2 GHz, the conductivity of meat is on the order of 1 (S/m). When a material is placed inside a microwave
oven and the field is activated, the presence of the electromagnetic fields in the conducting material causes energy dissipation
in the material in the form of heat.

(a) Develop an expression for the time-average power per mm3 dissipated in a material of conductivity σ if the peak
electric field in the material is E0.

(b) Evaluate the result for an electric field E0 = 4×104 (V/m).

Solution:
(a) Let us consider a small volume of the material in the shape of a box of length d and cross sectional area A. Let us

assume the microwave oven creates a wave traveling along the z direction with E along y, as shown.

Along y, the E field will create a voltage difference across the length of the box V , where

V = Ed.

Conduction current through the cross sectional area A is

I = JA = σEA.

Hence, the instantaneous power is

P = IV = σE2(Ad)

= σE2
V .

where V = Ad is the small volume under consideration. The power per mm3 is obtained by setting V = (10−3)3,

P′ =
P

10−9 = σE2×10−9 (W/mm3).
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As a time harmonic signal, E = E0 cosωt. The time average dissipated power is

P′av =
[

1
T

∫ T

0
σE2

0 cos2
ωt dt

]
×10−9

=
1
2

σE2
0 ×10−9 (W/mm3).

(b)
P′av =

1
2
×1× (4×104)2×10−9 = 0.8 (W/mm3).
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Problem 7.28 A wave traveling in a nonmagnetic medium with εr = 9 is characterized by an electric field given by

E = [ŷ3cos(π×107t + kx)
− ẑ2cos(π×107t + kx)] (V/m)

Determine the direction of wave travel and average power density carried by the wave.

Solution:
η ' η0√

εr
=

120π√
9

= 40π (Ω).

The wave is traveling in the negative x-direction.

Sav =−x̂
[32 +22]

2η
=−x̂

13
2×40π

=−x̂0.05 (W/m2).
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Problem 7.33 Consider the imaginary rectangular box shown in Fig. P7.33.

(a) Determine the net power flux P(t) entering the box due to a plane wave in air given by

E = x̂E0 cos(ωt− ky) (V/m)

(b) Determine the net time-average power entering the box.

Figure P7.33: Imaginary rectangular box of Problems 7.33 and 7.34.

Solution:
(a)

E = x̂E0 cos(ωt− ky),

H =−ẑ
E0

η0
cos(ωt− ky).

S(t) = E×××H = ŷ
E2

0
η0

cos2(ωt− ky),

P(t) = S(t)A|y=0−S(t)A|y=b =
E2

0
η0

ac[cos2
ωt− cos2(ωt− kb)].

(b)

Pav =
1
T

∫ T

0
P(t)dt.

where T = 2π/ω .

Pav =
E2

0 ac
η0

{
ω

2π

∫ 2π/ω

0
[cos2

ωt− cos2(ωt− kb)]dt
}

= 0.

Net average energy entering the box is zero, which is as expected since the box is in a lossless medium (air).
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Problem 7.36 A team of scientists is designing a radar as a probe for measuring the depth of the ice layer over the antarctic
land mass. In order to measure a detectable echo due to the reflection by the ice-rock boundary, the thickness of the ice sheet
should not exceed three skin depths. If ε ′r = 3 and ε ′′r = 10−2 for ice and if the maximum anticipated ice thickness in the area
under exploration is 1.2 km, what frequency range is useable with the radar?

Solution:

3δs = 1.2 km = 1200 m

δs = 400 m.

Hence,

α =
1
δs

=
1

400
= 2.5×10−3 (Np/m).

Since ε ′′/ε ′� 1, we can use (7.75a) for α:

α =
ωε ′′

2

√
µ

ε ′
=

2π f ε ′′r ε0

2
√

ε ′r
√

ε0

√
µ0 =

π f ε ′′r
c
√

εr
=

π f ×10−2

3×108
√

3
= 6 f ×10−11Np/m.

For α = 2.5×10−3 = 6 f ×10−11,
f = 41.6 MHz.

Since α increases with increasing frequency, the useable frequency range is

f ≤ 41.6 MHz.
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Chapter 8 Solved Problems

Problem 8-3

Problem 8-14

Problem 8-32

Problem 8-36
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Problem 8.3 A plane wave traveling in a medium with εr1 = 9 is normally incident upon a second medium with εr2 = 4.
Both media are made of nonmagnetic, non-conducting materials. If the magnetic field of the incident plane wave is given by

Hi = ẑ2cos(2π×109t− ky) (A/m).

(a) Obtain time-domain expressions for the electric and magnetic fields in each of the two media.

(b) Determine the average power densities of the incident, reflected, and transmitted waves.

Solution:
(a) In medium 1,

up =
c
√

εr1

=
3×108
√

9
= 1×108 (m/s),

k1 =
ω

up
=

2π×109

1×108 = 20π (rad/m),

Hi = ẑ2cos(2π×109t−20πy) (A/m),

η1 =
η0√
εr1

=
377
3

= 125.67 Ω,

η2 =
η0√
εr2

=
377
2

= 188.5 Ω,

Ei =−x̂2η1 cos(2π×109t−20πy)

=−x̂251.34cos(2π×109t−20πy) (V/m),

Γ =
η2−η1

η2 +η1
=

188.5−125.67
188.5+125.67

= 0.2,

τ = 1+Γ = 1.2,

Er =−x̂251.34×0.2cos(2π×109t +20πy)

=−x̂50.27cos(2π×109t +20πy) (V/m),

Hr =−ẑ
50.27

η1
cos(2π×109t +20πy)

=−ẑ0.4cos(2π×109t +20πy) (A/m),

E1 = Ei +Er

=−x̂ [25.134cos(2π×109t−20πy)+50.27cos(2π×109t +20πy)] (V/m),

H1 = Hi +Hr = ẑ [2cos(2π×109t−20πy)−0.4cos(2π×109t +20πy)] (A/m).

In medium 2,

k2 =
√

ε2

ε1
k1 =

√
4
9
×20π =

40π

3
(rad/m),
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E2 = Et =−x̂251.34τ cos
(

2π×109t− 40πy
3

)
=−x̂301.61cos

(
2π×109t− 40πy

3

)
(V/m),

H2 = Ht = ẑ
301.61

η2
cos
(

2π×109t− 40πy
3

)
= ẑ1.6cos

(
2π×109t− 40πy

3

)
(A/m).

(b)

Si
av = ŷ

|E0|2

2η1
= ŷ

(251.34)2

2×125.67
= ŷ251.34 (W/m2),

Sr
av =−ŷ |Γ|2(251.34) = ŷ10.05 (W/m2),

St
av = ŷ(251.34−10.05) = ŷ241.29 (W/m2).
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Problem 8.14 Consider a thin film of soap in air under illumination by yellow light with λ = 0.6 µm in vacuum. If the
film is treated as a planar dielectric slab with εr = 1.72, surrounded on both sides by air, what film thickness would produce
strong reflection of the yellow light at normal incidence?

Solution: The transmission line analogue of the soap-bubble wave problem is shown in Fig. P8.14(b) where the load ZL is
equal to η0, the impedance of the air medium on the other side of the bubble. That is,

η0 = 377 Ω, η1 =
377√
1.72

= 287.5 Ω.

The normalized load impedance is

Figure P8.14: Diagrams for Problem 8.14.

zL =
η0

η1
= 1.31.

For the reflection by the soap bubble to be the largest, Zin needs to be the most different from η0. This happens when zL is
transformed through a length λ/4. Hence,

L =
λ

4
=

λ0

4
√

εr
=

0.6 µm
4
√

1.72
= 0.115 µm,

where λ is the wavelength of the soap bubble material. Strong reflections will also occur if the thickness is greater than L by
integer multiples of nλ/2 = (0.23n) µm.
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Hence, in general
L = (0.115+0.23n) µm, n = 0,1,2, . . . .

According to Section 2-7.5, transforming a load ZL = 377 Ω through a λ/4 section of Z0 = 287.5 Ω ends up presenting an
input impedance of

Zin =
Z2

0
ZL

=
(287.5)2

377
= 219.25 Ω.

This Zin is at the input side of the soap bubble. The reflection coefficient at that interface is

Γ =
Zin−η0

Zin +η0
=

219.25−377
219.25+377

=−0.27.

Any other thickness would produce a reflection coeffficient with a smaller magnitude.

Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics c©2010 Prentice Hall



Problem 8.32 A perpendicularly polarized wave in air is obliquely incident upon a planar glass–air interface at an
incidence angle of 30◦. The wave frequency is 600 THz (1 THz = 1012 Hz), which corresponds to green light, and the index
of refraction of the glass is 1.6. If the electric field amplitude of the incident wave is 50 V/m, determine the following:

(a) The reflection and transmission coefficients.

(b) The instantaneous expressions for E and H in the glass medium.

Solution:
(a) For nonmagnetic materials, (ε2/ε1) = (n2/n1)2. Using this relation in Eq. (8.60) gives

Γ⊥ =
cosθi−

√
(n2/n1)2− sin2

θi

cosθi +
√

(n2/n1)2− sin2
θi

=
cos30◦−

√
(1.6)2− sin2 30◦

cos30◦+
√

(1.6)2− sin2 30◦
=−0.27,

τ⊥ = 1+Γ⊥ = 1−0.27 = 0.73.

(b) In the glass medium,

sinθt =
sinθi

n2
=

sin30◦

1.6
= 0.31,

or θt = 18.21◦.

η2 =
√

µ2

ε2
=

η0

n2
=

120π

1.6
= 75π = 235.62 (Ω),

k2 =
ω

up
=

2π f
c/n

=
2π f n

c
=

2π×600×1012×1.6
3×108 = 6.4π×106 rad/m,

E t
0 = τ⊥E i

0 = 0.73×50 = 36.5 V/m.

From Eqs. (8.49c) and (8.49d),

Ẽt
⊥ = ŷE t

0e− jk2(xsinθt+zcosθt),

H̃t
⊥ = (−x̂cosθt + ẑsinθt)

E t
0

η2
e− jk2(xsinθt+zcosθt),

and the corresponding instantaneous expressions are:

Et
⊥(x,z, t) = ŷ36.5cos(ωt− k2xsinθt− k2zcosθt) (V/m),

Ht
⊥(x,z, t) = (−x̂cosθt− ẑcosθt)0.16cos(ωt− k2xsinθt− k2zcosθt) (A/m),

with ω = 2π×1015 rad/s and k2 = 6.4π×106 rad/m.
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Problem 8.36 A 50-MHz right-hand circularly polarized plane wave with an electric field modulus of 30 V/m is normally
incident in air upon a dielectric medium with εr = 9 and occupying the region defined by z≥ 0.

(a) Write an expression for the electric field phasor of the incident wave, given that the field is a positive maximum at
z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.

(c) Write expressions for the electric field phasors of the reflected wave, the transmitted wave, and the total field in the
region z≤ 0.

(d) Determine the percentages of the incident average power reflected by the boundary and transmitted into the second
medium.

Solution:
(a)

k1 =
ω

c
=

2π×50×106

3×108 =
π

3
rad/m,

k2 =
ω

c
√

εr2 =
π

3

√
9 = π rad/m.

From (7.57), RHC wave traveling in +z direction:

Ẽ
i
= a0(x̂+ ŷe− jπ/2)e− jk1z = a0(x̂− jŷ)e− jk1z

Ei(z, t) = Re
[
Ẽ

i
e jωt

]
= Re

[
a0(x̂e j(ωt−k1z) + ŷe j(ωt−k1z−π/2))

]
= x̂a0 cos(ωt− k1z)+ ŷa0 cos(ωt− k1z−π/2)
= x̂a0 cos(ωt− k1z)+ ŷa0 sin(ωt− k1z)

|Ei|=
[
a2

0 cos2(ωt− k1z)+a2
0 sin2(ωt− k1z)

]1/2
= a0 = 30 V/m.

Hence,
Ẽ

i
= 30(x0− jy0)e− jπz/3 (V/m).

(b)

η1 = η0 = 120π (Ω), η2 =
η0√
εr2

=
120π√

9
= 40π (Ω).

Γ =
η2−η1

η2 +η1
=

40π−120π

40π +120π
=−0.5

τ = 1+Γ = 1−0.5 = 0.5.
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(c)

Ẽ
r
= Γa0(x̂− jŷ)e jk1z

=−0.5×30(x̂− jŷ)e jk1z

=−15(x̂− jŷ)e jπz/3 (V/m).

Ẽ
t
= τa0(x̂− jŷ)e− jk2z

= 15(x̂− jŷ)e− jπz (V/m).

Ẽ1 = Ẽ
i
+ Ẽ

r

= 30(x̂− jŷ)e− jπz/3−15(x̂− jŷ)e jπz/3

= 15(x̂− jŷ)[2e− jπz/3− e jπz/3] (V/m).

(d)

% of reflected power = 100×|Γ|2 = 100× (0.5)2 = 25%

% of transmitted power = 100|τ|2 η1

η2
= 100× (0.5)2× 120π

40π
= 75%.
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Chapter 9 Solved Problems

Problem 9-17

Problem 9-24

Problem 9-37
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Problem 9.17 Repeat parts (a)–(c) of Problem 9.15 for a dipole of length l = λ .

Solution: For l = λ , Eq. (9.56) becomes

S(θ) =
15I2

0
πR2

[
cos(π cosθ)− cos(π)

sinθ

]2

=
15I2

0
πR2

[
cos(π cosθ)+1

sinθ

]2

.

Figure P9.17: Figure P9.17: Radiation pattern of dipole of length l = λ .

Solving for the directions of maximum radiation numerically yields

θmax1 = 90◦, θmax2 = 270◦.

(b) From the numerical results, it was found that S(θ) = 15I2
0/(πR2)(4) at θmax. Thus,

Smax =
60I2

0
πR2 .

(c) The normalized radiation pattern is given by Eq. (9.13), as

F(θ) =
S(θ)
Smax

.

Using the expression for S(θ) from part (a) with the value of Smax found in part (b),

F(θ) =
1
4

[
cos(π cosθ)+1

sinθ

]2

.

The normalized radiation pattern is shown in Fig. P9.17.
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Figure P9.24: Problem 9.24.

Problem 9.24 The configuration shown in Fig. P9.24 depicts two vertically oriented half-wave dipole antennas pointed
towards each other, with both positioned on 100-m–tall towers separated by a distance of 5 km. If the transit antenna is
driven by a 50-MHz current with amplitude I0 = 2 A, determine:

(a) The power received by the receive antenna in the absence of the surface. (Assume both antennas to be lossless.)
(b) The power received by the receive antenna after incorporating reflection by the ground surface, assuming the surface

to be flat and to have εr = 9 and conductivity σ = 10−3 (S/m).

Solution:
(a) Since both antennas are lossless,

Prec = Pint = SiAer

where Si is the incident power density and Aer is the effective area of the receive dipole. From Section 9-3,

Si = S0 =
15I2

0
πR2 ,

and from (9.64) and (9.47),

Aer =
λ 2D
4π

=
λ 2

4π
×1.64 =

1.64λ 2

4π
.

Hence,

Prec =
15I2

0
πR2 ×

1.64λ 2

4π
= 3.6×10−6 W.

(b) The electric field of the signal intercepted by the receive antenna now consists of a direct component, Ed, due to the
directly transmitted signal, and a reflected component, Er, due to the ground reflection. Since the power density S and the
electric field E are related by

S =
|E|2

2η0
,
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it follows that

Ed =
√

2η0Si e− jkR

=

√
2η0×

15I2
0

πR2 e− jkR

=

√
30η0

π

I0

R
e− jkR

where the phase of the signal is measured with respect to the location of the transmit antenna, and k = 2π/λ . Hence,

Ed = 0.024e− j120◦ (V/m).

The electric field of the reflected signal is similar in form except for the fact that R should be replaced with R′, where R′ is
the path length traveled by the reflected signal, and the electric field is modified by the reflection coefficient Γ. Thus,

Er =

(√
30η0

π

I0

R′
e− jkR′

)
Γ.

From the problem geometry

R′ = 2
√

(2.5×103)2 +(100)2 = 5004.0 m.

Since the dipole is vertically oriented, the electric field is parallel polarized. To calculate Γ, we first determine

ε ′′

ε ′
=

σ

ωε0εr
=

10−3

2π×50×106×8.85×10−12×9
= 0.04.

From Table 7-1,

ηc ≈ η =
√

µ

ε
=

η0√
εr

=
η0√

9
=

η0

3
.

From (8.66a),

Γ‖ =
η2 cosθt−η1 cosθi

η2 cosθt +η1 cosθi

From the geometry,

cosθi =
h

(R′/2)
=

100
2502

= 0.04

θi = 87.71◦

θt = sin−1
(

sinθi√
εr

)
= 19.46◦

η1 = η0 (air)

η2 = η =
η0

3
.
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Hence,

Γ‖ =
(η0/3)×0.94−η0×0.04
(η0/3)×0.94+η0×0.04

= 0.77.

The reflected electric field is

Er =

(√
30η0

π

I0

R′
e− jkR′

)
Γ

= 0.018e j0.6◦ (V/m).

The total electric field is

E = Ed +Er

= 0.024e− j120◦ +0.018e j0.6◦

= 0.02e− j73.3◦ (V/m).

The received power is

Prec = SiAer

=
|E|2

2η0
× 1.64λ 2

4π

= 2.5×10−6 W.
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Problem 9.37 A five-element equally spaced linear array with d = λ/2 is excited with uniform phase and an amplitude
distribution given by the binomial distribution

ai =
(N−1)!

i!(N− i−1)!
, i = 0,1, . . . ,(N−1),

where N is the number of elements. Develop an expression for the array factor.

Solution: Using the given formula,

a0 =
(5−1)!

0!4!
= 1 (note that 0! = 1)

a1 =
4!

1!3!
= 4

a2 =
4!

2!2!
= 6

a3 =
4!

3!1!
= 4

a4 =
4!

0!4!
= 1

Application of (9.113) leads to:

Fa(γ) =

∣∣∣∣∣N−1

∑
i=0

aie jiγ

∣∣∣∣∣
2

, γ =
2πd

λ
cosθ

=
∣∣1+4e jγ +6e j2γ +4e j3γ + e j4γ

∣∣2
=
∣∣e j2γ(e− j2γ +4e− jγ +6+4e jγ + e j2γ)

∣∣2
= (6+8cosγ +2cos2γ)2.

With d = λ/2, γ = 2π

λ
· λ

2 cosθ = π cosθ ,

Fa(θ) = [6+8cos(π cosθ)+2cos(2π cosθ)]2.
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Chapter 10 Solved Problems

There are no solved problems for Chapter 10
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