تقدم لجنة ElCoM الاكاديمية

دفتر لمادة:

الكترونبياتْ رقْمهة

من شرح:
د.رولی طوالبه

جزيل الشكر للطالبة:
 روند قطيشًات

* 2-5 Diode Resistor Logia...................

$$
\begin{aligned}
& V=V \operatorname{In} \ldots \ldots . . \\
& V>V_{p}\left(\text { on }^{\prime}\right) \Rightarrow \text { on } \\
& V<V_{D}(0) \Rightarrow D_{A} f^{\prime} \quad U_{I_{n}}{ }^{\top} \quad-v+ \\
& \text { * }-V D C+V+V_{I n B}=0 \text { : } \\
& V=1 . \ldots \text { In } \ldots \ldots . .
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& V_{D C} \ldots \ldots-\ldots V_{\text {In }} \underset{\circ f f}{\gtrless}
\end{aligned}
$$

* Any or all inputs Low.........................

$$
1-V I_{n}<V D C \quad V D(o n)
$$

corresponding diode is on.

$$
V_{\text {out }}=V_{D}(o n)+V .
$$

if $V_{T}=0 \Rightarrow$ wont $=V_{D}\left(O_{n}\right) \Rightarrow$ VoL

$$
I_{R}=\frac{V D C \cdot V_{0}}{R}=\frac{V D C-V_{D}(o n)-V_{I n}}{R}
$$

* All input s high....................inde off)

$$
V_{\text {In }}>V D C-V D(o n)
$$

All Diodes of...........

S Notebook
*......Diode....o. R Gate....

(i) All..
(2) Any or or.......ll input high..................rris ponding didoe on)

$$
\begin{aligned}
& V_{I_{n}}>V_{D} \text {.onl.... }
\end{aligned}
$$

$$
I_{R}=\frac{V V_{n t}}{R}=\frac{V I_{n}-N D(0 n)}{R}
$$

* VI

* Logic function \Rightarrow A or B
\%.....Example 8-(2........)

(1) If U Un A. is higher than $U I_{n} B$ B: by $1 \quad \cup$ Show that $D A$ i.......... ff..

$$
V_{n} A=1+V_{\operatorname{In}} B
$$

(1) Assume $D_{A} \ldots \ldots$.

$$
V_{0 n t}=V D A+V \operatorname{In} A
$$

$$
\begin{aligned}
& V_{B B}=V_{\text {ont }}-V_{\text {In }} B \text { : } \\
& =0.7+V I_{n} A-V I n B \\
& \cdots \cdots \cdot 7+1+\cdots I_{n} / B \ldots \ldots
\end{aligned}
$$

\qquad
$V_{P} B=1.7, \ldots$ inapplicable and assumption that D_{A} is........on.....is in in correct.
D_{A} is off....................
(2) Assumen.
$\Rightarrow D_{A}$ off...................assumption that DB.....is.......correct.

\qquad
\qquad
\qquad $\xrightarrow{4}$ \qquad
4. \qquad

* 2.6 Level shiteel DRL 3-

* Degradation :- recluction ar increace of Vout by VD Con with respect to .- VIm هـمَ
* Level shifted AND Crate.:-
(1) All input high

$$
V_{\text {In }}>V_{x}-V_{D}(o n)
$$

Both Diode off.

$$
\begin{equation*}
V_{\text {out }}=I_{R} R L-V_{E E}=V_{\text {out }}=V C C+I_{R} R_{H}-V_{D L} \text { (on) } \tag{1}
\end{equation*}
$$

(2) Any input Low.

$$
V I_{n}<V_{x}-V_{D} \text { (on) }
$$

Corresponding input Diode is on.

$$
V I_{n}>-V_{E}
$$

$$
\begin{aligned}
& \text { VIn }=\text { Vout........... }
\end{aligned}
$$

$2 . b$

$$
V \operatorname{In}<-\quad-V_{E}
$$

$$
\begin{aligned}
& I_{R L}=0
\end{aligned}
$$

* Level Shifted or Gate. ©-

Subject:.......... 8
\qquad

Both.....input:.... diodes........ff.

$$
I_{R}=\frac{V_{c c}+V_{E}-V_{D}\left(O_{n}\right)}{R_{L}+R_{H}}
$$

$$
\begin{aligned}
\text { Vout } & =V_{C c}-I_{R} R_{H} \\
& \left.=V_{L}(o n)+I_{R}\right)-V_{1}-\cdots
\end{aligned}
$$

 Corresponding input.........tiacle.......... Cavdnet:s...

VIn $<$ Nce:
\%.........Example.......2.4 Ran.

problem x 2.18…
For............ $4<V_{n}<\ldots$
Draw v.............
(1) $V I_{n} \gg V_{x} \ldots \ldots(\cdots n)$. D I I....o.f....,

$$
I_{R}=\frac{8-V \cdot(Q n)}{2 k}=\cdots
$$

$$
\begin{aligned}
& \text { Nout } \quad 1 k \times(3.65 m)-4 \\
&=-0.35 \mathrm{~V}
\end{aligned}
$$ gate.

2- $V_{n}<V_{x}-V_{D}$ (on).......... $D I$ is on).

$$
2.9 \quad \cup I n,-4, V_{D C}, D L \text { on. }
$$

vout - VIn.
2....... $V_{T_{n}}<-4$.

DL off.
Vout - - - 4 .

* Chapten' 4: Traterocuction to Bipalar Digitat circunts.
4.1. Analysia of BJT (operation modes)

(1) cut off (B-E) J ? Both reverse $(B-C) J$ baised

$$
\text { currents }=0 \text { : }
$$

(2) For ward Active (FA).
(B-E)J Forward
(B-C)J: Reverse

$$
\begin{aligned}
& V_{B E}(F A 1=7 \\
& I_{C}=\beta I_{B} \\
& I_{E}=I_{C}+I_{B}=(1+\beta) I_{B}
\end{aligned}
$$

(3) Reverse Active (RA)
(B-E) J Reverse
$(B-C) J$ Formand.

$$
\begin{aligned}
-I_{C}= & I_{B}-I_{E} \\
-I_{E}= & \beta_{R} I_{B} \\
-I_{C}= & \left(1+\beta_{R}\right) I_{B} \\
& \beta_{R} \ll \beta_{F}
\end{aligned}
$$

(4) Saturation mode.

$$
\begin{aligned}
& \text { (} B-E) J \&(B-C) J \Rightarrow \text { Forward. } \\
& I_{E}=I_{C}+I_{B} . \\
& \text { IC } \neq \beta_{F} I_{B}
\end{aligned}
$$

$$
\begin{aligned}
& I_{C}=\sigma \beta_{E} I_{B} \quad, \quad \sigma \leqslant 1 \\
& \operatorname{UCE}(\text { sat })=0.2 . \\
& U_{B E}(\text { sat })=0.8 \text {. } \\
& V_{B E}(\text { sail })=V_{B E}(\text { sat })-V_{C E}(\text { sat }) . \\
& =0.8-0.2=0.6 \mathrm{~V}
\end{aligned}
$$

* Example 4.1
$\Rightarrow Q_{0}$ is in sat mode. find I_{B}, I_{C} and a e-

$$
\begin{aligned}
& I_{B}=\frac{5-0.8}{5}=840 \mu_{\mathrm{A}} . \\
& I_{C}=\frac{5-0.2}{640}=7.5 \mathrm{~mA} .
\end{aligned}
$$

$$
\begin{aligned}
I_{C} & =\sigma \beta_{E} I_{B} \\
\sigma & =\frac{I_{C}}{\sigma \beta_{E}}=0.137 .
\end{aligned}
$$

* Example 4.2:.

$$
\begin{aligned}
& V E, 0=\text { Zero. } \\
& V_{E_{r} S}=V_{B, 0}=0.7 \\
& V_{B, S}=2 U_{B E}=1.4 . \\
& U_{E} I=2 U_{B E}(F A)-V_{C, E}(\text { sat })=1.2 . \\
& U_{B_{r} I}=U_{E, I}+U_{B E}(\text { sat })=1.2+0.8=2 .
\end{aligned}
$$

Read Expple (4.3)

* 4.2 BJT Inverter:-
CE.(Comman Emiter)

\qquad

$2 V_{I L}$ (input that turns Q_{0} on $F A$).

$$
U_{T L}=U_{B E}(F A) \text {, Since initially } I_{B}=0 \text { at }
$$ Edge of conductance.

As input increase, I_{B} increase, and I_{C} increase, and out decrease.
3.) For higher input., Qu. Saturate and

$$
V_{\text {out }}=V_{\text {ot }}=V_{C E}(\text { sch })
$$

* UIE (voltage at which Qu. saturates EOS)

$$
\begin{aligned}
& U_{H}=I_{B}\left(E_{O S}\right) R_{B}+U_{B E, 0}(\text { Sat }) \\
& I_{C}=\frac{U_{C C}-U_{C E}(\text { sat })}{R_{C}} \\
& I_{B}\left(E_{0} s\right)=\frac{I_{C}}{\beta_{F}}\left(\sigma=1 \text { at } E_{o s}\right)
\end{aligned}
$$

$$
* U_{I_{1}}, U I H, V_{0 L}, V_{0 H}=\text { critical Voltage. }
$$

* Example 4.4

$$
\beta F=60
$$

Find the high Low noise
 margins.

Sefety margins max affordable noise.

$$
\begin{aligned}
& \text { VOL }=U \text { CC }=5 \\
& U O L=0.2 \\
& U I L=0.7
\end{aligned}
$$

$$
\begin{aligned}
U I_{H} & =\frac{5-0.2}{1 k(60)} 10 k+0.8 \\
& =1.6
\end{aligned}
$$

$$
\begin{aligned}
& H N \mu=U_{O H}-U_{I H}=5-1.6=3.4 \\
& L N \mu=U_{0 L}-U_{I L}=0.7-0.2=0.5
\end{aligned}
$$

...dens ins VaIn H..... ink.... U In.....

* 4.3 T TL circuits 8 -

Block Digram.
pull up, pull down $\rightarrow T T_{L} J O C_{L}$ Un n
Fan - in
input er

*Fa n-in 8 - max number of inputs at any gate.

* Fom-out 8-maxium number of Lad conéctel at the out put of a driver.
\qquad
* axteldygyor
\qquad

Subject:........18.

Driver Load *out high $8-$

$$
\Lambda=\frac{I_{O H}}{I_{I},}
$$

* out.......Low 8-

* 4.4 Level shifting BJT:4.5 Discharge path and Base driving cots.
* E.

a). if $U \operatorname{In}=5$
find I_{B}.

Ass ute $\quad F_{1} A$.

$$
\begin{aligned}
I_{B} & =I_{R B B}-I_{R D} \\
& =\frac{5-0.7}{5 K}-\frac{0.7+5}{20 k}=0.995 \mathrm{~mA} \\
I_{C} & =100 * 0.995=99.5 \mathrm{~mA} . \\
U C E & =U C C-I_{C} R_{C}=5-9.9 .5(1.5)=-V C \\
& \Longrightarrow \text { Sat. }
\end{aligned}
$$

$$
\begin{aligned}
& U B=U_{B E}(S a t=0.75 . \\
& I_{B}=\frac{5-0.75}{5 k}-\frac{0.75+5}{20 k}=0.563 \mathrm{~mA} \\
& U C E=U_{C C}-I_{C} R_{C} \\
& 0.1=5-I_{C}(1.5) \\
& I_{C}=\frac{5-0.1}{1.5}=
\end{aligned}
$$

b) is Q is sat mode.
c.) UIL and UIH
UIL (EOC)

Initially $\quad I_{B}=0$:

$$
\begin{aligned}
I_{R D} & =I_{R B} \\
I_{R B}=I_{R D} & =\frac{0.7+5}{20 K}=0.285 \mathrm{~mA} \\
U I_{n}-U B & =I_{R B} . \\
U I_{n L} & =I_{R B R}+U_{B F}(R A) \\
& =0.285 * 5+0.7=2125 \quad U
\end{aligned}
$$

UIH $[E 0 S] \sigma=1$.

$$
\begin{aligned}
& U I_{H}=I_{R B} R_{B_{B}}+U_{B E}(s a+) \\
& I_{R \cdot B}=I_{B}+I_{R D} . \\
& I_{B}=\frac{T_{C}}{B \sigma}=\frac{I_{C}}{B}=\frac{5-0.1}{(1.5)(100)(1)}=0.00 .327 \mathrm{~mA} . \\
& I_{R B}=\frac{0.75+5}{20}=0.29 \\
& I_{B_{R}}=0.29+0.0327 \mathrm{~mA} \\
& U_{n}=I_{B \cdot R} R_{B}+0.75 .
\end{aligned}
$$

* Chapter 5 RTL :-
npn:- in series AND/NAND. inperanel NOR / OR.

Pnp \%- in Series NSR/OR in parateli $A \sim D \angle A A N D \cup I_{n_{1}}$
 (parratel) NOR.
In general :-

$$
\text { Uout }=\text { Uce }-I_{R C} R C \text {. }
$$

$$
I_{R}=\sum_{i=1}^{n} I_{c, i}=I_{c_{1}}+I_{c_{2}}+\cdots+I_{c n}
$$

$I_{n_{1}}$	$I_{n_{2}}$	$I_{n 3}$	$0 u t$.
0	0	0	1
0	0	1	0
0	1	1	0
1	1	1	0

(1) All inputs Low All tranistors will be off

$$
\text { Vout }=V_{c c}=H
$$

\qquad
(2) Any or all inputs high
comesponding transistor saturates.

$$
\text { Nout }=\text { VCE Csat }=1
$$

Uout = Ucc - IRC..............
if P_{1} and $Q_{2} \ldots$ in
F.A.

$$
\begin{aligned}
I_{E_{1}} & =I_{C_{1}}=I_{E_{2}}=I_{2} \\
& =I \text { RC. }
\end{aligned}
$$

2.-input....NAN Gate

 1..a.,.........ll................l..................... Uout..........Va.
\qquad

Subject:.........2y.
1.b INf Low, INs high.

Q1 off....... Q2 has no link. to grand and is off too.

$$
\text { Wot }=V_{\text {cc }}=\text { high. }
$$

 $Q_{2} \ldots$ off..ff)

$$
\text { Vout }=\text { Ye }=\mathrm{H} .
$$

2/ both high
when $Q_{1} \ldots$, turns........................

$$
U_{1},=U B E(F, A)
$$

when $Q_{2} \ldots$ turn

$$
U I L_{2}=U_{B r} E_{2}(F A)+U C E, 1 \text { (sat) }
$$

Q_{1} sat urates at $U_{I_{H}}=I_{B_{1}} R_{B_{1}}+U_{B E}$ (sat)
Q_{2}, at $U_{I H_{2}}=I_{B_{2}} R_{B_{2}}+U B E_{2}$ isar $+U C E(\operatorname{sat})$
\qquad

- When $Q_{1}, \ldots, Q_{2} \ldots$ Saturates (input high).

$$
\text { Uut }=2 \text { VCE(sat) }
$$ IB jpV皃

* Multi - input NAND Gate. O-
$U_{\text {out }}=U C C^{\prime}-I_{R c} \ldots$
$U_{O H}=U_{C C}$.

$$
\text { VOL }=\sum \text { UCE (sat). }
$$

$$
=m \operatorname{vcE}(\text { sat }) .
$$

* Example5.1....
find Fan in $\quad(n=$? $)$
for Load U BE (F.A.) $=0.7$.
$U_{C E}(S A T)=0.17 \cup$ for driver.
off
n UCE (sat) < UBE (FA) \uparrow

$$
n<\frac{0.7}{0.17}=4,12
$$ z op ex en 1.2×51

$$
n=4
$$

- Fan-out Found when o/p high when output Low, Load BJT,s are off and Input current will be Zero.
- For Driver to be high, Q must be off, for Q to be off input at driver must be Low

$$
\% I_{R c}=I_{0 H}=N I_{I H^{\prime}}^{\prime}, \quad I_{I H}=I_{R B}^{\prime}
$$

. Sat

- UHH is limited by UIH for Q to saturate vout = U' In = Nc - IRc R_{c}.

$$
I_{R_{C}}=I_{0 H}=\frac{U_{c c}-U_{0 H}}{R_{c}}, \quad \sigma_{B}
$$

$$
I^{\prime} I H=I_{R}=\frac{R_{B}}{R_{B}}
$$

$$
N=\frac{V_{c}}{V_{0}} \text { vout - VBE. }
$$

$$
\begin{aligned}
& I_{B^{\prime}}^{\prime}=\frac{U_{C C}^{\prime}-U_{C E}(s a t)}{R^{\prime} C(\beta)} \quad(\sigma=1) \text { at } \quad \text { Eos. }
\end{aligned}
$$

* Read Example 5. $2 \ldots \ldots \ldots 12$.
* RTML power Dissipation.
no Load.

$$
I_{C G}(O H)=I_{R C}=0 .
$$

output Low (input high....................................

$$
I_{c c}(O L)=\frac{U_{c c}-U_{c E}(\text { sat })}{R_{C}}
$$

Subject:........2.8.

$$
-P_{c c}(a \cup g)=\frac{I_{c c}(0 H)+I_{c c}(0 l)}{2} \quad U C c
$$

* with Load :-
out put high , Q (Driver)is.............., Q^{\prime} (Loau) Sahurates

$$
\begin{aligned}
I_{R C}= \\
C_{1}
\end{aligned}
$$

\qquad

* Out Low:-

Load \Rightarrow off

$$
I_{C C}(O L)=\frac{U C C-U C E(\text { Sat })}{R_{C}}
$$

-Example..... 5.3
*. Find avarge power Dissipation.
a.).............. Load.
b) $N=1$ (one gate............................... $R B=10$:

$$
\begin{aligned}
& R C=1 K, B_{F}=25+\cdots B E(\text { sat })=0.8 \\
& V C E(\text { sat })=0.2 .
\end{aligned}
$$

a) No Load.

$$
\begin{aligned}
& \operatorname{Icc}(\mathrm{OH})=0 \text {. } \\
& I_{c c}(0 L)=\frac{5-0.2}{1 k}=4.8 \mathrm{~mA} \text {. } \\
& P_{c k}(\text { avg })=\frac{0+4.8}{2}=5 \times 12 m .
\end{aligned}
$$

b) with Load $N=1$
 is of fl

$$
\operatorname{Icc}(O H)=\frac{5-0.8}{1 k+\frac{10^{k}}{1}}=382 \mu A=0.382 m A
$$

$$
\text { Pcc (avg) }=\frac{4.8 \mathrm{~m}+0.382 \mathrm{~m}}{2} \times 5=12.9 .6 \mathrm{mw} .
$$

* 5.6 Basic RTL inverter 8-

\qquad
1... \Rightarrow Input $<$ VBE (FA), Q is off

$$
I_{E}=0 \ldots
$$

$$
\text { Uout }=T E \text { (oL) } R E=0 .
$$

2- U_{I} (when Q turns $\left.F, A\right)$.

$$
U I L=U B E(F A)
$$

* cuthen \mathcal{Q} is $F A, I_{B}, 4$ TE start to increase Uout $=$ IERE increacees as input increase.

Input.......keffs increasing unit Q saturates at UTH.

$$
* \cup I H \text { (Eo. }
$$

$$
U_{I H} \ldots=I_{B} R_{B} \ldots+U_{B C}(\operatorname{sat})+\ldots \ldots
$$

$$
\begin{aligned}
& I_{B}=\frac{I_{E}}{\beta+1} \ldots \ldots \\
& I_{E}=\cdots \\
& R_{E}
\end{aligned}
$$

$$
U I_{H}=V_{C C}-U_{C E}(\text { sat }) \quad \frac{R_{B}}{R_{E}}+U_{B C}(\operatorname{san})+V C C
$$

6 R.

$$
\begin{array}{r}
U I_{H}+I_{B} \cdots R_{B}+U_{B E}(\text { sat })+I_{E}+R_{E}=0 .
\end{array}
$$

VIH... n

* Example (5.4) s

$$
\begin{aligned}
& U_{B} E \text { (sat) }=0.8, U_{B C} \text { (sat) }=0.6 \\
& \beta_{F}=25, \quad R_{B}=10 K .
\end{aligned}
$$

$$
V O H=5-0.2=4.8
$$

$$
\begin{aligned}
U I_{n} & =\frac{5.0 .2}{26}\left(\frac{10}{1}\right)+0.6+5 \\
& =7.4
\end{aligned}
$$

\qquad

$$
\text { Naut: }=I_{R E} R E=V E C-V G E
$$

\qquad

* All.......input.s.......................ogic o.....)

All....... Q's........off.

$$
\begin{aligned}
& I_{B}=I_{E}=I_{R E}=0 \\
& U=0
\end{aligned}
$$

*....ny (or all) inputs........nigh
(Logic.,.1)................xres ponding

Q Salurates

$$
\text { Uout }=U c c-V c E \text { (sat) }
$$

* AND gate 8-
- In generna

$$
\begin{aligned}
\text { Vout } & =I_{E R} \\
& =U C E+n \quad U \in E
\end{aligned}
$$

* Any or all inputs Low. Corresponding Q is off

$$
\text { Wort }=0 \quad(\text { logic } 0) \quad I R E=0
$$

* All inputs high.
2.. input AnD Gate
if Q_{2} is FA and Q1 Sat U_{1} s us

$$
U \text { out }=U c c-U C E_{2}(E, A)-U c E_{1}(\text { sat })
$$ if both Saturates.

$$
U_{O H}=U_{\text {cc }}-2 U_{C E}(\text { sat })
$$

- If n transis tors.

$$
\text { UOH....Ucc }-n \text { UCE (sot) } \gg V_{I H}
$$

Logic input at I Logic output at 1

| | $I_{n 1}$ | $I_{n 2}$ | $I_{n 3}$ | $0 u t, \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 | 0 |
| | 0 | 0 | 1 | 0 |
| | 1 | 1 | 1 | 0 |

\qquad

Subject:......3.5...........
\qquad

* 5................with active pull - -up..
\qquad
\qquad
\qquad
\qquad
\qquad Qp...ll
\qquad
\qquad
\qquad
* Rep, $Q_{p} \Rightarrow$ Active pull-up ct.

Qu \Rightarrow puil-down, sink. \Rightarrow (Load).
Gout (Low) Load Loft
set $\alpha D Q 0$ is Primeval.

* -merergelestry input high, Qs,Qo are saturating.

$$
\begin{aligned}
& -V_{C E}, s{ }_{\prime}^{\prime}(\text { sat })+I_{B} R_{B P}+V_{B E}, p(?)+V_{c c_{i}}^{\prime}(s a t)=0 \\
& I_{B}=-\frac{U_{B E, P(?)}}{R_{B P}} \\
& \therefore \quad Q p \Rightarrow 0 f f \text {. }
\end{aligned}
$$

* input Low, $Q_{s}, Q_{0} \Rightarrow$ off.
I_{B} high enough to saturate $Q P$.
 USE F 0

$$
\begin{aligned}
& \text { VCR } \Rightarrow+v e \Rightarrow F . A \\
& V \subset E \Rightarrow \text { be } \Rightarrow \text { sat. }
\end{aligned}
$$

\qquad

* 5.8 cont.

$$
R c p=0.1
$$

 by........ $V_{I H}{ }^{\prime} \ldots \ldots$......

$$
N=\frac{I_{O H}}{I_{I_{H}}}
$$

\qquad

$$
I_{O H}=N I_{H}^{\prime} \cdot N=2 N I_{B}^{\prime}
$$

$$
\text { for simplicity } I_{C P}=I_{E}=\frac{V c c-U C E P(\text { sal })-V_{0} H}{R C P}
$$

$$
=2 \Delta\left[\frac{\nu-U_{B E}^{\prime}(\text { sat })}{R_{B}}\right]
$$

\& Load.
 Load).

$$
511,4-20,4,4,-17,4,22 \ldots
$$

$$
\begin{aligned}
& N=\frac{U_{C C}-V C E(S a t)-\ldots\left(V_{0}\right)}{2 R_{C P}} \\
& \text { out }=\text { aI' }=\ldots I_{B}^{\prime} R_{B} \cdots+U_{B} E^{\prime}(\text { sat })
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
5.32 \\
\times \quad=32
\end{array} \\
& R_{C P}=10, \ldots, R_{C}=3.6 . \mathrm{K}, \ldots, \ldots R_{B P}=1.5 \mathrm{~K} \\
& R_{B S}=1.5 K \quad B_{F}=100
\end{aligned}
$$

Find In. $_{\text {B......................... }}$

$$
\text { for } \quad v=4
$$

$$
\text { a) } V_{I_{n}}=0 .
$$

$$
N=\frac{V_{C C}-U_{C E} \text { (sal) }}{\text { Uout }-U B^{\prime} E(s a+} \frac{R_{B}^{\prime} p}{2 R_{C p}}
$$

$$
4=\frac{5-0.2-\text { vout }}{\text { vout }-0.8} \times \frac{1.5}{2 \alpha 100}
$$

$$
\text { Nout }=3.4 \cup
$$

$$
I_{C}=I P_{P}=\frac{5-0.8-3.4}{(1.5+3.6) k}
$$

$$
\text { Ipep..... } \frac{5-0 \cdot 2}{100}=3.4
$$

$$
\begin{aligned}
I_{C C}(O H) & =I_{R C}(O H)+I_{R C P(O H)} \\
& =14+0.157=14.157 \mathrm{~mA}
\end{aligned}
$$

b) $0 I_{n}=5$ volt.

$$
\text { Qu \& Qupusat Qp } \rightarrow \text { off }
$$

$$
I_{R C}=\frac{V_{C c}-V_{C E}(\text { sat })}{R_{c}}=\frac{5-0.2}{3.6 \mathrm{k}}=1.33 \mathrm{ma}
$$

$$
I_{R B P}=\ldots
$$

$$
I_{R} C_{p}=0
$$

$$
I_{C c}(O L)=I_{R C}(O L)=1.33 \mathrm{~mA}
$$

$$
\text { Wont }=\text { CoBrA } Q \times x) \text { out }=V_{C E} \text { (oui }=0.2
$$

5. Yo o- Find the Aug power dissipation

$$
\begin{aligned}
& P_{c c}(\text { avg })=\frac{F_{c e}(\mathrm{OH})+T_{c c(0 h)}}{2} \quad \text { Ute } \\
& =\frac{1.33+1416}{2} \times 5=38.7 \mathrm{mw}
\end{aligned}
$$

-G.I........Basic.......D.T.L....

$$
U_{N}<\cdots \times \cdots
$$

$$
I_{\text {R.C. }}=0
$$

$$
U I_{N}<\cup B E(F, A)
$$

$\because \cup T C^{0-}$
\qquad
$* \cup_{I L} \Rightarrow Q_{0}$ turns..... onhen

$$
\begin{aligned}
& U_{X}=U_{D L}(O n)+U B E(F A)
\end{aligned}
$$

$$
\begin{aligned}
& \cdots I_{n} \ldots \ldots(\ldots)=(\ldots)
\end{aligned}
$$

* Po............Saturates when

$$
U_{I H}=U_{B E}(\text { sat }) .
$$

$$
\text { VOL }=\text { UCE (sat) }
$$

R13.......nust..

* NA ND gate.

AdditionaL Le.............Shifting...........................N. M

*RD, UEE : discharge path of Q_{0} when it turns from sat
-...UEE can be replaced with Gand (R_{D} decrease)

DLr $L_{\text {ana }}$ to imp rove LN.

$$
-U I N-U D_{I}+2 U D L+U B E=0
$$

$$
\cup x<2 v_{D_{L}}(o n)+U_{B E}(F, A)
$$

$$
U_{I N}<U D_{L}(a n)+\cup B E(F A)
$$

$$
\begin{aligned}
& \text { Vat } \ldots=\text { ce....... } \\
& F O C \Rightarrow U I_{L}=\left(U_{B} \quad(F A) \rightarrow\left(A_{1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { cOL }=\text { cF (sat). }
\end{aligned}
$$

* $V \sim \mu=3 \ldots, \quad U_{L} \mu \mu=1.2 u \rightarrow$ better than

* 6.3 Transis tor Modified D.T. L.

* RD and the ground \rightarrow dicharge praxt.

$$
\neq \rho<1, \rho R_{\beta}+\left(1-\rho R_{\beta}=R_{\beta}\right.
$$

$$
N=\frac{I_{0}}{I_{I^{\prime}}}
$$

$$
\times P=1, \quad(1-D) \quad R_{B}=0 \quad(\operatorname{short} c e+\quad B, c)
$$ - لـ

\%........nput..........nig.............................

$$
\cup B C-V Q_{1} \rightarrow Q
$$

* Example 6...

$$
-U I_{L_{1}}-U_{D I}(o n)+U_{B E}(F, A)+U_{D} C(0 n)+U_{B E} 0=0
$$

Find $\cup T C$.

$$
\begin{aligned}
& \text { IdOL }=0.2 \\
& U I_{L}=2 U_{B E}\left(F_{A}\right)=1.4 \text {. } \\
& U_{I_{H}}=U_{B E} \quad\left(\ldots F_{A}\right)+U_{B E} \ldots \text { (sat) } \\
& =\ldots 1 \cdot 5
\end{aligned}
$$

$$
* U_{I N} \cup U_{x} Q-D . I \ldots
$$

-6. 4 NAND Gate

 D. 1.
\%.......All.....input high...............................off

-Logic....Low.

$$
\cup I_{A} \geqslant U_{B} \ldots E_{2}(F A) \ldots+\ldots V_{B} E_{;}, \ldots(\text { sat })
$$

* Fan -out.........obtmined at Lan.............................. D. to be an.

$$
N=\frac{I_{0 L}}{I_{I_{L}}^{\prime}}
$$

$$
\begin{equation*}
I I^{\prime} L^{\prime}=\underline{U_{C} c^{\prime}-U_{I}{ }^{\prime}(o n)-U_{c, E} \cdot O(s a t)} \tag{1}
\end{equation*}
$$

$R_{B_{B}} \Rightarrow$ all $R_{B} \ldots, T_{T_{L} \ldots \text { malh. }}$

$$
\begin{align*}
I_{\mathrm{L}} & =I_{c p}-I_{R C} \\
& =\frac{U_{c c}-V_{c, ~} E_{c}(s a t)}{R_{c}}
\end{align*}
$$

$$
\begin{aligned}
& I_{C p}=\ldots \beta_{F} I_{B Q} \quad(\sigma=1) . \\
& I_{B, 0}=I_{E, L}-\cdots \cdots \cdots \cdots
\end{aligned}
$$

$$
I_{R . D}=\frac{U_{\text {BE }}(\text { sat }}{} .
$$

$$
\begin{aligned}
& -U C C+I_{E} P_{B} R_{B}+I_{B}(1-A) R_{B}+Q_{B E}(F \cdot A) \\
& +\cdots P_{L}(O n)+\ldots \ldots \ldots \ldots
\end{aligned}
$$

$$
I_{B, \ldots}=\frac{I_{E_{L} L}}{\beta_{F+1}}
$$

\qquad
\qquad

* G.6........power Dissipation.

$$
I_{C C}(O H)=I_{B C}(O H)+I_{\rho} R_{B}(O H)=I_{\rho R_{B}}(O H)
$$ from eqn.....(1)

\qquad

$$
\begin{aligned}
* & I_{C c}(0 L)
\end{aligned}=I_{R_{c}}(0 L)+I_{\rho P \beta}(0 L) \ldots
$$

- DL NoR gate.
\qquad

 Una = = bEnign

- Main different....... between TT... I and DL.............................are........replaced.

TT...................................... active pul cot. (higher fan -...ont.).

$$
\left(0 \rightarrow 70 c^{0}\right)
$$

5700 series $\left(-55 \rightarrow 125 c^{\circ}\right)$
7.1. Basic T TM Inverter.

-.....................input...........................)

Subject:......5.2.

VI

$$
I_{B, I}=\frac{U_{C C}-U_{B E E} I(\text { sat })}{R B \text {. }}
$$

- IB. I high enough to saturate Q I.
 when input is... Q I. and.
 in to........current.
$I_{c, I}=I_{B ; 0} 0$ (L.cakge) very small.

QI Sat, Qu. off
Lout $=$ UH $=$ OC.

Do. Eon. QI.................

$$
\begin{aligned}
& -U I_{n}-U C E(\text { sat })+U_{B E}(\eta)=0 .
\end{aligned}
$$

(3) $U_{I H}=-U_{C E}(s a t)+U_{B E}, 0$ (sat).

Qu EOS, QI sat.
(4) VoL $=$ UCE (sat)

If input increases beyond UIH, at some point (Logic high.)

$$
U_{I N}=U_{E} I \quad>\quad U_{B, I}
$$

$$
U_{B C, I}=U_{C C}-I_{B, I} R_{B}-U_{B E}, 0 \text { (sat)................ }
$$

\Rightarrow U BC. \Rightarrow UR $\Rightarrow Q I$ operates.
In the RA.............. mode.

$$
I_{E}=\beta_{\beta} I_{\beta}, I
$$

B.R..... very Small.
 $I c_{1} I, \ldots\left(1+\beta_{R}\right) \ldots B_{r} I$ RA. $\Longleftarrow Q I$ I. high ind Pow

* 7. 2 comparison of stored-charge Removal. (between DTL and TTL.).

- QDo.....went from sat to of off
-......output.......went......................

$$
\text { *D (charge removat) }=I D_{1} D_{1} D T L=\frac{U_{B E}(\text { sat })}{R_{D}}
$$

TTL
ucc.

Low.

$$
U I n \Rightarrow \text { URE } I=U \subset E(\text { sut })
$$

$$
\begin{aligned}
& U B_{I}=U B E ?+U C E(\text { sat }) \\
& U C_{1} I=U_{B E} O(\text { sat })
\end{aligned}
$$

but L.......Less.......than.........................)
\Longrightarrow QI...in FA..................

$$
I_{1} \ldots I_{1}=U_{c}-U_{B} I_{1} E_{1}-U_{C E I}
$$

$$
I_{B O, N T L}=\beta_{F} F\left[U_{B C} T(F A)-U_{I n}(1, W)\right]
$$

DTL.......................

$$
\begin{aligned}
& I_{c, I} \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { - -........................min. }
\end{aligned}
$$

* Example 71 :-

Find factor of improvement of stored charge removal (between' T TL and DTL).

$$
\begin{aligned}
& R_{D}=5 K \text { For } D T L \\
& R_{B}=2 K \text { for } T L \\
& I_{R_{D}}=\frac{U_{B E}(\text { az })}{R_{D}}=\frac{0.8}{5 k}=160 \mu \mathrm{~A} . \\
& I_{B}, 0=50\left[\frac{5-0.2-0.7}{2 k}\right]=102.5 m
\end{aligned}
$$

factor of improvement $=\frac{102.5 \mathrm{~m}}{160 \mu}=640.6$.

- 7.3 Basic T T. NAND Gate and the multi -emitter - B.

* Any input in..................

Qu.......off
Q. I.......sat:

Q.o......Sat urate...

\qquad
x 74 Standard TTL NAND Gate with TOTEH pole, (pal loup..., pall down et).

 pron del at output.
Qom \Rightarrow dis charge.................
$\rightarrow R_{0} \Rightarrow$
\%.1.............. Path.

- Qr \Rightarrow Drive sp Litter or Lo bic inversion. Q..... also feeds Oo.

QI \Rightarrow when input Low acts as dis change path.......also provide Q. and Qu with current.
*. When......input.....is...... Law:

$$
U_{I N}<U_{B E}, S(F A)=U \leq E_{r} I(S G A)
$$

Qs....... Qo........ff

$$
\Rightarrow Q_{p} \ldots i_{n} \ldots A .
$$

$$
U I N+U C E / T(\operatorname{sat} t)+U_{B, S}=0
$$

$$
U_{n}=U_{B}, s-U_{C E} I \text { (sat) }
$$

$$
\text { Qs. } \Rightarrow \text { on } \Rightarrow B_{1} s \ldots=0.7
$$

* when input....... high......

QI R............ modes.
Q.s...................at.

note $* Q P \rightarrow$ on

$$
U_{B, p}=1.6
$$

\qquad
$U T \subset \Rightarrow Q I$ sat.
power disipation \Rightarrow QI RA A

* 7.5 standard TT UTC.

* at Low input Input <2 UBE - U CE (sat).

$$
I_{R_{B}}=\frac{U C c-U_{B E} I(\text { sat })-U_{I_{1}}(\text { Low })}{R_{B}}
$$

Large enough to saturate $Q I . .$. Qu , Qo.....f. of.

$$
I_{C,} I_{(\text {sat })}=I_{B, 0} \quad \text { (leakage). }
$$

Qp in FA mode, DL, on

Ignore I_{B}, P (FA) $=I_{R}$.

$$
\begin{aligned}
& \text { Out }=U C C-U B E, P(E A)-U D L(O n) \\
& O O H=B
\end{aligned}
$$

OIL \Rightarrow input at which Qu..

$$
\text { U IN }=U B E S(F, A) \quad \cup C E(\text { sat })=0.5
$$

-.........input increases................................rrrent.
 increases
 $\cup I B=2 \cup B E(F, A)-U C E$ (sat) $=1.2$.
es at which No......... urns to FA mode.
 triog.h Rc in crease essen............... Uout drops factor \rightarrow UTC............... true is steeper
\qquad

Subject:.......62

* UoB \Rightarrow output Break point.

$$
\text { UR = MG - } I_{R C} R_{C}-U_{B E, P}-U Q_{L} \text { (on). }
$$

iganre $I_{B, P}(F, A)$ y $I_{B, S}(F A)$
$T_{\text {B, o (.....also ingore. }}$

$$
\begin{aligned}
& I_{R C} \approx I_{C, S} \approx I_{E, S} \approx I_{R D}=\frac{U_{B E, O}(F A)}{R_{D}} \\
& U_{O B}=U_{C C}-U_{B E, O}(E A) \frac{R_{C}}{R_{D}}-U_{B E, P}(F A)-U D L(O n) \\
&
\end{aligned}
$$

* UIH O OS, Q saturate.

$$
\begin{aligned}
U I_{H} & =2 U B_{E}(\text { sat })-U C r_{I}(\text { sat }) \\
U O L & =U C E_{U}(\text { sat })=0.2
\end{aligned}
$$

* 7.6 Fan - out

Fan -out analysis performed at Driven output Low, for Q_{I}^{\prime} to operate in sat more.

If Q^{\prime} ' opreate in R RA (high input at Load)

$$
\begin{aligned}
& I_{I_{n}}{ }^{\prime}=I_{E, T} \text { (RA). } \\
& N=\frac{I_{O L}}{I_{I L}} \\
& \text { tIL }=I R E=\frac{v e c-U R E(\text { sat })-U C E I(\text { sat })}{R_{B} .} \\
& I_{0 L}=I_{1,0}=\sigma \beta_{F} I_{B, O} . \\
& I_{B_{\mu}, \ldots}=I_{E_{\mu}}-T_{R D} \\
& F_{R D}=\frac{\int B E, 0(\text { sat })}{R_{D}} \\
& I_{E_{1} s}=I_{B, s}+I_{c, s} . \\
& I_{c, s}=I_{R C}=\frac{U_{C c}-U C E, s^{(s a t)}-U_{B E} O(s a t)}{R C} \\
& I_{B, \ldots} S=I_{C, I}=\left(1+\beta_{R}\right) I_{B}, I \\
& I_{R B}=\frac{I_{B}, I-\frac{U_{C C}-U_{B C, I}(R, A)-2 U B E(\text { sat })}{R_{B}} .}{}
\end{aligned}
$$

77 TT power Dissipation:-

- Icc (OH):- (with no Load).

$$
I_{R_{C}}(O+1)=I_{B P}(F, A)=0
$$

$$
I_{R(p}(\mathrm{OH})=0
$$

- with Load $I_{E P}=I_{E}^{\prime}, I$ (R.A) (Usam(1)
* Fcc (ox) :-
\qquad
\qquad

$$
\text { IRC (nL) }=\frac{U c c-U c E, 5(s a t)-U 8 E,(s a t)}{R c}
$$

$$
I_{R=p}=0
$$

$$
P \operatorname{sc}(a \cup g)=\frac{\operatorname{Icc}(0 H)+I c c(0 L)}{2} \% \operatorname{Ucc}
$$

- 79.9 Low power T TL (L TL).
higher values of Resistors.
Lower valves of current:
Lower s. valves of power.
Fan -out decreases............. (d's advantages)
$I=R \subset \uparrow$ (Time delay), speed \downarrow (dis)
- design un $\quad 1 \leqslant 2 \ldots$

Example $75, \quad P=919 \mu \omega$.

- 7,10 High speed TTL.

Less Resistance values.
higher' speed I - RC \downarrow. current \uparrow, Fan -out \uparrow, proser $\uparrow x$

Subject:......66

QP and DL are replaced with a Darlington paiw

- Back To 7.4

* Compar TTL speed to Basic

TTL specel.

$$
T=\text { Rcp Ceq. }
$$

$$
I_{R C P}=\frac{U_{C C}-U_{C E} P-U_{D L}(o n)-U_{C E}(\text { sut })}{R_{C P}}
$$

$$
\text { IRC }=\frac{U_{C E}-U C E(\text { sat })}{R C}
$$

\% Chapter 8 Schottky Transistur Transistor Logic (SSTTL).

Sat」 1 د. x

$$
\Longrightarrow Q S B D
$$

Schottky Diode (S.B.D.) o-
$+M=\mathrm{M}=\mathrm{Pi}=\mathrm{m}$

I.F an SBD..................nnected bet ween base and collectow it will dioert the input carrent anel

* regular Q saturates at UBC(sat)-0.6. 0 if SBD is connertd between Base and collector. and eurrent is applied SBD Gill turn on and direct awrent from Q preventing Q form, form Sat uration $U B C=U S B D<U B C$ (sat)
* operation modes. 8

1. $U B C-U C$, UBS $-U C$ QSBP of P and current Zero (SBD ope , Q off . .
2. FA mode.

UBE tue $U B C$ - Ne U, $Q B D$ in $F A$ mode SBD off, $Q F A, U B E(F A)=0: 7, \ldots I_{C}=\beta I B$.

$$
I_{E}=I_{B}+I_{C}
$$

3. Hard mode.

$$
U B C+U E \quad \cup B E+U E
$$

SBD on, on...................

$$
\begin{aligned}
U B C \text { (nard) } & =U S B D=0.3 \\
U B E(\text { hate }) & =0=U B E \text { (hard) }-U S B D
\end{aligned}
$$

$$
* I_{C}=\beta I_{B}
$$

$$
I_{S B P}=I_{c}-I_{c}
$$

4- Reverse Schottiky (RS)
$U B C$ + UE \quad SBD.............

$$
\begin{aligned}
& U B C=U S B D<U B C(R, A) \\
& (B-C) J J \Rightarrow \text { apCn }
\end{aligned}
$$

$$
I_{B^{\prime}}^{\prime}=I_{S B A}=-I_{C}^{\prime}(\text { (MOM). }
$$

(v-

$$
U B C(\dot{R S})=U S B D
$$

* Example 8.1

Fincl the Logic swing (Ls).

Subject:......7o

$$
\begin{aligned}
& U H=U C C=5 \\
& U=U C E(h a r d)=0.5 \\
& U_{I}=5-5=4.5
\end{aligned}
$$

$$
U I_{H}=I_{B R} R_{B}+U B E \text { (hard) }
$$

$$
I_{B}=\frac{I_{c}}{\beta}
$$

* 8.3 schattky - elamped $T T L(S T T L)$.

AQP, QP2 O- Darlington par prodide high current...

- R BD, RCD are Designed such that oo and Q_{D} turn on Simultaneously also, $Q_{0}, R_{B D}, R_{D}$. are conduction path for Q s........... ground. if $Q D$ is off, Os will be off................

\Rightarrow no Break point and transition width is narrower than in regular TT. T.
- QD..., RBD., RCD discharge path for Row $_{\text {. }}$ \Rightarrow high speed.

$$
S T T L \quad T=2 n S
$$

$$
\text { regular } T T L, T=\text { ions. }
$$

$$
Q P_{2} \Rightarrow+U C E P+U B E_{1} P_{2}, U C E, P_{2}=0,
$$

does not...... Saturate..... \Rightarrow np need for UsB.

REP: Discharge path for QP. 2 .

Do.... is on.

Subject:.......72

* I_{c}

* QD does not follow piece anise analysis. \Rightarrow on when Wo........................
* Example $8 \cdot 2 \quad(s T T L \quad(T c)$

- Input Law... Qs.y Qo.....ff..
* UOH \Rightarrow UIn $<2 U B E$ (F, A) - UGE (hard). Qo, Qs off $\quad, \ldots, \ldots, \ldots, Q_{1}, \ldots \ldots, F_{2}$.

$$
\begin{array}{r}
I_{R C}=I_{B p}(F, A) \approx 0 \\
U O H=\text { UCC }-2 \cup 13(F, A)=3.6
\end{array}
$$

$$
U R c>V_{R c} \rho \Rightarrow U_{B c} p-U_{1} \Rightarrow, \ldots P
$$

QP2 also F.A.

* Input high.............. Qo................... UBP $=1.3 . \cup$.
 Qpz off.

UIL when Qo............................ A

$$
\begin{aligned}
U I L & =2 U B E(F, A)-U c, E I \text { hard } \\
& =0.9
\end{aligned}
$$

UIH: Qo., Q.s..... turn hard..

$$
\begin{aligned}
U T H & =2 U B E(\text { hard })-U C E_{,} I \text { (hard) } \\
& =1.1 \cup
\end{aligned}
$$

$$
\text { * Uol }=U C E, 0(\text { hard })=0.50
$$

$$
\begin{aligned}
& H N \mu=3.6-1.1=2.5 \\
& L N \mu=0.9-0.5=0.4
\end{aligned}
$$

* 8.4 Fan - out.

* are performed when Driver olp is Low so that $Q^{\prime}=$ is hard and current flows.

$$
I_{E S}=I C S+I_{B S}
$$

$$
\text { (igonre } I_{B p}\left(E_{A}\right) I_{C s} \approx I_{R C}=\frac{U C C-U C E S \text { (hard) - UBE, }}{R c}
$$

$$
I_{B, S}=I_{S B D}=I_{R B}
$$

$$
=U_{C c}-\cup B C(R S)-2 \cup B E(\text { nara })
$$

RB.

$$
U B C\left(R_{S}\right)=U S B D-0 \cdot 3
$$

\qquad

$$
\begin{aligned}
& N=\frac{I_{\Omega L}}{I_{I_{L}^{\prime}}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{0 L}=I_{\infty}=\beta_{F} I_{B O} \ldots \\
& I_{B O}=I_{E S}-I_{C D . L}
\end{aligned}
$$

$$
\begin{aligned}
& R \subset D
\end{aligned}
$$

Subject:........76

* Example 8.3....... (Fan-out).

$$
N=149.2=149
$$

8.5 * power Dissipation :-

$$
\text { 1. } \begin{aligned}
& I_{C C}(O H)=I_{R B}(O H)+I_{C}(O H)+I_{R C P}(O H) \\
& I_{R B}(O H)=\frac{U C C-}{}-U_{B E}(\text { Iard })-U I_{n}(1 O H) \\
& R B
\end{aligned}
$$

$$
I_{R C}(0 H)=I_{B P} \text { CFAl Ignore } \approx 0
$$

$$
I_{R C P}(O H)=I_{E, P}(O H)=\frac{U C,}{\text { REP }}
$$

QP2 conid eral off (Wad Loul

2. $F_{c c}(b)=$

$$
\text { IRB(0L) }=\frac{U C C}{-} \frac{U B C(R, 5)}{R B}
$$

$$
\text { IRC (oL) }-\frac{U c e-U C E, S \text { (hard) }-U B E, 0 \text { (haval) }}{R C}
$$

\qquad
\qquad

$$
I_{R C p(0 L)}=F_{R E p(o L)}=\frac{U C E S(\text { rato })+U P E, 0(\text { mons })-}{R_{5} p}
$$

$$
\text { Fcc (al) }-I_{\text {Pp }}(a L)+T_{R C(0 L)}+T_{R B(0 L)}
$$

$$
\text { Pang..... } \frac{I_{c c}(o h)+I_{c c}(g H)}{2} \text { y }
$$

- Example. $\left.8.4 \Rightarrow \operatorname{pcc}^{(a v g}\right)=20.05 \mathrm{~m} \omega$.
8.6 Low power n $S T T L$ ($L S T T$). \qquad F VTC, Fan - out , power Dissipation.
\qquad * \qquad
* Chapter.......... Emitter coupled Logic (EcL)
11.1. B. J..............srent Switeh.

(current source - -

$$
\text { IRE }^{\text {UE }}+\frac{U_{E E}}{R_{E}}
$$

濑. UNINN $=$ UCC $-I_{C R} R_{C_{R}}$

$$
U E=U I n-\cup B E
$$

or
$U E=U B B-U B E$,.............. dend on which BTT, is...on.

$$
\because U B E(F, A)=U B E(E C L)=0.75 \cup
$$

UINv.................U~INv...........

UINU Low...................ñunigh.

Usc=0. 0 .
L

* Con sider UIN fow O/P O

$$
\begin{aligned}
& 1 \text { - Uoth } \\
& \cup I N \sim \cup B B \\
& \text { QR....on } \\
& U E=U B B-U B E, R(E \subset W) \text {, } \\
& \cup B E_{1} . \ldots=\ldots \ldots \ldots \\
& =\underbrace{U I N-\ldots B B}+\underbrace{U B E, R} .
\end{aligned}
$$

$$
\begin{aligned}
& I_{C I}=0 . \\
& \text { Uout }=\text { UOH }=\text { UINU }=\text { UCC. }
\end{aligned}
$$

*Threshold Uoltage.

$$
\begin{aligned}
& U I_{n}=U B B \ldots, \ldots, \ldots, Q_{1}, O n \\
& I_{R E}=\frac{U B B-U B E, R(E C L)+U E E}{R_{E} .}-2 I_{C}, I \\
& \text { UINU }=U C C-I_{C J} I R_{C I} \\
& I_{C, I}=\frac{I_{R E}}{2} .
\end{aligned}
$$

- For certain values of resistors. (UIN $N=$ Uout $=$ UBB:Design

$$
\begin{aligned}
& A T . W=0.1=U I H-U I L \\
& U \operatorname{In} L=U B B-0.05 \\
& U \operatorname{Un} H=U B B+0.05 .
\end{aligned}
$$

$$
\begin{aligned}
& U \operatorname{In} L=U B B-0.05 \\
& U I_{n} H-U B B+0.0 .5 \text {. } \\
& \text { * UoL } \Rightarrow \text { UIN } \rightarrow \text { UBB. } \\
& \text { QI on } \\
& U_{E}=U_{I n}-U_{B B}, I \text { (......L.). } \\
& \text { at } U I N=U B B+0.05 \text {. }
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& \chi U B E, R=U B B-U E \\
&=U B B-U I N+U B E I \\
& M B E
\end{aligned}
$$

UBEFR $<$ UBE (ECL)
$\Rightarrow Q R$ off.

$$
I_{R E}=\frac{U I N-U B E+U E E}{R E}=I C,
$$

$$
-U_{N U}=U_{C C}-I_{C, I} R_{C, I}
$$

Solve 1 \& 2 fow

Subject:........8?
\qquad

Subject:....... 82

$$
V s=v u c+U B C(s a t)+\frac{R_{c T}}{R E}\left[U_{B t}(s a t)-U E E\right]
$$

* Example 11.1
- 11.4 Basic Ec, Nor, or Gate.

$-R_{c} I<R_{c} \Rightarrow \Rightarrow$ Trasastor
\qquad

A	B	$N O R$	$O R$
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

* Any input high Q_{1} on , Q_{R} off (correspond ding).

$$
U_{N O R}=U_{C c}-I_{1} I_{R_{1} E} R_{c} I_{\ldots}
$$

$\cup O R \Rightarrow$ high.

* All inputs.................................. UOR high \rightarrow UR \rightarrow Low.
* Ad vantages :-

1 - Low Sensitivity to no........nace. due to differential nature of of the ct....
2-Uc, always provides et with canst. current.
 output (Buffer).........

Fl Fig speed \Longleftarrow Fan - out \uparrow. ..' adv.... \qquad $\therefore 1$ disadvantage - power \uparrow dis.

- high out put current \rightarrow high Fan -out. 1.
\Longrightarrow high Spered (fastest).
\rightarrow high.....ower dissipation........ X
* provides bevel shifting between current Switch and NoR and UoR.

For input and ole to be compatible.
$R_{D N}, R_{D O} \Rightarrow$ pull-apolown.

* dis advantage \rightarrow high current. . . Spikes........ due . t . Switching. ca pabillity...

*. 11.6 MECL $\cup T C$

$$
\text { * } I_{B, B N} R_{C E}+U B E, B N(E C L)+I_{D} / B_{N} R_{N}-U E E=0
$$

$$
I_{B, B N} N(B F+1)^{D}
$$

$$
-I_{B, B N}=\frac{U_{E E}-U_{B E}}{\left(R_{C} I+R_{D N}\left(\beta_{F}+1\right)\right)}
$$

(2) $* U_{I_{1}}$ UIH:-

$$
\begin{aligned}
U I L & =U B B-0.05 \\
U I H & =U B B+0.05
\end{aligned}
$$

(3) Vol, faput high, \quad QI (on), QR(off)

$$
\begin{aligned}
& \text { VNOR }=\text { OOL } \\
& =0-\text { IRCI RCI - UBE, BN }
\end{aligned}
$$

$I_{B, B N}$ can be igonerd compred to $I_{C I}$.
$I_{R C I} \approx I_{c, I} \approx I_{R}$

$$
\begin{aligned}
& =\frac{U I N-U B E I(E C L)}{U H}+U E E \\
& U I n
\end{aligned}
$$

(4) Us and V NOR (V.S.) when.

QI saturates.

$$
V_{N O R}=-\left(\frac{\left.t U_{s}-U_{B E} I(\text { sat })+U E E\right)}{R_{E}} R_{C I}-U B T, B N(E C l\right.
$$

$$
V_{N O R}=U_{S}-U B C I(\text { Sat })-U B E, N N(E C L)
$$

$$
U_{s}=\frac{V_{B C}(\text { sat })+\frac{R C I}{R \cdot E}\left[U_{B E}(\text { sat })-U_{E E}\right]}{R_{C I}}
$$

* Noise Sensitivity and Immunity.
- Noise Sensitivity:- quantifies input variations that affects output.

$$
\begin{aligned}
& H_{N S}=V_{O H}-V_{m} \\
& L_{N S}=V_{M}-U_{O L}
\end{aligned}
$$

* Immunity : ability to reject noise $H N I=\frac{H N S}{L_{S}}$

$$
H N T=\frac{U_{0 H}-U m}{L_{S}} \quad \frac{L^{L S}}{L_{s}}=\frac{V_{m}-J_{0 L}}{L_{s}}
$$

- Example $11.2 \quad$ UBS $=-1.175$.

Immunity, Logic swing, noise margine.

$$
\begin{aligned}
U_{O H} & =-0.76, U_{I L}=-1.225, U_{I H}=-1.1225 \\
U L & =-1.55, ~ U S
\end{aligned}
$$

$$
\begin{aligned}
& L S=-0.76+1.55=0.79 \\
& H N m=-0.76+1.125=0.365 \\
& L N m=-1.225+1.155=0.325 \\
& H N T=\frac{-0.76+1.175}{0.79}
\end{aligned}
$$

$$
L N I=\frac{-1.175+1.55}{0.79}-0.475 U
$$

$$
0.5
$$

*UTC (OR)

* 11.7 Fan -ont MECL (I) NOR.

$N=\frac{I_{0 H}}{I_{I H}} \Rightarrow$ Load must be on.

$$
\begin{gathered}
I_{H}^{\prime}=I_{B, B N}=\frac{I_{E, B N}}{\beta+1}=\frac{I_{R E}}{\beta+1} \\
I_{R E}=\frac{U_{O H}-U_{B E} I\left(I_{C L}\right)+U_{C} E}{R E} \\
I_{O H}=I_{E, B N-I_{R D N}} \\
I_{E, B N}=I_{B, B N(B F+1)} \\
I_{R N}=0-U_{B E}, B N(E C L)-U_{0 H}
\end{gathered}
$$

$$
I_{R D N}=\frac{U O H+U_{E E}}{R_{D N}}
$$

+ Example $11.3 \Rightarrow N=87.5=87$
* $11.8:-$ Eel power Dissipation.

* IEE (o. (1)) input................

$$
\text { 1) IRE (oH) }=\frac{U_{B B}-U_{B E} R+U_{E E}}{R_{E}}
$$

$$
\text { 2) IRDN(OH)=} \frac{V_{0 H}+U_{E E}}{R_{D N}}
$$

$$
\begin{aligned}
& \text { 3) } I_{\text {RPO }} \ldots(O H)=\frac{U_{D 1}+U_{E E}}{R_{D O}}
\end{aligned}
$$

$$
I_{E E}=\sum \text { Current (oth). }
$$

* IEE (ol), input high:-

$$
I_{R E}(0 L)=\frac{U_{1}}{U_{B E} I+}
$$

$$
\text { IRDO..... }(0)=\frac{\left(U_{0 H}+U_{E E}\right.}{R_{D_{0}}} \ldots
$$

\%xample ?-

$$
\ldots=3.5 \ldots . \ldots \ldots
$$

* Chapterinal. Metal oxide semicondutor (FET):MosFET
....................................

.
\qquad 5
* 16.3 Mos FET operation Modes (NMos)
* Cut off \Rightarrow Uas $<$ UTN, NMOS ofe.

$$
I_{D}=0
$$

* Linear mode.

$$
\text { Vas } \geqslant \text { UTN, UD, UD }<\text { UDS (sat). }
$$

$$
\operatorname{UDS}(\text { sat })=\operatorname{Vas}-V T N .
$$

$$
I_{D}\left(u(n)=k_{n}\left[(u a s-U T n) u p s-\frac{U D s^{2}}{2}\right]\right.
$$

* LTraus coonductance (mA.AV)

$$
\text { UDS(sat) }- \text { Ucss - UTN. }
$$

* Sat Mode. M, V...................... UTN

$$
I_{D}(\text { sat })=\frac{k_{n}}{2}\left(v a_{n}-v+N\right)^{2}
$$

Subject:........94
$-U D S \quad>_{j} \cup D S(s a t)$.

* 1. 5.4 Mosfet Transconductance β -

$$
K_{p}=\underbrace{\mu_{n}}_{p, C_{0}^{\prime}} \underbrace{L}_{N}
$$

MO -mobility of electrons or hold. cox:- capacitance of ox oxide Layer per unit area.
$C_{0}^{\prime}=\frac{E_{0 x}}{t_{0 x}} \quad$ Eox..................................itity of oxide tox........ thickness,......... of ox.........xide.

$$
\because k_{n}=k_{n}^{\prime} \frac{w}{L}, \ldots \ldots
$$

2) $V \leq a \quad>\quad U T p$

$$
\begin{aligned}
& \text { USD }<\text { USD.. } \\
& U_{S D}\left(s_{a t}\right)=U_{S} a+U_{T p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { USD. } \geqslant U_{S D}(s a t) . \\
& I_{D P}=\frac{k, p}{2}\left(v \leq G+\cdots G_{0}\right)^{2}
\end{aligned}
$$

General Nus Inverter.
UDD.

$$
-V_{\text {Out }}=U_{D D}-I_{D} R_{L}
$$

172 Zero -Drain Current. Mosfet:-

\qquad

$$
U_{D s} \text { (sat) }>0
$$

$$
V \leq s>V T N \longrightarrow \text { linear on. }
$$

\qquad

$$
I_{D} \longrightarrow 0
$$

VS $\longrightarrow 0$, but in active mode.

* Mathematically:-
vas high \longrightarrow Active mode

$$
\begin{aligned}
\left.V I_{D}=k_{n}\left[\left(V_{a S}-U_{T N}\right)\right] U_{D S}-\frac{V_{D S}}{2}\right]=0 \\
U_{D S}=2\left(\sim_{G s}-U_{T N}\right)
\end{aligned}>\text { UPS } 1
$$

Example 17.1 , Find Resistance of D-s Enanat Rev-

$$
\text { UGS }=5, \quad V_{T}=1, \quad K=40 \mu A / V^{2}
$$

a) $U D S=3$,

$$
\begin{gathered}
I_{D}=K_{n}\left[\left(V_{a s}-U T N\right) U D S-\frac{U_{D} s^{2}}{2}\right] \\
d_{D} I_{D S} \\
\frac{J_{D}}{d_{D S}}=R_{D s^{-1}} \\
K_{n}\left(U G s-U T_{n}-U D s\right) \\
\frac{d_{U D S}}{d I_{D}}
\end{gathered}
$$

$$
R_{D S}=\frac{1}{40 \mu(5-1-3)}=25 k \Omega\left\{R_{D S}=\frac{\Delta U D_{D}}{\Delta I_{D}}\right\}
$$

b) $V D S=0$ -

$$
R D S=\frac{1}{40 \mu(5-1)}=625 \Omega
$$

UDS \uparrow, R.D.s \uparrow, \ldots, Conductivity \downarrow

\Rightarrow NMos is used.............apull...down. p Hos.is used as a pull - up.

* Example 17.2 an- Garaphicall Detewmine vic

$$
R_{L}=10 K, V_{D N}=10 N, U_{T N}=1, K-2 m A / V^{2}
$$

$$
U D D=I D R_{L}+U D S \Rightarrow
$$

DC.LL p.c...Load line.

$$
U D S=U D D-I_{D} R_{L}
$$

at $I_{D}=0, V D, V D=V D D=10 V$

$$
\text { at Uas }=0 \ldots, \quad I B=\frac{U D}{R_{L}}=1 m A
$$

$$
A, B, C, C, D, E \Rightarrow Q=p \operatorname{point} .
$$

$$
E, D \Rightarrow \text { linear, } C, B, A \Rightarrow \text { sat }
$$

Vout (ups)

$$
\text { A.,..B. } C \cdot \text { sat } \quad I_{D}=\frac{k n}{2}(v a s, v T w)^{2} \text {. }
$$

$$
\begin{aligned}
& \text { Uas = }=1,2,3 \text { volt. }
\end{aligned}
$$

عehani2 UDS $=$ UDD $-I_{D} R_{2}$
ID, ソDS.

* Example 7,4, Find the partial Differential. equation for ID when Nos is in Lincaw Mode.

$$
\begin{aligned}
& I_{D}(\text { Vas............. }) \\
& d I_{D}\left(V a_{s}, V_{D S}\right)=\frac{d I_{D}}{d V a_{s}} \cdot d \text { Vas }+\frac{d I_{D}}{d V D_{s}} \cdot d U B_{s} \\
& I_{D}=k_{n}\left((v a s-V T) V D S-\frac{U D s^{2}}{2}\right) \\
& \frac{d I_{D}}{d v a s}=k n \text { iDS } \\
& \frac{\partial I_{D}}{\partial V_{D s}}=k_{n}\left(U_{a s}-U_{T n}-U_{D s}\right) \\
& \partial I_{D}=\underbrace{u D s}_{v_{0 u t}} \underbrace{d u a s}_{d \forall F_{n}}+k n(\underbrace{v a s-v T_{n}-v D s}_{v I n}) d v
\end{aligned}
$$

$$
\frac{d_{\text {ut }}}{\partial v I_{n}}=-1
$$

* 17.6 Powers Dissipation
- Static power Dissipation

$$
P_{D D}(a v g)=U_{D D} \frac{I_{D D}(O H)+I D D(O L)}{2}
$$

* Dynamic porer Dissipation :-
exicts.......also....................ccts, but ing nored (Pdy \ll Pstatic) For.................................... is also Small and Pd........................ be ignowed.
*Pdyn * Founcl.......................... Switches between high and...... Low..
* Mosfet cets.......... have the smailest powew Dissipation
- CMos have...................... Laset.........poneve..... dissipation amongst.........ll.......ي. Lic........

$$
P_{D_{n}}=C_{L} V \cup D D
$$

Ly, Swhitching freg................acitance for Load....
\qquad
\qquad

* Example $17,5, \ldots D \cdot, \quad V, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$ $I D D(0 . H)=5 \mu, \quad I D D(0)=12 \mu$

$$
\begin{aligned}
& \text { Ppyn-10p } \times 0.5 \mu \times 25=125 \mu \omega \\
& \text { Pstat } \\
& \frac{5 \mu+12 \mu \times 5}{2}=262 \mu \omega
\end{aligned}
$$

$$
P T=125+262=387 \mu_{w}=0.387 \mathrm{~m} \omega
$$

$$
* 177 \text { Fan - out. }
$$

- Fan -out : Max capacitance allawed at out of driver that can produce an acceptable suiting time.
(1) charging
input $H \rightarrow L$, out put $L \rightarrow H$

$$
I_{C L}=I_{L}=c_{1} \frac{d \text { bout }}{d t} .
$$

(2) dis charging.:
input $L \longrightarrow H$ - output $H \rightarrow$ L
$N . \ldots$ of \rightarrow lin \rightarrow cap an ill dis charging.

$$
* I_{C L}-I_{D}-I_{L}=c_{L} \frac{\partial v_{\text {gut }}}{\partial t}
$$

$$
I_{C L}=c_{t} \frac{d_{\text {Mont }}}{\partial t}
$$

$$
\begin{aligned}
& I_{C L}=c_{w} \frac{d v_{0 u t}}{d t} \\
& t_{2} \\
& t_{1} d t=\frac{c_{L}}{I_{C L}}{ }_{v} d \text { wont. }
\end{aligned}
$$

$$
\Delta t=\frac{C_{L}}{I_{C L}} \Delta . \cdots .
$$

\% Example 17 . Find $c_{1, \mu}$ Max for $s t=1$ s. (max switching time).

$$
\begin{aligned}
& I_{\text {ch charge }}=50 \text { fA }, I_{\text {CL Dicanary }}=-20 \mu \mathrm{~A} \ldots \\
& \text { var }=5,5
\end{aligned}
$$

$$
C_{L}=I_{C L} \quad \Delta t \quad \frac{\Delta t}{\Delta V} \quad \text { charging... }
$$

$$
c_{t}=50 \mu \frac{1 \mu}{5-0.5}=11.1 p F
$$

(2) Discharging y:

$$
c_{t}=\frac{(-20 \mu)(1, \mu)}{-(0.5-5)}=4.44 p . F
$$

(1.) if you pick $q=111$ p find at for both cases.

$$
\Delta t_{c k}=1 \mu . \Delta t, d i s=\frac{111 p E}{-20}(-\mu, 5)=2.5 \mu
$$

$$
* C L=4.44 P F
$$

$$
\Delta t_{,}, \mathrm{ch}=\frac{4.44 \times 4.5}{50 \mu}=0.4 \mu s
$$

$$
\Delta t \text {, dis }=1 \ldots \mu
$$

$\therefore C_{L}=4.44 \mathrm{PF}, \ldots$ is the correct answer, obuisus since $P t$ was obtained from the smaller current:

* Chapter 19 Staturated En hancement only Lade d Nubs - 19.1 and 19.3 operation $+V T C$.

$$
\begin{aligned}
& \text { UTu }=\text { Vaso. } \\
& \text { out }=\text { USo. }
\end{aligned}
$$

DL and CL are connected

$$
\text { UCASL }=\text { UDSL }
$$

$$
V D S L(\text { sat })=V C r S L-U T L=U D S L-U T L
$$

\Rightarrow NL.....always.......saturating
(1) UI.................................ff.
\qquad
UCosL=ULL
\qquad

(2) UIL Can't...........................ad at $\frac{d_{\text {uout }}}{d v_{u}}=-1$ due dis...... contimnily $U I_{L}=U T$. $\quad N$
(2) during atransition bath saturate.

$$
\text { IDL (sat) }=\text { IDo }(\text { sat })
$$

\qquad
\qquad

Subject:........las.........

$$
\text { Ubut }=\cdots-\sqrt{\frac{K_{D}}{K L}} \cdot U N+U_{0} \sqrt{\frac{K_{D}}{K_{L}}+U D D-U_{L}}
$$

either (1) or (2)

$$
V \mu=\cdots \sqrt{\frac{K_{0}}{K_{1}} \cdots \cdots \cdots \cdots \cdots \cdots \cdots}
$$

\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { IDo (Lin) }=\text { IDL (sat)......................... }
\end{aligned}
$$

$$
\begin{aligned}
& U G S=U I N(U O L)=U D D-U T L \\
& \text { UDSo }=\text { Uo }=\text { Uol. } \\
& \text { UGSL-UDD-U.UOUT }=\text { UDD }- \text { UoL. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{K L}{2}\left(V_{a s L}-v_{T L}\right)^{2}=\frac{k_{0}}{2}\left(V_{15}-v_{T a}\right)^{2} \\
& \text { UCish =............ndout } \% \\
& \text { UCso................. }
\end{aligned}
$$

$$
U_{0}=\frac{K_{L}(U D D-U T L)^{2}}{2 K_{L}(U D D-U T L)+2 K_{0}(U D D-U T L)}
$$

(5) UIH.at $\frac{d \text { vout }}{\text { dVIN }}=-1$ No lin

$$
\begin{equation*}
\text { (3.): } \frac{d I_{D L}}{d V_{0}} * \frac{d v o n t}{d I_{D O}} \frac{d V I N}{d V I N} \cdot \frac{d I_{D o}}{d V_{0}} d v o \tag{6}
\end{equation*}
$$

$$
\frac{d I_{D O}}{d V I N}=
$$

$$
\frac{\partial I_{D L}}{\partial v_{0}}=K L\left(U_{D D}-v_{0 u t)}\right.
$$

$$
\frac{\partial I_{D O}}{\partial U_{\text {out }}}-K_{0}\left(U I_{N}-U_{0}-\cdots\right.
$$

$$
\frac{d v_{\text {out }}}{d v_{I N}}=\frac{k_{0}\left(U_{I H}-U_{T_{0}}\right)+K L\left(U_{D D}-V_{T L}\right)}{2 k_{0}+K_{L} .}
$$

from quadratic equation \rightarrow anothe relation bet ween

$$
\text { Uout UIN } \Rightarrow I_{H}=U_{T O}+\frac{2\left(V_{D}-U_{T L}\right)}{\sqrt{\frac{3 k 0}{k L}+1}}
$$

\qquad

$$
\frac{d_{V_{0 U}}}{d_{V_{N}}}=\frac{k_{0}\left(U_{T H}-U_{T_{0}}\right)+k_{L}\left(V_{D D}-V_{T L}\right)}{2 k_{0}+k_{L}}
$$

from quadratic equation \rightarrow anothe relation. bet ween

$$
\text { out UIN } \Rightarrow U_{I H}=U_{T_{0}}+\frac{2\left(U_{D D}-U_{T L}\right)}{\sqrt{\frac{3 K_{0}}{K_{L}}+1}}
$$

at $X:-\quad U D S_{2}=0$.

$$
\begin{aligned}
& I_{D L}=I_{D O} \\
&=\frac{K L}{2}(U G S L-U T C)^{2} \\
& V G S L=U D S L=U D D-Y \text { OUt }=U D D \\
& I_{D L}=\frac{K L}{2}(U D D-U T L)^{2} .
\end{aligned}
$$

at A. $I_{D O}=0=\frac{K_{L}}{2}(U G S L-U T L)^{2}$

$$
U G S L=U T L
$$

 C, D,

$$
\text { * UDS (sat) }=\text { Vas }-U T
$$

* 19.3 power Dissipation.

L- Static.

$$
\begin{aligned}
& I_{D D}(0 H)=0 \cdot, V_{I N}, L_{D}, \ldots, N_{0}=0, I_{D O}(\text { off })=I_{D_{L}}(s, a t)=0 \\
& I_{D D}(o L)=I_{D L}(\text { sat })=I_{D O} \text { (Lin) } \\
& \left.=\frac{K_{L}}{2}\left(U_{C S}-U_{T L}\right)^{2}=K_{D}\left(U_{G O}-U_{T 0}\right) U_{D S}-\frac{U_{D S}^{2}}{2}\right) \\
& P_{D D}(\text { avg })=\frac{I_{D D}(01)}{2} \forall D D \quad \text { power } \quad \int_{0}^{5}
\end{aligned}
$$

2-......ynamic

$$
P d y n=C_{t} V_{V D}^{2}
$$

$$
P_{\text {tot }}=P d y n+P_{\text {static. }}
$$

* chapter 23
23.1 c Mo.5 Inuerter.

$$
U I_{N}=U G S
$$

Vout $=$ UDS .

$$
\begin{aligned}
& U S D=U D D-U O H . \\
& U S G=U D D-U I N \\
& N-M O S \Rightarrow P U l l \\
& N-\text { UP }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

* 231 Chas Thuertri...........23.4

UTG

(1) $U T N$ LOW, $U I N=0$.

UTN $<U_{T N}$

\qquad
 PMoS in linear region...............

$$
I_{D N}-(o f f)=I_{D P}(\operatorname{lin})
$$

\qquad
\qquad
\qquad

$$
\begin{aligned}
I_{D N(o f f)} & =I_{D p}(\operatorname{lin}) \\
0 & =k_{p}\left[\left(U S a+U_{T p}\right) U S D-\frac{U_{S D^{2}}}{2}\right]
\end{aligned}
$$

$$
U S D=\text { Zero. }
$$

$$
\left.\left.U S D=2\left(U S \dot{a}+U_{T P}\right)\right\rangle u_{T p}\right)(\text { sat) } b
$$

$$
\text { Uout }=\text { UOH }=\text { UDD. }
$$

(2) $U O L, U I \sim=U D D$.
high input.

$$
\begin{aligned}
& U I A=U D D=U G S\rangle U_{T} \cap \\
& U D S(S a t)=U D D .
\end{aligned}
$$

\Rightarrow linear mode...................

$$
\begin{aligned}
& \text { USG } G=U D D-U_{I N}=0 K-U_{T P} \\
& \text { PMos } \rightarrow \text { off. } \\
& \text { IDp }(o f f)=I_{D} \sim(\text { lin }) . \\
& 0 \quad K_{n}\left(\left(U a_{s}-U T N\right) U U_{1}-\frac{U D s^{2}}{2}\right) \\
& U D S=0
\end{aligned}
$$

(3) at........... Um $=$ UINT.

Both sat.

$$
\begin{aligned}
& I_{p p}(s a t)=I_{D N}(s a t) \\
& \frac{k p}{2}(U D D-U m+U T P)^{2}-\frac{k_{n}}{2}(U m \rightarrow U T N)^{2} \\
& U M=\frac{U D D}{1}+U T p+U_{T N} \sqrt{\frac{k n}{k p}}
\end{aligned}
$$

(4) at $\frac{d v_{0 u t}}{d V_{I N}}=-1,1, U_{1} \ldots$

$$
d \operatorname{IDN}\left(U_{I N}\right)=d \operatorname{IPp}(U I N, v o u t)
$$

$$
\begin{aligned}
& N-S a t: I D N(s a t)=\frac{k n}{2}(U T N-U T N)^{2} . \\
& p-\operatorname{Lin} \rightarrow I_{D P}=K_{p}\left(\left(U D P-v+n+v T_{P}\right)\right. \text { (UDPD-NOut) } \\
& -\left(\frac{\text { UnD. Nout })}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uout }=\text { USL }=\text { UDS }=0 . \\
& \text { * UsG } a-U_{T p} \\
& \text { UDD - UIN }<\text { - UTP. } \\
& \text { UIN } \rightarrow \text { UDD }+ \text { UTP. }
\end{aligned}
$$

* Uut from IDN (sat) $=I_{D P}$ (lim).

$$
\begin{aligned}
& N(\operatorname{lin}) \Longrightarrow I_{D}\left(l_{i n}\right)=k_{n}\left(\text { (Uas-van) UDs }-\frac{\text { UDS }^{2}}{2}\right) \\
& p(\text { sat }) \Rightarrow I_{p}\left(s_{a t}\right)=\frac{k p}{2}\left(U_{S} C_{1}+u_{p p}\right)^{2} \\
& \text { UDS: Vout } \\
& d I_{D N}\left(L_{i n}\right)=d I_{D P}=\text { (sat). } \\
& U T H=\frac{U D D+U T p \frac{k_{n}}{k p}\left(U T N+2 V_{n}\right)}{1+\frac{k_{n}}{k_{p}}}
\end{aligned}
$$

from quadratic equations find vout.

* for symmetric uTc.

$$
\begin{aligned}
& 1=k_{n}=k_{p} . \\
& \mu_{n} c_{0}^{\prime}\left(\frac{w}{L}\right)_{N}=\mu_{p} c_{0}^{\prime} x_{p}\left(\frac{w}{L}\right)_{p} \\
& 580\left(\frac{w}{L}\right)_{N}=230\left(\frac{w_{p}}{L_{p}}\right) \\
& {\left[\frac{w_{p}}{L_{p}}=2.5 \frac{\omega_{N}}{L_{N}}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& 2-U m-U I L=U I H-U m \\
& 3-U m=U D / 2 \\
& * N M=U 0(U I)-U_{0}(N I) \\
& L N M=U I L-U(U I H)
\end{aligned}
$$

$23.2 *$ Power Dissipation.:-

$$
\begin{aligned}
& \text { Pstatic }=\text { Zero, } \underset{N-O P f}{I_{D D}(O H)}=0 . \quad, \quad \text { IDD (oL) } \quad=0 \\
& \text { Pdynamic }=C V O D D^{2}
\end{aligned}
$$

 UIN: \qquad
\qquad

- Example reorer
* Example 23.3.,.... Design............. symmetry..... UDD $=5$.
(1)
(2)

$$
\begin{aligned}
& U_{m}=5+(-1)+\frac{1 \sqrt{\frac{80}{80}}}{1+\sqrt{\frac{80}{80}}}=2.5 \\
& U m=\frac{U_{D D}}{2}=\frac{5}{2}=2.5 .
\end{aligned}
$$

(3)

$$
U_{I L}=\frac{20_{1}+\frac{(U I L)}{1}+\frac{80}{80}}{1+(-1)+\frac{80}{80}(1)}
$$

$$
U I_{L}=J_{0}\left(U_{L}\right)-2,5
$$

$$
\begin{aligned}
& k_{p}=16 \mu \times \frac{w_{p}}{L_{p}}=80 \ldots \mu \\
& k_{n} s 40 \mu \times \frac{4 \mu}{2 \mu}=80 \mu m \\
& k_{p}=K n .
\end{aligned}
$$

$$
\begin{aligned}
& K_{n}^{\prime}=40 \mu A / U^{2}, \quad K_{p}^{2}=16 \mu A / U^{2}, \quad U T N=1 U \\
& U_{T p}=-1, L_{N}=L_{p}=2 m \mu, \ldots, w_{n}=y \mu m \\
& u_{p}=\text { ? , check for symmetwy }[k n=k p \\
& O_{m}=\frac{U D D}{2} \\
& U m=U I L=U I . W \text { - U. } \\
& \frac{w_{p}}{L p^{\prime}}=2 . \cdots \cdots \cdots \frac{w_{n}}{L_{n}} \\
& \omega_{p}=2.5 * 4 \mu=10 \mu \mathrm{~m}
\end{aligned}
$$

Jout $=(U I L)=U I L+2.5$

$$
\begin{aligned}
& \frac{k u}{2}\left(\left(U I N_{L}-U T N\right)\right)^{2}=k p\left((U D D-U T \omega) \quad U S D-U \frac{U_{D}}{2}\right)
\end{aligned}
$$

US.D................D...........Uout:

$$
\begin{aligned}
& U_{1} L=2.125 u . \\
& \longrightarrow \text { UIH }=3-1+\frac{80}{80}\left[1+2 \text { vout }\left(U_{I H}\right)\right] \\
& 1+\frac{80}{80} \\
& \text { Vout - UIH........ } 2.5 \text {. } \\
& \text { Id (hin) }=\text { ID...........at). }
\end{aligned}
$$

$$
\begin{aligned}
& U G S=U I_{N H} \\
& \text { UDS }=\text { U.................I. }-2.5 \text {. } \\
& J H=2.875
\end{aligned}
$$

$$
\begin{aligned}
& 2.5-2.12 .5=2.87 B-2.5 \\
& 0.375 \ldots . . .
\end{aligned}
$$

23.9.....an-out (capacitance that areas onable delay time). Input.. propagation..... delay... dx \qquad H
H
L \square
50% \Rightarrow input

$$
\nleftarrow \ldots
$$

 \Rightarrow output.

-tp.HL = time di.......................een input sse increasing from Low to 50% of max and output droping from max to 50% of ma x.

\qquad
\qquad
\qquad
\qquad

Subject:......118
23.9 Fan-out (capacitance that aras onable delay time). Input.
dr e propagation delay.

culprit.
\Rightarrow input
$\leftarrow H$

-
\Rightarrow output.

-tpHL = time delay, between input sk ak increasing
 droping from max to 50% of max.

$$
\begin{align*}
& \text { * } \\
& t_{P H_{1}}{ }^{\prime}=\left[\frac{2 U_{T N}}{k_{n}\left(U_{D D}-U_{T N}\right)^{2}}+\cdots \frac{\ln \left[\frac{1.5}{}-V_{D D}-2 U_{T N}\right]}{k_{n}\left(U_{D D}-U_{T N}\right)}\right] \\
& =\left[\frac{2 U T N}{K n(U D D-U T N)^{2}}+\frac{1}{K_{n}\left(U_{D D}-U_{T M}\right)} \ln \left(\frac{1.5 v_{D D}-2 U_{T N}}{0.5 U_{D D}}\right)\right] \cdots \cdot L
\end{align*}
$$

\qquad

Subject:... 119

$$
\begin{equation*}
t_{p} L H=\left[\frac{-2 u_{T p}}{k_{p}\left(u_{D \rho}+u_{T p}\right)^{2}}+\frac{1}{k_{\rho}\left(u_{D P}+u_{T \rho}\right)} \cdot\left(\frac{1,5 u_{D D}+2 U T \rho}{0.5 u_{D D}}\right] C L\right. \tag{2}
\end{equation*}
$$

\Rightarrow find $c L$ and $\frac{c L}{k n}$
*. Fan - out if........ UTC symmetric.

- For a signal capacitance

$$
C I \sim=\left(u n L N+L_{p} L p\right) \operatorname{co}^{\prime} x \rightarrow i
$$ in general for Load or driver.

$$
F=F-L_{1}
$$

$$
\text { 1. For symmetw } \frac{w_{p}}{L_{Q}}=25 \ldots L_{N} \ldots \ldots \ldots
$$

$$
\begin{aligned}
& 2 k_{p}=w_{n}=\frac{w_{n}}{L_{n}} \mu_{n} \cos ^{\prime} \\
& \frac{c L}{k_{n}} \\
& \frac{E n}{L_{n}} \mu_{n} \operatorname{cox} \\
& x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& C I \sim=\left(\omega_{N} L_{N}+2.5 \omega \sim L_{N}\right) \text { co. } \\
& =3.5 \cdots \cdots \cdots \cdots \cdots
\end{aligned}
$$

$$
\begin{aligned}
\frac{C_{L}}{k_{n}} & =\frac{3.5 L^{2} E \sigma_{n}^{\prime}}{\mu_{n} C_{x}^{\prime}} \quad \text { from eqn } \\
& =\frac{3.5 L_{n}^{2} F}{\mu_{n}}
\end{aligned}
$$

$$
F=\frac{C L \mu_{n}}{k_{n} 3.5 L N^{2}}
$$

$$
F=\mu_{n} \quad 3.5 L_{N^{2}}\left[\frac{2 v T v}{\left(v D D-v_{T \sim}\right)^{2}}+\frac{1}{U D D-v_{T N}} \ln \left[\frac{1.5 U D D-2 U T N}{0.5 U D D}\right]\right]
$$

+20-4

- Example 23.... 10 (read)
\qquad
\qquad
\qquad
\qquad
\qquad
* Chapter 24 CMos Ci.............
$24.2,3,4 \ldots \ldots \ldots$ NAND............................ates.
* NAND...

UDD

A	B	$0 u t$
0	0	1
0	1	1
1	0	1
1	1	0

2 Ip.p...lin) $=\ldots$ ID.......................... USD.........

$$
\text { Vout }=U_{D D}-U_{D S}=U_{D D}(\text { high }) .
$$

- Any input Low
A Low, B high (ow dice vera).
N's off, P with Low input lin. p with high, off.

$$
\left.\begin{array}{rl}
\text { IDPA }(\text { Lin }) & =\text { IDN (off) }=0 . \\
\rightarrow \text { USP } A
\end{array}\right) .
$$

(2) All inputs high $\left(U_{I N}=5\right)$.

Ns'. l in, p off.

$$
\begin{aligned}
I_{D N}(\operatorname{Lin}) & =I_{D P}(\text { Of })=0 . \\
U D S & =0 .
\end{aligned}
$$

* For symmetry:-

For a sing te an put inverter $\frac{\omega p}{L P}=2.5 \mathrm{~mm} h_{\mathrm{n}}$.
For a two input $=\frac{2 \omega p}{L p}=2.5 \omega n / \operatorname{Ln}$.

$$
I_{p p}=I_{D} \sim
$$

$$
i \quad \frac{w p}{L P}=2.5 \cdots \frac{w n}{L_{n}}
$$

* An id Gate.

-add an in vert ter at an the out put of of the NAND Gate.

- OR Gate :- NoR Gate.

Corresponding u 's lin , Ps off. E

$$
\begin{aligned}
I_{D N}(\text { Lin })= & 2 I_{D P}(\text { off })=0 . \\
U D S & =0 \text { Lout (Logic Low). }
\end{aligned}
$$

(2) All input Low.

N' off, , P is lin.

dout 2 U DD (Logic Nigh)

Subject:........ 125

* For symmetry...
$\frac{w p}{L p}=\left(2.5 \frac{w n}{L_{N}}\right)+2$ (fox two -input).

For $i-i n p u t \rightarrow \frac{w p}{L p}=i \cdots \cdots \cdot[2.5 \cdots$

* 24.5 AND - OR - Inverter Logic function (AoI). UDD.

Enough: ta Louk at Rull down (ar- pull-up.) cct.... * \mathbf{s}^{\prime} in series \Rightarrow ANDing.

* P's in peralle \Rightarrow oling.
- (For PMos the opposite).

ND, N. NB in sewies $\Rightarrow B D$.
$N C, N_{A}, \quad, \quad \rightarrow \quad C A$
$N_{D} \ldots N_{B}$ is in paiallel with ($\left.N_{C}, N_{A}\right)$

$$
=B D+C A
$$

Subject:...... 127

$$
F=\overline{B D+C A}, \overline{B D}+C A
$$

oR.
$[P D, P B \Rightarrow$ Parallel. $\Rightarrow B+C$ $P A, P C \Rightarrow$ Parallel $\Rightarrow \quad \Rightarrow \quad A+C$ $P_{A} P_{C}$ series in $P_{P}, P_{B} \Rightarrow(B+C)(A+C)$

$$
E=(B+C)(A+C)
$$

* Draw $Z=(A+B+C)(D E+F)$

N:- NA, NB, NC, in parallel. ND,$N E \Rightarrow$ in series. (NDNEN - in parallel with F $(N D, N E), N_{F}$ in series with $\left(N A_{D}, N B, N C\right)$.

＊Multici brators（Neamen）ch 1.5
1．A Stable：－：－triaged one with no stable state．
2．Mono Stable：－Has one stable state and moves to
3．居 the other state（quasi－stable）when frigged and remains in the quash－stable state． For apredetermined time．
Astable．

\qquad
\qquad
\qquad
3．Bistable（flip－．flop），Two stable States．．．．．．．．．．．．itches between then only when triaged．

（1）$\pm<1<$
instal state $U_{c}=0, U_{2}$ at Logic．High Un．．．．．．．．．．．．．．．．．．．．．．．．
Un（out）Lou，,U_{2} stan！high．h． Jut Lo ．w（s．amble state）．

$$
2-t_{0}<t<t_{1}
$$

Apply trigger at $\left(a t \ldots t_{0}\right) \cdot v_{2}$ Low..................... $U \subset=0$.

$$
A \quad \cup 3=0
$$

04 high.......(out.put quasi...)

\Rightarrow Un Low (back to stable state)
 high.
\qquad
\rightarrow Resistance of gates and very. Small
بيمبية للـمهـومٌ...

* if $R \quad U R_{0 n}, \quad U T n=\frac{1}{2}$ UDO.

$$
T=R C \ln 2=07 R_{C}
$$

$$
\begin{aligned}
& u_{c}=u_{i}+\left(u_{t}-u_{i}\right)\left(1-e^{-t / R c}\right) . \\
& u_{n}=0 .{ }_{0} \text { target voltage uDo }
\end{aligned}
$$

* Two types of mono stable Response:-
(1) Ret riggable.
(2) no retriggable
* Retriggable 8 -responds to any trigger applied even if in quasistable state.

4 no retriggable: : does not respond to a new trigger. If in quasistable state.
(1) output:
(2)

T \square
\qquad
\qquad
\qquad
\qquad

* 555 Ic timers. Hons stable Maltiribraton.
 Discharge.

(1) $t<$ to output Γ Stable state. $\quad \Rightarrow$ Logic.

$$
T_{1} \text { on }, \text { dis charge } c_{T} \rightarrow U C=0
$$

(2) Trigger is appued at $t=t_{1}$

Tri $<\frac{U c c}{3}$, rout of..................................igh.

$$
\begin{aligned}
& (S=1), \quad Q=1, \quad \bar{Q}=0 .\left(T_{1}=0 f(.)\right. \\
& \text { Uout }=\text { high (quasi-stable) }
\end{aligned}
$$

$T_{1} \Rightarrow$ off (capacitar (ch.......................thraugh.

$$
R_{T}
$$

$Q=0$ (aut put back...............................ablate). $\bar{Q}=1$ (T_{1}, on, cop con dis charges......again).
.........

$$
\begin{aligned}
& \underline{e_{x}} * U_{c c}=5, \ldots \ldots \ldots \\
& U C=U F+\left(U_{1}+U_{F}\right) e^{-t / R C} \\
& 3.3=5+(0-5) e^{-\neq} / R_{T} C \\
& \text { t. } p=1.1 \quad R-C \ldots
\end{aligned}
$$

* Example 8- Find min and maxium walues of

$$
\begin{aligned}
& I_{m a x}=\frac{U R T \max }{R_{T} \min }=\frac{5-0}{R_{\operatorname{Tm}}}=1 \mathrm{~cm} \\
& R_{\text {Tmin }}=500 \Omega \\
& R_{T \max }=\frac{d R_{T} \min }{I_{T \min }}=\frac{5-3.3}{350 n}=\frac{5}{\Omega}
\end{aligned}
$$

$503<R_{T}<\ldots$

* Digital to analog converter. $R / 2 R$ Ladder $\operatorname{con} 1$.

- For a certain node
* if Digital input to the left of that node is at Logic o (Gird), then Said...................... Se Sees on equivalent Resistance of $2 R$.

N' Number of bits RR...................................
\qquad
\qquad
\qquad
\qquad

Nout $=\frac{\text { Urd }}{2}\left(D N-1+\frac{D N 2}{2}+\cdots+\frac{D_{1}}{2 N-2}+\frac{D_{0}}{2^{N}-1}\right)$.
$7 \quad N=4, \quad 0_{0}^{D_{1} D_{2} D_{1}}$

$$
\text { Nout }=\frac{u_{r e f}^{2}}{2}\left(\frac{D_{3}}{2^{\circ}}+\frac{D_{2}}{2^{1}}+\frac{D_{1}}{2^{2}}+\frac{D_{0}}{2^{3}}\right)
$$

- if digital input is given in decimal..

- Example. Find unt for inputs with each bit at Logic 1 one at a time., Uref $=5$.

D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Jout

$$
\begin{aligned}
\text { Uout } & =\frac{U_{r e s}}{2}(1)=2.5 \cup \\
\text { vout } & =\frac{U_{r e f}}{2}\left(\frac{1}{2}\right)=1.25 \\
& =\frac{u_{r e s}}{2}\left[\frac{1}{4}\right]=0.625 \\
& =\frac{5}{2}\left[\frac{1}{8}\right]=0.3 \$ 2 .
\end{aligned}
$$

1111 J.u U U Uref

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { Cout }=\frac{5}{2}\left[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right]=4.68 \mathrm{v} \\
\rightarrow D_{3} D_{2} D_{1} D_{0}
\end{array}\right.} \\
& \begin{array}{llll}
D_{3} & D_{2} & D_{1} & D_{0} \\
1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

5.

\qquad

The sum of these voltage is $4.681<5$, because we have $2^{N}=2^{4}=16$ Level............................. but we only . Cannot......................... $\left.2^{4}-1\right)=15$

Level $\frac{5}{16}=0.315 \mathrm{C}$

$$
\begin{aligned}
& \frac{5}{16} \times 15=4.68 . \cup \\
& \uparrow 5=\frac{16}{15} \times 4.68 \uparrow
\end{aligned}
$$

achieve an output o. F..................... increase. Oren...

$$
\text { Uref }=\frac{16}{15} \times 5=5.33 \cup
$$

- in general. for ama x out put Urea $\#$ of level x vo max. H: of cocuts
* Resolution:- Least detected increment. in. input ullage that com be matured by: the D. 1 A convert

$$
\text { Res }=\frac{\text { ref }}{2^{N}}
$$

\qquad

$$
\operatorname{accuracy}=\frac{\text { Res }}{\text { Uref }}=\frac{1}{2^{N}-1}
$$

* Example : Design a σ-bit. $R / 2 R$ Ladder $D A$. if $R_{F}=R$.

1. Find the analog output to (101010)

$$
\begin{aligned}
&(101010)_{2} \Rightarrow(42)_{10} \\
& \text { Uout }-\frac{n}{2^{n}} \text { urea }=\frac{42 * 5}{644}=\text { ed se } \\
&=328
\end{aligned}
$$

b. Wout $=2.2 \mathrm{~J}$, find digital input.

$$
n=\frac{\text { vat }^{\text {over }}}{\text { ven }} 2^{N}=\left(\frac{2.2}{5}\right) \times 64=(28)_{10}
$$

$$
(28)_{10}=0.11100
$$

* Ana Log to Digital Converter.

Binary.- Encoded A $/ D$ con

$$
U \text { In }>\frac{U_{r e f}}{9} \quad \forall \sim \cdots \frac{2 u_{r e}}{9}
$$

only col has high output rest Law..
\square
$0000000 \ldots$

0000.

* Comparato numbew $=m$.

Uref μm - m Uref

\square
out put of comp.

$$
\begin{aligned}
& \text { Ex\&- } \frac{\text { Zuref }}{R}=3 \\
& U_{u}=2.5 \\
& \text { high } \Leftarrow \ldots \ldots \ldots \text { on }_{1} \ldots \ldots . . . \mathrm{Co}_{2} \ldots \ldots \ldots \ldots \ldots \\
& 0000011 \\
& \text { output............... } \\
& \begin{aligned}
Q_{1} & =D_{1}+D_{3}+D_{5}+D_{1} \\
Q_{1} & D_{2}+D_{3}+D_{1} \\
Q_{2} & D_{2}+1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
Q_{1} & =D_{1}+D_{3}+D_{5}+D_{1} \\
Q_{1} & D_{2}+D_{3}+D_{1} \\
Q_{2} & D_{2}+1
\end{aligned} \\
& \text { 151. } \\
& \text { वanر } \\
& \text { ~~ن } \\
& \text { Jx, } \\
& E \times!-m=5
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1}=0 \\
& Q_{2}=1 \text {. } \\
& \Rightarrow 100 .
\end{aligned}
$$

 number, (00. 0.11111$)$

$$
\begin{aligned}
& \text { Uin } \quad \text { Min } \geq \text { Uref } 15 \\
& =2-78
\end{aligned}
$$

$$
\text { Uin, max } 2 \text { Uref } 6=6 \text { vref }=3,330
$$

\qquad
b) find the residution $=\frac{5}{9}=0.56$
c) find binary o/pinfoun $u=1 \cup$

$$
\begin{aligned}
& \because I N=1 \cup>\frac{m \text { vel }}{v+1} \\
& \text { UIn }=1 \quad<\quad \text { Uref }(m+1) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \cup_{1 N}=\ldots \frac{m 5}{a} \Rightarrow m \times 1.8 \\
& 1<(m+1) 5>0.8 .
\end{aligned}
$$ high.................thers........are Low. 00000001.

$$
\text { Encodel } 0.1 \rho \Rightarrow
$$

\qquad

3

$$
G_{A} A-U_{B i t_{0}}=U_{0}+U_{1}+U_{4}+U_{5}
$$

©
if \qquad $\omega_{0}=1$ and Rest.................... \qquad
5
Units $=1$
3
GB...... Unity $=0$
$\triangle B_{1} \quad 2=0$ OBIt $3=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
S

Subiect: $\quad 142$
\qquad
.

Uo \square .
$u_{1}-$ \square

Usit3 $\frac{0}{T} \quad 0 \quad 0 \quad 0 \quad \Gamma \quad \square$

$$
\begin{aligned}
& \begin{array}{ccc}
V_{B i}+2 & 0 & 0 \\
\cdots & 1 & 1 \\
U_{B i t 1} 120 & 1 & 0
\end{array} \\
& \text { UBito } \sqrt[1]{1} \quad 0 \quad 0 \quad \sqrt{1} \quad 0
\end{aligned}
$$

* 32.7 CMOS (REAI) only MEM.

Subject:..........144.

(1) UPRE $=$ O $U=0$ Logic.

$$
\mathrm{Clo}_{2}-0_{3}=0 \cup \text { o Logic }
$$

PMaS........all Lun \Rightarrow USD \Rightarrow U.

Capacitor Charge to................D.D.
(2) read data w...
 input....... at Logic o.

Pros off. all Nos except - the ones in the first line are all off, Nulls in fist are all on.
on Mos will dis charge capacitor to $0 \cup \Rightarrow$ Logic Zero.

* Gates with no on Nos will remain. at output high.

3) Next preset
4) U_{1} high (and UPRE) Rest Zeros.

* Chapter 33.1 22 Random Access Memory RAM
33.1 anal 33.2 Static RAM (all with transmission gates MosFFT SRAM.

* RAM. pat a can be be....................in asequence in dependent of of the order in in was originally critter.
* SRA M:- Maintains storage.................. data as Long as as..........................appliecl to semicondatorl cot.

BL \qquad
\qquad
 UT are on and conduct when w.. NT's of. anc.................................nduct... Store.)
$o n \rightarrow$ (Read A write)

\qquad
 Nemins the same $M E \mu=1$

2 write $\rightarrow \ldots \ldots L=1, \ldots$ Tsn

$$
M E \mu=\overline{B L} \quad \overline{M E M}=\overline{B L}
$$

3- react $\rightarrow \quad \omega L=1, \quad N T^{\prime}$, on. B.L. reach Memory....................... $M E M$

$$
\bar{B} L_{-}=\overline{\mu E \mu}
$$

- Example:-

$$
-1
$$

\qquad
\qquad
\qquad
1.. Initially input is considexel Low, and $0 / 1$ is high
when UIN = UID, out goes drown and remains So unfl UIN $=U I N$,

2-.....When UIN $=$ UIN, Unt goes up and remairs so until UIN $=$ UID..... Difference bet ween UID and UTU.....is called (nyst ersis)

ST removes noise or referam sigmal

\qquad
\qquad

人 ي initial on...............igh \qquad
(1) unt OFD U, U. U. Uage Low.
 \Rightarrow out put gres........................

* Emitter coupleal Schmitier Trigger.
\qquad
\qquad
\qquad
\qquad
\qquad

1) $+U 0 \operatorname{Us}$

$$
\begin{aligned}
& \text { VOL }=U C E_{2}(\text { sat })+U E
\end{aligned}
$$

'10

$$
\text { 2) }- \text { UNS } \Rightarrow \text { UIU }=\text { UBEMS (FIA) }+U E_{1}
$$

3) - UOHS \Rightarrow UOHS - Ue...............

* UTC of SNAND $\%$ \qquad
*UIU = UID......UD(on).

$$
U_{1}=U F U S-U D(O n)
$$

$$
U B H=U C O-U B E(F, A)-U D(O W)
$$

$$
\forall U O L=U C E(s a t)
$$

\qquad

