
 
 
 

 
     Instructor's Solution Manual with Transparency Masters  

  
 
 
 

                     
                 

THE 8088 AND 8086 MICROPROCESSORS 
Programming, Interfacing,  

Software, Hardware,  
and Applications  

 
 

Fourth Edition 
 

Walter A. Triebel 
Fairliegh Dickinson University 

 
Avtar Singh 

San Jose State University 
 
 

 
 

Including the 80286, 80386, 80486, and Pentium
TM Processors  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



CONTENTS 
 
Chapter          Page 
 
1  Introduction to Microprocessors and Microcomputers   4 
2 Software Architecture of the 8088 and 8086 Microprocessors  5 
3          Assembly Language Programming                                                 9 
4 Machine Language Coding and the  DEBUG Software Development  11 
            Program of the PC 
5       8088/8086 Programming—Integer Instructions and Computations  16   
6       8088/8086 Programming—Control Flow Instructions and Program  23 
            Structures 
7    Assembly Language Program Development with MASM                   33 
8   The 8088 and 8086 Microprocessors and their Memory     35 
 and Input/Output Interfaces   
9    Memory Devices, Circuits, and Subsystem Design    42   
10   Input/Output Interface Circuits and LSI Peripheral Devices   49  
11   Interrupt Interface of the 8088 and 8086 Microprocessors   55   
12    Hardware of the Original IBM PC Microcomputer    58 
13    PC Bus Interfacing, Circuit Construction, Testing, and   63   
        Troubleshooting 
14   Real-Mode Software and Hardware Architecture of the 80286  68   
       Microprocessor 
15       The 80386, 80486, and Pentium

R  Processor Families: Software  71  
           Architecture  
16       The 80386, 80486, and Pentium

R
 Processor Families:  Hardware  77 

           Architecture 
    



 
                                                            PREFACE 
 
 
This manual contains solutions or answers to the assignment problems at the end of each 
chapter. These brief answers and solutions are strictly for use by the instructor.  
Throughout the solutions the notation ---- after a signal name stands for overbar (NOT).  
     Also, included in the CD are transparency masters for many of the illustrations in the 
book.   
 
Another supplements available from Prentice-Hall for the textbook is: 
 
 Laboratory Manual:    ISBN:  0-13-045231-9 
    Laboratory Manual to Accompany 
    The 8088 and 8086 Microprocessors: 
    Programming, Interfacing, Software,  
    Hardware, and Applications, Fourth Edition 
    Walter A. Triebel and Avtar Singh 
    c. 2003 Pearson Education, Inc.  
           
Support products available from third parties are as follows: 
 
Microsoft Macroassembler 
   Microsoft Corporation, Redmond, WA 98052 
   800-426-9400 
 
PCµLAB-  Laboratory Interface Circuit Test Unit 
   Microcomputer Directions, Inc. 
   P.O. Box 15127, Fremont, CA 94539 
   973-872-9082 
                                                                                       
Contacting the authors: 
 
   Walter A. Triebel 
    watriebel@aol.com 
 



CHAPTER 1 
 
Section 1.1 
 
1.  Original IBM PC. 
2.  A system whose functionality expands by simply adding special function boards.  
3.  I/O channel.   
4.  Personal computer advanced technology. 
5.  Industry standard architecture. 
6.  Peripheral component interface (PCI) bus  
7. A reprogrammable microcomputer is a general-purpose computer  designed to run 
programs for a wide variety of applications, for instance, accounting, word processing, 
and languages such as BASIC. 
8. Mainframe computer, minicomputer, and microcomputer. 
9. The microcomputer is similar to the minicomputer in that it is designed to perform 
general-purpose data processing; however, it is smaller in size, has reduced capabilities, 
and cost less than a minicomputer. 
10. Very large scale integration. 
 
Section 1.2 
 
11. Input unit, output unit, microprocessing unit, and memory unit. 
12. Microprocessing unit (MPU). 
13. 16-bit. 
14. Keyboard; mouse and scanner. 
15. Monitor and printer. 
16. Primary storage and secondary storage memory. 
17. 360K bytes; 10M bytes. 
18. Read-only memory (ROM) and random access read/write memory (RAM). 
19. 48K bytes; 256K bytes. 
20. The Windows98R program is loaded from the hard disk into RAM and then run. Since 
RAM is volatile, the operating system is lost whenever power is turned off. 
 
Section 1.3 
 
21. 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit. 
22. 4004, 8008, 8086, 80386DX. 
23. 8086, 8088, 80186, 80188, 80286. 
24. Million instructions per second. 
25. 27 MIPS 
26. Drystone program. 
27.  39; 49. 
28. 30,000, 140,000, 275,000, 1,200,000, 3,000,000. 
29. A special purpose microcomputer that performs a dedicated control function. 
30. Event controller and data controller. 



31. A multichip microcomputer is constructed from separate MPU,  memory, and I/O 
ICs. On the other hand, in a single chip microcomputer, the MPU, memory, and I/O 
functions are all integrated into one IC.      
32. 8088, 8086, 80286, 80386DX, 80486DX, and PentiumR processor. 
33. Real mode and protected mode. 
34. Upward software compatible means that programs written for the 8088 or 8086 will 
run directly on the 80286, 80386DX, and 80486DX.    
35. Memory management, protection, and multitasking. 
36. Floppy disk controller, communication controller, and local area network controller. 
 
Section 1.4 
 
37. MSB and LSB.  
38.  2-2 = 1/4  
39. 1 and 2+5 = 1610; 1 and 2-4 = 1/16 
40.  (a) 610, (b) 2110, (c) 12710. 
41.  Min = 000000002 = 010, Max = 111111112 = 25510. 
42.  (a) 000010012, (b) 001010102, (c) 011001002 
43. 00000001111101002 
44. (a) .12   (b) .012  (c) .010112 
45. C and 16+2 = 25610 
46. 16+4 = 65,53610 
47. (a) 39H, (b) E2H, (c) 03A0H. 
48. (a) 011010112, (b) 111100112, (c) 00000010101100002. 
49.  C6H, 19810. 
50.  MSB = 1, LSB = 0. 
51.  8005AH, 1,048,66610. 
 
CHAPTER  2 
 
Section 2.1 
 
1. Bus interface unit and execution unit. 
2. BIU. 
3. 20 bits; 16 bits. 
4. 4 bytes; 6 bytes. 
5. General-purpose registers, temporary operand registers, arithmetic logic unit (ALU), 
and status and control flags.   
 
Section 2.2 
 
6. Aid to the assembly language programmer for understanding a microprocessor's 
software operation. 
7. There purpose, function, operating capabilities, and limitations. 
8. 14 
9. 1,048,576 (1M) bytes. 



10.  65,536 (64K) bytes. 
 
Section 2.3 
 
11. FFFFF16 and 0000016. 
12. Bytes. 
13. 00FF16; aligned word. 
14. 4433221116; misaligned double word. 
15.   Address   Contents 
        0A003H     CDH 
        0A004H     ABH 
aligned word. 
16.  Address   Contents 
       0A001H     78H 
       0A002H     56H 
       0A003H     34H 
       0A004H     12H 
misaligned double word. 
 
Section 2.4 
 
17. Unsigned integer, signed integer, unpacked BCD, packed BCD, and ASCII. 
18. (a) 7FH 
      (b) F6H 
      (c) 80H 
      (d) 01F4H 
19. (0A000H) = F4H 
      (0A001H) = 01H  
20. -1000 = 2's complement of 1000 
                = FC18H 
21. (a) 00000010, 00001001; 00101001 
      (b) 00001000, 00001000; 10001000  
22. (0B000H) = 09H 
      (0B001H) = 02H 
23. NEXT I 
24. (0C000H) = 34H 
      (0C001H) = 33H 
      (0C002H) = 32H 
      (0C003H) = 31H 
 
Section  2.5 
 
25.  64Kbytes. 
26. Code segment (CS) register, stack segment (SS) register, data segment (DS) register, 
and extra segment (ES) register. 
27.  CS. 



28. Up to 256Kbytes. 
29. Up to 128Kbytes. 
 
Section  2.6 
 
30. Pointers to interrupt service routines. 
31. 8016 through FFFEF16. 
32. Instructions of the program can be stored anywhere in the general-use part of the 
memory address space. 
33. Control transfer to the reset power-up initialization software routine. 
 
Section 2.7 
 
34. The instruction pointer is the offset address of the next instruction to be fetched by 
the 8088  relative to the current value in CS. 
35. The instruction is fetched from memory; decoded within the 8088; operands are read 
from memory or internal registers; the operation specified by the instruction is performed 
on the data; and results are written back to either memory or an internal register.    
36. IP is incremented such that it points to the next sequential word of instruction code. 
 
Section 2.8 
 
37. Accumulator (A) register, base (B) register, count (C) register, and data (D) register. 
38. With a postscript X to form AX, BX, CX, and DX. 
39. DH and DL. 
40. Count for string operations and count for loop operations.             
 
Section 2.9 
 
41. Offset address of a memory location relative to a segment base address. 
42. Base pointer (BP) and stack pointer (SP). 
43. SS 
44. DS 
45. Source index register; destination index register. 
46. The address in SI is the offset to a source operand and DI contains the offset to a 
destination operand. 
 
Section 2.10 
 
47.  Flag     Type 
       CF     Status 
       PF     Status 
       AF     Status 
       ZF     Status 
       SF     Status 
       OF     Status 



       TF     Control 
       IF      Control 
       DF     Control 
48. CF = 1, if a carry-out/borrow-in results for the MSB during the execution of an 
arithmetic instruction. Else it is 0. 
PF = 1, if the result produced by execution of an instruction has even parity. Else it is 0.  
AF = 1, if there is a carry-out/borrow-in for the fourth bit during the execution of an 
arithmetic instruction.    
ZF = 1, if the result produced by execution of an instruction is zero. Else it is 0.  
SF = 1, if the result produced by execution of an instruction is negative. Else it is 0.  
OF = 1, if an overflow condition occurs during the execution of an arithmetic instruction. 
Else it is 0.  
49. Instructions can be used to test the state of these flags and, based on their setting, 
modify the sequence in which instructions of the program are executed.  
50. Trap flag 
51. DF 
52. Instructions are provided that can load the complete register or modify specific flag 
bits. 
 
Section 2.11 
 
53. 20 bits. 
54. Offset and segment base. 
55. (a)  11234H 
      (b)  0BBCDH 
      (c)  A32CFH 
      (d)  C2612H 
56. (a)  ? =  0123H 
      (b)  ? =  2210H 
      (c)  ? =  3570H 
      (d)  ? =  2600H  
57. 021AC16     
58. A00016 
59. 123416 
 
Section 2.12 
 
60. The stack is the area of memory used to temporarily store information (parameters) to 
be passed to subroutines and other information such as the contents of IP and CS that is 
needed to return from a called subroutine to the main part of the program.  
61. CFF0016 
62. 128 words. 
63. FEFEH → (SP) 
      (AH) = EEH → (CFEFFH)  
      (AL) = 11H → (CFEFEH) 
 



Section 2.13 
 
64. Separate. 
65. 64-Kbytes. 
66. Page 0. 
 
CHAPTER 3  
 
Section 3.1 
 
1. Software. 
2. Program. 
3. Operating system. 
4. 80386DX machine code.   
5. Instructions encoded in machine language are coded in 0s and 1s, while assembly 
language instructions are written with alphanumeric symbols such as MOV, ADD, or 
SUB.    
6.  Mnemonic that identifies the operation to be performed by the instruction; ADD and 
MOV. 
7.  The data that is to be processed during execution of an instruction; source operand and 
destination operand.      
8. START; ;Add BX to AX 
9. An assembler is a program that is used to convert an assembly language source 
program to its equivalent program in machine code. A compiler is a program that 
converts a program written in a high-level language to equivalent machine code. 
10. Programs written is assembly language or high level language statements are called 
source code. The machine code output of an assembler or compiler is called object code. 
11. It takes up less memory and executes faster. 
12. A real-time application is one in which the tasks required by the application must be 
completed before any other input to the program occurs that can alter its operation. 
13.  Floppy disk subsystem control and communications to a printer; code translation and 
table sort routines. 
 
Section  3.2 
  
14.  Application specification. 
15.  Algorithm; software specification. 
16. A flowchart is a pictorial representation that outlines the software solution to a 
problem. 
17. 

 
 
 



 
 
18.  Editor. 
19.  Assembler. 
20.  Macroassembler. 
21.  Linker. 
22. 
(a) Creating a source program 
(b) Assembling a source program into an object module 
(c) Producing a run module 
(d) Verifying/debugging a solution 
23. 
(a) PROG_A.ASM 
(b) PROG_A.LST and PROG_A.OBJ 
(c) PROG_A.EXE and PROG_A.MAP  
 
Section  3.3 
 
24. 117. 
25. Data transfer instructions, arithmetic instructions, logic instructions, string 
manipulation instructions, control transfer instructions, and processor control 
instructions. 
 
Section  3.4 
 
26. Execution of the move instruction transfers a byte or a word of data from a source 
location to a destination location.  
 
Section 3.5 
 
27.   An addressing mode means the method by which an operand can be specified in a 
register or a memory location.  
28. Register operand addressing mode 
      Immediate operand addressing mode 
      Memory operand addressing modes 
29. Base, index, and displacement.   
30. Direct addressing mode 
      Register indirect addressing mode 
      Based addressing mode 
      Indexed addressing mode 
      Based-indexed addressing mode 
31.   Instruction        Destination      Source 
 (a)            Register            Register 
 (b)            Register   Immediate        
 (c)               Register indirect Register         
 (d)             Register                 Register indirect      



 (e)            Based    Register                  
 (f)             Indexed    Register                   
 (g)               Based-indexed  Register                         
32.   
(a)  PA = 0B20016 
(b)  PA = 0B10016 
(c)  PA = 0B70016 
(d)  PA = 0B60016 
(e)  PA = 0B90016    
 
CHAPTER 4 
 
Section 4.1 
         
1.  6 bytes. 
2.  00000011110000102 = 03C2H 
3.  (a) 10001001000101012 = 8915H;  (b) 10001001000110002 = 8918H;      
     (c) 1000101001010111000100002 = 8A5710H  
4.  (a) 000111102 = 1EH; (b)  11010010110000112 = D2C3H;  
     (c) 110000011000110100000100102 = 03063412H 
 
Section 4.2 
        
5. 3 bytes. 
6. 24 bytes. 
 
Section 4.3 
 
7.  The DEBUG program allows us to enter a program into the PC's memory, execute it 
under control, view its operation, and modify it to fix errors. 
8.  Yes. 
9.  Error. 
10. 
-R CX           (↵) 
CX XXXX 
:0010           (↵) 
11.  
-R F            (↵) 
NV UP EI PL NZ NA PO NC  -PE    (↵) 
12.  
-R              (↵) 
 
Section 4.4 
 
13.  
-D CS:0000 000F  (↵) 



14.  
-E CS:0          (↵) 
1342:0000  CD.   20.   00.   40.   00.   9A.   EE.   FE.      
1342:0008  1D.   F0.   F5.   02.   A7.   0A.   2E.   03.  (↵) 
After a byte of data is displayed, the space bar is depressed to display the next byte. The 
values displayed may not be those shown but will be identical to those displayed with the 
DUMP command. 
15.  
-E CS:100 FF FF FF FF FF      (↵) 
16.  
-E SS:(SP)  0 ......0   (32 zeros)    (↵) 
17.  
-F CS:100 105 11       (↵) 
-F CS:106 10B 22       (↵) 
-F CS:10C 111 33       (↵) 
-F CS:112 117 44       (↵) 
-F CS:118 11D 55      (↵) 
-E CS:105              (↵) 
CS:0105 XX.FF         (↵) 
-E CS:113              (↵) 
-CS:0113 XX.FF        (↵)    
-D CS:100 11D          (↵) 
-S CS:100 11D FF      (↵) 
 
Section 4.5 
 
18.  Input command and output command. 
19.  Contents of the byte-wide input port at address 012316 is input and displayed on the 
screen. 
20.  
O  124 5A    (↵) 
 
Section 4.6 
 
21.  The sum and difference of two hexadecimal numbers. 
22.  4 digits. 
23.  
H  FA  5A    (↵) 
 
Section 4.7 
 
24.  
-E CS:100 32 0E 34 12  (↵) 
-U CS:100 103           (↵) 
1342:100  320E3412      XOR  CL,[1234] 



-W CS:100 1 50 1        (↵) 
25.  
-L CS:400 1 50 1     (↵) 
-U CS:400 403           (↵) 
1342:0400 320E3412      XOR    CL,[1234]     
-        
 
Section 4.8 
 
26.  
-A CS:100               (↵) 
1342:0100 MOV [DI],DX  (↵) 
1342:0102               (↵) 
27.  
-A CS:200               (↵) 
1342:0200 ROL BL,CL   (↵) 
1342:0202               (↵) 
-U CS:200 201           (↵) 
1342:0200 D2C3  ROL BL,CL     
-                          
 
Section 4.9 
 
28.  
-L CS:300 1 50 1       (↵) 
-U CS:300 303          (↵) 
-R CX                  (↵) 
CX XXXX 
:000F                  (↵) 
-E DS:1234 FF          (↵) 
-T =CS:300             (↵) 
-D DS:1234 1235        (↵) 
29.  
-N A:BLK.EXE         (↵) 
-L CS:200              (↵) 
-R DS                  (↵) 
DS 1342 
:2000                  (↵) 
-F DS:100 10F FF      (↵) 
-F DS:120 12F 00       (↵) 
-D DS:100 10F          (↵) 
2000:0100  FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF    
-D DS:120 12F          (↵) 
2000:0120  00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00    
-R DS                  (↵) 



DS 2000 
:1342                  (↵) 
-R                     (↵) 
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC  
1342:0100 8915      MOV [DI],DX              DS:0000=20CD 
-U CS:200 217          (↵) 
1342:0200 B80020  MOV AX,2000                             
1342:0203 8ED8         MOV DS,AX                               
1342:0205 BE0001     MOV SI,0100                             
1342:0208 BF2001     MOV DI,0120                             
1342:020B B91000     MOV CX,0010                             
1342:020E 8A24        MOV AH,[SI]                             
1342:0210 8825         MOV [DI],AH                             
1342:0212 46           INC SI                                  
1342:0213 47             INC DI                                  
1342:0214 49             DEC CX                                  
1342:0215 75F7          JNZ 020E                                
1342:0217 90             NOP                                     
-G =CS:200 217         (↵) 
AX=FF00 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0110 DI=0130   
DS=2000 ES=1342 SS=1342 CS=1342 IP=0217 NV UP EI PL ZR NA PE NC  
1342:0217 90            NOP                                     
-D DS:100 10F          (↵) 
2000:0100  FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF   
-D DS:120 12F          (↵) 
2000:0120  FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF   
 
Section 4.10 
 
30.  A syntax error is an error in the rules of coding the program. On the other hand, an 
execution error is an error in the logic of the planned solution for the problem.  
31.  Bugs. 
32.  Debugging the program. 
33.  
-N A:BLK.EXE      (↵) 
-L CS:200              (↵) 
-U CS:200 217          (↵) 
1342:0200 B80020   MOV AX,2000                             
1342:0203 8ED8         MOV DS,AX                               
1342:0205 BE0001     MOV SI,0100                             
1342:0208 BF2001     MOV DI,0120                             
1342:020B B91000     MOV CX,0010                             
1342:020E 8A24        MOV AH,[SI]                             
1342:0210 8825         MOV [DI],AH                             
1342:0212 46            INC SI                                  



1342:0213 47            INC DI                                  
1342:0214 49            DEC CX                                  
1342:0215 75F7         JNZ 020E                                
1342:0217 90            NOP                                     
-R DS                  (↵) 
DS 1342 
:2000                  (↵) 
-F DS:100 10F FF      (↵) 
-F DS:120 12F 00       (↵) 
-R DS                  (↵) 
DS 2000 
:1342                  (↵) 
-G =CS:200 20E         (↵) 
AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120   
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC  
1342:020E 8A24          MOV AH,[SI]                DS:0100=FF 
-D DS:120 12F          (↵) 
2000:0120  00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
-G 212                 (↵) 
AX=FF00 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120   
DS=2000 ES=1342 SS=1342 CS=1342 IP=0212 NV UP EI PL NZ NA PO NC  
1342:0212 46            INC SI                     
-D DS:120 12F          (↵) 
2000:0120  FF 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  
-G 215                 (↵) 
AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121   
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ AC PE NC  
1342:0215 75F7          JNZ 020E                                
-G 20E                 (↵) 
AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121   
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ AC PE NC  
1342:020E 8A24          MOV AH,[SI]                DS:0101=FF 
-G 215                 (↵) 
AX=FF00 BX=0000 CX=000E DX=0000 SP=FFEE BP=0000 SI=0102 DI=0122   
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ NA PO NC  
1342:0215 75F7          JNZ 020E                                
-D DS:120 12F          (↵) 
2000:0120  FF FF 00 00 00 00 00 00-00 00 00 00 00 00 00 00   
-G 20E                 (↵) 
AX=FF00 BX=0000 CX=000E DX=0000 SP=FFEE BP=0000 SI=0102 DI=0122   
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC  
1342:020E 8A24          MOV AH,[SI]                DS:0102=FF 
-G 217                 (↵) 
AX=FF00 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0110 DI=0130   
DS=2000 ES=1342 SS=1342 CS=1342 IP=0217 NV UP EI PL ZR NA PE NC  



1342:0217 90            NOP                                     
-D DS:120 12F          (↵) 
2000:0120  FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF  
 
CHAPTER  5 
 
Section  5.1 
 
1.  
(a) Value of immediate operand 0110H is moved into AX. 
(b) Contents of AX are copied into DI. 
(c) Contents of AL are copied into BL. 
(d) Contents of AX are copied into memory address DS:0100H. 
(e) Contents of AX are copied into the data segment memory location pointed to by 
(DS)0 + (BX) + (DI). 
(f) Contents of AX are copied into the data segment memory location pointed to by 
(DS)0 + (DI) + 4H.    
(g) Contents of AX are copied into the data segment memory location pointed to by 
(DS)0 + (BX) + (DI) + 4H. 
2.  
(a) Value 0110H is moved into AX. 
(b) 0110H is copied into DI. 
(c) 10H is copied into BL. 
(d) 0110H is copied into memory address DS:0100H. 
(e) 0110H is copied into memory address DS:0120H. 
(f) 0110H is copied into memory address DS:0114H.    
(g) 0110H is copied into memory address DS:0124H. 
3.   MOV AX,1010H 
      MOV   ES,AX 
4.   MOV   [1000H],ES 
5. Destination operand CL is specified as a byte, and source operand AX is specified as a 
word. Both must be specified with the same size. 
6.   
(a) Contents of AX and BX are swapped. 
(b) Contents of BX and DI are swapped. 
(c) Contents of memory location with offset DATA in the current data segment and 
register AX are swapped. 
(d) Contents of the memory location pointed to by (DS)0 + (BX) + (DI) are swapped 
with those of register AX. 
7.  10750H + 100H + 10H = 10860H. 
8.  AL is loaded from the physical address 1000016 + 010016+ 001016= 1011016. 
9. LDS  AX,[0200H]. 
 
Section  5.2 
 
10.  (a) 001011012.  (b) 1001010112. 



11. 1100110002, 198H, 40810. 
12. (a) 000000112. (b) 100011012.  
13. (a) 000010012.  (b) 011010012. 
14. 000011112, 0FH, 1510.               
15.  
(a) 00FFH is added to the value in AX. 
(b) Contents of AX and CF are added to the contents of SI. 
(c) Contents of DS:100H are incremented by 1. 
(d) Contents of BL are subtracted from the contents of DL.  
(e) Contents of DS:200H and CF are subtracted from the contents of DL.  
(f) Contents of the byte-wide data segment storage location pointed to by (DS)0 + (DI) + 
(BX) are decremented by 1. 
(g) Contents of the byte-wide data segment storage location pointed to by (DS)0 + (DI) + 
10H  are replaced by its negative.  
(h) Contents of word register DX are signed-multiplied by the word contents of AX. The 
double word product that results is produced in DX,AX. 
(i) Contents of the byte storage location pointed to by (DS)0 + (BX) + (SI) are multiplied 
by the contents of AL. 
(j) Contents of AX are signed-divided by the byte contents of the data segment storage 
location pointed to by (DS)0 + (SI) + 30H. 
(k) Contents of AX are signed-divided by the byte contents of the data segment storage 
location pointed to by (DS)0 + (BX) + (SI) + 30H. 
16.  
(a)  (AX) = 010FH  
(b)  (SI) = 0111H  
(c)  (DS:100H) = 11H 
(d)  (DL) = 20H 
(e)  (DL) = 0FH 
(f)  (DS:220H) = 2FH 
(g)  (DS:210H) = C0H  
(h)  (AX) = 0400H                 
      (DX) = 0000H 
(i)  (AL) = F0H  
      (AH) = FFH  
(j)  (AL) = 02H        
      (AH) = 00H 
(k)  (AL) = 08H         
      (AH) = 00H 
17.  ADC  DX,111FH 
18.  SBB   AX,[BX]  
19.       ADD SI,2H,  
           or 
 INC SI 
 INC SI 
20. (AH) = remainder = 316, (AL) = quotient = 1216, therefore, (AX) = 031216. 
21. DAA.  



22. AAS. 
23. (AX) = FFA0H. 
24. (AX) = 7FFFH, (DX) = 0000H. 
25. Let us assume that the memory locations NUM1, NUM2, and NUM3 are in the same 
data segment.  
           MOV   AX, DATA_SEG    ;Establish data segment 
           MOV   DS, AX 
           MOV   AL, [NUM2]        ;Get the second BCD number 
           SUB   AL, [NUM1]        ;Subtract the binary way 
           DAS                  ;Apply BCD adjustment 
           MOV   [NUM3], AL        ;Save the result. 
Note that storage locations NUM1, NUM2, and NUM3 are assumed to have been 
declared as byte locations. 
 
Section  5.3 
 
26.  (a) 000100002.  (b) 010011002. 
27.  (a) 000111012.  (b) 110111112. 
28.  010101012, 55H. 
29. 000110002, 18H. 
30. 
(a) 0FH is ANDed with the contents of the byte-wide memory address DS:300H. 
(b) Contents of DX are ANDed with the contents of the word storage location pointed to 
by (DS)0 + (SI). 
(c) Contents of AX are ORed with the word contents of the memory location pointed to 
by (DS)0 + (BX) + (DI). 
(d) F0H  is ORed with the contents of the byte-wide memory location pointed to by 
(DS)0 + (BX) + (DI) + 10H. 
(e) Contents of the word-wide memory location pointed to by (DS)0 + (SI) + (BX) are 
exclusive-ORed with the contents of AX.  
(f) The bits of the byte-wide memory location DS:300H are inverted. 
(g) The bits of the word memory location pointed to by (DS)0 + (BX) + (DI) are inverted. 
31. 
(a) (DS:300H) = 0AH 
(b) (DX) = A00AH 
(c) (DS:210H) = FFFFH 
(d) (DS:220H) = F5H 
(e) (AX) = AA55H 
(f) (DS:300H) = 55H 
(g) (DS:210H) = 55H, (DS:211H) = 55H 
32.  AND   DX,0080H 
33.  AND   WORD PTR [100H],0080H.  
34. The new contents of AX are the 2's complement of its old contents.  
35. XOR AH,80H.    
36.   MOV AL,[CONTROL_FLAGS] 
 AND AL,81H 



 MOV [CONTROL_FLAGS],AL 
37. The first instruction reads the byte of data from memory location 
CONTROL_FLAGS and loads it into BL. The AND instruction masks all bits but B3 to 
0; the XOR instruction toggles bit B3 of this byte.  That is, if the original value of B3 
equals logic 0, it is switched to 1 or if it is logic 1 it is switched to 0. Finally, the byte of 
flag information is written back to memory. This instruction sequence can be used to 
selectively complement one or more bits of the control flag byte.   
 
Section  5.4 
 
38. 
(a) Contents of DX are shifted left by a number of bit positions equal to the contents of 
CL. LSBs are filled with zeros, and CF equals the value of the last bit shifted out of the 
MSB position. 
(b) Contents of the byte-wide memory location DS:400H are shifted left by a number of 
bit positions equal to the contents of CL. LSBs are filled with zeros, and CF equals the 
value of the last bit shifted out of the MSB position. 
(c) Contents of the byte-wide memory location pointed to by (DS)0 + (DI) are shifted 
right by 1 bit position. MSB is filled with zero, and CF equals the value shifted out of the 
LSB position.        
(d) Contents of the byte-wide memory location pointed to by (DS)0 + (DI) + (BX) are 
shifted right by a number of bit positions equal to the contents of CL. MSBs are filled 
with zeros, and CF equals the value of the last bit shifted out of the LSB position.  
(e) Contents of the word-wide memory location pointed to by (DS)0 + (BX) +  (DI) are 
shifted right by 1 bit position. MSB is filled with the value of the original MSB and CF 
equals the value shifted out of the LSB position. 
(f) Contents of the word-wide memory location pointed to by (DS)0 + (BX) + (DI) + 10H 
are shifted right by a number of bit positions equal to the contents of CL. MSBs are filled 
with the value of the original MSB, and CF equals the value of the last bit shifted out of 
the LSB position. 
39.  
(a) (DX) = 2220H, (CF) = 0 
(b) (DS:400H) = 40H, (CF) = 1   
(c) (DS:200H) = 11H, (CF) = 0 
(d) (DS:210H) = 02H, (CF) = 1 
(e) (DS:210H,211H) = D52AH, (CF) = 1 
(f) (DS:220H,221H) = 02ADH, (CF) = 0 
40.  SHL  CX,1 
41.  MOV CL,08H 
     SHL   WORD PTR [DI],CL  
42.  The original contents of AX must have the four most significant bits equal to 0. 
43.  (AX) = F800H; CF =1. 
44.   The first instruction reads the byte of control flags into AL. Then all but the flag in 
the most significant bit location B7 are masked off. Finally, the flag in B7 is shifted to the 
left and into the carry flag. When the shift takes place, B7 is shifted into CF; all other bits 



in AL move one bit position to the left, and the LSB locations are filled with zeros. 
Therefore, the contents of AL become 00H. 
45.  MOV AX, [ASCII_DATA]  ;Get the word into AX 
 MOV BX,AX   ;and BX 
 MOV   CL,08H   ;(CL) = bit count 
 SHR BX,CL    ;(BX) = higher character  
 AND AX,00FFH   ;(AX) = lower character  
 MOV [ASCII_CHAR_L],AX ;Save lower character 
 MOV [ASCII_CHAR_H],BX ;Save higher character 
 
Section  5.5 
 
46. 
(a) Contents of DX are rotated left by a number of bit positions equal to the contents of 
CL. As each bit is rotated out of the MSB position, the LSB position and CF are filled 
with this value. 
(b) Contents of the byte-wide memory location DS:400H are rotated left by a number of 
bit positions equal to the contents of CL. As each bit is rotated out of the MSB position, it 
is loaded into CF, and the prior contents of CF are loaded into the LSB position. 
(c) Contents of the byte-wide memory location pointed to by (DS)0 + (DI) are rotated 
right by 1 bit position. As the bit is rotated out of the LSB position, the MSB position and 
CF are filled with this value. 
(d) Contents of the byte-wide memory location pointed to by (DS)0 + (DI) + (BX) are 
rotated right by a number of bit positions equal to the contents of CL. As each bit is 
rotated out of the LSB position, the MSB position and CF are filled with this value. 
(e) Contents of the word-wide memory location pointed to by (DS)0 + (BX) + (DI) are 
rotated right by 1 bit position.  As the bit is rotated out of the LSB location, it is loaded 
into CF, and the prior contents of CF are loaded into the MSB position. 
(f) Contents of the word-wide memory location pointed to by (DS)0 + (BX) + (DI) + 10H 
are rotated right by a number of bit positions equal to the contents of CL. As each bit is 
rotated out of the LSB position, it is loaded into CF, and the prior contents of CF are 
loaded into the MSB position. 
47. 
(a) (DX) = 2222H, (CF) = 0 
(b) (DS:400H) = 5AH, (CF) = 1   
(c) (DS:200H) = 11H, (CF) = 0 
(d) (DS:210H) = AAH, (CF) = 1 
(e) (DS:210H,211H) = D52AH, (CF) = 1 
(f) (DS:220H,221H) = AAADH, (CF) = 0 
48.  RCL   WORD PTR [BX],1 
49.  MOV   BL,AL   ; Move bit 5 to bit 0 position 
       MOV   CL,5 
       SHR   BX,CL 
       AND   BX,1    ; Mask the other bit 
50.  MOV AX,[ASCII_DATA]  ;Get the word into AX 
 MOV BX,AX   ;and BX 



 MOV   CL,08H   ;(CL) = bit count 
 ROR BX,CL    ;Rotate to position the higher character 
 AND AX,00FFH   ;(AX) = lower character 
 AND BX,00FFH   ;(BX) = higher character 
 MOV [ASCII_CHAR_L],AX ;Save lower character 
 MOV [ASCII_CHAR_H],BX ;Save higher character 
 
Advanced Problems: 
 
51.   MOV   AX,DATA_SEG    ;Establish the data segment 
            MOV   DS,AX 
            MOV   AL,[MEM1]        ;Get the given code at MEM1 
            MOV   BX,TABL1 
            XLAT                 ;Translate 
            MOV   [MEM1],AL        ;Save new code at MEM1 
            MOV   AL,[MEM2]        ;Repeat for the second code at MEM2 
            MOV   BX,TABL2 
            XLAT 
            MOV   [MEM2],AL 
52.   MOV   AX,0           ;Set up the data segment 
     MOV   DS,AX          
     MOV   BX,0A10H       ;Set up pointer for results 
     MOV   DX,[0A00H]     ;Generate the sum  
     ADD   DX,[0A02H]     
     MOV   [BX],DX         ;Save the sum 
     MOV   DX,[0A00H]     ;Generate the difference  
     SUB   DX,[0A02H]     
     ADD   BX,2           ;Save the difference 
     MOV   [BX],DX 
     MOV   AX,[0A00H]     ;Generate the product  
     MUL   [0A02H]         
     ADD   BX,2            ;Save LS part of the product  
     MOV   [BX],AX 
     ADD   BX,2            ;Save MS part of the product 
     MOV   [BX],DX 
     MOV   AX,[0A00H]     ;Generate the quotient  
     DIV   AX,[0A02H]               
     ADD   BX,2            ;Save the quotient 
     MOV   [BX],AX 
53.      
; (RESULT) = (AL) • (NUM1) + (AL) • (NUM2---) + (BL)  
 NOT  [NUM2]           ;(NUM2) ← (NUM2---) 
       MOV   CL, AL 
       AND  CL, [NUM2]           ;(CL) ← (AL) • (NUM2---) 
       OR  CL, BL           ;(CL) ← (AL) • (NUM2---) + (BL) 
       AND  AL, [NUM1]            ;(AL) ← (AL) • (NUM1) 



       OR  AL, CL         
       MOV  [RESULT],AL          ;(RESULT)=(AL)•(NUM1)+(AL)•(NUM2---)+(BL)  
54.  Assume that all numbers are small enough so that shifting to the left does not 
generate an overflow. Further we will accept the truncation error due to shifts to the right. 
           MOV  DX,AX          ;(DX) ← (AX) 
           MOV  CL,3 
           SHL  DX,CL 
           SUB  DX,AX 
           MOV  SI,BX          ;(SI) ← 5(BX) 
           MOV  CL,2 
           SHL  SI,CL 
           ADD  SI,BX 
           SUB  DX,SI          ;(DX) ← 7(AX) − 5(BX) 
           MOV  SI,BX          ;(SI) ← (BX)/8 
           MOV  CL,3  
           SAR  SI,CL 
           SUB  DX,SI          ;(DX) ← 7(AX) − 5(BX) − (BX)/8 
           MOV  AX,DX         ;(AX)  ← 7(AX) − 5(BX) − (BX)/8



CHAPTER  6 
 
Section 6.1 
 
1. Executing the first instruction causes the contents of the status register to be copied 
into AH. The second instruction causes the value of the flags to be saved in memory 
location (DS)0 + (BX) + (DI).  
2. The first instruction loads AH with the contents of the memory location (DS)0 + (BX) 
+ (SI). The second instruction copies the value in AH to the status register. 
3.  STC; CLC. 
4.  CLI 
5.   CLI    ;Disable interrupts 
     MOV   AX,0H  ;Establish data segment 
     MOV   DS,AX    
     MOV   BX,0A000H ;Establish destination pointer 
     LAHF   ;Get flags 
     MOV   [BX],AH ;and save at 0A000H 
     CLC   ;Clear CF 
 
Section 6.2 
 
6. Both instructions subtract the operands and change the flags as per the result.  In a 
compare instruction, the result of the subtraction does not affect either operand.  
However, in a subtract instruction, the result of the subtraction is saved in the destination 
operand. 
7. 
(a) The byte of data in AL is compared with the byte of data in memory at address 
DS:100H by subtraction, and the status flags are set or reset to reflect the result. 
(b) The word contents of the data storage memory location pointed to by (DS)0 + (SI) are 
compared with the contents of AX by subtraction, and the status flags are set or reset to 
reflect the results. 
(c) The immediate data 1234H are compared with the word contents of the memory 
location pointed to by (DS)0 + (DI) by subtraction, and the status flags are set or reset to 
reflect the results. 
8.    
      Instruction                   (ZF) (SF) (CF) (AF)  (OF) (PF) 
      Initial state                          X     X     X      X       X     X 
     (a) CMP [0100H],AL           0      1      0       1       0      0 
     (b) CMP  AX,[SI]                0      0      0       0       1      1 
     (c) CMP  WORD PTR [DI],1234H   1      0      0       0        0      1  
9.        Instruction                 (ZF)    (CF) 
           Initial state          0       0 
 After MOV BX,1111H     0       0 
          After MOV AX,0BBBBH    0       0 
  After CMP  BX,AX       0       1      
 



Section 6.3 
 
10. When an unconditional jump instruction is executed, the jump always takes place. On 
the other hand, when a conditional jump instruction is executed, the jump takes place 
only if the specified condition is satisfied. 
11. IP; CS and IP. 
12. 8-bit; 16-bit; 16-bit. 
13. Intersegment. 
14. 
(a) Intrasegment; Short-label; The value 10H is placed in IP. 
(b) Intrasegment; Near-label; The value 1000H is copied into IP. 
(c) Intrasegment; Memptr16; The word of data in memory pointed to by (DS)0 + (SI) is 
copied into IP.       
15. 
(a) 1075H:10H 
(b) 1075H:1000H 
(c) 1075H:1000H  
16. ZF, CF, SF, PF, and OF. 
17. (SF) = 0. 
18. (CF) = 0 and (ZF) = 0. 
19. 
(a) Intrasegment; short-label; if the carry flag is reset, a jump is performed by loading IP 
with 10H.    
(b) Intrasegment; near-label; if PF is not set, a jump is performed by loading IP with 
100016. 
(c) Intersegment; memptr32; if the overflow flag is set, a jump is performed by loading 
the two words of the 32-bit pointer addressed by the value (DS)0 + (BX) into IP and CS, 
respectively.  
20. 0100H 
21. (a) 100016 = 212   = 4096 times. 
      (b) ;Implement the loop with the counter = 17 
               MOV  CX,11H 
            DLY:   DEC   CX 
               JNZ   DLY 
            NXT:  ---      --- 
      (c) 
        ;Set up a nested loop with 16-bit inner and 16-bit outer 
        ;counters. Load these counters so that the JNZ  
        ;instruction is encountered 232 times.    
               MOV   AX,0FFFFH 
        DLY1:  MOV   CX,0H 
        DLY2:  DEC   CX 
              JNZ   DLY2 
               DEC   AX 
               JNZ   DLY1 
        NXT:  --- 



22.   ; N! = 1*2*3*4...*(N-1)*N 
        ; Also note that 0! = 1! = 1 
             MOV AL,1H    ; Initial value of result 
               MOV  CL,0H    ; Start multiplying number 
               MOV  DL,N     ; Last number for multiplication 
        NXT:   CMP    CL,DL    ; Skip if done          
               JE     DONE  
               INC    CL       ; Next multiplying number 
               MUL  CL        ; Result ← Result * number 
               JMP    NXT      ; Repeat  
        DONE:  MOV  [FACT],AL  ; Save the result 
23. 
       MOV   CX,64H          ;Set up array counter 
              MOV   SI,0A000H       ;Set up source array pointer 
              MOV   DI,0B000H      ;Set up destination array  
                                      ;pointer  
      GO_ON:    MOV   AX,[SI]        
                CMP   AX,[DI]         ;Compare the next element 
                JNE   MIS_MATCH      ;Skip on a mismatch 
                ADD   SI,2            ;Update pointers and counter 
                ADD   DI,2 
                DEC   CX 
                JNZ   GO_ON           ;Repeat for the next element  
                MOV   [FOUND],0H       ;If arrays are identical, save 
                                      ;a zero 
                JMP   DONE 
  MIS_MATCH:     MOV   [FOUND],SI     ;Else, save the mismatch address 
           DONE:     ---        --- 
 
Section 6.4 
 
24.   A group of instructions that perform a special operation and can be called from any 
point in a program; Procedure 
25. The call instruction saves the value in the instruction pointer, or in both the 
instruction pointer and code segment register, in addition to performing the jump 
operation.    
26. The intersegment call provides the ability to call a subroutine in either the current 
code segment or a different code segment. On the other hand, the intrasegment call only 
allows calling of a subroutine in the current code segment.  
27. IP; IP and CS. 
28.  
(a) Intrasegment; Near-proc; A call is made to a subroutine by loading the immediate 
value 1000H into IP.    
(b) Intrasegment; Memptr16; A call is made to a subroutine by loading the word at 
address DS:100H into IP.    



(c) Intersegment; Memptr32; A call is made to a subroutine by loading the two words of 
the double-word pointer located at (DS)0 + (BX) + (SI) into IP and CS, respectively.    
29. (a)  1075H:1000H 
     (b)  1075H:1000H 
     (c)  1000H:0100H 
30. At the end of the subroutine a RET instruction is used to return control to the main 
(calling) program. It does this by popping IP from the stack in the case of an intrasegment 
call and both CS and IP for an intersegment call.  
31.  
(a) The value in the DS register is pushed onto the top of the stack, and the stack pointer 
is decremented by 2. 
(b) The word of data in memory location (DS)0 + (SI)  is pushed onto the top of the 
stack, and SP is decremented by 2.. 
(c) The word at the top of the stack is popped into the DI register, and SP is incremented 
by 2.    
(d) The word at the top of the stack is popped into the memory location pointed to by 
(DS)0 + (BX) + (DI), and SP is incremented by 2. 
(e) The word at the top of the stack is popped into the status register, and SP is 
incremented by 2. 
32.  (AX)  ↔  (BX) 
33. When the contents of the flags must be preserved for the instruction that follows the 
subroutine.   
34. AGAIN:    MOV   AX,DX 
               AND   AX,8000H 
               CMP  AX,8000H     ;Check bit 15 for flags 
               JNZ   AA 
  MOV AX,DX 
               AND   AX,4000H 
               CMP  AX,4000H    ;Check bit 14 
               JNZ   BB 
  MOV AX,DX 
               AND   AX,2000H  
               CMP  AX,2000H     ;Check bit 13 
               JNZ   CC 
               JMP   AGAIN 
    AA:        CALL  SUBA 
               JMP   AGAIN 
    BB:        CALL  SUBB 
               JMP   AGAIN 
    CC:        CALL  SUBC 
               JMP   AGAIN 
    ;Subroutine SUBA 
    SUBA:     .    .     
    .    . 
    .    . 
    .    . 



  AND   DX,7FFFH     ;Clear bit 15 of DX 
               RET 
    ;Subroutine SUBB 
    SUBB:     .    .     
    .    . 
    .    . 
    .    . 
       AND   DX,0BFFFH    ;Clear bit 14 of DX 
               RET 
    ;Subroutine SUBC 
    SUBC:     .    .     
    .    . 
    .    . 
    .    . 
       AND   DX,0DFFFH     ;Clear bit 13 of DX 
               RET  
 
Section 6.5 
 
35. ZF. 
36. (ZF) = 1 or (CX) = 0.   
37. Jump size = −126 to +129. 
38. 65,535. 
39.    MOV    AL,1H 
             MOV     CL,N 
             JCXZ     DONE       ; N = 0 case 
             LOOPZ DONE       ; N = 1 case 
             INC      CL         ; Restore N 
    AGAIN:  MUL     CL 
             LOOP    AGAIN 
      DONE:   MOV    [FACT],AL    
40.           MOV   AX,DATA_SEG  ;Establish data segment 
                MOV   DS,AX 
                MOV   CX,64H        ;Count = 100 
                MOV   SI,0A000H      ;Starting address of first array 
                                    ;in SI 
                MOV   DI,0B000H      ;Starting address of second array  
                                    ;in DI 
           GO_ON:     MOV   AX,[SI] 
                CMP   AX,[DI]       ;Compare 
                JNE   MISMATCH     ;Exit loop if mismatch found 
                ADD  SI,2          ;Increment array address  
                ADD   DI,2 
                LOOP  GO_ON 
                MOV   [FOUND],0      ;Arrays are identical 
                JMP   DONE 



    MISMATCH:  MOV   [FOUND],SI     ;Save mismatch location's address 
              DONE:     ---     --- 
 
Section 6.6 
 
41. DF. 
42. ES. 
43. (a) CLD 
 MOV    ES,DS  
 MOVSB   
      (b) CLD 
            LODSW 

(c) STD 
 MOV    ES,DS 

            CMPSB 
44.            MOV   AX,DATA_SEG  ;Establish Data segment 
               MOV   DS,AX     
               MOV   ES,AX        ;and Extra segment to be the same 
               CLD                 ;Select autoincrement mode 
               MOV   CX,64H        ;Set up array element counter 
               MOV   SI,0A000H      ;Set up source array pointer 
               MOV   DI,0B000H      ;Set up destination array pointer 
               REPECMPSW          ;Compare while not end of string 
                                  ;and strings are equal 
               JZ    EQUAL         ;Arrays are identical 
               MOV   [FOUND],SI     ;Save mismatch location in FOUND  
               JMP   DONE         
    EQUAL: MOV   [FOUND],0      ;Arrays are identical 
      DONE:      --- --- 
 
Advanced Problems: 
 
45.           MOV   CX,64H        ;Set up the counter     
                MOV  AX,0H         ;Set up the data segment 
                MOV  DS,AX 
                MOV   BX,A000H    ;Pointer for the given array 
                MOV  SI,B000H      ;Pointer for the +ve array 
                 MOV  DI,C000H     ;Pointer for the -ve array 
      AGAIN:  MOV AX,[BX]       ;Get the next source element 
               CMP  AX,0H         ;Skip if positive 
               JGE    POSTV 
      NEGTV:   MOV  [DI],AX       ;Else place in -ve array  
               INC    DI 
               INC    DI 
               JMP    NXT           ;Skip 
      POSTV:    MOV  [SI],AX       ;Place in the +ve array 



               INC    SI 
              INC    SI 
          NXT:   DEC   CX           ;Repeat for all elements           
               JNZ    AGAIN 
               HLT 
46.  ;For the given binary number B, the BCD number's digits are given by 
     ;D0 = R(B/10) 
     ;D1 = R(Q(B/10)/10) 
     ;D2 = R(Q(Q(B/10)/10)/10) 
    ;D3 = R(Q(Q(Q(B/10)/10)/10)/10) 
     ;where R and Q stand for the remainder and the quotient.   
               MOV  SI,0        ;Result = 0 
               MOV  CH,4        ;Counter 
               MOV  BX,10       ;Divisor 
               MOV  AX,DX       ;Get the binary number 
NEXTDIGIT: MOV  DX,0        ;For division make (DX) = 0 
        DIV   BX          ;Compute the next BCD digit 
               CMP   DX,9        ;Invalid if > 9 
               JG    INVALID      
               MOV   CL,12       ;Position as most significant digit 
               SHL   DX,CL        
               OR    SI,DX 
               DEC   CH          ;Repeat for all four digits 
               JZ    DONE      
               MOV   CL,4        ;Prepare for next digit 
               SHR   SI,CL 
               JMP   NEXTDIGIT 
 INVALID:   MOV   DX,FFFFH    ;Invalid code 
               JMP   DONE1 
      DONE:   MOV   DX,SI 
    DONE1:   --- --- 
47.      ;Assume that all arrays are in the same data segment 
               MOV   AX,DATASEG         ;Set up data segment 
               MOV   DS,AX 
               MOV   ES,AX 
               MOV   SI,OFFSET_ARRAYA  ;Set up pointer to array A 
               MOV   DI,OFFSET_ARRAYB  ;Set up pointer to array B               
               MOV   CX,62H 
              MOV   AX,[SI]        ;Initialize A(I-2) and B(1) 
               MOV   ARRAYC,AX 
               MOV   [DI],AX 
               ADD   SI,2 
               ADD   DI,2 
               MOV   AX,[SI]        ;Initialize A(I-1) and B(2) 
               MOV   ARRAYC+1,AX 
               MOV   [DI],AX 



               ADD   SI,2 
               ADD   DI,2 
               MOV   AX,[SI]        ;Initialize A(I) 
               MOV   ARRAYC+2,AX 
               ADD   SI,2 
               MOV   AX,[SI]        ;Initialize A(I+1) 
               MOV   ARRAYC+3,AX    
               ADD   SI,2  
               MOV   AX,[SI]        ;Initialize A(I+2) 
               MOV   ARRAYC+4,AX 
               ADD   SI,2 
    NEXT:      CALL  SORT           ;Sort the 5 element array 
               MOV   AX,ARRAYC+2   ;Save the median 
               MOV   [DI],AX 
               ADD   DI,2  
               MOV   AX,ARRAYC+1   ;Shift the old elements 
               MOV   ARRAYC,AX 
               MOV   AX,ARRAYC+2 
               MOV   ARRAYC+1,AX 
               MOV   AX,ARRAYC+3 
               MOV   ARRAY+2,AX 
               MOV   AX,ARRAYC+4 
               MOV   ARRAYC+3,AX 
               MOV   AX,[SI]        ;Add the new element 
               MOV   ARRAY+4,AX 
               ADD   SI,2 
               LOOP  NEXT           ;Repeat 
               SUB   SI,4          ;The last two elements of array B 
               MOV   AX,[SI]      
               MOV   [DI],AX 
               ADD   SI,2 
               ADD  DI,2 
               MOV  AX,[SI] 
               MOV  [DI],AX 
    DONE:      --- --- 
 ;SORT subroutine 
     SORT:      PUSHF               ;Save registers and flags 
               PUSH  AX 
               PUSH  BX 
               PUSH  DX 
               MOV   SI,OFFSET_ARRAYC 
               MOV   BX,OFFSET_ARRAYC+4 
         AA:        MOV   DI,SI 
               ADD   DI,02H 
         BB:        MOV   AX,[SI] 
               CMP   AX,[DI] 



               JLE   CC 
               MOV   DX,[DI] 
               MOV   [SI],DX 
               MOV   [DI],AX 
         CC:        INC   DI 
               INC   DI 
               CMP   DI,BX 
               JBE   BB 
               INC   SI 
               INC   SI 
               CMP   SI,BX 
               JB    AA 
               POP   DX            ;Restore registers and flags 
               POP   BX 
               POP   AX 
               POPF   
               RET 
48.   ;For the decimal number = D3D2D1D0, 
      ;the binary number = 10(10(10(0+D3)+D2)+D1)+D0 
                  MOV   BX,0           ;Result = 0 
                 MOV   SI,0AH       ;Multiplier = 10 
                MOV   CH,4        ;Number of digits = 4  
                MOV   CL,4         ;Rotate counter = 4 
                MOV   DI,DX         
  NXTDIGIT:  MOV   AX,DI        ;Get the decimal number  
               ROL   AX,CL        ;Rotate to extract the digit  
               MOV   DI,AX        ;Save the rotated decimal number 
               AND   AX,0FH       ;Extract the digit  
               ADD   AX,BX           ;Add to the last result 
               DEC   CH           
               JZ    DONE         ;Skip if this is the last digit 
               MUL   SI           ;Multiply by 10 
               MOV   BX,AX        ;and save 
               JMP   NXTDIGIT     ;Repeat for the next digit 
       DONE:     MOV DX,AX        ;Result = (AX) 
49.  ;Assume that the offset of A[I] is AI1ADDR 
     ;and the offset of B[I] is BI1ADDR 
               MOV   AX,DATA_SEG  ;Initialize data segment 
               MOV   DS,AX       
               MOV   CX,62H 
               MOV   SI,AI1ADDR   ;Source array pointer 
               MOV   DI,BI1ADDR   ;Destination array pointer 
               MOV   AX,[SI] 
               MOV   [DI],AX       ;B[1] = A[1]  
      MORE:   MOV   AX,[SI]       ;Store A[I] into AX    
               ADD   SI,2          ;Increment pointer 



               MOV   BX,[SI]       ;Store A[I+1] into BX 
               ADD   SI,2 
               MOV   CX,[SI]       ;Store A[I+2] into CX 
               ADD   SI,2  
               CALL  ARITH         ;Call arithmetic subroutine 
               MOV   [DI],AX 
               SUB   SI,4 
               ADD   DI,2 
               LOOP  MORE          ;Loop back for next element    
               ADD   SI,4 
      DONE:      MOV   AX,[SI]       ;B[100] = A[100] 
               MOV   [DI],AX 
               HLT 
    ;Subroutine for arithmetic 
    ;(AX) ← [(AX) − 5(BX) + 9(CX)]/4 
    ARITH:     PUSHF              ;Save flags and registers in stack 
               PUSH  BX 
               PUSH  CX 
               PUSH  DX 
        PUSH  DI 
               MOV   DX,CX       ; (DX)  ←  (CX)   
               MOV   DI,CX          
               MOV   CL,3 
               SAL   DX,CL          
               ADD   DX,DI          
               MOV   CL,2   ;(AX) ←  5(BX) 
               MOV   DI,BX           
               SAL   BX,CL          
               ADD   BX,DI          
               SUB   AX,BX         ;(AX) ←  [(AX) − 5(BX) + 9(CX)]/4    
               ADD   AX,DX          
               SAR   AX,CL          
               POP   DI            ;Restore flags and registers 
               POP   DX 
               POP   CX 
               POP   BX 
               POPF 
               RET                 ;Return  
 
50.  ;Set up ASCII offset in SI, EBCDIC offset in DI 
     ;and translation table offset in BX      
            MOV   SI,OFFSET DATASEG1_ASCII_CHAR        
            MOV   DI,OFFSET DATASEG2_EBCDIC_CHAR       
            MOV   BX,OFFSET DATASEG3_ASCII_TO_EBCDIC    
            CLD                         ;Select autoincrement mode 
            MOV   CL,64H                ;Byte count 



            MOV   AX,DATASEG1          ;ASCII segment 
           MOV   DS,AX 
            MOV   AX,DATASEG2          ;EBCDIC segment 
            MOV   ES,AX 
NEXTBYTE:  
            LODSB                   ;Get the ASCII 
            MOV   DX,DATASEG3          ;Translation table segment 
            MOV   DS,DX 
            XLAT                        ;Translate 
            STOSB                   ;Save EBCDIC 
            MOV   DX,DATASEG1          ;ASCII segment for next ASCII  
            MOV   DS,AX                 ;element 
            LOOP  NEXTBYTE 
    DONE:   --- --- 
 
Chapter  7 
 
Section  7.1 
 
1. Macroassembler 
2. Assembly language statements and directive statements 
3. Assembly language instructions tell the MPU what operations to perform. 
4. Directives give the macroassembler directions about how to assemble the source 
program. 
5. Label, opcode, operand(s), and comment(s) 
6. Opcode 
7. 
(a) Fields must be separated by at least one blank space. 
(b) Statements that do not have a label must have at least one blank space before the 
opcode.  
8. A label gives a symbolic name to an assembly language statement that can be 
referenced by other instructions. 
9. 31   
10. Identifies the operation that must be performed. 
11. Operands tell where the data to be processed resides and how it is to be accessed. 
12. The source operand is immediate data FFH and the destination operand is the CL 
register. 
13. Document what is done by the instruction or a group of instructions; the assembler 
ignores comments. 
14.  
(a)  A directive statement may have more than two operands whereas an assembly 
language statement always has two or less operands.  
(b)  There is no machine code generated for directive statements. There is always 
machine code generated for an assembly language statement.  
15. MOV  AX,[0111111111011000B]; MOV AX,[7FD8H]. 
16. JMP 11001B; JMP 19H. 



17. MOV  AX,0. 
 
Section  7.2 
 
18. Directive. 
19. Data directives, conditional directives, macro directives, listing directives. 
20. Define values for constants, variables, and labels. 
21. The symbol SRC_BLOCK is given 0100H as its value, and symbol DEST_BLOCK 
is given 0120H as its value. 
22. The value assigned by an EQU directive cannot be changed, whereas a value assigned 
with the =  directive can be changed later in the program.   
23. The variable SEG_ADDR is allocated word-size memory and is assigned the value 
123416.       
24. A block of 128 bytes of memory is allocated to the variable BLOCK_1 and these 
storage locations are left uninitialized.  
25. INIT_COUNT  DW  0F000H 
26. SOURCE_BLOCK  DW  16 DUP(?) 
27. 
SOURCE_BLOCK  DW  0000H,1000H,2000H,3000H,4000H,5000H, 
6000H,7000H,8000H,9000H,A000H,B000H,C000H,D000H,E000H,F000H 
28. This directive statement defines data segment DATA_SEG so that it is byte aligned in 
memory and located at an address above all other segments in memory.    
29. 
DATA_SEG    SEGMENT     WORD COMMON 'DATA' 
              . 
              . 
DATA_SEG    ENDS 
30. Module. 
31. A section of program that performs a specific function and can be called for execution 
from other modules.   
32. 
               PUBLIC    BLOCK  
     BLOCK     PROC      FAR 
                . 
                . 
               RET 
     BLOCK     ENDP 
33. An ORG statement specifies where the machine code generated by the assembler for 
subsequent instructions will reside in memory.  
34. ORG  1000H 
35. 
PAGE  55 80 
TITLE  BLOCK-MOVE PROGRAM 
 
Section  7.3 
 



36. Menu driven text editor 
37. Move, copy, delete, find, and find and replace. 
38. File, Edit, Search, and Options. 
39. Use Save As operations to save the file under the filenames BLOCK.ASM and 
BLOCK.BAK. When the file BLOCK.ASM is edited at a later time, an original copy will 
be preserved during the edit process in the file BLOCK.BAK.  
 
Section  7. 4 
  
40. Source module 
41.  
Object module: machine language version of the source program. 
Source listing: listing that includes memory address, machine code, source statements, 
and a symbol table. 
42. Looking at Fig. 7.20, this error is in the equal to directive statement that assigns the 
value 16 to N and the error is that the = sign is left out. 
43. In Fig. 7.20, this error is in the comment and the cause is a missing ``;'' at the start of 
the statement. 
44. No, the output of the assembler is not executable by the 8088 in the PC: it must first 
be processed with the LINK program to form a run module. 
45. 
(a) Since separate programmers can work on the individual modules, the complete 
program can be written in a shorter period of time.  
(b) Because of the smaller size of modules, they can be edited and assembled in less time. 
(c) It is easier to reuse old software. 
46. Object modules   
47.  
Run module: executable machine code version of the source program.  
Link map: table showing the start address, stop address, and length of each memory 
segment employed by the program that was linked.   
48. 
Source module file  = BLOCK.ASM 
Object module file   = BLOCK.OBJ 
Source listing file  = BLOCK.LST 
49. Object Modules[.OBJ]:A:MAIN.OBJ+A:SUB1.OBJ+A:SUB2.OBJ 
  
Section 7.5 
 
50. C:\DOS>DEBUG  B:LAB.EXE  
 
CHAPTER 8 
 
Section 8.1 
 

1. HMOS. 
2. 29,000. 



3.  17.  
4.  34. 
5.  1 Mbyte. 
6.  64 Kbytes. 
 
Section 8.2 
 
7. The logic level of input MN/MX---- determines the mode. Logic 1 puts the MPU in 
minimum mode, and logic 0 puts it in maximum mode. 
8. In the minimum-mode, the 8088 directly produces the control signals for interfacing to 
memory and I/O devices. In the maximum-mode these signals are encoded in the status 
lines and need to be decoded externally. Additionally, the maximum-mode 8088 
produces signals for supporting multiprocessing systems.   
9.  WR----, LOCK----. 
10. Output.  
11. SSO----. 
12. Maximum mode.  
 
Section 8.3 
 
13. 20-bit, 8-bit; 20-bit, 16-bit.    
14. Multiplexed. 
15. A0, D7.  
16. Stack. 
17. BHE----.   
18. Whether a memory or I/O transfer is taking place over the bus.  
19. WR---- 
20. INTA---- 
21. HOLD, HLDA.  
22. AD0 through AD7, A8 through A15, A16/S3 through A19/S6, SSO----, IO/M----, DT/R---
- RD----, WR---- DEN---- and INTR. 
 
Section 8.4 
 
23. HOLD, HLDA, WR----, IO/M----, DT/R----, DEN----, ALE, and INTA---- in 
minimum mode are RQ----/GT----1,0, LOCK----, S----2, S----1, S----0, QS0, and QS1, 
respectively, in the maximum mode.   
24. S----2 through S----0. 
25. MRDC----, MWTC----, AMWC----, IORC----, IOWC----, AIORC----, INTA----, 
MCE/PDEN, DEN, DT/R----, and ALE. 
26. The LOCK---- signal is used to implement an arbitration protocol that permits 
multiple processors to reside on the 8088's system bus. 
27. S----2S----1S----0 = 1012. 
28. MRDC----. 
29. QS1QS0 = 102. 
30. RQ----/GT----1,0. 



  
Section 8.5 
 
31. +4.5 V to +5.5 V. 
32. +0.45 V.  
33. +2.0 V. 
34. 2.5 mA. 
 
Section 8.6 
 
35. 5 MHz and 8 MHz. 
36. 24 MHz. 
37. CLK, PCLK, and OSC; 10 MHz, 5 MHz, and 30 MHz.  
38. VHmin = 3.9 V and VHmax = Vcc + 1 V, VLmin = −0.5 V and VLmax = 0.6 V. 
 
Section 8.7 
 
39. 4; T1, T2, T3, and T4.  
40. 800 ns 
41. An idle state is a period of no bus activity that occurs because the prefetch queue is 
full and the instruction currently being executed does not require bus activity.  
42. A wait state is a clock cycle inserted between the T3 and T4 states of a bus cycle to 
extend its duration to accommodate slow devices in the system.   
43. 600 ns. 
 
Section 8.8 
 
44. 1M × 8; 512K × 16.  
45. Address B000316 is applied over the lines A0 through A19 of the address bus, and a 
byte of data is fetched over data bus lines D0 through D7.  Only one bus cycle is required 
to read a byte from memory. Control signals in minimum mode at the time of the read are 
A0  = 1, WR---- = 1, RD---- = 0, IO/M---- = 0, DT/R---- = 0, and DEN---- = 0. 
46. Two bus cycles must take place to write the word of data to memory. During the first 
bus cycle, the least significant byte of the word is written to the byte storage location at 
address A000016. Next the 8088 automatically increments the address so that it points to 
the byte storage location A000116. The most significant byte of the word is written into 
this storage location with a second write bus cycle. During both bus cycles, address 
information is applied to the memory subsystem over address lines A0 through A19 and 
data are transferred over data bus lines D0 through D7. The minimum mode control 
signals during the write are:  WR---- = 0, DT/R---- = 1, and DEN---- = 0.  
47. High bank, BHE----. 
48. D0 through D7; A0.   
49. BHE---- = 0, A0 = 0, WR---- = 0, M/IO---- = 1, DT/R---- = 1, and DEN---- = 0. 
50. BHE---- = 0, A0 = 1, WR---- = 0, M/IO---- = 1, DT/R---- = 1, DEN---- = 0; D8 
through D15. 
 



Section 8.9 
 
51. S4S3 = 10. 
52. S4S3 = 01. 
 
Section 8.10 
 
53. IO/M---- 
54. SSO----; BHE----. 
55. S----2S----1S----0 = 100; MRDC---- 
56. S----2S----1S----0 = 110, MWTC---- and AMWC---- 
57. S4S3 = 01 and S----2S----1S----0 = 110; MWTC---- and AMWC---- 
 
Section 8.11 
 
58. 4; 400 ns. 
59. Address is output on A0 through A19, ALE pulse is output, and IO/M----, DEN----, 
and DT/R---- are set to the appropriate logic levels.   
60. During T1 the 8088 outputs address B0010H on the bus and asserts ALE. The address 
for the memory must be latched external to the 8088 using ALE to gate the latch device. 
The 8088 also asserts the control signals: IO/M---- = 0 and DT/R---- = 1 at this time. 
During T2 WR---- is asserted (logic 0) and then the 8088 puts the byte of data onto the 
data bus. This data remains valid until the end of T4 and should be written into memory 
with the active low level of WR---- during the T3 state terminating the write operation as 
WR---- goes inactive in the T4 state.  
61. WR----, DT/R----. 
62. ALE. 
 
Section 8.12 
 
63. The 8288 bus controller produces the appropriately timed command and control 
signals needed to coordinate transfers over the data bus. 
The address bus latch is used to latch and buffer the address bits.    
The address decoder decodes the higher order address bits to produce chip-enable signals. 
The bank write control logic determines which memory bank is selected during a write 
bus cycle.  
The bank read control logic determines which memory bank is selected during a read bus 
cycle. 
The data bus transceiver/buffer controls the direction of data transfers between the MPU 
and memory subsystem and supplies buffering for the data bus lines.  
64. S----2S----1S----0 = 110, A0BHE---- = 00, MWTC---- and AMWC----. 
65. D-type latches. 
66.  BHEL----=0, MRDC----=0,MWRC----=1,A0L=0.  
67.   
 
 



Operation           RDU--- RDL--- WRU--- WRL----  BHEL--- MRDC---- MWRC---- A0L---  
 
(a) Byte read     1           0           1           1              1               0                1                0  
from address 
01234H 
(b) Byte write      1           1           0           1              0               1                0                1 
to address  
01235H 
(c) Word read     0           0           1           1              0               0                1                0 
from address  
01234H 
(d) Word write    0           0           1           1              0               1                0                0 
to address  
01234H 
68. Eight bidirectional buffers. 
69. DEN---- = 0, DT/R---- = 0 
70.  
 
 
 
 
 
 
 
 
 
 
 
71.  Three address lines decode to generate eight chip selects. Therefore, three of them 
need not be used.  
72. 74F139 
73. Y5=0 
74.   
MEMR----  MEMW---- RD---- WR----  IO/M---- 
    0      1    0   1      0 
    1      0    1   0      0 
    Y2      Y4    C   B      A         of the 74F138  
 
 
 
 
 
 
 
 
 



Section 8.13 
 
75. Programmable logic array. 
76. Number of inputs, number of outputs, and number of product terms. 
77. Fuse links 
78. Programmable array logic; In a PAL only the AND array is programmable.  
79.  
 
  
 
 
 
 
 
 
80.10 dedicated inputs, 2 dedicated outputs, 6 programmable I/Os, and 64 product terms. 
81. 20 inputs; 8 outputs. 
82. The 16R8 has registered outputs whereas the 16L8 has latched outputs.  
83. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Section 8.14   
 
84.  Isolated I/O and memory-mapped I/O. 
85.  Isolated I/O. 
86.  Memory-mapped I/O. 
87.  Isolated I/O 
 
Section 8.15 
 
88. Address lines A0 through A15 carry the address of the I/O port to be accessed; address 
lines A16 through A19 are held at the 0 logic level. Data bus lines D0 through D7 carry the 
data that are transferred between the MPU and I/O port.  



89.  IO/M----. 
90.  In the 8086's I/O interface, the 8-bit data bus is replaced by a 16-bit data bus AD0 
through AD15; control signal IO/M---- is replaced by M/IO----; and status signal SSO---- 
is replaced by BHE----. 
91.  M/IO---- is the complement of IO/M----. 
92.  8288. 
93.  The bus controller decodes I/O bus commands to produce the input/output and bus 
control signals for the I/O interface. The I/O interface circuitry provides for addressing of 
I/O devices as well as the path for data transfer between the MPU and the addressed I/O 
device.  
94. S2----S1----S0---- = 001. 
95. IORC---- = 1, IOWC---- = 0, AIOWC---- = 0. 
      
Section 8.16 
 
96. 16 bits. 
97. 000016 through FFFF16.  
98. 32K word-wide I/O ports. 
99. A0 = 0 and BHE---- = 1; A0 = 0 and BHE---- = 0. 
100. 2; 1. 
 
Section 8.17 
 
101. Execution of this input instruction causes accumulator AX to be loaded with the 
contents of the word-wide input port at address 1AH. 
102. MOV  DX, 1AH 
        IN       DX, AX 
103. Execution of this output instruction causes the value in the lower byte of the 
accumulator (AL) to be loaded into the byte wide output port at address 2AH. 
104. MOV   AL, 0FH  ; Output 0fH to port at 1000H 
        MOV   DX, 1000H  
        OUT    DX, AL 
105. MOV  DX,0A000H ;Input data from port at A000H 
        IN       AL,DX   
        MOV  BL,AL  ;Save it in BL 
        MOV  DX,0B000H ;Input data from port at B000H 
        IN       AL,DX 
        ADD   BL,AL  ;Add the two pieces of data 
        MOV  [IO_SUM],BL ;Save result in the memory location 
106. IN     AL, B0H  ;Read the input port 
        AND AL,01H  ;Check the LSB 
        SHR AL,1 
        JC     ACTIVE_INPUT  ;Branch to ACTIVE_INPUT if the LSB = 1 
 
Section 8.18 
 



107. IO/M---- and ALE in T1, and RD---- and DEN---- in T2.  
108. Address is output in T1; Data are read (input) in T3. 
109. With zero wait states, the 8088 needs to perform two output bus cycles. They require 
8 T-states, which at 5 MHz equals 1.6 µs. 
110. With two wait states, the 8086 requires 6 T-states for an output bus cycle. At 10 
MHz clock, it therefore takes 600 ns for the output operation. 
111.  To write a word of data to an odd address, the 8086 requires two bus cycles. Since 
each bus cycle has two wait states, it takes 12 T-states to perform the output operation.  
With a 10-MHz clock, the output operation takes 1200 ns. 
 
CHAPTER 9 
 
Section 9.1 
 
1.  Program-storage memory; data-storage memory. 
2.  Basic input/output system. 
3.  Firmware. 
4.  Yes. 
 
Section 9.2 
 
5. When the power supply for the memory device is turned off, its data contents are not 
lost.  
6. Programmable read only memory; erasable programmable read only memory. 
7. Ultraviolet light.  
8. 1,048,576 bits (1MB); 131,072 × 8 bits = 128Kbytes. 
9. We are assuming that external decode logic has already produced active signals for 
CE---- and OE----. Next the address is applied to the A inputs of the EPROM and 
decoded within the device to select the storage location to be accessed. After a delay 
equal to tACC, the data at this storage location are available at the D outputs.  
10. 27C512. 
11. The access time of the 27C64 is 250 ns and that of the 27C64-1 is 150 ns. That is, the 
27C64-1 is a faster device.   
12. 6 V, 12.5 V. 
13. 1 ms. 
 
Section 9.3  
 
14. Static random access read/write memory and dynamic random access read/write 
memory. 
15. Volatile.  
16. Maintain the power supply and refresh the data periodically. 
17. 32K × 32 bits (1MB).  
18. tWC = 100 ns, tCW1 = 80 ns , tCW2 = 80 ns, tWP = 60 ns, tDW = 40 ns, and tWR = 5 ns. 
19. Higher density and lower power.  
20. Row address and column address. 



21.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22. Cost and board space required for the additional circuitry needed to perform row and 
column address multiplexing and periodic refreshing of the memory cells.  
 
Section 9.4 
 
23. Parity-checker/generator circuit. 
24. Odd parity; even parity. 
25.  ΣEVEN = 0; ΣODD = 1.   
26.  ΣEVEN becomes the parity bit  (DPB) and ΣODD becomes the parity error (PE----). 



27. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Section 9.5 
 
28.  The cells in a FLASH memory are electrically erasable. 
29.   The storage array in the bulk-erase device is a single block, whereas the memory 
array in both the boot block and FlashFile is organized as multiple independently erasable 
blocks. 
30.  The blocks of a boot block device are asymmetrical in size and those of the FlashFile 
are symmetrical. 
31. Bulk erase. 
32. Vcc = 5V and Vpp = 12V. 
33. 28F002 and 28F004. 
34. Vcc = 5 V; Vpp = 5 V or 12 V. 



35.   
 Type   Quantity  Sizes_________________ 
 Boot block             1   16Kbyte 
 Parameter block      2   8Kbyte 
 Main block         4                 (1) 96Kbyte, (3) 128Kbyte 
36. 28F008 and 28F016SA. 
37. Logic 0 at the RY/BY---- output signals that the on-chip write state machine is busy 
performing an operation. Logic 1 means that it is ready to start another operation. 
 
Section 9.6 
 
38. Insert wait states into the bus cycles of the 8088/8086. 
39.  READY. 
40. Yes, two wait states. 
41.  Seven. 
 
Section 9.7 
 
42. 
 



42. (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43. Byte addresses 00000H through 03FFFH; word addresses 00000H through 03FFEH.  
44. 128. 
45. 6;3.  
 
 
 
 
 
 
 
 
 
 
 
 
 



46. 



 
46. (Continued) 
 



CHAPTER  10 
 
Section 10.1 
 
1. Keyboard interface, display interface, and parallel printer interface. 
2. Parallel input/output ports, interval timers, direct memory access interface. 
 
Section 10.2  
 
3. A15LA14L ......A4LA3LA2LA1LA0L = 1X.....X11102 = 800E16  with X = 0. 
4. G1 = A15L = 1, G----2B = A0L = 0 , G----2A =  (IO/M----)---- = 0, and CBA = A3LA2LA1L 
= 101.  This make P5 equal to 0 and Port 5 is selected. 
5. Sets all outputs at port 2 (O16-O23) to logic 1.  
6.   MOV  DX, 8000H ;Write low byte to port 8000H 
      MOV  AX, [DATA] 
      OUT  DX, AL 
      MOV  DX, 8002H ;Write high byte to port 8002H 
      MOV  AL, AH 
      OUT  DX, AL 
 
Section 10.3 
 
7. Port 4. 
8. The value at Port 0 is read into AL; then the upper four bits are masked off; and finally 
the masked value is copied into memory location LOW_NIBBLE.  
9.  MOV   AX,0A000H  ;Set up the segment to start at A0000H 
       MOV   DS, AX 
       MOV   DX,8002H  ;Input from port 1 
       IN    AL, DX 
       MOV   [0000H],AL  ;Save the input at A0000H 
       MOV   DX,8004H  ;Input from port 2 
       IN    AL, DX 
       MOV   [0001H],AL   ;Save the input at A0001H 
10. POLL_O63:   MOV   DX,800EH ;Input from port 7  
                    IN     AL,DX 
                 SHL  AL,1  ;Place the MSB in the CF 
   JC    POLL_O63 
 
Section 10.4 
 
11. Handshaking.  
12. STB----,  Input, Signals that a byte of data is available on D0 - D7.   
      BUSY,  Output, Signals the MPU that the printer is busy and is not yet ready to  
      receive another character data. 
13.  74F373 octal latch. 



14.  First, the address is clocked into the address latch. Address bits A3LA2LA1L = 000, 
A0L = 0, and A15L = 1 enable the decoder and switch the P0 output to 0. This output 
activates one input of the gate that drives the CLK input of the Port 0 latch. Later in the 
bus cycle, the byte of data is output on data bus lines D0 through D7. DT/R---- is logic 1 
and DEN---- equals 0. Therefore, the transceiver is set for transmit (output) mode of 
operation and the byte of data is passed to the data inputs of all ports. Finally, the write 
pulse at WR---- supplies the second input of the gate for the CLK input of Port 0. Since 
both inputs of the gate are now logic 0, the output switches to 0. As WR---- returns to 
logic 1, the positive clock edge is presented to the latch, which enables the data to be 
latched and made available at outputs O0 through O7 of Port 0.       
15. PUSH  DX ;Save all registers to be used 
      PUSH  AX 
      PUSH  CX 
      PUSH  SI 
      PUSH  BX  
        .   ;Program of Example 10.6 starts here   
        . 
        .  
        .   ;Program of Example 10.6 ends here 
      POP   BX  ;Restore the saved registers 
      POP   SI 
      POP   CX 
      POP   AX 
      POP   DX  
      RET  ;Return from the subroutine 
 
Section 10.5 
 
16. Parallel I/O. 
17. 24.  
18. PA0-PA7, PB0-PB7, PC0-PC7. 
19. Mode 0 selects simple I/O operation. This means that the lines of the port can be 
configured as level-sensitive inputs or latched outputs.  Port A and port B can be 
configured as 8-bit input or output ports, and port C can be configured for operation as 
two independent 4-bit input or output ports.   
    Mode 1 operation represents what is known as strobed I/O. In this mode, ports A and B 
are configured as two independent byte-wide I/O ports, each of which has a 4-bit control 
port associated with it.  The control ports are formed from port C's lower and upper 
nibbles, respectively.  When configured in this way, data applied to an input port must be 
strobed in with a signal produced in external hardware.  An output port is provided with 
handshake signals that indicate when new data are available at its outputs and when an 
external device has read these values. 
    Mode 2 represents strobed bidirectional I/O.  The key difference is that now the port 
works as either input or output and control signals are provided for both functions.  Only 
port A can be configured to work in this way. 
20. Port B can be configured as an input or output port in mode 0 or mode 1.  



21. D0 = 1  Lower 4 lines of port C are inputs 
      D1 = 1  Port B lines are inputs 
      D2 = 0   Mode 0 operation for both port B and the lower 4 lines of port C 
      D3 = 1  Upper 4 lines of port C are inputs 
      D4 = 1  Port A lines are inputs 
      D6D5 = 00  Mode 0 operation for both port A and the upper 4 lines of port C 
      D7 = 1  Mode being set 
22. Port A = Mode 1 output; Port B = Mode 1 output. 
23.  Control word bits = D7D6D5D4D3D2D1D0 = 100100102 = 92H 
24. D0 = 0  Don't care bit 
      D1 = 1  Port B lines are inputs 
      D2 = 1  Mode 1 operation for both port B and the lower 4 lines of port C 
      D3 = 0  Don't care bit  
      D4 = 1  Port A lines are inputs 
      D6D5 = 01  Mode 1 operation for both port A and the upper 4 lines of port C 
      D7 = 1  Mode being set 
 This gives 
      D7-D0 = 101101102 = B6H  
25. MOV  DX,1000H  ;Load the control register with 92H 
      MOV  AL,92H 
      OUT   DX,AL 
26. MOV  AX, 0H  ;Set up the data segment 
      MOV  DS, AX 
      MOV  AL, 92H      ;Write the control byte  
      MOV  [100H], AL 
27. To enable INTRB, the INTE B bit must be set to 1. This is done with a bit set/reset 
operation that sets bit PC4 to 1. This command is 
               D7-D0 = 0XXX1001  
28. PC1;  logic 1. 
29. MOV  AL,03H ;Load the control register with 03H 
      MOV  DX,100H 
      OUT   DX,AL 
 
Section 10.6 
 
30.     3E16 = 001111102 generates A0 = 0 to enable G----2B; 
 A5A4A3 = 1112 to generate O7 = 0 and to enable PPI 14; A2A1 = 11 to select the 
            control register. Therefore, 9816 is written to the control register in PPI 14. 
31. The value at the inputs of port A of PPI 2 is read into AL.    
32. Port A address = XX0010002 
      Port B address = XX0010102 
      Port C address = XX0011002 
33. IN       AL,08H    ; Read port A 
      MOV  BL,AL       ; Save in BL 
      IN       AL,0AH    ; Read port B 
      ADD  AL, BL      ; Add the two numbers 



      OUT  0CH,AL      ; Output to port C  
 
Section 10.7 
 
34.      Memory-mapped I/O   Isolated I/O 
    i)   20 address lines for           16 address lines for I/O 
         I/O addresses in the           addresses in 64K I/O address 
         1M memory address space.       space. 
    ii)  Memory read/write control      I/O read/write control 
         signals are used to            signals are used to 
         communicate.                   communicate. 
    iii) Memory addressing instruc-     IN and OUT instructions 
         tions such as MOV are          must be used to transfer  
         used to transfer data. A       data. Data can be trans- 
         number of addressing modes   ferred only between the  
         become available to address   device and the accumulator 
         the I/O devices. Data can      register.   
         be transferred between the 
         device and almost any register 
         of the MPU. Arithmetic and 
         logical operations can be 
         done directly with  the data 
         on the device. 
    iv) In general slower I/O          In general faster I/O 
         operation.                 operation.  
35.  To access port B on PPI 4 
       A0 = 0, A2A1 = 01, and A5A4A3 = 010 
       This gives the address = XXXXXXXXXX0100102 = 0001216 with Xs = 0 
36.  The control register address =  XXXXXXXXXX0101102 = 0001616 with Xs = 0 
       Therefore, the instruction is MOV  [16H],98H. 
37.    MOV    BL,[0408H] ;Read port A  
         MOV   AL,[040AH] ;Read port B 
         ADD   AL,BL  ;Add the two readings 
         MOV    [040CH],AL ;Write to port C 
 
Section 10.8 
 
38. CLK2, GATE2, and OUT2. 
39. Control word D7D6D5D4D3D2D1D0  = 010110102 = 5AH. 
40. CS----  = 0, RD----  = 1, WR----  = 0, A1 = 1, and A0 = 1.  
41.  MOV   DX,1003H ; Select the I/O location 
 MOV   AL,5AH  ; Get the control word 
     MOV [DX],AL  ; Write it 
42.  MOV  AL,12H ;Write 12H to LS byte of counter 2 
     MOV  [1002H],AL 
43.  MOV  AL,10000000B  ;Latch counter 2  



     MOV  DX,1003H 
     MOV  [DX],AL 
     MOV  DX,1002H 
     MOV  AL,[DX]           ;Read the least significant byte   
44. 54.9 ms; 32.8 ms.  
45. 838 ns; 500 ns.  
46. 3.43 ms. 
47. N = 4810 = 3016. 
48. 241 µs. 
      
Section 10.9 
 
49. No. 
50. When a peripheral device wants to perform a DMA operation, it makes a request for 
service at one of the DRQ inputs of the 82C37A.  In response to this DMA request, the 
DMA controller (82C37A) switches its hold request (HRQ) output to logic 1. This signal 
is applied to the HOLD input of the 8088/8086. In response to this input, the MPU puts 
the bus signals into the high-impedance state and signals this fact to the DMA controller 
by switching the hold acknowledge (HLDA) output to logic 1.  This output is applied to 
HLDA input of the 82C37A and signals that the system bus is now available for use by 
the DMA controller. 
51. 27. 
52.  To read the current address of DMA channel 0 in a DMA controller located at base 
address 001016, the instructions are: 
          MOV   AL,0H 
          OUT   1CH,AL       ;Clear internal flip-flop to read low byte first 
          IN    AL,10H 
          MOV   BL,AL          ;Save low byte in BL 
          IN    AL,10H        ;High byte 
          MOV   AH,AL 
          MOV   AL,BL          ;AX now contains the contents of the current address register 
53.     MOV DX,100DH   ;Master clear for 82C37A 
          OUT DX,AL 
54.     MOV   AL,0H          ;Output command 0H to 82C37A 
          MOV DX,2008H  
          OUT DX, AL 
55.     MOV  AL,56H          ;Load channel 2 mode register 
          OUT   FBH,AL 
56. 0F16. 
57.     MOV  DX,5008H   ;Read status register of 82C37A 
          IN      AL,DX  
 
Section 10.10 
 
58. Clock. 
59. Simplex: capability to transmit in one direction only. 



      Half-duplex: capability to transmit in both directions but at different times. 
      Full-duplex: capability to transmit in both directions at the same time. 
60.  -5 V dc to -15 V dc. 
 
Section  10.11 
 
61. C/D---- = 0, RD---- = 1, WR---- = 0, and CS---- = 0. 
62. Asynchronous character length: 8 bits 
      Parity: even 
      Number of stop bits: 2 
63. MOV AL,FFH 
      MOV MODE,AL 
64. The mode instruction determines the way in which the 8251A's receiver and 
transmitter are to operate, whereas the command instruction controls the operation.  
Mode instruction specifies whether the device operates as an asynchronous or 
synchronous communications controller, how the external baud clock is divided within 
the 8251A, the length of character, whether parity is used or not and if used then whether 
it is even or odd, and also, the number of stop bits in asynchronous mode. 
     The command instruction specifies the enable bits for transmitter and receiver.  
Command instruction can also be used to reset the error bits of the status register, namely 
parity error flag (PE), overrun error flag (OE), and framing error flag (FE).   
     The 8251A device can be initialized by the command instruction by simply writing 
logic 1 into bit D of command register.  Here, the word initialization means returning to 
the mode-instruction format.   
 
Section 10.12 
 
65.  12 rows × 12 columns = 144 keys. 
66.  R3R2R1R0 = 1011, C3C2C1C0 = 1101. 
67.  D3D2D1D0 = 1101, abcdefg = 1110000.  
 
Section 10.13 
 
68. 16 8-bit characters, right-entry for display. Strobed input, and decoded display scan 
for keyboard. 
69. P = 30. 
CLK = (100 kHz) (30) = 3 MHz 
70. Command word 0:   to set the mode of operation for keyboard and display. 
      Command word 1:   to set the frequency of operation of 8279. 
      Command word 2:   to read the key code at the top of FIFO. 
      Command word 3:   to read the contents of display RAM. 
      Command word 4:   to send new data to the display.     
      Command word 6:   to initialize the complete display memory, the FIFO status, and 
                                       the interrupt request output line. 
      Command word 7:   to enable or disable the special error mode. 
 



CHAPTER  11 
 
Section  11.1 
 
1. External hardware interrupts, software interrupts, internal interrupts, nonmaskable 
interrupt, and reset. 
2.  Interrupt service routine. 
3.  External hardware interrupts, nonmaskable interrupt, software interrupts, internal 
interrupts, and reset.    
4.  0 through 255. 
5.  Higher priority. 
 
Section  11.2 
 
6.  Interrupt pointer table. 
7.  4 bytes.                   
8.  16-bit segment base address for CS and 16-bit offset for IP. 
9.  Overflow. 
10. IP3 = A000H is stored at address 0C16 and CS3 = A000H is stored at address 0E16. 
11. (IP40) = (Location A0H), and (CS40) = (Location A2H). 
 
Section  11.3 
 
12. Set interrupt enable.    
13. Arithmetic; overflow flag.  
14. The MPU goes into the idle state and waits for an interrupt or reset to occur. 
 
Section  11.4 
 
15.       ;This is an uninterruptible subroutine 
 CLI ; Disable interrupts at entry point  
              .  
              .     ; Body of subroutine          
              . 
              . 
 STI ; Enable interrupts   
 RET  ; Return to calling program                
16. Put an STI instruction at the beginning of the service routine.    
 
Section  11.5 
 
17.  Interrupt acknowledge. 
18.  Level triggered. 
19. INTR is the interrupt request signal that must be applied to the 8088 MPU by external 
interrupt interface circuitry to request service for an interrupt-driven device. When the 
MPU has acknowledged this request, it outputs an interrupt acknowledge bus status code 



on S----2S----1----S----0, and the 8288 bus controller decodes this code to produce the 
INTA---- signal. INTA---- is the signal used to tell the external device that its request for 
service has been granted.    
20. 8088; 8288. 
21. D0 through D7. 
22. S----2S----1S----0 = 000. 
 
Section  11.6 
 
23. When the 8088 microprocessor recognizes an interrupt request, it checks whether the 
interrupts are enabled.  It does this by checking the IF.  If IF is set, an interrupt 
acknowledge cycle is initiated.  During this cycle, the INTA---- and LOCK---- signals are 
asserted.  This tells the external interrupt hardware that the interrupt request has been 
accepted.  Following the acknowledge bus cycle, the 8088 initiates a cycle to read the 
interrupt vector type.  During this cycle the INTA---- signal is again asserted to get the 
vector type presented by the external interrupt hardware. Finally, the interrupt vector 
words corresponding to the type number are fetched from memory and loaded into IP and 
CS.  
24. 1.2 µs. 
25. 1.8 µs for three write cycles; 6 bytes.  
26. 1.2 µs for two read cycles. 
 
Section  11.7 
 
27. D0 = 0   ICW4 not needed 
      D1 = 1   Single-device 
      D3 = 0   Edge-triggered 
      and assuming that all other bits are logic 0 gives 
      ICW1 = 000000102 = 0216.    
28. ICW2 = D7D6D5D4D3D2D1D0  = 01110XXX2= 7016 through 7716. 
29. D0 = 1       Use with the 8086/8088 
      D1 = 0       Normal end of interrupt 
      D3D2 = 11 Buffered mode master 
      D4 = 0       Disable special fully nested mode 
      and assuming that the rest of the bits are logic 0, we get 
      ICW4 = 000011012 = 0D16.    
30. CLI                   ;Disable interrupts  
      MOV    AX,0H           ;Set up data segment 
      MOV    DS,AX   
      MOV    AL,2H           ;ICW1 loaded 
      MOV    [A000H],AL 
      MOV    AL,70H         ;ICW2 loaded  
      MOV    [A001H],AL      
      MOV    AL,0DH         ;ICW4 loaded  
      MOV    [A001H],AL     ;Initialization complete  
      STI                   ;Enable interrupts  



31. MOV  AL,[0A001H] 
32. Set IR7 priority as the lowest one. 
33.  
    MOV  AL, [0A001H]   ;Read OCW3 
    MOV  [OCW3],AL      ;Copy in memory 
    NOT   AL              ;Extract RR bit 
    AND   AL,2H         ;Toggle RR bit 
    OR      [OCW3],AL  ;New OCW3 
    MOV  AL,[OCW3]    ;Prepare to output OCW3 
    MOV  [0A001H],AL ;Update OCW3 
 
Section  11.8 
 
34. 8. 
35. 22. 
36. Assuming that only one of the IR inputs of slave B is active, its INT output switches 
to logic 1. This output is applied to the IR6 input of the master 82C59A. Again assuming 
that no higher priority interrupt is already active, the master 82C59A also switches its 
INT output to logic 1. In this way, the MPU is signaled that an external device is 
requesting service.  
    As long as the external hardware interrupt interface is enabled, the request for service 
is accepted by the MPU and an interrupt acknowledge bus cycle initiated. The MPU 
outputs a pulse to logic 0 at INTA----. This signal is applied to all three 82C59As in 
parallel and signals them that the request for service has been granted.  
    In response to this pulse, the master 82C59A outputs the 3-bit cascade code (110) of 
the device whose interrupt is being acknowledged onto the CAS bus. The slaves read this 
code and compare it to their internal identification code. In this case slave B identifies a 
match. Therefore, as the MPU performs a second interrupt acknowledge bus cycle, slave 
B outputs the type number of the active interrupt on data bus line D0 through D7.   The 
MPU reads the type number from the data bus and uses it to initiate the service routine. .  
37.  64. 
 
Section  11.9 
 
38. Vectored subroutine call.   
39. CS80 = A000H and IP80 = 0100H. 
40. CS80 → (Location 142H) and IP80 → (Location 140H). 
 
 
Section  11.10 
 
41. Type number 2; IP2 is at location 08H and CS2 is at location 0AH. 
42. NMI is different from the external hardware interrupts in three ways: 
a.   NMI is not masked out by IF. 
b.   NMI is initiated from the NMI input lead instead of from the INTR input. 



c.   The NMI input is edge-triggered instead of level sensitive like INTR. Therefore, its 
occurrence is latched inside the 8088 or 8086 as it switches to its active 1 logic level. 
43. Initiate a power failure service routine. 
 
Section  11.11 
 
44. RESET=1. 
45. CLK. 
46. 8284. 
47. AD0 through AD15 = High-Z 
      A16 through A19 = High-Z 
      BHE---- = High-Z 
      ALE = 0 
      DEN---- = 1 then High-Z 
      DT/R---- = 1 then High-Z 
      RD---- = 1 then High-Z 
      WR---- = 1 then High-Z 
48. FFFF0H 
49.      
RESET: MOV  AX,0       ;Set up the data segment 
            MOV  DS,AX 
            MOV  CX,100H    ;Set up the count of bytes 
           MOV  DI,0A000H   ;Point to the first byte 
NXT:   MOV  [DI],0     ;Write 0 in the next byte 
          INC  DI         ;Update pointer, counter 
           DEC  CX 
           JNZ  NXT       ;Repeat for 100H bytes 
          RET             ;Return 
 
 
Section  11.12 
 
50. Divide error, single step, breakpoint, and overflow error. 
51. Vectors 0 through 4. 
52. Single step mode; CS1:IP1. 
53. CS1 is held at 00006H and IP1 is held at 00004H; A0200H.  
 
CHAPTER 12 
 
Section 12.1 
 
1.  System address bus, system data bus, and system control bus. 
2. Generate clock signals: CLK88, OSC, and PCLK, generate the power-on reset 
(RESET) signal, and synchronize the CPU to slow peripheral devices by using the wait 
state logic to generate the READY signal for the CPU. 
3.  060H, 061H, 062H, and 063H. 



4.  000H through 00FH; 080H through 083H. 
5.   
Timer 0—to keep track of the time of the day, generate an interrupt to the microprocessor 
every 55 ms. 
Timer 1—to produce a DMA request every 15.12 µs to initiate a refresh cycle of DRAM. 
Timer 2—has multiple functions, such as to generate programmable tones for the speaker 
and a record tone for the cassette. 
6.  Port PA = input, port PB = output, and port PC = input.  
7.  PA0 through PA7 and PC0 through PC3. 
8.  PB3. 
9.  Port B (PB1). 
10. Numeric coprocessor (8087) interrupt request (N P NPI), Read/write memory parity 
check (PCK), and I/O channel check (I/O CH CK). 
11. Printer 
12. Fixed disk. 
13. 384Kbytes. 
 
Section 12.2 
 
14. CLK88 = 4.77 MHz; PCLK = 2.385 MHz.  
15. 4.77 MHz. 
16. Input signal - PWR GOOD 
      Output signal - RESET. 
17. Pin 21.  
18. Input signals - DMA WAIT----, RDY----/WAIT 
      Output signal - READY. 
19.  Logic 0 at DMA WAIT---- means wait states are required. Logic 0 at RDY----
/WAIT means data are ready and CPU can complete the cycle, thus wait states are not 
required. 
20. 8259A and 8087. 
21. 74LS373 latches and 74LS245 bus transceiver. 
22. 8288 
23. MEMR---- = pin 7 and MEMW---- = pin 8. 
24. See answer for Problem 11.23. 
 
Section 12.3 
 
25. I/O channel cards; 0. 
26. I/O channel cards (I/O CH RDY), I/O reads or writes (XIOR---- and XIOW----), and 
DMA cycles (DACK 0 BRD---- or AEN BRD).  
27. When a DMA request (DRQ0 through DRQ3) goes active (logic 1), 8237A outputs 
logic 0 at HRQ DMA----. This signal is input to NAND gate U52 in the wait state logic 
circuit and causes logic 1 at its output.  This output drives the CLR input of 74LS74 flip-
flop U67, which produces HOLDA, and releases the cleared flip-flop for operation. The 
output of NAND gate U52 is also used as an input to NAND gate U5.  When the 8088 



outputs the status code S2----S1----S0---- = 111 (passive state) and LOCK---- = 1, the 
output of U5 switches to 0. This output is inverted to logic 1 at pin 8 of U83.        
     On the next pulse at CLK, the logic 1 applied to input D3 of flip-flop U98 is latched at 
output Q3. Next, this output is latched into the 74LS74 flip-flop U67 synchronously with a 
pulse at CLK88 to make HOLDA logic 1.  HOLDA is sent to the HLDA input of 8237A 
and signals that the 8088 has given up control of the system bus.  
28. When the RESET signal is at logic 0 (not active), the 8088 can enable the NMI 
interface by doing an I/O write operation to any I/O address in the range of 00A0H to 
00BFH with bit  D7 = 1. 
29.   MOV AL,80H       ;Disable NMI  
        OUT  0A0H,AL 
30. Yes, output PB4 of 8255A U36 is the enable RAM parity check (ENB RAM PCK----) 
signal. Logic 0 at this output enables the parity check circuit.  
31. Since the signals PCK and I/O CH CK are connected to PC7 and PC6 of the 8255A, 
respectively, the 8088 can read port C to determine which NMI source is requesting 
service. 
           PC7   PC6           NMI source 
            0     0                N P NPI  
            0     1                I/O CH CK 
            1     0                PCK 
 
Section 12.4 
 
32. I/O write to address A0H makes  
    A9A8A7A6A5A4A3A2A1A0 = 0010100000  
which generates the WRT NMI REG---- signal. 
    With A9 and A8 logic 0 and AEN---- (Non DMA cycle) logic 1, decoder U66 is enabled 
for operation.  Since A7 and A5 are 1 and A6 is 0, output Y5 of U66 switches to logic 0.  
This output is input to a NOR gate along with XIOW----, which is also at logic 0.  
Therefore, the output at pin 10 of U50 is at logic 1.  This signal is inverted to produce the 
WRT NMI REG---- signal. 
33. DMA controller chip select (DMA CS----), interrupt controller chip select (INTR CS-
---), interval timer chip select (T/C CS----), and parallel peripheral interface chip select 
(PPI CS----).  
34. CS----0, CS----1, CS----2, CS----3, CS----4, CS----5, CS----6, CS----7.  
35. Expressing the address in binary form, we get 
A19A18A17A16A15A14A13A12A11A10A9A8A7A6A5A4A3A2A1A0 = 11111010000000000000  
As the address FA000H is applied at the input of the ROM address decoder circuitry, 
address bits A16 through A19, which are all 1, drive the inputs of NAND gate U64. This 
input condition makes the ROM ADDR SEL---- output at pin 6 becomes logic 0.  This 
signal, along with XMEMR---- (logic 0) and RESET DRV---- (logic 1), enables the 
74LS138 three-line-to-eight-line decoder U46. The inputs of this decoder are A15A14A13 = 
101. Therefore, output CS----5 switches to its active 0 level.  CS----5 enables EPROM 
XU31 in the ROM array, and the signal ROM ADDR SEL---- controls the data direction 
through the 74LS245 bus transceiver U13. 
36. A19A18 = 00. 



37. RAS----1 
38. CAS----2 
 
Section 12.5 
 
39. For the address F400016 we have A16 through A19  = 1111, A14  = 1, and the rest of the 
address bits are 0. Since A16 through A19  = 1111, ROM ADDR SEL---- is at its active 0 
logic level. This output enables the 74LS138 decoder, U46. Since A15A14A13  = 010, CS---
-2 is active. CS----2 selects XU28 in the ROM array and data are read from the first storage 
location of the EPROM chip.  Also, ROM ADDR SEL---- directs the data from ROM to 
the 8088 via the 74LS245 bus transceiver U13 . 
40. When a byte of data is written to the DRAMs in bank 0, the RAS and CAS address 
bytes are output from the address multiplexer synchronously with the occurrence of the 
active RAS----0 and CAS----0 address strobe signals.  ADDR SEL initially sets the 
74LS158 address multiplexer (U62 and U79) to output the RAS address byte to the 
DRAMs on multiplexed address lines MA0 through MA7.  When RAS----0 switches to 
logic 0, it signals all DRAMs in bank 0 to accept the row address off the MA lines.  Next, 
ADDR SEL switches logic levels and causes the column address to be output from the 
multiplexer to the MA lines. It is accompanied by CAS----0, which is applied in parallel 
to the CAS---- inputs of all DRAMs in bank 0. Logic 0 at these inputs tells the DRAMs 
to accept the CAS address off the MA lines.  
    At this point, the address has selected the storage location to be accessed. Next, the 
data to be written into this storage location is supplied from the data bus of the MPU 
through the 74LS245 transceiver (U12) to the data line of DRAMs U38 - U45.  The same 
byte of data is also applied to the parity generator circuit where the corresponding parity 
bit is generated and stored in U37. The data is written into bank 0 synchronous with a 
pulse at WE----.   
 
Section 12.6 
 
41. DMA requests for channels 1, 2, and 3 are the I/O channel devices (boards plugged 
into the I/O channel).  
42. We will assume that none of the DRQ inputs of the 8237A are masked out and that a 
DMA operation is not already in progress. When any of the DRQ lines switches to logic 
1, the 8237A makes its hold request (HRQ) output become logic 1. This signal is inverted 
to give logic 0 at HRQ DMA----. HRQ DMA---- is applied to the input of the wait state 
logic and initiates a request to the MPU for use of the system bus by the DMA controller.  
    When the 8088 is ready to give up control of the system bus, it signals this fact to the 
8237A DMA controller. The wait state logic circuitry also performs this function. When 
the buses are in the passive state, the MPU switches the HOLDA output to logic 1. This 
signal is returned to the HLDA input of the 8237A and indicates that the buses are 
available for use by the DMA controller. 
    The processing of the HRQ DMA---- input and generation of the HOLDA output by 
the wait state logic circuitry is described in the solution for problem 27.  
 
 



43.  
DMA page register Contents 
       1      0AH   
 2      0BH 
 3      0CH 
Instruction sequence: 
 MOV AL,0AH ;Init. channel 1 page register 
 OUT 81H,AL 
 MOV AL,0BH ;Init. channel 2 page register 
 OUT 82H,AL 
 MOV AL,0CH ;Init. channel 3 page register 
 OUT 83H,AL  
 
Section 12.7 
 
44.  Timer interrupt frequency = 1/54.936 ms = 18.2 Hz 
       Refresh request frequency = 1/15.12 µs = 66.14 KHz 
45.  Counter 1 divisor = 1.1 M/18.2 = 60,440 
46. When the speaker is to be used, the 8088 must write logic 1 to bit 0 of port B of the 
8255A to produce the signal TIM 2 GATE SPK that enables the clock for timer 2.  Pulses 
are now produced at OUT2.  When a tone is to be produced by the speaker, the 8088 
outputs the signal SPKR DATA at pin 1 of port B. This signal enables the pulses output 
at OUT2 to the 75477 driver.  The output of the driver is supplied to the speaker. 
Changing the count in timer 2 can change the frequency of the tone. 
47.  
 
 
 
 
 
 
48.  
MOV AL, SW1_EN  ;Enable SW1 buffer 
OUT 61H, AL 
IN AL, 60H  :Input SW1 
MOV [SW1_LOC], AL ;Save SW1 
MOV AL, SW1_DIS  ;Disable SW1 buffer 
OUT 61H, AL 
; Where, SW1_EN is a byte with MSB = 1 
;   SW_DIS is a byte with MSB = 0 
;   SW1_LOC is a location where SW1 is saved. 
 
Section 12.8 
 
49. KBD IRQ is an output that is used as an interrupt to the MPU and, when active, it 
signals that a keyscan code needs to be read.   



50. 
KBR_SRV: PUSH AX    ;Save register to be used 
  MOV AL, KEYBDCLK_LOW ;Hold keyboard clock low 
  OUT 61H, AL 
  MOV AL, SR_EN   ;Enable the shift register output 
  OUT 61H, AL    
  IN AL, 60H   ;Input the key code 
  MOV [KBD_LOC], AL  ;Save the keycode 
  MOV AL, KEYBDCLK_EN ;Release the keyboard clock 
  OUT 61H, AL    
  POP AX    ;Restore register 
  IRET     ;Return 
; Where, KEYBDCLK_LOW is a byte with bit 6 = 0 
;    KEYBDCLK_EN is a byte with bit 6 = 1 
;    SR_EN is a byte with the MSB = 0 
;    KBD_LOC is a byte location where the key code is saved 
 
Section 12.9 
 
51. I/O channel slots provide the system interface to add-on cards. Five 62-pin card slots 
are provided on the system board. 
52. A10. Active high. 
 
Chapter 13 
  
Section 13.1 
 
1.  Prototype circuit. 
2.  A circuit card that is used to prototype an experimental circuit.  
3.  Solderless breadboard. 
4. An extender card is plugged into the I/O channel slot of the PC (ISA slot for a PC/AT) 
and the card to be tested is plugged into the top of the extender card. This elevates the 
circuits on the board above the housing of the PC to permit easy access for testing.  
5.  Bus interface module, I/O expansion bus cables, breadboard unit 
 
Section 13.2 
 
6.  Switches, LEDs, and a speaker. 
7.  The INT/EXT switch must be set to the EXT position.  
8.  One.  
9.  26 AWG. 
10. The horizontal row marked with a line. 
11. A31 through A12. 
12. Test for continuity between two points in a circuit; the buzzer sounds if continuity 
exists between the test points.  



13. Logic 0 lights the green LED; logic 1 lights the red LED; and the high-Z level lights 
the amber LED.   
14. The red LED marked P blinks.  
 
Section 13.3 
 
15. 74LS688, 74LS138, and 74LS32. 
16. IOWX31E---- 
17. A10 through A15. 
18. Yes; IOWX31E---- 
19. The select outputs of the 74LS138 are gated with either IOR---- or IOW---- in 
74LS32 OR gates. These signals are active only during an I/O cycle. 
20. D7D6D5D4D3D2D1D0 = 000011112 
21. Yes 
22.  
 MOV   DX,31DH ;Read the switches 
 IN    AL,DX  ;Mask off all but S1 and S0 
 AND   AL,3H 
 CMP   AL,3H 
 JZ    SERVE_3 ;Branch to SERVE_3 of S1 & S1 are closed 
23. The setting of switch 7 is polled waiting for it to close.  
24. LED 0; LED 7.  
25. Lights LEDs 0 through 3. 
26.  
  MOV   DX,31EH ;Select LED port address 
  MOV   AL,01H ;Select code for 1st LED 
      SCAN:     OUT   DX,AL      ;Write to light next LED 
  MOV   CX,0FFFFH ;Wait a while 
   DELAY:    DEC   CX 
  JNZ   DELAY 
  ROL   AL,1  ;Select code for next LED 
  JMP   SCAN  ;Repeat 
27. The LEDs are lit in a binary counting pattern.    
28. 75477. 
29. Change MOV  CX,0FFFFH to  MOV  CX,7FFFH. 
 
Section 13.4 
 
30.   IN  AL,8000H reads the switch setting into the LSB of AL. Logic 0 in a bit position 
indicates that the corresponding switch is open.  
 
 
 
 
 
 



31.  
 
 
 
 
 
 
 
 
 
 
 
 
 



31. (Continued) 
 
 



32. Diagnostic program.  
33. IC test clip. 
34. Logic probe, multimeter, and oscilloscope. 
35. Whether the test point is at the 0, 1, or high-Z logic state, or if it is pulsating.   
36. The multimeter reads the actual voltage present at a test point.  
37. Amount of voltage, duration of the signal, and the signal waveshape.  
38. The signal waveshape pattern repeats at a regular interval of time.   
39. Troubleshooting. 
40. Software debug.  
41. Hardware troubleshooting. 
42. 
i)    Programming of VLSI peripherals 
ii)  Addresses of I/O devices or memory locations  
iii) Algorithm implementation 
43. 
i)   Check to verify that correct pin numbers are marked into the schematic diagram. 
ii)  Verify that the circuit layout diagram correctly implements the schematic.  
iii) Check that the ICs and jumpers are correctly installed to implement the circuit.  
44. Power supply voltages.  
45. 
Test point    Switch open  Switch closed  
      1                    1                   0  
      2                    1                   0 
      3                 Pulse               Pulse  
46. The jumper from the switch to the junction of the resistor and pin 1 of the 74LS240 is 
not making contact.  
 
Section 13.5 
 
47. Address bus, data bus, and control-bus signals.   
48. Digital logic analyzer. 
49. 
Oscilloscope                       Logic analyzer______________ 
i)   Requires periodic signal      i)   Can display periodic or 
      to display                              nonperiodic signals 
ii)  Small number of channels      ii)  Large number of channels 
iii) Displays actual voltage      iii) Displays logic values 
      values 
iv) Generally does not store      iv) Stores signals for  
     the signals for display               display 
v) Simple trigger condition       v) Trigger signal can be a 
     using a single signal                  combination of a number of  
                                             signals   



Chapter 14 
 
Section 14.1 
 
1.   HMOSIII. 
2.  125,000. 
3.   PLCC, LCC, and PGA. 
 
Section 14.2 
 
4.  Bus unit, instruction unit, execution unit, and address unit. 
5.  24 bits, 16 bits. 
6.  Demultiplexed address and data buses. 
7.  6 bytes. 
8.  Address generation, address translation, and address checking. 
9.  The queue holds the fetched instructions for the execution unit to decode and perform 
the operations that they specify. 
 
Section 14.3 
 
10. 5×.   
11. That an 8086 object code program can run on the 80286. 
12. Machine status word register (MSW). 
 
Section 14.4 
 
13. Saves the contents of various registers of the processor such as AX, SP, and so forth, 
on the stack. 
14.  DI, SI, BP, SP, BX, DX, CX, and AX. 
15.  Data area on the stack for a subroutine to provide space for the storage of local 
variables, linkage to the calling subroutine, and the return address.  
16.  32 bytes for data + 10 bytes for the previous and current frame pointers; 4.  
17.  A word of data from the word size port at address 1000H is input to the memory 
address 1075H:100H. The SI register is incremented to 102H, and CX is decremented by 
2.   
18. The 16 bytes of data in the range 1075H:100H through 1075H:0F0H are output one 
after the other to the byte-wide output port at I/O address 2000H. Each time a byte is 
output, the count in the CX register and the pointer in SI are decremented by 1. The 
output sequence is repeated until the count in CX is 0.  
19.  The instruction tests if VALUE lies between 0000H and 00FFH. If it is outside these 
bounds, interrupt 5 occurs. 
 
Section 14.5 
 
20.  20-bits, 1 Mbyte; 24-bits, 16 Mbyte; 1 GByte. 
21.  I/O write (output bus cycle). 



22.  Byte transfer over the upper eight data bus lines. 
23.  No, it is one bit of a status code that must be decoded to produce an interrupt 
acknowledge signal. 
24.  HOLD and HLDA. 
25.  80287. 
  
Section 14.6 
 
26. M/IO----, S1----, S0----. 
27.  IOWC---- 
28. DT/R----, ALE, and DEN. 
29.  1. 
 
Section 14.7 
 
30. 8 MHz, 10 MHz, and 12.5 MHz; 80286, 80286-10, and 80286-12, respectively. 
31. 25 MHz. 
32. CLK and PCLK; 10 MHz and 5 MHz. 
 
Section 14.8 
   
33. Four clocks; 400 ns. 
34. Send-status state, 80286 outputs the bus status code to the 82C288 and in the case of 
a write (or output) bus cycle it also outputs data on the data bus. 
35. Perform-command state; external devices accept write data from the bus, or in the 
case of a read cycle, place data on the bus.   
36. In Fig. 14.26(a) address n becomes valid in the Tc state of the prior bus cycle and then 
the data transfer takes place in the next Tc state. Also, at the same time that data transfer n 
occurs address n + 1 is output on the address bus. This shows that due to pipelining the 
80286 starts to address the next storage location that is to be accessed while it is still 
reading or writing data for the previously addressed storage location.       
37. An idle state is a period of no bus activity that occurs because the prefetch queue is 
already full and the instruction currently being executed requires no bus activity.  
38. An extension of the current bus cycle by a period equal to one Ts state because the 
READY---- input was tested and found to be logic 1; 600 ns. 
 
Section 14.9 
 
39.  The bus controller produces the appropriately timed command and control signals 
needed to control transfers over the data bus. The decoder decodes the higher-order 
address bits to produce chip-enable signals. The address latch is used to latch and buffer 
the lower bits of the address and chip-enable signals. The data bus buffer/transceiver 
controls the direction of data transfers between the MPU and memory subsystem.  
40. 110; MWTC----. 



41.  Odd-addressed byte, even-addressed byte, even-addressed word, and odd-addressed 
word. One bus cycle is required for all types of cycles, except the odd-addressed word 
cycle, which requires two bus cycles.  
42. 500 ns; 1µs. 
43.  Odd-addressed byte. 
44.  
a. At the beginning of φ2 of the Tc state in the previous bus cycle, the address, M/IO---- 
and COD/INTA---- signals for the byte-write bus cycle are output.    
b. Status code S----1S----0 equal to 10 is output on the status bus at the beginning of φ1 of 
the write cycle and is maintained throughout the Ts state. On the falling edge of CLK in 
the middle of Ts the 82C288 bus controller samples the status lines and the write cycle 
bus control sequence is started.     
c. At the beginning of φ2 of Ts, ALE is switched to logic 1. This pulse is used to latch the 
address. Also DEN is switched to 1 to enable the data bus transceivers and DT/R---- is 
left at the  
transmit level to set the transceivers to output data to the memory subsystem.   
d. At the beginning of φ2 in the Ts state the byte of data to be written to memory is output 
on bus lines D0 through D7.       
e. At the start of φ1 of the Tc state, MWTC----  is switched to its active 0 logic level to 
signal the memory subsystem to read the data off the bus.  
f. Late in Tc the 80286 and 82C288 test the logic level of READY----. If it is logic 0, the 
write cycle is completed.  
45. 320 ns. 
46. 480 ns. 
 
Section 14.10 
 
47. M/IO----. 
48. 82C288. 
49. The decoder is used to decode several of the upper I/O address bits to produce the 
I/OCE---- signals. The latch is used to latch the lower-order address bits and I/OCE---- 
outputs of the decoder. The bus controller decodes the I/O bus commands to produce the 
I/O and bus control signals for the I/O interface. The bus transceivers control the 
direction of data transfer over the bus.    
50. 600 ns. 
51. 1.2µs. 
52. During the Tc state of the previous bus cycle, the 80286 outputs the I/O address along 
with BHE---- = 0 and M/IO---- = 0. The address decoder decodes some of the address 
bits to produce I/O chip enable signals. At the beginning of the Ts state of the output 
cycle, S----1S----0 = 10 is output to signal that an output operation is in progress. The 
82C288 decodes this bus status code and starting at φ2 of the Ts state a pulse is output at 
ALE. This pulse is used to latch the I/O address and chip enable signals into the address 
latch. At the same time DEN is switched to 1 and DT/R---- is held at the transmit level 
(logic 1). Therefore, the bus transceivers are enabled and set up to pass data from the 
80286 to I/O port. Finally, at the beginning of the Tc state the bus controller switches 
IOWC---- to logic 0 to signal the I/O device to read data off the bus.  



 
Section 14.11 
 
53. Hardware interrupts, software interrupts, internal interrupts and exceptions, software 
interrupts, and reset. 
54. 0 through 255. 
55. Interrupt vector table; interrupt descriptor table. 
56. 2 words.                 
57. Interrupt descriptor table register, 0.  
58. CS3 = A000H and IP3 = A000H. 
59. INTR is the interrupt request signal that must be applied to the 80286 MPU by the 
external interrupt interface circuitry to request service for an interrupt-driven device. 
When the MPU acknowledges this request, it outputs an interrupt acknowledge bus status 
code on M/IO---- S----1S----0, and this code is decoded by the 82C288 bus controller to 
produce the INTA---- signal. INTA---- is the signal that is used to tell the external device 
that its request for service has been granted.   
60. 8. 
61.  Divide Error, 
       Single step, 
       Breakpoint, 
       Overflow error, 
       Bounds check, 
       Invalid opcode, 
       Processor extension not available, 
        Interrupt table limit to small, 
        Processor extension segment overrun, 
        Segment overrun, 
        Processor extension error. 
62. Vectors 0 through 16. 
 
Chapter 15 
 
Section 15.1 
 
1.  80386DX and 80386SX. 
2.  32 bit registers and a 32-bit data bus; 32 bit registers and a 16-bit data bus. 
3.  39; 49. 
4.  Real-address mode, protected-address mode, and virtual 8086 mode.  
 
Section 15.2 
 
5.  Bus unit, prefetch unit, decode unit, execution unit, segment unit, and page unit. 
6.  32 bit, 32 bit. 
7.  Separate address and data buses. 
8.  16 bytes. 
9.  Prefetch unit. 



10. 6 word × 64 bit. 
11. Translation lookaside buffer. 
 
Section 15.3 
 
12. 5× 
13. Object code compatible means that programs and operating systems written for the 
8088/8086 will run directly on the 80386DX and 80386SX in real-address mode. 
14.  32 bits; 16 bits.  
15.  FS, GS, and CR0 registers. 
 
Section 15.4 
 
16.   MOV  EBX,CR1 
17.   Double precision shift left. 
18.  The byte of data in BL is sign-extended to 32 bits and copied into register EAX.    
19.   MOVZX   EAX, [DATA_WORD]. 
20.  The first 32 bits of the 48-bit pointer starting at memory address 
DATA_F_ADDRESS are loaded into EDI and the next 16 bits are loaded into the FS 
register. 
21. (a)  (AX) = F0F0H, (CF) = 1. 
      (b)  (AX) = F0E0H, (CF) = 1. 
      (c)  (AX) = F0E0H, (CF) = 1. 
22.  Set byte if not carry; (CF) = 0. 
 
Section 15.5 
 
23.  Global descriptor table register, interrupt descriptor table register, task register, and 
local descriptor table register.   
24. LIMIT and BASE. 
25. Defines the location and size of the global descriptor table. 
26.   GTDSTART  = 210000H, GDTEND = 2101FFH; SIZE = 512 bytes; DESCRIPTORS = 
64 
27.  System segment descriptors. 
28.  Interrupt descriptor table register and interrupt descriptor table. 
29.  0FFFH 
30.  Interrupt gates. 
31. Local descriptor table. 
32. Selector; the LDT descriptor pointed to by the selector is cached into the LDT cache. 
33.  CR0. 
34.  PE 
35.  (MP) = 1, (EM) = 0, and (ET) = 1. 
36.  Task switched. 
37.  Switch the PG bit in CR0 to 1.   
38.  CR3. 
39.  4Kbyte 



40.  Page frame addresses. 
41.  Selector; selects a task state segment descriptor.  
42.  The selected task state segment descriptor is loaded into this register for on-chip 
access.    
43.  BASE and LIMIT of the TSS descriptor. 
44.  Code segment selector register; data segment selector register.  
45.  RPL = 2 bits 
       TI = 1 bit 
       INDEX = 13 bits 
46.  Access the local descriptor table. 
47.  00130020H  
48.  NT = nested task; RF = resume flag. 
49.  Level 2 
50.  48 bits. 
51.  Selector and offset. 
52.  4Gbyte, 1 byte 
53.  64Tbyte, 16,384 segments. 
54.  32Tbyte, 8192. 
55.  Task 3 has access to the global memory address space and the task 3 local address 
space, but it cannot access either the task 1 local address space or task 2 local address 
space. 
56. Memory management unit. 
57. The first instruction loads the AX register with the selector from the data storage 
location pointed to by SI. The second instruction loads the selector into the code segment 
selector register. This causes the descriptor pointed to by the selector in CS to be loaded 
into the code segment descriptor cache.    
58.  00200100H 
59.  1,048,496 pages; 4096 bytes long. 
60. Offset field = 20 bit; page field = 10 bit; directory field = 10 bit.     
61. Cache page directory and page table pointers on-chip.  
62. 4Kbytes; offset of the linear address. 
 
Section 15.6 
 
63.  8, BASE = 32-bits, LIMIT = 20-bits, ACCESS RIGHTS BYTE = 8-bits, 
AVAILABLE = 1 bit, and GRANULARITY = 1 bit. 
64.  CS, DS, ES, FS, GS, or SS; GDTR or LDTR. 
65.  LIMIT = 00110H, BASE = 00200000H. 
66.  ACCESS RIGHTS BYTE = 1AH 
       P = 0 = Not in physical memory 
       E = 1, R = 1 = Readable code segment 
       A = 0 = Descriptor is not cached.  
67.  00200226H  
68.  20 most significant bits of the base address of a page table or a page frame. 
69.  R/W = 0 and U/S = 0 or R/W = 1 and U/S = 0. 
 



70.  Page fault. 
71.  Dirty bit. 
 
Section 15.7   
 
72.   (INIT_GDTR)      =  FFFFH   
        (INIT_GDTR + 2) =  0000H 
        (INIT_GDTR + 4) =  0030H 
73.   LMSW  AX  ;Get MSW 
       AND   AX,0FFF7H ;Clear task-switched bit 
       SMSW  AX     ;Write new MSW 
74.  MOV   BX, 2F0H ;(BX) = selector 
       LLDT  BX  ;Load local descriptor table register with selector 
 
Section  15.8 
 
75.  The running of multiple processes in a time-shared manner. 
76.  A collection of program routines that perform a specific function. 
77.  Local memory resources are isolated from global memory resources and tasks are 
isolated from each other.  
78.  The descriptor is not loaded; instead, an error condition is signaled. 
79.  Level 0, level 3. 
80.  Level 3. 
81.  LDT and GDT. 
82.  Use of a separate LDT for each task. 
83.  Level 0. 
84.  Current privilege level, requested privilege level. 
85.  A task can access data in a data segment at the CPL and at all lower privilege levels, 
but it cannot access data in segments that are at a higher privilege level.   
86.  Level 3. 
87.  A task can access code in segments at the CPL or at higher privilege levels, but 
cannot modify the code at a higher privilege level. 
88.  Level 0, level 1, and level 2. 
89.  The call gate is used to transfer control within a task from code at the CPL to a 
routine at a higher privilege level. 
90.  Execution of this instruction initiates a call to a routine at a higher privilege level 
through the call gate pointed to by address NEW_ROUTINE.  
91.  Identifies a task state segment. 
92.  Defines the state of the task that is to be initiated. 
93. The state of the prior task is saved in its own task state segment. The linkage to the 
prior task is saved as the back link selector in the first word of the new task state 
segment.   
94.  TR 
 
Section 15.9 
 



96.  Bit 17. 
97.  Active, level 3. 
98.  Yes. 
99.  Yes. 
 
Section 15.10 
 
100.  Floating-point math coprocessor and code and data cache memory.  
101.  The 80486SX does not have an on-chip floating-point math coprocessor. 
102.  136; 249. 
103.  32 bytes. 
104.  Complex instruction set computer; reduced instruction set computer, complex 
reduced instruction set computer. 
105.  Small instruction set, limited addressing modes, and single clock execution for 
instructions.  
106.  CRISC 
107.  Cache disable (CD) and not write-through (NW). 
108.  Little Endian. 
109.  F0F0H. 
110.    MOV   CX, COUNT 
   MOV SI, BIG_E_TABLE 
   MOV   DI, LIT_E_TABLE. 
 NXTDW: MOV EAX, [SI] 
                       SWAP EAX  
                     MOV  [DI], EAX 
                      ADD  SI, 04H 
                     ADD  DI, 04H 
                     LOOP NXTDW 
111.  XADD   [SUM], EBX 
(EAX)    (SUM) 
01H        00H 
01H        01H      1st execution 
01H        02H      2nd execution 
02H        03H      3rd execution 
03H        05H      4th execution 
112.  Since the contents of the destination operand, memory location DATA, and register 
AL are the same, ZF is set to 1 and the value of the source operand, 2216 is copied into 
destination DATA.   
113.  Alignment check (AC); bit 18. 
114.  Cache disable (CD) and not write-through (NW). 
115.  INVD 
116. WBINVD initiates a write back bus cycle instead of a flush bus cycle.  
117.  Page cache disable (PCD) and page write transparent (PWT). 
 
Section 15.11 
 



118.         Integer    Fraction   
9 ÷ 2  à  1   2  × .5    
4 ÷ 2  à 0    2  × 1.0 à 1 
2 ÷ 2  à 0    .5 = .12 
1 ÷ 2  à 1                              
9 = 10012     

                  −9.5 = −1001.12 = −1.0011 × 2+3 

119.  Single precision number = 32 bits, double precision number = 64 bits, and extended 
precision number = 80 bits  
120.  Sign, biased exponent, and fractional significand (extended has full significand). 
121.  Sign = 1 
         Biased exponent = +3 + 127 = 000000112 + 011111112 =  10000010  
         Fractional significand = 00110000000000000000000   
         −1.0011 × 2+3  = 1 10000010 00110000000000000000000; 
         −1.0011 × 2+3  = C1180000H 
122.  8, R0 through R7, ST(0) through ST(7). 
123.  R2, 5, R5. 
124.  TOP is decremented so that the new top of stack is R4 and the value from the old 
ST(2), R7, is copied into R4.  
125.  
(DATA4_64B) − (DATA3_64B) à DATA5_64B 
−10.75 − (−2.5) =−10.75 + 2.5 =−8.25 = 8.25 
8.25 = 1000.012 = 1.00001 × 2+3 
Sign = 0 
Biased exponent = 000000000112 + 011111111112 = 10000000010 
Fractional significand = 0000100000000000000000000000000000000000000000000000 
8.25 = 0 10000000010 0000100000000000000000000000000000000000000000000000 
8.25 = 01000000001000001000000000000000000000000000000000000000000000002 
8.25 = 4020800000000000H 
  
Section 15.12 
  
126.  64 bits. 
127.  A microprocessor architecture that employs more than one execution unit.  
128.  735. 
129.  2; U pipe and V pipe. 
130.  Separate code and data caches; write-through or write-back update methods; dual 
port ALU interface. 
131.  5 to 10 times faster. 
132.  ID, VIP, and VIF. 
133.  Page size extensions, 1M 32-bit entries. 
134.  Machine check exception. 
135.  Compare and exchange 8 bytes (CMPXCHG8B), CPU identification (CPUID), and 
read from time stamp counter (RDTSC). 
136.   ZF ← 0; (EDX:EAX) ← (TABLE) = 11111111FFFFFFFF16 
137.  Machine check type (MCT). 



 
Section 15.13 
 
138.  Single instruction multiple data. 
139.  Packed byte, packed word, packed double word, and packed quad-word; 8×8-bit, 
4×16-bit, 2×32-bit, and 1×64-bit. 
140.  64-bits wide; MM0 through MM7. 
141.  
(a) Byte 7 = FFH,  Byte 6 = 00H, Byte 5 =  12H, Byte 4 =  34H, Byte 3 =  56H, Byte 2 =  
78H, Byte 1 =  ABH, Byte 0 =  CDH. 
(b) Word 3 = FF00H, Word 2 = 1234H, Word 1 = 5678H, Word 0 =  ABCDH 
(c) Double word 1 = FF001234H Double word 0 = 5678ABCDH  
142.  
Byte 7     FFH + 00H = FFH  
Byte 6     FFH + 01H = 100H à FFH due to saturation 
Byte 5     FFH + 00H = FFH   
Byte 4     FFH + 02H = 101H à FFH due to saturation 
Byte 3     12H  + 87H = 99H 
Byte 2     34H  + 65H = 99H 
Byte 1     56H  + 43H = 99H 
Byte 0     78H  + 21H = 99H 
MM3 = FFFFFFFF99999999H 
143. Data is compared as signed numbers. This gives 
Double word 1     FFFFFFFFH > 00010002H = False à 00000000H 
Double word 0     12345678H  > 876554321H = True à  FFFFFFFFH  
MM3 = 00000000FFFFFFFFH 
144.  
MM5   Byte 7     01H 
           Byte 6     FFH à FFH  Unsigned saturation overflow 
           Byte 5     00H à 00H  Unsigned saturation underflow 
           Byte 4     23H à FFH  Unsigned saturation overflow 
MM6   Byte 3     00H à 00H  Unsigned saturation underflow 
           Byte 2     00H à 00H  Unsigned saturation underflow    
           Byte 1     00H 
           Byte 0     21H à FFH  Unsigned saturation overflow  
MM6 = 01FF00FF000000FFH  
 
Chapter 16 
 
Section 16.1 
 
1. CHMOSIII. 
2. 275,000. 
3. INTR. 
 
Section 16.2 



 
4.  20-bits, 1Mbyte; 32-bits, 4Gbyte; 64Tbyte. 
5.  Byte, D0 through D7, no. 
6.  1011, 0111, 0011. 
7.  I/O data read. 
8.  HOLD and HLDA. 
9.  80387DX numeric coprocessor. 
 
Section 16.3 
 
10. 16 MHz, 20 MHz, 25 MHz, and 33 MHz; 80386DX-16, 80386DX-20, 80386DX-25, 
and 80386DX-33, respectively. 
11.  F12. 
12.  50 MHz. 
 
Section 16.4 
   
13. 40 ns. 
14. Pipelined and nonpipelined. 
15. In Fig. 16.11 address n becomes valid in the T2 state of the prior bus cycle and then 
the data transfer takes place in the next T2 state. Also, at the same time that data transfer n 
occurs, address n+1 is output on the address bus. This shows that during pipelining, the 
80386DX starts to address the next storage location to be accessed while still reading or 
writing data for the previously addressed storage location.       
16. An idle state is a period of no bus activity that occurs because the prefetch queue is 
full and the instruction currently being executed does not require any bus activity.  
17.  An extension of the current bus cycle by a period equal to one or more T states 
because the READY--- input was tested and found to be logic 1. 
18.  T1 and T2. 
19. 80 ns. 
20. 160 ns. 
 
Section 16.5 
 
21. Four independent banks each organized as 1G × 8 bits; four banks each organized as 
256K × 8 bits.    
22.  
Types of data transfer                   No. of  bus cycles 
Byte transfer                                      1 
Aligned word transfer                        1 
Misaligned word transfer                   2   
Aligned double-word transfer            1 
Misaligned double-word transfer       2  
23.  120 ns; 240 ns. 
24.  Higher-addressed byte.    
25.  



     The bus control logic produces the appropriately timed command and control signals 
needed to control transfers over the data bus. 
     The address decoder decodes the higher-order address bits to produce chip-enable 
signals. 
     The address bus latch is used to latch and buffer the lower bits of the address, byte-
enable signals, and chip-enable signals.    
     The bank write control logic determines to which memory banks MWTC--- is applied 
during write bus cycles.  
     The data bus transceiver/buffer controls the direction of data transfers between the 
MPU and memory subsystem and supplies buffering for the data bus lines.  
26.  M/IO---D/C---W/R--- = 1112, all four, MWTC---. 
 
Section 16.6   
 
27.  M/IO--- 
28.  Bus control logic. 
29.  
     The I/O address decoder is used to decode several of the upper I/O address bits to 
produce the I/OCE--- signals.  
     The I/O address bus latch is used to latch lower-order address bits, byte-enable 
signals, and I/OCE--- outputs of the decoder.  
     The bus-control logic decodes I/O bus commands to produce the input/output and bus-
control signals for the I/O interface. 
     The data bus transceivers control the direction of data transfer over the bus, multiplex 
data between the 32-bit microprocessor data bus and the 8-bit I/O data bus, and supplies 
buffering for the data bus lines.    
     The I/O bank-select decoder controls the enabling and multiplexing of the data bus 
transceivers.  
30.  160 ns. 
31.  320 ns. 
32.  I/O map base; word offset 66H from the beginning of the TSS.   
33.  BASE+8H; LSB (bit 0) 
34. 1. 
 
Section 16.7 
 
35.  Interrupt vector table; interrupt descriptor table.  
36.  Two words; four words.                   
37.  Interrupt descriptor table register; 0000000003FF16. 
38.  B0H through B3H 
39.  (a) Active; (b) privilege level 2; (c) interrupt gate; (d) B000H:1000H. 
40.  01000016; 512 bytes; 64.   
 
41.  In the protected mode, the 80386DX's protection mechanism comes into play and 
checks are made to confirm that the gate is present; the offset is within the limit of the 



interrupt descriptor table; access byte of the descriptor for the type number is for a trap, 
interrupt, or task gate; and to assure that a privilege level violation will not occur.     
42.  Divide error, debug, breakpoint, overflow error, bounds check, invalid opcode, 
coprocessor not available, interrupt table limit to small, coprocessor segment overrun, 
stack fault, segment overrun, and coprocessor error. 
43.  Faults, traps, and aborts. 
44.  Vectors 0 through 31.  
45.  Fault 
46.  Any attempt to access an operand that is on the stack at an address that is outside the 
current address range of the stack segment. 
47.  Double fault, invalid task state segment, segment not present, general protection 
fault, and page fault.     
 
Section 16.8 
 
48.  INTR 
49.  DP0, DP1, DP2, DP3, and PCHK----; even parity. 
50.  BRDY---- = 0. 
51.  Cache enable. 
52.  BOFF---- 
53.  Four double words = 16 bytes; BRDY---- = 0; 5 clock cycles. 
54.  This means that the code or data that is read from memory is copied into the internal 
cache; KEN---- = 0; 4 double words = 16 bytes. 
55. Near to zero-wait-state operation even though the system employs a main memory 
subsystem that operates with one or more wait states.  
56.  First level. 
57. A bus cycle that reads code or data from the cache memory is called a cache hit. 
58. 93.2% 
59.  0.203 wait states/bus cycle. 
60.  Four-way set associative.  
61. 8Kbytes; line of data = 128 bits (16 bytes). 
62. Write-through. 
63. The contents of the internal cache are cleared. That is, the tag for each of the lines of 
information in the cache is marked as invalid.  
64. Alignment check; gate 17. 
 
Section 16.9 
 
65.  Clock doubling and write-back cache. 
66. Snooping. 
67. Modify/exclusive/shared/invalid (MESI) protocol.  
68. HITM---- and 0. 
69.  The WBWT---- input must be held at logic 1 for at least two clock periods before 
and after a hardware reset. 
70.  Clock tripling and 16Kbyte on-chip cache memory. 
71.  435/68 = 6.4. 



72.  3.3V dc. 
 
Section 16.10 
 
73.  3 million transistors. 
74.  3.3V dc. 
75.  D45 is at pin A21; A3 is at pin T17.   
76.  8, 8, 1. 
77.  Data parity and address parity; APCHK---- = 0 address parity error and PCHK---- = 
0 data parity error. 
78.  The current bus cycle has not run correctly to completion. 
79.  I/O write. 
80.  It is a pipelined bus cycle. 
81.  Two-way set associative. 
82.  8Kbyte code cache; 8Kbyte data cache. 
83.  256 bits (32 bytes). 
84.  The write-through update method is used to write the data to external memory. 
85.  Read hits access the cache, read misses may cause replacement, write hits update the 
cache, writes to shared lines and write misses appear externally, write hits can change 
shared lines to exclusive under control of WB/WT----, and invalidation is allowed. 
 
Section 16.11 
  
86.  PentiumR Pro processor 
87.  5.5 million; 4.5 million. 
88.  256Kbyte, and 512Kbyte.  
89.  Both the code and data caches are 16Kbytes in size; they are organized four-way set-
associative. 
90.  182 
 
Section 16.12 
 
91.  CeleronTM processor. 
92.  386,213. 
93.  533Mbytes/sec. 
94. 1400Mbytes/sec. 
95. Single edge contact cartridge. 
96. 4000 Mbytes/second 
 
Section 16.13 
 
97.  P6 microarchitecture; NetBurstTM microarchitecture. 
98.  Forty two million transistors. 
99.  133 MHz; 400 MHz. 
100. Execution trace cache. 
 


