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CHAPTER 1

Problem 1.1

As an illustration, three particular sample functions of the random process X(t),
corresponding to F = W/4, W/2, and W, are plotted below:
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To show that X(t) is nonstationary, we need only observe that every waveform illustrated
above is zero at t = 0, positive for 0 < t < 1/2W, and negati\ie for =1/2W < ¢t < 0. Thus,
the probability density function of the random variable X(t1) obtained by sampling X(t) at
t1 = 1/UW is identically zero for negative argument, whereas the probability density
function of the random variable X(t2) obtained by sampling X(t) at t = =1/4W is nonzero
only for negative arguments. Clearly, therefore,

- 4 ) . . .
fX(t1)(x1) * fX(tz)(xz)) apd the random process X(t) is nonstationary.



Problem 1.2

X(t) = 4 cos(anct)
Therefore,
Xi = A OOS(wacti)

Since the amplitude A is uniformly distributed, we may write

1

mf-:c—t-;), 0 _(_ X‘1 _<_ COS(Zﬂfcti)
f, (x,) =
xi ! o, otherwi se
fx.'(xi)
i
1 .
cos(2nf t.) }
ci |
l
|
} x
0 cos (27f t.) i
c i

Similarly, we may write

Xi+T = A cos[2wfc(ti+r)]
and
1
cos[2nfc(ti+r)3' 0« X2‘$ cos[2nfc(ti+r)]
f (x,) =
Xi+'t 2
o, otherwi se

We thus see that fx (xi) £ fx - (xz) , and so the process X(t) is nonstationary.
i i+t '
Problem 1.3
(a) The integrator output at time t is
t

S X{(t) dt
0

Y(t)

t
A J cos(2nf 1) dt
0 c



A .
= m; s:m(?nf‘ct)

Therefore,

sin(21rf‘ct)
E[Y(t)] = ———————E[A] =0

2nf
c
sin2 (2xf t)

Var[Y(t)] >

Var[A]
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sin2(21rf‘ t)
c 2
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2
(21rfc)

Y(t) is Gaussian-distributed, and so we may express its probability density function as

/7wt 2n2fi ).
fycey ) = 5, SIn(&f D) expl - il o 2 Y ]
¢ A

(b) From Eq. (1) we note that the variance of Y(t) depends on time t, and so Y(t) is
nonstationary.

(¢) For a random process to be ergodic it has to be stationary. Since Y(t) is
nonstationary, it follows that it is not ergodic.

Problem 1.4

(a) The expected value of Z(t1) is

Efz(t )] = cos(2rt,) E[X] + sin(2rt,) E[Y]
Since E[X] = E[Y] = 0, we deduce that

E[Z(t1)] = 0
Similarly, we find that

E[Z(tz)] =0

Next, we note that

Cov[Z(t1)Z(t2)] E[Z(t.I)Z(tz)]

E{[X cos(21rt1) + Y sin(21rt1)][X cos(21rt2) + Y sin(2-nt2)]}

cos(2rrt1) cos(2nt2) E[X2]
+ [cos(21rt1)sin(21rt2)+sin(2nt1)cos(2nt2)]E[XY]

. sin(2ht1)sin(2nt2)E[Y2]



Noting that

ElX®) = o2 + ExD)Z = 1
EY2) = o2 4 (E1Y1 = 1
E[XY] = O

we obtain

Cov[Z(t152(t2)] = cos(2nt1)cos(2nt2)+sin(2nt1)sin(2nt2)

= cosf2n(t, ~t,)] 1)
12 of +he Pprowss

Since every weighted sum of the samples, Z(t) is Gaussian, it follows that Z(t) is a
Gaussian process. Furthermore, we note that

2

2
OZ(t1) = E[Z (t.l)] =1

This result is obtained by putting t,=t, in Eq. (1). Similarly,

2 _ 2 _
oZ(tz) = E(Z (t2)] = 1
Therefore, the correlation coefficient of Z(t1) and Z(tz) is

Cov[Z(t1)Z(t2)]

P o
Z(t)7z(t,)

cos[2n(t1-t2)]
Hence, the joint probability density function of Z(t4) and Z(tz)

fz(t1),Z(t2)(z1’ 22) =C exp[-Q(z1,22)]

where

1

21¥1~cos2[ 2n (t,=t,)]

_ 1
- 2 sin[2n (t1-t2)]

1
. 2
2 sin [2n(t1-t2)]

0(21,22) z {z? -2 cos[2n(t1-t2)]z1z2 + zg}



(b) We note that the covariance of Z(t4) and Z(t2) depends only on the time difference
t1-t2. The process Z(t) is therefore wide-sense stationary. Since it is Gaussian it is
also strictly stationary.

Problem 1.5
@) Let
X(t) = A + Y(b)

where A is a constant and Y(t) is a zero-mean random process. The autocorrelation
function of X(t) is '

RX(T) E[X(t+1) X(t)]

E{[A + Y(t+T)] [A + Y(t)]}

E[AZ + A Y(t+1) + A& Y(t) + Y(ter) Y()]

A2 + RY(T)

which shows that Rx('r) contains a constant component equal to A2.
() Let ’
X(t) = Ac cos(2ﬂfct + 68) + 2(t)

where Ac cos(21rf‘ct+e) represents the sinusoidal component of X(t) and 6 is a random phase
variable. The autocorrelation function of X(t) is
RX(T) E[X(t+1) X(t)]

E{[Ac cos(2nfct + 2nfcr +6) + Z(t+1)] [Ac cos(2nfct +08) +Z(£)]1}

E[A2 cos(2af t + 2nf T + 0) cos(2nf t + 6)]
c c c c
+ ElZ(t+1) Ac cos(ZWfCt + 6)]
+ E[A cos(2nf t + 2nf 1 + 6) Z(t)]
c c c

+ E[Z(t+1) Z(t)]

(A§/2) cos(2nf 1) + R, (1)

which shows that Rx(r) contains a sinusoidal component of the same frquency as X(t).

Problem 1.6

(a) We note that the distribution function of X(t) is
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and the corresponding probability density function is

1 1
fX(t)(X) = 5 S(x) + 5 §(x = A)

which are illustrated below:
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(b) By ensemble-averaging, we have

©

EIX(t)l =J x ¢ (x) dx

X(t)

o«

I % [y 80x) + 3 8(x - A)] dx

-0

A
-7
The autocorrelation function of X(t) is

Ry(1) = E[X(t+1) X(t)]

Define the square function SqT (t) as the square-wave shown below:
0



Sq_ (t)
Ts
1.0 ‘
t
T
-7 _To 0 Y T
0 2 2 0

Then, we may write

"Ry (1)

E[A Sqp (t - t; + 1) « A Sap (¢ = t)]
0 0

A2 J SqT (t - ¢t

+ 1) SqT (t - td) fT (td) dtd

- T d 0 d
o To/2 1
- 4% Sap (t =ty + 1) Sap (£ = t)) » 3= dt,
T2 0 0 0
2 T
- A P | 0
_2 (1 2 To) ’ |Tl$_ 5

Since the wave is periodic with period TO’ RX(T) must also be periodic with period To.

(¢) On a time-averaging basis, we note by inspection of Fig. P/, b that the mean is

<X(t)> =

VTS

Next, the autocorrelation function

To/2
/ x(t+1) x(t) dt

0 -TO/Z

<x(t+T)X(t)> =

)=

has its maximum value of A2/2 at 1 = 0, and decreases linearly to zero at T = T0/2.
Therefore,

2 T
xltet) x(8)> = A (1 -2 8l gy 2.
2 T, £3



Again, the autdcorrelation must be periodic with period To.
(d) We note that the ensemble-averaging and time-averaging procedures yield the same set
of results for the mean and autocorrelation functions. Therefore, X(t) is ergodic in both
the mean and the autocorrelation function. Since ergodicity implies wide-sense
stationarity, it follows that X(t) must be wide-sense stationary.

Problem 1.7

(a) For It} > T, the random variables X(t) and X(t+t) occur in different pulse intervals
and are therefore independent. Thus,

E[X(t) X(t+1)] = EIX(t)] E[X(t+1)], Tl > T,

Since both amplitudes are equally likely, we have E[X(t)] = E[x(t+t)] = A/2. Therefore,
for |z > T,

' 2
J'RX(T) =

.r.-l:n-

For |t| < T, the random variables occur in the same pulse interval if t
they do occur in the same pulse interval,

E[X(t) X(t+1)] = %-Az + % 0° = %— .

We thus have a conditional expectation:
2272, £, <T = |t

d
2 .
A" /4, otherwise.

E(X(t) X(t+1)]

Averaging over td’ we get

T-IrlAz T 22
R,(t) = s — dt, + [ — dt
X o AT p i W
A2 2

(5) The power spectral density is the Fourier transform of the autocorrelation function.
The Fourier transform of

gr) =1 -4y ot

0 , otherwise,

is  given by
G(f) =T sincz(fT). 8



Therefore,

2
5.(£) = 1 6(f) + 7 sincZ(£T) .

We next note that

2 = 2
A ' A

r{m §(f) df = T

2 = . 2
%—f Tsinc2(f'1‘) df = ‘%— ,

© ~ A2
J Sx(f) df = RX(O) =5 .

00

It follows therefore that half the power is in the dc component.

Problem 1.8

Since
Y(t) = gp(t) + X(t) +v/3/2
and gp(t) and X(t) are uncorrelated, thew

CY(T) =Cgp (1) +Cx('r)

where C:gp(r) is the autocovariance of the periodic component and fx(t) is the
autocovariance of the random component. C.Y('r) is the plot in figure P/.8 shifted down by
3/2, removing the dec component. C.gp(‘t) and CX(T) are plotted below:



C (1)

%
4

- - -

Both gp(t) and X(t) have zero mean,

aveyoge
(a) The, power of the periodic component gp(t) is therefore,
T,./2
1 0
=/ 0 war=C =1
0 -T,/2 P
0
) avero.qe
(b) The power of the random component X(t) is
E[Xz(t)] :C.X(O) = 1
Problem 1.9
(a) RXY(T) = E[X(t+1) Y(L)]
Replacing t with -t 10

Ryy(=1) = E[X(t=1) Y(t)]



Next, replacing t-t with t, we get
Ryy (=1) = E[Y(t+1) X(1)]
= Ryy (1)
(b) Form the non-negative quantity
ECIX(t+r) + Y(£)12] = EDX3(tat) + 2X(tar) Y(E) + YO(8)]

EMX2(tsr)] + ZE[X(tar) Y(£)T + ELY2(t)]

Ry(0) + 2Ryy (1) + Ry(0)
Hence,
Ry(0) + 2Ryy(t) + Ry(0) > O

or

Ryy (1 < 3 [Rg(0) + Ry(0)]

Problem 1.10

(a) The cascade connection of the two filters is equivalent to a filter with impul se
response

h(t) = s h1(u) h2(t-u) du

The autocorrelation function of Y(t) is given by

- -] (-
RY(T) = {m {m h('r1) h(12) RX(T -1 +12) d11 d12
(b) The cross-correlation function of V(t) and Y(t) is
RVY(T) = E[V(t+1) Y(t)]

The Y(t) and V(t+1) are related by

o

Y(t) =7 VOO hz(t-A) dx

-0

Therefore,
- -]

Ryy(T) = EIV(t+1) / V(A) hy(t=2) dr]

=00

11



=/ hy(t=d) E[V(t+1) V)T d

=/f hz(t-l) Rv(t+'r->\) da

-l

Substituting A for t-A:

Ryy () =/ hy(0) Ryead) aa

The autocorrelation function Rv('r) is related to the given Rx(r) by

- Ry() = {n {m hy(ty) hylty) Rylr-t 41,) drgdr,

Problem 1.11

(a) The cross-correlation funetion RYX(T) is
RYX(T) = E{Y(t+1) X(t)]

The Y(t) and X(t) are related by

Y(t) =/ X(u) h(t-u) du

-0

Therefore,

©o

E[ / X(wX(t) h(t+r=u) dul

-0

Ryy (1)

S h(t+r=u) EIX(WX(t)] du

-0

©o

J  h(t+g=u) Rx(u-t) du

-—C0

Replacing t+t=-u by u:

Ryx(1) =/ B(w) Ry(r-u) au

(b) Since RXY(T) = RYX(—T), we have

12



RXY(T) = {m h(u) Rx(-T-u) du

Since RX(T) is an even function of t:

RXY(T) = {m h(u) Rx(t+u) du

Replacing u by -u:

RXY(-r) =/ h(-u) Rx(-r-u) du

-0

(¢) If X(t) is a white noise process with zero mean and power spectral density N0/2, we
may write

=

0

Rx(t) = E—ré(r)

Therefore,

No L]
RYX(T) = 'é_-{m h(u) G(T’u) du

Using the sifting property of the delta function:

=

.70
RYX(T) =5 h(t)

That is,

(1)

h(z) = 5_ Ryx
0

This means that we may measure the impulse response of the filter by applying a white
Prowed

noise o% spectral density No/2 to the filter input, cross-correlating the filter output
with the input, and then multiplying the result by 2/N0.

Problem 1.12
(a) The power spectral density consists of two components:
(1) A delta function 6(t) at the origin, whose inverse Fourier transform is one.
(2) A triangular component of unit amplitude and width 2f0, centered at the origin;

the inverse Fourier transform of this component is fo sincz(for).

Therefore, the autocorrelation function of X(t) is

13



RX(T) =1 + £ sincz(fdr)

which is sketched below:

RX(T)

(b) Since Rx(r) contains a constant component of amplitude 1, it follows that the dec
power contained in X(t) is 1.

(e) The mean-square value of X(t) is given by

EIX2(t)]

RX(O)

=1 + fo

The ac power contained in X(f) is therefore equal to fo.

(d) If the sampling rate is fo/n, where n is an integer, the samples are uncorrelated.

They are not, however, statistically independent. They would be statistically independent
if X(t) were a Gaussian process.

Problem 1.13

The autocorrelation function of nz(t) is

RNZ(t1,t2) = E[nz(t1) nz(tz)]

E{[n1(t1) cos(21rf‘ct1 +0) - n1(t1) sin(2nfct1+®)]

- Iny(t,) cos(2f by + ©) = n (t,) sin(2f by + 01}

E[n1(t1) n1(t2) cos(21rf‘ct1 +0) cos(2nfct2 +0)

- n1(t1) n1(t2) cos(E*nfct1 + Q) sin(2nfct 0)

2+
- n1(t1) n1(t2) sin(21rf‘ct1 +0) cos(21rf‘ct2 +0)

14



+ n1(t1) n1(t2) sin(21rf‘ct1 +0) sin(2nfct2 + 0)]

E{n1(t1) n1(t2) cos[2nfc(t1-t2)]

- n1(t1) n1(t2) sin[2wfc(t1+t2) + 201}

E[n1(t1) n1(t2)] cos[anc(t1-t2)l

- E[n1(t1) n1(t2)] . E{sip[2nfc(t1+t2) + 201}
Since © is a uniformly distributed random variable, the second term is zero, giving

RN2(t1,t2) = RN1(t1,t2) cos(2nf  (t,-t,)]

-t .2

Since n1(t) is stationary, we find that in terms of T = t, 2

.BN (t) = Ry (1) cos(2nfcr)
. 2 1
Taking the Fourier transforms of both sides of this relation:

1
SNz(f) 5 [SN1 (f+fc) + SN1 (f—fc)]

With Sy (f) as defined in Fig. PL,3 we find that Sy (f) is as shown below:
1 2

2w 2w

14



Problem 1.14

The power spectral density of the random telegraph wave is

Sg(f) =/ Ry(t) exp(-jaenfr) dr

-0

0
=/ exp(2vt) exp(=j2nft) dr

-0

+ [ exp(-2vt) exp(-jonfr) &

0
1 0
iyt [exp(2vt - j2nfr)l°

- -]

1 .
- eeED) [exp(=2vt = jonft)]

0

1 1
T Z20v-mE) T Evein )

\Y

2 2.2
v +5

The transfer function of the filter is

1

D = 53T

Therefore, the power spectral density of the filter output is

SY(f‘)

2
[H(£) 12 5,0

Vv
[1 + (2rfRC)Z ] (w24 2£2)

To determine the autocorrelation function of the filter output, we first expand SY(f‘).
in partial fractions as follows

v 1 1

WAE 22t 2 2.2

1
1 -4RCV (1/2RC)2+1rf Vo +T f

SY(f) z

Recognizing that

15



exp(=2vit{) > v

V"\)Z +1r2f‘2
exp(-1tl /RC) = 1/22(’ 5
(1/72RCY "4 °F
we obtain the desired result:
Ry(t) = —%—— (1 exp(-2v It 1) - 2RC exp(= 1511
Y 2.2 2 v RC
1=4RCSH

16



Problem 1.15

We are given

(1) = f x(T)de
-T

For x(7) = 8(¢), the impulse response of this running integrator is, by definition,
!

h(t) = j 8(t)dt
T

=1 for t—-T<0<t or, equivalently, 0<¢<T

Correspondingly, the frequency response of the running integrator is

H(f) = Jmooh(t)exp(—ﬂnft)dt

IZ exp(—j2mft)dt

L
J2mft

[1-exp(-j2nfT)]

T'sinc (fT)exp(-jnfT)

Hence the power spectral density Sy(f) is defined in terms of the power spectral density Sy(f) as
follows

Sy(f) = [H(OIS4(f)

= T%sinc’(fT)Sx(f)

Problem 1.16

We are given a filter with the impulse response

R(l‘) _ { aexp(-—at), 0<t<T

0, otherwise

17



The frequency response of the filter is therefore

H(f) = [ h(exp(-j2mfr)dr
T
= joaexp(—ar)exp(—jznfz)dz
T .
= ajo exp(—(a + j21f)t)dt
a

_ : T
= e a + j2nf)ilg

— a 1
= - +j27tf[1 —exp(—(a+ j2nf)T]

a

= — j2nf[1 — ¢ “(cos(2nfT) - jsin(2fT))

The squared magnitude response is

2
HP = [ﬁf;jz(l - oos(2mfT))” + (e_“Tsin(MfT))z}
a +4amn
2 2 2
= ————[1-2¢"" cos2nfT) + ¢ >* (cos (2nfT) + sin*(2n/T))]
a +4n”f
2
= —2‘;—2]02[1 - Ze_aTcos(Znﬂ") +e72
a +471n

Correspondingly, we may write

2
a

Sy(f) = 551 -2 cos2nfT) + € *T1S,(f)
a +4n f

18



Problem 1.17
_ The autocorrelation function of X(t) is
Rx('r) = E[X(t+t) X(t)]

82 E[cos(2rFt + 27Fr —0) cos(2gFt — 6)]

2
S~ Elcos(MaFt + 2qFx — ) + cos(2rF1)]

Averaging over ©, and noting that 0 is uniformly distributed over 2n radians, we get

2

Rx(T) g—'E[COS(Zﬂ’FT)]

2 ©
J f‘F(f‘) cos(2nfT) df (1)

=00

Next, we note that RX(T) is related to the power spectral density by

©

Ry@) = S.(f) cos(arr) df @

-0

Pousey
Therefore, comparing Eqs. (1) and (2), we deduce that theA spectral density of X(t) is

32

Sx(f) = E_fF(f)
When the frequency assumes a constant value, fc (say), we have

1 1
f‘F(f‘) = Es(f‘-fc) + §G(f+fc)

1o

19



and, correspondingly,

G G
Sy(f) = 3~ G(f-fc) + 5(f+fc)

Problem 1.18

Let °x2 denote the variance of the random variable X, obtained by observing the random process
X(t) at time ty. The variance ox2 is related to the mean-square value of X, as follows

ox = EIXl - ny
wherefiy = E[X;]. Since the process X(t) has zero mean, it follows that

2 2
Next we note that

EX;] = [7 Sx®df

We may therefore define the variance °x2 as the total area under the power spectral density Sy(f)
as

o2 = f_ ~ Sy(hdf 6))

Thus with the mean py = 0 and the variance 6X2 defined by Eq. (1), we may express the probability
density function of X; as follows

x 2

fx, (x) = ——_ exp| - ——
TOox 20.)2(

20



Problem 1.19

The input-output relation of a full-wave rectifier is defined by

X(t),  X(g) >0
Y(t,) = IX(t )] = .

The probability density function of the random variable X(tk), obtained by observing the
input random process at time tk, is defined by

2
1 X
— exp(- ——2)

f (x) = —
X(tk) /27 o 25

To find the probability density function of the random variable Y(tk), obtained by

observing the output random process, we need an expression for the inverse relation
defining X(tk) in terms of Y(tk). We note that a given value of Y(tk) corresponds to 2

values of X(tk), of equal magnitude and opposite sign. We may therefore write

X(tk) = -’Y(tk). X(tk) <0

X(tk) Y(tk), X(tk) >0.

In both cases, we have

! dX(tk)’
— | =1.
d¥(t,)

The probability density function of Y(tk) is therefore given by

. o -t , ) 1 dX(t, ) r dX(t,)
y) = X = =y) of —=——<1+f (x = y) ol =577
Y(t,) X(t,) avE) | " R d¥(E)

/51 y2 ‘
/75 &P )

20
We may therefore write
2
el y_
/ioexp(- 202)’ y20
f (y) =
Y(tk)
o, y<o0.

21



which is illustrated below:

§ (8
Yie)

0. 796y

Problem 1.20

(a) The probability density function of the random variable Y(tk), obtained by observing
the rectifier output Y(t) at time tk’ is

2
exp(=- ) >0
= o -%x y 2
f (y) =
Y(tk)
0, | y <o
2 o2 2
where oy = E[X (tk)] - {E[X(tk)]}
2
= E[X (tk)]
= RX(O)

The mean value of Y(tk) is therefore

CEI@O) = Ty fyg ) oy

2 ,
= —— s /5 exn(- L) ay . (1)
ven oy 0 20X

Put

a <

sl
"
[
n
[\
[\*]



Then, we may rewrite Eq. (1) as

2 2 u®
E[Y(tk)] T % IO u” exp(- 5—) du

2
%

Ry (0)

(b) The autocorrelation function of Y(t) is

E[Y(t+1) Y(t))

RY(T)
Since Y(t) = X2(t), we have

Ry(1) = ELX*(ten) X2(8)]

©

S5 ox

-0 ==00

2 2
1 x2 f

X(t, + T),X(tk)(x1’x2) dx, dx,

(2)

The X(tk+m) and X(tk) are jointly Gaussian with a joint probability density function

defined by

1

2
Xy = 2 px(T) X, %5

+

X

2
2

f (x., x5) = expl-
X(t, +1),X(t, ) %10 %2
k k 2 0% /1-p200)

2
where Oy = RX(O)'

CoV[X(tk+t)X(tk)]
DX(T) = 2 ’
%

Rewrite Eq. (2) in the form:
2
1 2 *2
Ry(t) = ] x5 exp(- -—50 g(x,) dx,

& oi/1play ™ oy

where

[x1 - px(r) x2]2

} dx

- -]
_ 2
g(x2 = f Xy expi{- 1
-l

2 2
D[l =py()]
X X 23

25 (1-p5())

1

(3)



Let

x1 - px(T) x2
oy V1-p§('r)

Then, we may express g(xz) in the form

u =

© 2
8(xp) =0y /13 S exp(- 39 G) x5 + o501 — 5@ + 20, p

v 1-9)2((1) ux2} du

X

However, we note that

2
I exp(- 121—) du = V21

-0

u2
J u exp(- ) du =0

2
5wl exp(- g—) du = V2rn

Hence,

8(xy) = oy /2nl1-p(D)] {pe(D) x5 + 05 [1 = p2(D]}

Thus, from Eq. (3):

2
o X
: 2 2 2 2 2
."RY(T) = _—_1_—— S xg exp(~ ‘—3) {px('r) X5 + oy [1-px('r)]} dx,
Yex oy = ZGX
Using the results:
Y x2
52 ente 2y ax, = 7
J %, exp(- ——2) dx, = 3/2q% 0)5(
-00 2°x
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we obtain,

RY(t) = 30; pi(r) + c; 1 - 9)2((1)]
- c; 1 + 2p§(T)]

. 2
Since oy = Rx(O)

RX(T)
(1) = R.(0)
PX X
we obtain
2

(D
Ry(T) = Ri(O) [1+2 ! y
RX(O)

- Rg(O) + 2R§(T)

The autocovariance function of Y(t) is therefore

C?Y(T)

2
Ry(T) = {E[¥(t, )]}

2 2 2
RX(O) + 2Rx(t) - RX(O)

2R2(0)

"

Problem 1.21

" (o) The random variable Y(t1) obtained by observing the filter output of impulse response
h1(t), at time t1, is given by

©

Y(t) = J X(t,-1) h, (1) d1

The expected value of Y(t1) is

mY

1

E[Y(t1)]

H(0) my
where

H1(0) = J h1(T) drt
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The random variable Z(t2) obtained by observing the filter output of impulse response

hz(t), at time t2, is given by
0

2(ty) = J X(t,mu) hy(u) du

The expected value of Z(t2) is

m, = Elz(t)]

Hy(0) my
where

Hy(0) = J hy(u) du

The covariance of Y(t1) and Z(t.2) is
Cov[Y(t1)Z(t2)] = E[(Y(t1) -AY1)(Z(t2) -/{22)]

ELS J (X(ty=1) = Hy) X(t,=u) - 4) h, (1) h,(u) d7 du]

5 J E[(X(tf-"r) —My) (X(t,=u) - A)] h (1) hy(u) d1 du

;s Cx(t1-t2-f+u) hy (1) hy(u) dT du

where CX(T) is the autocovariance function of X(t). Next, we note that the variance of
Y(t1) is
2

%

ELCY (b)) -4ty )°)
1 1

© o

I 7 C'x('r-u) hi(T) hl(U) dt du

=00 w00

and the variance of Z(t2) is

2 2
- EL(Z(t,) - u, )71
22 2 22

I 7 Cylrw) hy(1) hy(u) dr du

-0
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The correlation coefficient of Y(t1) and Z(tz) is
cov[Y(t1)Z(t2)]

[o!
Y, c’22

p =

S%nce X(t) is a Gaussian process, it follows that Y(t1) and Z(t2) are jointly Gaussian
with a probability density function given by

fr(e ), 200, 10%2) = K expl-a(yy,2,)])

where
1
K =
210, © ¢1—p2
Y, 2z
1 72
1 Y41 2 V1A 2o 27472 2
Qly . yz,) = ( )T - 2p( ) ( ) o+ (—)
1’72 2 G, . a. g
2(1-p7) Y1 Y1 22 Z2

(b) The random variables Y(t1) and Z(t2) are wncorrelated if and only if their covariance
is zero. Since Y(t) and Z(t) are jointly Gaussian processes, it follows that Y(t1) and
Z(t2) are statistically independent if Cov[Y(t1)Z(t2)] is zero. “Therefore, the necessary
and sufficient condition for Y(t1) and Z(t2) to be statistically independent is that

® o

ST Gyt =tymTau) hy (1) hy(u) dtdu =0

=00 =00

for choices of t1 and t2. .
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Problem 1.22

(a) The filter output is

o

Y(t) =/ h(1) X(t-1) dt
1 T
=7 fo X(T-1) d1

Put T-t=u. Then, the sample value of Y(t) at t=T equals

T
J X(u) du
0

Y =

[

The mean of Y is therefore

T

El / X(w) dul
0

E[Y]

T

%'f E[X(u)]1 du
0

The variance of Y is

o = E[Y?) - (E1¥1)?
= Ry (0)
S 5 sy(0) af

-0

o«

J Sx(f) lH(f)}2 df
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- But

J h(t) exp(-j2xt) dt

H(f)

T
/ exp(-j27ft) dt
0

'
==

o T
=1 [exg(.- 22'ﬂft)]
=jenf

-t

0

- EE%FT [1 - exp(-j2nT)]

= sine(fT) exp(-jnfT)

Therefore,

o? = S syl sinc?(£T) df

(b) Since the filter input is Gaussian, it follows that Y is also Gaussian. Hence, the
probability density function of Y is

2
fy(y) = _1_ exp(- L)

V21 oy 2°Y

where cg is defined above.

Problem 1.23

(q,) The power spectral density of the noise at the filter output is given by

N
__0 j2afL
Sy(f) = 5 | W R L ]

29



N

2

1+(27fL/R)

A

Mn-——
1+(24fL/R)

2 )
2

The autocorrelation function of the filter output is therefore

=

0

Ry() = 52 [8(1) = o= exp(= & 1<D)]

(b)

The mean of the filter output is equal to H(0) times the mean of the filter input. The process
at the filter input has zero mean. The value H(0) of the filter’s transfer function H(f) is zero.
It follows therefore that the filter output also has a zero mean.

The mean-square value of the filter output is equal to Ry(0). With zero mean, it follows
therefore that the variance of the filter output is

0% = Rn(0)

Since Ry(7) contains a delta function (1) centered on T = 0, we find that, in theory, °N2 is
infinitely large.
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Problem 1.24

(a) The noise equivalent bandwidth is

—L2— 5 mn?ar
H©0)12 e

1 df
';_Tf
- 1 + (f/fo)

2n

-]

df
01+ (f/fo)2n

= J

Gl

2n sin(q¢/2n)

fy

sinec(1/2n)
(b) When the filter order n approaches infinity, we have

1

Wy = £ lm o7

n+w

Problem 1.25

The process X(t) defined by

X® = Y hit-1,
k=-o

where h(t - 7, ) is a current pulse at time Ty, 18 stationary for the following simple reason. There is
no distinguishing origin of time.
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Problem 1.26

(a) Let S1(f) denote the power spectral density of the noise at the first filter output.

The dependence of 31(f) on frequency is illustrated below:

s, () ‘
L
_: ,.% T T f
—fc 0 fc
2B 2B

Let Sz(f‘) denote the power spectral density of the noise at the mixer output. Then, we

may write

1
Sz(f) =g [51(f‘+fc) + 51(f-fc)]

which is illustrated below:

S, (f)

_2f 0 2f /
C
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The power spectral density of the noise n(t) at the second filter output is therefore defined by

EI_Q, -B<«f<B
Sy = |4

0, otherwise

The autocorrelation function of the noise n(t) is

NoB .
Ro(t) = — sinc(2B71)

(b) The mean value of the noise at the system output is zero. Hence, the variance and mean-square
value of this noise are the same. Now, the total area under S (f) is equal to (N/4X2B) = N B/2. The
variance of the noise at the system output is therefore NyB/2.

(c) The maximum rate at which n(t) can be sampled for the resulting samples to be uncorrelated is
2B samples per second.
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Problem 1.27

(a) The autocorrelation function of the filter output is

@ oo

Ry(t) =/ [ h('r1) h(‘tz) Rw('r-r1+12) dt, d1,

-l 00

..Sinc_:e' Rw(r) = (N0/2) 8§(t), we find that the impulse response h(t) of the filter must
satisfy the condition:
No ©
RX(T) = Z—{m {m h(t,) h(1,) 8(1-14+1,) dry dr,
N

= _f_“ h(t+t,) h(t,) dr,

(b) For the filter output to have a power spectral density equal to S (f‘), we have to
choose the transfer function H(f) of the filter such that

N
=2 2
Sy(f) = z= H(D ]

or

= ()
N

[H(E)} =
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Problem 1.28

(a) Consider the part of the analyzer in Fig. 1.19 defining the in-phase component nyr),
reproduced here as Fig. 1:

Narrowband v(t) Low-
noise Of\;itgf S ()
n(1)

2cos(2mf,1)

Figure 1

For the multiplier output, we have

v(t) = 2n(t)cos(2nf 1)

Applying Eq. (1.55) in the textbook, we therefore get
Sy(f) = [Sy(f = f)+Sy(f + fo]

Passing v(f) through an ideal low-pass filter of bandwidth B, defined as one-half the bandwidth of
the narrowband noise n(z), we obtain

Sy (f) = { iv(f) for -B< f<B

otherwise

- { Sn(f=Sf)+Sy(f+f) for -B<f<B "

0 otherwise

For the quadrature component, we have the system shown in Fig. 2:

Narrowband u(®) [Tow-pass ,
noise Of\‘ﬁtgr nQ(t)
n(t) %

-2sin(2nf 1)

Fig. 2
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The multiplier output u(z) is given by
u(r) = —2n(1)sin(2nf 1)

Hence,

Su(f) = Sy(f=F)+Sy(f + f)]

and

S, () = { Sy(f) for -B<f<B

0 otherwise

={ Sy(f=Ff)+Sy(f+f,) for -B<f<B @
0 otherwise
Accordingly, from Egs. (1) and (2) we have
Sy, (f) = Snylf)
(b) Applying Eq. (1.78) of the textbook to Figs. 1 and 2, we obtain

2
Snn () = [H(OISyy(f) €)
where

for —-B< f<
0 otherwise

Applying Eq. (1.23) of the textbook to the problem at hand:

. 1 j2nf t -j2nf .t
Ryy(t) = 2Ry (T)sin(2nf, 1) = }RN(r)(e —e ’
Applying the Fourier transform to both sides of this relation:

1

Syy(t) = j(SN(f_fc)_SN(f*'fc)) 4)
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Substituting Eq. (4) into (3):

S
NNy

(f) = { JISN(F+f)-Sy(f-f)] for -B<f<B
0

otherwise

which is the desired result.

Problem 1.29

If the power spectral density Sy(f) of narrowband noise n(f) is symmetric about the midband
frequency f,. we then have

Sy(f—=f.)=Sy(f+f.) for -B<f<B

From part (b) of Problem 1.28, the cross-spectral densities between the in-phase noise component
n,(t) and quadrature noise component nQ(t) are zero for all frequencies:

SNINQ(f) =0 for all f

This, in turn, means that the cross-correlation functions R N, NQ(T) and R NQNI(T) are both zero,
that is,

E[Nl(tk+'c)NQ(tk)] =0

which states that the random variables N/(# + 7) and N((#), obtained by observing n(t) at time
1 + 7 and observing ny(r) at time #, are orthogonal for all t.

If the narrow-band noise n(z) is Gaussian, with zero mean (by virtue of the narrowband nature of
n(r)), then it follows that both N(z; + 1) and Ny(#;) are also Gaussian with zero mean. We thus

conclude the following:

* Nyt + 1) and Ny(t) are both uncorrelated
*  Being Gaussian and uncorrelated, N(7; + T) and Ny(#;) are therefore statistically independent.

That is, the in-phase noise component n,(f) and quadrature noise component no(r) are statistically
independent.
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Problem 1.30

(a) The power spectral density of the in-phase component or quadrature component is
defined by

Sy(f+f)) + Sy(f-f), -B<f<B

Sy (f) =8, (f)
N N
I Q

0 otherwise

We note that, for -2 < f < 2, the SN(f‘+5) and SN(f-S) are as shown below:

SN(f+5)

r

X \
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SN(f-S)
1.0
} £
-2 0 1 !
We thus find that SN (f) or SN (f) is as shown below:
1 ]
SN (f)=SN (£)
I &
f

(b) The cross-spectral density Sy N (f) is defined by
T a

JISY(F+£) = Sy(F-£ )1, -B<f<B

(f) =

S
N
N'1' ®

o, otherwise

We therefore find that SN N (£fY/j is as shown below:

I a
is (f)
3 °N N
TR 0.5
|
|
_2 .1 !
N | £
1 0 1 2
H
l
——— -4 0.5
38




Next, we note that

N

Sy y (£ = SE . (D)
Ie I8

We thus find that SN N (f) is as shown below:
I e '

|
N
|
o]
o
— —o— —p

Problem 1.3!

(a) Express the noise n(t) in terms of its in-phase and quadrature components as follows:
n(t) = n (t) cos(2nf t) —= n (£) sin(2rf t)
I c Q c

The envelope of n(t) is

F(8) = /n2(t) + nl(t)
. a

which is Rayleigh~distributed. That is

2
E-Z-exp(—r—é) ’ r>0
g 20
fR(r) =
o, otherwise

To evaluate the variance 02, we note that the power spectral density of n (t) or n (t) is
as follows I B
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S (f)=SN (£)

Since the mean qf n(t) is zero, we find that

Tq =2 NOB
Therefore,
r r2
2B S*P- g o r20
0 0
fR(r) = .
o, otherwise

(b) The mean value of the envelope is equal to VWNOB, and its variance is equal to
00'858 N Bo
0
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Problem 1.32

Autocorrelation of a Sinusoidal Wave Plus White Gaussian Noise
In this computer experiment, we study the statistical characterization of a random process X(7)
consisting of a sinusoidal wave component Acos(27f,t + ©) and a white Gaussian noise process

W(r) of zero mean and power spectral density Ny/2. That is, we have
X(t) = Acos2nf 1+ 0O+ W(2) (D)

where © is a uniformly distributed random variable over the interval(-mt,7). Clearly, the two
components of the process X(#) are independerit. The autocorrelation function of X(7) is therefore
the sum of the individual autocorrelation functions of the signal (sinusoidal wave) component and
the noise component, as shown by

2

A Ny
Ry(1) = 7cos(znfcr)+75(r) (2)

This equation shows that for |t > 0, the autocorrelation function Ry(t) has the same sinusoidal

waveform as the signal component. We may generalize this result by stating that the presence of a
periodic signal component corrupted by additive white noise can be detected by computing the
autocorrelation function of the composite process X(z).

The purpose of the experiment described here is to perform this computation using two different
methods: (a) ensemble averaging, and (b) time averaging. The signal of interest consists of a
sinusoidal signal of frequency f, = 0.002 and phase 0 = - 7/2, truncated to a finite duration T =

1000; the amplitude A of the sinusoidal signal is set to V2 to give unit average power. A particular
realization x(¢) of the random process X(z) consists of this sinusoidal signal and additive white
Gaussian noise; the power spectral density of the noise for this realization is (Ny/2) = 1000. The

original sinusoidal is barely recognizable in x(z).

(a) For ensemble-average computation of the autocorrelation function, we may proceed as
follows:

* Compute the product x(¢ + 7)x(#) for some fixed time 7 and specified time shift T, where x(7)
is a particular realization of the random process X(¢).

* Repeat the computation of the product x(r + T)x(¢) for M independent realizations (i.e.,
sample functions) of the random process X(z).

* Compute the average of these computations over M.

* Repeat this sequence of computations for different values of 1.

The results of this computation are plotted in Fig. 1 for M = 50 realizations. The picture

portrayed here is in perfect agreement with theory defined by Eq. (2). The important point to
note here is that the ensemble-averaging process yields a clean estimate of the true
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autocorrelation function Ry(t) of the random process X(f). Moreover, the presence of the
sinusoidal signal is clearly visible in the plot of Ry(t) versus t.

(b) For the time-average estimation of the autocorrelation function of the process X(¢), we invoke
ergodicity and use the formula

Ry(t) = lim R (7, T) (3)
T —> oo
where R,(1,T) is the time-averaged autocorrelation function:
R Lt 4
(T, T) = Z—Tj_Tx(zH)x(z)dt (4)

The x(¢) in Eq. (4) is a particular realization of the process X(z), and 27 is the total observation
interval. Define the time-windowed function

(t) = {x(t), -T<t<T

0, otherwise )
We may then rewrite Eq. (4) as
1 00
R(T.T) = 5= I_mxT(I + 1) x (1)dt (6)

For a specified time shift T, we may compute R, (t,7) directly using Eq. (6). However, from a

computational viewpoint, it is more efficient to use an indirect method based on Fourier
transformation. First, we note From Eq. (6) that the time-averaged autocorrelation function
R (7,T) may be viewed as a scaled form of convolution in the T-domain as follows:

R(1,T) = Elfjle(r)* xp(=T) ©)

where the star denotes convolution and x7(t) is simply the time-windowed function x;(f) with
t replaced by T. Let X1{(f) denote the Fourier transform x4{(T); note that X;(f) is the same as the

Fourier transform X(£,T). Since convolution in the T-domain is transformed into multiplication
in the frequency domain, we have the Fourier-transform pair:

R(t,T) = 2_1f j:|XT( I (8)
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The parameter |X7(f)|2/2T is recognized as the periodogram of the process X(¢). Equation (8) is

a mathematical description of the correlation theorem, which may be formally stated as
follows: The time-averaged autocorrelation function of a sample function pertaining to a
random process and its periodogram, based on that sample function, constitute a Fourier-
transform pair.

We are now ready to describe the indirect method for computing the time-averaged
autocorrelation function R,(t,7):

* Compute the Fourier transform X(f) of time-windowed function x{(1).
»  Compute the periodogram |X;(f)[>/2T.

« Compute the inverse Fourier transform of [X{f)[>/2T.

To perform these calculations on a digital computer, the customary procedure is to use the fast
Fourier transform (FFT) algorithm. With xy(t) uniformly sampled, the computational

procedure  described herein yields the desired values of R(t,7) for
T=0A2A, -, (N-1)A where A is the sampling period and N is the total number of

samples used in the computation. Figure 2 presents the results obtained in the time-averaging
approach of “estimating” the autocorrelation function Ry(7) using the indirect method for the

same set of parameters as those used for the ensemble-averaged results of Fig. 1. The symbol
Ry(t) is used to emphasize the fact that the computation described here results in an
“estimate” of the autocorrelation function Ry(t). The results presented in Fig. 2 are for a
signal-to-noise ratio of + 10dB, which is defined by

2 2
SNR = _A/2 _AT
N,/(2T) ~ N,

€)

On the basis of the results presented in Figures 1 and 2 we may make the following
observations:

* The ensemble-averaging and time-averaging approaches yield similar results for the
autocorrelation function Rx(t), signifying the fact that the random process X(¢) described
herein is indeed ergodic.

* The indirect time-averaging approach, based on the FFT algorithm, provides an efficient
method for the estimation of Ry(t) using a digital computer.

* As the SNR is increased, the numerical accuracy of the estimation is improved, which is
intuitively satisfying.
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1 Problem 1.32

Matlab codes

% Problem 1.32a CS: Haykin
% Ensemble average autocorrelation
% M. Sellathurai

clear all

A=sqrt(2);

N=1000; M=1; SNRdb=0;
e_corrf_f=zeros(1,1000);
f_c=2/N;

t=0:1:N-1;

for trial=1:M

% signal
s=cos(2*pi*f_c*t);

“noise
snr = 10~ (SNRdb/10);
wn = (randn(1,length(s)))/sqrt(snr)/sqrt(2);

%signal plus noise
s=s+un;

% autocorrelation
[e_corrfl=en_corr(s,s, N);

%Ensemble-averaged autocorrelation
e_corrf_f=e_corrf_f+e_corrf;
end

prints
plot(-500:500-1,e_corrf_£/M);
xlabel(’ (\tau)’)

ylabel (’R_X(\tau)’)
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% Problem 1.32b CS: Haykin
% time-averaged estimation of autocorrelation
% M. Sellathurai

clear all
A=sqrt(2);
N=1000; SNRdb=0;
f_c=2/N;
t=0:1:N-1;

% signal
s=cos (2*pi*f_c*t);%noise

Y%noise
snr = 10~ (SNRdb/10);
wn = (randn(1,length(s)))/sqrt(snr)/sqrt(2);

%signal plus noise
S=s+wn;

% time -averaged autocorrelation
[e_corrfl=time_corr(s,N);

%prints
plot(-500:500-1,e_corrf);
xlabel(’ (\tau)’)
ylabel(’R_X(\tau)’)
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function [corrfl=en_corr(u, v, N)¥ funtion to compute the autocorreation/ cross—correlatic
% ensemble average

% used in problem 1.32, CS: Haykin
% M. Sellathurai, 10 june 1999.

max_cross_corr=0;
tt=length(u);

for m=0:tt

shifted_u=[u(m+1i:tt) u(i:m)];
corr(m+1)=(sum(v.*shifted_u))/(N/2);
if (abs(corr)>max_cross_corr)
max_cross_corr=abs(corr);

end

end

corri=flipud(corr);
corrf=[corr1(501:tt) corr(1:500)];
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function [corrfl=time_corr(s,N)

% funtion to compute the autocorreation/ cross—correlation
% time average

% used in problem 1.32, CS: Haykin

% M. Sellathurai, 10 june 1999.

X=fft(s);

Xi=fftshift((abs(X)."2)/(N/2));
corrf=(fftshift(abs(ifft(X1))));
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Answer to Problem 1.32

Rfd

—0.5

2 L L . L 2
—500 —400 —300 —200 —100 o 100 200 300 400 500
(2]

Figure 1: Ensemble averaging

L . " . L .
—-500 —400 —300 —200 —100 o 100 200 300 400 500

Figure 2: Time averaging
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Problem 1.33

Matlab codes

% Problem 1.33 CS: Haykin
% multipath channel
% M. Sellathurai

clear all
Nf=0;Xf=0; Y% initializing counters

N=10000; % number of samples
M=2; P=10;

a=1; % line of sight component component
for i=1:P
A=sqrt(randn(N,M)."2 + randn(N,M)."2);

xi=A.*cos(cos(rand(N,M)*2+pi) + rand(N,M)*2%pi); % inphase cpmponent
xq=A.*sin(cos(rand(N,M)*2xpi) + rand(N,M)*2+pi); % quadrature phase component

xi=(sum(xi?’));
xq=(sum(xq’));

ra=sqrt((xi+a)."2+ xq."2) ; % rayleigh, rician fading
[h X]=hist(ra,50);

Nf=Nf+h;
Xf=Xf+X;

end

Nf=Nf/(P);
Xf=X£/(P);

% print

plot (Xf,Nf/(sum(Xf.*N£f)/20))
xlabel(’v?)

ylabel(’f_v(v)’)
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Answer to Problem 1.33

0.8

Figure 1 Rician distribution
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CHAPTER 2

Continuous-wave Modulation

Problem 2.1”

(a) Let the input voltage vy consist of a sinusoidal wave of frequency -21— f (i.e., half

[
the desired carrier frequency) and the message signal m(t):

vy = Ac cos(nfct)ﬂn(t)

Then, the output current i, is
i 3

o 81 Vi + a3 Vi

= a, [Accos(-n fct)+m(t) ]+a3[Accos(n fct)+m(t) ]3

a1[Accos(1rf‘ct)+m(t)] + %a3A2 [cos(&rfct)+3cos(1rfct)l

3A cos(nf t)mz(t) + a3m3(t)

Assume that m(t) occupies the frequency interval -W £ f < W. Then, the amplitude spectrum
of the output current i is as shown below.

+ %a3A2 m(t)[1+cos(21rf‘ t)] + 3a

I(f)
(@)
3f f 3W -WO W f 3f
e ’ c ’ _ e ’ l ! e
2 c 2 2
2w 4w
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From this diagram we see that in order to extract a DSBSC wave, with carrier frequency fc
from io’ we need a band-pass filter with mid-band frequency fc and bandwidth 2W, which

satisfy the requirement:

f

£ =W D> =<4 M
c 2

that is, fc > 60

Therefore, to use the given nonlinear device as a product mmodul ator, we may use the
following configuration:

Nonlinear

. B BPF P ©
device

A cos(mf t)
c c

é.a A2 m(t) cos(2nf t)
2 3 ¢ c

m(t)

——;~f - — —0

(b) To generate an AM wave with carrier frequency fc We require a sinusoidal component of
frequency fc to be added to the DSBSC generated in the manner described above. To achieve
this requirement, we may use the following configuration involving a pair of the nonlinear

devices and a pair of identical band-pass filters.

Nonlinear

I BPF
device

A cos(nf t)
c c

AM wave

8
2

A cos(mf t)
c c (5;)
Nonlinear

————— Py BPF
device
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The resulting AM wave is therefore -g— ag Ag[Ao+m(t)]cos(2ﬂfct). Thus, the choice of the dc

level AO at the input of the lower branch controls the percentage modulation of the AM
wave, '

Problem 2.2

Consider the square-law characteristic:
val(t) = agvy(t) + agvi(t) 1

where a, and a, are constants. Let

vi(t) = A cos(2nf;t) + m(t) (2)

Therefore substitutingEq. (2) into (1), and expanding terms:

2
V2(t) = alAc[l + :2

m(t)] cos(2nf,t)
1 3)

+ a;m(t) + agm(t) + azAc2 cos2(2rf,t)

The first term in Eq. (3) is the desired AM signal with k, = 2a,/a;. The remaining three terms are
unwanted terms that are removed by filtering.

Let the modulating wave m(t) be limited to the band -W < f < W, as in Fig. 1(a). Then, from Eq. (3)
we find that the amplitude spectrum |V2(f) | is as shown in Fig. 1(b). It follows therefore that the
unwanted terms may be removed from vy(t) by designing the tuned filter at the modulator output
of Fig. P2.2 to have a mid-band frequency f, and bandwidth 2W, which satisfy the requirement that
f. > 3W..

V20

M)
.
AA AL A A
w0 W f 2f, -f, 2W WO W 2W lf—>‘ 2fe L
@) (b) 2w
Figure 1
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Problem 2.3

The generation of an AM wave may be accomplished using various devices; here we describe one
such device called a switching modulator. Details of this modulator are shown in Fig. P2.3a,
where it is assumed that the carrier wave c(r) applied to the diode is large in amplitude, so that it
swings right across the characteristic curve of the diode. We assume that the diode acts as an ideal
switch, that 1s, it presents zero impedance when it is forward-biased [corresponding to c(z) > 0].
We may thus approximate the transfer characteristic of the diode-load resistor combination by a
plecewise-linear characteristic, as shown in Fig. P2.3b. Accordingly, for an input voltage v;(z)

consisting of the sum of the carrier and the message signal:
vi(8) = A.cos(2nf 1) +m(2) (1)

where |m(7)| << A, the resulting load voltage v,(?) is

v, (0) z{ M, el >0 @
0, (1) <0

That is, the load voltage v,(¢) varies periodically between the values v;(r) and zero at a rate equal
to the carrier frequency f.. In this way, by assuming a modulating wave that is weak compared

with the carrier wave, we have effectively replaced the nonlinear behavior of the diode by an
approximately equivalent piecewise-linear time-varying operation.

We may express Eq. (2) mathematically as
vo(t)= A, cos(2mf 1)+ m(1)gr (1) (3)

where gTO(t) is a periodic pulse train of duty cycle equal to one-half, and period T; = 1/f,, as in

Fig. 1. Representing this gTO(t) by its Fourier series, we have

oo

2

cos[27tf t(2n-1)] “4)

MIH
F]Il\)

To(t) =

Therefore, substituting Eq. (4) in (3), we find that the load voltage v,(¢) consists of the sum of two
components:

1. The component

A
?[1 - ni m(t)] cos(2mf 1)

c
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which is the desired AM wave with amplitude sensitivity &, = 4nA.. The switching modulator
is therefore made more sensitive by reducing the carrier amplitude A_; however, it must be
maintained large enough to make the diode act like an ideal switch.

2. Unwanted components, the spectrum of which contains delta functions at 0, +2f,., +4f., and so
on, and which occupy frequency intervals of width 2W centered at 0, +3f.. +5f,, and so on,
where W is the message bandwidth.

gro(l)

+1

Fig. 1: Periodic pulse train

The unwanted terms are removed from the load voltage v,(r) by means of a band-pass filter with
mid-band frequency f, and bandwidth 2W, provided that f, > 2W. This latter condition ensures that

the frequency separations between the desired AM wave the unwanted components are large
enough for the band-pass filter to suppress the unwanted components.
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Problem 2.4
(a) The envelope detector output is
v(t) = Ac|1+ ucos(?nfmt)l

which is illustrated below for the case when p=2,

v(t)

We see that v(t) is periodic with a period equal to f‘ , and an even function of t, and so
Wwe may express v(t) in the form:

v(t) = ag + 2 I a, cos(2n1rfmt)

136, 1/2f_
2A £ 1 [1+2 cos(2nf _¢)1dt + 24 £ [-1-2cos{(2rf t)1dt
e'm . m em e m
m

4A
c c

3t sin(g%— (1)

1/2f'm
a =2f [ v(t)cos(2nnf_t)dt
m° m

1/3f

= 28 f fo m [142cos(2nf t)]cos(2nmf t)dt
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+ 2 £ m [-1-2cos(anf t)Jcos(2nm £ t)dt

A A
= ;f [2 sin(ggl) - sin(m)] + ?3157; {2 sin[g%(n+1)] - sinln (n+1)]}
. e {2 sinfZ%(n-1)] = sinln (n=1)1} (2)
(n_1)“_ 3 - - S n w n-

For n=0, Eq. (2) reduces to that shown in Eq. (1).

(b) For nz1, Eq. (2) yields

a3 1
1 ° Ac(—E;-+ 5)

For n=2, it yields

Therefore, the ratio of second-harmonic amplitude to fundamental amplitude in v(t) is

a
2 33 . o.u52
3 25433
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Problem 2.5

(a) The demodulation of an AM wave can be accomplished using various devices; here, we
describe a simple and yet highly effective device known as the envelope detector. Some
version of this demodulator is used in almost all commercial AM radio receivers. For it to
function properly, however, the AM wave has to be narrow-band, which requires that the
carrier frequency be large compared to the message bandwidth. Moreover, the percentage
modulation must be less than 100 percent.

An envelope detector of the series type is shown in Fig. P2.5, which consists of a diode and a
resistor-capacitor (RC) filter. The operation of this envelope detector is as follows. On a
positive half-cycle of the input signal, the diode is forward-biased and the capacitor C charges
up rapidly to the peak value of the input signal. When the input signal falls below this value,
the diode becomes reverse-biased and the capacitor C discharges slowly through the load
resistor R;. The discharging process continues until the next positive half-cycle. When the

input signal becomes greater than the voltage across the capacitor, the diode conducts again
and the process is repeated. We assume that the diode is ideal, presenting resistance rr to

current flow in the forward-biased region and infinite resistance in the reverse-biased region.
We further assume that the AM wave applied to the envelope detector is supplied by a voltage
source of internal impedance R,. The charging time constant (rr + Rg) C must be short

compared with the carrier period 1/f,, that is

(rf+Rs)C<<j_}_c 1)

so that the capacitor C charges rapidly and thereby follows the applied voltage up to the
positive peak when the diode is conducting.

(b) The discharging time constant R;,C must be long enough to ensure that the capacitor
discharges slowly through the load resistor R; between positive peaks of the carrier wave, but

not so long that the capacitor voltage will not discharge at the maximum rate of change of the
modulating wave, that is

% «R,C « % 2)
c

where W is the message bandwidth. The result is that the capacitor voltage or detector output
is nearly the same as the envelope of the AM wave.
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Problem 2.6

Let
vi(t) = A1 + kym(t)lcos(2rf t)
(a) Then the output of the square-law device is

vo(t) = a;vy(t) + a2v12 ®)

L[}

a;1A [l + kom(t)lcos(2nf t)

+

%azAfu + 2k,m(t) + k2m2(t)] [1 + cos(4nf,b)]

(b) The desired signal, namely a2A02k m(t), is due to the azvz (t) - hence, the name "square-law
detection”. This component can be extracted by means of a low-pass ﬁlter ThlS is not the only
contribution within the baseband spectrum, because the term 1/2 a2Ac k m?(t) will give rise to a
plurality of similar frequency components. The ratio of wanted signal to dlstortlon is 2/k,m(t). To
make this ratio large, the percentage modulation, that is, Ik m(t) | should be kept small compared
with unity.
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Problem 2.7

The squarer output is

"

v, (t) Ai [1+kam(t)]2 cosz(anct)

G
<
2

[1 +2kam( t)+m2 CARER +cos(41rf‘ct) ]

The amplitude spectrum of v1(t) is therefore as follows, assuming that m(t) is limited to
the interval -W < f < W: |

v, ()]

PN
L

Since fc > W, we find that 2fc-2w > 20. Therefore, by choosing the cutoff frequency of

o >

2f

4w

the low-pass filter greater than 2W, but less than 2f’c-2w, we obtain the output

>A2
c 2
v2(t) =5 [1+kam(t)]

Hence, the square-rooter output is

A
va(t) = = [M+k_m(t)]
Ve a
Ac
which, except for the dc component — , is proportional to the message signal m(t).
2
Problem 2.8

(a) For f‘c = 1.25 kHz, the spectra of the message signal m(t), the product modulator

output s(t), and the coherent detector output v(t) are as follows, respectively: 60



M(f)

Y 5 - 1 £ (kHz)
S(f)
I 1 £ (kHz)
~1.25 0 1.25
V(f)
f (kHz)
-1 0] 1

(b) For the case when fc = 0.75, the respective spectra are as follows:

M(f)

f (kHz)

S(£)

f (kHz) 61




To avoid sideband-overlap, the carrier frequency fc must be greater than or equal to
1 kHz. The lowest carrier frequency is therefore 1 kHz for each sideband of the
modul ated wave s(t) to be uniquely determined by m(t).

Problem 2.9

The two AM modulator outputs are

s1(t) = A1 + k,m(t)lcos(2nft)

so(t) = AJ1 - k,m(t)lcos(2nft)

" Subtracting s,(t) from's,(t):

S(t) = sylt) - 8y(t)

2k A am(t)cos(2nf,t)

which represents a DSB-SC modulated wave.

62



Problem 2.10

(a) Multiplying the signal by the local oscillator gives:

s1(t) Acm(t) cos(21rf‘ct) cos[2n(fc+Af)t]

A
2—° m(t) {cos(2maft) + cos[2n(2f +a)t])

Low pass filtering leaves:

o

<

> m(t) cos(2wAft)

sz(t) =
Thus the output signal is the message signal modul ated by a sinusoid of frequency Af.

(b) If m(t) = cos(Zmet),

AC

then sz(t) =5 cos(21rfmt) cos(2nAft)
62&)

Problem 2.11

(@) y(t) = s2(t)

]
=
n

cosz(ZAcht) m2 (t)

N0

ST d
lo

[1+cos(iaf _t) In® (t)

Therefore, the spectrum of the multiplier output is

n

2

) A © )

[ MOOM(E=2)dA + 3= 17 MOOM(E=2f =2)dX + [ MOOM(E2f_=))d )]

- Q0 - 00 - 00

I\)IID
o

Y(f) =

where M(f) = Flm(t)].

63
(b)Y At f‘=2f‘c, we have



I M( A)M(Zfe-l)dx

Ag
Yer) = 5>

[/ MOOM(=X)dA+ [ M(A)M(Nfc-k)dk]'

+
$10:R)

Since M(=-A) = M¥(}), we may write

A2
c
3 i) M(A)M(ch-k)dk

Y(ng)

2
s 0 IMD1%axn+ 5 MOOMANE —3)dx (1)

&

With m(t) limited to -W < f < W and fc > W, we find that the first and third integrals

reduce to zero, and so we may simplify Eg. (1) as follows

SO0 12

A
Y(2fc) T

J:lo o

where E is the signal energy (by Rayleigh's energy theorem). Similarly, we find that

o™
=

Y(-2fc) =

The band-pass filter output, in the frequency domain, is therefore defined by

2
A
c
V() = E Af‘[é(f-ch) + 6(f+2fc)]
Hence,
he
v(t) = > E Af cos(unfct)
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Problem 2.12 |
The multiplexed signal is

s(t) = Ac m.l(t) cos(Zﬂfct) + Ac m2(t) sin(21rfct)

Therefore,
Ac Ac
S(f) = 5 [M1(f-fc)+M1(f+fc)] + 35 [Mz(f‘fc)'M2(f+fc)]
where M1(f‘) = F[m1(t)] and Mz(f) = F[mz(t)]. The spectrum of the received signal is

therefore

R(f)

H(£)S(f)

A
(o] 1 1
5 H(f) [M1(f‘-fc)+M1(f+fc)+ 3 Mz(f-fc)- 3 M2(f+fc)]

To recover m,(t), we multiply r(t), the inverse Fourier transform of R(f), by cos(2wf t)
and then pass the resulting output through a low-pass filter, producing a signal with €he
following spectrum

:'F[r(t)cos(an‘ct)] %[R(f-fcm(ﬁfc)]

A
c 1 1
T H(f—fc)[M1(f-2fc) + M1(f) + 3 Mz(f-2f‘e) -3 Mz(f)]

g

+ FE H(Eef )IM (£) + M (fe2 ) + 3—.M2(f) - 13 My(fe2f )] (1)

The condition H(f‘c+f) = H*(f‘c—f) is equivalent to H(f+fc)=H(f‘-fc); this follows from the
fact that for a real-valued impulse response h(t), we have H(-f)=zH¥(f). Hence,
substituting this condition in Eq. (1), we get

A
c
F[r(t)cos(an‘ct)] =5 H(f‘-fc)M1(f)

A
c 1 : 1
+ H(f'-f‘c)[MT(f‘-ch) + 3 M2(f‘-2f‘c)+M1(f‘+2fc) -3 M2(f+2fc)]

The low-pass filter output, therefore, has a spectrum equal to (Ac/2) H(f—f‘c)M1(f).

Similarly, to recover mz(t), we multiply r(t) by sin(21rfct), and then pass the
resulting signal through a low-pass filter. In this case, we get an output with a

spectrum equal to (Ac/2) H(f‘-fc)MZ(f‘). 65
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Problem 2.13
When the local carriers have a phase error ¢» We may write
cos(2nf‘ct + ¢) = cos(2nf‘ct)cos ¢ - sin(2nf‘ct) sin ¢
In this case, we find that by multiplying the received signal r(t) by cos(2nfct+4>),

and passing the resulting output through a low-pass filter, the corresponding low-pass
filter output in the receiver has a spectrum equal to (AC/Z) H(f—fc) [cos ¢ M1(f) - sing
Mz(f)]. This indicates that there is cross-talk at the demodul ator outputs.
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Problem 2.14

The transmitted signal is given by

s(1) = Am(t)cos(2nf 1) + A my(t)sin(2nf 1)

AdVo+m(t)+m(t)]cos(2nf 1) + A [m(2) —m, (t)]sin(2nf 1)

(a) The envelope detection of s(r) yields

(D) = A (Vo +my(r) +m ()2 + (my(t) — m (1))

m(t) — m.(t) )2

Vo +my (1) +m (1)

A (Vo+m(t)+ mr(t))Jl +(

To minimize the distortion in the envelope detector output due to the quadrature component, we
choose the DC offset V, to be large. We may then approximate y,(?) as

Y1) = A(Vy+m(t) +m(1))
which, except for the DC component AV, is proportional to the sum my(t) + m(2).
(b) For coherent detection at the receiver, we need a replica of the carrier A cos(2mf.t). This

requirement can be satisfied by passing the received signal s(z) through a narrow-band filter of
- mid-band frequency f,.. However, to extract the difference m(r) - m,(r), we need sin(27f.z), which

is obtained by passing the narrow-band filter output through a 90°-phase shifter. Then, multiplying
s(r) by sin(27f.r) andt low-pass filtering, we obtain a signal proportional to my(f) - m,(?).

(¢) To recover the original loudspeaker signals m;(r) and m,(r), we proceed as follows:

* Equalize the outputs of the envelope detector and coherent detector.
* Pass the equalized outputs through an audio demixer to produce my(r) and m (7).
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Problem 2.15

(@) s(2) = A (1 +k,m(t))cos(2nf 1)

= Ac[l + i 2]cos(Z’ftfcz‘)

1+¢

To ensure 50 percent modulation, &, = 1, in which case we get

s(t) = Ac(l + 1 2)cos(27tfct)

1+¢
(b) s(¢) = A.m(t)cos(2nf 1)

AC
= 2cos(ZthCt)
1+

) s(t) = %—C[m(t)cos(anct)—n%(t)sin(anct)]

Ac 1 t .
- —[ 5008 (211 f 1) - —=sin(2m fct)}
2 1+¢ 1+1¢

A, r.
) s(t)=7|: cos(2nf 1) + 2s1n(2nfct):|

1+t2 1+1¢

As an aid to the sketching of the modulated signals in (c) and (d), the envelope of either SSB
wave 1s

2
1/ +1 lf 1
1) = = = — |———

Plots of the modulated signals in (a) to (d) are presented in Fig. 1 on the next page.
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Problem 2.16

Consider first the modulated signal
1 1., : 1
s(t) = im(t)cos(anct)—Em(t)sm(anct) (1)

Let S(f) = Fls(®)], M(f) = F[m(r)), and M(f) = f[m(t)] where m(r) is the Hilbert transform of
the message signal m(t). Then applying the Fourier transform to Eq. (1), we obtain

S() = GIM(f = £+ M(F 4 £01 = B = £ = BT+ £0) @)

From the definition of the Hilbert transform, we have

M(f) = —jsgn(SIM(S)

where sgn(f) is the signum function. Equivalently, we may write

_.}M(f_fc) = sgn(f - fIM(f - f,)

1~
—}M(f+fc) = sgn(f+ fIM(f+ )
(1) From the definition of the signum function, we note the following for f> 0 = and f > Jo

sgn(f - f.) = sgn(f+f,) = +1

Correspondingly, Eq. (2) reduces to

SUF) = 3IM(f = )+ M(f + £l + SIM(f = £~ M(F + £.)]

i

1
= SM(f- 1)

In words, we may thus state that, except for a scaling factor, the spectrum of the modulated
signal s(7) defined in Eq. (1) is the same as that of the DSB-SC modulated signal for f > S

(ii) For f> 0 and f < f,, we have
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sgn(f—-f.) = -1
sgn(f+f.) = +1

Correspondingly, Eq. (2) reduces to

SU) = ZIM(F = £+ M(f + f 1+ S-M(F = £,) = M(f = £,)]

=0
In words, we may now state that for f < f,., the modulated signal s(¢) defined in Eq. (1) is zero.

Combining the results for parts (i) and (ii), the modulated signal s(¢) of Eq. (1) represents a single
sideband modulated signal containing only the upper sideband. This result was derived for f> 0.
This result also holds for < 0, the proof for which is left as an exercise for the reader.

Following a procedure similar to that described above, we may show that the modulated signal
1 1., . 3
s(t) = im(t)cos(?;nfct) + im(t)sm(anct) 3)

represents a single sideband modulated signal containing only the lower sideband.
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Problem 2.17

An error Af in the frequency of the local oscillator in the demodulation of an SSB signal, measured
with respect to the carrier frequency f,, gives rise to distortion in the demodulated signal. Let the
local oscillator output be denoted by A cos(2n(f, + Aft). The resulting demodulated signal is given
by (for the case when the upper sideband only is transmitted)

Vo(t) = % AA, [m(t)cos(2nAft) + m(t)sin(2nAft)]

This demodulated signal represents an SSB wave corresponding to a carrier frequency Af.

The effect of frequency error Af in the local oscillator may be interpreted as follows:

L))

€b)

If the SSB wave s(t) contains the upper sideband and the frequency error Af is positive, or
equivalently if s(t) contains the lower sideband and Af is negative, then the frequency
components of the demodulated signal v (t) are shifted inward by the amount Af compared
with the baseband signal m(t), as illustrated in Fig. l(b)

If the incoming SSB wave s(t) contains the lower sideband and the frequency error Af is
positive, or equivalently if s(t) contains the upper sideband and Af is negative, then the
frequency components of the demodulated signal v,(t) are shifted outward by the amount Af,
compared with the baseband signal m(t). This is illustrated in Fig. 1c for the case of a
baseband signal (e.g., voice signal) with an energy gap occupying the interval f, < f<f, , in
part (a) of the figure.
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M(f,)

%ACA;M(f,)
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(6)

Voif)

5 AAM(D)

~f,—8f —f.—Af 0 fo+Af fo+af
)

Fig. 1
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Problem 2.18

(a,b) The spectrum of the message signal is illustrated below:

M($)
| ,/L |\ f
- 504 3

Correspondingly, the output of the upper first product modulator has the following
spectrum:

TME+4) T MY-£)
- . - s
ST

The output of the lower first product modulator has the spectrum:

~ J T ME-4)
".tl /I \ [\ +

j
s
MG E) U

The output of the upper low pass filter has the spectrum:

—;-.- M+(§+fo)

P

-%*f’« v %'fa.

‘/EM_(D‘-J’;)
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The output of the lower low pass filter

3.8 7

has the spectrum:

— D
! £

L

The output of the upper second product modulator has the spectrum:

:;f M. (§+§0+£)

M, (25 f)

N9

1-/4

o4~

...M (:)C-?

Adding the two second product modulator
while their lower sidebands cancel each

(e)

required in one of the channels. For

multiply the message signal by -sm(21rf‘ t).

and the lower one transmitted.

outputs, their upper sidebands add constructively

other.

To modify the modulator to transmit only the lower sideband, a single sign change is

example, the lower first product modulator could
Then, the upper sideband would be cancelled

75



Problem 2.19

7. (t) v_(t
m(t) Product 1 High-pass 2( ) Product 3 (t)Low—pass s(t)
———= modulator {—®= filter modulator &1 filter ‘ -
cos(2'rrfct) cos[27r(fc+fb)t]

(a) The first product modulator output is
vy(t) = m(t) cos(2nfct)

The Second product modulator output is
v3(t) = vy(t) cos[2ﬂ(fc+fb)t]

The amplitude spectra of m(t), v1(t), va(t), v3(t) and s(t) are illustrated on the next
page :

We may express the voice signal m(t) as
1
m(t) = 5 [m () + m (t)]
*
where m_(t) is the pre-envelope of m(t), and m_(t) = n&(t) is its complex conjugate. The

Fourier transforms of m+(t) and m_(t) are defined by (see Appendix 2)

M), £ >0

M (f) =
M 0, £<0
0, f>0
M_(£) =
M(£), : £<0

Comparing the spectrum of s(t) with that of m(t), we see that s(t) may be expressed in
terms of m, (t) and m_(t) as follows: "

s(t)

m, (t)exp(-j2uf, t)+ § m (t)exp(jZTrfb'c)

8_
- % [m(t)+3(t)Texp(-32nf, t)+ §{m(t)-jﬁ(t)]exp(j2nfbt)
;

T m(t)cos(an t)+ E-m(t)sin(2nfbt)

(b) With s(t) as input, the first product modulator output is

v1(t) = s(t) cos(2nfct)
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Problem 2.20

(a) Consider the system described in Fig. 1a, where u(f) denotes the product modulator output, as
shown by

u(t) = Am(tycos(2nf t)

Message Product u(t) Band-pass Modulated
signal ————» modulaior filter b signal
m(t) H(f) s(t)

A, cos (2rft)
(a)
Modulated v(t) Demodulated
signal e Product Low-pass o signal

s(t) modulator filter

|

A cos (2rf.1)

v, (1)

(b)

Figure 1: (a) Filtering scheme for processing sidebands. (b) Coherent detector for
recovering the message signal.

Let H(f) denote the transfer function of the filter following the product modulator. The spectrum
of the modulated signal s() produced by passing u(z) through the filter is given by

S(f) = UHH(S)

A
= f[M(f—fc)+M(f+fc)]H(f) )

where M(f) is the Fourier transform of the message signal m(z). The problem we wish to address is
to determine the particular H(f) required to produce a modulated signal s(z) with desired spectral

characteristics, such that the original message signal m() may be recovered from s(¢) by coherent
detection.

The first step in the coherent detection process involves multiplying the modulated signal s(f) by a
locally generated sinusoidal wave A’ cos(2mf ), which is synchronous with the carrier wave

A cos(2mf 1), in both frequency and phase as in Fig. 1b. We may thus write

78



v(t) = A’ cos(2nf t)s(t)

Transforming this relation into the frequency domain gives the Fourier transform of v(r) as

V(f) = %[S(f—fc)+5(f+fc)] ()
Therefore, substitution of Eq. (1) in (2) yields

/’
c" " c

A .
V() = ——MNDIHS = fI+H(f+ )]

AN,
+— IM(f=2f)H(f ~f)+M(f+2f JH(f + f)] 3)

(b) The high-frequency components of v(¢) represented by the second term in Eq. (3) are removed
by the low-pass filter in Fig. 1b to produce an output v,(#), the spectrum of which is given by the

remaining components:

A A

c

Volf) = — "M()H(f-f)+H(f + )] “4)

For a distortionless reproduction of the original baseband signal m(z) at the coherent detector
output, we require V (f) to be a scaled version of M(f). This means, therefore, that the transfer

function H(f) must satisfy the condition
H(f-f)+H(f+f,) = 2H(f,) )

where H(f,), the value of H(f) at f=f,, is a constant. When the message (baseband) spectrum M(f)

is zero outside the frequency range -W < f < W, we need only satisfy Eq. (5) for values of fin this
interval. Also, to simplify the exposition, we set H(f,) = 1/2. We thus require that H(f) satisfies the

condition:

H(f-fo+H(f+f)=1, -Wsfsw (6)

Under the condition described in Eq. (6), we find from Eq. (4) that the coherent detector output in
Fig. 1b is given by

AN,
vo(t) = —=m(n) )
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Equation (1) defines the spectrum of the modulated signal s(r). Recognizing that s(z) is a band-
pass signal, we may formulate its time-domain description in terms of in-phase and quadrature
components. In particular, s(#) may be expressed in the canonical form

s(1) = s,(t)cos(2nf 1) - sp(1)sin(2nf 1) (8)

where s,(¢) is the in-phase component of s(r), and so(#) 1s its quadrature component. To determine
s/(t), we note that its Fourier transform is related to the Fourier transform of s(¢) as follows:

S(f - S , -WSf<wW
S/(f) = {O(f fI+S(f+f0) f ©)

, elsewhere

Hence, substituting Eq. (1) in (9), we find that the Fourier transform of s/(f) is given by

SIF) = SAMUES = £)+ H(f + £,))

= JAM();  -WSfSW (10)

where, in the second line, we have made use of the condition in Eq. (6) imposed on H(f). From Eq.
(10) we readily see that the in-phase component of the modulated signal s(z) is defined by

s,(2) = %Acm(t) (11)

which, except for a scaling factor, is the same as the original message signal m(t).

To determine the quadrature component SQ(t) of the modulated signal s(z), we recognize that its
Fourier transform is defined in terms of the Fourier transform of s(¢) as follows:

i[S(f-f.)-S -W<f<w
S0 = {J[ (f=F)=S(f+FI] WSS )

0, elsewhere

Therefore, substituting Eq. (11) in (12), we get

So(f) = éACM(f)[H(f—fc)—H(f+fc)] (13)
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This equation suggests that we may generate s((f), except for a scaling factor, by passing the

message signal m(?) through a new filter whose transfer function is related to that of the filter in
Fig. 1a as follows:

Ho(f) = jlH(f-f)-H(f+f)], -W<sf<W (14)

Let m’(t) denote the output of this filter produced in response to the input m(z). Hence, we may
express the quadrature component of the modulated signal s(z) as

so(t) = %Acm’(t) (15)

Accordingly, substituting Eqs. (11) and (15) in (8), we find that s(f) may be written in the
canonical form

m(t) = %Acm(t)cos(2n fct)—%Acm’(t)sin(Zn £.0) (16)

There are two important points to note here:

1. The in-phase component s,(¢) is completely independent of the transfer function H(f) of the

band-pass filter involved in the generation of the modulated wave s(f) in Fig. 1a, so long as it
satisfies the condition of Eq. (6).

2. The spectral modification attributed to the transfer function H(f) is confined solely to the
quadrature component s¢(z).

The role of the quadrature component is merely to interfere with the in-phase component, so as to
reduce or eliminate power in one of the sidebands of the modulated signal s(r), depending on the
application of interest.
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Problem 2.21

(a) Expanding s(t), we get

1-a A A cos(2nf t) cos(2qf t)
me c m

s(t) >

1]

nt_\

. . 1
AmAc sm(2nfct) 51n(2'nfmt) + 2(1-a) AcAm cos(21rf‘ct) cos(2nfmt)

_ PN .
+ =(1=a) AmAc sm(._nfct) sm(2nfmt)

CS TN XY

mAc cos(2nfct) cos(2nfmt)

AmAc (1-2a) sin(2nfct) sin(21rf‘mt)

1
+ =
nj -

Therefore, the quadrature component is:

_ _z'_ACAmU -2a) sin(2nf‘mt)

(b) After adding the carrier, the signal will be:
1
s(t) = Ac[1 + 3 Am cos(21rf‘mt)] cos(21rfct)
1 .
+ 5 AcAm(1-2a) sin(2ﬂfmt) sm(2ﬂf‘ct)

The envelope equals

a(t) = Ac //[1 + 1? Am cos(21rf‘mt)]2 + [17 Am(1-2a) sin(21rfmt)]2

1

2
1

1 +5 A cos(2nf t)

. 2
Am(1-2a) sm(2nfmt)

"

1
Ac [1 + 5 Am cos(21rfmt)] 1 +

"

A, 1+ 3 A cos(2af )] d(t)

where d(t) is the distortion, defined by

1 .
5 Am(1—2a) sm(anmt) 2

1
2

d(t) = -1 +

1 + Am cos(21rf‘mt)

(¢) d(t) is greatest when a = O. 82



Problem 2.22

Consider an incoming narrow-band signal of bandwidth 10 kHz, and mid-band frequency
which may lie in the range 0.535-1.605 MHz. It is required to translate this signal to a fixed
frequency band centered at 0.455 MHz. The problem is to determine the range of tuning that
must be provided in the local oscillator.

Let f. denote the mid-band frequency of the incoming signal, and f, denote the local oscil-
lator frequency. Then we may write

0.535< £, <1.605

and
fo—f1=0.455
where both f,and f; are expressed in MHz. That is,
fi=f.—0.455

When f.=0.535 MHz, we get f,=0.08 MHz; and when f,=1.605 MHz, we get f;=1.15 MHz.
Thus the required range of tuning of the local oscillator is 0.08—1.15 MHz.
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Problem 2.23

Let s(t) denote the multiplier output, as shown by
s(t) = A g(t) cos(21rfct)

where f‘c lies in the range fy Lo fy#W. The amplitude spectra of s(t) and g(t) are related
as follows:

lc(e) ]

lG(o) |
Af
£
-W 0 fc—fO \
|s(£) |

| Af

-f -W -f -f -f W
o} o] 0 o]
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With v(t) denoting the band-pass filter output, we thus find that the Fourier transform of
v(t) is approximately given by

1
V(f) =5 A G(f~fy) , f=5 < |fl < £+ 5=
The rms meter output is therefore (by using Rayleigh's energy theorem)

172

2
Vrms z [{m v (t)dt]

- W B an'? = g a? e - 1?) a1/

- -]

A —
- IG(£ ~£ )| VA

Problem 2.24

For the PM case,

s(t) = Ac cos[2wfct + kp m(t)].
The angle equals

ei(t) ] 2wfct + kp m(t).
The instantaneous frequency,

Akp Akp
fi(t) = fc + 2nT0 - i > §(t - nTo),

is equal to fc + Akp/ZnTo except for the instants that the message signal has
discontinuities. At these instants, the phase shifts by —kpA/T0 radians.
S&)

NAN AN AN
_f‘\/ VAVARVAVARV
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For the FM case, fi(t) = fc + kf m(t)

AW Yav Vaw Vaus
KRVA/CRVAI VAT a—

Problem 2.25

oubpul

The instantaneous frequency of the mixerAis as shown below:

wis N S .
V(/L/W -

1
£

The . presence of negative frequency merely indicates that the phasor representing the
difference frequency at the mixer output has reversed its direction of rotation.

Let N denote the number of beat cycles in one period. Then, noting that N is equal
to the shaded area shown above, we deduce that

N = 2[uAf-f0T( -T) + 2Af-f012]

"
2f0
= BAfet(1 - fi1)
Since for << 1, we have
N = YAfer
Therefore, the number of beat cycleé counted over one second is equal to

N
W = %f' fo'l'.
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Problem 2.26

The instantaneous frequenéy of the modulated wave s(t) is as shown below:

£, (v)
i

We may thus express s(t) as follows

COS(2Tl'fct):

o
A
1
3

s(t) = cos[21r(fc+Af)t].

L
N =3
I~
o
i
ol

cos[2nfct),

WV
~
o

The Fourier transform of s(t) is therefore

~T/2
S(f) =7 cos(2wfct) exp(-j2nft) dt

-0

T/2
+f cos[2n(f +Af)t] exp(-j2nft) dt
-1/2 ¢

+ [ cos(anct) exp(-j2nft) dt
T/2

- 00

=/ cos(2vfct) exp(~ja2rft) dt

-0

T/72
+/J {cos[2n(fc+Af)t - cos(2nfct)} exp(=j2nft) dt
=T/2 :
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The second term of Eq. (1) is recognized as the difference between the Fourier transforms
of two RF pulses of unit amplitude, one having a frequency equal to fc+Af and the other
having a frequency equal to fc. Hence, assuming that ch >> 1, we may express S(f) as
follows:

-;-G(f-f‘c) + L sinc[T(f-f_-4f)] = & sine[T(f-f )1, £ >0

) )
S(f) =
1 serf ) + I sinolT(fef +a8)] = T s [T(f+f )], £< 0
> e + > sSing c+ - 2 since e ’
Problem 2.27

For SSB modulation, the modulated wave is

o>

s(t) = 53 [m(t) cos(2nf t) = @(t) sin(2nf _t)],

the minus sign applying when transmitting the upper sideband and the plus sign applying
when transmitting the lower one.

Regardless of the sign, the envelope is

A
ﬂﬂ:EE/fu)+¥u>.

Fl

(a) For upper sideband transmission, the angle,

~-1,4(t)
%(t) = 2ﬂfct + tan (ETET .

The instantaneous frequency is,

1o de(t)
= f 4 m(t) @' (t) - @(t) m'(t) ,

c o1 (m2(t) + B(t))

'where ' denotes time derivative.
(b) For lower sideband transmission, we have

1, @(t)

(= —3)

m(t)

o(t) = 2rf t + tan~
[ (o]

and

B(t) m'(t) - m(t) B'(L)

f.(t) =f +
1 ¢ 2r (me(t) + B2(t))
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Problem 2.28 ,

(a) The envelope of the FM wave s(t) is

alt) = A / 1482 sin2(2nfmt)

The maximum value of the envelope is

a = A 1+32
max c

and its minimum value is

a. =A
min (o]

Therefore,

max _ 1+82

a .
min

This ratio is shown plotted below for 0 < B < 0.3:

a Y
a’m in

1.005 1.02 1.044

l1.17¢

(b) Expressing s(t) in terms of its frequency components:

S(t) = A, cos(2nf t) + % B A, cos[2n(f +f )t] - % B A_ cosl2n(f -f )t]
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The mean power of s(t) is therefore

2 2,2 2,2
P, = f& + ° Ac + ° Ac
172 8 8
2
A 2
=L B
=35 (1 + 5 )

Therefore,

o
n

1

L 8 _
P 1+3
(o]

which is shown plotted below for 0 < 8 < 0.3:

1.005 1.02 1.045
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(¢) The angle ei(t)' expressed in terms of the in-phase component, s_(t), and the

I

quadrature component, ﬁa(t), is:

ei(t) = 2nfct + tan

= 2nfct + tan™) [Bsin(anmt)]

Since tan-1(x) * X - x3/3 4 eee

3

8,(t) = 2nf t + Bsin(2nf t) - %— sin3(21rf‘mt)

The harmonic distortion is the power ratio of the third and first harmonics:

For B = 0.3, D_ = 0,09%

h

Problem 2.29

(a) The phase-modulated wave is

s(t)

Ac cos[2wfct + kpAm cos(2nfmt)]

Ac cos[2nfct + Bp cos(2nfmt)]

A, cos(2nf t) cos[Bp cos(anf t)] - A, sin(2nfct)_sin[8p cos(2nf t)] (1
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If B, < 0.5, then

cos[Bp cos(2nfmt)] 1

R

sin[ep cos(2nfmt)] cos(2nfmt)

BP
Hence, we may rewrite Eq. (1) as

s(t) = Ac cos(2wfct) - Bp Ac sin(2nfct) cos(2nfmt)
= A, cos(2nf t) - %'Bp A, sin[2n(f_+f )t]
-3 B8, A, sin[zn(rc-fm)tl
.The:Spéctrum of s(t) is therefore
SG)z%AJMﬁ%)+6@dJ]
} %3 B, Acfs(f-fc-fm) - 8 (ef of )]
- %3 By A L8 (f-£ 48 ) = 8(faf —f )]

(b) The phasor diagram for s(t) is deduced from Eq. (2) to be as follows:

Lower side~-frequency

Carrier / Ac

The corresponding phasor diagram for the narrow-band FM wave is as follows:
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m ‘Upper

& __  side-frequency
2rf t
m

Carrier (\ Ac

Lower side-frequency

Comparing these two phasor diagrams, we see that, except for a phase difference, the
narrow-band PM and FM waves are of exactly the same form. /*

Problem 2.30

The phase-modulated wave is

s(t) = A_ cos[2nf t + B, cos(2rf t)]
The complex envelope of s(t) is

S(t) = A, expljg, cos(anf t)]

Expressing S(t) in the form of a complex Fourier series, we have

«©

Sty = = c, exp(j2mnf t)
1= -0
where

1/2f‘m N

¢, = fm / s(t) exp(-jZnnfmt) dt

-1/2f
m
1/2fm
= A fo f1/2f exp[JBp cos(2nf t) - jomnf t] dt (1

m

Let 2nfmt =T/2 - ¢.
Then, we may rewrite Eq. (1) as
c - -n/2
¢, =~ 3 expl- ‘1——2 ) gﬂ/zexp[jsp sin(¢) + jn¢l do
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The integrand is periodic with respect to ¢ with a period of 2r., Hence, we may rewrite
this expression as

: n
Cn = Eng exp(- _J_;l'_) {." exp[ij sin(q)) + Jn¢] do

However, from the definitipn of the Bessel function of the first kind of order n, we have

1 1
Jn(x) = 5 {" exp(j x sin¢ - nj¢) d¢

Therefore,

jnm
c, = A, exp(~ 15-) J_n(Bp)

.We may thus express the PM wave s(t) as

s(t)

]

Re[s(t) exp(j2nf t)]

Ac Rel ¢ - J_n(Bp) exp(- l%E) exp(j2nnfmt) exp(j2nfct)]

N==co

nn
A Ew J_n(sp) cos[2n(fc+nfm)t -3 ]

[¢]
ns=

The band-pass filter only passes the carrier, the first upper side-frequency, and the
first lower side-frequency, so that the resulting output is

™
so(t) Ac JO(Bp) cos(2nfct) + Ac J_1(Bp) cos[2n(fc+fm)t - 5]

m
+ Ac J1(Bp) cos[2n(fc-fm)t + 5]

Ac Jo(sp) cos(2wfct) + Ac J_1(Bp) sin[2n(fc+fm)t]
- Ac J1(Bp) sin[2n(fc-fm)t]
But

Therefore,

so(t) Ac JO(Bp) cos(2ﬂfct)

- Ac J1(Bp) {sin[2ﬂ(fc+fm)t] + sin[2n(fc-fm)t]}

Ac JO(Bp) cos(2ﬂfct) -2 Ac J1(Bp) cos(2nfmt) sin(2nfct)

The envelope of so(t) equals
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"2 2 2
a(t) = Ac //Jo(sp) + uJ1(sp) cos (2ufmt)
The phase of so(t) is

2 J,(8)
To(By)

1

¢(t) = =tan” [ cos(2nf t)]

The instantanéous frequency of so(t) is

£y =g o L ()

2 Jo(Bp) J1(Bp) sin(anmt)

H
]

+
(]

J5(6,) + 135(8.) cos®(2nf b
Problem 2.31

(a) From Table A4.1, we find (by interpolation) that JO(B) is zero for

8 = 2.44,
B = 5.52,
B = 8.65,
B = 1.8,

and so on.
(b) The modulation index is

_ kf Am

£ =1

Since JO(B) = 0 for the first time when B = 2.4l4, we deduce that

2.44 x 103

kf 2

1.22 x 103 hertz/volt

Next, we note that JO(B) = 0 for the second time when 8 = 5.52. Hence, the corresponding

value of Am for which the carrier component is reduced to zero is
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_'m
LR
_5.52 x 103
1.22 x ‘IO3
= 4,52 volts
Problem 2.32

For B = 1, we have
J0(1) = 0.765
J (1) = 0.44
J2(1) = 0,115
Therefore, the band-pass filter output is (assumir_lg a carrier amplitude of 1 volt)
so(t) = 0.765 cos(21rf‘ct)
+ 0.4y {cos[21r(fc+fm)t] - cos[2n(fc-fm)t]}
+ 0.115 {cos[21t(fc+2fm)t] + cos[21r(fc-2f‘m)t]} ,

and the amplitude spectrum (for positive frequencies) is

59!
ok 37
A
0,22 022
0.058 Q.05%
b .
o {24, f4, f L £
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Problem 2.33

(a) The frequency deviation is
Af = ko A =25 x 103 x 20 =5 x 10° Bz

The corresponding value of the modulation index is

The transmission bandwidth of the FM wave, using Carson's rule, is therefore
BT = 2fm(1+8) = 2x100 (1+45) = 1200 kHz = 1.2 MHz.

(b) Using the wniversal curve of Fig. 3«34 we find that for B=5:

BT

ar = 3

Therefore,
BT = 3x500 = 1500 kHz = 1.5 MHz

(¢) 1If the amplitude of the modulating wave is doubled, we find that
Af = 1MHz and 8 = 10

Thus, using Carson's rule we obtain
By = 2x100 (1+410) = 2200 kHz = 2,2 MHz

Using the universal curve of Fig. 3:36, we get

w

T

ir° 2.75

and BT = 2.75 MHz.
(d) 1If fm is doubled, B = 2.5. Then, using Carson's rule, BT = 1.4 MHz., Using the

universal curve, BT/Af = 4, and

BT = Uaf = 2 MHz.
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Problem 2.34

(a) The angle of the PM wave is

ei(t) = 2wfct + kp m(t)

2nfct + k Amcos(anmt)

p
Zﬂfct + Bp cos(Zmet)

where Bp = kp Am. The instantaneous frequency of the PM wave is therefore

J__dei(t)
2n  dt

fi(t)

"

fc - Bp fm sin(2nfmt)

We see that the maximum frequency deviation in a PM wave varies 1linearly with the
.modulation frequency fm'

Using Carson's rule, we find that the transmission bandwidth of the PM wave is
approximately (for the case when Bp >» 1)

BT > 2(fm + Bp fm) = zfm(1 + sp) = me sp

This shows that BT varies linearly with fm'

(b) In an FM wave, the transmission bandwidth BT is approximately equal to 2Af, if the
modulation index B >> 1. Therefore, for an FM wave, BT is effectively independent of the
modulation frequency fm.

Problem 2.35

The filter input is

Vl(t) g(t) s(t)

g(t) cos(2nfct - nktz)
The complex envelope of v1(t)>is
V,(6) = g(t) exp(-jnkt®)

The impulse response h(t) of the filter is defined in terms of the complex impulse
response h(t) as follows

h(t) = Re[h(t) exp(jarf t)]
With

h(t) = cos(21rfct + nktz),
we have

h(t) = exp(jnktz) 78



‘,———-QC the
The complex envelope¥filter output is therefore See.lqppevwill QJ
Volt) =£R(eE T (t)

1 (- -]
5 g(t) exp(-jwktz) exp[jnk(t—r)]zdt

-0

o«

: .
=5 exp(jﬂktz) S g(1) exp(~j2nktt) dt

-l

nf —

= + exp(jukt?) G(kt)
Hence,
~ 1
ot 1 = % 1G(KkE)

This ‘shows that the envelope of the filter output is, except for the scale factor of 1/2,

equal to the magnitude of the Fourier transform of the input signal g(t), with kt playin
the role of frequency f. ° ¢ ¢ ’ pravine

Problem 2.36
The overall frequency multiplication ratio is
n=2x3=2©6

Assume that the instantaneous frequency of the FM wave at the input of the first frequency
-multiplier is

fi1(t) = fc + Af cos(2nfmt)

The instantaneous frequency of the resulting FM wave at the output of the second frequency
multiplier is therefore

fi2(t) = nfc + nAf cos(2nfmt)
Thus, the frequency deviation of this FM wave is equal to
nAf = 6x10 = 60 kHz

and its modulation index is equal to

nAf _ 60
f 5

= 12

m

The frequency separation of the adjacent side-frequencies of this FM wave is unchanged at
f_ = 5 kHz,.
m
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Problem 2.37

(a) Figure 1 shows the simplified block diagram of a typical FM transmitter (based on the indirect
method) used to transmit audio signals containing frequencies in the range 100 Hz to 15 kHz. The
narrow-band phase modulator is supplied with a carrier signal of frequency f; = 0.2 MHz by a
crystal-controlled oscillator. The desired FM signal at the transmitter output is to have a carrier
frequency f. = 100 MHz and a minimum frequency deviation Af = 75 kHz.

In order to limit the harmonic distortion produced by the narrow-band phase modulator, we
restrict the modulation index B, of this modulator to a maximum value of 0.3 radians. Consider

then the value By = 0.2 radians, which certainly satisfies this requirement. The lowest modulation
frequencies of 100 Hz produce a frequency deviation of Af; = 20 Hz at the narrow-band phase

modulator output, whereas the highest modulation frequencies of 15 kHz produce a frequency
deviation of Af) = 3 kHz. The lowest modulation frequencies are therefore of immediate concern,
as they produce a much lower frequency deviation than the highest modulation frequencies. The
requirement is therefore to ensure that the frequency deviation produced by the lowest modulation
frequencies of 100 Hz is raised to 75 kHz.

Baseband '
signal Narrow-band Frequency Freqqerfcy FM signal
=Pt Integrator |je=3m phase > multiplier > Mixer L3{ multiplier p-3

modulator n, ny
ﬂ A
0.1 Mz 9.5MHz
Crystal- Crystal-
controlled controlied
oscillator oscillator
Figure 1

To produce a frequency deviation of Af = 75 kHz at the FM transmitter output, the use of
frequency multiplication is obviously required. Specifically, with Af; = 20 Hz and Af = 75 kHz,
we require a total frequency multiplication ratio of 3750. However, using a straight frequency
multiplication equal to this value would produce a much higher carrier frequency at the
transmitter output than the desired value of 100 MHz. To generate an FM signal having both the
desired frequency deviation and carrier frequency, we therefore need to use a two-stage frequency
multiplier with an intermediate stage of frequency translation as illustrated in Fig. 1. Let ny and n,

denote the respective frequency multiplication ratios, so that

nny, = —- = == = 3750 )
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The carrier frequency n,f] at the first frequency multiplier output is translated downward to (f; -
nif1) by mixing it with a sinusoidal wave of frequency f, = 95 MHz, which is supplied by a

second crystal-controlled oscillator. However, the carrier frequency at the input of the second
frequency multiplier is required to equal f/n,. Equating these two frequencies, we thus get

fe
fa-nfy = s

2

Hence, with f; =0.1 MHz, f;, = 9.5 MHz, and f, = 100 MHz, we have

95-0.1n, = 190 @)

U]
Solving Egs. (1) and (2) for n; and n,, we obtain

I’l1=75
I’l2=50

(b) Using these frequency multiplication ratios, we get the set of values indicated in the table
below:

Table -Values of Carrier Frequency and Frequency Deviation at the
Various Points in the Wide-band Frequency Modulator of Fig. 1

At the First At the Second
At the Phase Frequency Frequency
Modulator Multiplier At the Mixer Multiplier
Output Output Output Output
Carrier 0.1 MHz 7.5 MHz 2.0 MHz 100 MHz
frequency
Frequency 20 Hz 1.5kHz 1.5 kHz 75 kHz
deviation
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Problem 2.38

(a) Let L denote the inductive component, C the capacitive component, and C, the
capacitance of each varactor diode due to the bias voltage Vb acting alone. Then, we have

) -1/2
Co = 100 Vo '/ pF

and the corresponding frequency of oscillation is

1
f. =
0 2wVL(C+C0/2)

Therefore,

106 = !

A

1/2 -12

21/200 x 10~° (100 x 10712 4+ 50 vo1/2 x 10719

Solving for V., we get
Vp = 3.52 volts

(b) The frequency multiplication ratio is 64, Therefore, the modulation index of the FM
wave at the frequency multiplier input is

2

7= 0,078

B:

[e))

This indicates that the FM wave produced by the combination of L, C and the varactor
diodes is a narrow-band one, which in turn means that the amplitude Am of the modulating
wave is small compared to Vb. We may thus express the instantaneous frequency of this FM
wave as follows:

=12 ~12 -1/2}]—1/2

1 -6 .
fi(t) = E; [200 x 10 {100 x 10 + 50 x 10 (3.52 + Am 51n(2nfmt)]

7 A
10 {1 +0.266 [1 «+ n

-1/2}-1/2
/2T 3.52

sin(2nfmt)]

A

107 m
7.04

2Y2n

n

{1 + 0.266 [1 - sin(2ﬂfmt)]}-1/2

= 10% 11 - 0.03 A sin(2ﬂfmt)]-1/2

]

6 .
107 [1 + 0.015 Am 51n(2ﬂfmt)]
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With a modulation index of 0.078, the corresponding value of the frequency deviation
is

Af

B £,

0.078 x 10" Hz

Therefore,

0.015 A_ x 10% = 0.078 x 10"

where Am is in volts. Solving for Am’ we get

3 volts.

Am =52 x 10
Problem 2.39

The transfer function of the RC filter is
_  j2wfCR
H(E) = p357Tx

If 2nfCR << 1 for all frequencies of interest, then we may approximate H(f) as

H(f) = j2nfCR

N

However, multiplication by j2=nf in’the frequency domain is equivalent to differgntiation
in the time domain. Therefore, denoting the RC filter output as v1(t), we may write

- ds(t)
vy(®) = CR Sg=
d t
= — J t) dt
= CR at {Ac costﬂfct + 2ﬂkf 0 m(t) 11
t
= =CR Ac[21rfc + 2nkfm(t)] sin[2nfct + 21rkf IO m(t) dt]

The corresponding envelope detector output is

ke
V() = 2nf CR A |1 + T m(t) ]

Since k. {m(t)] < f_ for all t, then

k
f
vo(t) = 2nf CR Ac[1 + ?: m(t)]

which shows thaf, except for a dc bias, the output is proportional to the modulating
signal m(t).
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Problem 2.40

The envelope detector input is

v(t) = s(t) - s(t-T)
= Ac COS[Zﬂfct+ $(t)] - Ac cos[anc(t-T) + ¢(£-T)]
21rf‘c(2t-T) + ¢(t) + ¢(t-T) 21rch + ¢(t) = ¢(t=-T)
= =28 sin[ 1 sinf{ ]
c 2 2
where
¢(t) = B sin(2nfmt)

The phase difference ¢(t) - ¢(t-T) is

o(t) - ¢(t=T) = B sin(anmt) - B sin[21rfm(t—T)]
= B[sin(2nfmt) - sin(2nfmt) cos(2nfﬁT) + cos(2wfmt) sin(2nfmT)]
® B[sin(2nfmt) - sin(2nfmt) + 2nfmT cos(2ﬂfmt)]
= 2uAfT cos(2ﬂfmt)
where
of = Bfm.

Therefore, noting that 2ﬂch = /2, we may write

2nf T + ¢(t) - ¢(t-T)
c
5 ]

sint

R

sin[ﬂch + TAFT cos(2nfmt)]

sin[% + TAFT cos(27f t)]

V2 cos[ nAfT cos(2nfmt)] + Y2 sin[ wAfT cos(2ﬂfmt)]

V2 + V2 aAfT cos(2ﬂfmt)

where we have made use of the fact that wAfT << 1. We may therefore rewrite Eq. (1) as

v(t) « =2/2 A_[1 + nafT cos(2nf,t)] sinlnf_(2t-T) + £LE) * o(t=T);

Accordingly, the envelope detector output is
a(t) = 2 y2 A [1+nafT cos(2nf t)]

which, except for a bias term, is proportional to the modulating wave.
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Problem 2.41

(a) In the time interval t—(T1/2) to t+(T1/2), assume there are n zero crossings. The

phase difference is ei(t+T1/2) - ei(t-T1/2) = nm. Also, the angle of an FM wave is

t
ei(t) = 2nfct + 2nkf fo m(t) dt.
Since m(t) is assumed constant, equal to My, ei(t) = 2nfct + 2mk omit. Therefore,

ei(t+T1/2) - ei(t—T1/2) = (anc + anfm1) [t+T1/2 - (t-T1/2)].

(21rf‘c + 211kfm1) T1.
But

do; (t)

fi(t) = It = 21Ifc + 21fkfm1 .

Thus,
ei(t+T1/2) - ei(t-T1/2) = fi(t) T1.

But this phase difference also equals nn. So,
f‘i(t) T1 = nm

and
fi(t) = nw/T,

(b) For a repetitive ramp @S the modulating wave, we have the following set of waveforms
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Problem 2.42

The complex envelope of the modulated wave s(t) is
s(t) = a(t) expli¢(t)]

Since a(t) is slowly varying compared to expl[j¢(t)], the complex envelope s(t) is
restricted effectively to the frequency band - BT/2 £ f < BT/2' An ideal frequency
discriminator consists of a differentiator followed by an envelope detector. The output
of the differentiator, in response to s(t), is

|o.

s(t)

vo(t) dt

{a(t) expljy(t)1}

aln,
ct

= S5 expLie(0)] + 3 SHED ate) explioCe)

a(t) exp[j¢(t)] [a(t) __d?jét) + 3 ddt(:t)]

Since a(t) is slowly varying compared to ¢(t), we have

|d¢(t) da(t)
' I > 'a(t) dat ’

Accordingly, we may approximate ;;(t) as
vo(e) = § ae) L exprjace))

However, by definition
t
(L) = 21rk S m(t) dt
0
Therefore,
Vo(t) = j2mk, a(t) m(t) explj¢(t)]

Hence, the envelope detector output is proportional_to a(t) m(t) as shown by

IVo(t)l = 2nk . a(t) m(t)

Problem 2.43
(a) The limiter output is
z(t) = sgn{a(t).cos[anct + #(t)1}
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Since a(t) is of positive amplitude, we have

z(t)

sgn{cos[anct + ¢(£)]}
Let

w(t)

anct + ¢(t)

Then, we may write

sgnlcos 9] = I e, exp(jny)

N==c
1 kil
e, = 55 J sgnlcos ¢] exp(-jny) dy

-

1 -1/2 1 /2

=57 (=1) exp(=jny)dy + 5=/ (+1) exp(-jny) dy

-l -n/2
1 ™

+ 5= [ (-1) exp(=jny) dy
2% 1/2

If n # 0, then
e, = 2“(1jn) [_exp(igl)+exP(jn“)+exP(:igﬂ)'exP(J%E)-exp(—jnn)+exp("S“)]
= 1?!1-[2 Sin('n—g)—sin(nn)]

2__qy(n=-172 n odd
m

0, n even

If n=0, we find from Eq. (1) that cn=0. Therefore,

- -]

sgnlcos y] = % z % (-1)(1"-1)/2 exp(jny)
n= -
n odd
© k
_ 4 (-1
== kfo s cosly(2k+1)]

We may thus express the limiter output as
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© k
2(t) = 3 5 SEii- cosl2nt t(2k+1) + $(£) (2ks1)] @)
k=

(b) Consider the term

cos[21rf‘ct(2k+1 Y+ ¢(t) (2k+1)] Re{exp[j2ﬂfct(2k+1‘)]exp[j¢(t) (2k-n;1 )1}

2k+1}

n

Re{exp[jZcht(ZkH)][exp(j¢(t))]
The function exp[jé(t)], representing the complex envelope of the FM wave with unit
amplitude, is effectively low-pass in nature. Therefore, this term represents a band-pass
signal centered about ifc(2k+1). Furthermore, the Fourier transform of {exp[j¢(t)]}2k+1
is equal to that of explj¢(t)] convolved with itself 2k times. Therefore, assumingz:h?t
-'expp,'jcb(t)] is limited to the interval -Bp/2 < f £ Bp/2, we find that (exp[jcb(t)D *iS
limited to the interval -(B/2)(Z+1) < f < (Bp/2)(X+1).

Assuming that fc > BT" as is usually the case, we find that none of the terms
~ corresponding to values of k greater than zero will overlap the spectrum of the term
corresponding to k=0, Thus, if the limiter output is applied to a band-pass filter of
bandwidth BT and mid-band frequency fc, all terms, except the term corresponding to k=0 in
Eq. (2), are removed by the filter. The resulting filter output is therefore

y(t) = i_:- cos[2nf t + ¢(t)]

We thus see that by using the amplitude limiter followed by a band-pass filter, the effect
of amplitude variation, represented by a(t) in the modulated wave s(t), is completely

removed,

Problem 2.44
(a) Let the FM wave be defined by
t

s(t) = A_ cos[2nf t + 21k, S m(t) dt]
o] c f 0

Assuming that fc is large compared to the bandwidth of s(t), we may express the complex
envelope of s(t) as
N t
s(t) = A explj2nk. /' m(t) dt]
c f 0
s see Az 2)
But, by definition, the pre-envelope of s(t) is fm?””’z"
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s,(t) = S(t) exp(j2nf t)

s(t) + j 8(v)
where 3(t) is the Hilbert transform of s(t). Therefore,

t

s(t) + j8(t) = A explj2mk, /' m(t) dt] exp(janf t)
c f 0 c

t t
A {cos[2nf t + 2nk, s m(t) dt] + j sinl[27f t + 27k, / m(t) dtl}
c c f 0 c f 0

Equating real and imaginary parts, we deduce that

t
3(t) = A sin[27f t + 21k, / m(t) dt] (1)
c c f 0

(b) For the case of sinusoidal modulation, we have

m(t) = Am cos(2nfmt)

The corresponding FM wave is

s(t) = Ac cos[2nfct + B sin(2nfmt)]

where

B = kf Am

Expanding s(t) in the form of a Fourier series, we get

- -]

s(t) = Ac z Jn(B) cos[2n(fc+nfm)t]

n=-*

Noting that the Hilbert transform of cos[27%(f +nf )t] is equal to sin[2n(f_+nf )t], and

using the linearity property of the Hilbert tr%nsﬂgrm, we find that the Hilﬂ%rt %ransform
of s(t) is

<0

Ac T Jn(B) sin[2n(fc+nfm) t]

n=-==°

3(t)

A, 51n[2nfct + B 51n(2ﬂfmt)]

This is exactly the same result as that obtained by using Eq. (1). In the case of
sinusoidal modulation, therefore, there is no error involved in using Eq. (1) to evaluate
the Hilbert transform of the corresponding FM wave,

Problem 2.45

(a) The modulated wave s(t) is

s(t) = exp[=9(t)] cos[2nf t + ¢(t)] 110



1]

Re{exp[-3(t)] exp[j2nf t + jo(t)]}
Re{expl j2nf ,t + J(¢(t) + j3(£))1}

Re{exp[jZﬂfct + J¢, (£)1} (1
where ¢+(t) is the pre-envelope of the phase function ¢(t), that is,
0, (8) = 4(t) + 33(t) |

Expanding the'exponential function exp[j¢ (t)] in the form of an infinite series:

o .n
expl j¢, ()] = : L 9, (t) (2)
n=

Taking the Fourier transform of both sides of this relation, we may write
-

CFlexplie, (81} = =
n=

N
J n
, At FLe®)]

For n>2, we may express ¢2(t) as the product of ¢ _(t) and ¢2-1(t). Hence,
n n-1
FLoT(t)] = 4>+(f)‘;i‘r1=[¢+ (t)]

where ¢ (t) <= °+(f), and Y% denotes convolution. Since ¢+(f) = 0 for £ < 0, it follows
that for all n > O,

F[<I>r+l(t)] = 0, for £ < 0
Hence,
Flexp[ jé _(£)1} = 0 for £ <0

By using the frequency-shifting property of the Fourier transform, it follows that

Flexplj¢ (t)] exp(j2nfct)} =0 for f < f (3)
From Eq. (1),

s(t) = 3 lexpli2nf b + jo,(t)] + expl-j2nf t - j¢.(t)])
where ¢:(t) is the complex conjugate of ¢+(t). Therefore,

FIs(t)] = 3 Flexplj2af b + 3o,(t)1} + 5 Flexpl-j2uf t = Jo (1))

Applying the conjugate-function property of the Fourier transform to Eq. (3), we find that

Flexpl-j2nf _t - jo.(t)1} = 0, for £ > £,
, 111



115

Hence, it follows that the spectrum of s(t) is zero for —fc < f < fc. However, this
spectrum is of infinite extent, because the expansion of s(t) contains an infinite number

of terms, as in eq. (2).
(b) With

o(t) = B sin(anmt),
we find that .

$(t) = =B COS(Zﬂfmt)

Therefore,
¢+(t) =B sin(2ﬂfmt) - jB cos(2nfmt)
= - JB[cos(anmt) + ] sin(2nfmt)]
= - jB exp(j2nfmt)
Hence , »

expl j¢_(t)] = explB exp(j2nfmt)]

Z oyl exp( j21ﬂ1f t)
n: m
n=0

The modulated wave s(t) is therefore

s(t)

]

Re{exp(janf t) expljo, (t)]}

© n
Relexp(jenf t) ET exp( j2mf_t)]
¢’ Lo M m

® n
B
Re{ n§0 T exP[JZW(fc+nfm)t]}

gh
o7 COS[Zn(fc+nfm)t]

"
n g

n=0
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Problem 2.46

After passing the received signal through a narrow-band filter of bandwidth 8kHz centered on
f. =200kHz, we get

x(t) = A m(t)cos(2nf 1) +n'(2)

A m(r)cos(2nf 1) +n’y(t)cos(2nf t) —n' (t)sin(2nf 1)

(Am(1) +n(t))cos(2nf ) —n’ y(t)sin(2nf 1)

where n’(t) is the narrow-band noise produced at the filter output, and n’ ;(t) and n’Q(t) are its

in-phase and quadrature components. Coherent detection of x(¢) yields the output
y(2) = Am(t) +n’ (1)
The average power of the modulated wave is

AcP 10w
< =

where P is the average power of m(r). To calculate the average power of the in-phase noise
component n’/(t), we refer to the spectra shown in Fig. 1:

Part (a) of Fig. 1 shows the power spectral density of the noise n(z), and a superposition of the
frequency response of the narrow-band filter.

Part (b) shows the power spectral density of the noise n’;(z) produced at the filter output.

Part (c) shows the power spectral density of the in-phase component »’ (1) of n'(2).

Note that since the bandwidth of the filter is small compared to the carrier frequency f,, we have
approximated the spectral characteristic of n’(t) to be flat at the level of 0.5 x 106 watts/Hz.
Hence, the average power of n’/(z) is (from Fig. 1c):

(10°° watts/Hz) (8 x 10%) = 0.008 watts

The output signal-to-noise ratio (SNR) is therefore

10
0008 = 1,250

Expressing this result in decibels, we have an output SNR of 31 dB.
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Problem 2.47

From Problem 5.38, we note that the

: quadrature components of a narrow-band noise have
autocorrelations:

RNI(T) = RNQ(T) = RN(T) cos(21rfct) + RN(r) sin(21rfc-r)

where Ry(t) is the autocorrelation of the narrow-band noise, Ry(t) is the Hilbert

transform of R\ (t), and fc is the band centey. The cross-correlations of the quadrature
components are '

RN N (t) = -RN N (1) = RN(T) sin(21rfcr) - ﬁN(T) cds(21rf‘cl’)
T & Ia

(a) For a DSBSC system,

RNI(T) = RNQ(T) = RN(T) cos(21rf‘c'r) + };N(T) sin(anct)

RN N (t) = -RN NY(-r) = RN(-r) sin(21rfct) - EN(T) cos(21rf'ct)
T Q QI

where fc is the carrier frequency, and RN(T) is the autocorrelation function of the

narrow-band noise on the interval f - W < £ < f +W.
.(b) For an SSB system using the lower sideband,

Ry (1) = Ry (T) = Ry(T) cos(2m(f - $)1) +.§N(T) sin(2m(f = P

I
R ' Ll Ry (1) cos(2n(f .~ %y1)
NN (t) = -RN N (1) = RN(T) sm(21r(fc— 5)1) - Ry(1) cos 7 ( o= BT
I Q Qr

where in this case, RN('r) is the autocorrelation of the narrow-band noise on the interval
c - = "c

(¢) For an SSB system with only the upper sideband transmitted, the correlations are
W
similar .to (b) above, except that (f'c- g) is replaced by (fc+ 5), and the narrow-band

noise is on the interval f < f < f +W.

Problem 2.48
x(t) Band-pass 7\ v(t) Low-pass v(t)
— filter “x ] o filter e

cos[21rfct+6 (t)]
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The signal at the mixer input is equal to s(¢) + n(z), where s(r) is the modulated wave, and n(z) is
defined by

n(t) = ny(r)cos(2nf t) - no(t)sin(2nf 1)
with

Elnj(1)] = Elny(1)] = NoBy

The s(z) is defined by for DSB-SC modulation
s(1) = Am(t)cos(2nf 1)

The mixer output is

v(t) = [s(2) +n(t))cos[2nf .1 + 6(2)]

{[Am(t) + ny(r)cos(2nf 1) - no(t)sin(2mf 1) tcos2nf .t +0(r)]

- %[Acm(t) +1,(1){cos[0(1)]} + cos[4m St +8(1)]

+ %Ach(t){ sin[0(1)] - sin[47f .1 +0(1)]}

The postdetection low-pass filter removes the high frequency components of v(f), producing the
output

() = %[[Acm(t) +n,(t)]cos[0(r)] + %Ach(t)sin[G(t)] (1)

When the phase error 6(¢) is zero, we find that the message signal component of the receiver

1 . .
output is EA .m(t). The error at the receiver output is therefore

AC
e(t) = y(t) = 5m(1)
The mean-square value of this error is

e = E[e*()]
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- E[(y(t) - %?m(t)ﬁ )

Substituting Eq. (1) into (2), expanding the expectation, and noting that the processes m(z), 6(2),
ny(t) and nQ(t) are all independent of one another, we get

2
A
e = ZSE[m’()]E[(cos’0(1)))] +L—11E[n?(t)]E[cosze(t)]

+ leE[nZQ(t)]E[sinze(t)]

A? 2 A? 2
+ 7 Elm™(5)] - S E[m" (1) E[cos6(1)]

We now note that

Eln;(n) = Elng()] = oy

Eln;(1)]E[cos 0(1)] + Elngy(1)1E[sin 0(1)] = o,

N
Therefore,
2 2
A c
£ = TCE[mz(t)]E{[l—cosG(t)]2}+TN
2 0_2
_ Tc 2 °N
= E{[1+cosO()] } + 1

where P = E[mz(t)].

For small values of 6(#), we may use the approximation

2
o
1 -cosO(1) = TN

Hence,
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2 2

Since 8(z) is Gaussian-distributed with zero mean and variance 64, we have

E6*(1)] = 304

The mean-square error for the case of a DSBSC system is therefore

2, 4 2
. 3A_Poy N Oy
16 4
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Problem 2.49

Consider the case of a receiver using coherent detection, with an incoming single-sideband (SSB)
modulated wave. We assume that only the lower sideband is transmitted, so that we can express
the modulated wave as

s(1) = %CACCOS(anCt)m(t)+%CACsin(anct)m(t) (1)

where m(z) is the Hilbert transform of the message signal m(r). The system-dependent scaling
factor C is included to make the signal component s(¢) have the same units as the noise component
n(). We may make the following observations concerning the in-phase and quadrature
components of s(z) in Eq. (1):

1. The two components m(t) and (1) are orthogonal to each other. Therefore, with the message
signal m(r) assumed to have zero mean, which is a reasonable assumption to make, it follows
that m() and 7 (t) are uncorrelated; hence, their power spectral densities are additive.

2. The Hilbert transform 7(¢) is obtained by passing m(z) through a linear filter with a transfer
function - jsgn(f). The squared magnitude of this transfer function is equal to one for all f.
Accordingly, we find that both m(¢) and /(z) have the same power spectral density.

Thus, using a procedure similar to that in Section 2.11, we find that the in-phase and quadrature
components of the modulated signal s(#) contribute an average power of CzAiP/ 8 each, where P

1s the average power of the message signal m(r). The average power of s(7) is therefore CzAzP/ 4.
This result is half that in the DSB-SC receiver, which is intuitively satisfying.

The average noise power in the message bandwidth W is WN, as in the DSB-SC receiver. Thus
the channel signal-to-noise ratio of a coherent receiver with SSB modulation is

C’AlP

(SNR)C, SSB ~ WNO

)

As illustrated in Fig. 1a, in an SSB system the transmission bandwidth By is W and the mid-band
frequency of the power spectral density Sy(f) of the narrow-band noise n(z) is offset from the
carrier frequency f,. by W/2. Therefore, we may express n(r) as

n(t) = n,(z)cos[zn(fc-%)r}-nQ(r)sin[zn(fc-g)t} 3)

The output of the coherent detector, due to the combined influence of the modulated signal s(z)
and noise n(z), is thus given by
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1) = %CAcm(z) + %n,(t)cos(nWt) + %nQ(t)sin(nWt) ()

As expected, we see that the quadrature component #(¢) of the modulated message signal s(r)
has been eliminated from the detector output, but unlike the case of DSB-SC modulation, the
quadrature component of the narrow-band noise n(f) now appears at the receiver output.

The message component in the receiver output is CA m(1)/4, and so we may express the average

power of the recovered message signal as CzAzP/ 16 . The noise component in the receiver

output is [n,(f)cos(nWr) + nQ(t)sin(nWt)]/Z. To determine the average power of the output noise,
we note the following:

1. The power spectral density of both n/(r) and np(?) is as shown in Fig. 1b.
2. The sinusoidal wave cos(nWr) is independent of both n,f) and no(#). Hence, the power

spectral density of n’;(t) = n,(t)cos(nWt) is obtained by shifting S NI( f) to the left by
Wi/2, shifting it to the right by W/2, adding the shifted spectra, and dividing the result by 4.
The power spectral density of n’Q(t) = np(t)sin(nWr) is obtained in a similar way. The
power spectral density of both n’;(¢) and n’o(t), obtained in this manner, is shown sketched
in Fig. 1c.

From Fig. 1c we see that the average power of the noise component n’,(t) or n’Q(t) is WNy/2.

Therefore from Eq. (4), the average output noise power is WNy/4. We thus find that the output

signal-to-noise ratio of a system, using SSB modulation in the transmitter and coherent detection
in the receiver, is given by

Cc’AlP
(SNR),, s = IWN, )
Hence, from Egs. (2) and (5), the figure of merit of such a system is
(SNR)ol  _ (6)
(SNR)¢|ssp

where again we see that the factor C? cancels out.

Comparing Eqs. (5) and (6) with the corresponding results for DSB-SC modulation, we conclude
that for the same average transmitted (or modulated message) signal power and the same average
noise power in the message bandwidth, an SSB receiver will have exactly the same output signal-
to-noise ratio as a DSB-SC receiver, when both receivers use coherent detection for the recovery
of the message signal. Furthermore, in both cases, the noise performance of the receiver is the
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as that obtained by simply transmitting the message signal itself in the presence of the same noise.
The only effect of the modulation process is to translate the message signal to a different
frequency band to facilitate its transmission over a band-pass channel.
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Problem 2.5_0

The power spectral density of the message signal m(t) is as follows
SM(f)

e e e e - e — e -

-W 0 W
The average signal power is therefore

P = {m Sy(f)df

W
2/ ailar
0

= aW

The corresponding value of the output signal-to-noise ratio of the SSB receiver is
therefore, (using the solution to Problem 2.49)

~A2 P
e

(SNR)O
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Problem 2.51

(a) If the probability
P(Ing(t)t > eA 11 + km(t)1) < &y ,
then, with a probability greater than 1 - 61, we may say that
~ 2,1/2
y(t) = {[Ac + A,k m(t) + nc(t)] }

That is, the probability that the quadrature component ns(t) is negligibly small is
greater than 1 - 61.

(b) Next, we note that if ka m(t) < -1, then we get overmodulation, so that even in the

absence of noise, the envelope detector output is badly distorted. Therefore, in order to

avoid overmodulation, we assume that k_ is adjusted relative to the message signal m(t)
cq s a

such that the probability

P(AC + Ac ka m(t) + nc(t) <0) = 62
Then, the probability of the event

y(t) = Ac[1 +k, m(t)] + nc(t)
for any value of t, is greater than (1 - 51)(1 - 52).

(¢) When 61 and 62 are both small compared with unity, we find that the probability of
the event

y(t) = A [ + k, m(t)] + n_(t)

for any value of t, is very close to unity. Then, the output of the envelope detector is
approximately the same as the corresponding output of a coherent detector.

Problem 2.52

The received signal is
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x(t) = Ac cos(2nfct) + n(t)

Ac cos(anct) + nc(t) cos(2nfct) - ns(t) sin(2nfct)

[Ac + nc(t)] cos(2nfct) - ns(t) sin(anct)
The envelope detector output is therefore
_ 2 2 1/2

a(t) = {[A, + nc(t)] S+ ns(t)}
For the case when the carrier-to-noise ratio is high, we may approximate this result as

a(t) = Ac + nc(t)

2

The term Ac represents the useful signal component. The output signal power is thus L

The power spectral densities of n(t) and njft) are as shown below:

£
sN( )
N_/2
R - A
£
B 0 £
£_ o
——f W = — oy =
“r [N
£
W 0 W

The output noise power is ZNOW. The output signal-to-noise ratio is therefore

n

A
c

2NOW

(SNR)O =
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Problem 2.53

(a) From Section 1.12 of the textbook we recall that the envelope r(¢) of the narrow-band noise
n(r) is Rayleigh distributed; that is

2
Fatr = Lzexp(—r—z]

Oy 20y

2 . ) . . 2 .
where o), is the variance of the noise n(f). For an AM system, the variance oy is 2WNj.

Therefore, the probability of the event that the envelope R of the narrow-band noise n(r) is large
compared to the carrier amplitude A, is defined by

P(R2A) = [ fo(r)dr

2
= J.m z exp d dr
A.2WN, 4WN,

I 1
- Pl Taww, ()

Define the carrier to noise ratio as

0 = average carrier power @)

average noise power in bandwidth of the modulated message signal

Since the bandwidth of the AM signal is 2W, the average noise power in this bandwidth is 2WN,,.

L2 . . .
The average power of the carrier is A, /2. The carrier-to-noise ratio is therefore

A2

C

IWN, 3)

p:

(b) We may now use this definition to rewrite Eq. (1) in the compact form
P(R=2A,) = exp(-p) 4)

Solving P(R > A,) = 0.5 for p, we get
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p =log2 =0.69
Similarly, for P(R > A,) = 0.01, we get
p =1ogl00 =4.6

Thus with a carrier-to-noise ratio 10log;30.69 = -1.6 dB, the envelope detector is expected to be
well into the threshold region, whereas with a carrier-to-noise ratio 10log;¢4.6 = 6.6 dB, the

detector is expected to be operating satisfactorily. We ordinarily need a signal-to-noise ratio
considerably greater than 6.6 dB for satisfactory intelligibility, and therefore threshold effects are
seldom of great importance in AM receivers using envelope detection.

Problem 2.54

(a) Following a procedure similar to that described for the case of an FM system, we find
that the input of the phase detector is

v(t) = Ac cos[2nfct + 8(t)]

where

n_(t)
&
kp m(t) + Ac

with ne(t) denoting the quadrature noise component. The output of the phase discriminator

o(t)

is therefore,

n&(t)
y(t) = kp m(t) + =

c
The message signal component of y(t) is equal to kp m(t). Hence, the average output
signal power is ks P, where P is the message signal power.

With the post detection low-pass filter following the phase detector restricted to
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. . 2
the message bandwidth W, we find that the average output noise power is ZWNO/AC.
Hence, the output signal-to-noise ratio of the PM system is

k2 p A2

c
ZWNO

(b) The channel signal-to-noise ratio of the PM system is the same as that of the corres-
ponding FM system. That is,

(SNR)O =

G

= C
(SNR)g = N
0
The figure of merit of the PM system is therefore equal to ks P.
For the case of sinusoidal modulation, we have

m(t) = Am cos(21rf‘mt)

Hence,
Ay
P = 5
The corresponding value of the figure of merit for a PM system is thus equal to %— g,
where Bp = kp Am‘ On the other hand, the figure of merit for an FM system with sinusoidal

modulation is equal to g— 82. We see therefore that for a specified phase deviation, the

FM system is 3 times as good as the PM system.

Problem 2.55

(a) The power spectral densities of the original message signal, and the signal and noise

c.:omponents at the frequency discriminator output (for positive frequencies) are
i1llustrated below:

Sp ectral 59“51‘3
of message

51_3/\&

f(kHz)

SPQCH& dens: Cj

°F Si.sf\ch.
Cemponeal ak
Aisevyim actoT
X R . f(kHz)
ouk put ‘ , L L, ) : . " ' ,
4 8 12 16 20 24 28 32 36 40 44 48

2

127



) Pec\m& der\s'&'ﬁ

oLk noune
c,orwpo.'\e,\\- ot
disexs mi natof

o \JJ-PU“\'

|
|
|
!
|
I
|
| f (kHz)

0 48 '

(b) Each SSB modulated wave contains only the lower sideband. Let Ak and kfo denote the

amplitude and frequency of the carrier used to generate the kth modulated wave, where fo =
4 kHz, and k = 1, 2, ..., 12 Then, we find that the kth modulated wave occupies the
frequency interval (k - 1)fo <if) < kfo. We may define this modulated wave by

g

s(t) = 55 m(t) cos(2mkft) + ;E m(t) sin(2nkf0t)
where m(t) is the original message signal, and @(t) is its Hilbert transform. Therefore,
‘the average power of sk(t) is As P/U4, where P is the mean power of m(t).
we ﬁay express the output signal-to-noise ratio | )
for the kth SSB modulated wave as follows:

2 .2,,2
3Ac kf(Ak P/4)

(SNR).. -
0 2N0[k3fc3) - (k - 1)3fg]

where Ac is the carrier amplitude of the FM wave. For equal signal-to-noise ratios, we

must therefore choose the Ak 50 as to satisfy the condition

2 = constant for k = 1, 2, sy 12.
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Problem 2.56

The envelope r(t) and phase y(t) of the narrow-band noise n(t) are defined by

w®) = {n® + nZ®

t)
t) = tan"1 | 2Q
y(t) = tan [nx(t)J

For a positive-going click to occur, we therefore require the following:

nI(t) - - Ac

ng(t) has a small positive value

i tan~! {nQ(t) ]> 0
dt ny(t)

Correspondingly, for a negative-going click to occur, we require
nj(t) « A,
ng(t) has a small negative value

4 tan- [nQ(t)) <0
dt nI(t)
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Problém 2.57 C.

—

Y
V. () m | Vo)
in ﬁi cut
o , 0

Let H(f) be Vout(f‘)/Vin(f), or the transfer function of the filter. At low

frequencies, the capacitor behaves as an open circuit. Then,

R _R
H(f)-r+R_r_'_

Thus, the low frequencies of the input are frequency-modulated. At high frequencie%, the
capacitor behaves as a short circuit in relation to the resistor. Then,

H(f) = — B =+ j2u£CR ,

and

v (t) =RC —— v

out

Frequency modulating the derivative of a waveform is equivalent to phase modulating the
waveform. Thus, the high frequencies of the input are phase modulated.

Pr

Problem 2.58

(a) For the average power of the emphasized signal to be the same as the average power of
the or.iginal message signal, we must choose the transfer function H__(f) of the pre-
emphasis filter so as to satisfy the relation pe

[} - -]

_ 2
fw SM(f)df‘ = -J-'w |Hpe| SM(f)df
With
S
0
T, HLELKW
1+ (f‘/f‘o)2
SM(f) =
0, el sewhere,
H O (f) = k(1 + 35
pe f
0
we have
Yoo gr o ¥ 130

i) -—-——-—-——2-=k S df
-W1+(f/f0) W



Solving for k, we get

f

0 -1 W
k = [w tan

172
Gy
o

P

(b) The improvement in output signal-to-noise ratio obtained by using pre-emphasis in the
transmitter and de-emphasis in the receiver is defined by the ratio

3
D 2W

W

2 2
3/ £fT5HH, (DT df
W de

2W3

W f2 df
37 - I —
AWk 14+ (f/fo)

2 3
k (W/fo)

-1
3[(W/f0) - tan” (W/f,)]
Substituting Eq. (1) in (2), we get

(W/f0)2 tan-1(W/fo)
D =
30CW/E,) - tan-1(W/fo)]

This result applies to the case when

the same with or without pre-emphasis.
find from Example 4 of Chapter 6 that the

3
D - (W/fo)
-1
3[(w/f0) - tan (W/fo)]

In the diagram below, we have plotted the
ratio W/f'O for the two caseé; when there

there is no such constraint:

(2)

(3)

the rms bandwidth of the FM system is maintained
When, however, there is no such constraint, we
corresponding value of D is

4)

improvement D (expressed in decibels) versus the

is a transmission bandwidth constraint and when
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10 9‘3'0} 20

dec/bels

_ W/t
1 3.16 10 31.6 100 0

In a PM system, the power spectral density of the noise at the phase discriminator
‘output (in the absence of pre-emphasis and de-emphasis) is approximately constant.
_Therefore, the improvement in output signal-to-noise ratio obtained by using pre-emphasis
in the transmitter and de-emphasis in the receiver of a PM system is given by

Problem 2.59

W
;odf
D = 0
v 2
;1B (D)1%df
0 e

With the transfer function Hde(f‘) of the de-emphasis filter defined by

1
HaelD = 75578y
we find that the corresponding value of D is’
W
daf
2
0 1+ (f/fo)

D =

W
i)

Wf0
tan_1(W/f0)

For the case when W = 15 kHz, f‘o = 2.1 kHz, we find that D = 5, or T dB. The
corresponding value of the improvement ratio D for an FM system is equal to 13 dB (see

Example 4 of Chapter B). Therefore, the improvement obtained by using pre-emphasis and

de~emphasis in a PM system is smaller by an amount equal to 6 dB.
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Problem 2.60
Matlab codes

% Amplitude demodulation
“problem 2.60, CS: Haykin
% Mathini Sellathurai

clear all
Ac=1;
mue=0.5;
£¢=20000;
fm=1000;
ts=1le-5;

% message signal
t=[0:250]*1e-5;
n=sin(2*pi*fm.*t);
plot(t, m)
xlabel(’time (s)’)
ylabel(’Amplitude’)
pause

% amplitude modulated signal
u=AM_mod (mue,m,ts,fc);
plot(t,u)

xlabel(’time (s)’)
ylabel(’Amplitude’)

pause

% demodulated signal

[t1, dem1]=AM_demod(mue,u,ts,fc);
plot(tixts, demi)

xlabel(’time (s)°’)
ylabel(’Amplitude’)

axis([0 2.5e-3 0 2])
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function u=AM_mod(mue,m,ts,fc)

% Amplitude modulation

/used in problem 2.60, CS: Haykin
% Mathini Sellathurai

%

t=[0:1length(m)-1]*ts;
c=cos (2*pi*fc.*t);
m_n=m/max(abs(m));
u=(1+mue*m_n).*c;
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function [t, env]=AM_demod(mue,m,ts,fc)
% Amplitude demodulation

%used in problem 2.60, CS: Haykin

% Mathini Sellathurai

%

fs=1/ts;

fsofc=round(fs/fc);

n2=length(m);

v=zeros(1l,round(n2/fsofc)); % initjalizing the envelope
R_L=1000; % load

C=0.01e-6; Y% capacitor

%demodulate the envelope

1=0; v(1)=m(1);

for k=1:fsofc:n2-fsofc

1=1+2;

v(1)=m(k)*exp(-ts/(R_L*C)/fsofc); % discharging
v(1+1)=m(k+fsofc); “charging

end

% envelope

t =0:fsofc/2:(length(v)-1)*fsofc/2;
env=v;
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Answer to Problem 2.60

Amplitude

T T T T
-0.2}
—0.4+
_0_6 -
-0.81-
-1 1 1 1 !
0.5 1 1.5 >

time (s)

Figure |; Message signal
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Figure«: Amplitude modulated signal
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Figureg: Demodulated signal
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Problem 2.61

Matlab codes
% Problem 2.61 CS: Haykin

% phase lock loop and cycle slipping

% M. Sellathurai

% time interval
t0=0;t£=25;

% frequency step =0.125 Hz
delf=0.125;
u0=[0 ~delf#*2#pil;

[t,ul=0de23(’1in’, [t0 tf],u0); plot(t,u(:

xlabel(’Time (s)’)
ylabel(’£_i (t), (Hz)’)
pause

% frequency step =0.51 Hz
delf=0.5;
u0=[0 ~delf*pi*2]’;

[t,ul=0de23(’1lin’, [t0 tf],u0); plot(t,u(:

xlabel(’Time (s)’);
ylabel(Pf_i (t), (Hz)’);
pause;

% frequency step =7/12 Hz
delf=7/12;
u0=[0 -delf*pi*2]’;

[t,ul=0de23(’1lin’, [t0 t£f],u0); plot(t,u(:

xlabel(’Time (s)’);
ylabel(’f_i (t), (Hz)’);
pause;

% frequency step =2/3 Hz
delf=2/3;
u0=[0 -delf*pi*2]’;

[t,ul=0de23(’1in’, [t0 t£f],u0); plot(t,u(:

xlabel(’Time (s)’);
ylabel(’f_i (t), (Hz)’);
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,2)/2/pi+delf);

,2)/2/pi+delf);

,2)/2/pitdelt);

,2)/2/pi+delf);



function uprim =lin(t,u)

% used in Problem 2.61, CS: Haykin
% PLL

% Transfer function (1+as)/(1+bs),
% gain K=50/2/pi,

% natural frequency 1/2/pi

% damping 0.707

% Mathini Sellathurai

uprim(1)=u(2);

uprim(2)=-(1/50+1.2883%cos(u(1)))*u(2)-sin(u(1));
uprim=uprim’;
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Answer to Problem 2.61
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0.04
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Figure {: Variation in the instantaneous frequency of the PLL’s voltage con-
trolled oscillator for varying frequency step A f. (a) A f =0.125 Hz
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Figure 2: (b) A f=10.5 Hz
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Figure 4: (b) Af=2/3 Hz
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CHAPTER 3

Pulse Modulation

Problem 3.1

Let 2W denote the bandwidth of a narrowband signal with carrier frequency f,.. The in-phase and

quadrature components of this signal are both low-pass signals with a common bandwidth of W.
According to the sampling theorem, there is no information loss if the in-phase and quadrature
components are sampled at a rate higher than 2W. For the problem at hand, we have

f, =100 kHz
2W = 10 kHz

Hence, W = 5 kHz, and the minimum rate at which it is permissible to sample the in-phase and
quadrature components is 10 kHz.

From the sampling theorem, we also know that a physical waveform can be represented over the
interval —eo <7 < oo by

(=]

g(t) = Y a,0,(1) (1)

n=-co

where {0,(7)} is a set of orthogonal functions defined as

sin{nf (t-n/f,)}

0,(1) = S TRCETYIN

where #n is an integer and f; is the sampling frequency. If g() is a low-pass signal band-limited to
W Hz, and f; > 2W, then the coefficient a, can be shown to equal g(n/f,). That is, for f; > 2W, the

orthogonal coefficients are simply the values of the waveform that are obtained when the
waveform is sampled every 1/f; second.

As already mentioned, the narrowband signal is two-dimensional, consisting of in-phase and
quadrature components. In light of Eq. (1), we may represent them as follows, respectively:

gi(1) = Y, g,(n/f)9,(1)

n=-o0
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got) = 2 8o(n/ f)0,(t)

n=-o0

Hence, given the in-phase samples g 1(£) and quadrature samples gQ(%) , We may reconstruct
S

fs

the narrowband signal g(¢) as follows:
g(1) = g(t)cos(2nf t) - 8o(t)sin(2nf 1)

=}

= 2 [gl(%) cos(2nf 1) - gQ(}-’%) sin(2nfct)}¢n(l‘)

n=-co

where f. = 100 kHz and f; > 10 kHz, and where the same set of orthonormal basis functions is
used for reconstructing both the in-phase and quadrature components.
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Problem 3.2

(a) Consider a periodic train c(f) of rectangular pulses, each of duration T. The Fourier series
expansion of c(t) (assuming that a pulse of the train is centered on the origin) is given by

ct) = Y f; sinc(nf, T)exp(j2nnfyt)

Nn=-oc0

where f_ is the repetition frequency, and the amplitude of a rectangular pulse is assumed to be 1/T
(i.e., each pulse has unit area). The assumption that £ T>>1 means that the spectral lines (i.e.,
harmonics) of the periodic pulse train c(t) are well separated from each other.

Multiplying a message signal g(t) by c(t) yields

s(t)

c(t) g(t) |
Y sinc(nf,T)g(t) exp(i2rnnfy(t)

NN=—o0 .

(D

Taking the Fourier transform of both sides of Eq.. (1) and using the frequency-shifting property of
the Fourier transform:

S(f) = f: fy sine(nfyT) G(f-nfy) (2)

Nn=-oo

where G(f) = Flg(t)]. Thus, the spectrum S(f) consists of frequency-shifted replicas of the original
spectrum G(f), with the nthreplica being scaled in amplitude by the factor fsinc(nf,T).
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(b) In accordance with the sampling theorem, let it be assumed that

o The signal g(t) is band-limited with

Gf) =0 for -W<f<W

o The sampling frequency f, is defined by

f, > 2W

Then, the different frequency-shifted replicas of G(f) involved in the construction of S(f) will not
overlap. Under the conditions described herein, the original spectrum G(f), and therefore the signal
g(t), can be recovered exactly (except for a trivial amplitude scaling) by passing s(t) through a low-

pass filter of bandwidth W.

Problem 3.3

(a) g(t) = sinq(ZOOtI

This sinc pulse corresponds to a bandwidth W = 100 Hz. Hence, the Nyquist rate is 200 Hz,
and the Nyquist interval is 1/200 seconds.

(b) g(t) = sincZ(ZOOtf

This signal may be viewed as the product of the sinc pulse sinc(200t)  with itself.
Since multiplication in the time domain corresponds to convolution in the frequency
domain, we find that the signal g(t) has a bandwidth equal to twice that of the sinc
pulse sin(200t), that is, 200 Hz. The Nyquist rate of g(t) is therefore 400 Hz, and the
Nyquist interval is 1/400 seconds.

(¢) g(t) = sinc(200t), + sincz(ZOOt):

The bandwidth of g(t) is determined by the highest lrequency component of sinc(200t) or
sinc2(200t), whichever one is the largest. With the bandwidth (i.e., highest frequency
component of) the sinc pulse sinc(200 t) equal to 100 Hz and that of the squared sinc
pulse sinc2(200t}’ equal to 200 Hz, it follows thar the bandwidth of g(£) is 200 Hz.
Correspondingly, the Nyquist rate of g(t) is 400 lxz, and its Nyquilst interval is 1/400
seconds.
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’ Problem 3.4
(a) The PAM wave is

s(t) = T [1 + um'(nTS)]g(t-nTs),

N==>

where g(t) is the pulse shape, and m'(t) = m(t)/Am = cos(2nfmt). The PAM wave is
equivalent to the convolution of the instantaneously sampled [1 + um'(t)] and the pulse

shape g(t):

{2 Dem (a7 8Ce-nT)} g% g(t)

nz=—-®

s(t)

{Meum' (031 T 8(e-nT} sk g(t)

N =~

The spectrum of the PAM wave is,

S(O = {180 + W (0] Y8 = & 6(r - By} o)
S M==® s
1 -]
= T G(f)m_zw [8¢F = 30 + wur (s - By
- S S

For a rectangular pulse g(t) of duration T=O.ﬁ53, and Qith AT = 1, we have:

G(f) = AT sinc(fT)
= sinc(0,.45f)
For m'(t) = cos(2nfmt), and with fh,: 0.25 Hz, we have:
M'(£) = 2 [8(£-0.25) + 8(£+0.25)]

x©

For T, = 1s, the ideally sampled spectrum is Sd(f) = I [8(fem) + uM'(f-m)].

S @) mz=-*
| §
] !
/ 4
Jf% /f‘/z - { /T“" 2 /}4/2 b
R R N Fr *‘TFDSL £k

The actual sampled spectrum is
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S(f) = I sinc(0.45F)[(6(f-m) + uM'(f-m)]

m==e Ss)
I
0157 - 0.1§7
o.5S8M ©.98¥ 0.9844 o. 858K
oL T 085 2T I T Q.31
-t -lOo -071¢ -0 0 0.25 015 .0 KTy

(b) The ideal reconstruction filter would retain the centre 3 delta functions of S(f) or:

’ o. C}gu,u, '

2 0.384%
T P
-625 0 0.5 f
With no aperture effect, the two outer delta functions would have amplitude 3 Aperture

. 2.
effect distorts the reconstructed signal by attenuating the high frequency portion of the
message signal.

Problem 3.5

The spectrum of the flat-top pulses is given by
H(f) = Tsinc (fT)exp(-jnfT)

= 10 *sinc (107 f)exp(—jnf 107"
Let s(z) denote the sequence of flat-top pulses:

oo

s(ty = Y, m(nT)h(z—nT )

n=-o00

The spectrum&(f) = F[s(r)] is as follows:

S(f) = f5 Y, M(f-kfIH(f)

k=-oco
= fH) S M(f-kf)
k=-oc0

The magnitude spectrum [S(f)| is thus as shown in Fig. lc.
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Figure 1
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Problem 3.6

At f=1/2T, which corresponds to the highest frequency component of the meSngeds;grzzl fo;si
sampling the equal to the Nyquist rate, we find from Eq. (5-19) that the amplitu po

1.2+

.
sinc (0.5T/T,)

ideal cond_iti_c_m_~ _
10erire— - —— — =

Duty cycle T/T

Figure |

of the equalizer normalized to that at zero frequency is equal to

L W)
sinc(0.5T/T,) sin[(n/2(T/T))]

where the ratio T/T is equal to the duty cycle of the sampling pulses. In Fig. 1, this result is
plotted as a function of T/T,. Ideally, it should be equal to one for all values of T/T,. For a duty
cycle of 10 percent, it is equal to 1.0041. It follows therefore that for duty cycles of less than 10

percent, the aperture effect becomes negligible, and the need for equalization may be omitted
altogether.
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Problem 3.7

Consider the full-load test tone A cos(2ﬂfmt). Denoting the kth sample amplitude of

this signal by Ak' we find that the transmitted pulse is Ak g(t), where g(t) is defined by

the spectrum:
—-— If}] < B

G(f) =

o, otherwise

The mean value of the transmitted signal power is

LT L

P = Euimﬁ f3 0 r A g(nifat)
L 2 Lot ke L

1 LT L L

Ellin -/ ° I & AA g2(t)dt]
Ly s —LTS k==L n=-L

1 L L LTS 5
= lim SLT z z E[AkAn] J g (t)dt
L “*'s k==L n=-L -LT
where Ts is the sampling period. However,
A2
2— ’ k =n
E{A A ] =
k
n o, otherwsie
Therefore,
2 o
P/ gt
S -

Using Rayleigh's energy theorem, we may write

5og2(tydt = £ 16(e) |2t
B 2
=J T (2—;- df
—BT T
S 151
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Therefore,

The average signal power at the receiver output is A2/2 Hen i
. ce, th -
to-noise ratio is given by P ’ ® output signal

(SNR)0

H
w
4

By -choosing BT=1/2TS, we get

P
(SNR) . = =——
o) BTN0

This shows. that PAM and baseband signal transmission have the same signal-to-noise ratio

for the same avgrage transmitted power, with ‘additive white Gaussian noise, and assuming
the use of the minimum transmission bandwidth possible,

Problem 3.8

(a) The sampling interval is Ts = 125 Ws, There are 24 channels and 1 sync pulse, so the
time alloted to each channel is 'I’c = Ts/25 = 5 Us, The pulse duration is 1 H¥s, so the
time between pulses is 4§ us,

(b) If sampled at the nyquist rate, 6.8 kHz, then T = 147 us, T, = 6.68 H¥s, and the time
between pulses is 5.68 us.

Problem 3.9

(a) The bandwidth required for each single sideband channel is 10 kHz. The total
bandwidth for 12 channels is 120 kHz.

(b) The Nyquist rate for each signal is 20 kHz. For 12 TDM signals, the total data rate
is 240 KkHz. By using a sinc pulse whose amplitude varies in accordance with the
modulation, and with zero crossings at multiples of (1/240) ms, we need a minimum
bandwidth of 120 kHz.
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Problem 3.10

(a) The Nyquist rate for 31('0) and S,(t) is 160 Hz. Therefore, 2“%0 must be greater than
160, and the maximum R is 3. 2

(b) With R = 3, we may use the following signal format to multiplex -the signals 31(t) and

Sz(t) into a new signal, and then multiplex s3(t) and su(t) and ss(t) including markers
for synchronization: |

MQ{kQ‘T Marke.r
‘ .
=i S
300
] (Yo
L1y 11 o4l gt 1 gl oI | o1 llgslll Time
—J 53545‘53354515354 535‘ S35, S35 K S %S 55% 5
}q.__l' |
i : /7?OO>S o zero sampls
Based o‘: this signal format, we may develop the following multiplexing system:
2400 Hz ‘
clock . L s
-8 &1 2400 1 2400
Defay f Deloy
s
Markes samef. XG -
Aeneraty pret 1 So.mple)- sz( B)
Lﬁ- gJt)
M 5( SCLn)Pfe/L-—-
> X j‘
! S ! s + 1+ M Muléiypﬁx.cd
-] 7200 »| 7200 S (k) —af Sampler. U nad
3‘9&3 DC?‘} 3 ——p x 3
S (k) :
4 Sampler. |
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Problem 3.11
In general, a line code can be represented as
N
s(t) = Y a,g(t-nT})
n=-N

Let g(¢) & G(f). We may then define the Fourier transform of s(z) as

N —jonT
S() =Y a,G(fre "’

n=-N

N —jonT,
= G(f) 2 a,e

n=-N

where w = 2nf. The power spectral density of s(¢) is
2:|
1 N N j(m=-n)oT,
|G(f)| hm | 7 2 2 Ela,a ]e
m:

n=-N

—jonT,

S,(f) = Tlgnw{%IG(f)I2E

N
2 ane
n=-N

where T is the duration of the binary data sequence, and E denotes the statistical expectation
operator. Define the autocorrelation of the binary data sequence as

R(k) = Ela,a, , ]

By lettingm =n + k and T = (2N + 1)T},, we may write

n=N  k=N-n k0T,
SN =GN lim LZN DT, 2 k% R(E }

Replacing the outer sum over the index n by 2N+1, we get

k=N-n

|G(f)| 2N+ koT,
S,(f) = T, Ninm{ZN 1 k_% nR(k) }
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= GO 5 gy (1)

where

1
R(k) = E[anan+k] = z(anan+k)pi (2)
i=1

where p; is the probability of getting the product (a, a,,;); and there are I possible values for the
a, a,. product. G(f) is the spectrum of the pulse-shaping signal for representing a digital symbol.
Eqgs. (1) and (2) provide the basis for evaluating the spectra of the specified line codes.

(a) Unipolar NRZ signaling

For rectangular NRZ pulse shapes, the Fourier-transform pair is
g(t) = Arect(Ti) SG(f) = AT sinc(fT),)

For unipolar NRZ signaling, the possible levels for a’s are +A and 0. For equiprobable
symbols, we have the following autocorrelation values:

2(0) = %A2+%x0 = A*/2

4
R(k) = Z(anan+k)ipi

i=1

2 2
A2 0.0 0_4
Thus
2
R(k)= A7/2 fork=0 (3)

A%/4  for k#0
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Therefore, the power spectral density for unipolar NRZ signals, using formulas (1) and (3), is

| AT sine(fT[1 1
Ss(f) - Tb Z+Z 2 ¢

k=-00

j21tkab:|

2 oo
AT, ,
= sinc (fTb)':1+ E e

k=-c0

j2nkab:|

But,

o 2T, 1 < n
S =g 21

k=-00 n=-oc0

where 8(f) is a delta function in the frequency domain. Hence,

2

AT, o 1 < n
\) = T 1+ — E o f—=—
() 7 sinc (f b){ T, < (f T)]

We also note that sinc(f7,) = 0 at f = Ti’ n# 0; we thus get
b

2

AT
S, =~ bsincz(fTb)[l +5—;?}

(b) Polar Non-return-to-zero Signaling

For polar NRZ signaling, the possible values for a’s are +A and -A. Assuming equiprobable
symbols, we have

R(0)

2
Z (anan)ipi
i=1

e

2 2
(=4) 2
+-——= = A
2
For k #0, we have
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4

R(k) = Y (a,a,,1)p;

i=1

_ -4)A) , ,=4)A) + &4
'T” s vy 4

=0
Thus,

2
R(k) =1 A for k =0 4)
0 for k0

The power spectral density for this case, using formulas (1) and (4), is
200 .2
S(f) = A"T,sinc”(fT,)
(c) Return-to-zero Signaling

The pulse shape used for return-to-zero signaling is given by g( We therefore have

r,7)
T,/2)

G(f) = T—smc(fTb/Z)

The autocorrelation for this case is the same as that for unipolar NRZ signaling. Therefore, the
power spectral density of RZ signals is

2

AT,
S,(f) = —Lsinc (fTb){l + L 2 8( T)]

(d) Bipolar Signals

The permitted values of level a for bipolar signals are +4, -A, and 0, where binary symbol 1 is
represented alternately by +A and -A, and binary 0 is represented by level zero. We thus have
the following autocorrelation function values:
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A2

R(0) = 5
4 A2
R(l) = Z(anan-f-])ipj:_z
i=1
Fork>1,
5 2 2
A7 A
R(k) = Z(anan+k)ipi = ?_—8— =0
i=1
Thus,
2
A? for k = 0
R(k) = 2
_‘-“4_ for [k = I
0 for |kl > 1

The pulse duration for this case is equal to 7;/2. Hence,

G(f) = %sinc(jizT—l—))

Using Equations (1), (5) and (6), the power spectral density of bipolar signals is

2

Esinc(JE)
[Az A% joT,  A? _ijb:I

2 2

2 4 4

S, T

2
AT, o fT, 1, JjoT, -—joT,
smc( 2)[1——e +e )}

8 2
2
AT, fT
= —3 bsmcz(—z—b)[l—cos(%thb)]
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A’T,

T
g sincz(lef) sinz(nfTb)

(e) Manchester Code

The permitted values of a’s in the Manchester code are +A and -A. Hence,

R(0) = thA2+i(—A)2+%(—A)2+;lt(A2)
= A°
For k#0,
! AP (“A)(A) | A(=A) | (-A)?
R(k) = Z(anan+k)ipi= _Z+ 4 + 4 + 4

i=1
=0

Thus,

R(k) = | A® for k = 0
0 for k0

The pulse shape of Manchester signaling is given by

t+T,/4 t—-T,/4
g(t) = rect( T,/2 )—rect( T,/2 )

The pulse spectrum is therefore

2

2

1l

T TN jor,/4 T TN -joT,/4
G(f) ?bsinc(f b) b —Tbsinc(f b)e b

. (JTy\ . (27fT,
= ]Tbsmc( > )sm( 7] )
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Therefore, the power spectral density of Manchester NRZ has the form

S,(f) = AT sinc 2(f 2Tb) sinz(nszb)

Problem 3.12

Power spectral density of a binary data stream will not be affected by the use of differential
encoding. The reason for this statement is that differential encoding uses the same pulse shaping
functions as ordinary encoding methods. If the number of bits is high, then the probability of a
symbol one and symbol zero are the same for both cases.

Problem 3.13

(a)
s(t)
A

- Tu/2 Tb/l— 3G/ ST /e 77;//\ ;

-T T
cos(-n—D, 0 <t< _b
(b) g(1) = r 2 2

0, otherwise

Equivalently, we may write

g(t) = cos(;—DArect(TL)

where rect(r) is a rectangular function of unit amplitude and unit duration. The Fourier
transform of g(¢) is given by

G(f) = &[S(f-i +5(f+3 | * sincs,)
2 T T b
where A denotes the pulse amplitude and > denotes convolution in the frequency domain.
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Using the replication property of the delta function d(f), we get

G = é;@[sinc(Tb(f - T%D + Si“C(Tb(f ¥ T%m

Using Eq. (1.52) of the textbook, the power spectral density of the binary data stream is

sep) = 16U

- D ane(15-2) wsme{rf s+ 2)
: +2sinc(Tb(f—-T2—)) sinc(Tb(f+ %m )

Note that the two spectral components sinc(Tb( f- Tg)) and sinc (Tb( f+ ng) overlap in

the frequency interval -(1/T},) < f < (1/T), hence the presence of cross-product terms in Eq.

(D).

Figure 1 plots the normalized power spectral density S(f)/(Asz/4) versus the normalized
frequency fT). The interesting point to note in this figure is the significant reduction in the
power spectrum of the pulse-shaped data stream x(#) in the interval -1/}, < f< 1/Tj,

(c) The power spectral density of the standard form of polar NRZ signaling is

S(f) = AT, sinc’(fT,) 2)

Comparing this expression with that of Eq. (1), we observe the following differences:

Polar NRZ signals using Polar NRZ signals using
cosine pulses rectangular pulses
f=0 0 AT,
f=22T, AT, /4 0
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Problem 3.14
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Problem 3.15(a)
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Problem 3.15(b) °
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Problem 3.16

The minimum number of bits per sample is 7 for a signal-to-quantization noise ratio of 40 dB.
Hence,

(The number of samples) = 8000 x 10

in a duration of 10s _ 8><104 samples

The minimum storage is therefore

=7x8x10*

=56x10°
= 560 kbits
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Problem 3.17

Suppose that baseband signal m(t) is modeled as the sample function of a Gaussian random
process of zero mean, and that the amplitude range of m(t) at the quantizer input extends from
~4A,  .to4A . We find that samples of the signal m(t) will fall outside the amplitude range 8A
with a probability of overload that is less than 1 in 10% If we further assume the use of a binary
code with each code word having a length n, so that the number of quantizing levels is 2", we find

that the resulting quantizer step size is

8 = 8Arms (1)
2R
Substituting Eq. (1) to the formula for the output signal-to-quantization noise ratio, we get
3 02R
(SNR), = —(2°%) (2)
° 16
Expressing the signal-to-noise ratio in decibels:
10log,(SNR), = 6R - 7.2 3)

This formula states that each bit in the code word of a PCM system contributes 6dB to the signal-
to-noise ratio. It gives a good description of the noise performance of a PCM system, provided that
the following conditions are satisfied:

1. The system operates with an average signal power above the error threshold, so that the
effect of transmission noise is made negligible, and performance is thereby limited
essentially by quantizing noise alone.

The quantizing error is uniformly distributed.

3. The quantization is fine enough (say R > 6) to prevent signal-correlated patterns in the
quantizing error waveform.

4, The quantizer is aligned with the amplitude range from -4A, _to 4A ..

In general, conditions (1) through (3) are true of toll quality voice signals. However, when demands
on voice quality are not severe, we may use a coarse quantizer corresponding to R < 6. In such a
case, degradation in system performance is reflected not only by a lower signal-to-noise ratio, but
also by an undesirable presence of signal-dependent patterns in the waveform of quantizing error.
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Problem 3.18

(a) Let the message bandwidth be W. Then, sampling the message signal at its Nyquist

rate, and using an R-bit code to represent each sample of the message signal, we find that
the bit duration is :

Ts

S
Ts =R R

b

The bit rate is

,}—:NR
b

The maximum value of message bandwidth is therefore

_ 50 x106

max 2x7

E
|

3.57 x 10° Hz

(b) The output signal-to-quantizing noise ratio is given by (see Example 2):
10 log,y(SNR), = 1.8 + 6R

1.8 + 6 x 7

43.8 dB

Problem 3.19
Let a signal amplitude lying in the range

1 1
Xj —3 8 x<x +35 8,

be represented by the quantized amplitude Xy The instantaneous square value of the error
is (x-xi)z. Let the probability density function of the input signal be fx(x). If the
step size Gi is small in relation to the input signal excursion, then fy(x) varies little
within the quantum step and may be approximated by fx(xi). Then, the mean-square value of

the error due to signals falling within this quantum is

(x-x)% £ (x)dx
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~ 2
= f 1 (x-xi) fx(xi)dx
X3 =38
1
Xy + 3 Gi )
= f (xi) s (x=-x,)"dx
1 i
Xi =38
1
’2‘51 >
= £ (x.) J X~ dx
1
-39
. 143 | |
= 13 87 fx(x;) (1)

The probability that the input signal amplitude lies within the ith interval is

fx(x)dx = fx(xi) J dx = f‘x(xi)Gi (2)

Therefore, eliminating f,(x,) between Eqs. (1) and (2), we get
: Xt

2, _ 1 2
E[Qi] =T3P Gi
.The total mean-square value of the quantizing error is the sum of that contributed by each
of the several quanta. Hence,

ech - 1, o

z Py é
i ' i
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Problem 3.20
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Problem 3.21

The quantizer has the following input-output curve:

Oubpur
VOEf'S 8‘_’ o

g

At the sampling instants we have:

t m(t) code -
-3/8 =372 0011
-1/8 -372 0011
+1/8 32 1100
+3/8 3V2 1100

And the cod>ed waveform is (assuming on-off signaling):

Tnpulb
Velis

'
oajtd [~
1
ool-
O
ool~ |~
ooV

Problem 3.22

The transmitted code words are:

1:/Tb code
1 001
2 010
3 011
y 100
5 101
6 110
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The sampled analog signal is

Problem 3.23

(a) The probability Pq of any binary symbol being inverted by transmission through the
system is usually quite small, so that the probability of error after n regenerations in
the system is very nearly equal to n p,. For very large n, the probability of more than
one inversion must be taken into account. Let p_ denote the probability that a binary
symbol is in error after transmission through the complete system. Then, Py is also the
probability of an odd number of errors, since an even number of errors restores the

original value. Counting zero as an even number, the probability of an even number of
errors is 1-pn. Hence

Pny1 = Pp(1-pp)+(1-p,)py
= (1-2)p,+p,
This is a linear difference equation of the first order. 1Its solution is

1 n
5 [1-(1-2p1) ]

P, |
(b) 1If Py is very small and n is not too large, then
(1-2p)" = 1-2pn

and

el
R

201-(1-2p 0]

pqn
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Problem 3.24 - Regenerative repeater for PCM

Three basic functions are performed by regenerative repeaters: equalization, timing and decision-
making.

Equalization: The equalizer shapes the incoming pulses so as to compensate for the effects of
amplitude and phase distortion produced by the imperfect transmission characteristics of the
channel.

Timing: The timing circuitry provides a periodic pulse train, derived from the received pulses, for
sampling the equalized pulses at the instants of time where the signal-to-noise ratio is maximum.

Decision-making: The extracted samples are compared to a predetermined threshold to make
decisions. In each bit interval, a decision is made whether the received symbol is 1 or O on the
basis of whether the threshold is exceeded or not.

Problem 3.25
m(t) = Atanh(fr)

To avoid slope overload, we require

TAS > max dﬂdgﬁ (1)
% = ABsechz(Bt) (2)

Hence, using Eq. (2) in (1):

AZmax(ABsechz(Bt)) xXT, (3)
. o
Since sech(fz) = WST)
_ 2
Py P

it follows that the maximum value of sech(P3?) is 1, which occurs at time ¢ = 0. Hence, from Eq. (3)
we find that A > ABT,.
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Problem 3.26

The modulating wave is
m(t) = Am cos(?rrf'mt)

The slope of m(t) is

dm(t) _ .
9t = -21rfmAm sm(21rfmt)

The maximum slope of m(t) is equal to 21rf‘mAm.
The maximum average slope of the approximating signal ma(t) produced by the delta

modulator is 6/TS, where ¢ is the step size and Ts is the sampling period. The limiting

value of Am is therefore given by

$
21rfmAm > T
S
or

5

— L *

A2 5F T
m S

Assuming a load of 1 ohm, the transmitted power 1is Afl/Z. Therefore, the maximum
2.2..2

. 2
power that may be transmitted without slope-overload distortion is equal to & /8« fst.
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Problem 3.27

fs= 1OfNyquis.t

fNyquist = 6.8 kHz

f;=10x6.8x10°=6.8 x 10* Hz

dm(t)
dt

A
_- >
Ts_max

For the sinusoidal signal m(z) = A, sin(2nf,, 1), we have

dm(t) _

7 2nf, A, cos(2nf, 1)
Hence,
‘dm(t) = |2nf, Al
dt  |max

or, equivalently,

A

—T—s 2 lznfmAmlmax
Therefore,

A -

m|max - T x2nXx f,

_ A
C2nf,

0.1 x6.8 x 10*

27 X 103

I

1.08V
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Problem 3.28

(a) From the solution to Problem 3.27, we have

A 2nf, A
_ Af or A= fm "
27tfm f
A2
The average signal power = >
- )
~2\2nf,

With slope overload avoided, the only source of quantization of noise is granular noise.
Replacing A/2 for PCM with A for delta modulation, we find that the average quantization

noise power is A2/3; for more details, see the solution to part (b) of Problem 3.30. The
waveform of the reconstruction error (i.e., granular quantization noise) is a pattern of bipolar
binary pulses characterized by (1) duration = T, = 1/f,, and (2) average power = A/3. Hence,
the autocorrelation function of the quantization noise is triangular in shape with a peak value

of A%/3 and base 2T, as shown in Fig. 1:

Rp(T) ,
A°/3
2

—_ S
Area = 3

Fig. 1 T T T
From random process theory, we recall that

S0l o0 = waQ(’c)dr
which, for the problem at hand, yields

2

AT A2
S (0) = S =
00 = =7 = 5+

Typically, in delta modulation the sampling rate f; is very large compared to the highest frequency

component of the original message signal. We may therefore approximate the power spectral
density of the granular quantization noise as
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2
So(f) = A /3f, -WSf<W

0, otherwise

where W is the bandwidth of the reconstruction filter at the demodulator output. Hence, the
average quantization noise power is

20 W

3f

w
N = [So(fdf =

-W

(2)

Substituting Eq. (2) into (1), we get

V-5

8’ f2 A*W

3

3f

(b) Correspondingly, output signal-to-noise ratio is

SNR =

2,2 .2

8’ f2A°W)/3f

3

_ 3
167° f2 W

Problem 3.29

Af,

(a) A< onf,

2 A
>7tf

m

fs
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3
Azzxnxlo X 1

50 x 10°
= 0.126V
3
3 f
(b) (SNR)yy = — —°
gn” f W

3.3

3 (50x10%)
= 2% "% 3
16m 107" x5%x10

= 475

In decibels,
(SNR),; = 10log 4475

= 26.8 dB

Problem 3.30

(a) For linear delta modulation, the maximum amplitude of a sinusoidal test signal that can be
used without slope-overload distortion is

A = Afs
2nf,,
0.1 x 60 x 10° 3
=" -~ - fy=2x3x10
3 S
2t X 1 x 10
= 0.95V
(®) @)

Under the pre-filtered condition, it is reasonable to assume that the granular quantization

noise is uniformly distributed between -A and +A. Hence, the variance of the quantization
noise is
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The signal-to-noise ratio under the pre-filtered condition is therefore

A%/

(SNR) S
A*/3

prefiltered ~

= 135

= 21.3 dB
(i1)The signal-to-noise ratio under the post-filtered condition is

3

B 22
N postfiltered 167‘52 fiW

3 (60)°
2X 2
16m” (1)"x3

= 1367
= 31.3 dB

The filtering gain in signal-to-noise ratio due to the use of a reconstruction filter at the
demodulator output is therefore 31.3 - 21.3 = 10 dB.

179



Problem 3.31
Let the sinusoidal signal m(z) = Asinwgt, where wg = 27tf;

The autocorrelation of the signal is

2

R, (1) = %cos(wo‘c)

R,(0) = —

2
Rm(l) %‘COS((DOXTOITJ

2

= %COS(O.l)

For this problem, we thus have
R, =[R,(0)], r, = [R,(1)]

(a) The optimum solution is given by

-1

Wo = Rm Lo
2
A?cos(O.l)
= —— = cos(0.1)
A
2
= 0.995
T -1
2 2 2
- %—%COS(O.I) X%—cos(O.l)/(Az/2)
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il

2
’52—(1 — c0s(0.1))

0.0054>

Problem 3.32

R. =

X

1

0.8 0.6

08 1 0.8

0608 1

r, = [08, 0.6, 04]

(a) Wy

(b) J

min

1 0806 |08
08 1 08 |06
0608 1] |04

[0.875
0
-0.125

T, -1
R, (0) - r, Rx r,
T
R (0)~r w,

0.875
1-los, 06,04 o
-0.125

1-(0.8x0.875— 0.4x 0.125)
1-0.7 +0.05

0.35
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Problem 3.33

R, = 1 038
0.8 1
(@ wyg =R, r

®) Jpin = R (0)—r 'R 'r,

1-0.6444

0.3556

which is slightly worse than the result obtained with a linear predictor using three unit delays
(i.e., three coefficients). This result is intuitively satisfying.

Problem 3.34
Input signal variance = R (0)

The normalized autocorrelation of the input signal for a lag of one sample interval is

R.(1)

R_(0) = 0.75

p (1) =

Error variance = R (0) - R (1)R]'(0)R,(1)

R (0)(1-p>(1))
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R (0)

Processing gain = 3
R, (0)(1 -p(1))

1
2
1-p.(1)

1
1-(0.75)°

= 2.2857
Expressing the processing gain in dB, we have

10log ,(2.2857) = 3.59 dB

Problem 3.35

R,(0)

r.R'r,
R (0) 1- R (09

X

Processing gain =

(a) Three-tap predictor:
Processing gain = 2.8571
=4.56 dB

(b) Two-tap predictor:
Processing gain = 2.8715
=449 dB

Therefore, the use of a three-tap predictor in the DPCM system results an improvement of
4.56 - 4.49 = 0.07 dB over the corresponding system using a two-tap predictor.

Problem 3.36
(a) For DPCM, we have 10log;((SNR), = o + 61 dB
For PCM, we have 10log;q(SNR) =4.77 + 6n - 20log;o(log(1 + u))

where n is the number of quantization levels
SNR of DPCM
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SNR = a + 6n, where -3 < o < 15
For n=8, the SNR is in the range of 45 to 63 dBs.
SNR of PCM

SNR =4.77 + 6n - 20log(log(2.56))

=477 + 48 - 14.8783
=38 dB

Therefore, the SNR improvement resulting from the use of DPCM is in the range of 7 to 25
dB.

(b) Let us assume that n bits/sample are used for DPCM and 7 bits/sample for PCM
If oo = 15 dB, then we have

15 +6n;=6n-10.0

10 + 15

Rearranging: (n—-n,) = ¢

= 4.18
which, in effect, represents a saving of about 4 bits/sample due to the use of DPCM.

If, on the other hand, we choose o = -3 dB, we have

-3+6n;=6n-10

Rearranging: (n—n;) = 10—6_3:
=7
T 6
= 1.01

which represents a saving of about 1 bit/sample due to the use of DPCM.
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Problem 3.37

The transmitting prediction filter operates on exact samples of the signal, whereas the receiving
prediction filter operates on quantized samples.

Problem 3.38

Matlab codes

% Problem 3.38, CS: Haykin
%flat-topped PAM signal
and magnitude spectrum

% Mathini Sellathurai

%data

£s=8000; % sample frequency
ts=1.25e-4; %1/fs
pulse_duration=5e-5; %pulse duration

 sinusoidal sgnal;

td=1.2be-5; Ysampling frequency of signal
£d=80000;

t=(0:td:100*td);

fm=10000;

s=sin(fm*t);

% PAM signal generation

pam_s=PAM(s,td,ts,pulse_duration);
figure(1);hold on
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plot(t,s,’--7);
plot(t(i:length(pam_s)),pam_s);
xlabel(’time’)
ylabel(’magnitude’)
legend(’signal’, ’PAM-signal’);

% Computing magnitude spectrum S(f) of the signal
a=((abs(fft(pam_s))."2));

a=a/max(a);
f=fs*(fs/fd:fs*(fs/fd):(length(a))*fs*(fs/fd);
figure(2)

plot(f,a);

xlabel(’frequency’);

ylabel(’magnitude’)

% finding the zeros
index=find(a<ie-5);

% finding the first zero

fprintf (’Envelopes goes through zero for the first time

186

%6d\n’, min(index)*fs*(fs/fd))



function pam_s=PAM(s,td,ts,pulse_duration)

% Problem 3.38, CS: Haykin
flat-topped PAM signal

%used in  Problem 3.38, CS: Haykin
% Mathini Sellathurai

potd=pulse_duration/td;
tsotd=ts/td;

y=zeros(1,length(s));
tt=1:(tsotd):length(s);

for kk=1:length(tt);
y(tt(kk) : tt(kk)+potd-1)=s(tt(kk)) .*ones(1,potd);

end

pam_s=y(1:length(s)-potd);
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Answers: 3.38
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0.8

Figure 1: Flat-topped PAM signal

188

1.2

1.4
x107°



magnitude
[o]
(6]
T

I
n
T

0.3

i 1. W VNN W '

frequency

Figure 2: Magnitude spectrum of flat-topped PAM signal
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Figure '3: Zoomed magnitude spectrum of flat-topped PAM signal
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Problem 3.39
Matlab codes

iproblem 3.39, CS: Haykin

“mue-law pCM and uniform quantizing
“Mathini Sellathurai

clear all

%sinusoidal signal
t=[0:2%pi/100:2*pi];
a=sin(t);

% input signal to noise ratio in db
SNRdb=[-20 -156 -10 -5 0 6 10 15 20 25 1;

for nEN=1:10
sqnrfm=0; sqnrfu=0;
for k=1:100
snr = 10~ (SNRdb(nEN)/10);
wn= randn(1,length(a))/sqrt(snr); % noise
al=a+wn; %signal plus noise

[a_quanu, codeu, sqnr_ul=u_pcm(a1,256); %call u-PCM
[a_quanm, codem, sqnr_m]=mue_pcm(a1,256,255); %call mue-PCM

sqnrim=sqnrfm+sqnr_m;
sqnrfu=sqnrfu+sqnr_u;
end
SNROm(nEN)=sqnrfm/k; %bin-SNR-MUE-PCM
SNROu(nEN)=sqnrfu/k; %bin-SNR-U-PCM
end

%plots

figure;hold on;

plot (SNRdb,SNROu, ’—+’)

plot (SNRdb,SNROm, '-0°)

xlabel(’input signal-to-noise-ration in db’)
ylabel(’output signal-to-noise-ration in db’)
legend(’uniform PCM, 256 levels’,’mue-law PCM, mue=255')
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function [a_q,snr]l=u_pcm(a,n)

% function to generate uniform PCM for sinwave
iused in problem 3.39, CS: Haykin

“Mathini Sellathurai

n=length(a);

amax=max(abs(a));

a_q=a;

b_q=a_q;

d=2/n;

q=d.*[0:n-1];

q=q-((n-1)/2)*d;

for i=1:n

a_q(find((q(i)-d/2<= a_q) & (a_q <=q(i)+d/2)))=...
q(i).*ones(1,length(find((q(i)-d/2 <=a_q) & (a_q<=q(i)+d/2))));
b_q(find(a_q==q(i)))=(i-1).*ones(1,length(find(a_q==q(i))));
end

a_q =a_g¥amax;

snr=20*log10(norm(a)/norm(a-a_q));
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function [a_qg,snr]l=mue_pcm(s,n,mue)

% function to generate mue-law PCM for sinwave
/used in problem 3.39, CS: Haykin

%Mathini Sellathurai

a=max(abs(s));

% mue-law
y=(log(1+mue*abs(s/a))./log(1+mue)).*sign(s);
[y_q,code,sqn]=u_pcm(y,n);

%inverse mue-law
a_q=(((1+mue).‘(abs(y_q))—l)./mue).*sign(y_q);

a_gq=a_g*a;

%SNR
snr=20*log10(norm(s)/norm(s—a_quan));
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Answer to Problem 3.39

50
—t uniform PCM, 256 levels
40 — mue—law PCM, mue=255
30¢5- —-©

20

output signal-to-noise-ration in db
o

L 1 1 1
—20 -15 -10 -5 o} 5 10 15 20 25
input signal—-to—noise—ration in db

_30- 1 1

Figure 1. . input signal-to-noise ratio Vs. output signal-to-noise ratio for pu-law
PAM and uniform PCM
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Problem 3.40
Matlab codes

% Problem 3.40, CS: Haykin
“Normalized LMS- prediction
of AR process/ speech signal
% Mathini Sellathurai

clear all

mue=0.05; Y% step size parameter, a value between 0 ans 2
p=2; % filter order

N=10; % size of data

M=1;% number of realizations

% initializing counters
erri=zeros(1,N-p);
xhati=zeros(1,N-p);
x=zeros(1,N);

for m=1:M % 100 realizations

x(1:2)= [0.1 0.2];

%AR process

for k=3:N
x(k)=(0.8*x(k-1)—0.1*x(k—2))+0.1*rand(1);
end

% LMS prediction

lerr, xhat]=LMS(x,mue,p);
erri=erri+err.”2;
xhati=xhati+xhat;

end

plot(erri/m,’-’);
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function [err, xhat]l=LMS(xx,mue,p)
% function Normalized LMS
%p-order of the filter

%mue—step size parameter

iused in problem 3.40, CS: Haykin
“Mathini Sellathurai

% length of the data
N=length(xx);

% initializing weights and erros
w=zeros(p,N-p);

err=ones(1,N-p);
xhat=zeros(1,N-p);

%prediction
1=1;
for k=1:N-p
h=xx(k:p+k-1);
err(1)=(xx(k+p)-h*w(:,1));
xhat(1)=h*w(:,1);
xxx=xx(1+p-1)+xx(1+p-2);
w(:,1+1)=u(:,1)+(mue/xxx)*h’*err(1);
1=1+1;
end
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Answer to Problem 3.40

Amplitude

Mean-squared error

AR process (a1 = -0.80, a2=0.10)+random noise

0.3 T T T T T T T T T
Q.25 =

0.2 r

U |

0.15 u

0.1 _
0.05 L L 1 L L 1 1 Il 1

0 100 200 300 400 500 600 700 800 800 1000

Sample number

Figure | : Noisy-AR-process, ag = —0.80, a; = 0.10

107 : : : B B A i HUBSELE AL RS

10 1 i

1 L L L 1
(8] 100 200 300 400 500 600 700 800
Number of iterations

Figure 2 ¢ Learning curves for g = 0.0075, 0.05, 0.5

197

1
900 1000



CHAPTER 4

Problem 4.1

(a) The impulse response of the matched filter is
h(t) = s(T-t)

The s(t) and h(t) are shown below:

s(t)
A/2

-az2 F——-—

h(t)
A2 |5~

(NYE]

-A/2

(b) The corresponding output of the matched filter is obtained by convolving h(t) with
s(t). The result is shown below:

s (&)
(o]

3T/4 27

a’r/8

(e i
) The peak value of the filter output is equal to A2T/‘h occuring at t=T

198



Problem 4.2

(a) The matched filter of impulse response £ (¢) for pulse s;(7) is given in the solution to Problem
~ 4.1. The matched filter of impulse response h,(¢) for s,(¢) is given by

which has the following waveform:

hy(8)

AR f---

3774
0 T/4 T

-A2

Fig.

(b) (i) The response of the matched filter, matched to $,(7) and due to s(¢) as input, is obtained by
convolving h,(¢) with s,(z), as shown by

T
Y (1) = jo 51(T)hy (2 - T)dr

The waveform of the output y,,(7) so computed is plotted in Figure 2. This figure also
includes the corresponding waveforms of input s, (¢) and impulse response A, (7).

(ii) Next, the response of the matched filter, matched to s;(r) and due to s,(¢) as input, is
obtained by convolving A;(f) with s,(¢), as shown by

T
NOE jo 5,(T)h,(t - T)dr

Figure 3 shows the waveforms of input s,(¢), impulse response 4,(z), and response y;5(2).
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Note that y;,(?) is exactly the negative of y,;(¢). However, in both cases we find that at # =
T, both outputs are equal to zero, as shown by

)’21(T) = ylz(T) =0

For n pulses 51(2) s5(1)....,s,(?) that are orthogonal to each other over the interval [0,T], the
n-dimensional matched filter has the following structure:

- Output |

> Output 2

Filter matched
——
to | (t)
- Filter matched
to Sz([)
_—>
input
Filter matched
> 0 5,(7)
Fig. 4
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Problem 4.3

Ideal low-pass filter with variable bandwidth. The transfer function of the matched filter for a
rectangular pulse of duration t and amplitude A is given by

Hopi(f) = sinc(fT)exp(-jnfT) (1)

The amplitude response |Hopt(f) | of the matched filter is plotted in Fig. 1(a). We wish to
approximate this amplitude response with an ideal low-pass filter of bandwidth B. The amplitude
response of this approximating filter is shown in Fig. 1(b). The requirement is to determine the
particular value of bandwidth B that will provide the best approximation to the matched filter.

We recall that the maximum value of the output signal, produced by an ideal low-pass filter in
response to the rectangular pulse occurs at t = T/2 for BT < 1. This maximum value, expressed
in terms of the sine integral, is equal to (2A/x)Si(nBT). The average noise power at the output of
the ideal low-pass filter is equal to BN,,. The maximum output signal-to-noise ratio of the ideal
low-pass filter is therefore

(SNR); - (2A/15)2BSI\} 2(1CBT) (2)
0

Thus, using Eqs. (1) and (2), and assuming that AT = 1, we get

SNR),
SNR, _ 2 g2¢BT)
(SNR),  #2BT

This ratio is plotted in Fig. 2 as a function of the time-bandwidth product BT. The peak value on
this curve occurs for BT = 0.685, for which we find that the maximum signal-to-noise ratio of the
ideal low-pass filter is 0.84 dB below that of the true matched filter. Therefore, the " best" value
for the bandwidth of the ideal low-pass filter characteristic of Fig. 1(b) is B = 0.685/T.
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Problem 4.4

The output of the low-pass RC filter, produced by a rectangular pulse of amplitude A and duration
T, is as shown below:

s0(8)

A(L-exp(-2nfyT))

0 T t

The peak value of the output pulse power is
2 2
Py = AT[1 —exp(-2nf,T)]
where f; is the 3-dB cutoff frequency of the RC filter.

The average output noise power is

v = No _ df
ot T~ o) T 5
1+ (f/fo)
_ Nomfy
T2

The corresponding value of the output signal-to-noise ratio is therefore
24’

(SNR)oy = G2l

[1-exp(2nf,T)]

Differentiating (SNR), with respect to fo7 and setting the result equal to zero, we find that
(SNR),,, attains its maximum value at

0.2

fO'_‘"f

The corresponding maximum value of (SNR),,; is
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AT

2
m—o[l - CXp(—-O.47T)]

(SNR)g max =

_ L62A’T
NO

For a perfect matched filter, the output signal-to-noise ratio is

2FE
(SNR)O,matched = N_O
_ 24T
NO

Hence, we find that the transmitted energy must be increased by the ratio 2/1.62, that is, by 0.92
dB so that the low-pass RC filter with f = 0.2/T realizes the same performance as a perfectly

matched filter.

Problem 4.5

(1) po>py

The transmitted symbol is more likely to be 0. Hence, the average probability of symbol error is
smaller when a 0 is transmitted than when a 1 is transmitted. In such a situation, the threshold A in
Figs. 4.5(a) and (b) in the textbook is moved to the right.

(i1) p; > pg

The transmitted symbol is more likely to be 1. Hence, the average probability of symbol error is
smaller when a 1 is transmitted than when a 0 is transmitted. In this second situation, the threshold
A in Figs. 4.5(a) and (b) in the textbook is moved to the left.
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Problem 4.6

The average probability of error is

Pe = py [* fyly IDdx + pg J;“ fu(y 10)dx 1)

An optimum choice of A corresponds to minimum P,. Differentiating Eq. (1) with respect to A, we get:

oP,
a_; = pify (A [1) - pofy(A |0)

oP
Setting a_; = 0, we get the following condition for the optimum value of A:

fYo‘opt: |1) - Po

fyWop 100 Py

which is the desired result.
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Problem 4.7

In a binary PCM system, with NRZ signaling, the average probability of error is

1 /Eb
P, = — erfc| [——
e =5 erfc Ny

The signal energy per bit is

E, = A2T,

where A is the pulse amplitude and Ty, is the bit (pulse) duration. If the signaling rate is doubled,
the bit duration Ty is reduced by half. Correspondingly, E, is reduced by half.

Letu = JEb/No. We may then set

P, = 1076 = _21_ erfe(u)

Solving for u, we get

u =33

When the signaling rate is doubled, the new value of P, is

P; l erfc| %
2 V2

% erfc(2.33)

1073,
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Problem 4.8

(a) The average probability of error is

where E, = A2Tb. We may rewrite this formula as

P, = L erfe (_é) (1
2 c

where A is the pulse amplitude at ¢ = \fN—OTb. We may view o as playing the role of noise variance
at the decision device input. Let

E
u=|-b A
NO (¢}
We are given that
o2 =102 volts 2, o = 0.1 volt
P, = 1078

Since P, is quite small, we may approximate it as follows:

erfc(u) = M
Vru
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We may thus rewrite Eq. (1) as (with P, = 10®)

exp(—uz)ﬁu - 10-8
2

Solving this equation for u, we get

u = 3.97

The corresponding value of the pulse amplitude is

A =0u=01x397

0.397volts

(b) Let ozi denote the combined variance due to noise and interference; that is

2 _ 2, 2
Op = O G;

where o2 is due to noise and ozi is due to the interference. The new value of the average probability
of error is 10, Hence

2)
- _2’_ erfe(ur)

where



Equation (2) may be approximated as (with P, = 10°%)

2
exp(-ur)
ST L1076
2\/;uT
Solving for uy, we get
up = 3.37

The corresponding value of 0’2T is

Y
o2 =(AN - (9397F _ 00138 volts?
uT) 3.37

The variance of the interference is therefore

2 _ 2 2
O'i—GT—O'

0.0138 - 0.01
= 0.0038 volts 2
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Problem 4.9

Consider the performance of a binary PCM system in the presence of channel noise; the receiver
is depicted in Fig. 1. We do so by evaluating the average probability of error for such a system
under the following assumptions:

1. The PCM system uses an on-off format, in which symbol 1 is represented by A volts and
symbol 0 by zero volt.

2. The symbols 1 and 0 occur with equal probability.

3. The channel noise w(t) is white and Gaussian with zero mean and power spectral density
Ny/2.

To determine the average probability of error, we consider the two possible kinds of error
separately. We begin by considering the first kind of error that occurs when symbol 0 is sent and
the receiver chooses symbol 1. In this case, the probability of error is just the probability that the
correlator output in Fig. 1 will exceed the threshold A owing to the presence of noise, so the
transmitted symbol 0 is mistaken for symbol 1. Since the a priori probabilities of symbols 1 and
0 are equal, we have P=P Correspondingly, the expression for the threshold A simplifies as follows:

_ AT, 1)
2

A

where T}, is the bit duration, and AT} is the signal energy consumed in the transmission of
symbol 1. Let y denote the correlator output:

y = LTb s(t)x(t)dt (2)

Under hypothesis Hy, corresponding to the transmission of symbol 0, the received signal x(t) equals
the channel noise w(t). Under this hypothesis we may therefore describe the correlator output as

Hyy = A LTb w(t)dt 3)

Since the white noise w(t) has zero mean, the correlator output under hypothesis H also has zero
mean. In such a situation, we speak of a conditional mean, which (for the situation at hand) we
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describe by writing

po = EIY [Hyl = E[ [ W(t)dt] =0 )

where the random variable Y represents the correlator output with y as its sample value and W(t)
is a white-noise process with w(t) as its sample function. The subscript 0 in the conditional mean
By refers to the condition that hypothesis H, is true. Correspondingly, let 020 denote the
conditional variance of the correlator output, given that hypothesis H, is true. We may therefore
write

oy = E[Y2 [H]
A )
T
- E[ [T [ Wepwdt dty

The double integration in Eq. (5) accounts for the squaring of the correlator output. Interchanging
the order of integration and expectation in Eq. (5), we may write

A [ P Ewewa,

- LTh [ R(Ty - tpdt; dty

The parameter R, (t; - t,) is the ensemble-averaged autocorrelation function of the white-noise
process W(t). From random process theory, it is recognized that the autocorrelation function and
power spectral density of a random process form a Fourier transform pair. Since the white-noise
process W(t) is assumed to have a constant power spectral density of Ny/2, it follows that the

autocorrelation function of such a process consists of a delta function weighted by Ny/2.
Specifically, we may write

N
R, (t; - to) = T" 3(t - t; + tp) (7)

Substituting Eq. (7) in (6), and using the property that the total area under the Dirac delta
function &t - t; + t,) is unity, we get

'./'A\

o - N TpA 2 ®)
0 - o
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The statistical characterization of the correlator output is compitted by noting that it is Gaussian

distributed, since the white noise at the correlator input is itself Gaussian (by assumption). In
summary, we may state that under hypothesis H, the correlator output is a Gaussian random
variable with zero mean and variance NOTbA2/2, as shown by

1 y2
fo(y) = ————exp| - — 9)
mNoTp A NoTpA

where the subscript in fy(y) signifies the condition that symbol 0 was sent.

Figure 2(a) shows the bell-shaped curve for the probability density function of the correlator
output, given that symbol 0 was transmitted. The probability of the receiver deciding in favor of
symbol 1 is given by the area shown shaded in Fig. 2(a). The part of the y-axis covered by this area
corresponds to the condition that the correlator output y is in excess of the threshold A defined by
Eq. (1). Let P, denote the conditional probability of error, given that symbol 0 was sent.
Hence, we may write

Pio = o) dy
1 f 9 (10)
= o y
R — exp| - —~——— |dy
\/nNOTb a ATz [ NoTA? J
Define
Zz = _.._y__ (11)

NoTp, A

We may then rewrite Eq. (10) in terms of the new variable z as

Pio = 1 f‘” exp(-z2) dz (12)

ﬁ VAPTYIN,

which may be reformulated in terms of 214



complementary error function

2 (e 2
erfc(u) = =_ exp(-z“) dz (13)
(1'5 .fu

Accordingly, we may redefine the conditional probability of error P, o.s

. A2T 14
2 4N,

Consider next the second kind of error that occurs when symbol 1 is sent and the receiver chooses

symbol 0. Under this condition, corresponding to hypothesis H,, the correlator input consists
of a rectangular pulse of amplitude A and duration T, plus the channel noise w(t). We may
thus apply Eq. (2) to write

H;:y=A I;Tb [A + w(t)] dt (15)

The fixed quantity A in the integrand of £ q. (15) serves to shift the correlator output from a
mean value of zero volt under hypothesis H, to a mean value of A2Tb under hypothesis H,.
However, the conditional variance of the correlator output under hypothesis H; has the same value
as that under hypothesis H. Moreover, the correlator output is Gaussian distributed as before.
In summary, the correlator output under hypothesis H; is a Gaussian random variable with mean
A2Tb and variance NOTb2/2, as depicted in Fig. 2(b), which corresponds to those values of the
correlator output less than the threshold A set at A2Tb/2, From the symmetric nature of the
Gaussian density function, it is clear that

?OI = Fo. (16)

Note that this statement is only true when the a priori probabilities of binary symbols 0 and
1 are equal; this assumption was made in calculating the threshold A.

To determine the average probability of error of the PCM receiver, we note that the two possible

kinds of error just considered are mutually exclusive events. Thus, with the a priori probability

of transmitting a 0 equal to PD’ and the a priori probability of transmitting a 1 equal to pwe find
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that the average probability of error, P, is given by

Pe =pP1o * p po

Since Poy = pll-D’ and po+ P = 1, Eq. (17) simplifies as

Pe = Pie © Poi
or
A2T
P, = L oerfe| L b
2 2 Ny
Choose H, if
T o A is exceeded
x(t) f dt »| Decision | |
0 device Otherwi
erwise,
T choose H,
s(t) A
Figure 1
foly)
R0
y
0 % Asz
(a)
i
|
I
|
Peor |
I
* 7777 ! y
3 AT, A?T,
-~
(b)
Figure 2
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Problem 4.10
For unipolar RZ signaling, we have

Binary symbol 1: s(f) =+A for0 <t < 7/2
and s(®)=0for 772 <t<T

Binary symbol 0: s(t) =0 forO<t< T

The a priori probabilities of symbols 1 and 0 are assumed to be equal, in which case we have
po=py=1/2.

To determine the average probability of error, we consider the two possible kinds of error
separately. We begin by considering the first kind of error that occurs when symbol 0 is sent and
the receiver chooses symbol 1. In this case, the probability of error is just the probability that the

matched filter output will exceed the threshold A owing to the presence of noise, so the
transmitted symbol O is mistaken for symbol 1.

A
Energy of symbol 1 = — = E,

Energy of symbol 0 =0

The conditional probability density function of the two signals is given below:

frOls=0) fyGls=1)
|
|
|
0 VE, y
A

With symbols 1 and 0 assumed to be equiprobable, the optimum threshold is

2
1 _ 1 /AT,
AT

Given that symbol 0 was transmitted, the probability of error is simply the probability that y > A,
as shown by
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P(error|0) = J.:ofy(}’lo)dy

_ ! Ay
Lot

Define a new variable z as

L= D
JNg
We then have
1 2
P(error|0) = — exp(—z")dz
o=zl s

= lerfc(—}i—)
2 N

= lerfc 1 ﬂ
T2 2NN,
2
_loe AT
T2 2N 2N,

Define 7 = , and so write

JE,—y
N

0

P(error|l) = 71_1;5? ) exp(—zz)dz
NTb &
JNo
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P(error|1) = lerfc[

i)

il

2
S 2 20 2N,

The average probability of error is therefore

P, = P(1)P(error|1) + P(error|0)P(0)

Il

1 1
Eerfc(i ’Eb/NO)

2
1 1 /A T,
§CrfC(§ m) (1)

The average probability of error for on-off (i.e., unipolar NRZ) type of encoded signals is

2
Lope L 2 T
27 24N,

Comparing this result with that of Eq. (1) for the unipolar RZ type of encoded signals, we
immediately see that, for a prescribed noise spectral density Ny, the symbol energy in unipolar RZ
signaling has to be doubled in order to achieve the same average probability of error as in unipolar
NRZ signaling.

Il

Problem 4.11
Probability of error for bipolar NRZ signal
Binary symbol 1 : s(f) = +A

Binary symbol 0: s(r) =0
Energy of symbol 1 = E, = A2Tb
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. 1 1 2
The absolute value of the threshold is A = QA/E—b = 5 A°T,.

Refering to Fig. 1 on the next page, we may write

2
1 —(y+ JE})
P =-A) = — = \d
(error|s=-A) A/TWO‘—?» exp|: N, } y

v+ JE,

Letz = A/—N_o
Then,
X+J_b
P(error|s = —A) = ﬁ'[ - ﬁexP(_ZZ)dz
N

- Y3 5] -end 32

Similarly, P(error|s = +A) = P(error|s = —A)

2
2x1
P(error|s = 0) = rexp[ )dy
[N "2 No

1 /Eb
= f - D —
er {2 NOJ

The average probability of error is therefore

P,= P(s=t A)P(error|s=t A)+ P(s=0)P(error|s = 0)

The conditional probability density functions of symbols 1 and 0 are given in Fig. 1:
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\
/

/ _\\ F015=0)

/ fr(ls=+A)

+VE,

Figure 1
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11 1 |E, 3 /Eb 1 1 [E,
Pe = ixé[erfc(i ]V())_erfc[é_‘ ]—\-]— +§Crf 5 ]v

= §erfc 1 Eé —lerfc § E
T4 24N,y) 4 4NN,

Problem 4.12
The rectangular pulse given in Fig. P4.12 is defined by
g(®) =rec(t/T)

The Fourier transform of g(¢) is given by

T/2
G(f) = [ exp(=janfrydr

= Tsinc (fT)
We thus have the Fourier-transform pair
rec(t/T) & Tsinc (fT)
The magnitude spectrum |G(f)/T is plotted as the solid line in Fig. 1, shown on the next page.
Consider next a Nyquist pulse (raised cosine pulse with a rolloff factor of zero). The magnitude
spectrum of this second pulse is a rectangular function of frequency, as shown by the dashed curve

in Fig. 1.

Comparing the two spectral characteristics of Fig. 1, we may say that the rectangular pulse of Fig.
P4.12 provides a crude approximation to the Nyquist pulse.
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Problem 4.13

Since P(f) is an even real function, its inverse Fourier transform equals

p(t) = 2 L“ P(f) cos(2nft) df (1)

The P(f) is itself defined by Eq. (7.60) which is reproduced here in the form

1, 0< kl<f
2W
2)
= - f
P® 14+ co Llf_l__l) » f; <f<2W-f]
4W 2W - 2f]
0, > 2w-£;

Hence, using Eq. (2) in (1):

2W-f, £-f )
1 (f , 1 v eoe| T
p(t) W L cos(2nft) df 5 ff [1 cos[ X J]ccs&nﬂ;) df

1 o

, [(sin(2nft)] . [sin(znﬂ:) w-Fy

2nTWt 4tWt

1

) 2W —fl
T(E-fy) ]

_ 2W-f,
sin(21tﬂ: + sin(ant A i’.)

+ 2w

4 2t + W2Wa £, 4W 2nt - /2Wa £,

_ sin(2rfyt) . sin[2nt(2W -f;)]
47Wt 4nWt

_ 1 sin(@rfyt) + sin[2nt(2W -f;)] . sin(2nf t) + sin[2nt(2W-f;t)]

4W 2nt - P2Wa 2nt - ©/2Wa

1 .. . 1 nt
= __ [sin(2nf;t) + sin[2rt(2W-f,)] -

L [ ] Lnt (2rt)? - (1c/2Wa)2]
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2
L [sin(2nWt)cos(2naW)] [ - (n/2Wa) ]
w 4nt [(2nt)? - (W2Wor)?

sinc(2Wt) cos(2raWt) 1
1 - 16 a?W?2 t2

Problem 4.14

The minimum bandwidth, By, is equal to 1/2T, where T is the pulse duration. For 64 quantization
levels, log,64 = 6 bits are required.

Problem 4.15

The effect of a linear phase response in the channel is simply to introduce a constant delay 1 into
the pulse p(t). The delay 7 is defined as -1/2r)times the slope of the phase response; see Eq. 2.171.
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Problem 4.16

The Bandwidth B of a raised cosine pulse spectrum is 2W - f1. where W =\/2Tb and

f1 =W (1-@). Thus B = W (1+). For a data rate of 56 kilobits per second, W = 28 kHz.

(a) For q = 0.25,
B = 28 kHz x 1.25
= 35 kHz
(b) B = 28 kHz x 1.5
: = 42 KkHz
(e) B = 49 kHz
(d) B = 56 kHz

Problem 4.17

The use of eight amplitude levels ensures that 3 bits can be transmitted per pulse.
The symbol period can be increased by a factor of 3. All four bandwidths in problem 7./2

will be reduced to 1/3 of their binary PAM values.

Problem 4.18

(a) For a unity rolloff, raised cosine pulse spectrum, the bandwidth B equals 1/T, where
T is the pulse length. Therefore, T in this case is 1/12kHz. Quarternary PAM ensures 2
bits per pulse, so the rate of information is

E_E%EE = 24 kilobits per second.

-(b) For 128 quantizing levels, 7 bits are required to transmit an amplitude. The
additional bit for synchronization makes each code word 8 bits. The signal is transmitted
at 24 kilobits/s, so it must be sampled at

24 kbits/s
8 bits/sample

= 3 kHz.

The maximum possible value for the signal's highest frequency component is 1.5 kHz, in
order to avoid aliasing.
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Problem 4.19

The raised cosine pulse bandwidth B = 2W - f1, where W = 1/2Tb. For this channel,

B = 75 kHz. For the given bit duration, W= 50 kHz. Then,

f1 =2W-B
= 25 kHz
«=1-f/B
= 0.5
Problem 4.20

The duobinary technique has correlated digits, while the other two methods have
independent digits.
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Problem 4.21

(a) binary sequence b, 0 0 1
polar representation -1 1 1
duobinary coder output ey -2 0
receiver output ;k ‘ -1 =1 1
output'binary sequence 0 | 0 1

(b) receiver input 0 o0
receiver output ;k -1 1 =1
output binary sequence 0 1 0

We see that not only is the second digit in error, but

Problem 4.22

(a) binary sequence b, 0 o 1
coded sequence dk 1 1 1 0
polar representation 1 1 1 -1
duobinary coder output ck 2 2 0
receiver output 0 o0 1

(b) receiver input 2 0 o0
receiver output 0 1 1

In this case we see that only the second digit
propagation,

Problem 4.23

_(a) The correlative coder has output

Zn * Yn T Ypaq

Its impulse response is
(11{
1

hk:-‘] k
0 otherwise.

The frequency response is 228

0

0 1 0
-1 1 =1

2 0 0 0
-1 1 -
o 1 o0

-1 1 =

is in error,

0 1
-1 1
-2 0
-1 1

0 1
-2 0
-1 1

0 1

also the error propagates.

0 1
0o 1
-1 1
-2 0
0 1
-2 0
0 1

and there is no error



H(f)

L h, exp(-:]21rf‘k’rb)

K==

1 - exp(-j2nf’l‘b)

(b) Let the input to the differential encoder be xn" the input to the correlative coder

be Yo and the output of the correlative coder be Z.. Then, for the sequence 010001101 in

its on-off form, we have

Then z, has the following waveform

The sequence z, is a bipolar representation of the input sequence x_.

r ' y — £

n

Problem 4.24

(a) The output symbols of the modulo-2 adder are independent because:

1.

2.

the input sequence to the adder has independent symbols, and therefore

knowing the previous value of the adder does not improve prediction of the
present value, i.e.

£y by, ) = £y )

where yn is the value of the adder output at time nTb. The adder output
sequence is another on-off binary wave with independent symbols. Such a wave
has the power spectral density (from problem £./0),

2

22 A°T '2
SY(f) =7 8(f) «+ g Sinc (f'rb) .
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The correlative coder has the transfer function
H(f) = 1 = exp(-j21rf'Tb),

Hence, the output wave has the power spectral density

2
Sz(f) {H(D) SY(f)

[1 - exp(-j2mfT )] [1 - exp(jznf'rb)]' S¢(f)

[2 -2 cos(21rf'1‘b)] SY(f)

. 2
4 sin (nfTb) SY(f)

2 A2T

2 A
4 sin®(nfT,) (- &(£) + —

b sincz(fTb)]

a2

2 2
'I’b sin (nfTb) sinc (.fTb)
In the last line we have used the fact that

sin(nfTb) =0at f = 0.

A
S8 Jr oL r\fé f
;’: T Tb T T

S )L

E
T
&

Note that the bipolar wave has no dc component.
(Note: The power spectral density of a bipolar signal derived in part (a) assumes the use of a pulse
of full duration 7. On the other hand, the result derived for a bipolar signal in part (d) of Problem
3.11 assumes the use of a pulse of half symbol duration T}.)
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Problem 4.25

(a)

(b)

Here we see that not only is the third digit

The modified duobinary receiver estimate is &, =

binary sequence a,

bipolar representation
modified duobinary ck
receiver output a,
output binary sequence
receiver input

receiver output ﬁk
output binary sequence

Problem 4.26

=217 3 ¥ i SV 4]

(a)

(v)

coded sequence a

binary sequence bk

k

polar representation

modified duobinary ¢

receiver output b

k

k

output binary sequence
receiver input

receiver output

output binary sequence °

= Je

1 1 1

1 1 1

2 0
11 1
1 1 1

0 O
1 =1 1
1 0 1
in error,
1 1 1
1 1 0
1 1 -1
2 2 =2
2 2 2
1 1 1
2 0 =2
2 0 2
1 0 1

k k-2°
0 0
-1 -1
-2 =2
-1 =1
0 0
-2 =2
-3 =1
0 o0
but also
0 0
1 0
1 =1
0 0
0 0
0 0
0 0
0 0
0 0

-1

0 1
-1 1
0 O
-1 1
0o 1
0 o0
-1 =1
0 ©

the error propagates.

.This time we find that only the third digit is in error,
propagation,

231

0 1
0o 1
-1 1
0 2
0 2
0 1
0 2
0 2
0 1

and there 1is no error



Problem 4.27

(a) Polar Signalling (M=2)

In this case, we have

m(t) = I A sinc(E - n)
n n T

where An = + A/2. Digits 0 and 1 are thus represented by -A/2 and +A/2, respectively,

The Fourier transform of m(t) is

M(f) z An F[sinc(% - n)l

n

T rect(fT) g An exp(-j2mfT)

~ Therefore, m(t) is passed through the ideal low-pass filter with no distortion.

The noise appearing at the low-pass filter output has a variance given by

2 _ 0
° =37

Suppose we transmit digit 1. Then, at the sampling instant, we obtain a random
variable at the input of the decision device, defined by

X:%+N

where N denotes the contribution due to noise. The decision level is 0 volts, If X > 0,
the decision device chooses symbol 1, which is a correct decision. If X < 0, it chooses
symbol 0, which is in error. The probability of making an error is

0
P(X<0) = J fy(x) dx

- 00

2
The expected value of X is A/2, and its variance is o°. Hence,

232



A
() L exple 2
£f,(x) = — expl-
X Y210 202
2
1 0 (x —‘5)
P(X<0) = —= J exp(- ——=—) dx
Y210 - 20
1
:-é-erfc( )
2720

Similarly, if we transmit symbol 0, an error is made

when X > 0, and the probability
of this error is .

A
2720

P(X>O) = — erfe( )

1
2

Since the symbols 1 and 0 are equally probable, we find that the average probability of
error is

Pe % P(X<0 | transmit 1) + % P(X>0 | transmit 0)

1 erfe(

2

Ay
2720

(b) Polar ternary signaling

In this case we have

m(t) = L A sinc(E-- n)
n B T

where

The 3 digits are defined as follows

Digit Level
0 -A
1 0
2 +A

Suppose we transmit digit 2, which, at the input of the decision device, yields the
random variable

X=4+N 233



The probability density function of X is

(x- A)

fx(x) = > -_—3")

exp(-
V21 o 20

The decision levels are set at —A/2 and A/2 volts. Hence, the probability of choosing
digit 1 is ’

: A/2 2
P(-%—(X <%) = ! exp[- 51'—'%—-] dx
-A/2 Y21 o 20
= %-[erfb( ) - erfe( EL )]

22 o 2’2 o
Next, the probability of choosing digit 0 is

P(X € - %) = l-erfc( 34

2 o’2 o

)

If we transmit digit 1, the random variable at the input of the decision device is

X =N

The probability density function of X is therefore

1 x2
fx(x) = — exp(~ ——5)
21 o 20

The probability of choosing digit 2 is

P(X > %) = % erfo(—2
2’2 o

> )

The probability of choosing digit 0 is

P(X € - %) = l-erfc( A

2 V2 o

)

Next, suppose we transmit digit 0. Then, the random variable.at the input of the
decision device is

X =<A +N

The probability density function of X is therefore
234



(x+A)2]
2

fx(x) = expl-
2% O 20

The probability of choosing digit 1 is

P(- % <X K %0 = % lerfo (——) - erfo( 3&_ )]

V2 o 2¥2 o

The probability of choosing digit 2 is

erfe( EL

P<x>—;->=15
V20

)

Assuming that digits 0, 1, and 2 are equally probable, the average probability of
error is

Pg = % [%-erfc(——é—-) -1 erfe( 34 )] + 1. %-[erfC( L )]

2v2 ¢ 2 2V2 ¢ 3 2/2 o

.1

> {erfe(

LS I N % [erfo(

)]
2/3 o 3 273 o

wi—

. %-[erfc( A )} = erfe( 34 )] + %-- % erfe( EL )
2/2 ¢ 22 ¢ /2 o

TN

erfe(

)

w|n

22 ¢

‘ (¢) Polar quaternary signaling

In this case, we have

91'15
2

P>

A = 4+
n—

and the Y4 digits are represented as follows

Digit Level
TN
2 + %-

3 + %ﬁ

Suppose we transmit digit 3, which,

at the input of the decision device, yields the
random variable:
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The decision levels are 0, * A, The probability of choosing digit 2 is

2
1 A (x - ;%
P(O< X<A) = J expl- 51 dx
21 6 0 20
=1 [erfe( A ) -~ erfe( 34 )]

N

2V2 o 2/2 o

The probability of choosing digit 1 is

0 (x = 3—202
P(-A < X <0) = J expl- > 1 dx
Y27 o -A 20
= 3 lerfe(-324 ) - erfo(2A )
22 o 22 o
The probability of choosing digit 0 is
2
-A (x - %A)
P(X < -A) = S expl- > ] dx
Y21 ¢ - 20
=‘% erfc( L ).
22 o

Suppose next we transmit digit 2, obtaining

A 2
1 ® (x - 3
P(X > A) = — S exp[_ > ] dx
2r o A 20
= % erfe( A Y.
2vV2 o
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The probability of choosing digit 1 is

2
P(-A < X<0) = /' exp(- 5—) dx
Y21 0 -A 20
= % [erfe( A ) - erfe( 34 )]
2’2 ¢ " 2v2 o
The probability of choosing digit 0 is
2
A (x - %)
P(X < -8) = S expl- > ] dx
V2T 0 = 20
=-% erfo( EL Y.
2/2 g

Suppose next we transmit digit 1, obtaining
A
X-—2+N

The probability of choosing digit 0 is

erfe( A

P(X < =A) =%
22 ¢

)

The probability of choosing digit 2 is

lerfe(

) - erfe( 34 )]

P(O(X(A):—;- = 2
; 2 o 2Y2 ¢

The probability of choosing digit 3 is

erfc(—ié——) .

P(X>A)=—;_- 2
2 o

Finally, suppose we transmit digit 0, obtaining
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The probability of choosing digit 1 is

Ay _ erfe(=32 3
22 o 22 ¢

P(-A < X <0) = [erfe(

1
2
The probability of choosing digit 2 is

34 ) = erfe( L )]
22 ¢ 22 o

P(0 < X < A) = 5 [erfe(

1
2
The probability of choosing digit 3 is

54
22 o

P(X > A) =

)

1
> erfe(

Since all 4 digits are equally probable, with a probability of occurence equal to |
1/4, we find that the average probability of error is

A ) - erfc( 34

22 ¢ 2/2 o

ferfe(

)

1
Pe=4°2°

1
2

3A ) = erfe( L
2/2 o 2/2 o

+ erfe(

)

"

=lw
®
=
*»
)
~~

Problem 4.28

The average probability of error is (from the solution to Problem 7-23)

1 A

P = (1 = =) erfe(
2’2 ¢

e M

) Qp)
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The received signal-to-noise ratib is

2,2
(SNR)R - ﬁ_ﬁﬂ__%_ll
12 ¢
That is
A i 12(SNR)R (2)
o Mo - 1

Substituting Eq. (2) in (1), we get

L f3CNRY,
= (1 =3 erfe( f —8y
e M 2(M%-1)

o
1

With P_ = 10’6, we may thus write
-6 1
107" = (1 - ¥) erfe(u) (3)
where
5 3(SNR)R
u = ———
2(M =1)

For a specified value of M, we may solve Eq. (3) for the corresponding value of u.
We may thus construct the following table:

M u

2 3.37
it - 3.42
8 3.45
16 3.46

We thus find that to a first degree of approximation, the minimum value of received

signal-to-noise ratio required for Pe < 10-6 is given by

3(SNR), .
OB L (3,42)°
2(M°=1)

That s, (SNR)g .., =7.8 (M*—1) 239



Problem 4.29

Typically, a cable contains many twisted pairs. Therefore, the received signal can be written as

N
r(n) =Y vi(n)+d(n), large N

i=1

N
where d(n) is the desired signal and Zvi(n) is due to cross-talk. Typically, the v; are statistically
i=1
independent and identically distributed. Hence, by using the central limit theorem, as N becomes
N

infinitely large, the term Ev ;(n) is closely approximated by a Gaussian random variable for each
i=1
time instant n.

Problem 4.30

(a) The power spectral density of the signal generated by the NRZ transmitter is given by

2
S(f) = F6(HI ()

where 62 is the symbol variance, T is the symbol duration, and

T/2

G(f) = [ 1-e™ar = Tsinc(fT) = Ilesinc(@ )

-T/2

is the Fourier transform of the generating function for NRZ symbols. Here, we have used the
fact that the symbol rate R = 1/T. A 2BIQ code is a multi-level block code where each block
has 2 bits and the bit rate R = 2/T (i.e., m/T, where m is the number of bits in a block). Since
the 2B1Q pulse has the shape of an NRZ pulse, the power spectral density of 2BIQ signals is
given by

2
SZBIQ = %IGZBIQ(f)|2

where

sin(21(f/R))

J2nf

GzBIQ(f) =
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The factor 4/2 in the denominator is introduced to make the average power of the 2BIQ signal
equal to the average power of the corresponding NRZ signal. Hence,

2(sin(2n(f/R))\2
Sopig(f) = GT(—“_SIH(A/E(TQ R)))

202. 2
= =psinc"(2(f/R)) 3)

(b) The transfer functions of pulse-shaping filters for the Manchester code, modified duobinary
code, and bipolar return-to-zero code are as follows:

(i) Manchester code:

G(f) = f[l—cos(nléﬂ @)

(i1)Modified duobinary code:

]«/—n [cos(?m:f) - cos(n}—;ﬂ (5)

(iii)Bipolar return-to-zero code:

G(f) = f[sm(nzj;) X sm(nlfeﬂ 6)

Hence, using Eqs. (4), (5), and (6) in the formula of Eq. (1) for the power spectral density of
PAM line codes, we get the normalized spectral plots shown in Fig. 1. In this figure, the
spectral density is normalized with respect to the symbol variance 62 and the frequency is
normalized with respect to the data rate R.

G(f) =

From Fig. 1, we may make the following observations: Among the four line codes displayed
here, the 2BIQ code has much of its power concentrated inside the frequency band

-R/2 < f < R/2, which is much more compact than all the other three codes: Manchester code,
modified duobinary code, and bipolar return-to-zero code.
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S(f)/c?

1.8

1.6

1.4} LS

0.8
0.6
0.4

0.2

Manchester
Modified duo—binary
Bipolar RZ

2B1Q

Bipolar NRZ

D N WU SO S o e
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Problem 4.31

The tapped-delay-line section of the adaptive filter is shown below:

x[n]

x[n-1]

x[n-2] x[n-3] 1 x[n-m]

#n] = x [n]W[n]
dln] = x[n]+r[n]

Error signal e[n] = d[n] - #[n]
Win+1] = Wn] +px[n](d[n] - x' [n]W[n])
where W[n] = [Wolnl, -, W, [n]']

x[n] = [x[n], x[n—1], -+, x[n-m]"]

U = learning parameter

Problem 4.32

(a)
tput Dutput
c(t) h(r)
The k(1) is defined by
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N
h(r) = ) w,8(z—kT)

k=-N

The impulse response of the cascaded system is given by the convolution sum

N
P, = 2 Wi, _;
j=N

where p, = p(nT). The kth sample of the output of the cascaded system due to the input
sequence {1} is defined by

I = poly+ ZInpk—n
n#k

where pgl; is a scaled version of the desired symbol ;. The summation term 2 I.p,_, is

n#k
the intersymbol interference.

The peak value of the interference is given by

N N | N

DIN) = X |pal = X | X WiCuor
n=-N n=-Nlk=-N
n#0 n+0

To make the ISI equal to zero, we require
< 1 0
, ono=
Py = Zwkcn—k = { }
k=-N

(b) By taking the z-transform of the convolution sum

N
2 WiCh_k
k=-N

and recalling that convolution in the discrete-time domain is transformed into multiplication
in the z-domain, we get

P(z) = H(z)C(z)
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For the zero-forcing condition, we require that P(z) = 1. Under this condition, we have
H(z) = 1/C(2)
which represents the transfer function of an inverse filter.

If the channel contains a spectral null at f = 1/27T in its frequency response, the linear zero-
forcing equalizer attempts to compensate for this null by introducing an infinite gain at
frequency f = 1/2T. However, the channel distortion is compensated at the expense of
enhancing additive noise: With H(z) = 1/C(z), we find that when C(z) = 0,

H(Z) = oo
which results in noise enhancement.

Similarly, when the channel spectral response takes a smaller value, the equalizer will
introduce a high gain at that frequency. Again, this tends to enhance the additive noise.

Problem 4.33

(a) Consider Eq. (4.108) of the textbook, which is rewritten as

fm(Rq(t—'t)+1—\;96(t—'c))c(r)dr = g(~1)

Expanding the left-hand side:

J.qu(t—r)c('c)d’c+fw%)5(t—r)c(r)dr = q(-t)

Applying the Fourier transform:
F{meq(t—r)c(‘c)d'r} = F{R(1-1)} x F{(c(1))}
= S, (HC)

F{f &S(I—T)C(T)df} = 1-\;—0C(f)
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Fiq(-0)} = Q(-f) = Q*(f)

In these three relations we have used the fact that convolution in the time domain corresponds
to multiplication in the frequency domain.

Putting these results together, we get
Ny
SNCUN) +5C() = 0*(f)
or
Ny .
(5,0 + L)) = o)

which is the desired result.

(b) The autocorrelation function of the sequence is given by
R, (T},Ty) = ;q(ka—Tl)q(ka—Tz)
Using the fact that the autocorrelation function and power spectral density (PSD) form a
Fourier transform pair, we may write
PSD = F{Rq(rl,rz)}
= F{zk)q(ka—rl)q(ka—rz)}
o f+ Tﬁb)lz

where F{q(t)} = Q(f)

1
=T_b2

k
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Problem 4.34 .
(a) The channel output is

x(t) = 2, s(t—tm) ta, s(t—toz)

Taking the Fourier transform of both sides:

X(f) = [a.1 exp(-j2nfto1) + a, exp(-jznftoz)] S(f)

The transfer function of the channel is

X(f)
S(f)

H,(f)

a, exp(-j2ﬂft01) +a, exp(-j2ﬂfto )

2
(b)

Channel
H (f) I—
c

Equalizer
He(f) .

Ideally, the equalizer should be designed so that

Hc(f) He(f) = KO exp(-j2nft0)

where KO is a constant gain and tO is the transmission delay., The transfer function of

the equalizer is

He(f) = Wy + W, exp(-jZTfT) + W, exp(-jUnfT)

W W
= w_ [1+— exp(=j2nfT) + 2 exp(=jUnfT)] (1
0 Wy Wy
Therefore
K exp(-j2nft )
H (1) = 2 0

Hc(f)

KO exp(-janto)
@, exp(-j2ﬂft01) *ta, exp(-Janto

5)
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i (Ko/q1) exp[-j21rf(to-t01)]
= 3,
1+ a. exP[-JZﬂf(t02 - t5)]

1

Since a, 144 @+ We may approximate He(f) as follows

K Q.
-9 i -2 .
H () = a expl J21rf(to - t5921 {1 - a, exp[-Jznf‘(t02 - tm)]
a2 2
+ (31-) exp[—Junf(toa - to1)]}

Comparing Eqs. (1) and (2), we deduce that

w0=1
a
w1 = ——-2-
aq
a, 2
[N
"’2‘(:{1)
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Problem 4.35

The Fourier transform of the tapped-delay-line equalizer output is defined by

Youe® = HO X;p(D (1)

where H(f) is the equalizer’s transfer function and X; (f) is the Fourier transform of the input
signal. The input signal consists of a uniform sequence of samples, denoted by {x(nT)}. We may
therefore write (see Eq. 6.2):

1

k

where T is the sampling period and s(t) is the signal from which the sequence of samples is
derived. For perfect equalization, we require that
Yout) = 1 for all f.

From Eqs. (1) and (2) we therefore find that

T

Y, X{E-KT) (@)
k

H(f) =

@eqmnuuﬂ
Let the impulse responsefof the equalizer be denoted by {w,}. Assuming an infinite number of taps,

we have
Hf) = Y w, exp(2rfT)
n=-oo

We now immediately see that H(f) is in the form of a complex Fourier series with real coefficients
defined by the tap weights of the equalizer. The tap-weights are themselves defined by

W, = % _[11//?1‘* H(f)exp( - j2rt/T), n=0, +1, +2,...
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The transfer function H(f) is itself defined in terms of the input signal by Eq, (3). Accordingly, a

tapped-delay-line equalizer of infinite length can approximate any function in the frequency
interval (-1/2T, 1/2T).

Problem 4.36
(a) As an example, consider the following single-parameter model of a noisy system:
d[n] = wylnlx[n] +v[n]

where x[n] is the input signal and v[n] is additive noise. To track variations in the parameter
woln], we may use the LMS algorithm, which is described by

Error signal

wln+1] = wln] +ux[n] ~ (d[n] - W[nlx[n])

= (1-px’[nl)win] + px[nldin] 1)

To simplify matters, we assume that Ww[n] is independent of x[n]. Hence, taking the
expectation of both sides of Eq. (1):

EWln+1]] = (1-po)EWln]]l +pr,, )
where E is the statistical expectation operator, and

o> = E[x’[n]]

rqa. = Eld[n]x[n]]

Equation (2) represents a first-order difference equation in the mean value E[Ww[n]]. For this
difference equation to be convergent (i.e., for the system to be stable), we require that

Il - uoi' <1
or equivalently

() 1-po-<l1, ie, p>0

(i) -l+poo<l, ie, p<

W
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Stated in yet another way, the LMS algorithm for the example considered herein is stable
provided that the step-size parameter u satisfies the following conditions:

2
0<u<—2

Gx

2. . . .
where o is the variance of the input signal.

(b) When a small value is assigned to W, the adaptation is slow, which is equivalent to the LMS
algorithm having a long “memory”. The excess mean-squared error after adaptation is small,
on the average, because of the large amount of data used by the algorithm to estimate the
gradient vector. On the other hand, when W is large, the adaptation is relatively fast, but at the
expense of an increase in the excess mean-squared error after adaptation. In this case, less data
enter the estimation, hence a degraded estimation error performance. Thus, the reciprocal of
the parameter W may be viewed as the memory of the LMS algorithm.

Problem 4.37

A decision-feedback equalizer consists of a feedforward section, a feedback section, and a
decision device connected together as shown in Fig. 1. The feed-forward section consists of a
tapped-delay-line filter whose taps are spaced at the reciprocal of the signaling rate. The data
sequence to be equalized is applied to this section. The feedback section consists of another
tapped-delay-line filter whose taps are also spaced at the reciprocal of the signaling rate. The
input applied to the feedback section consists of the decisions made on previously detected
symbols of the input sequence. The function of the feedback section is to subtract out that portion
of the intersymbol interference produced by previously detected symbols from the estimates of
future samples.

Note that the inclusion of the decision device in the feedback loop makes the equalizer
intrinsically nonlinear and therefore more difficult to analyze than an ordinary tapped-delay-line
equalizer. Nevertheless, the mean-square error criterion can be used to obtain a mathematically
tractable optimization of a decision-feedback equalizer. Indeed, the LMS algorithm can be used to
jointly adapt both the feedforward tap-weights and the feedback tap-weights based on a common
error signal. To be specific, let the augmented vector ¢,, denote the combination of the feedforward

and feedback tap-weights, as shown by

c, = (D
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0>

— section, .
A (1) device

n

" Feedforward + /z\ Decision

Feedback

section,
~ (2)
wﬂ

Figure 1

where the vectoerll) denotes the tap-weights of the feedforward section, and va,z) denotes the

tap-weights of the feedback section. Let the augmented vector v, denote the combination of input
samples for both sections:

X
ol
an

where x,, is the vector of tap-inputs in the feedforward section, and 4, is the vector of tap-inputs
(i.e., present and past decisions) in the feedback section. The common error signal is defined by

T
€, = a,—¢, v, 3)

where the superscript 7 denotes matrix transposition and a,, is the polar representation of the nth

transmitted binary symbol. The LMS algorithm for the decision-feedback equalizer is described
by the update equations:

wb Wil)

n+l + Mlenxn

W(z) _ A(2)+ A
n+l = Wy MZenan

where 1, and W, are the step-size parameters for the feedforward and feedback sections,
respectively.
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Problem 4.33

Matlab codes

% Problem 4.3§, CS: haykin

% Eyediagram

% baseband PAM transmission, M=4
% Mathini Sellathurai

clear all

% Define the M-ary number, calculation sample frequency
M=4; Fs=20;

% Define the number of points in the calculation
Pd=500;

% Generate an integer message in range [0, M-1].
msg_d = exp_randint(Pd,1,M);

% Use square constellation PAM method for modulation
msg_a = exp_modmap(msg_d,Fs,M);

% nonlinear channel
alpha=0.0
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msg_a=msg_a +alpha*msg_a."2;

“iraised cosine filtering
rcv_a=raisecos_n(msg_a,Fs);

% eye pattern

eyescat(rcv_a,0.5,Fs)
axis([-0.5 2.5 -1.5 1.5])
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function y = exp_modmap(x, Fs,M);
% PAM modulation

% used in Problem 4.3%

% Mathini Sellathurai

x=x-(M-1)/2;
x=2*x/(M~1)
y=zeros(length(x)*Fs,1);

p=0;

for k=1:Fs:length(y)

pP=p+1;

y(k: (k+Fs-1))=x(p)*ones(Fs,1);
end
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function out = exp_randint(p, q, r);
% random interger generator

used for Problem 4.3§

% Mathini Sellathurai

r = [0, r-1];

r = sort(r);

r(1) = ceil(r(1));

r(2) = floor(r(2));

if r(1) == r(2)
out = ones(p, q) * r(1);
return;

end;

d = 1r(2) - r(1);
rl = rand(p, q);
out = ones(p,q)*r(1);
for i = 1:d
index = find(ri >= i/(d+1));

out(index) = (r(1) + i) * index./index;
end;
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Answer to Problem 4.38

t(s)

asuodsay

0

Eye pattern for o

Figure 4 :
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Eye pattern for a=

Figure 2
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Figure 3 : Eye pattern for

Problem 4.3%
Matlab codes

Haykin

% problem 4.39, ¢S

%

root raised-cosine and raised cosine sequences

% M. Sellathurai

L

=[1 0110 0]
% sample frequency 20
sample

Data

freq=20;

generate antipodal signal

?

_mod(Data, sample_freq, 2)

syms=PAM

% root raised cosine pulse

sample_freq )

= raisecos_sqrt(syms,

rc.r

% normal raised cosine pulse

_freq );

, sample

= raisecos_n(syms

r_c_n

% plots

r)-1;

hold on

-C

length(r
figure

t=
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plot(0:1/20:t/20, r_c_r);

plot(0:1/20:t/20, r_c_n,’—~’);
xlabel(’time’)

legend(’root raised-cosine’,’raised-cosine’)
hold off

260



function osyms = raisecos_n(syms, sample_freq )
% function to generate raised-cosine sequence
% used in Problem 4.39, CS: Haykin

“M. Sellathurai

% size of data
[1_syms, w_syms] = size(syms);

% data
R=0.3;
W_T=[3, 3*3];

% Calculation of Raised cosine pulse

W_T(1) = -abs(W_T(1));

time_T = [0 : 1/sample_freq : max(W_T(2), abs(W_T(1)))];
time_T_R = R * time_T;

den = 1 - (2 * time_T_R)."2;
index1 = find(den"= 0);
index2 = find(den == 0);

% when denominator not equal to zero
b(index1) = sinc(time_T(index1)) .=* cos(pi * time_T_R(index1)) ./ den(index1l);

% when denominator equal to zero, (using L’Hopital rule)
if “isempty(index2)
b(index2) = 0;
end;

b = [b(sample_freq * abs(W_T(1))+1 : -1 : 1), b(2 : sample_freq * W_T(2)+1)];
b=b(:)’;
% filter parameters
order= floor(length(b)/2);
bb=[];
for i = 1: order
bb = [bb; b(1+i:order+i)];
end,;

[u, 4, v] = svd(bb);
d = diag(d);

index = find(d/d(1) < 0.01);
if isempty(index)
o = length(bb);
else
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o = index(1)-1;
end;

a4 = bb(1);
ul = u(1 : length(bb)-1, 1 : o);

vl = v(1 : length(bb)-1, 1 : o);
u2 = u(2 : length(bb), 1: 0);
dd = sqrt(d(1i:0));

vdd =1 ./ dd;

uu ul’ * u2;

al = uu .* (vdd * dd’);
a2 =dd .* vi(1, :)?;
a3 = ui(i, :) .* dd’;

[num, den] = ss2tf(al, a2, a3, a4, 1);

fsyms = zeros(1l_syms+3*sample_freq, w_syms);
for i = 1 : sample_freq : 1l_syms
fsyms(i, :) = syms(i, :);
end;

% filtering
for i = 1:w_syms

fsyms(:, i) = filter(num, den, fsyms(:, i));
end;

osyms = fsyms(( (3 - 1) * sample_freq + 2):(size(fsyms, 1) - (sample_freq - 1)),
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function osyms = raisecos_sqrt(syms, sample_freq )
% function to generate root raised-cosine sequence
s used in Problem 4.39, CS: Haykin

%M. Sellathurai

% size of data
[1_syms, w_syms] = size(syms);

% rolloff factor
R=0.3;

% window

W_T=[3, 3*3];

% Calculation of Raised cosine pulse
W_T(1) -abs(W_T(1));
time T = [0 : 1/sample_freq : max(W_T(2), abs(W_T(1)))1;

1}

den = 1 - (4 * time_T*R)."2;
index1 = find(den "= 0);
index2 = find(den == 0);

s when denominator not equal to zero
b(index1)=( cos((1 + R) * pi * time_T(index1))+...
(sinc((1-R)*time_T(index1))*(1-R)*pi/4/R))./den(index1)*4+R/ pi ;

% when denominator equal to zero t=\pm T/4/alpha

if “isempty(index2)
b(index2)=((1+2/pi)*sin(pi/4/R)+(1—2/pi)*cos(pi/4/R))*R/sqrt(2)

end;

b(1)=1-R+4*R/pi; %t=0;

b = [b(sample_freq * abs(W_T(1))+1 : -1 : 1), b(2 : sample_freq * W_T(2)+1)];
b=b(:)’;

% filter parameters
order= floor(length(b)/2);
bb=[];
for i = 1: order

bb = [bb; b(i+i:order+i)];
end;

[u, d, vl = svd(bb);
d = diag(d);
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index = find(d/d(1) < 0.01);
if isempty(index)
0 = length(bb);
else
o = index(1)-1;
end;

a4 = bb(1);

ul = u(1 : length(bb)-1, 1 : o);

vl =v(l : 1length(bb)-1, 1 : 0);
u2 = u(2 : 1length(bb), 1: 0);

dd = sqrt(d(1:0));
vdd = 1 ./ dd;

uu = ui’ * u2;

al = uu .* (vdd * dd’);
a2 =dd .* vi(1, :)?;
a3 = ui(1, :) .x dd’;

[num, den] = ss2tf(al, a2, a3, a4, 1);

fsyms = zeros(l_syms+3*sample_freq, w_syms);
for i = 1 : sample_freq : 1_syms
fsyms(i, :) = syms(i, :);
end;

% filtering
for i = 1:w_syms

fsyms(:, i) = filter(num, den, fsyms(:, 1));
end;

osyms = fsyms(( (3 - 1) * sample_freq + 2):(size(fsyms, 1) - (sample_freq - 1)), :);
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Answer to Problem 4.39

root raised—cosine
-— - raised—cosine

i \
A \
i N
o T T Noooc
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\ N
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: N :
—_ ............ \:/./ el NG
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: s _ =
-15 1 1 1 1 1 '
o 1 2 3 4 5 (<]

time

Figure 1: Raised-cosine and root raised-cosine pulse for sequence [101100]
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CHAPTER 5

Problem 5.1
(a) Unipolar NRZ code.

The pair of signals s;(¢) and s,(¢) used to represent binary symbols 1 and 0, respectively are
defined by

E
SI(I)ZJ;’ 0<t<T,
b

s,(1) = 0, 0<:<T,
where Ej, is the transmitted signal energy per bit and T is the bit duration. From the

definitions of s1(¢) and s,(¢), it is clear that, in the case of unipolar NRZ signals, there is only
one basis function of unit energy. The basis function is given by

wo:F, 0<I<T,
Tb

Then, we may expand the transmitted signals s;(¢) and s,(?) in terms of ¢;(t) as follows:

51(2) = JE,0,(2), 0<t<T,

s,(1) =0, 0<I1<T,

Hence, the signal-space diagram for unipolar NRZ code is (+ JE;, 0), as shown

- |
0 +\/Eb (I)l

(b) Polar NRZ code.

In this code, binary symbols 1 and O are defined by
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E
s(r) = +J;’, 0<t<T,
b
E
Sz(t)z—J;), 0<:<T,
b

The basis function is given by

1
01() = JT:,) 0<i<T,

Then, the transmitted signals in terms of ¢(z) are as follows:
s1(1) = JE,0,(r) 0<z<T,
s55(1) = = JE,0,(t)  0<t<T,

Hence, the signal-space diagram for the polar NRZ code is (+ A/E,, - A/E—b) as shown below:

g -
\/E b 0 +\/E b q)l

(c¢) Unipolar return-to-zero code.

In this third code, binary symbols 1 and 0 are defined by

E,
+ ,  0<51<T, /2
T

0 T,/2<t<T,

s1(7)

s5(0) =0 0<t<T,
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The energy of signal s(7) is

T

Tb/2 2 b
Eb
Ey= [ | [Z|di+ [ oar
Tb
0 T,/2
Eb
T2

The energy of signal s,(¢) is zero.

The basis function is given by

q)l(t) = i@

JET,
Pl

The signal-space diagram for the RZ code is as follows:

*— o
0 E o
7

(d) Manchester code |

Binary symbols 1 and 0 are defined by

Eb
L 0<i<T,/2
Tb

r

5(1) = < B
—F, T,/2<t<T,
Tb
\
E
—A/;’, 0<t<T,/2
b
5o(1) = <
E
+ [, T,/2<1<T,
Tb

268



The energy of signal s;() is

T,/2 ) T 2
E [ [ d ([ d
= —_ — !
= TR ([
0 Tb/2
=Eb

Similarly, the energy of symbol s,(¢) is
E, = E,
The basis function is given by

¢l(t)__JIE—;,

The signal-space diagram of the Manchester code is thus as follows:

® |
-\/E b 0 +\/E b q)l

Thus all the four line codes in this problem are one-dimensional.

Problem 5.2

The given 8-level PAM signal is defined by

t T
5;(1) = Airect(f—z)

The energy of signal 5,(7) is given by

T
E, = [(A)dr
0
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= AJT, A, = £1,43,+5 7
The basis function is given by
5;(1) _ 5;(1)

v

The signal-space diagram of the 8-level PAM signal is as follows:

—— o o Fle . ’ ’ 0y

0
INT -SNT -3NT  NT l VT 3WT sSNT 7T

Problem 5.3

Consider the signals s(7), s5(¢), s3(7), and s4(r) shown in Fig. 1a. We wish to use the Gram-
Schmidt orthogonalization procedure to find an orthonormal basis for this set of signals.

Step 1 We note that the energy of signal s;(¢) is

L)
E, = fo s(t)dt

T/3 2
j (1)°dr
0
r
3
The first basis function ¢(?) is therefore

0,(1) = ——=

_{A/3/T, 0<t<T/3 }

0, otherwise
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s1(t) s2(0) salt)
1 1 1}-
t ¢ 0 T
0T 0 2T T
3 3 3
(a)
1 (2) ¢2(t)
3T V3IT
¢ { p t
orT 0 r2r
3 3 3
(b)
Figure 1

¢3(t)

Step 2 Evaluating the projection of s,(¢) onto ¢(r), we find that

T
§y = jo 55(2)0,(1)dt

The energy of signal s,(¢) is

E, = j:sg(z)

2T/3 )
jo (1)“dt

2T

3
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The second basis function ¢,() is therefore

55(2) = 5510,(7)

2
E, -5y

¢2(l) =

_ {A/3/T, TI3<2T/3

0 otherwise

Step 3 Evaluating the projection of s3(f) onto ¢;(?),

S31

T
jo s3(1)0,(1)dt

=0

and the coefficient s3, equals

T
S3y = fo s4(1)0,(1)dt

The corresponding value of the intermediate function g,(¢), with i = 3, is therefore

85(1) = 53() —53,0,(2) = 53,0,(7)

|1, 2T/3<i<T
- 0, elsewhere
Hence, the third basis function ¢5(?) is

g5(?)

Uzgi(t)dz

¢3(t) =
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_ {A/3/T, 2T/3<t<T

0, elsewhere

The orthogonalization process is now complete.

The three basis functions ¢;(#), ¢,(7) , and ¢5(z) form an orthonormal set, as shown in Fig. 1b. In
this example, we thus have M = 4 and N = 3, which means that the four signals s1(2), s,(?), s3(?),
and s4(7) described in Fig. 1a do not form a linearly independent set. This is readily confirmed by
noting that s4(z) = s;(¢) + s3(¢). Moreover, we note that any of these four signals can be expressed

as a linear combination of the three basis functions, which is the essence of the Gram-Schmidt
orthogonalization procedure.
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Problem 5.4

(a) We first observe that s1(t), sz(t) and 53(t) are linearly independent.
The energy of s1(t) is
1 2
E1.= J (2)%dt = 4
0

The~first basis function is therefore

s1(t)
¢1(t) = =
E1
1, 0<t<
0, otherwsie
Define
T
Sy = IO sz(t) ¢1(t)dt
1
=1 (~u)(1)dt = -4
.0
Bz(t) = sz(t) - 521¢1(t)
-1, 1<tg2
0, otherwise

Hence, the second basis function is

gz(t)

/T >
I gatidt

0

9,(t) =
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-1, 1<t<2
o, otherwise

Define
T
331 = fo s3(t) ¢1(t)dt
1
=J (3)(1)dt = 3
0
2T
332 = LT s3(t) ¢2(t)dt
2
=/ (3)(-1)dt = =3
1
83(t) = s3(t) - S3 ¢1(t) - S3 ¢2(t)
3, 2<t<3
) 0, otherwise
Hence, the thrid basis function is
g,(t)
45(t) = -3
/T
2
/ 33(t)dt
0
1, 2<{t<3
) 0, otherwise
The three basis functions are as follows (graphically)
& ) ey 43(9
\.0-————————] D
4
A E ®
0 ] 0 0 ,
0 ---=-
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(b) 51(t) 2¢1(t)
sz(t) = -ll¢1(t) + 4¢2(t)

s3(t)

3¢,(t) - 3¢,(t) + 3¢3(t)
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Problem 5.5

Signals s1(z) and s,(7) are orthogonal to each other. The energy of s1(¢) is

T/2 T
E, = [ Udr+ [ »lar =T
0 T/2
The energy of s,(?) is
T
E,= (1% =T
0

To represent the orthogonal signals s;(¢) and s,(¢), we need two basis functions. The first basis
function is given by

si(t) _ sy(1)
o) = 2 = L
1 A/El ﬁ

The second basis function is given by

5,(1) _ 5,(1)

0p(0) = 22 = 2
2 A/E—,2 .\/T

The signal-space diagram for s(z) and s,(z) is as shown below:

A9
NT ®

> 0

o 7

Problem 5.6

The common properties of PDM and PPM are as follows: In both cases a time parameter of the
pulse is modulated and the pulses have a constant amplitude. In PDM, the samples of the message
signals are used to vary the duration of the individual pulses, as illustrated in Fig. 1a for M =4 on
the next page. In PPM, the position of the pulse is varied in accordance with the message, while
keeping the duration of the pulse constant, as illustrated in Fig. 1b for M = 4.

From these two illustrative figures, it is perfectly clear that the set of PDM signals is
nonorthogonal, whereas the PDM signals form an orthogonal set.
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Problem 5.7

(a) The biorthogonal signals are defined as the negatives of orthogonal signals. Consider for
example the two orthogonal signals s;(f) and s,(¢) defined as follows:

s1(t) = JEO (1)

Sz(f) = A/Eq)z(t)

where ¢(7) and 0,(¢) are orthonormal basis functions. The biorthogonal signals are given by
-s1(2) and -s,(#), which are respectively expressed in terms of the basis functions as \/E(])l(t)
and —\/-E—q)z(t). Hence, the inclusion of these two biorthogonal signals leaves the dimensionality

of the signal-space diagram unchanged. This result holds for the general case of M orthogonal
signals.

(b) The signal-space diagram for the biorthogonal signals corresponding to those shown in Fig.
P5.5 is as shown in Fig. 1a. Incorporating this diagram with that of the solution to Problem
5.5, we get the 4-signal constellation shown in Fig. 1b.

¢
0 NT @
o 5 0 . . o
NT T T
- \]T ® - \]T ®
(a) (b)
Figure 1
Problem 5.8

(a) A pair of signals s/z) and s (f), belonging to an N-dimensional signal space, can be
represented as linear combinations of N orthonormal basis functions. We thus write

N
si (1) = Ysy0,0), Osi=<T 1)
=1 i=1,2
where the coefficients of the expansion are defined by
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T
i=1,2
5 = El).si(t)(j)j(t)dt, - 12 (2)

The real-valued basis functions ¢{(z) and ¢,(¢) are orthonormal. Hence,

T
J'q)i(;)q)j(z) =3, = { 1, if i=j 3)
0

0, otherwise

The set of coefficients s.-}IY_ may be viewed as an N-dimensional vector defined by
4 j=1 y

s, = |%2|, i=1,2 ..M (4)

where M is the number of signals in the setl, with M > N. The inner product of the pair of
signal 5,(#) and s;(?) is given by

T

j s(1)s,(1)dt 5

0

By substituting (1) in (5), we get the following result for the inner product:
T-N N

J.I:ZSU(I)].(I)} {Zsk,q)l(z)}dz

oLj=1 =1

T

N
=Y Dsysuf0,(1)0(r)de (6)
j 0

Jj=1 I=1

Since the q)j(t) form an orthonormal set, then, in accordance with the two conditions of Eq. (3)
and (4), the inner product of s;(#) and s;(r) reduces to

T N
[sinsi(nyde = Y sy
0 j=1
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T
= 5;8;

(b) Consider next the squared Euclidean distance between s; and s;, which can be expressed as

follows:
2 T
”Si_sk” = (8;—58;) (5;—5;)
T T T
=8;8;+8;8; — 251. S,
T T T
= fsf(t)dt + js,f(t)dt ~2[s(0)s,dr
0 0 0
T
2
= [(si()-s(n)) de
0
Problem 5.9

Consider the pair of complex-valued signals s1(¢) and s,(¢), which are defined by
s1(1) = a;10,(8) +a;0,() (D)

5p(1) = ay,0,(2) + ay0,(t) (2)

The basis functions ¢;(7) and ¢,(¢) are real-valued and the coefficients ayy, a5, @y and ay, are
complex-valued. We may denote the complex-valued coefficients as follows:

ajp=oayp +jBy;
app =0 +jBio
a1 =01 +jBy;
ayy = 0y +jBy;

On this basis, we may represent the signals s(z) and s,(¢) by the following respective pair of
vectors:
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& Uy

B Bay
5= 8 -

3P )

B _Bzz_

The angle subtended between the vectors g; and g, is

T
218

cosQ = ——=
ERER

0ty 0y + By By + 0p0y + By By

T[22 2 2 ) 2 2
A/O‘nf’u + o, + B, A/O‘zlﬁzl + 00 + P,

H

il - s

ay 4 .
where s, = and s, = are complex vectors. Recognizing that
a a

12 22

H
5784

cos = ———— <1
[s4]] - Is

we may go on to write

oo

f 5,()sy(2)dt

= — 1= 73S
[f |s1(t)|2dtJ (_[ ]sz(t)|2dtj

The complex form of the Schwarz unequality becomes

=]

[ 5,(t)sy()dt

—o0

2

< [ syt [ [sy(0)]a
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The equality holds when s(f) and s,(f) are co-linear, that is, s1(f) = ks,(f) where k is any real-
valued constant.

Problem 5.10

E[XJ.W'(tk)] = E[(si + Wj)W'(tk)]

J

I~I[si‘j W'(tk)] =8, E[W'(tk)] =0

J
We also note that

N .
W'('ck) = W(tk) - i§1 Wi ¢i(tk)

We therefore have

E[xjw'(tk)] E[Wj W'(tk)]

N
= E[ij(tk) - 151 ¢i(tk) E[iji]
T ‘ T
But E[W, W(t = E[W(t W t)dt] = E{w W(t)ldt
u [ 3 ( k)] [W( k) fo (t) ¢J.( )dt) IO ¢j(t) [ (tk) (t)]
T NO N0
= IO ¢j(t) ‘5 G(t—tk)dt = 5+ ¢j(tk)
1‘9_ ’ i=j
2
E[iji] =
0 i#j
Hence, we get the final result
No No
ELX, W (tk_)] =3 05080 =5 et
= 0.
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Problem 5.11
For the noiseless case, the received signal 1(7) = s(¢), 0 <t < T.
(a) The correlator output is

T

WT) = [r()s(v)de
0

T
(1) = [s*()dr
0

T/2

(b) The matched filter is defined by the impulse response
h(t) = s(T-1)
The matched filter output is therefore

f r(AMA(E - A)dh

—0

y(1)

= j s(A)s(T =t + L)dA

—00

oo

= j sin(@) sin(—-——sn(T ;t A M)dk

—o0
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= %jcos

]

[SR(T— z)] -

f [Sn(T—Hx)] "

Since -T < A <0, we have

0= oD

1 T .(8n(T—t+2k)ﬂ}‘=°
— = g=S8In
2 STC T A=-T

¢ Ton{SRED)_ (o) T b

(c) When the matched filter output is sampled at ¢ = 7, we get
wWT)=T/2
which is exactly the same as the correlator output determined in part (a).
Problem 5.12

(a) The matched filter for signal s(z) is defined by the impulse response
hi(t) = s(T-1)
The matched filter for signal s,(¢) is defined by the impulse response
hy(t) = 5,(T 1)

The matched filter receiver is as follows

[
‘ ! Matz?(et;l filter > | > X
I
I
’ 9 I
x(1) |
Matched filter
P hy(t) - ! - X
Sample at
t=T
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The receiver decides in favor of s,(7) if, for the noisy received signal,
x(2) = s, (t) +w(z), 01T
()= sy +w(e), 91T

we find that x| > x,. On the other hand, if x, > x1, it decides in favor of s,(2). If x; = x,, the
decision is made by tossing a fair coin.

(b) Energy of signal s,(¢) is given by

T 2T 3T
7, = j(1)2dt+j(—1)2dt+ [ (1)a
0 T 2T
=3T = E

Energy of signal s,(7) is

T/2 37/2 5T/2 T
Ey= [ (V%ar+ [ (War+ [ D'+ [ ()
0 T/2 3T1/2 5T/2

=3T =E

The orthornomal basis functions for the signal-space diagram of these two orthogonal signals
are given by

0,(1) = 20
1 m

and

q)z(t) = sz_(t)

3T

The signal-space diagram of signals s and s, is as follows:
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*4)2

® 3T

® -

0 3T

The distance between the two signal points s;(¢) and s,(¢) is

d = J2E = J6T

The average probability of error is therefore
1 1 d

P, = —erfc(— —)
2 2 /NO

= lerfc(l Z—E)
T2 2 N,

For E/N,, we therefore have

P, = %erfc(l A/2><4)

2

%erfc(ﬁ)

4% 107

Problem 5.13

Energy of binary symbol 1 represented by signal s;(¢) is

T/2 T
E, = [ (+1)%dr+ [ Dar=T
0 T/2

Energy of binary symbol O represented by signal s,(¢) is the same as shown by
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T/2 T
E, = J.(—l)zdt+ [« + )2 =T
0 T/2

The only basis function of the signal-space diagram is

51(8) _ s1(7)

¢1(l)=ﬁ__ﬁ—

The signal-space diagram of the Manchester code using the doublet pulse is as follows:

T O T

Hence, the distance between the two signal points is d = 2.J/T . The average probability of error

over an AWGN channel is given by
1 d 1 T
P, = Qerfc(2 NO) = éerfc( /]Vo)

Problem 5.14

(a) Let Z denote the total observation Space, which is divided into two parts Z_ and 2
Whenever an observation falls i ’ "
g oo . in Zq, we say HO’ and whenever an observation falls in 21,

1° S, expressing the risk R in terms of the conditional probability density
functions and the decision regions, we may write

R =
00 Po fzof_)gao(lfﬂo)di
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C10 PO fZ fX'H (X|H )dx

]
Ci1 P 7z Fxm (2iHq 0

01 p1 IZ fx'H (X=H1)dl(. (1)

For an N-dimensional observation space, the integrals in Eq. (1) are N-fold integrals.

To find the Bayes test, we must choose the decision regions ZO and Z1 in such a

manner that the risk R will be minimized. Because we require that a decision be made,

this means that we must assign each point X in the observation space Z to Z or Z.; thus

0 1?
Z= ZO + Z1
Hence, we may rewrite Eq. (1) as
R = PoCoo /2 fxjn (XIHQ)AX + pCyg f7 5 fyy (xJHy)dx
0-="0 0= 0
+ Py, IZ-ZOfKIH (xH,)dx + 21 fzo X, (xH)dx » » (2)
We observe that
i) = =
ZfXIH (x{Hy)dx = J,f XIH (xIH,)dx = 1
Hence, Eq. (2) reduces to
R = poC1o * Py
0{ [po(Cm Coo’f XlH (xIHD1 + [p1(Co1-C”)fyH1(5_!H1)]}d5 (3)

The first two terms in Eq. (3) represent the fixed cost. The integral represents the cost
controlled by those points x that we assign to ZO. Since C10 > COO and (101 > C11’ we find
-that the two terms inside the square brackets are positive., Therefore, all values of x
o because theY
conbhfbute a negative amount to the integral. Similarly, all values of x where the

second term is larger than the first should be excluded from Z0 (i.e., assigned to 21)

where the first term is larger than the second should be included in Z

because they would contribute a positive amount to the integral. Values of x where the
two terms are equal have no effect on the cost and may be assigned arbitrarily. Thus the

decision regions are defined by the following statement: If
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p1(001 - C“)f"llH (le ) > po(C10 00 XIH (leo),

assign x to Z1 and consequently say that H1 is true.

Z0 and say H0 is true.

Alternatively, we may write

f (xjH,) H

Xid, T pglC5=Coo)

___—xm EIEM) < P, (Cgy—Cq )
0

The quantity on the left is the likelihood ratio:

f)111-11(-’5'“1)
A(x) = C CITIS)
- xtH (xIH )
Let
4. °F (C1o Co0?

If the reverse is true, assign x to

Thus, Bayes criterion yields a likelihood ratio test described by

A(x)

T AV
>

0

(b) For the minimum probability of error criterion, the 1likelihood ratio test is

described by

H
a7 Po
H

.Thus, we may view the minimum probability of error criterion as a special case of the

Bayes criterion with the cost values defined as

COO = C11 =0

€0 = o1

That is, the cost of a correct decision is zero, and the cost of an error of one kind is

the same as the cost of an error of the other kind.
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Problem 5.15

From the signal-space diagrams derived in the solution to Problem 5.1, we immediately observe
the following:

1. Unipolar NRZ and unipolar RZ codes are non-minimum energy signals.
2. Polar NRZ and Manchester codes are minimum energy signals.

Problem 5.16

The orthonormal matrix that transforms the signal constellation shown in Fig. 5.11(a) of the
textbook into the one shown in Fig. 5.11(b) is

1 1
0| 2 P
1 1

22

To prove this statement, we note that the constellations of Fig. 5.11(a) is defined by the four points
{(a, o), (-, ), (-0, —av), (a1, —at) }. The new constellation is defined by

Si rorate = Q8;, which for i =1 yields
11
o
S1, rotate = A/E ﬁ (O() = (ﬁ) fora=1.
) 1 1 0

0
Similarly, $5 e = ( 2)
e = { g

_ (42
S3, rotate —

0

0
S4, rotate (_,\/—J

Hence, the transformation from Fig. 5.11(a) to Fig. 5.11(b) is given by Q, except for a scaling
factor.

291



Problem 5.17

(a) The minimum distance between any two adjacent signal points in the constellation of Fig.
P5.17a of the textbook is

dE:I)n =20

The minimum distance between any two adjacent signal points in the constellation of Fig.
P5.17b of the textbook is

i = d(o) + (o) = 24

which is the same as dffl)n Hence, the average probability of symbol error using the
constellation of Fig. P5.17a is the same as that of Fig. P5.17b.

(b) The constellation of Fig. P5.17a has minimum energy, whereas that of Fig. P5.17b is of non-
minimum energy. Applying the minimum energy translate to the constellation of Fig. P5.17b,

which involves translating it bodily to the left along the ¢;-axis by the amount 20, we get
the corresponding minimum energy configuration:

0
» V2o
. . )
Ve O Ve
- 20

Problem 5.18

Consider a set of three orthogonal signals denoted by{si(t)}lio, each with energy E,. The

average of these three signals is
1 2

a(t) = §2si(t)
i=0

Applying the minimum energy translate to the signal set {s,(z) }l.2=0, we get a new signal set
defined by
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si(r) =s(t)~a(t), i=0,1,2 (1)

The signal energy of the new set is

E= [ (syn) d

|_siwar-2[ sna@di+ | a(r)ds

2. .1
E,-3E, +5(3E,)

The correlation coefficient p;; between the signals si(¢) and s}-(t) is given by

_ ELsi()(s(1)]
Py = —f

22 _Eo(si(t) —a(1))(s;(1) —a(r))dt

oo

- 2iEs(J._wsi(f)Sj(f)dl - fw a(t)(s,(1) +s,(1))dt + J.: a2(r)dt) )

Since s,(¢) and sj(t) are orthogonal by choice, Eq. (2) reduces to

3 1 1 1
pij - 2ES(O - §Es - §Es + §(3Es))

=5 for i)

which is the maximum negative correlation that characterizes a simplex signal with M = 3. thus,

2
the signal set {s7(¢)},., defined in Eq. (1) is indeed a simplex signal.
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2 . .
To represent the signal set {sj(¢)},., in geometric terms, we use the Gram-Schmidt
orthogonalization procedure. Specifically, we first set

sn(t)
0o(t) = _OI'E 3)

or equivalently
so(t) = NEQo(1)

The projection of s{(¢) unto ¢y() is
510 = [__si0do(n)as

- jl_gfws’l(t)sb(t)dt

= VE(3]”_siwsotnar)

- &

The second basis function is therefore

si(t) - S1o¢0(t)

./E—s%o

_ 510 + (JE/2)(9o(1))
JE —(E/4)

¢1(t) =

- _JizE(s’l(t) + §E¢O(t))

Accordingly, we may express s7(¢) in terms of the basis functions 0o(®) and ¢;(¢) as
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JE

$1(1) = =5200(0) +

The remaining signal s5(7) may be expressed in terms of ¢y(¢) and ¢,(7) as

JE

s5(1) = 5

Po(2) —

By (1)

4)

)

Thus, using Egs. (3) to (5), we may represent the simplex code by the following signal-space

diagram:

o

’\

| ~
VE )1 TR
0 ~

| VE2 A

| g //‘fE
\3E )| ///
2 v

| -

"/

Problem 5.19

(a) An upper bound on the complementary error function is given by

erfc(u) <

1
Pe = Eer

exp(-u’)

Jrou

Hence, we may bound the given P, as follows:

E,
fo| [—|<—= =
No) 2,[rE,N,

ey

For large positive u, we may further simplify the upper bound on the complementary error
function as shown here:
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exp(—uz)

Jn

Correspondingly, we may bound P, as follows:

erfc(u) <

exp(-E,./N
P < p( b 0)

e 2,\/7_'5

(b) For E;/Ny =9, we get the following results:

(2)

(1) The exact calculation of P, yields

P, = %erfc(3)

=1.0x 107

(i) Using the bound in (1), we have the approximate value:

P = exp(-9)

e 6,\/7_12

=116 x107

(iti)  Using the looser bound of (2), we have

P =~ exp(-9)

e 2A/7—t

= 3.48%x10"°

As expected, the first bound is more accurate than the second bound for calculating P,.

Problem 5.20

According to Eq. (5.91) of the textbook, the probability of error is over-bounded as follows:
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i=12--M (1)

1 & d
ik
P(m)<s Y erfc( - j
2 < 2,/N,

k#i

where dy; is the distance between message points s; and s;. With the M transmitted messages
assumed equally likely, the average probability of symbol error is overbounded as follows:

M
1
P, = MZPe(m,.) (2)
i=1
M M
1 d'k
S—-—Z Zerfc( ! ]
2 i=l k=1 2 NO
k#i

The second line of Eq. (2) defines the union bound on the average probability of symbol error for
any set of M equally likely signals in an AWGN channel. Equation (2) is particularly useful for
the special case of a signal set that has a symmerric geometry, which is of common occurrence in
practice. In such a case, the conditional error probability P,(m;) is the same for all i, and so we

may simplify Eq. (2) as

Pe = Pe(mi)
M
1 dix J .
<= 2 erfc( , for all { (3)
2k =1 2'\1N0
k#i

The complementary error function may be upper-bounded as follows:

2

d. 1 d:
erfc] —a— | < —exp| ——X
(2 /NO) Jn 2N

Hence, we may rewrite Eq. (3) as

| M 7
" ‘
P,<— 3 exp[—2—') for all i 4)
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Provided that the transmitted signal energy is high enough compared to the noise spectral density
Ny, the exponential term with the smallest distance d;; will dominate the summation in Eq. (4).

Accordingly, we may approximate the bound on P, as

2

M_. d.

P < min . ik 5
i#

where M, i, is the number of transmitted signals that attain the minimum Euclidean distance for
each m;. Equation (5) describes a simplified form of the union bound for a symmetric signal set,
which is easy to calculate.
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CHAPTER 6

Problem 6.1

(a) ASK with coherent reception

x(t) b 1} Decision = 1
— e SEEEEEER—— .
fo at device

[
)

s(t)

Denoting the presence of s

ymbol 1 or symbol 0 by hypothesis H, or HO’ respectively,
we may write

Hiz x(t) = s(t) + w(t)’
Hot x(t) = w(t)

where s(t) = Accos(2ﬂfct), with l\.c = /2Eb/Tb, Therefore,

Tb .
L =17 x(t) s(t) dt j
0 g
If £ > E,/2, the receiver decides in favor of symbol 1, If % ¢ E,/2, it decides in
favor of symbol 0.

The conditional probability density functions of the random variable L, whose value
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is denoted by %, are defined by

2
210) = -2
leO( 10) s exp( NOEb)
£ (gl1) = —] [ (Z-Eb)zl
2il) = exple ————ou
L}1 E NoE,

The average probability of error is therefore,

o Eb/2
Pe = Py o f £ ,0(100dy + p, J L (rIDas
. Eb/2 —o
= E‘f exp(- ﬁ‘E—)dl + 5 J expl[- N E Jd2
E /2 YN E 0°b < /qN_E 0"b
b 0°b 0
© 2
= 1 J exp(- ﬁig-)dz
vnN_E E /2 0'b
0b b
1 1
=3 erfc(E-fEb/No)
(b) ASK with noncoherent reception
x(t) :\;ig;zd Envelope ¥ 2 Decision [ H1
. to s(t) ™1 detector - devi
. =Tb evice . HO

In this case, the signal s(t) is defined by

s(t) = Accos(2nfct + 6)

where Ac = Y2 Eb/Tb, and

= 0<8<2n

fe(e) =

o, otherwise

For the case when symbol 0 is transmitted, that is, under hypothesis HO’ we find that
the random variable L, at the input of the decision device, is Rayleigh-distributed:

2
£ £

leO(£IO) = NuT exp(- %—T—)
0'b 0'b

For the case when symbol 1 is transmitted, that is, under hypothesis H

1 we find that the
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random variable L is Rician-distributed:

" : 22 . AiTE/M) (2£Ac)
£ . (201 ) = —=- exp(- ——m—amee ) I (——
L4 N, T N T,/2 o'W

where Io(2£Ac/No) is the modified Bessel function of the first kind of zero order.

Before we can obtain a solution for the error pefformance of the receiver, we have to
determine a value for the threshold. Since symbols 1 and 0 occur with equal probability,
the minimum probability of error criterion yields:

( As b) (ZEAQ) ?1
expl - I < 1 QP
2N0 0 NO H

For large values of Eb/NO, we may approximate Ib(ZQAc/NO) as follows:

22Ac exp(22Ac/N0)

)
0 VHulAc/No

Using this approximation, we may rewrite Eq. (1) as follows:

A =& T) U1 /TER
exp| ] < S

N
0 Ho 0

Taking the logarithm of both sides of this relation, we get

1 Ach meN

T )
]

% 0

AV T
nj—

0

Neglecting the second term on the right hand side of this relation, and using the fact
that

. Ach

b~ 2

we may write
H fo———
1 E T

vy 1/bb

H0

1 /EpTp

The threshold Fl > is at the point corresponding to the crossover between the

two probability density functions, as illustrated below.
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Thg~average probability of error is therefore

Pe = Pg P1g * Pq Poy

where
P,. =/ £ ,.(210)d2
10 JET s202 L0
o 2
") )
= f = exp(- —=)d%
JET, /2/2 NoTp NoTp
2 o
2%
= |~exp(- <=-) ]
N.T
o'o’ VE T /272
E
= exp(~ —HE)
0
/BT /272
Poy =/ £ 1C4IT)aL
0
E Ty 272 us 22 4 Ai Tg/u 208
= s exp(- —75—) I,(——)de
. N,T NoT /2 o\ W
vE,Tp/272 a2 22 4 a2 Tg/u exp(22A _/N)
= v (- —xT 7 gl
0 0'b o'b /HmiA /N
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/Ebrb/zlz

2
(L - A T./2)
=/ TT"ZR' ‘/TT"'Z exp|- C D de (2)
0 { e'db "™o'b NoTp/2 ]

The integrand in Eq. (2) is the product of Wb and the probability density function
of a Gaussian random variable of mean Ach/Z and variance NoTb/ll. For high values of
Eb/NO, the standard deviation W is much 1less than the threshold fE—;'i‘.b/ZIZ.
Consequently, the area under the portion c_Jf the curve from 0 to /EbTb/2/2 is quite small,

that is, Pm' = 0. Then, we may approximate the average probability of error as

Pe ® P, Pyp

E
1 b
3 exp(- uNO)

where it is assumed that symbols 0 and 1 occur with equal probability.
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Problem 6.2

The transmitted binary PSK signal is defined by

JEL000), 0<t<T,,  symbol 1
s(t) =«

~JE,0(),  0<t<T,  symbol 0

where the basis function ¢() is defined by

o(r) = J%cos(anct)

The locally generated basis function in the receiver is

Av/zcos(anct + Q)
T,

A/Tz[cos(anct)cosq) —sin(2nf t)sin@]
b

‘Drec(t)

where @ is the phase error. The correlator output is given by

T
y = jo”x(z)cprec(z)dt

where
x(t) = 5,(8) + w(t), k=12

Assuming that f, is an integer multiple of 1/T}, and recognizing that sin(27f.f) is orthogonal to
cos(2mf ) over the interval 0 <z < T), we get

y=1=% A/E_bcosq) + W
when the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0, and W is

a zero-mean Gaussian variable of variance Ny/2. Accordingly, the average probability of error of

the binary PSK system with phase error ¢ is given by
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E, cos
P, = %erfc( / bNO (p)

When ¢ = 0, this formula reduces to that for the standard PSK system equipped with perfect
phase recovery. At the other extreme, when ¢ = +90°, P, attains its worst value of unity.
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Problem 6.3

(a) The noiseless PSK signal is given by

s(t)

Accos[2ﬂfct+kpm(t)]

Accos(2"fct)cos[kpm(t)] - Acsin(zﬂfct)sin[kpm(t)]

Since m(t) = +1, it follows that

008[kpm(t)] = cos(:kp) = cos(kp)
sin[kpm(t)] = sin(:kp) = :_sin(kp) = m(t)sin(kp)
Therefore,
s(t) = Accos(kp)cos(Zcht) - Acm(t)sin(kp)sin(Zﬁfct) (1)

The VCO output is
r(t) = Avsin[2nfct + 6(t)]
The multiplier output is therefore
1 . .
r(t)s(t) = E-AcAvcos(kp){31n[9(t)] + sin[47f t+0(t)]}
1
- - i 6
> AcAvm(t)81n(kp){cos[B(t)] + cos[uwfct+ (£)1}
The loop filter removes the double-frequency components, producing the output
1 : 1
- - 9 -
e(t) AcAvcos(kp)51n[ (t)] >

2
Note that if kp = 7/2, (i.e., the carrier is fully deviated), there would be no carrier
component for the PLL to track.

AcAvm(t)sin(kp)cos[e(t)]

(b) Since the error signal tends to drive the loop into lock (i.e., ©(t) approaches
zero), the loop filter output reduces to

e(t) = - % AcAvsin(kp)m(t)

which is proportional to the desired data signal m(t). Hence, the phase-locked loop may
be used to recover m(t).
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Problem 6.4

(a) The signal-space diagram of the scheme described in this problem is two-dimensional, as shown

by

Q\.\O\A}.*‘(’L\,'UL
C Sf'/\e)
I
Zn- /0/7“-‘4
° —o- C corire)

=
-A, i/z—*’(asz)

A J3E G-k

This signal-space diagram differs from that of the conventional PSK signaling scheme in that it
is two-dimensional, with a new signal point on the quadrature axis at Ack\/Tb/Z. If k is reduced
to zero, the above diagram reduces to the same form as that shown in Fig. 8.14.

(b
s(t)+w(t) T
I b dt Lo Decision Hy
0 device

e
0

cos (2mf t) 1

c n

The signal at the decision device input is
= -59/ 12 T, +f w(t) cos(2nf t)dt (0
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Therefore, following a procedure similar to that used for evaluating the average
probability of error for a conventional PSK system, we find that for the system defined by
Eq. (1) the average probability of error is

P = % erfc(v’Eb(1-k2)/N0)

1 .2

where Eb =35 Ac Tb.
- 2
(€) For the case when Py = 10 " and k“ = 0.1, we get
10-4 -4 erfe(u)

2

0.9 E
where u2 = b

No

Using the approximation

( u2)
erf‘c(u) =~ EEB._—__—-

T U
we obtain

exp(-uz) -2/ x 1070 u=0

The solution to this equation is u = 2.64. The corresponding value of Eb/No is

B een®
NO - 0.9 -0

Expressed in decibels, this value corresponds to 8.9 dB.

(d For a conventional PSK system, we have

1 ETN
Pe =3 er fo( Eb/NO)

In this case, we find that

E
2. (2.61)2 = 6.92

0
Expressed in decibels, this value corresponds to 8.4 dB. Thus, the conventional PSK system

requires 0.5 dB less in E;/N, then the modified scheme described herein.
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Problem 6.5
(a) The QPSK wave can be expressed as
s(t) = m1(t) cos(2nf t) + mz(t) sin(21rfct).
Dividing the binary wave into dibits and finding m1(t) and mz(t) for each dibit:
- dibit 11 00 10 00 10
m1(t) JE/T - YE/T VE/T - JE/T VE/T
m(t) VE/T  -YE/T  -Y/E/T - V/E/T - /T

m &)

£
2
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Problem 6.6

Let P,y = average probability of symbol error in to the in-phase channel

PeQ = average probability of symbol error in to the quadrature channel

Since the individual outputs of the in-phase and quadrature channels are statistically independent,
the overall average probability of correct reception is

Pc

(1 - P (1 - Pog)

1 - Pg1 - Peq + Per Peq

The overall average probability of error is therefore

Pe

n

i

1
o"d

[
o
+
g
o
o
|
=
)
o
@
¥-»)
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Problem 6.7

Let r denote the received signal vector. Suppose that the signal corresponding to message point
m,is transmitted. Then, referring to the signal-space diagram of Fig. 1, the conditional probability

of error is given

P, b, = P(r lies in shaded region)

P(r lies in =) + P(R lies in i)
- P(r lies in |Jf))

lerfc .E sin +_1_erfc _1.3_ sin
2 Ny M 2 Ny M

- P(r lies in |||)

E .
P <erfe| | — sin—
e lmy ~| N, M

Assuming that all the message points are equally likely to be transmitted, we have Pe=Pelm >

~1
P, < erfc E sin®
Ny M

Hence,

and so
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Problem 6.8

Figures 6.10 and 6.10b of the textbook, reproduced here for convenience of presentation, depict
the signal-space diagrams of QPSK and offset QPSK signals, respectively:

(I)Z ¢2
ST T T L
AN / | I |
N 7 |
| N\ / I | I
I BN I "I____O____I__
/N
I PN | I I(I)l
I S| | |
v \ v v
{ SV . e — — —|— — —
(a) QPSK (b) Offset QPSK
Figure 1

The two parts of this figure clearly show that the signal-space structure of the offset QPSK is
basically the same as that of the standard QPSK. They only differ from each other in the way in
which transition takes place from one signal point to another. Accordingly, they have the same
power spectral density, as shown by

S(f) = Eplsinc> (2T ,(f - f,)) + sinc*(2T,(f + £.))]

where T}, is the bit duration and f,. is the carrier frequency.

Problem 6.9
(a) In vestigial-sideband (VSB) modulation, there are two basis functions:

* The double-bandwidth sinc function, defined by

0,(t) = J;sinc(%’) cos(2nf, 1) 1)

where T is the symbol period and f. is the carrier frequency.

* The Hilbert transform of ¢;(#), defined by
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0,(1) = §1()

= J;sinc (2%) sin(2nf 1) (2)

where it is assumed that f, > 2/T.

(Here we have made use of the Hilbert-transform pair listed as entry 1 in Table A6.4, with the
low-pass signal m(¢) set equal to /1/Tsinc2(¢/T).)

The basis functions (1) and (2) imply the use of single-sideband modulation, which (as
discussed in Chapter 2) is a special form of vestigial sideband modulation. We have chosen
these definitions merely to simplify the discussion. The use of VSB substitutes a realizable

function for the sinc function that is unrealizable in practice.

Based on the definitions of the basis functions ¢;(¢) and ¢,(¢) given in Egs. (1) and (2), it may

be tempting to choose 2/T as the symbol rate for successive transmission of binary symbols
using binary VSB. However, such a choice of signaling destroys the orthonormality of ¢;(z)

and ¢,(?); that is,

T .
) ¢i(t)¢j(z—z)dz¢{ I for j=i
0 2 0 for j#i

To maintain orthogonality of ¢,(¢) and ¢,(z), successive translations of these basis functions
must be integer multiples of 1/7, as shown by

IT¢i(t)¢,-(t—kT)dz = { L for j=i
° 0 for j#i

for any integer k.

Suppose, however, we restrict k to assume only odd integer values, and choose the carrier
frequency f. to be an odd integer multiple of 1/27, that is,

fe= 7= ! = odd integer 3

We then have the following two properties:
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kT

() f;¢1(t)¢2(t - 7)611‘ = 0 for all odd integer £ 4)

(ii) sin(2nfc(t - %ZD = sin(2nf r)cos(kin/2) — cos(2nf t)sin(kin/2)

=cos(2nf,t)  for k = odd integer
I = odd integer

With such a choice, the implementation of the digital VSB transmission system is equivalent
to a time-varying one-dimensional data transmission system, which operates at the rate of 2/T
dimensions per second.

(b) The optimum receiver for the digital VSB transmission system just described consists of a pair
of matched filters, that are matched to the two basis functions ¢;(¢) and ¢,(¢) as defined in Egs.

(1) and (2). However, in order to conform to the design choices imposed on integer k and
carrier frequency f,. as described in Eqgs. (4) and (3), the instants of time at which the two

matched filter outputs are sampled are staggered by 7/2 with respect to each other. The two
sequences of samples so obtained are subsequently interleaved so as to produce a single one-
dimensional data stream as the overall receiver output. The delay by 772 is identical to what is
actually done in the offset QPSK, thereby establishing the equivalence of the digital VSB
system to the offset QPSK.

Problem 6.10

Assuming that modulator initially resides in a phase state of zero, we may construct the following
sequence of events in response to the input sequence 01101000.

Step & Phase 0;_4 Input Phase Transmitted
(radians) dibit change phase 0,
ACH (radians)
(radians)
1 0 01 3n/4 3m/4
2 3nt/4 10 -t/4 /2
3 /2 10 -1t/4 /4
4 /4 00 /4 /2
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Problem 6.11

The output of a m/4-shifted QPSK modulator may be expressed in terms of its in-phase and
quadrature components as

s(t) = A/?cos(in/4)cos(2nfct)—Esin(in/4)sin(2nfct) i=0,1,2..7

The different values of interger i correspond to the eight possible phase states in which the
modulator can reside. But, unlike the 8-PSK modulator, the phase states of the m/4-shifted QPSK
modulator are divided into two QPSK groups that are shifted by m/4 relative to each other.

Therefore, s,(t) = IZTEcos(in/4)

so(1) = A/?sin(in/@

The orthonormal-basis functions for 1t/4-shifted QPSK may be defined as

¢,(2) = A/%cos(21tfct)

2 .
0,(1) = A/;sm(anCt)
Then the n/4-shifted QPSK signal is defined in terms of these two basis functions as

s(t) = JEcos(in/4)9,(r) — JEsin(in/4)0,(z)

On the basis of this representation, we may thus set up the following scheme for generating 7t/4-
shifted QPSK signals:

\]-Ecos(-)

Sequence of Phase
input dibits > map

A 4

1/4-shifted
QPSK signal

s(1)

VEsin(-)
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Problem 6.12

A 7t/4-shifted DQPSK signal can be expressed as follows:

s(t) = A/gfcos(q)k_1 +A(I)k)cos(27tfcz‘)—/\/¥5sin((i)k_1 +AQ,)sin(2nf 1)

= A/%cos(anct + 0, +Ad,)

where ¢y | + AQ; = ¢, and 0;_; is the absolute angle of symbol k-1, and Ady is the differentially
encoded phase change. In the demodulation process, the change in phase ¢, occurring over one
symbol interval needs to be determined.

If we demodulate the n/4-shifted DQPSK signal using a FM discriminator, the output of the FM
discriminator is given by

d[2nf 1 +0,]

Vour(t) = K pr

dik}

= K[anc § 2

K[2nf .+ Ao,]

where K is a constant. In a balanced FM discriminator, the DC offset 2nf,K will not appear at the
output. Hence, the output of the FM discriminator is KA.

Problem 6.13

The output of a n/4-shifted DQPSK modulator may be expressed as

s(t) = A/%:cos((%)k_1 + A8 )cos(2nf 1)- lz?Esin(Ok_l +A0,)sin(2nf 1)
_ 2E 0 0 0. s
= 7[cos k-1€08A0, —sinB,_;sinAO, Jcos (2 f 1)

- IZTE[sinGk_lcosAGk + cosB;_ sinAB,]sin(2nf 1)
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Let I, = cos(6;;+A0;) and Q, = sin(0,_; + AB,). We may then write

I, = cos6;_;cosAD, —sinO, | cosAB,

cos(0,., + A0, | )cosAO,—sin(0, , + AO, ;)cosAB,
from which we readily deduce the recursion
I, = I, {cosAb; - Q, ;sinAD,
Similarly, we may show that
O, = sinB;_;cosAB, + cosO,_;sinAB,
= Q.1CosAB, +1, ;sinAD,

From the definition of I; and Q,, we immediately see that I, and Q) may also be expressed as

I, = cosO,
and
Q, = sinf,

which are the desired results.
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Problem 6.14
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Problem 6.15

The transmission bandwidth of 256-QAM signal is

B

- log,M
where Ry, is the bit rate given by 1/T, and M = 256. Thus

2Ty 2
26 7 log,256 ~ 16T, 8T,

The transmission bandwidth of 64-QAM is

_21/Ty)y 2
67 log,64 ~ 8T, ~ 4T,

Hence, the bandwidth advantage of 256-QAM over 64-QAM is

111
4T, 8T, 8T,

The average energy of 256-QAM signal is

2(M-1)E, 2(256-1)E,
256 = 3 = 3

= 170E,
where Ej is the energy of the signal with the lowest amplitude. For the 64-QAM signal, we have

2(63)
3

Eg = E, = 42E,

Therefore, the increase in average signal energy resulting from the use of 256-QAM over 64-
QAM, expressed in dBs, is

170E
0) ~ 10log ,4(4)

10log (

6 dB
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Problem 6.16

The probability of symbol error for 16-QAM is given by

p o=of1-4 f I Eay
e—(—ﬁ)erc m

Setting P, = 103, we get

-3 _ 1 3Eav
10 ©~ = Z(I—Z)erfc( /5(71\/_0

Solving this equation for E,,/N,,

Eav = 58
Ny = 17.6dB

The probability of symbol error for 16-PSK is given by

P, = erfc(A/Esin(n/M))
NO

Setting P, = 1073, we get

10 = erfc( Fsin(n/l&)
NO

Solving this equation for E/N,, we get

E - 142 = 21548
NO

Hence, on the average, the 16-PSK demands 21.5 - 17.6 = 3.9 dB more symbol energy than the
16-QAM for P, = 1073,

Thus the 16-QAM requires about 4 dB less in signal energy than the 16-PSK for a fixed Ny and P,

= 10'3, However, for this advantage of the 16-QAM over the 16-PSK to be realized, the channel
must be linear.
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Problem 6.17

(a) An M-ary QAM signal is defined by

sp(t) = A/?akcos(anct)—A/%aksin(anct) (1)

We can redefine the M-ary QAM signal in terms of a general pulse-shaping function g(z) as
5,(1) = a,g(t—kT)cos(2nf t)-b,g(t —kT) sin(2nf .t) (2)

The M-ary QAM signal s(z) for an infinite succession of input symbols can be expressed as

oo

s() = Y s,(1)

k=-co

3 {ayg(t—kT)cos(2nf 1) - byg(t — kT)sin(2mf 1)}

k=-c0

= 2nf 1
- Re{ S (a, + jby)g(t—kT)e’ }
k=-00

= Re{ Y Akg(t—kT)ejznfct} (3)

k=-00

where A, is a complex number defined by
Ay =a, + jb,

By multiplying Eq. (3) by exp(=j2nf kT) x exp(j2nf.kT), we get

s(t) = Re{ D Akg(t—kT)exp(—j2nfckT)exp(j2nfct)}

k=-c0

= Re{ D Akg(t—kT)} “)

k=-0c0
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where A; = A,exp(j2nf kT)
g(t) = g(t)exp(j2nf 1)

The scalar Ay is a rotated version of the complex representation of the kth transmitted signal.

Equation (4), representing a QAM signal, appears to be carrierless, therefore, it is equivalent
to a CAP system.

(b) A CAP signal is defined as

s(t) = Re{ D Akg(t—kT)}

k=-c0

Re{ N Arexp(j2nf kT)g(t - kT)exp(j2mf (1 - kT))}
k=-o00

= Re{Ak D g(t—kT)exp(janct)}

k=-o00

= a,g(t—kT)cos(2nf 1) - Y byg(r—kT)sin(2nf 1) (5)

k=-00 k=-cc

Now the pulse shaping functions of CAP signal, g(z - kT), may be replaced by /2—75 for 0<i<T,

and the formulaton in Eq. (5) can be rewritten as

sy = ) A/—%akcos(%tfct)—A/gbksin(%tfct) (6)
k=-c0

The kth signal of the signal s(¢) defined in Eq. (6) is given by

s (2) = A/?akcos(%cfct)—A/?ngksin(anct), 0<t<T @)

The signal formulation given in Eq. (7) is recognized as the M-ary QAM signal of Eq. (1).
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Problem 6.18

The CAP signal can be expressed as

s(t)y = 2 a,p(t—nT) - 2 b,p(t—nT)
n=-o0 n=-o0

where p(z) is the Hilbert transform of the pulse p(r), and A,, = a,, +jb,. The CAP signal s(¢) can
be written in the equivalent form:

s(t) = {2 anﬁ(t—nT):| * p(t)

—[2 bnﬁ(t—nT)} * p(1)

where 0(z) is the delta function, and the star denotes convolution in the time domain. Hence, the
power spectral density of s(z) is

2 2
S, = 2P+ bl

where 6, and GZ are the variances of symbol a; and b;, respectively, where p(z) & P(f) and

2
a
p(r)== P(f). Noting that |P(f)] = P(f), we thus have

co+0,
S,(f) = —=IP(f)

Next, noting that

L

2 2 2 1 2 2

0,+0, = G, = ZE(ai +b))
i=1

we finally get

S.(f) = o)
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Problem 6.19

From the defining equations (6.74) and (6.75) of the textbook, we have

p(r) = g(t)cos(2nf 1) (L
and
p(r) = g(t)sin(2nf 1) 2

Applying the Fourier transform to Eqs. (1) and (2), we get

P(f) = 31G(f = £) + G(f + £,)] ©
and
P(f) = Zij[cxf—fc) ~G(f+1.)] @)

Accordingly, we may determine p(f) and p(z) by proceeding as follows:

* Given G(f), use Egs. (3) and (4) to evaluate P(f) and P(f).
* Using the inverse Fourier transform, compute p(t) = F~ l[P(f)] and p(t) = F _I[P(Af ).
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Problem 6.20

For binary FSK, the two signal vectors are

’E,
§«1=

L O

"o
R =

oy

where Eb is the signal energy per bit. The inner products of these two signal vectors

with the obsefvation vector
X1

e
"

)

are as follows, respectively,
=7

) = 7E] x

e

£p %2

(5 ’,§1

where (x, 8;) = x's, for i=1,2. The condition

X 81 > X 89

is therefore equivalent to
VEp % > \/Eb Xy
Cancelling the common factor \E']-b, we get

X1 > X9

which is the desired condition for making a decision in favor of symbol 1.
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Problem 6.21

The bit duration is

1

2.5x106Hz

T, =

b = 0.4 us

-The signal energy per bit is

2
E, =5 A2 T,
(10™°

2 6

S x 0.4 x 10

(a) Coherent Binary FSK

The average probability of error is

erfc(/Eb/ZNo)

20

er fo(V2x10~19/4x10-20)

'
N -

= -;--erfc(@)

Using the approximation

2
erfo(u) = SXR(-U)

Y1 u

we obtain the result

P = 2 EXP(5) _ g5 ¢ 1073
e 2 /g;

(b) MSK

P = erfc(/Eb/No)

erfe(Y10)

=2 x 10"

19

Jjoules

326



. exp(=10)
Y10m

0.81 x 1072

(¢) Noncoherent Binary FSK .

E

1 b

Pe =32 exp(= 2N
0

=4 exp(=5)

= 2 p -
= 3.37 x 1073
Problem 6.22

(a) The correlation coefficient of the signals so(t) and s1(t) is

Ty
J 7 s _(t)s, (t)dt
0 O 1
T 172 T
(s P sg(t)dt] s
0 0

172
b s?(t)dt]

2 Tb 1 1
A~ J 7 cos[2n(f + =Af)t] cos[2n(f - =Af)t] dt
c 0 c 2 ¢ 2

2. 1172

T 1,2, 172
[5 AJT,1 ' [3 ACT, ]

Ty

}; fo [cos(2mAft) + cos(4nf t)] dt

. A .
sin(2w fTb) 31n(unfeTb)

+ ]
Af 2fc

1
[
2ﬂTb

Since fc >> Af, then we may ignore the second term in Eq. (1), obtaining

sin(2nAfTb)
p = _TTb—_Kf_- = sinc(2AfTb)

(b) The dependence of p on Af is as shown ip Fie, 1.
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So(t) and s, (t) are othogonal when p = 0. Therefore, the minimum value of Af for which

they are orthogonal, is 1/2Tb.

(e¢) The average probability of error is given by

-

Y -
E er fo( Eb(1 D)/ZNO)

The most negative value of p is -0.216, occuring at Af = 0.7/Tb. The minimum value of Pe
is therefore

=1 er fe( /0. 608E, /N )

Pe,min 2
(d) For a coherent binary PSK system, the average pﬁobability of error is

1
Pe =3 er‘fc(fEb/No)

Therefore, the Eb/N0 of this coherent binary FSK system must be increased by the factor

1/0.608 = 1.645 (or 2.16 dB) so as to realize the same average probability of error as a

coherent binary PSK system,

Problem 6.23

(a) Since the two oscillators used to represent symbols 1 and 0 are independent, we may
" view the resulting binary FSK wave as the sum of two on-off keying (00K) signals. One 00K

signal operates with the oscillator of frequency f1. The second 00K signal operates with

the oscillator of frequency f2

The power spectral density of a random binary wave X,(t), in which symbol 1 is
represented by A volts and symbol 0 by zero volts, is given by (see Problem §./D)

A2 A%T, . )
SX1(f) =1 S(f) + sine (fTb)

Where Tb is the bit duration. When this binary wave is multiplied by a sinusoidal wave of

unit amplitude and frequency f + Af/2, we get the first OOK signal with
A = Y2E /T
b b
The power spectral density of this 00K signal equals

1 Af Af
S0 =5 [Sx1(f -f -3+ SX1(f + £+ 5]
' 329



The power spectral density of the random binary wave x2(t) = x1Z€S. in which symbol
1 is represented by zero volts and symbol 0 by A volts, is given by

SX (f) = SX ()

2 1

When x2(t) is multiplied by the second sinusoidal wave of unit amplitude and frequency
fc - Af/2, we get the second 00K signal whose power spectral density equals

1 Af Af
Sz(f) = U[SX (f - fc+3—) +Sx (f + f‘c-z—-)]

2 2

The power spectral density of the FSK signal eqi.lals:

SFSK(f) = 81(f) + Sz(f)
E
= '8—.17;[6(f-fc-§-)+ 8(f + fc+§-—)+ G(f-fc+-2—-)+ S(f + fc-ﬁ_)]

E .
b 2 Af 2 Af
+ 3 {sinc [Tb(f - fc -3 )] + sinc [Tb(f + fc + 5 )]

. sincz[Tb(f -f %5)] . sincz[Tb(f . - -g)]}

This result shows that the power spectrum of this binary FSK wave contains delta
functions at f = fc + Af/2.

(b) At high values of X, the function sinc(x) falls off as 1/x. Hence, at high
2

frequencies, SFSK falls off as 1/f".
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Problem 6.24

-l,\ P\.L\’
binary
A
Sm(%) — ; A Sl.ﬂ(zﬂ’{{:)
4 CjuLhcgd‘
0°
phase FS K
shiften Waye
Problem 6.25

The similarities between offset
between the in-phase and
probability of error,

QPSK and MSK are that both have a half-symobl delay
quadrature components of each data symbol, and both have the same

The differences between the two techniques are:
QPSK are sinusoids multiplied by a rectangle function
are sinusoids multiplied by half a cosine pulse, and
modulation while MSK is a form of frequency modulation.

(1) the basis functions for offset
s While the basis functions for MSK
(2) offset QPSK is a form of phase
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Problem 6.26

For coherent MSK, the probability of error is

Pe = erfc(/Eb/No) ’

while for noncoherent MSK, (i.e., noncoherent binary FSK)

» E
1 b
Pe = —Z-exp[- 2N ) .
0
-5 Eb
To maintain Pe = 10 for coherent MSK, N = 9.8. To maintain the same probability of
0

symbol error for noncoherent MSK,

E .
2 = 21.6, which is an increase of 3.4 dB.

o

Problem 6.27

(a) | |
o 0 50 0
mee)
t
VI T E x x .z o ro x
z . £ FY z O -y
\ﬂft) — ’ +
m'(uc{»'(t)
(b)

S AWAWAY\WANWAYW W VA WA
1 ‘ “ VVI v, ’gl“‘\/!ij"\}[ L
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Problem 6.28

(a) The Fourier transform of A(t) is given by (using entry 5 of the Fourier-transform pairs Table
A6.3)

N f
H = ¥ —

= exp—(f o) (1)

Substituting o = («/log2/2/W) into (1), we get

2 log2 1
exp(—f %x;z)

C:0)

Let fo denote the 3-dB cut-off frequency of the GMSK signal. Then, by definition,

H(f)

L

J2

|H(fo)| = —=IH(0)|

Hence, from Eq. (2) it follows that

o) - &

or

ex (10 2(&)2) =2
Taking the logarithm of both sides, we readily find that

fo=W
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The 3-dB bandwidth (cut-off frequency) of the filter used to shape GMSK signals is therefore
W.

(b) The response of the filter to a rectangular pulse of unit amplitude and duration T centered on
the origin is given by

T/2
f h(t —1T)dt
-1/2

1l

g(1)

T/2 ) 2
j %exp{__—n (-1) }dr 3

2
-T/2 o

Let £k = m,and
o

dk = ——=dz

T
a
Hence, we may reqrite Eq. (3) as

k

Wi
T 2.0
g(1) = —J.Eexp(—k ) dk (4)
kl
where k1 = n(_tﬂ and
(6
- T=T/2)
, = W= 172)
(6

Equation (4) is finally rewritten as

ky 0
g(1) = —% %jexp(—kz)dk+ifexp(-kZ)dk
0

A/’Fck

1

1 1
— zerf(ky) + serf(k;)
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= —%[1 —erfc(k,)] + %[1 —erfc(k;)]

1 1
Eerfc(kz) - Eerfc(kl)

= %{erfc [n___(t _aT/z):I - erfc[n————-—(t _(XT/Z)J }

1 2 ro1 2 t .1
_1 = wr{ L_2)|—erfe|n [———wr[ L+2
z{erfc[n 1ngWT(T 2)] er c[n log2W (T 2)}}

Problem 6.29

0 1 2 3 4 5 6 7
Imaginary part
1 1 ] 1 i 1
0.5} ]
0 —
-0.51 ]
1 ’ : : —
0 1 2 3 4 5 6 7
Real part
1 | I i | i
0.5} §
ol _
-05 /
_1 | | 1 i
0 1 2 3 4 5 6 7
GMSK signal
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The GMSK signal, displayed in the bottom waveform, is very similar to that of the MSK signal in
Fig. 6.30, both of which are produced by the input sequence 1101000. This objective is indeed the
idea behind the GMSK signal.

Problem 6.30

Comparing the standard MSK and Gaussian-filtered GMS signals, we note the following:

(a) Similarities
* For a given input sequence, the waveforms produced by the MSK and GMSK modulators
are very similar, as illustrated by comparing the GMSK signal displayed in the solution to
Problem 6.29 and the corresponding MSK signal displayed in Fig. 6.30 of the textbook for
the input sequence 1101000.
¢ They both have a constant envelope.

(b) Differences

The use of GMSK results in a slight degradation in performance compared to the standard
MSK for a time-bandwidth product WT}, = 0.3. However, the GMSK makes up for this loss

in performance by providing a more compact power-spectral characteristic.
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Problem 6.31

In the binary FSK case, the transmitted signal is defined by

‘ Ep
S(t) = 2T_b cos(2nf;t), 0<r<Ty (1D

0, elsewhere

where the carrier frequency f; equals one of two possible values f; and fy. The transmission of
frequency f; represents symbol 1, and the transmission of frequency f, represents symbol 0.
For the noncoherent detection of this frequency-modulated wave, the receiver consists of a pair
of matched filters followed by envelope detectors, as in Fig. 1. The filter in the upper channel
of the receiver is matched to \/2Fb cos(2nf;t) and the filter in the lower channel is
matched to \/Z/TB cos(2nfyt),0 < t < Ty The resulting envelope detector outputs

are sampled at t = Ty, and their values are compared. Let 1, and 1, denote the envelope
samples of the upper and lower channels, respectively, Then, if1; > 1,, the receiver decides in
favor of symbol 1, and if 1; <1, it decides in favor of symbol 0.

Suppose symbol 1 or frequency f; is transmitted. Then a correct decision will be made by the
receiver if 1; > 1,. If, however, the noise is such that 1; < 1,, the receiver decides in favor of
symbol 0, and an erroneous decision will have been made. To calculate the probability of error,
we must have the probability density functions of the random variables L; and L, whose
sample values are denoted by 1, and 1,, respectively.

When frequency f; is transmitted, and there is no synchronism between the receiver and

transmitter, the received signal x(t) is of the form

x(t) = 333 cos(2rf;t + 6) + w(t)
N T @

2E 2E
= [2P cos@ cos(2nfyt) - b sne sin(2xnf;t) + w(t), 0<t<Ty
N Ty T

Let 337



12 3)

Xg = J;T" x(t) Tz— cos(2nf;t)dt, i

b
Filter matched to Samflf :;t time
5 ] =1y
> /:cos(21r], t) Envelope |4
Ty detector
0<t< Tb
11
11, >1,,
x(t) ey Comparison choose 1.
device
> 12, <1y,
‘ choose 0
Filter matched to P
2
— cos(2nf,t
> e L e |
Sample at
0<t<T, timer =T,
Figure 1
and
T 2 . .
Xgi = L b x(t) _T sm(21rfit)dt, 1= 1’27 (4)
b

The x; and x; i=1,2, define the coordinates of the received signal point. Note that, although
each transmitted signal s;(t), i=1,2, is represented by a point in a two-dimensional space, the
presence of the unknown phase 6 makes it necessary to use four orthonormal basis functions
in order to resolve the received signal x(t). With the received signal x(t) having the form shown
in Eq. (1), we find that the output of the upper channel in the receiver of Fig. 1 equals

(5)
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where

Xe1 = \/Eb cos O + wg; 6)
and
Xg1 = - \/Eb sin 0 + wg (M)

On the other hand, the corresponding value of the lower channel output is

I = xc22 + xsz2 ®)
where
Xc2 = We2 ©)
and
X2 = W2 (10)

i=1,2, are related to the noise w(t) as follows:

Wy = LTb w(t) "'1'?; cos(2nfit)dt, i =1,2 (1D

The w; and wy,

and

WSi = LTh W(t) Tl Sin(znflt)dt, i 1,2: (12)

b

Accordingly, w,; and w;, i=1,2, are sample values of independent Gaussian random variables

8i’
of zero mean and variance N0/2.

When symbol 1 or frequency f, is transmitted, we see from Eqs. (9) and (10) that x5 and x,
are sample values of two Gaussian and statistically independent random variables, X , and
X2 With zero mean and variance N/2. Accordingly, the lower channel output 1,, related to x,
and x, by Eq. (8), is the sample value of a Rayleigh-distributed random variable L,. We may
thus express the conditional probability density function of L,, given that symbol 1 was
transmitted, as follows: 339



frondy 11 = ENIE exp| - ;_20 , 1,20 (13)
Again under the condition that symbol 1 or frequency f, is transmitted, we see from Egs. (6)
and (7) that x; and x_; are sample values of two Gaussian and statistically independent
random variables, X ; and X,;, with mean values equal to \/ﬁ cos 8 and (E; sin 6,
respectively, and variance N/2. Therefore, the joint probability density function of X, and
X51, given that symbol 1 was transmitted and that the random phase © = 0, may be expressed
as follows

, . 4
TiNg 0

Define the transformations

Xe1 = 11 Cos yq )15)

and

Xg1 = 11 sin L'5h (16)

where y, = tan'l(xsl/xcl), with 0 < y; < 2r. Then, applying this transformation and following
a procedure similar to that described in Section 5.12, we find that the upper channel output
1, is the sample value of a Rician-distributed random variable L,. Hence, the conditional
probability density function of L;, given that symbol 1 was transmitted and that the random
phase ©® = 6, is given by the Rician distribution

falely 11, 0) = [™ 11 91,601 v 11, 0)dy

a7

—— exp

2
21, 1+ Ey I, 21, {Ep 1,30
Ny Ny Ny

where 10(211\/Eb/N0) is the modified Bessel function of the first kind of zero order. Since Eq.
(17) does not depend on 6, which is to be expected, it follows that the conditional probability
density function of L,, given that symbol 1 was transmitted, is -
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2] 17 + By | |21, /By (18)
fonly 11 = 2L exp| -1 Ip| =L , 1,20
L1 1t N, Y N, 0l —x 1
Note that by putting Ey, = 0 and recognizing that I;(0) = 1, Eq. (18) reduces to a Rayleigh

distribution.

When symbol 1 is transmitted, the receiver makes an error whenever the envelope sample 1,
obtained from the lower channel (due to noise alone) exceeds the envelope sample 1; obtained
from the upper channel (due to signal plus noise), for all possible values of 1;. Consequently,
the probability of this error is obtained by integrating fj 5| ,(l, | 1) with respect to 1, from 1, to
infinity, and then averaging over all possible values of 1,. That is to say,

py; = Pdg>ly | symbol 1 was sent)

(19)
= [T dufy, p [~ dbf, 0 1D

where the inner integral is the conditional probability of error for a fixed value of 1, given that
symbol 1 was transmitted, and the outer integral is the average of this conditional probability
for all possible values of 1,. Since the random variable L, is Rayleigh-distributed when symbol
1 is transmitted, the inner integral in Eq. (19) is equal to exp(-lllMo). Thus, using Eq. (18) in
(19), we get

L 21, 1 + Ey 214 \/Eb (20)
S exp Iy dl,
Ny N
Define a new variable v related to 1; by
21
v=_1 (21)

N

Then, changing the variable of integration from 1, to v, we may rewrite Eq. (20) in the form

E . 2, .2
Pop = %exp(-_zf;’; ] .L v exp[—%} Iy(av)dv (22)

where a = VE/N,. The integral in Eq. (22) represents the total area under the normalized form
of the Rician distribution. Since this integral must be equal to one, we may simplify Eq. (22)

as
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1 Eb
Por = QGXP(—WJ (23)

Similarly, when symbol O or frequency f, is transmitted, we may show that p;q, the probability
that /; > I, and therefore the probability that the receiver makes an error by deciding in favor of
symbol 1, has the same value as in Eq. (23). Thus, averaging p;q and py;, we find that the average
probability of symbol error for the noncoherent binary FSK equals

P, = —exp(—ﬂ (24)

which is exactly the same as that in Eq. (6.163) in the textbook.

Comparing the effort involved in the derivation of Eq. (24) presented in this problem with that in
deriving Eq. (6.163), we clearly see the elegance of the approach adopted in the textbook.
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Problem 6.32

Letf.

x(t)

Accos(21rfct + 0)

Acgos(anct) cos 6 = Acsin(21rf‘ct) sin ©

The output of the square-law envelope detector in Fig. P8¢2, sampled at time t=T, is

given by
T o T 2
y(T) = [J =x(¢t) cos(2nfct) datl® + IS x(t) sin(2nfct) dt]
0 ‘ 0

This may be written as

TT

y(T) = J’Ofo x(t1)x(tz)[cos(an‘ct1)cos(21rfct2) + sin(21rfct1)sin(21rf‘ct2)]dt1dt

2

Put t1 = t, and t2 = t+1. This transformation is illustrated below:

T
)
T T
t T t
0 T 1 0
-7 - —--

Then, we may rewrite Eq. (1) as follows
T T=-t

vty = [ x(t)x(t+1) [cos(2nf tlcos(2af t + 2nf 1)
0 -t ¢ c c

+ sin(2ﬂfct)sin(2ﬂfct + 2nfct)] dt d1t

However,

cos(21rfct)cos(21rfct + Zﬂfc't) + sin(21rf‘ct)sin(2nfct + 211fcr) = cos(21|fc't)
Therefore, we may simplify Eq. (2) as follows
T T-t

S 7 x(t) x(t+1) cos(2mf T) dT dt
0 -t - ¢

y(T)

T T-t

=2 fo Io x(t) x(t+T) cos(21rf°1') drdt, 0< t<T
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Define
| T-t , |
Re(T) =/ x(t) x(t+1) dE 0 T<T
0

Then, we may rewrite Eq. (3) in terms of RX(T) as follows

T
y(T) =2 f RX(T) cos(2af 1) drt
0 c
= 2 Sx(fc)
where
T
Sx(f) = fo Rx(t) cos(2nfct) dt

Equation (3) is the desired result.
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Problem 6.33

(a) Dby 1 1 0 0 1 0 0 0 1
di; 1 1 1 0 1 1 0 1 0
dy 1 1 1 0 1 1 0 1 0 0
Transmitted
phase 0 0 0 s 0 0 T 0 T )

The Wavefoam of the DPSK sigr- s thus ar foous -

'WSKC&/\ AN A

o

wave /\/\ A/\A
L_J \ANS A NS NS

(b) Let xI = output of the integrator in the in-phase channel
Xq = output of the integrator in the quadrature channel
x{ = one-bit delayed version of x;

xQ/ = one-bit delayed version of XQ

I; = in-phase channel output
/
= XX1
IQ = quadrature channel output
= XQXQ’
y = lI + ].Q
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Transmitted
phase
(radians)
Polarity of x;
Polarity of x;
Polarity of 1;
Polarity of Xq
Polarity of XQ'
Polarity of IQ

Polarity of y

Reconstructed

data stream

+ +
+ -
- +
+ . -
+ .
+ -
0 1 0
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Problem 6.34

Coherent M-ary PSK requires exact knowledge of the carrier frequency and phase for the receiver
to be accurately synchronized to the transmitter. When carrier recovery at the receiver is
impractical, we may use differential encoding based on the phase difference between successive
symbols at the cost of some degradation in performance. If the incoming data are encoded by a
phase-shift rather than by absolute phase, the receiver performs detection by comparing the phase
of one symbol with that of the previous symbol, and the need for a coherent reference is thereby
eliminated. This procedure is the same as that described for binary DPSK. The exact calculation
of probability of symbol error for the differential detection of differential M-ary PSK (commonly
referred to as M-ary DPSK) is much too complicated for M > 2. However, for large values of E/N,

and M > 4, the probability of symbol error is approximately given by

2E . (™
= f — _ >
P, erc( /Nosm(z D M=>4 (D

For coherent M-ary PSK, the corresponding formula for the average probability of symbol error is
approximately given by

P,= erfc(A/Nf(—) sin(%}) (2)

(a) Comparing the approximate formulas of Egs. (1) and (2), we see that for M > 4 an M-ary
DPSK system attains the same probability of symbol error as the corresponding coherent M-ary
PSK system provided that the transmitted energy per symbol is increased by the following factor:

sin 2( E)
M
2
. T
2 ——
st (2M)

(b) For example, k(4) = 1.7. That is, differential QPSK (which is noncoherent) is approximately
2.3 dB poorer in performance than coherent QPSK.

k(M) = . M=>4
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Problem 6.35

(a) For coherent binary PSK,

E
b
er fc('—) .
N
0

]
Pe"2

-4 ' . . - - -10
For Pe to equal 10 7, v’F.b/NO = 2.64., This yields Eb/NO = 7.0. Hence Eb = 3.5 x 10 .
The required average carrier power is 0.35 mW.

(b) For DPSK,

e =2 ¥XP\=- ) -
0
4 Eb =10
For Pe to equal 10° ', we have V= 8.5. Hence Eb = 4.3 x 10 . The required average
0

power is 0.43 mW.

Problem 6.36

(a) For a coherent PSK system, the average probability of error is
_ 1 T
Pe =% erfc[n/(Eb/NO)1]

1 exp[-(Eb/No)1]

Ya V(E /NGY,

For a DPSK system, we have

expl- (Eb/No)2] (2)

o
(V]

Let
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Then, we may use Eqs. (1) and (2) to obtain

4 /(Eb/uo)1 = exp 8

We are given that

Hence,

6 = &n[Y7.2%]

= 1,56
Therefore,
E
b
10 log [-—)
10 No 1

Eb
10 l°g10(ﬁg)2

(b) For a coherent PSK system, we have

g/
"

e 2

expl-(E /N ),]

1

R

= 10 log10 7.2 = 8.57 dB

1 erfelv(E_/N.)

b" 01

b- 0’1

/n /(Eb/NO)1

For a QPSK system, we have

s
u

erfc[VZEb/No)ZJ

exP[-(Eb/NO)2]

/n /(Eb/ﬁgig

Here again, let
E E

(7 = ()

0

02 1

Then we may use Eqs. (3) and (4) to obtain

+ 9

10 10310(7.2 + 1.56)

9.42 dB
The separation between the two (Eb/NO) ratios is therefore 9.42 - 8.57 = 0.85 dB.

]

(3)

(4)



exp(-98)
= (5

1+ 5/(Eb/N0)1

Taking logarithms of both sides:

(VIR

-n 2

- & - 0.5 #n[1 + 6/(Eb/N0)1]

-
(E, /N,

-6_005

Solving for 6:

6 = in 2
1 4+ 0'5/(Eb/N0)1

.= 0.65
Therefore,

Eb
10 l°g10(ﬁ3)1

Eb~
10 10810(i;)2

10 log1o(7.2 + .65)

‘ 8.95 dB.
The separation between the two (Eb/No) ratios is 8.95 - 8.57 = 0.38 dB.

(e) For a coherent binary FSK system, we have

P

o % erfc[V(Eb/2N0)1]

E
1, b
exp(_ —=(—) )
1 2N,

= (6)
2 /= /(B 72N,

For a noncoherent binary F3K- system, we have
1 1
e =3 expl- 3 ) M

Hence,

E
b $ .
/) = e )

We are given that (Eb/NO)1 = 13.5. Therefore,
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§ = 2,,(_1_3-_2_11)

= 3.055
We thus find that

By
10 logw(ﬁa)

, 10 log10(13.5?

11.3 dB

Eb
10 1°g1o(ﬁ;)2

10 log10(13.5 + 3.055)

12.2 dB

*Hence, the separation between the two (Eb/No) ratios is 12.2. - 11.3 = 0.9 dB.

(d) For a coherent binary FSK system, we have

Pe

1
5 erfc[V(Eb/2N051]

E

exp(- —;—(N—b) )
1 01
= = (9)
2 /x Y (E 72N ),

For a MSK system, we have

o
1]

1
5 erfc[V(Eb/ZNoszl (10)

E
expt- JG2) 3
02
. (10)
Yu v (Eb/2N0'52'

Hence, using Egqs. (9) and (10), we
1 § 1
&n 2 -=4nf1 +m——1z=6 (11)
2 (Eb/No)1 2
Noting that

§
1
(Eb/NO)1
Wwe may approximate Eq. (11) to obtain

1 5 1
n2 -5 [T‘_Eb/NO>1] =38 (11)

Solving for 6, we obtain
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§ = 2 2n12
+——l———-—
(Eb/NO)1

-l

2 x 0.693
1
13.5

= 1.29
We thus find that

1 +

E
10 log1o(ip-) 10 log, (13.5) = 10 x 1.13 = 11.3 dB
0

1

Eb
10_1og10(ﬁ;)
2

Therefore, the separation between the two (E, /N,) ratios is 11.7 - 11.3 = 0.4 dB.

10 10310(13.5 +1.29) = 11.7 dB
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Problem 6.37

0.5

N

107!

-
<
N

P

(a) Coherent P'SK

(&) Coherent MSK

Coherent QPSK

Noncoherent FSK

Coherent FSK

Probability of error P,

]

DPSK

1073

1074

Figure 1

Comparison of the noise performances of different

PSK and FSK systems.

The important point to note here, in comparison to the results plotted in Fig. i

25

Ey
I.V;' ds

5.0

7.5 10

12.5

is that the error

performance of the coherent QPSK is slightly degraded with respect to that of coherent PSK and

coherent MSK. Otherwise, the observations made in Section 8.18 still hold here.
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Problem 6.38

The average power for any modulation scheme is

E

o
"

o ld
.

This can be demonstrated for the three types given by integrating their power spectral
densities from -« to o,

J S(f) df

o)
i

1
m J [SB(f - fc) + SB(f + fc)]df

- 00

«©

J SB(f)df .

1
2

The baseband power spectral densities for each of the modulation techniques are:

PSK QPSK MSK

) 5 32E fbos(znfTb)}2
Sp(f) | 2E. sinc(fT,) 4E_ sinc®(2fT,) | |
B b b b b - B
n ‘16fTb-13

: ! E, | ,
Since r a sinc(ax)dx = 1, P = T—b s easily derived for PSK and QPSK. For MSK we have
oo f
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16E o [(cos(2nfT )’2
P = b I b daf
- 2 i 2.2

n e | 16£°T) - 1

.

16Eb ® cosz(an)
=3 J > > dx
T Tb -® (16X = 1)
_ 8Eb fm 1+ cos(dm)
=72 2, 2 1, %
ki Tb - 16x% (x - -1—6-
E o '
_ b ; cos 0 + cos(dm) ,
=2 2 1.2 X
167 Tb - (x° = T6-)

From integral tables, (see Appendix Ail.b)

X
s cos(ax)dx

= I b) - abcos(ab)]
0 (82 - £3)2 3 [sin(ab) - a

4b

For a = 0, the integral is 0.

For a= 4m, b :-%, we have

Eb = cos{ax) E:b
Pe—or ) S5 dx =
167 Tb - (b° - x%) b
For the three schemes, the values of S(fc) are as follows:
| PSK QPSK MSK
E 8E
b b
S(fc) 5 Eb -

T

Hence, the noise equivalent bandwidth for each technique is as follows:

; PSK QPSK MSK
‘Bandwidth } L a 0,62
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Problem 6.39

(a) Table 1, presented below, describes the differential quadrant coding for the V.32 modem of
Fig. 6.48a in the textbook, which may operate with nonredundant coding at 9,600 b/s. The
entries in the table correspond to the following:

Presentinputs: Q) ,0;,
Previous outputs: Ij , 115, 1
Present outputs: 1) , I, ,

Table 1
Input Previous output Present output
dibit dibit dibit
Ql,n Q2,n Il,n-l I2,n-1 Il,n IZ,n
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 | 1 1 1
0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1
1 0 0 1 1 0
1 0 1 0 0 1
\ 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 1 1
1 1 1 1 0 1
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(b) Table 2, presented below, describes the mapping from the four bits Iy ,, 115 ,.1, Q3,04 , to the
output coordinates of the V.32 modem.

Table 2
Present output Present input Output
dibit dibit coordinates
Il h IZ,n Q3,n Q4,n (I)l ¢2

0 1 0 0 1 -1
0 1 0 1 1 -3 4th quadrant
0 1 1 0 3 -1
0 1 1 1 3 -3
0 0 0 0 -1 -1
0 0 0 1 -3 -1 \
0 0 | 0 1 3 3rd quadrant
0 0 1 1 -3 -3 J
| 0 0 0 -1 1
1 0 0 1 -1 3
1 0 1 0 3 1 J> 2nd quadrant
1 0 1 1 -3 3
1 | 0 0 1 1
1 1 0 1 3 1
1 1 1 0 1 3 Ist quadrant
1 1 1 1 3 3

(b) We are given the current input quadbit:
01,092, nC3,,Cy, » = 0001
and the previous output dibit:
Iy i1y oy = 01
From Table 1, we find that the resulting present output dibit is
Iy, =11

Hence, using this result, together with the given input dibit 05,04, = 01 in Table 2, we find
that the coordinates of the modem output are as follows:

357



¢, =3, and 0, = 1

We may check this result by consulting Table 6.10 and Fig. 6.49 of the textbook. With
01,02, =00 we find from Table 6.10 that the modem experiences a phase change of 90°.
With Iy .1 Irpo1 = 01, we find from Fig. 6.49 that the modem was previously residing in the

fourth quadrant. Hence, ‘with a rotation of 90° in the counterclockwise direction, the modem
moves into the first quadrant. With Q3 ,Q4 » = 01, we readily find from Fig. 6.49 that

¢, =3, and ¢, = 1

which is exactly the same as the result deduced from Tables 1 and 2 of the solutions manual.
For another example, suppose we are given
Q1,,92, 1930940 = 1011
and
I o n1 = 11
Then, from Table 1, we find that
Iyl 0 = 00
Next, from Table 2, we find that the output coordinates are ¢ = -3 and ¢ = -3. Confirmation that

these tesults are in perfect accord with the calculations based on Table 6.10 and Figure 6.49 is left
as an exercise for the reader.

Problem 6.40

(a) The average signal-to-noise ratio is defined by

P
(o)

where P,, is the average transmitted power, and o2 is the channel noise variance. The transmitted
signal is defined by

5.(1) = akcos(2nfct)—bksin(Zchct), 0<t<T
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where (ap, bp) is the kth symbol of the QAM signal, and T is the symbol duration. The power
spectrum of s,(z) has the following graphical form:

| Power '
| spectrum '\ Main lobe
'\ of s,(0) l
! i
! PR .'
Je 0 Je

Fig. 1

On the basis of this diagram, we may use the null-to-null bandwidth of the power spectrum in Fig.
1 as the channel bandwidth:

E = av 2)

where E,, is the average signal energy per symbol.

To calculate the noise variance 62, refc ) the following figure:
P or
spectrum

of noise Ny/2

Fig. 2
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The noise variance is therefore

Hence, substituting Eqgs. (2) and (3) into (1):

(sNRy. o BEa?
& = "N,B

_ 1(E_2W)
- 2\ W,

Expressing the SNR in decibels, we may thus write

E
10log,o(SNR),, = -3 + 10log (N—av) dB
10M70

Given the value 10log)(, (E,,/Ny ) =20 dB or E,,/Ny = 100, we thus have

10log|((SNR), = 17 dB

(b) With M = 16, the average probability of symbol error is
1 3E,,
P, =21-—lerfc| [~
¢ ( m)er C( 2(M-1)N,

o 2

= 1.16x 10~

Problem 6.41

We are given the following set of passband basis functions:

{d()cos(2mf,1), o(1)sin(2mf, 1)}
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where f, = ; n=12-",N

and (1) = A/%sinc(%), o <i<e

Property 1

Jm (¢(t)cos(2nfnt))€b((t)sin(2nfnt))dt=O for all n (1)

To prove this property, we use the following relation from Fourier transform theory:
r (¢()cos(2mf,0))(0(2)sin(2nf,2))dt =0 for all n )

where g(£) = G(f) for i = 1,2, and the asterisk denotes complex conjugation. For the problem at
hand, we have

g.(2) = A/Yz,sinc((—;:)cos(27tfnt))
2,(1) = ﬁsinc((%)sin(znfnr))

The Fourier transform of the sinc function is

Fl:sinc(%):' = Trect(/T)

where

1 1
—_< <
rect(fT) = { 1 1" p =/ =37

0 otherwise

Hence,

G(f) = A/g[rect((f—fn)T)+re<:t((f+fn)T)]
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Gy(f) = = —[rect((f F)T) — rect((f + f,)T)]

Let 1) denote the integral on the left-hand side of Eq. (1). We may then use Eq. (2) to write

L= 3 el (=T = rect((f + £,)Ddf ()

where the integrand is depicted as follows:

: f
, 0 I
Fig. 1 " "
«— 1T «— /T —yp
From Fig. 1 we immediately see that the areas under the two rectangular functions are exactly
equal. Hence, Eq. (3) is zero, thereby proving Property 1 for any n.

Property 2
e (] 2nfy 1 for k=
j_w(ﬁw)e j( o(r)e’ j dr = { ) fork= 4)

Let I, denote the integral in Eq. (4). When k = 1, we have

(I (oo™ oo

1f o

A (o)
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= %J.c; sinc 2(%) dt
Using Rayleigh’s energy theorem, namely,
| dwar =] le(f)Fdf
we may write

1> . 2/t
_ff_m sinc (T)d

= sinc>(A)dh, A = t/T

4

f rect’(f)df

=1
which proves Property 2 for k = n.

To prove Property 2 for k # n, let

'21‘Cfn

1) = one "
= ﬁsinc(%)ejznf"t

21 f

(1) = o) ¥

jomf,t
A/%sinc(-%)e k, fe#®fa

Then applying the following relation from Fourier transform theory,

| _ae0) dr = [ 6,631 df

we may rewrite the integral I, of Eq. (4) as
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20 f 1 . 21 f 1
I, = %fmFI:sinc(%)ej :lF[smc(%)ej ]df

Since f, = n/T by definition, we may depict the two Fourier transforms constituting the integrand
of I, as shown in Fig. 2 for the worst possible case of k = n+1:

F [sinc(LT-)ej 2nf, "t]

Th- - - - __

Fig. 2

Syt

J2nf 1 Jj2n .
From Fig. 2 we immediately see that the Fourier transforms of ¢(¢)e and ¢(t)e will

never overlap for k # n. Hence, the integral I, is zero, proving the rest of Property 2.

Property 3
I @EOxhe " oaykhne Ky dr=0 for k#n

where the star denotes convolution. From the convolution theorem, we have

Flo(2)kh(2)] = P(NHHH(Sf)

where ®(f) = F[¢(¢)] and ®(f) = F[h(¢)].For k # n, the picture portrayed in Fig. 2 remains
equally valid except for the fact that the basic rectangular spectrum is now replaced by that

rectangular spectrum multiplied by the frequency response H(f). This multiplication does not
affect the nonoverlapping nature of the two spectra representing

J2nf,t J2Rft .
(0(2)*kh(t))e and (0(t)*kh(t)e ) for k # n, hence, proving Property 3.
Problem 6.42

Step 1 - Set £ = 0 and the initial noise-to-signal ratio NSR(k) = 0. Sort the subchannels used in
ascending order (i.e., from the smallest to largest ones).

Step 2 - Update the number of subchannels used by setting k = k+1.
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2
Ok

2
8k

Step 3 - Compute NSR(k+1) = NSR(k) +
Step 4 - Set A(k) = %[Pk+ TNSR(K)]

2
(0
Step 5-1f P, = A(k) - r[—’z‘} <0
8k

2
c

then compute P, = A(k—1) - P(——lzj
Pl

and

forl = 1,2, -, k-1
Otherwise, go to step 2.
For notations, refer to Section 6.12.

(The algorithm presented here is adapted from T. Starr, J.M. Cioffi, and P.J. Silverman (1999);’
see the bibliography.)

Problem 6.43
(@ Py +Py,+Py, =P (D
02 2
P -K =-TZ = Io @)
81
0’2 0‘2
Py-K = T% = I'T 3)
82 1
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Py-K = -I'— = -I— “4)

Adding Eqgs. (2), (3) and (4), and then using Eq. (1):

3K = P+rcz(1+l+l)
ll l2

Solving for K, we thus have

With this value of K at hand, we next solve for P}, P,, and P, obtaining

P T/l 1
Pl=c+—|-+--2
153773 (ll+l2 )

(b) P, = 19+1(§+3—2)

1
= 5(10+2.5)

12.5

P, = %’+%(1+3—3)

11
3
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W = U'w
Each element of the vector X in Eq. (2) represents an independent channel, and so we write
X, =MA +W,, n=12,N

(b) In the multichannel transmission model, the channel capacity of the entire system in bits per
transmission is given by

| N+v P
_ L n
= 2N210g2(1 + 2}

n=1 I'c

N P 1/(n+v)
= %log 2|:H£1 + n2)i| (3)

n=1 FGn

where v is the length of the channel impulse response. We may also express the R as follows:

1 1
R = Elogz(l + I:(SNR)vector coding) @

Hence, combining (3) and (4):

1

N P, (N+v)
'+ (SNR)vector coding =T H 1+ 2

n=1 Fcn

1

N Pn (N+v)
(SNR)vector coding — r H 1+—_2 -

n=1 1—‘Gn

(c) As the block length goes to infinity, we may ignore v, in which case the channel matrix H
becomes nearly an N x N matrix. Therefore, H may be decomposed as

H = Q7AQ
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where Q is an orthonormal matrix, and A is a diagonal matrix of eigenvalues (i.e., singular
values). Correspondingly, the singular values approach the magnitude of the Fourier
transform.

Even though a vector coding receiver and discrete multitone receiver converge to the same
performance, they are not the same:

* The subchannel gains are the same in both cases, but in vector modulation all subchannels
have zero phase, while in DMT the subchannels have arbitrary phase angles.
* Unlike DMT, a vector-coding system does not require the use of a cyclic prefix




s,(1) = /%cos(g(nc+i)t), 0<t<Tandi= 1,2, M (1)

where E is the symbol energy, T is the symbol period, and the carrier frequency f, = n /2T for

some fixed integer n.. The signals s;(#) for i = 1,2,---, M constitute an orthogonal set over the

interval 0 <7 < 7, as shown by
T

[sin)s(tydt = 0 for i#j )
0

Each frequency in Eq. (1) (i.e., specified value of integer i) is modulated with binary data. The net
result is a set of parallel carriers, each of which contains a certain portion of the incoming user’s
data. What we have just described is a form of orthogonal frequency-division multiplexing
(OFDM).

Problem 6.47

(a) The M-ary PSK signal is given by

2E 2n, . .
y(t) = —T—cos(2nfct+ﬁ(z—1)), i=12- M (1)

The output of the Mth power-law device is the Mth power of the input signal y(z):

M

1) = (-2-75)2cosM(2nfcr+%‘(i- 1)) 2)

The signal z(#) generates a frequency component at Mf,, which can be used to drive a phase-
locked loop tuned to Mf,.. Specifically, expanding Eq. (2), we get

) M . | ) M -
(1) = (% M |5+ = M_, cos[2n(2k)fct+(2k)ﬁ(z—1):'
5o M &S

M

= (%E{Z_A}I-T(Ag)COS[ZRMfCt-FZR(i_ )] }
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+ —1;—1(1‘14) cos [2n(M-1 Vf 1+

(M-1)2m(i - 1)}
2

M

ﬁ((MZ)—I) cos(41tfct + 4ﬁn(i - 1))

(ro)5]

Therefore according to the first term of this series expansion, the output of the Mth power law
device contains a tone of frequency Mf,., where f, is the original carrier frequency.

+ ...+

(b) The phase-locked loop is set to a frequency equal to Mf,. The phase-locked loop acts as a
narrow-band filter, thereby passing the sinusoidal component of frequency Mf. and rejecting
the other components.

(c) Consider, for example, the simple case of binary PSK. Since a squaring loop contains a
squaring device at its input end, it is clear that changing the sign of the input signal leaves the
sign of the recovered carrier unaltered. In other words, the squaring loop with M=2 exhibits a
180° phase ambiguity. Generalizing this result, we may say that Mth power loop for M-ary
PSK exhibits M phase ambiguities in the interval [0,27].

One method of resolving the phase ambiguity problem is to exploit differential encoding.
Specifically, the incoming data sequence is first differentially encoded before modulation,
resulting in a small degradation in noise performance. This method is called the coherent
detection of differentially encoded M-ary PSK. As such, this method of modulation is
different from the M-ary DPSK considered in Problem 6.34. For the special case of coherent
detection of differentially encoded binary PSK, the average probability of symbol error is
given by

_ Ey) o1 2| [Ep
P, = erfc()\/];(—)] —Qerfc ()\/;-\;(-)] 3)

In the region where (E}/Ny) >>1, the second term on the right-hand side of Eq. (3) has a

negligible effect; hence, this modulation scheme has an average probability of symbol error
practically the same as that for coherent QPSK or MSK. For the coherent detection of
differentially encoded QPSK, the average probability of symbol error is given by

E E E E
P, = Zerfc£J]%J —Zerfcz(/\/]—\:z] +erfc3( ’]TZJ —%erfc‘t[ /ﬁi’-)]
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For large E}/N, this average probability of symbol error is approximately twice that of
coherent QPSK.

Problem 6.48

(a) Assuming that the input data sequence x[n] is measured in volts, and recognizing that the
symbol q,, is dimensionless, then from Eq. (6.271) we find that the error signal e[n] is also

measured in volts. Then, with the phase estimate é[n] measured in radians, it follows that the
step-size parameter y for carrier recovery in Eq. (6.272) is measured in radians/volts.

(b) From Eq. (6.282) defining the error signal in terms of the input data sequence, we see that the
error signal is measured in volts squared. Hence, with c[n] responsible for timing recovery,

measured in seconds, it follows that the step-size parameter y for timing recovery in Eq.
(6.286) is measured in seconds/volts.

Problem 6.49

(a) The complex envelope of the received waveform is given by

r(t) = 5(t) +w(z) (1)
LO—l

where §(1) = &/*™ VS g o(r—kT - 1)
k=0

and w(?) is the channel noise. The parameter v represents the frequency offset, 8 is the carrier
phase we want to estimate, 7 is the timing error, {a} is the sequence of information symbols,

T 1s the symbol period, and g(z) is the signaling pulse shape.

The likelihood function L(r|é) 1s given by

Ty Ty
oy 1 S 1 ~ N2
L(r|8) = exp ]—V:)'[Re{r(t)s(t)}dt — mﬂs(m dr @)
0 0
Lo-l
where 5(1) = /*™* VS ¢ o1 kT - 1)
k=0

Since [5(z)| is independent of the carrier phase 0, the log-likelihood function of 8 is given by
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Ty

1(0)=log(L(r|0)) = Re j;(r):c*(t)dr 3)
0
Ty | . ~L0-1
where [7(1)5 (t)dr = ¢™°Y (k)
0 k=0

where x(k) represents the sample taken at time 7 = kT + T in the formula for convolution:

x()=[r(1)e *™] *g(-1)
Therefore,
~Lo-l
1(0) = Re{e_jez a,tx(k)}
k=0

The maximum of {(0), i.e., maximum likelihood estimation of 8, is achieved for

Ly-1

6 = arg{ D aZx(k)} 4)

k=0

(b) Hence, from Eq. (4) we deduce the following system for estimating the phase 0 :

r(®) k A
—’@_—' g(-1) —’_T/X() 2 arg{"} —» 9

e-jvat

h 4

t=kT+7
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Problem 6.51

Matlab Codes

% Problem 6.51 a. CS: Haykin
%effect of a dispersive channel on BPSK signals
% M. Sellathurai

s number of bits and number of samples per bit
no_of_syms =10;

no_of_bits=no_of_syms*1;

samples_per_bit=16;

% generating bits
Bits=[1 10110100 11°;

% gemerating QPSK signals
[syms]=BPSK_mod(no_of_bits, Bits);

ts=1e-3/16;
l=length(syms);

% baseband signal
s=zeros(samples_per_bit*(1),1);

for k=1:1-1

for kk=0:(samples_per_bit-1)
s((k—1)*samples_per_bit+kk+1,1)=syms(1,k);
end

end

t=0:ts: (length(s)-1)*ts;

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=5;

Hi2=butter_channel (2B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi6=butter_channel (2*B,N);

TT16=conv(H16, s);
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% channel bandwidth 2%B=20 filter order 2N=10
B=10; .

H20=butter_channel (2*B,N);

TT20=conv(H20, s);

“channel bandwidth 2%B=24 filter order 2N=10
B=12;

H24=butter_channel (2%B,N);

TT24=conv(H24, s);

% channel bandwidth 2%B=30 filter order 2N=10
B=15;

H30=butter_channel(2*B,N);

TT30=conv(H30, s);

% prints

subplot(2,3,1)

hold on

for k=1:10

plot(k, [syms(k)]’,’0’)
line([k, k1, [0 syms(k)1)
end

xlabel(’Bit period’);

title(’Transmitted bits’);

hold off

subplot(2,3,2)

[ m startl=max(real(H12));

hold on

plot(t,s,’—=?);
plot(t,real(TT12(start:160+start—1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=12kHz’');
hold off

subplot(2,3,3)

[m startl=max(real(H16));

hold on

plot(t,s,’—=?);

plot(t,real (TT16(start: 160+start-1)));
xlabel(’time (s)’);

title(’ Baseband BPSK, BW=16kHz’);
hold off
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subplot(2,3,4) .

[m start]l=max(real(H20));

hold on

plot(t,s,’--");
plot(t,real(TT20(start:160+start-1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=20kHz’);
hold off

subplot(2,3,5)

[m start]l=max(real (H24));

hold on

plot(t,s,’—-);
plot(t,real(TT24(start:160+start-1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=24kHz’);
hold off

subplot(2,3,6)

[m startl=max(real(H30));

hold on

plot(t,s,’-=’);
plot(t,real(TT30(start:160+start-1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=30kHz’);
hold off
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% Problem 6.51 b. CS: Haykin
%effect of a dispersive channel on QPSK signals
% M. Sellathurai

% number of bits and number of samples per bit
no_of_syms =5;

no_of_bits=no_of_syms*2;

samples_per_bit=16;

% generating bits
%Bits=round(rand(no_of_bits,1));
Bits={1 1 0110100 117

% generating QPSK signals
[syms]=QPSK_mod(no_of_bits, Bits);

l=length(syms);

% baseband signal
s=zeros(samples_per_bit*(1-1),1);

for k=1:1-1

for kk=0:(samples_per_bit-1)
s((k—i)*samples_per_bit+kk+1,1)=syms(1,k);
end

end

t=0:ts:(length(s)-1)*ts;

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=5;

H12=butter_channel (2*B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi6=butter_channel (2+B,N);

TT16=conv(H16, s);

% channel bandwidth 2%B=20 filter order 2N=10
B=10;

H20=butter_channel (2+B,N);

TT20=conv(H20, s);
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“channel bandwidth 2%B=24 filter order 2N=10
B=12; .

H24=butter_channel (2#B,N);

TT24=conv(H24, s5);

% channel bandwidth 2%B=30 filter order 2N=10
B=15;

H30=butter_channel (2%B,N);

TT30=conv(H30, s);

% prints

subplot(2,3,1)

hold on

for k=1:10

plot(k, [2#Bits(k)-1]’,%0’)
line([k, k1, [0 (2*Bits(k)-1)])
end

xlabel(’Bit period’);
title(’Transmitted bits’);

hold off

subplot(2,3,2)

[ m start]=max(real(H12));

hold on

plot(t,s,’--?);
plot(t,real(TTiZ(start:64+start-1)));
xlabel(’time (s)’);

title(’Baseband QPSK, BW=12kHz’);
hold off

subplot(2,3,3)

[m start]=max(real(H16));

hold on

plot(t,s,’--7);
plot(t,real(TT16(start:64+start-1)));
xlabel(’time (s)’);

title(’ Baseband QPSK, BW=16kHz’);
hold off

subplot(2,3,4)

[m start]=max(real(H20));

hold on

plot(t,s,’-=?);
plot(t,real(TTZO(start:64+start-1)));
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xlabel(’time (s)’);
title(’Baseband QPSK, BW=20kHz’);
hold off

subplot(2,3,5)

[m start]=max(real(H24));

hold on

plot(t,s,’--?);
plot(t,real(TT24(start:64+start—1)));
xlabel(’time (s)’);

title(’Baseband QPSK, BW=24kHz’);
hold off

subplot(2,3,86)

[m start]=max(real(H30));

hold on

plot(t,s,’~-?);

plot(t,real (TT30(start:64+start-1)));
xlabel(’time (s)’);

title(’Baseband QPSK, BW=30kHz’);
hold off

379



% Problem 6.51 c. CS: Haykin
heffect of a dispersive channel on MSK signals
% M. Sellathurai

% number of bits and number of samples per bit
no_of_syms =5;

no_of_bits=no_of_syms*2;

samples_per_bit=16;

% generating bits
Bits=[1 10110100 0]°;

% generating QPSK signals
[s,phase]=MSK_mod(no_of_bits,samples_per_bit,Bits);

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=65;

H12=butter_channel (2*B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi16=butter_channel (2*B,N);

TT16=conv(H16, s);

% channel bandwidth 2%B=20 filter order 2N=10
B=10;

H20=butter_channel (2%B,N);

TT20=conv(H20, s);

“channel bandwidth 2%B=24 filter order 2N=10
B=12;

H24=butter_channel (2%B,N);

TT24=conv(H24, s);

% channel bandwidth 2#B=30 filter order 2N=10
B=15;

H30=butter_channel (2*B,N);

TT30=conv(H30, s);

ts=1e-3/16;

t=0:ts:(length(s)-1)*ts

% prints
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subplot(2,3,1)
hold on -

for k=1:10

plot(k, [2*Bits(k)—1]’,’o’)
line([k, k], [0 (2#Bits(k)-1)])
end

xlabel(’Bit period’);
title(’Transmitted bits’);

hold off

subplot(2,3,2)

[m startl=max(real(H12));

hold on

plot(t,abs(s), ' -=?);
plot(t,abs(TT12(start+5:165+start—1)));
xlabel(’time (s)’);

title(’MSK (envelope), BW=12kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,3)

[m start]=max(real (H16));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TTlG(start+5:165+start—1)));
xlabel(’time (s)?);

title(’ MSK (envelope), BW=16kHz’);
hold off

axis([0, 0.01,0.9,1.1 ])

subplot(2,3,4)

[m start]=max(real(H20));

hold on

plot(t,abs(s),'~-?);
plot(t,abs(TT20(start+5:165+start—1)));
xlabel(’time (s5)’);

title(’MSK (envelope), BW=20kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,5)

[m start]=max(real(H24));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT24(start+5:165+start—1)));
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xlabel(’time (s)’);

title(’MSK (envelope), BW=24kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,6)

[m start]l=max(real(H30));

hold on

plot(t,abs(s),’--?);
plot(t(1:155),abs(TT30(start+5: 160+start-1)));
xlabel(’time (s)’);

title(’MSK (envelope), BW=30kHz’);

hold off

axis([0, 0.01,0.9,1.1 1)
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% Problem 6.51 d. CS: Haykin
“effect of a dispersive channel on GMSK signals
% M. Sellathurai

% number of bits and number of samples per bit
no_of_syms =5;

no_of_bits= no_of_syms*2;

samples_per_bit=16;

% generating bits
Bits=[1 10110100 0]°;

» generating GMSK signals, WTb=0.3
(s, phase]=GMSK_mod(no_of_bits,samples_per_bit,Bits);

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=5;

Hi2=butter_channel (2*B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi6=butter_channel(2#*B,N);

TT16=conv(H16, s);

% channel bandwidth 2%B=20 filter order 2N=10
B=10;

H20=butter_channel (2*B,N);

TT20=conv(H20, s);

“channel bandwidth 2#%B=24 filter order 2N=10
B=12;

H24=butter_channel (2*B,N);

TT24=conv(H24, s);

% channel bandwidth 2*B=30 filter order 2N=10
B=15;

H30=butter_channel (2*B,N);

TT30=conv(H30, s);

ts=1e-3/16;
t=0:ts:(length(s)-1)*ts
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% prints

subplot(2,3,1) .

hold on

for k=1:10

plot(k, [2*Bits(k)-1]1’,’0")
line([k, k1, [0 (2#Bits(k)-1)])
end

xlabel(’Bit period’);
title(’Transmitted bits’);
hold off

subplot(2,3,2)

[ m start]l=max(real(H12));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT12(start:160+start-1)));
xlabel(’time (s)’);

title(’GMSK (envelope), BW=12kHz’);
hold off

axis([0, 0.01,0.9,1.1 ])

subplot(2,3,3)

[m start]l=max(real(H16));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT16(start:160+start-1)));
xlabel(’time (s)’);

title(’ GMSK (envelope), BW=16kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,4)

[m start]=max(real (H20));

hold on

plot(t,abs(s),’—~’);
plot(t,abs(TT20(start: 160+start-1)));
xlabel(’time (s)’);

title(’GMSK (envelope), BW=20kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,5)

[m start]l=max(real(H24)):

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT24(start: 160+start-1)));
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xlabel(’time (s)’);

title(’GMSK (envelope), BW=24kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,6)

[m start]l=max(real(H30));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT30(start:160+start-1)));
xlabel(’time (s)’);

title('GMSK (envelope), BW=30kHz’) ;
hold off

axis([0, 0.01,0.9,1.1 1)
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function [amp]=BPSK_mod(no_of_bits, b)
% used in problem 6.51(a), CS: Haykin
% BPSK modulation

% Mathini Sellathurai

amp=[];

1=1;
m=size(b,1);

for k=1:1:m

if (b(k)==0)
amp(1)= (-1);
elseif (b(k)==1)
amp(1)= 1;

end

1=1+1;

end
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function [ampl=QPSK_mod(no_of_bits, b)
% used in problem 6.51(b), CS: Haykin
% QPSK modulation

% Mathini Sellathurai

amp=[];

1=1;
m=size(b,1);
for k=1:2:m

if (b(k)==0 & b(k+1) == 0)
amp(1l)= (-1+i*-1)/sqrt(2);
elseif (b(k)==1 & b(k+1) == 0)
amp(1l)= (1-i*1)/sqrt(2);
elseif (b(k)==1 & b(k+1) == 1)
amp(1)= (1+i*1)/sqrt(2);

else (b(k)==0& b(k+1) == 1)
amp(1)= (-1+i*1)/sqrt(2);

end

1=1+1
end
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function [amp,phase]=MSK_mod(no_of_bits, samples_per_bit, b)
% used in problem 6.51(c), CS: Haykin

% MSK signal generator

% Mathini Sellathurai

amp=[];

ini_phase=0;

for k=1:no_of_bits
ee=b(k);
for kk=0:samples_per_bit-1

% NRZ signal generator
if ee==
ee=-1;
elseif ee==
ee=1;
end

phase((k-1)*samples_per_bit+kk+1)=ini_phase +tee*(pi/(2*samples_per_bit));
ini_phase=phase((k~1)*samples_per_bit+kk+1);

end
end

phase=rem(phase,2*pi);
in=cos(phase);
quad=sin(phase);
amp=in+i*quad;
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function [amp, phase1]=GMSK_mod(no_of_bits, samples_per_bit, b)
% used in problem 6.561(d), CS: Haykin

% GMSK signal generator

% Mathini Sellathurai

amp=[];
for k =l:no_of_bits

\Generating NRZ sequence
if b(k,1)==0
im_bits(k,1)= -1;
else
im_bits(k,1) =1;
end
end

impulse_bits=im_bits;
Bits_to_transmit=max(size(impulse_bits));
BT=0.6;

inphase=0;

data(1,4)=0;

t=0;

for i=0:3

for k=0:(samples_per_bit -1)
co =GMSK_co(i—2,k+8,samp1es_per_bit,BT);
qmskcoef (1, i*xsamples_per_bit+k+1)=co;
end
end

for bitcount=1:Bits_to_transmit
ini_phase=inphase;
ini_phase=rem(ini_phase+data(1,4)*pi/2,2*pi);

data(1,1)=impulse_bits(bitcount,1);
for i =4:-1:2
data(1,i)=data(1,i-1);

end

inphase=ini_phase;
for pha_loop=1:samples_per_bit
phase=inphase;

for i=0:3
phase=phase+pi/2*data(1,i+1)*qmskcoef(1,samples_per_bit*i+pha_loop);
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end
samples_store(1,t+1)=t;

t=t+1;

phase=rem(phase,2*pi);

phasei(1, pha_loop+samples_per_bit*(bitcount—l))=phase;
rephase(i,pha;loop+samples_per_bit*(bitcount—i))=cos(phase):
quphase(l,pha_loop+samples_per_bit*(bitcount—i))=sin(phase);
end

end

amp=rephase+j*quphase;
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function [co] = GMSK_co(a, b, samples_per_bit,bt)
% used in GMSK signal generation Problem 651d, CS: Haykin
% Mathini Sellathurai

alpha=bt*5.336446225;
T=a+b/samples_per_bit:
co=T*erf(T*alpha)+exp(-alpha*alpha*T*T)/(alpha *1.772453855);

co=co—(T—1)*erf((T—1)*alpha)-exp(—alpha*alpha*(T—l)*(T-l))/(alpha*sqrt(pi));
c0=0.5+0.5%co;
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function hb=butter_channel(f,N)

% Used in Problem 6.51

% Butterworth filter of order 2N=10;
% M. Sellathurai

[B, Al=butter(N, f£/64);
(H,w]l=freqz(B,A,128, ’whole’);
hb=ifft(H);
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Answer to Problem 6.51
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Figure |): Butterworth baseband filter of order N=5
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CHAPTER 7

Spread-spectrum Modulation

Problem 7.1

(a)

The PN sequence length is

N=2"-1=2-1=15
(b)  The chip duration is
T, =L s=01ps
107
(¢)  The period of the PN sequence is
T = NT,
=15x 0.1 =15 ps
Problem 7.2 ‘
Shift Shift-register Modulo-2 Shift-register
number contents adder output output
0 1000
1 0100 0+0=0 0
2 0010 0+0=0 0
3 1001 1+40=1 0
4 1100 0+1=1 1
5 0110 0+0=0 0
6 1011 1+0=1 0
7 0101 1+1=0 1
8 1010 0+1=1 1
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9 1101 1+0=1 0
10 1110 0+1=1 1
11 1111 1+0=1 0
12 0111 1+1=0 1
13 0011 1+41=0 1
14 0001 1+41=0 1
15 1000 0+1=1 1

The output sequence is therefore
11 000100110101111 0001

one period

Problem 7.3

(a) From both Table 7.2a and Table 7.2b we note the following:
Balance property:

Number of 1s in one period = 16

Number of 0s in one period = 15
Hence, the number of 1s exceeds the number of 0s by one.
(b)  Run property:

In both Tables “7.2a and 7 2b, we count a total of 8 runs of 1s and a total of 8 runs of 0s. Moreover,
we note the following:

Runs of length 1: 4
Runs of length 2 : 2
Runs of length 3: 1

(c) Autocorrelation function: 402



1, k=IN
R(k) =| 1

—, k=#IN
N

Hence, we have (not %o sco.le)

Rk
[

i
1
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Problem 7.4

A

Table 1

Feedback
symbol

€

M

State of Feedback-
shift register

100000

Output
symbol

1
1
1
1
1
0
1
0
1
0
1
1
0
0
1
1
0
1
1
1
0
1

110000
111000
111101
111110
111111
011111
101111
010111
101011
010101
101010
110101
011010
001101
100110
110011
011001
101100
110110
111011
011101
101110

_ - O O O O O e mE OO OO O

404




Table 1 continued

Feedback
symbol

State of feedback-
shift register

Output

O O O O O O MO OO MM OO OO KH O -

110111
011011
101101
010110
001011
100101
010010
001001
100100
110010
111001
0111090
001110
000111
100011
010001
101000
110100
111010
111101
011110
001111
100111
010011
101001
010100
001010

HHHHHOHOOOHHHOOHOOHOHHOHHHO,g
o
S
[
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Table 1 continued

Feedback
symbol

State of feedback-
shift register

Output

g
5

H O © O © O k= © © O O© k= = O

000101
100010
110001
011000
001100
000110
000011
100001
010000
001000
000100
000010
000001
100000

_H O O O O© = © © © © = O =+ ©
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Table 2

Feedback
symbol

State of feedback-
shift register

100000

Output
symbol

O b e O O R EHO OO MO O o O

110000
011000
101100
110110
111011
011101
001110
100111
110011
011001
001100
000110
100011
110001
111000
011100
101110
010111
101011
110101
111010
111101
111110
111111
011111

O O O O O O O MO MM OO O OCO
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Table 2 continued

Feedback
symbol

State of feedback-
shift register

© © H O H O M O© O = kM O H O © ©C O M © © O© H O | M

101111
110111
011011
101101
010110
001011
000101
100010
010001
001000
000100
000010
100001
010000
101000
110100
011010
001101
100110
010011
101001
010100
101010
010101
001010

o O O H RO OO OO R C O O M O ki O o o e
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N

L

Table 3

Feedback
symbol

State of feed-back

shift register

100000

~D

Output
symbol

LLL ‘

O O HH O OO HO MO H OO KR RO

010000
101000
110100
111010
111101
111110
111111
011111
001111
100111
010011
101001
010100
101010
010101
001010
000101
100010
110001
011000
001100

O H O O O O HHEMHRMEMHMEORMOOOO O
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Table 3 continued

Feedback
symbol

State of feedback-
shift register

Output

g
5

© O O H H O H H O© O H O H M O M O b b o O o d

100110
110011
111001
111100
011110
101111
110111
111011
011101
101110
010111
101011
110101
011010
101101
010110
001011
100101
110010
011001
101100
110110
011011
001101
000110

o O O H O H QO H QO O O O H B OO
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Table 3 continued

Feedback
symbol

State of feedback-
shift register

Output

—_ O OO O O Moo O O O O O O

100011
010001
001000
100100
010010
001001
000100
000010
100001
110000
111000
011100
001110
000111
000011
000001
100000

HHHOOOOHOOHOOOHHO%
g
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Table 3 continued

Feedback State of feedback- Output
symbol shift register

100101
010010
001001
100100
110010
111001
111100
011110
001111
000111
000011
000001
100000

HHHHOOHOOHOHO%
U
&
iy

=== = =T R N N S e T - R
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Problem 7.5

State of feedback-
shift register

Output
symbol

Initial state

10000
01000
00100
00010
00001
11101
10011
10100
01010
00101
11111
10010
01001
11001
10001
10101
10111
10110
01011
11000
01100
00110
00011
11100
01110
00111
11110
01111
11010
01101
11011
10000

o o O O OO MO OO O MR EO MHMOORMMMHKOO OO
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The 31-element code generated by the scheme shown in Fig. P9.2 is exactly the same as that
described in Table 9.2b. Note, however, the code described in Tab.e 9.2b appears in reversed
order to that described in the above table; this reversal is clearly of a trivial nature.
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Problem 7.6

(a) The modulo-2 sum of b(t) and c(t), on a pulse-by-pulse basis, is as follows

b ()

: Q 1

c(t) 0 0 1
1 1 0

(b) If symbol 0 is represented by a sinusoid of zero phase shift, and symbol 1 is
represented by a sinusoid of 180° phase shift, the output of the modulo-2 adder takes on
the same form as that described in Table 7.3 of the text.

Problem 7.7
it) = v2J cos(@rft + 6)

The basis functions are

2

ont) = 3| 7T, 05D kT, < t < (k+ 1T,
0, otherwise
J, t) = "I‘E' sin(2nf,t), kT, <t < (k+DT,
C
k
0, otherwise

Hence, we may express the jamming signal j(t) as
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N-1
it) = IT, cos® Y olt)
k=0

N-1 .

- {JT, sin® Y ¢ (t)
k=0 k

Problem 7.8

The processing gain is

Tb 1/Tc

Tc 1/Tb

The spread bandwidth of the transmitted signal is proportional to 1/T,. The despread
bandwidth of the received signal is proportional to /T, Hence,

spread bandwidth of transmitted signal

Processing gain = - . .
despread bandwidth of received signal

Problem 7.9

m = 19
N = 2m-1 = 2191 « 219
The processing gain is
10log;(N = 10log;,2%°
= 190 x 0.3
= 57 dB
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Problem 7.10

(a) Processing gain = 10log;,(2™-1) = 1010g10(219-1) =57 dB
. . . : Ep

(b) Antijam margin = (Processing gain) - 10log;, ST

0

The probability of error is

P, = 1 erch_b
2

With P, = 10’5, we have E;/N, = 9. Hence,

Antijam margin =57 - 10log;(9 = 57 - 9.5
=47.5dB
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Problem 7.11

The DS/QPSK signal modulator is given below:

/2
CI(I) Tc' cos(27f,1)
R é N Baseband
filter

NRZ L

encoder| s(t)
b(t) (%) QPSK
(binary ol
data) signa

Baseband
filter
co(?)
/2 sin(2ns0)
c

The DS/QPSK modulated signal is

(1) = + [Ec,(ycos@nfyt (e (tysin2nf o
x(t) = £ TCI( cos( D E TCQ( sin(2mf .
where c/(t) = {Co,l(’)’cl,l([)’ 5 Oy, (1)} and

CQ(I) = {CO,Q(Z)’CLQ(I), "',CN_1,Q(I)}

denote the spreading sequences for 0 < r < T, which are applied to the in-phase and quadrature
channels of the modulator.

Consider the following set of orthonormal basis functions:

/2
_ —cos(2nf 1), kT <t<(k+1)T,
q)cl,k(t) - TC ¢ ¢

0, otherwise
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2 .
O, (1) = A/T:Csm((anCt), ) kT <t<(k+1)T,

0, otherwise

where T is the chip duration; k = 0, 1,2, ---, N-1,and N = T/T,, that is, N is the number of chips
per bit.

The DS/QPSK modulated signal can be written as follows (using the set of basis functions):

- + TCE 2 + TCE 2 .
s(ty = % 5T -J%cos(anct)cl(t)_ /2T ~J;051n(2nfct)cQ(t)

E N-1 N-

b

=t |— T [—
“N2N Z})c,,kq)cl’k(r) N2N

1
Co )0, (1)
=0

The channel output at the receiving end of the system has the following form

x(t) = s(r) + j(1)

where j(z) denotes the interference signal. We may express the interference signal using the
2N-dimensional basis functions as follows:

N-1 N-1
OED WINOIANOED WANOLIN0
k=0 ' k=0 '
where

(k+1)T

. b,
ey = Jig, IO, (O

) (k+1)T},
P P Ol O

k=201,--,N-1

The average power of the interferer is given by
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N-1

N-1
_ 1 2
T, ; ZJ)JCQ,,,(

Assuming that the power is equally distributed between the in-phase and quadrature components:

2(N-1)

2 ]Clk

The mean of the interference signal is zero. The variance of the interference si gnal is therefore

) 2V-1)
Cjam = 2N 2

JT,

2

Demodulation

cfr)
RO %\/ u(r)

Bandpass
filter

(X —

\T/

co®

» Bandpass
) filter

BPSK
demodulator

e

Multiplexer

>

BPSK
demodulator

L]

Estimate of
original
binary
sequence

There are two stages of demodulation. First, the received signal x(¢) is multiplied by the

despreading sequences c,(r) and co(?), yielding

u () = iA/gcos(anct)ic,(t)cQ(t)A/s:?sinanct)+c1(t)j(t)

up(t) = [sm(an t)+cQ(t)cI(t)[cos(2nf t)+cQ(t)](t)



The second terms in the right-hand side of u(t) and uy(?) are filtered by the bandpass filters, and

the BPSK demodulators recover estimates of their respective binary sequences. Finally, the
multiplexer reconstructs the original binary data stream.

Processing gain

The signal-to-noise ratio at the output of the receiver is

(SNR), = Instantaneous peak signal power

The signal-to-noise ratio at the input of the coherent receiver is

average input-signal power

(SNR), = :
average interferer power

_E/T _E

J JT

We may therefore write

(SNR), 2 T
log |——°] = 1010 (—7] = 3+ 10lo (—)
glo[(SNR)J 8T, S 1\T,

The QPSK processing gain= 7/T c

2T,
T

C

That is,

P GQPSK = 2[P GBPSK]

Solving for the antenna aperture:
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Problem 7.12

The processing gain (PG) is

pG - FH bandwidth

symbol rate
R,
=5x4 =20
Hence, expressed in decibels,
PG = 1010g1020
= 26 db
Problem 7.13
The processing gain is
PG =4x14
= 16
Hence, in decibels,
PG = 1010g10 16
=12 dB
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Problem 7.13

Matlab codes

% Problem 7.13(a), CS: Haykin

s Generating 63-chip PN sequences

% polynomiali(x) = x"6 + x + 1

% polynomial2(x) = x"6 + x°5 + x"2 + x + 1
% Mathini Sellathurai, 10.05.1999

% polynomials
poli=[1 00 0 0 1 1];
pol2=[1 100 1 1 1];

% chip size
N=63;

% generating the PN sequence
pnseql = PNseq(poll);
pnseq2 = PNseq(pol2);

% mapping antipodal signals (0-->-1, 1-->1)

u=2*pnseqil-1;
v=2*pnseq2-1;

423



% autocorrelation of pnseqi
[corrfl=pn_corr(u, u, N)

% prints

plot(-61:62,corrf(2:126)); axis([-62, 62,-10, 80])
xlabel(’ Delay \tau’)

ylabel(’ Autocorrelation function R_{c}(\tau)’)

pause

%autocorrelation of pnseq2
[corrfl=pn_corr(v, v, N)

% prints

plot(-61:62,corrf(2:125)); axis([-62, 62,-10, 80])
xlabel(’ Delay \tau’)

ylabel(’ Autocorrelation function R_{c}(\tau)’)

pause

% cross correlation of pnseql, pnseq2
[c_corr]l=pn_corr(u, v, N)

% prints

plot(-61:62,c_corr(2:125)); axis([-62, 62,-20, 20])
xlabel(’ Delay \tau’)

ylabel(’ Cross-correlation function R_{ji}(\tau)’)
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% Problem 7.13 (b), CS: Haykin

% Generating 63-chip PN sequences

% polynomiall(x) = x"6 + x + 1

% polynomial2(x) = x™6 + x°5 + x°2 + x + 1
% Mathini Sellathurai, 10.05.1999

% polynomials
poli=[1 1100 1 11;
pol2=[1 100 1 1 1];

% chip size
N=63;

% generating the PN sequence
pnseql = PNseq(poll);
pnseq2 = PNseq(pol2);

s mapping antipodal signals (0-->-1, 1-->1)
u=2*pnseqil-1;
v=2*pnseq2-1;

% autocorrelation of pnseql
[corrfl=pn_corr(u, u, N)

% prints

plot(-61:62,corrf(2:126)); axis([-62, 62,-10, 80])
xlabel(’ Delay \tau’)

ylabel(’ Autocorrelation function R_{c}(\tau)’)
pause

autocorrelation of pnseq2

[corrfl=pn_corr(v, v, N)

% prints

plot(-61:62,corrf(2:125)); axis([-62, 62,-10, 80])
xlabel(’ Delay \tau’)

ylabel(’ Autocorrelation function R_{c}(\tau)’)

pause

% cross correlation of pnseql, pnseq2
[c_corrl=pn_corr(u, v, N)

% prints
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plot(-61:62,c_corr(2:125)); axis([-62, 62,-20, 20])
xlabel(’ Delay \tau’)
ylabel(’ Cross-correlation function R_{ji}(\tau)’)
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function x = PNseq(p)

% Linear shift register for generating PN sequence of polynomial p
% used for problems 7.13, 7.14 of CS: Haykin

% Mathini Sellathurai, 10.05.1999

N = length(p) - 1; % order of the polynomial
p = fliplr(p);

X = [1 zeros(1, N-1)];

n=1;

for i =1 : n*(2°N - 1)

x(i) = X(1);

X = [X(2:N) p(N+1) * rem(sum(p(1:N) .* X(1:N)), 2)1;
end
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function [corrfl=pn_corr(u, v, N)

% funtion to compute the autocorreation/ cross-correlation
% function of two PN sequences

s used in problem 7.13, 7.14, CS: Haykin

% Mathini Sellathurai, 10 june 1999.

max_cross_corr=0;

for m=0:N

shifted_u=[u(m+1:N) u(1:m)];
corr(m+1)=(sum(v.*shifted_u));
if (abs(corr)>max_cross_corr)
max_cross_corr=abs(corr);

end

end

corri=flipud(corr);
corrf=[corri(2:N) corrl;
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Answer to Problem 7.13

Autocorrelation function Hc(t)
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Figure [:: Autocorrelation function of [6,5,2,1],[6,1]
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Cross-correlation function R, ()
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Figure 3: Cross-correlation function of [6,5,2,1],(6,5,4,1]
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Problem 7.14
Matlab codes

% Problem 7.14 (a), CS: Haykin

 Generating 31-chip PN sequences
% polynomiall(x) = x"5 + x"2 + 1
% polynomial2(x) = x°5 + x°3 + 1
% Mathini Sellathurai, 10.05.1999

% polynomials
pol1=[1 0 0 1 0 1];
pol2={1 01 0 0 1];

% chip size
N=31;

% generating the PN sequence
pnseql = PNseq(poll);
pnseq2 = PNseq(pol2);

% mapping antipodal signals (0-->-1, 1-->1)
u=2*pnseql-1;
v=2%pnseq2-1;

% cross correlation of pnseql, pnseq2
[c_corrl=pn_corr(u, v, N)

% prints

plot(-30:31,c_corr); axis([-30, 31,-15, 15])
xlabel(’ Delay \tau’)

ylabel(’ Cross-correlation function R_{ji}(\tau)’)

431



% Problem 7.14 (b), CS: Haykin

% Generating 63-chip PN sequences

% polynomiall(x) = x"5 + x°3 + 1

% polynomial2(x) = x5 + x™4 + x"2 + x + 1
s Mathini Sellathurai, 10.05.1999

% polynomials
poli=[1 01 0 0 1];
pol2=[1 101 1 1];

% chip size
N=31;

% generating the PN sequence
pnseql = PNseq(poll);
pnseq2 = PNseq(pol2);

% mapping antipodal signals (0-->-1, 1-->1)
u=2*pnseql-1;
v=2%pnseq2-1;

% cross correlation of pnseql, pnseq2
[c_corrl=pn_corr(u, v, N)

% prints

plot(-30:31,c_corr); axis([-30, 31,-10, 10])
xlabel(’ Delay \tau’)

ylabel(’ Cross-correlation function R_{ji}(\tau)’)



% Problem 7.14 (c), CS: Haykin

% Generating 63-chip PN sequences

% polynomialil(x) = x"5 + x"4 + x"3+1

% polynomial2(x) = x"5 + x"¢ + x"2 + x + 1
% Mathini Sellathurai, 10.05.1999

% polynomials
poli=[1 1 1 1 0 11;
pol2=[1 10 1 1 1];

% chip size
N=31;

% generating the PN sequence
pnseql = PNseq(poll);
pnseq2 = PNseq(pol2);

% mapping antipodal signals (0-->-1, 1-->1)
u=2*pnseql-1;
v=2*pnseq2-1;

% cross correlation of pnseql, pnseq2
[c_corr]=pn_corr(u, v, N)

% prints

plot(-30:31,c_corr); axis([-30, 30,-10, 10])
xlabel(’ Delay \tau’)

ylabel(’ Cross-correlation function R_{ji}(\tau)’)

433



Answer to Problem 7.14
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CHAPTER 8
Problem 8.1

2
(a) Free space loss =10log (4—2—4)
10

= 20log ( 4 xmx150

" 9)dB
1083 % 10°/4 x 10

88 dB

(b) The power gain of each antenna is

10log ,,G, = 10log,,G, = 10log (4”—;‘“‘)
10~ A
- 10lo (4><n><n><20.6)
108 (3740)

= 36.24 dB

(¢) Received Power= Transmitted power +G, - Free space loss

= 1+36.24-88
=-50.76 dBW

Problem 8.2

The antenna gain and free-space loss at 12 GHz can be calculated by simply adding 20log;o(12/4)
for the values calculated in Problem 8.1 for downlink frequency 4 GHz. Specifically, we have:

(a) Free-space loss= 88 + 20log;((3)
= 97.54 dB

(b) Power gain of each antenna
= 36.24 + 20log;((3)

= 4578 dB
(c) Received power = -50.76 dBW
The important points to note from the solutions to Problems 8.1 and 8.3 are:
1. Increasing the operating frequency produces a corresponding increase in free-space loss, and an

equal increase in the power gain of each antenna.
2. The net result is that, in theory, the received power remains unchanged.
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Problem 8.3

The Friis free-space equation is given by

A 2
Pr = PthGr(Zn—d)

(a) Using the relationship

A 22
A, = EGr, and A, = EG’ , We may write
4TA 4TA 2
Pr — Pt > t 5 r |: }\. :|
A by 4nd
P,AA,
A2 d
A, A2
(b) P, = P[_z} (m)
P.AG,
4nd2

(1)

)

In both Egs. (1) and (2) the dependent variable is the received signal power, but the

independent variables are different.

(c) Equation (1) is the appropriate choice for calculating P, performance when the dimensions of
both the transmitting and receiving antennas are already fixed. Equation (1) states that for

fixed size antennas, the received power increases as the wavelength is decreased.

Equation (2) is the appropriate choice when both A, and G, are fixed and the requirement is to
determine the required value of the average transmitted power P, in order to realize a specified

Pl’

Problem 8.4

The free space loss is given by
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4nd\?
Liree space = (T

According to the above formulation for free space loss, free space loss is frequency dependent.
Path loss, as characterized in this formulation, is a definition based on the use of an isotropic
receiving antenna (G, = 1).

The power density, p(d), is a function of distance and is equal to

EIRP
p(d) = —
4ntd

The received power of an isotropic antenna is equal to

)\’2
;= P x =

=
]

4nd® 4T

EIRP )?
— X
_ EIRP
(ﬂn_ ?
A

= EIRP/Lfree-space (D

Equation (1) states the power received by an isotropic antenna is equal to the effective transmitted
power EIRP, reduced only by the path loss. However, when the receiving antenna is not isotropic,
the received power is modified by the receiving antenna gain G,, that is, Eq. (1) is multiplied by
Gr

Problem 8.5

In a satellite communication system, satellite power is limited by the permissible antenna size.
Accordingly, a sensible design strategy is to have the path loss on the downlink smaller than the

pass loss on the uplink. Recognizing the inverse dependence of path loss on the wavelength A, it
follows that we should have

}‘uplink < }"downlink

or, equivalently,

Juplink > fdownlink
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Problem 8.6

Received power in dBW is defined by
Pr =EIRP + G, —Free-space loss

For these three components, we have

(1) EIRP

IOloglo(P,G,)

10log 4P, + 10log, (G,)

10log,(0.1) + 1010g10(G,)

Transmit antenna gain (in dB):

10log ,G, = 1010g10(4 X1 x0.7 % n/4)

(3/40)*
= 30.89 dB

(2) Receive antenna gain:

2
10log (G, = lOlogm(4 XTX0.55 X T X5 J

(3/40)*
= 49.84 dB
(3) Free-space loss:

L_ = 20log IO(M)

A

7
_ 4x7mx4x10
= 2010%( 3/40 )

= 196.25 dB

Hence, using Egs. (1) to (5), we find that
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P, = 10log1o(0.1) + 30.89+49.84 — 196.52

= —206.52 + 8.073

-125 dBW
Problem 8.7

(a) RMS value of thermal noise = JE [v2] = J4kTRAf volts, where k is Boltzmann’s constant

equal to 1.38 x 1023, T is the absolute temperature in degrees Kelvin, and R is the resistance
in ohmns. Hence,

RMS value = A4 x 138 x 1075 %290 x 75 x 1 x 10°

J4x 138 %290 x 75 x 10~

1.096 x 107 volts

(b) The maximum available noise power delivered to a matched load is

kTAf = 1.38 x 1072 x 290 x 10°

4.0 x 1071 watts

Problem 8.8
The wavegude loss is 1 dB; that is,

Gwaveguide =0.78

The noise temperature at the input to the LNA due to the combined presence of antenna and
waveguide is

T, =G

e

xT +(1-G

waveguide antenna

waveguide ) Twaveguide

= 0.78 X 50 + 290(1 — 0.78)
= 102.8K

The overall noise temperature of the system is
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500 1000
Tsystem = Te + 50 + 2TO + 2—00—

160.3K

The system noise temperature referred to the antenna terminal is
160.3/0.78 = 205.5K

Problem 8.9

In this problem, we are given the noise figures (F) and the available power gains (G) of the
devices. By using the following relationship, we can estimate the equivalent noise temperature of
each device:

F T+ Te
T
T, = T(F-1)

where T is room temperature (290K) and 7,, is the equivalent noise temperature.

(a) The equivalent noise temperatures of the given four components are

Waveguide
Twaveguide = 290(2-1)
= 290K

Mixer
T

290(3 - 1)
580K

mixer

Low-noise RF amplifier
Trr = 290(1.7-1)

= 203K

IF amplifier
T;p =290(5-1)
= 1160K

(b) The effective noise temperature at the input to the LNA due to the antenna and waveguide is
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T, =G xT +(1-G

e waveguide antenna

)X T

waveguide waveguide

= 0.2 %50 +290(1 — 0.2)
= 242K

The effective noise temperature of the system is

T . T
T =T +Tpp + —2Xer IF
system e RF GRF GRF X Gmixer
580 1160
= 242 +203 + — + ———
424203+ 95 * o3
= 526.2K

Problem 8.10

(a) For the uplink power budget, the ratio]% is given by

C G

= =0,-G,-BO;+=-k-L
N uplink ’ T ’
where

0, = Power density at saturation
G, = Gain of Im?

BO; = Power back-off

g = Figure of Merit

k = Boltzmann constant in dBK
L = Losses due to rain

~

For the given satellite system, we have

9 = -81-445-00+1.9+2286+0.0
N uplink

105.0 dB-Hz
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where we have used the following gain of 1m? antenna:

G, = 10log ( 4xmx1 2)
10

(3x10%/14 x 10°)
= 44.5dB

Boltzmann constant £ = -228.6 dB

E
(b) Given the data rate in the uplink = 33.9 Mb/s and link margin of 6 dB, the required N—b is
0

E
(—”0) = (%) ~ (10log ;M + 10log (R)
N required N uplink

105 - 6 - 10log;(33.9 x 109)

105-6-75.3

= 23.77dB

Equivalently, we have

Ey 234
N =

Given the use of 8-PSK, the symbol error rate is defined by

P, = erfc(/\/}—vf—osin(n/&J

For 8-PSK

3E
E _ 7% _oo34x3 = 02
NO NO

Hence,

P, = erfc(J/702 x sin(m/8))
=0
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This result further confirms the statement we made in Example 8.2 in that the satellite
communication system is essentially downlink-limited. Recognizing that we have more powerful
resources available at an earth station then at a satellite, it would seem reasonable that the BER at
the satellite can be made practically zero by transmitting enough signal power along the uplink.

Problem 8.11

For the downlink, the relationship between

E
(Eo) and (_bo) , expressed in decibels, is described by
N N req

(—C—O) = (—E—bo) + 10logM + 10logR 1)
N downlink N req

where M is the margin and R is the bit rate in bits/second.

Solving Eq. (1) for the the link margin in dB and evaluating it for the problem at hand, we get
10log ,,M = 85— 10— 10log 10(10°%)

= 5dB

For the downlink budget, the equation for (NEJ , expressed in decibels, is as follows:

v )
Y = EIRP +|— -L —10log ok
(N downlink T /4B freespace 10

where k is Boltzmann’s constant.

For a satisfactory reception at any situation, we consider additional losses due to rain etc. up to the
calculated link margin of 5 dB. Hence, we may write

C G
(Fo)d link = EIRP  + (%)dB - Lfreespace — 10log 10k —10log IOM(dB) (2)
ownlin
where
EIRP = 57 dBW
Lfreespace = free-space loss
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= 92.4 +20log, (12.5) + 20log (40, 000)

= 206 dB
10log ok = 228.6 dBK

10log (M = 5 dB
Using these values in Eq. (2) and solving for G /T, we get

r

G
(_) = 85-57 +206—228.6 +5
T /4B

= 10.4 dB

With T = 310K, we thus find

G, = 10.4 + 10log ,(310)

= 35.31 dB

The receiving antenna gain in is given by

47rAn)
101 G, = 101
O81077 Oglo( 32

For a dish antenna (circular) with diameter D, the area A equals nD?/4. Thus,

10log,,G, = 2Olog10D + 2Olog10f + 10log ;,(n) +20.4(dB)

where D is measured in meters and f'is measured in GHz. Solving for the antenna diameter for the
given system, we finally get

Dpjin = 0.6 meters

Problem 8.12

(a) Similarities between satellite and wireless communications:
* They are both bandwidth-limited.
* They both rely on multiple-access techniques for their operation.
* They both have uplink and downlink data transmissions.

* The performance of both systems is influenced by intersymbol interference
and external interference signals.
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(b) Major differences between satellite and wireless communications:
* Multipath fading and user mobility are characteristic features of wireless
communications, which have no counterparts in satellite communications.
* The carrier frequency for satellite communications is in the gigahertz range
(Ku-band), whereas in satellite communications it is in the megahertz range.
» Satellite communication systems provide broad area coverage, whereas wireless
communications provide local coverage with provision for mobility
in a cellular type of layout.
Problem 8.13
In a wireless communication system, transmit power is limited at the mobile unit, whereas no
such limitation exists at the base station. A sensible design strategy is to make the path loss (i.e.,

free-space loss) on the downlink as small as possible, which, in turn, suggests that we make

(Path IOSS)uplink < (Path 1088) 4ownlink
Recognizing that path loss is inversely proportional to wavelength, it follows that

)‘uplink > A downlink
or, equivalently,
Juptink <Jfdownlink
Problem 8.14

The phase difference between the direct and reflected waves can be expressed as

o S BT [

where A is the wave length. For large d, Eq. (1) may be approximated as

4n(hyh,,)

AV radians

With perfect reflection (i.e., reflected coefficient of the ground is -1) and assuming small ¢ (i.e.,
large d), the received power P, is defined by

612 2r4amt(h,h
P, =P |1-¢/" =P, sin (_(712_"1))
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AT (hyh, 2
= o m 2
P{—) @
A 2
where Po = PthGm(m) (3)

Using Eq. (3) in (2):

An(hyh, N2 A N2
Fr=p ’Gme( rd m) (4nd)
2,2
hoh
= PthGm(—lszmJ

which shows that the received power is inversely proportional to the fourth power of distance d
between the two antennas.

Problem 8.15

The complex (baseband) impulse response of a wireless channel may be described by

~ -j¢ -j®

h(t) = aje '8(1-1)+ae  8(t-1) (1)
where the amplitudes a; and a, are Rayleigh distributed, and the phase angles 0; and ¢, are
uniformly distributed. This model assumes (2) the presence of two different clusters with each

one consisting of a large number of scatterers, and (2) the absence of line-of-sight paths in the
wireless environment. Define

h(t) = il(t)ejq)l

0=0,-9,
We may then rewrite Eq. (1) in the form
h(1) = a;8(1=1) + aye 8(1 - 1)

as stated in the problem.

(a) (i) The transfer function of the model is
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H(f)

Flh(1)]

-j2nfT, -j(2nft, +0)
ale +a2€

(i) The power-delay profile of the model is

P, = E[|h(1)’]

1

Ela,8(1-1,) + aye™°8(1 - 1,)(a,8(1 - 1)) + a,e’°8(1 ~ 1)

I

E[@:8°(1— 1)) + 30 (1 ~ T,) + a,a,c0808(1 - T,)8(t - T,)]

E[a3)8%(1-1,) + E[a3]8°(1 - 1,) (1)

(b) The magnitude response of the model is

-j2nft, ~j2nf (1, +0)
ale + a2€

Il

[H ()

Ja® +d +2a,a,c08(2mf (1, - 1,) +6)

which exhibits frequency selectivity due to two factors: (1) variations in the coefficients a; and a,.
and (2) variations inthe delay difference 1,-1,.

Problem 8.16

The multipath influence on a communication system is usually described in terms of two effects -
selective fading and intersymbol interference. In a Rake receiver, selective fading is mitigated by
detecting the echo signals individually, using a correlation method, and adding them algebraically
(with the same sign) rather than vectorially, and intersymbol interference is dealt with by
reinserting different delays into the various detected echoes so that they fall into step again.

Making each correlator perform at its assigned value of delay can be done by inserting the right
amount of delay in either the reference (called the delayed-reference) or received signals (called
the delayed-signal). Independent of the form of the reference signals employed, the output SNR
from the integrating filters is substantially the same for both configurations, under the assumption
that the length of the delay 7} is significantly smaller than the symbol duration T. Each integrating

filter responds to signals only within about +l/T of the frequency f. Therefore, the noises adding
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shorter than 7, regardless of the form of reference signal. The only difference between the tap
circuit contributions of the delayed-signal scheme and those of the delayed-reference scheme is
that the latter are staggered in time by various fractions of T, and since such staggering is small
compared to the significant fluctuation period of the contributions, we conclude that the noise
outputs of the two configurations are equivalent.

However, there are three practical advantages of the delayed-signal scheme over the delayed-
reference scheme. First, one delay line instead of two is required. Second, in the latter

configuration. corresponding taps in the mark (symbol 0) and space (symbol 1) lines would have
to be adjusted and be kept in phase coincidence. Third, coherent intersymbol interference
(eliminated in the delayed-signal scheme) is still present in the latter scheme, (Price and Green
1958), see the Bibliography.

Problem 8.17

(a) The output of the linear combiner is given by

N
x(t) = Z(ijj(t)
j=1

N
Y a(z;m(r) +n (1))

j=1

N N
= Y ozm(r)+ Y on )
j=1 j=1
W—J ;—Y—J
signal noise

The output signal-to-noise ratio is therefore

Average signal power
Average noise power

1

(SNR),

N 2
E[Z ocj(zjm(t)):l

Jj=1

N 2
E{Zocjnj(t)]
j=1
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- N N
E ZZOcjockzjzkmz(t)]

L j=1k=1

rN N
E ZZOLjaknj(t)nk(t):|

Lj=1k=1

N N

ZzujukzjzkE[mz(l)]
— _i=lk=1 (l)

N N
Y Yooy Elng(tyn(n)]

j=lk=1

Using the following expectations
E[mz(t)] = | for all 7 (i.e., unit message power)

2 .
. o; for k =
Elnj(0m ()] = { j !

0 for k#j

we find that Eq. (1) simplifies to

N N

- j=lk=1
(SNR), = L=L&]

(1.20'2
i%

Jj=1

)

R E— )
0(2()'2
i%J
j=1

(b) Equation (2) can be rewritten in the equivalent form
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N 3)

where u; = o; 0; and (SNR)j = z?/c?. We now invoke the Schwarz inequality, which, in

discrete form for the problem at hand, is stated as follows

N 2 N N )
(ZuJ(SNR);/Z] s(zuf)[Z((SNR)}/z) j (4)

J=1 J=1 Jj=1
Hence, inserting this inequality into the right-hand side of Eq. (3), we may write

N
(SNR)( < Y (SNR);
j=1

which proves the formula under subpart (i).

To prove subpart (ii), we recall that the Schwarz inequality of Eq. (4) is satisfied with the
equality sign if (except for a scaling factor)

(SNR),? = u,

or, equivalently,

Z:
2 = a0,
%50

~

That is,
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Problem §.18
For the problem at hand, we have M = N = 2. Therefore,
M-N+l1=1

and so the weight subspace W is one-dimensional. We thus have the following representation for
the action of the antenna array:

C2 A
(Interferer),
*
Cy
(User)” |
I
| One-di ional
| ne-dimensiona
9 : g sub-space W
Weight
Problem 8.19

(a) The cost function is
J = slelnll® = Selnle’(n]

where the error signal is

M
eln] = d[n] =Y wylnlx[n]
k=1

Let
wiln] = ay[n]+ jb,[n]

Hence
9 _ 1 . deln] 1+ deln]
é—c—l—k = 2e[n] aak +2e [n]—-——aak



= —%e[n]x;:[n] - %e*[n]xk[n]

= —%Re{xk[n]e*[n]} (1)
o/ 1. 9en] 1+ deln
a—bk = 2e[n] abk +2(: [} abk

= —%e[n]x;:[n] + %e*[n]xk[n]

= ~Im{x,[n](e [n])} 2)
The adjustment applied to the kth weight is therefore
Aw[n] = Aay[n] + jAb,[n]

o . dJ 3)

= - ME =J “eﬁ;
where W is the step-size parameter. Substituting Egs. (1) and (2) into (3),

Aw,[n] = uRe{x,[n]e [n]} +pnIm{x,[nle [n]}

*

wxilnle [n]

(b) The complex LMS algorithm is described by the following pair of relations:
wiln+l] = w[n] + Aw,[n]
= wk[n]+uxk[n]e*[n], k=12 M

M
e(n) = dn]- ¥ wexln]
k=1
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Problem §8.20

(a) We are told that the speed of response of the weights in the LMS algorithm is proportional to
the average signal power at the antenna array input. Conversely, we may say that the average
signal power at the array input is proportional to the speed of response of the weights in the
LMS algorithm. Moreover, the maximum speed of response of the LMS weights is

proportional to Ry/fi.x, Where Ry, is the bit rate and f;,,, is the maximum fade rate in Hz. It

follows therefore that the dynamic range of the average signal power at the antenna array
input ig proportional to R, /f;..«, as shown by

P = AR,/ f

max waltts (1)

max

where o is the proportionality constant.

(b) Foroe=0.2, R, =32 x 103 brs, and f.., = 70 Hz, the use of Eq. (1) yields
P = 0.2x32x 10°/70

= 640/7
= 91 watts
which is somewhat limited in value.
Problem 8.21

(a) According to the Wiener filter, derived for the case of complex data, the optimum weight
vector is defined by

Rxwo = rxd (l)

where

R, = correlation matrix of the input signal vector x[n]

= E[x[n]x"[n]] )

ryy = cross-correlation vector between x[n] and desired response d[n]

= E[x[n]d [n]] 3)

W, = optimum weight vector.
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Note that the formulation of Eq. (1) is based on the premise that the array output is defined as

the inner product w'x[n]. The Wiener filter for real data is a special case of Eq. (1), where the
Hermitian transpose H in Eq. (2) is replaced by ordinary transposition and the complex
conjugation in Eq. (3) is omitted. Assuming that the input x[n] and desired response d[n] are
jointly ergodic, we may use the following estimates for R, and r, ;:

K
A 1 H
R, = I—(Zx[n]x [n] 4)
k=1
| w *
£, = EZx[n]d [n] 5)
k=1

where K is the total number of snapshots used to train the antenna array. Correspondingly, the
estimate of the optimum weight vector w,, is computed as

w =R, ¢, ©6)

-1, .
where R ° is the inverse of R,.

(b) The DMI algorithm for computing the estimate W may now proceed as follows:

1. Collect K snapshots of data denoted by
K
{x[k], d[k]}

where K is sufficiently large for W to approach w, and yet small enough to ensure
stationarity of the data.

2. Use Egs. (4) and (5) to compute the correlation estimates lix and f, ;.
3. Invert the correlation matrix R, and then use Eq. (6) to compute the weight estimate W .

For an antenna array consisting of M elements, the matrix R, is an M-by-M matrix and Fyq 18
an M-by-1 vector. Therefore, the inversion of R, and its multiplication by F,, requires

multiplications and additions on the order of M3
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Chapter 9

Fundamental limits in Information Theory

Problem 9.1

Amount of information gained by the occurrence of an event of probability p is

I = logy|L | bits
P

I varies with p as shown below:
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Problem 9.2

Let the event S=s;, denote the emission of symbol s, by the source, Hence,

I(s) = logy (l] bits
p

Sx 80 8 89 83
Py 04 0.3 0.2 0.1
I(sk) bits 1.322 1.737 2.322 3.322

Problem 9.3

Entropy of the source is

H(S) = pologz[-l—J + pllogz[-l—] + pzlogz[i] + palogz[—l-]
Po P1 Po P3

1 1 1 1
= _1 3 =1 6 il | 4 =1 4
308'2()"'6032()"'4 0g2()+4 ogy(4)

= 0.528 + 0.431 + 0.5 + 0.5
= 1.959 bits

Problem 9.4

Let X denote the number showing on a single roll of a die. With a die having six faces, we note that
px is 1/6. Hence, the entropy of X is

H(X) = px log; [_.1_]
Px

- % logy(6) = 0.431 bits
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Problem 9.5

The entropy of the quantizer output is

4
H=- E P(Xk) 10g2P(Xk)
k=1

where X, denotes a representation level of the quantizer. Since the quantizer input is Gaussian with

zero mean, and a Gaussian density is symmetric about its mean, we find that

P(X;) = P(X,)
P(X,) = P(X3)

The representation level X; = 1.5 corresponds to a quantizer input +1 < Y < . Hence,

1
b =
]

b
/i
Do |"‘
~

0.1611

2
P(X,) = Ll \/21_ exp{—l.z_]dy
T

0.3389

Accordingly, the entropy of the quantizer output is

asi
"

1
- 2lo.1611 1 + 0.3389 log, (0.3389
[ ng[o 1611 } s )]

1.91 bits
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Problem 9.6
(a) For a discrete memoryless source:

P(Gi) = P(Sil) P(Sil) P(Sin)

Noting that M = K®, we may therefore write

M-1
E P(Ci)
=0

i

M-1
2()) P(s; ) P(s;,) ... P(s; )

K-1 K-1 K-l
¥y - ) P(s;)) P(s;)) - P(s; )

i1=0 i2=0 in=0

™

K-1 K-1 K-1

=y P(s;)) Yy P(s;,) Yy P(s; )
i,=0 i3=0 in=0

=1

(b) For k = 1,2,...,n, we have

M-1 1 M-1 1
E P(Gl) logy — | = E P(Sil) P(Siz) P(Sin) logy —
i=0 Piy i=0 Piy

For k=1, say, we may thus write

M-1 L) K )kl K-1
Y PGy log2[_f] Y PGsy) logz[p_.] Eo P(s;)) - z‘; P(s; )
i | i= i=

i=0 i i=0 i
K-1 1
= Y pj, logg|—
i=0 Pi,
= H(S)

Clearly, this result holds not only for k=1 but also k=2,...,n.
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(c)

M-1

‘ 1
HS™ = P& 1
2, FeD o 5oy
M-1 1
= P(o)) 1
i=EO (0;) logg Pls) Pls;) ~ Plep)

- ijl P(o;) logy —L _ + hi\:jl P(oy) logy
i=0 P(si) i P(s;)
M-1 1
+ o+ lgo P(Gi) log2 P(Sin)

Using the result of part (b), we thus get

H(S ") = H(S) + H(8) + - + H(S)
= n H(S)

Problem 9.7

(a) The entropy of the source is

1 1
H(S) = 0.7 logy L+ 0.15 Io
) 857 " 82 915

.

+0.15 log, 0_115

0.258 + 0.4105 + 0.4105
1.079 bits

(b) The entropy of second-order extension of the source is

H(S2) = 2 x 1.079 = 2.158 bits
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Problem 9.8

The entropy of text is defined by the smallest number of bits that are required, on the average, to
represent each letter.

According to Luckyt, English text may be represented by less than 3 bits per character, because
of the redundancy built into the English language. However, the spoken equivalent of English text
has much less redundancy; its entropy is correspondingly much higher than 3 bits. It follows
therefore from the source coding theorem that the number of bits required to represent (store) text
is much smaller than the number of bits required to represent (store) its spoken equivalent.

Problem 9.9

(a) With K equiprobable symbols, the probability of symbol s, is

1
P(sy) = —
px = P(sy) T

The average code-word length is

=

[
™
=)
L3
i

The choice of a fixed code-word length 1, =, for all k yields the value i:lo. With K symbols in the
code, any other choice for I, yields a value for L no less than 1y

(b) Entropy of the source is
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=
M

H(S) =

lng

Pk logy [—1- ]
Px

K-1 1
= — log2K = log2K
k0 K
The coding efficiency is therefore
n=-HS _ loga K
T lo
For n=1, we have
10 = 10g2K
To satisfy this requirement, we choose
K = 2

where 1, is an integer.

Problem 9.10

A prefix code is defined as a code in which no code work is the prefix of any other code word. By
inspection, we see therefore that codes I and IV are prefix codes, whereas codes II and III are not.

To draw the decision tree for a prefix code, we simply begin from some starting node, and extend
branches forward until each symbol of the code is represented. We thus have:
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Problem 9.11

We may construct two different Huffman codes by choosing to place a combined symbol as low or
as high as possible when its probability is equal to that of another symbol.

We begin with the Huffman code generated by placing a combined symbol as low as possible:

% 055 — 035 ——=035 —=055
s, Qs —— 015 030 2 0.45 —
S 015 e O::%%;7£%“5 :;}J/,

S, 0.10 0 015 _'

s Q.os -

The source code is therefore

So 0
8, 11
s, 100
sg 1010
s, 1011
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The average code-word length is therefore

4
L=Y pxlk
=0 |
= 0.55(1) + 0.15(2) + 0.15(3)‘ + 0.1(4) + 0.05(4)

=19

The variance of L is

4
o> = ¥ pily - T
k=0

= 0.55(-0.9)2 + 0.15(0.1)2 + 0.15(1.1)2 + 0.1(2.1)2 + 0.05(2.1)?
= 1.29

Next placing a combined symbol as high as possible, we obtain the second Huffman code:

0
— ().56 )
— 0,45 0.
058 04 0 0,45 =

O -
s, (MS\\\\»CU5 03 ' _J/’
015 —— 0 —

s, 0.15
N

0
e
s, 0 oS \

Correspondingly, the Huffman code is

So 0

8; 100

Sg 101 465
Sg 110

sq, 111



The average code~word length is

L = 0.55(1) + (0.15 + 0.15 + 0.1 + 0.05) (3)
=19
The variance of i 8

o2 = 0.55(-0.9)%2 + (0.15 + 0.15 + 0.1 + 0.05) (1.1)2
= 0.99

The two Huffman codes described herein have the same average code-word length but different

variances.

Problem 9.12 -

0
S 035 — (as (.25 0.25 S 0.5]
0 !
s, 035 — 035 015 Q25 Oas Qs
0 0,25~
2 0435 0.125 0.25 0.25 :
|
S3 0.125 0.125 0.125 025 —
s, 0.125 025 2 | N0 '

S 0.0bd5 0 0.125 2

s, 0.0bas
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The Huffman code is therefore

8o 10

S, 11

89 001
83 010
8, 011
S 0000
Sg 0001

The average code-word length is

8
L=Y pi
k=0

= 0.25(2)(2) + 0.125(3)(3) + 0.0625(4)(2)
= 2.625

The entropy of the source is

6
H(S) = ¥ px logz[_l_J
k=0 Pk

0.125

= 0.25(2) logz[o 125] + 0.125(3) logz( 1 ]

1
0.0625(2) log,| 1
* ) 0g2(0.0625]

= 2.625

The efficiency of the code is therefore

_HE) _ 2625 _

n T 2.625

We could have shown that the efficiency of the code is 100% by inspection since
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6
Y pi loga(1/py)
k=0

‘n:

6
Y bk
k=0
where I, = logy(1/py).
Problem 9.13
(a)
O

s, Qs © 0.3 —'_-!
s, 0.15 J\/

The Huffman code is therefore

So 0
81 10
8o 11

The average code-word length is

T = 0.7(1) + 0.15(2) + 0.12(2)
= 1.3
(b) For the extended source we have
Symbol SoSo 18051 | %082 |81 |85 |81%1 8159 $o81 8989

Probability |0.49 |0.105 |0.105 | 0.105 |0.105 |0.0225 |0.0225 | 0.0225 | 0.0225
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Applying the Huffman algorithm to the extended source, we obtain the following source code:

808
8081
8089
8180
98¢
818,
8182
8981
8989

1

001
010
011
0000
000100
000101
000110
000111

The corresponding value of the average code-word length is

Ly = 0.49(1) + 0.105(3)(3) + 0.105(4) + 0.0225(4)(4)

iy

= 2.395 bits/extended symbol

1.1975 bits/symbol

(c) The original source has entropy

According to Eq. (/10-28),

0.7 logz(J_) + 0.15(2) logz(_(.)ll_5]

H(S
® 0.7

.

1.18

H(S) < E‘. < H(S) +
n

B~

This is a condition which the extended code satisfies.



Problem 9.14

Symbol Huffman Code Code-word length
A 1 1
B 011 3
C 010 3
D 001 3
E 0011 4
F 00001 5
G 00000 5
Problem 9.15
) 0
00 z
0
t
V1 % ‘
0 2 !
o3 |
4 [
10 s \
Computer code Probability Huffman Code
00 1 0
2
11 1 10
4
01 1 110
8
10 1 111
8

The number of bits used for the instructions based on the computer code, in a probabilistic sense,
is equal to 470



ofl . 1.1, 11 9pits
z 1 8

On the other hand, the number of bits used for instructions based on the Huffman code, is equal to

1

1xls2xliggl
2 1

X =
8

1 _
X e =
8

+ 3

NN

The percentage reduction in the number of bits used for instruction, realized by adopting the
Huffman code, is therefore

100 x _1;4_ - 12.5%

Problem 9.16

Initial step
Subsequences stored: 0

Data to be parsed: 11101001100010110100..
Step 1

Subsequences stored: 0, 1, 11

Data to be parsed: 101001100010110100..
Step 2

Subsequences stored: 0,1,11,10 )
Data to be parsed: 1001100010110100....
Step 3

Subsequences stored: 0, 1, 11, 10, 100

Data to be parsed: 1100010110100....

Step 4

Subsequences stored: 0, 1, 11, 10, 100, 110

Data to be parsed: 0010110100...
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Step 5
Subhsequences stored: 0, 1, 11, 10, 100, 110, 00

Data to be parsed: 10110100....

Step 6

Subsequences stored: 0, 1, 11, 10, 100, 110, 00, 101

Data to be parsed: 10100...

Step 7

Subsequences stored: 0,1, 11, 10, 100, 110, 00, 101, 1010
Data to be parsed: 0..

Now that we have gone as far as we can go with data parsing for the given sequence, we write

Numerical 1 2 3 4 5 6 7 8 9

positions

Subsequences 0, 1, 11, 10, 100, 110, 00, 101, 1010

Numerical 22, 21, 41, 31, 11, 42, 81
representations

Binary encoded 0101, 0100, 0100, 0110, 0010, 1001, 10000
blocks
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Problem 9.17

P(I): P(D:‘):;
0 2

p(yo) = (1 - p)p(xg) + p p(xy)

1 p)(E) p(z)

1
2

P(y1) = p p(xg) + (1 - p) p(xy)

VS TIPS |
P(E) a p)(-2-)

1
2
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Problem 9.18

p(xg) = %
- 3
p(xy) vy
. _ 1 . 3
pyo) =1 -p) (74—) p(z)
= 1 + p
4 2
= 1 + - 3
p(yy) p(z) 1-p (Z)
=3_0>
4 2

Problem 9.19

From Eq.(quz)we may express the mutual information as

1 1
P(x"Yk)
IX)Y) = 5y 1 — P
jg(:) k% P(x;,¥k ogz[ o) P(Yk)]

The joint probability P(’S"yk) has the following four possible values:
j=k=0: p(xo ,yk) = po(l-p) =(1- p1) (1-p)

i=0,k=1: p(xpy,) =pop =(1-pp

i=1Lk=0: p(x4,59) =pyp

where p, = p(x,) and p; = p(x;)

The mutual information is therefore
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(1-pp (1-p)
IX;Y) = (1-p) (1-p) ]
X;Y) = (1-pp) (1-p) 032[(1_p1) (A-pp (1—p)+p1p)]

1-ppPp ]

+ (1- 1
dpop °g2[(1-p1) -pD P + pA-P)

P1P
+ 1
P °g2[p1«1-p1> ap - plp)J

p1(1-p)
p1((1-pyp + pi(1-p)

+ pi(1-p) logz{

Rearranging terms and expanding algorithms:

IX;Y) = p logg p + (1-p) logs(1-p)
- [P1(1-p) + (1-py)p] logg[p1(1-p) + (1-py)p]

- [p1p + (1-py) (1-p)] logg[pyp + (1-pyp) (1-p)]

Treating the transition probability p of the channel as a running parameter, we may carry out the

following numerical evaluations:
p=0:

IX;Y) = - p; logg py - (1 - py) logy, (1 - py)
p; =05, IX;Y)=1.0

p=01:

IX;Y) = - 0.469 - (0.1 + 0.8 p,) log, (011 + 0.8 p;)
- (0.9 - 0.8 p,) log, (0.9 - 0.9 py)
p, =05, IX;Y)=0.531

p=0.2:

IX;Y) = - 0.7219 - (0.2 + 0.6 p, }log, (0.2 + 0.6 p;)
- (0.8 - 0.6 pl) 10g2 (0.8 - 0.6 pl)

p; = 0.5, KX;Y)=0.278
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p=0.3:
IX;Y) = - 0.88129 - (0.3 + 0.4 p,) log, (0.3 + 0.4 p,)

-(0.7 - 0.4 p,) log, (0.7 - 0.4 py)
p; =05, IXY)=0.1187

p=0.5:
IXY)=0

Thus, treating the a priori probability p, as a variable and the transition probability p as a running

parameter, we get the following plots:

1.0 P=0

O%}

0.6}

I(X,' M)

0.4t

Problem 9.20

From the plots of I(X;Y) versus p, for p as a running parameter, that were presented in the solution
to Problem 10-19 we observe that I(X;Y) attains its maximum value at p;=0.5 for any p. Hence,
evaluating the mutual information I(X;Y) at p,=0.5, we get the channel capacity:

Q
1

1+ploggp+ (1 -p)logg (1 -p)

1 - H(p)

where H(p) is the entropy function of p.
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Problem 9.21 .

(a) Let
z=p)(1 -p)+1 -p1))p=(1-pg)(1-p)+ pep

Hence,

ppp+1-p)=1-pp A1 -p-A-p)p

1-2z

Correspondingly, we may rewrite the expression for the mutual information I(X;Y) as

IX;Y) = H(z) - H(p)

where
H(z) = - z logy z - (1 - z) logg (1 - 2)

H(D =-plogag p-(1 -p)logg (1 -p)

(b) Differentiating I(X;Y) with respect to p, (or p;) and setting the result equal to zero, we find that
I(X;Y) attains its maximum value at p, = p; = 1/2.

(c) Setting py = p; - 1/2 in the expression for the variable z, we get:
z=1-2z=1/2

Correspondingly, we have

Hiz) =1

We thus get the following value for the channel capacity:

Q
"

6.6 ) N p, = 172

1 - H(p)

where H(p) is the entropy function of the channel transition probability p.

477



Problem 9.22

From this diagram, we obtain (by inspection)

P(yo Ixp) =(1 -p?2 +p2=1-2pQ1 - p)

P(yo |x%1) = p(1 - p) + (1 - p)p = 2p(1 - p)

Hence, the cascade of two binary symmetric channels with a transition probability p is equivalent

to a single binary symmetric channel with a transition probability equal to 2p(1 - p), as shown below:

|- 2p(1-P)

Correspondingly, the channel capacity of the cascade is

C =1 - H2p1 - p)

=1 -2p(1 - p) logg[2p(1 - p)] - (1 - 2p + 2p?) logy(1 - 2p + 2p?)
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Problem 9.23

1-a
0 | 00
a
e
a
0 e - © 1
l1-o

The mutual information for the erasure channel is

(X yp) )

1 2
I(X;Y) = » p(x)p(V,)
(X3Y) = 3 3 p(x; yk)logz(p(xj)p(yk)

j=0k=0

(D

The joint probabilities for the channel are
p(xg ¥o) = (1 -a)py p(xp,y9) =0 P(Xg, ¥2) = PoQ

p(xg,y1) =0 p(x, Y1) = (1-a)p, p(xy,¥,) = pQ

where pg + p; = 1. Substituting these values in (1), we get

(X;Y) = (1- 00[”010%2(50) ri-r °)l°gz(1_—1170)]

Since the transition probability p = (1 - &) is fixed, the mutual information I(X;Y) is maximized
by choosing the a priori probability p, to maximize H(pg). This maximization occurs at py = 1/2,.

for which H(pg) = 1. Hence, the channel capacity C of the erasure channel is 1 - o
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Problem 9.24

(a) When each symbol is repeated three times, we have

Messages Unused signals

000 001
010
011
100
101
110
111

We note the following:

L e

Channel outputs

000
001
010
100
101
110
111

The probability of just one error occurring is 3p(1 - p)2.
The probability of two errors oceurringis 3p2(1 - p).
The probability of receiving all three bits in error is p°.

332

The probability that no errors occur in the transmission of three 0s or three 1s is (1 - p)3.

With the decision-making based on a majority vote, it is clear that contributions 3 and 4 lead to the

probability of error

(b) When each symbol is transmitted five times, we have

Messages Unused signals
00000

00001
00010
00011

©
®

L

11110
11111

P3 = 3p%1-p) + p?

Channel outputs

00000
00001
00010
00011

®
[ d

11110
11111
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The probability of zero, one, two, three, four, or five bit errors in transmission is as follows,

respectively:

(1-py°

5p (1-p)
10p%(1-p)
10p%(1-p)?
5p*(i- p)

p5

The last three contributions constitute the probability of error
P, = p5 + 5pX1-p) + 10p3(1-p)?

(a) For the general case of n=2m + 1, we note that the decision-making process (based on a majority
vote) makes an error when m+1 bits or more out of the n bits of a message are received in error. The
probability of i message bits being received in erroris |2 |p {1 -p)* L

Hence, the probability of error is (in general) '

n

Pe= ) [?]Pi(l‘P)n'i

i=m+1
The results derived in parts (a) and (b) for m=1 and m=2 are special cases of this general formula.

Problem 9.25

The differential entropy of a random variable is independent of its mean. To evaluate the differential
entropy of a Gaussian vector X, consisting of the components X,;,X,,...,.X , we may simplify our task
by setting the mean of X equal to zero. Under this condition, we may express the joint probability
density function of the Gaussian vector X as
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X2 X2 X2
f(x) = 1 exp -_13 - _22 - - _Lz
(V2r )" 6103...6, 20] 20, 20,
The logarithm of fy(x) is
<2 <2 <2
logy fy(x) = - logg((.‘ln)“/2 6102...0,,) - 12 + 'iz +o.. 4 “2 logge
20] 20, 20,

Hence, the differential entropy of X is

h(X) = - f f f fx(x) logy (fx(x)) dx

= logy(20)™%0,0...0,) f f f fy(x)dx

2 2 2
X X9 Xn
+ logge fff - + _2? + .4 o~ fx(x) dx
1 2

n

We next note that

[ [ [ txoodx = 1

o [ x2 fx(x)dx = o2 i=1,2,..,n
JI- :

Hence, we may simplify (1) as
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hX) = logz[(2n)"/20102...cn] + %logze ,

n/2
log [21t(cfc§ ...gi)”“] + % logge

%[21:(0?03 ci)yn} + .1.21_ logqe

_g_ logz[zne(cfcg ci)l/n]

When the individual variances are equal:

2 _g2 _ 2 _ 2
o] =65, =.0,=0
2 2 2\1/n _ 2
(6705 ...0) " =0

Correspondingly, the differential entropy of X is

h(X) = % logy(2rea?)

Probiem 9.26

(a) The differential entropy of a random variable X is

h(X) = - f " fx(x) log, fx(x)dx

The constraint on the value x of the random variable X is

|x ISM
of

Using the method'Lagrange multipliers, we find that h(X), subject to this constraint, is maximized
when
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a5 [-fx0) logy fx®) + A fx(x)]dx

is stationary. Differentiating -fy(x)log,fy(x) + Afy(x) with respect to fy(x), and then setting the result
equal to zero, we get

-logae + A = logy fi(x)

This shows that fy(x) is independent of x. Hence, for the differential entropy h(X) under the

constraints |x |< M and J:: fx(x)dx =\ to be maximum, the random variable X
must be uniformly distributed:

1/2M, -M < M
(%) - X <

0, otherwise

(b) The maximum differential entropy of the uniformly distributed random variable X is

h(X) = [~ loga(@M)dx

1 M
a7 oga(2M) f o dx

= logy(2M)
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Problem 9.27

(a)

IX;Y) = Lo f_ N fX,Y(x,y)logz[ );ng ]dXdy

fo(y k) } ixdy

(Yx = [7 [ fx,Y(X,y)logz{ e

From Bayes’ rule, we have

fx(x ) ) fy(y k)
fx(x) ()

Hence, IX;Y) = I(Y;X).

(b) We note that

fry(xy) = fx(x Wfy(y)

Therefore, we may rewrite (1) as
oo ) f Y(X,y )
IX;Y) = fy v(x,3)logo| 2" lxdy
J2 JZ oy g2|:fx(x)fY(Y)'

From the continuous version of the fundamental inequality, we have

- fx y(x,y)
I et XD Ly o
x\X/ly

which is satisfied with equality if and only if 485
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fx y(x,y) = fx(x)fy(y)

Hence,

IX;Y) 20

(c) By definition, we have

By definition, we also have

h = [ fx(x)logz{fxtx) }dx

Since

[ ey body = 1,

we may rewrite the expression for h(X) as

hX) = f - fxlogz[fxtx)]dx f " fyly bodx

= ﬁ: f_: fyly k) fX(X)logz[fxtx) ]dxdy

But
fy(y k) fx(x) = fxy(x,y)
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Hence,

o (oo 1
TN 28

Next, we subtract (3) from (4), obtaining

— °° i 1 - 1
hX) - hX V) = f_w L” fx’Y(x,y)[logz ™) logy Fean) ):ldxdy

o0 oo f
= J: J: fX,Y(X,y)logz[ );(X b’) }xdy
w0 J-oo <X

= IX;Y)

(d) Using the symmetric property derived in part (a), we may also write

KY:X) = h(Y) - h(Y [X)

Problem 9,28

By definition, we have

h(Y [X) = J:: f)QY(x»Y)Ing[?Y(—;'F):ldxdy

Since

fx v(x,y) = fyly k) fx(x)

we may also write
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(Y [X) = 7 fxdx [~ fyy k)logz[m_;m]dy (1

The variable Y is related to X as

Y=X+N

Hence, the conditional probability density function fY‘y | x) is identical to that of N except
for a translation of x, the given value of X. Let fy(n) denote the probability density function
of N. Then

fy(y k) = fn(y-%)

Correspondingly, we may write

oo 1 = [ - !
f_w fy(y k)logz{m}dy L» I X)logz[fN(y-x) }dy

(2)
- (= fN(n)logz[f %n) }dn
N

= h(N)

where, in the second line, we have used n = y-x and dn = dy for a given x. Substituting Eq. ()
in (1):

h(Y [X) = hN) [ fx()dx

= h(N)
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Problem 9.29

(a) Channel bandwidth B = 3.4 kl{=
Received signal-to-noise ratio SNR = 103 = 30 dB

Hence, the channel capacity is
C = B logy(1 + SNR)
= 3.4 x 103 log,(1 + 103)
= 33.9 x 103 bits/second
(b) 4800 = 3.4 x 103 log, (1 + SNR)

Solving for the unknown SNR, we get

SNR = 1.66 = 2.2 dB

Problem 9.30

With 10 distinct brightness levels with equal probability, the information in each level is
log, 10 bits. With each picture frame containing 3 x 10° elements, the information content
of each picture frame is 3 x 10° log, 10 bits. Thus, a rate of information transmission of 30
frames per second corresponds to

30 x 3 x 10° log, 10 = 9 x 10° log; 10 bits/second

That is, the channel capacity is

C = 9 x 10% log;10 bits/second

From the information capacity theorem: 489



C = B log; (1 + SNR)

With a signal-to-noise ratio SNR = 10% = 30 dB, the channel bandwidth is therefore

C
loga(1 + SNR)

B =

9 x 10° log, 10
log,, 1001

3 x 103 Hz

Problem 9.31

The information in each element is log, 10 bits.
The information in each picture is [3 log, (10)] x 10° bits.
The transmitted information rate is [9 log, (10)] x 108 bits/second.

The channel must have this capacity. From the information capacity theorem,

¢ = B logy(1 + SNR).

Therefore,

[9 logy(10)] x 108 bits/second = Blogy(1 + 1000).

Solving for B, we get

log,(10)

6
B =9x%x10 HZ.(W

) = 3% 10%Hz
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Problem 9.32

Figure 1 shows the 64-QAM constellation. Under the condition that the transmitted signal energy
per symbol is maintained the same as that in Fig. 1, we get the tightly packed constellation of Fig.
2. We now find that the Euclidean distance between adjacent signal points in the tightly packed
constellation of Fig. 2 is larger than that of the 64-QAM constellation in Fig. 1. From Eq. (5.95)
of the textbook, we recall that an increase in the minimum Euclidean distance d,;, results in a
corresponding reduction in the average probability of symbol error. It follows therefore that, with
the signal energy per symbol being maintained the same in the two constellations of Figs. 1 and 2,
a digital communication systems using the tightly packed constellation of Fig. 2 produces a
smaller probability of error than the corresponding 64-QAM system represented by Fig. 1.

10

-10
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Problem 9.33

In the textbook, the capacity of the NEXT-dominated channel is derived as

1 | NEXT(f)l ]
C ==|log (1 +—————df
zp{ ? H(f)|

where F, is the set of positive and negative frequencies for which S,(f) > 0, where S.(f) is the
power spectral density of the transmitted signal.

For the NEXT-dominated channel described in the question, the capacity is

f3/2
pj ( exp(~ aﬁ)j

a
1l
B

372

1
2
: klfl/z
exp| —
lO

where B, k, | and f, are all constants pertaining to the transmission medium. This formula for
capacity can only be evaluated numerically for prescribed values of these constants.

1l
B =
Te—0,
=}
OS]
+
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Problem 9.34

For k=1, Eq. (9. /38) reduces to

10 logo(SNR) = 6 loggN + C; dB (1)

Expressing Eq. (2.33) in decibels, we have

10 logs(SNR) = 6R + 10 logy 3;) @)
M ax

The number of bits per sample R, is defined by

R = logyN

We thus see that Eqs. (1) and (2) are equivalent, with

mmax

C; =10 loglo( 32P ]
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Problem 9.35

The rate distortion function and channel capacity theorem may be summed up
diagrammatically as follows:

min Z(XY) .(’,// ., max T(%:Y)

: Data "L)wcxnsm;ss;o’\
Dah complIim Limi€
Lt

According to the rate distortion theory, the data compression limit set by minimizing the
mutual information I(X;Y) lies at the extreme left of this representation; here, the symbol
Y represents ' the data compressed form of the source symbol X. On the other hand,
according to the channel capacity theorem the data transmission limit is defined by
maximizing the mutual information I(X;Y) between the channel input X and channel output

Y. This latter limit lies on the extreme right of the representation shown above.
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1 Problem 9. 26
Matlab codes

% Computer Problem in Chapter 9

% Figure: The minimum achievable BER as a function of

% Eb/NO for several different code rates using binary signaling.
% This program calculates the Minimum required Eb/NO

% for BPSK signalling at unit power over AWGN channel

% given a rate and an allowed BER.

% Code is based on Brandon’s C code.

% Ref: Brendan J. Frey, Graphical models for machine

% learning and digital communications, The MIT Press.

% Mathini Sellathurai

EbNo=double( [7.85168, 7.42122, 6.99319, 6.56785, 6.14714, 5.7329, 5.32711,

4.92926, 4.54106, 4.16568, 3.80312, 3.45317, 3.11902, 2.7981, 2.49337, 2.20617,
1.932561, 1.67587, 1.43313, 1.20671, 0.994633, 0.794801, 0.608808, 0.434862,
0.273476, 0.123322, -0.0148204, -0.144486, -0.266247, -0.374365, -0.474747, -0.5708,
-0.659038, -0.736526, -0.812523, -0.878333, -0.944802, -0.996262, -1.04468,
-1.10054, -1.14925, -1.18636, -1.22298, -1.24746, -1.27394, -1.31061, -1.34588,
-1.37178, -1.37904, -1.40388, -1.42553, -1.45221, -1.43447, -1.44392, -1.46129,
-1.45001, -1.50485, -1.50654, -1.50192, -1.45507, -1.60577, -1.52716, —-1.54448,
-1.51713, -1.54378, -1.5684]);

rate= double([9.989372e-01, 9.980567e-01, 9.966180e-01, 9.945634e-01, ...

9.914587e-01, 9.868898e-01, 9.804353e~-01, 9.722413e-01, 9.619767e-01, 9.490156e-01,
9.334680e-01, 9.155144e-01, 8.946454e-01, 8.715918e-01, 8.459731e-01, 8.178003e-01,
7.881055e-01, 7.5656174e-01, 7.238745e-01, 6.900430e-01, 6.556226e-01, ...

6.211661e-01, 5.866480e-01, 5.525132e~01, 5.188620e-01, 4.860017e-01, 4.539652e-01,
4.232136e-01, 3.938277e¢-01, 3.653328e-01, 3.382965e-01, 3.129488e-01, 2.889799e-01,
2.661871e-01, 2.451079e-01, 2.251691e-01, 2.068837e-01, 1.894274e-01, ...

1.733225e-01, 1.588591e-01, 1.453627e-01, 1.326278e-01, 1.210507e-01, 1.101504e-01,
1.002778e-01, 9.150450e-02, 8.347174e-02, 7.598009e-02, 6.886473e-02, 6.266875e-02, ...
5.698847e-02, 5.188306e-02, 4.675437e-02, 4.239723e-02, 3.851637e-02, 3.476062e¢-02,...

3.185243e-02, 2.883246e-02, 2.606097e-02, 2.332790e-02, 2.185325e-02,
1.941896e-02, 1.764122e-02, 1.586221e-02, 1.444108e-02, 1.314112e-02]);
N=66;

b=double([1e-51); ¥% Allowed BER
% Rate R (bits per channel usage)
r=double([1/32, 1/16,0.1,0.2,0.3,0.4,0.5, 0.6, 0.7, 0.8,0.85,0.95]);

496



le=zeros(1,length(r)); % initialize buffer for Eb/NO
for p=1:length(r)
¢ = double(r(p)*(1.0+b*log(b)+(1.0-b)*log(1.0-b)/log(2.0)));
i=N-1;
% Minimum Eb/NO calculations
while ( (i>=0) & (c>wate(i)) )
i=i-1;
end
i=i+1;

if ( (>0) | (icN ) )
e =double( EbNo(i)+(EbNo(i-1)-EbNo(i))*(c-rate(i))/(rate(i-1)-rate(i))
le(p)=10%10g10( (10~ (e/10))*c/r(p));
display(le)
else
display(’values out of range’)
end
end
plot(10*log10(r),le,’~?)
xlabel(’Rate (dB)’)
ylabel (’Minimum E_b/N_0 (dB)’)
axis([10*10g10(1/32), 0, -2 4])

497



% Computer Experiment in Chapter 9

% Program to create the figure for the minimum

% Eb/NO needed for error-free communication

% with a rate R code, over an AWGN channel

% using binary signaling

Y Thie program ealenlatoe the Minimum required Eb/NO

% for BPSK signalling at unit power over AWGN channel
% given a rate and an allowed BER.

% Code is based on Brandon’s C code.

% Ref: Brendan J. Frey, Graphical models for machine
% learning and digital communications, The MIT Press.
% Mathini Sellathurai

EbNo= double([7.85168, 7.42122, 6.99319, 6.56785, 6.14714, 5.7329, 5.32711,

4.92926, 4.54106, 4.16568, 3.80312, 3.45317, 3.11902, 2.7981, 2.49337, 2.20617,
1.93261, 1.67687, 1.43313, 1.20671, 0.994633, 0.794801, 0.608808, 0.434862,
0.273476, 0.123322, -0.0148204, -0.144486, -0.266247, -0.374365, -0.474747, -0.5708,
-0.6569038, -0.7365626, -0.812523, -0.878333, -0.944802, -0.996262, —-1.04468,
-1.10054, -1.14926, -1.18536, -1.22298, -1.24746, -1.27394, -1.31061, -1.34588,
-1.37178, -1.37904, -1.40388, -1.425563, -1.45221, -1.43447, -1.44392, -1.46129,
-1.45001, -1.50485, -1.50654, -1.50192, -1.45507, -1.60577, -1.52716, -1.54448,
-1.51713, -1.564378, -1.5684]);

rate=double( [9.989372e-01, 9.9805667e-01, 9.966180e-01, 9.9465634e-01, ...

9.914587e-01, 9.868898e-01, 9.804353e-01, 9.722413e-01, 9.619767e-01, 9.490156e-01,
9.334680e-01, 9.1556144e-01, 8.946454e-01, 8.715918e-01, 8.459731e-01, 8.178003e-01,
7.8810656e-01, 7.565174e-01, 7.238745e-01, 6.900430e-01, 6.556226e-01, ...

6.211661e-01, 5.866480e-01, 5.526132e-01, 5.188620e-01, 4.860017e-01, 4.539652e-01,
4.232136e-01, 3.938277¢-01, 3.653328e-01, 3.382966e-01, 3.129488e-01, 2.889799%e-01,
2.661871e-01, 2.451079e-01, 2.251691e~01, 2.068837e-01, 1.894274e-01, ...

1.733226e-01, 1.588591e-01, 1.453627e-01, 1.326278e-01, 1.210507e-01, 1.101604e-01,
1.002778e-01, 9.150450e-02, 8.347174e-02, 7.598009e-02, 6.886473e-02, 6.2668756-02, ...
5.698847e-02, 5.188306e-02, 4.675437e-02, 4.239723e-02, 3.851637e-02, 3.476062e-02,...

3.185243e-02, 2.883246e-02, 2.606097e-02, 2.332790e-02, 2.185325e-02,
1.941896e-02, 1.764122e-02, 1.586221e-02, 1.444108e-02, 1.314112e-02]);
N=66;

b=double(0.5:-1e-5:1e-5); % Allowed BER
rrr=double([0.99,1/2,1/3,1/4,1/5,1/8]); Y% Rate R(bits/channel usage)
le=zeros(1,length(b));

for rr=1:length(rrr)
r=rrr(rr);
for p=1:length(b)
¢ = double(r*(1.0+b(p)*log(b(p))+(1.0-b(p))*log(1.0-b(p))/1log(2.0)));
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i=N-1;

while ( (i>=0) & (c>rate(i)) )
i=i-1;
end
1=141:

it ( (i>0) | (i<N ) )
e = double(EbNo(i)+(EbNo(i-1)-EbNo(i))*(c-rate(i))/(rate(i-1)-rate(i))
le(p)=10*1og10((10~(e/10) ) *c/r);

else
display(’values out of range’)
end
end
plot(le,10%1log10(b),’~’)

end

xlabel(’E_b/N_0 (dB)’)
ylabel(’Minimum BER’)
axis([-2 1 -50 -10])
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Answer to Problem 9.36

—- N

Minimum E_ /N, (dB)

o

7y 1 !
-15 -10 -5 0
Rate (dB)

Figure 1: The minimum Eb/N0 needed for error-free communication with a rate
R code, over an AWGN channel using binary signaling
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Minimum BER
A
o

~35

-2 -15 -1 -0.5 0 0.5
E,/N, (dB)

Figure 2: The minimum achievable BER as a function of Eb/NO for several
different code rates using binary signaling




Chapter 10

Error-Control Coding

Problem 10.1

The matrix of transition probabilities of a discrete memoryless channel with 2 inputs and
Q outputs may be written as

. k(o 0 p10) p2 ) - pQ-10)
ol paly peh) - p@Q-1lD

For a symmetric channel,

pG ) = p@Q-1-jly, j=01..,Q-1

Moreover, each row of the matrix P contains the same set of numbers, and each column of

the matrix P contains the same set of numbers. For example, for Q=4, we may write

aabb
P =
bbaa
The sum of the elements of each row of matrix P must add up to one. Hence, for this

example,

2a +2b =1

The probability of receiving symbol j is

pG) = pG ) p(0) + pG Ip(1)

For equally likely input symbols:
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348

_ _1
p(0) = p(1) 5

Hence,

p(j) = % [pG ) + p(Q-1 - j I0)]

For the example of Q=4, we have

. 1
)==(a+Db)
pQ 5
-1 j=0123
4
In general, we may write
pG) = =, i=01,..Q-1
Q

Problem 10.2

For a binary PSK channel, the probability density function of the correlator output in the
receiver is

fx(x o) = 1 exp| - _(x + «/ﬁ)z
ENO L .
- .

fxx 1) = ! _ exp —_1_( -\/a)
‘ENQ L 0 =

Let



y= |2 x
N No
dy = 2 gx
N No

I 2E
y pertains to a Gaussian variable of mean = ~ P and unit variance. We may therefore
express the channel transition probability as 0

.
2E
p(y b) = 1 exp| - _:_l_ y + _b
V2r i 2 N No i
(
1 1 2Ey,
p(y ) = exp| - = |y - |=—
V21E | 2 \ N NO |
where - o0 < y < oo,
O , | ’ 2 ’ 3
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We also note that

p(310) =p0 1)
p210) = p(1]1)
p1l0)=p@|1)
p(010) = p(311)

p(0 ) =

- 2E
1 f_w exp| - .l y + __._tl y
v2r 2 Np
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Hence, the channel is symmetric.

Problem 10.3

From the solution to Problem 10.2 , we readily note the following:

P(Yb)= 1 exp —l y + E -~ 0 <Yy < woo
V2n 2 \JNO
ply 1) = exp| - Lly - |2.E C <y < oo

Jor 2 N,

where E is the code symbol energy.

Problem 10.4

Message Sequence Single-pavit¥-check code
000 0000
001 0011
010 0101
011 0110
100 1001
101 1010
110 1100
111 1111
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Problem 10.5

For the (4,1) repetition code, the parity check matrix is

100 : 1
H={010:1
001 : 1

For a (7,4) Hamming code, we have

100:1011
H=010§1110
001:0111

For the Hamming code, the parity check matrix H is more structured than that for the
repetition code. Indeed, the matrix H for the Hamming code includes that for the repetition

code as a submatrix.

Problem 10.6

The generator matrix for the (7.4) Hamming code is

110:1000
011:0100
111:0010

101:000 1

The parity-check matrix is
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100 : 1011
H={010: 1110
001:0111

A 8

Hence,
101 1]
1110
1001 1/{lo0111
HGT=|010 1 1000
001 1/0100
0010
0 0 0 1]
0000
={0 000 mod-2
0000
Problem 10.7

(a) Viewing the matrix

100: 1011
H=010:1110
001:0111

as a generator matrix, we may define the code vector ¢ in terms of the message vector m
as

m H

wn
"

The message word length is
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n-k=74=3

Hence, we may construct the following table

Message word Code word Hamming weight
000 0000000 0
001 0010111 4
010 0101110 4
011 0111001 4
100 1001011 4
101 1011100 4
110 1100101 4
111 1110010 5

(b) The minimum value of the Hamming weight defines the Hamming distance of the dual
code as

dmin = 4
Problem 10.8
(a) For a (5,1) repetition code:
G=[t1111: 1
1000 : 1
0100 : 1
H = :
0010 : 1
0001 : 1
1000
0100
HT=[0010
0001
111 1]
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The syndrome is

s=eHT

where e is the error pattern. For a single error, we thus have

Error pattern Syndrome
00001 1111
00010 0001
00100 0010
01000 0100
10000 1000

(b) For two errors in the received word, we have

Error pattern Syndrome
00011 1110
00101 1101
01001 1011
10001 0111
00110 0011
01010 0101
10010 1001
21100 0110
10100 1010
11000 1100

We note that the syndromes for all single-error and double-error patterns are distinct. This
is intuitively satisfying since a (5,1) repetition code is capable of correcting up to two errors
in the received vector
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y=e +¢€

Problem 10.9

gX) =1+ X + X3
¢(X) = m(X) gX)

Hence, we may construct the following table:

Message mX) cX) Code word

word

0000 0 0 0000000
0001 X3 X3 + X* + X6 0001101
0010 X2 X2 +x34+X5 0011010
0100 X X +X24+Xx4 0110100
1000 1 1+X+X3 1101000
0011 X2 + X3 X2+ Xt + X%+ X6 0010111
0110 X + X2 X+X3+Xt+ X5 0101110
1100 1+X 1+X2+X34+ x4 1011100
0101 X + X3 X+X24+X3+X6 0111001
1010 1+X2 1+X+X2+X5 1110010
1001 1+X3 1+X+Xt+X8 1100101
0111 X +X2+X8 X+X2 , X6 0100011
1110 1+X+X2 14+ X5+x°8 1000110
1011 1+X24+Xx3 1+X+X24+X34+X44+X54+X% 1111111
1101 1+X+X3 1+X%, x6 1010001
1111 1+X+X2+X8 1+ X3 + X5 + X6 1001011

Comparing the code word to the message word, we see that the cycliceode generated by
multiplying g(X) and ¢(X) is not a systematic code.

511



Problem 10.10

Consider the generator polynomial

gX)=1+X2% X3

The encoder corresponding to this g(X) is as follows:

The generator matrix G associated with this encoder is

1011000
0101010
0010110
000101 1]

To reduce this matrix to a systematic form, we add row 1 to 2, add rows 1 and 2 to row 3,
and add rows 2 and 3 to row 4:
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101:1000
111:0100
110:0010

€

011:0001
N ———r

\_.—wr—_l
P I,
For the syndrome calculator, we have
B
Rec erved
bt - — O ot —
0. Mod-2
'FFé'rP ad A
Given that
G = [P : 14]
H=[:P7

we find that the parity-check matrix is

100 : 1110
H=010: 0111
001: 1101

In Example 3 of the text, the message sequence (1001) was applied to the encoder and the
output code word was 0111001. For the above encoder, the parity bits are 110 and the code
word is then 1101001. In particular, we have
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Shift Input Register contents

000
1 1 101
2 0 111
3 0 110
4 1 110

If we were to make an error in the middle bit and receive 1100001, then circulating it

through the syndrome calculator, we have

Shift Input Register contents
000

1 1 100

2 0 010

3 0 001

4 0 101

5 0 111

6 1 010

7 1 101

From the parity check matrix we see that the syndrome calculator output 101 corresponds
to the error pattern 0001000. The corrected code word is therefore 1101001.

Problem 10.11

The error polynomial is

eX) = r(X) + e(X)

We are given
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eX) =X + X2+ X3 +Xx6

r(X) =X + X3 + X8

The error polynomial is therefore

eX) = X2
Consider next the syndrome polynomial s(X). The syndrome calculator for the generator
polynomial
gX)=1+X +X3

is shown in Fig. 18.11; this calculator is reproduced here for convenience of presentation:

Feceitod b.ts |
—
010100\ Flip-
flop

Circulating the received bits through the syndrome calculator, we may construct the
following table:

Initial state 000
100
010
001
010
001
010
001 515



Here, the syndrome polynomial is

s(X) = X2

which, for the problem at hand, is the same as the error polynomial. This result
demonstrates the property of the syndrome polynomial, stating that it is the same as the
error polynomial when the transmission errors are confined to the parity-check bits. In

Problem 11.11 the third parity-check bit is received in error.

Problem 10.12

The encoder structure is

Gt
. —— ———
FQ'lP- Hop Meod -2 L_ .
ad due
s
i
Me s sage /
brix

The syndrome calculator is

‘ Gl
Recai vedl
bitx . ‘ o -
-y

Flir- Foup
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Problem 10.13

(a) A maximal-length code is the dual of the corresponding Hamming code. The generator

polynomial of a-(15,11) Hamming code is given as 1 + X + x* We may therefore define the
feedback connections of the corresponding (15,4) maximal-length code by choosing the
primitive polynomial

MX) = 1+X+x*

The feedback connections are therefore [4,1], which agrees with entry 3 of Table 7.1.
Specifically, the encoder of the (15,4) maximal-length encoder is as follows:

A 4
A 4

L/
Mod -2
addeA

F[alp_ f-?op
(b) The generator polynomial of the (15,4) maximal-length code is

1+x°  1+xP

$() = h(X) 1+X+X4

Performing this division modulo-2, we obtain

g(X) = 1+X+X2+X3+X5+X7+X8+X11

(This computation is left as ?K exercise for the reader.) Assuming that the initial state of the
encoder is 0001, we find that the output sequence is (111101011001000). Here we recognize

that the length of the coded sequence is 2% - 1 = 15. The output sequence repeats itself
periodically every 15 bits.
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Problem 10.14

(a) n= 27') -1 = 31 symbols

Hence, the number of bits per symbol in the code is
m = 5 bits

(b)  Block length = 31 x 5 = 155 bits

(¢) Minimum distance of the code is

dmin =2t+1
=n-k+1

=31-15+1
= 17 symbols

(d) Number of correctable symbols is

t=%(n—k)

8 symbols
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Problem 10.15

The encoder is realized by inspection:
gV =(1,0,1)
g? =(1,1,0)

g® =111

For the Hamming code, the parity check matrix H is more structured than that for the
repetition code. Indeed, the matrix H for the Hamming code includes that for the repetition

code as a submatrix.

Problem 10.16

Taput

Fllep- 40 j’

toble

Using this encoder, we may construct the following’by inspection:

Message 1 0 1 1 1 1
Output 11 10 11 01 01 01 ..
_
N

Original message

The code is in fact systematic. 519



Problem 10.17

The generator polynomials are

gMX) =1+X+Xx2+Xx3

g(2)(X) =1+X+ X3

The message polynomial is

mX)=1+X2+X3+X%+..

Hence,
cDX) = gMX) mX)
=1+X+X3+X4+X5+ ..
c@X) = g@AX) mX)
=1+X +X2+X3+4 X6 + X7+ ..
Hence,
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{c (1)}

1,1,0,1,1,1,...

€@ = 1,1,1,1,0,0,...

The encoder output is therefore 11, 11, 01, 11, 10, 10.

Problem 10.18

The encoder of Fig. /843 (b) has three generator sequences for each of the two input paths;
they are as follows (from top to bottom)

gV =an  g?-10, g2-a

sP-0n g?-an g?-00

Hence,

gl(l)(X) =1 + X’ gl(z)(X) =1, gl(?’)(X) =1 +X

eVX) = X, g2X) =1+X, g2X =0
The incoming message sequence 10111... enters the encoder two bits at a time; hence
mP=11..
m®=01..
The message polynomials are therefore
mX)=1+X+..
myX) =X+ ...

Hence, the output polynomials are
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cOX) = gPX) myX) + gPX) myX)

A+XA +X +.)+XX +..))
1+ ...

c@X) = g2 myX) + gPX) myX)

WA+X+.)+@Q@+X)X +.)

1+X +.. + X + X2+

1+X2+..,

¢@X) = gPX) m;X) + gX) my®X)

A+X)A+X+.)+ON+.)
1+ X2+ ..

The output sequences are correspondingly as follows:
D = 10, ..
¢? = 1,0,..
¢® = 10,..

The encoder output is therefore (1,1,1), (0,0,0), ...

Problem 10.19

1. If the input sequence is 00, the encoder output is 00, 00, 00, 00.
2. If the input sequence is 11, the message polynomial is
mX)=1+X

The two generator polynomials are
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gPX)=1+X +X2
g?PX) =1 + X2

Hence,

VX =1+X)0+X +X2

1 +X3

X)) =1 +X 1 +X%

1+X+X2+X3

The encoder output is 11, 01, 01, 11
3. If the input sequence is 01, the message polynomial is
mX) =X
Hence,
cBX) = X1 + X +X?
=X +X2 4+ X3

c@X) = X(1 + X2

=X + X3

The encoder output is 00, 11, 10, 11

4. Finally, if the input sequence is 10, the message polynomial is
mX) =1

Correspondingly,
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c(l)(X) = g(l)(X)
1+X+X2

c2X) = gAx)

1+ X2

Hence, the encoder output is 11, 10, 11, 00.

The encoder outputs calculated above are in perfect accord with the entries of the code tree g

o0
————-

00 OO0
R o )
> -—9
10 :
R
Ol —

—

=

OO0

3.
O

H

~— —> 0

)
|
©1 , 1
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Problem 10.20

525

The output sequence is 11, 10, 11, 01, 01



Problem 10.21
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Problem 10.22

The encoder of Fig. P/0-1Thas eight states:

State Register contents
000

a

b 100
c 010
d 110
e 001
f 101
g 011
h 111

The state diagram of the encoder is as follows:

In this diagram, a solid line corresponds to an input of 0 and a dashed line corresponds to

an input of 1.
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Problem 10.23

(a) The encoder of Fig. /0-/13) has four states:

State Register contents
a 0,0
b 1,0
c 0,1
d 1,1

In the state diagram shown below, each branch is labeled with the input dibit followed by
the output triplet. W/ o

00/000

(b) Starting from the all-zero state a, the incoming sequence 10111... produces the path a
bd ... Equivalently, we have the decoded (output) sequence (111), (000), ..., which is exactly

the same result calculated in Problem 10.18. 508



Problem 10.24

An MSK system has two distinct phase states

State Phase,radians
a 0
b n

The transmission of a 1 increases the phase by w2, whereas the transmission of a 0
decreases the phase by w/2. Correspondingly, the transmission of dibit 10 or 01 leaves the
state of MSK unchanged, whereas the transmission of dibit 00 or 11 movesthe system from
one state to the other. For the output, we have

Input dibit Output frequencies
11 f, f
01 f £
10 f, £y
00 £ £,

We may thus construct the following state diagram for MSK:
. 0t

‘1‘14&?,

The trellis diagram for MSK is as follows:

529



Since d_;, = 5 and the number of errors in the received sequence is 2, it should be possible

to decode the correct sequence. This is readily demonstrated by applying the Viterbi
algorithm.

Problem 10.25

' 00
'?Ececw
=0 00 0 0 00
Notations

® POLTQ metaic
Cn3 brasrdh mebuc
—— mQSso.je bik O

—-——- MQSSOjQ b.t (

L VA At parﬁ

o s

AK T, 2 ) :)(;0/\..
56:(1\/\9/\(9. (s 00006000 QQQ00-, tlﬂe/ubj corpse )3
the -+uwec €EANoAS o tRe  peceived Sec}\).l,\\l '
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Problem 10.26

(a) Coding gain for binary symmetric channel is

G, = 10 log, (#2_]

10 logw 25

4 dB

(b) Coding gain for additive white Gaussian noise channel is

G,

10 logy, (10 X %J

10 lOglo 5

7 dB

Problem 10.27

The trellis of Fig. P27 corresponds to binary data transmitted through a dispersive
channel, viewed as a finite-state (i.e., two-state) machine. There are two states representing
the two possible values of the previous channel bit. Each possible path through the trellis
diagram of Fig. P/o-27 corresponds to a particular data sequence transmitted through the

channel.

To proceed with the application of the Viterbi algorithm to the problem at hand, we first
note that there are two paths of length 1 through the trellis; their squared Euclidean
distances are as follows:

d2 =0 -112=001

2 _ _( 2 -
djg = (L0 - (-.9)% = 361 531



Each of these two paths is extended in two ways to form four paths of length 2; their

squared Euclidean distances from the received sequence are as follows:

(a)
dz, =0.01 + (0.0 - 1.1)? = 1.22

dyy = 3.61 + (0.0 - 0.9)? = 4.42

(b)
dzg = 0.01 + (0.0 - (-0.9)? = 0.82

ds, = 3.61 + (0.0 - (-1.1)? = 4.82

Of these four possible paths, the first and third ones (i.e., those corresponding to squared
Euclidean distances d22,1 and d22 g) are selected as the "survivors”, which are found to be
in agreement. Accordingly, a decision is made that the demodulated symbol a,=1.

Next, each of the two surviving paths of length 2 is extended in two ways to form four new
paths of length 3. The squared Euclidean distances of these four paths from the received

sequence are as follows:

(a)
dsy = 1.22 + (0.2 - 1.1)% = 2.03
dsy = 0.82 + (0.2 - 0.9) = 1.31
(b)

dag = 1.22 + (0.2 - (-0.9)? = 2.43

= 0.82 + (0.2 - (-1.1))% = 2,51

[« 8
»
S
I
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This time, the second and third paths (i.e., those corresponding to the squared Euclidean
distances dza,q_ and d23,3) are selected as the "survivors". However, no decision can be
made on the demodulated symbol a 88 the two paths do not agree.

To proceed further, the two surviving paths are extended to form two paths of length 4. The

squared Euclidean distances of these surviving paths are as follows:

(a)
d2 =131+ (-11 - 117 = 6.15
d2, = 243 + (-1.1 - 0.9 = 6.43
(b)
d’g = 1.31 « (-11 - (-0.9)? = 1.35
d7, =243 + (-1.1 - (-1.D)? = 2.43

The first and third paths are therefore selected as the "survivors", which are now found to
agree in their first three branches. Accordingly, it is decided that the demodulated symbols
are a5 = +1, a; = -1, and a, = +1. It is of interest to note that although we could not form
a decision on a, after the third iteration of the Viterbi algorithm, we are able to do so after
the fourth iteration.

Figure 1 shows, for the problem at hand, how the trellis diagram is pruned as the
application of the Viterbi algorithm progresses through the trellis of Fig. P11.5
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(This problem is taken from R.E. Blahut, "Digital Transmission of Information", Addison-
Wesley, 1990, pp. 144-149.The interested reader may consult this book for a more detailed
treatment of the subject.)
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Problem 10.29

(a) Without coding, the required E,/Ny is 12.5 dB. Given a coding gain of 5.1 dB, the required
Ey /N 1s reduced to

E
(—-’30) = 12.5-5.1
N req

=74 dB

For the downlink, the equation for C/Nj is

(EO) = EIRP +_.G_’_L Tk
N downlink T free-space

(b) By definition, the formula for receive antenna gain is

where A, is the receive antenna aperture and A is the wavelength. Let (A,)¢qging denote the
receive antenna aperture that results from the use of coding. Hence

4TA 4n(A,) .
10log | —5— | - 10log — Tcoding) - 51 dB
LY ‘ A°

or, equivalently,

A
101og10(A—)5——) = 5.1 dB

( r’/coding
Hence,
A, ilog 0.51 = 3.24
——— = antilog 0.51 = 3.
(A’)coding

The antenna aperture is therefore reduced by a factor of 3.24 through the use of coding.
Expressing this result in terms of the antenna dish diameter, d,we may write
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2 2
7rd/42 z(ld ) = 394
n(a’codmg) /4 eoding
which yields
Diameter of antenna without coding _ d  _ 374 = 18
Diameter of antenna with coding ooding T

That is, the antenna diameter is reduced by a factor of 1.8 through the use of coding.
Problem 10.30

Nonlinearity of the encoder in Fig. P10.30 is determined by adding (modulo-2) in a bit-by-bit
manner a pair of sets of values of the five input bits {1, ,, I, 1, I| p.2, 1o 121} and the
associated pair of sets of values of the three output bits ¥y ,,, ¥ ,, and Y5 ,,,. If the result of adding

these two sets of values of input bits, when it is treated as a new set of values of output-bits, does
not always give a set of values of input bits identical to the result of adding the two sets of values
of the aforementioned output bits, then the convolutional encoder is said to be nonlinear, For
example, consider two sets of values for the sequence {1} ,,, Iy ,,.1. I} .2, 12 s 12 5.1} that are given

by {0,0,1,1,1} and {0,1,0,0,0}. The associated sets of values of the three output bits ¥y ,, ¥} ,,
Y, are {0,1,1} and {1,0,0}, respectively. If the 5-bit sets are passed through the Exclusive OR
(i.e., mod-2 adder) bit-by-bit, the result is {0,1,1,1,1}. If the resulting set {0,1,1,1,1} is input into
the encoder, then the associated output bits are {1,1,0}. However, when the sets of output bits
{0,1,1} and {1,0,0} are passed through the Exclusive OR, bit-by-bit, the result is {1,1,1}. Since
the two results {1,1,0} and {1,1,1} are different, it follows that the convolutional encoder of Fig.
P10.30 is nonlinear.

Problem 10.31

Let the code rate of turbo code be R. We can write

| ) 1 1
I [N ) ) .
0 o
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_4y+4-p

Hence

R = p/(q,+q,-p)

Problem 10.32

Figure 1 is a reproduction of the 8-state RSC encoder of Figure 10.26 used as encoder 1 and
encoder 2 in the turbo encoder of Fig. 10.25 of the textbook. For an input sequence consisting of
symbol 1 followed by an infinite number of symbols 0, the outputs of the RSC encoders will
contain an infinite number of ones as shown in Table 1.

Fig. 1

b=a®PcPe

f=bDcDdDe

Initial conditions: ¢ =d = e =0 {empty}

(Input) Intermediate 1nputs (output)

a b c d e f
1 1 0 0 0 1
0 1 1 0 0 0
0 1 1 1 0 1
0 0 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0
0 1 1 0 0 0

The output is 1011101001110100111...
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Therefore, an all zero sequence with a single bit error (1) will cause an infinite number of channel
errors.

[Note: The all zero input sequence produces an all zero output sequence.]

Problem 10.33

(a) 4-state encoder
X

» X (systematic bits)

, Parity check bits

z
8-state encoder
X o X (systematic bits)
@ (D =+ D}t D}—
, Parity check bits

z
16-state encoder

X > X (systematic bits)

, Parity check bits

z
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(b) 4-state encoder

2

1+D+D

g(D) = [1, —2—}
1+D

By definition, we have

(B(D)) _1+D+D’
M(D) 1+ D?

where B(D) denotes the transform of the parity sequence {b;} and M(D) denotes the transform
of the message sequence {m;}. Hence,

(1+D*)B(D) = (1+D +D*)M(D)

The parity-check equation is given by

(m;+m; | + m;,)+(b;+b;,) =0

where the addition is modulo-2.

Similarly for the 8-state encoder, we find that the parity-check equation is
mi+my+m3+b+b, +b,,+b; ;=0

For the 16-state encoder, the parity-check equation is

mi+m; 4 +b;+b, +b,,+b 3+b, 4 =0
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Problem 10.34

(a) Encoder
» ZO

ENC 11 —> 14
A
[C2}- e —> =

v

u
%

0y, Oy, -+, Oy, are M interleavers

ENC,, ENC,, ---, ENC,, are M recursive systematic convolutional (RSC) encoders
Z, 1s the message sequence
21, 295 *++» 2y are the resulting M parity sequences

(b) Decoder

L Lin},i#l

o {Li(n},i D
' 1 L+
2 > Oy DEC,

\ 4
8
+%

{L;(n)},i#2

D
i - . % Ly(n+1)
e » DEC >
2 2 2 ) ;
{L,-(nj},i;tM D
- Ly(n+1)

3 > oy DECy, Mo, —:é——»
-1 -1 -1 .
oy, Ay, -, o, are de-interleavers.
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The generalized encoder and decoder presented here are described in Valenti (1998); see the
Bibliography.

Problem 10.35

The decoding scheme used for turbo codes relies on the assumption that the bit probabilities
remain independent from one iteration to the next. To maintain as much independence as possible
from one iteration to the next, only extrinsic information is fed from one stage to the next, since
the input and the output of the same stage will be highly correlated. However, this correlation
decreases as |ty - 1| increases, where 1, 7, are any two time instants. The interleaving is utilized to

spread correlation information outside of the memory of subsequent decoder stages.

Problem 10.36

The basic idea behind the turbo principle is to use soft information from one stage as input to the
next stage in an iterative fashion. For a joint demodulator/decoder, this could be arranged as

shown in Fig. 1.

Decoder extrinsic

r—— " —"—"—— — — — A r—-—"——"— — — — y
I I | I
| I I I
I I I I
N [ BCIR - | Lt~ 1 [BCR -
¥ + >+
o F 1 S B 2 1
b — | — — 4 Lo o -
raw channel soft-output raw channel soft-output
information demodulator information decoder
Demodulator
extrinsic
Figure 1

In this figure, BCJR 1 is a MAP decoder corresponding to the Markov model of the modulator and
channel; and BCJR 2 is a MAP decoder corresponding to the Markov model of the forward error
correction code. The raw channel information is fed into the soft demodulator on the first
iteration; this is combined with the extrinsic information from the previous decoding stage on
subsequent iterations. The extrinsic information from the soft-output demodulation stage plus the
raw channel information is the input to the decoding stage. Feeding back the extrinsic information
from the latter stage closes the loop. At any stage the output from the decoder can be used to
estimate the data. (Figure 1 shows a symmetric implementation. Other arrangements are
possible.)
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Problem 10.37
Matlab codes

% Probelm 10.37 , CS: Haykin
% Turbo coding
%M. Sellathurai

clear all

% Block size
block_size = 400; % 200 and 400

% Convolutional code polynomial
code_polynomial = [ 11 1; 101 ];
[n,K]=size(code_polynomial);

m=K-1;

% Code rate for punctured code
code_rate = 1/2;

% Number of iterations
no_of_iterations = §5;

% Number of blocks in error for termination
block_error_limit = 15;

% signal-to-noise-ratio in db
SNRdb = [1];
snr = 10~ (SNRdb/10);

% channel reliability value and variance of AWGN channel
channel_reliability_value = 4*snr*code_rate;
noise_var = 1/(2%code_rate*snr);

%initializing the error counters

block_number = 0;

block_errors(1,1:no_of_iterations) = zeros(1, no_of_iterations);
bit_errors(1,1:no_of_iterations) = zeros(1, no_of_iterations);
total_errors=0;

while block_errors(1, mno_of_iterations)< block_error_limit
block_number=block_number+i;

% Transmitter end
% generating random data
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Data = round(rand(1, block_size-m));
% random scrambler
[dummy, Alphal = sort(rand(1,block_size));
% turbo-encorder output
turbo_encoded = turbo_encorder( Data, code_polynomial, Alpha) ;
% Receiver end
% AWGN+turbo-encorder out put
received_signal = turbo_encoded+sqrt(noise_var)*randn(1, (block_size)*2);
% demultiplexing the signals
demul_output = demultiplexer(received_signal, Alpha );
“scaled received signal
Datar= demul_output *channel_reliability_value/2;

% Turbo decoder
extrinsic = zeros(1, block_size);
apriori = zeros(1l, block_size);

for iteration = 1: no_of_iterations

% First decoder
apriori(Alpha) = extrinsic;
LLR = BCJLi(Datar(i,:), code_polynomial, apriori);
extrinsic = LLR - 2#Datar(1,1:2:2+(block_size)) - apriori;

% Second decoder
apriori = extrinsic(Alpha);
LLR = BCJL2(Datar(2,:), code_polynomial, apriori);
extrinsic = LLR - 2#Datar(2,1:2:2+(block_size)) - apriori;

% Hard decision of information bits
Datahat(Alpha) = (sign(LLR)+1)/2;

% Number of bit errors
bit_errors(iteration) = length(find(Datahat(1:block_size-m)~=Data));

% Number of block errors
if bit_errors(iteration )>0
block_errors(iteration) = block_errors(iteration) +1;
end
end

%Total bit errors
total_errors=total_errors+ bit_errors;

% bit error rate
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if block_errors(no_of_iterations)==block_error_limit
BER(1:no_of_iterations)= total_errors(l:no_of_iterations)/...
block_number/(block_size-m);
end
end
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function output = turbo_encorder( Data, code_g, Alpha)
% Turbo code encorder

% Used in Problem 10.36, CS: Haykin

%M. Sellathurai

[n,K] = size(code_g);
m=K-1;
block_s = length(Data);

state = zeros(m,1);
y=zeros(3,block_s+m);

% encorder 1
for i = 1: block_s+m
if i <= block_s
d_k = Data(t,i);
elseif 1 > block_s
d_k = rem( code_g(1,2:K)*state, 2 );

end
a_k = rem( code_g(1,:)*[d_k ;state], 2 );
v_k = code_g(2,1)*a_k;
for j = 2:K
v_k = xor(v_k, code_g(2,j)*state(j-1));
end;
state = [a_k;state(1:m-1)];
y(1,i)=d_k;
y(2,i)=v_k;
end

Yiencorder 2

% interleaving the data

for i = 1: block_s+m
ytilde(1,i) = y(1,Alpha(i));

end

state = zeros(m,1);
% encorder 2

for i 1: block_s+m
d_k = ytilde(1,i);
a_k = rem( code_g(1,:)*[d_k ;statel, 2 );
v_k = code_g(2,1)*a_k;
for j = 2:K
v_k = xor(v_k, code_g(2,j)*state(j-1));
end;
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state = [a_k; state(1:m-1)];
y(3,1)=v_k;
end
 inserting odd and even parities
for i=1: block_s+m
output(i,n*i-1) = 2*y(1,i)-1;
if rem(i,2)

output(1,n*i) = 2%y(2,i)~1;
else

output(1,n*i) = 2%y(3,i)-1;
end

end
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function [nxt_o, nxt_s, lst_o, lst_s] = cnc_trellis(code_g);
%used in Problem10.36.

% code trellis for RSC;

% Mathini Sellathurai

% code properties
[n,K] = size(code_g);
m=K-1;
no_of_states = 2°m;

for s=1: no_of_states
dec_cnt_s=s-1; i=1;

% decimal to binary state
while dec_cnt_s >=0 & i<=m
bin_cnt_s(i) = rem( dec_cnt_s,2) ;
dec_cnt_s = (dec_cnt_s— bin_cnt_s(i))/2;
i=i+1;
end
bin_cnt_s=bin_cnt_s(m:-1:1);

% next state when input is 0
d_k = 0;
a_k = rem( code_g(1,:)*[0 bin_cnt_s 1, 2 );
v_k = code_g(2,1)*a_k;
for j = 1:K-1
v_k = xor(v_k, code_g(2,j+1)*bin_cnt_s(j));
end;
nstate0 = [a_k bin_cnt_s(1:m-1)];
y_0 = [0 v_k];

% next state when input is 1
d_k = 1;
a_k = rem( code_g(1,:)*[1 bin_cnt_s]’, 2 );
v_k = code_g(2,1)*a_k;
for j = 1:K-1
v_k = xor(v_k, code_g(2,j+1)*bin_cnt_s(j));

end;
nstatel = [a_k bin_cnt_s(1:m-1)];
y_1=[1 v_k];

% next output when input 0 1
nxt_o(s,:) = [y_0 y_11;
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% binary to decimal state

d=2."(m-1:-1:0);

dstate0=nstateO*d’+1; dstatel=nstatel*d’+1;
% next state when input 0 1

nxt_s(s,:) = [ dstate0 dstatel ];

% finding the possible previous state frm the trellis
1st_s(nxt_s(s, 1), 1)=s;

1st_s(nxt_s(s, 2), 2)=s;

lst_o(nxt_s(s, 1), 1:4) = nxt_o(s, 1:4) ;
lst_o(nxt_s(s, 2), 1:4) nxt_o(s, 1:4) ;

end
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function output = demultiplex(Data, Alpha);
% demultiplexing the received signal

% used in problem 10.36, CS: Haykin

% Mathini Sellathurai

block_s = fix(length(Data)/2);
output=zeros(2,block_s);

for i = 1: block_s
Dataf(i) = Data(2+%i-1);
if rem(i,2)>0
output(1,2%i) = Data(2+*i);

else
output(2,2*i) = Data(2%i);
end
end
for i = 1:block_s
output(1,2*i-1) = Dataf(i);
output(2,2+*i-1) = Dataf(Alpha(i));

end
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function L = BCJLi(Datar, code_g ,apriori)
% log-BCJL (LOG-MAP algorithm) for decoder 1
% Used in Problem 10.36, CS: Haykin

% states, memory, constraint length and block size
block_s = fix(length(Datar)/2);
[n,K] = size(code_g);

m=K-1;
no_of_states = 2°m;
infty = 1el0;

zero=1e-300;

% forward recursion
alpha(i,1) = 0;
alpha(1,2:no_of_states) = -infty*ones(1,no_of_states—1);

% code-trellis

[nxt_o, nxt_s, 1lst_o, lst_s] = cnc_trellis(code_g);
nxt_o = 2*nxt_o-1;

1st_o = 2*1st_o-1;

for i = 1:block_s
for cnt_s = 1:no_of_states
branch = -infty*ones(1i,no_of_states);
branch(lst_s(ent_s,1)) = -Datar(2+i-1)+Datar(2*i)*. ..
1st_o(cnt_s,2)~log(1+exp(apriori(i)));
branch(lst_s(cnt_s,2)) = Datar(2*i-1)+Datar(2%i)*. ..
1st_o(cnt_s,4)+apriori(i)-log(i+exp(apriori(i)));
if (sum(exp(branch+alpha(i,:)))>zero)
alpha(i+i,cnt_s) = log( sum( exp( branch+alpha(i,:))));
else
alpha(i+1,cnt_s) =-1*infty;
end
end
alpha_max(i+1) = max(alpha(i+i,:));
alpha(i+1,:) = alpha(i+1l,:) - alpha_max(i+1);
end

% backward recursion

beta(block_s,1)=0;
beta(block_s,2:no_of_states) = —infty*ones(1,no_of_states—1);

for i = block_s-1:-1:1
for cnt_s = 1:no_of_states
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branch = -infty*ones(1,no_of_states);

branch(nxt_s(cnt_s,1)) = ~Datar(2*i+1)+Datar(2*i+2)*. ..

nxt_o(cnt_s,2)—log(1+exp(apriori(i+1)));

branch(nxt_s(cnt_s,2)) = Datar(2*i+1)+Datar(2+i+2)*. ..

nxt_o(cnt_s,4)+apriori(i+1)-log(1+exp(apriori(i+1)));

if (sum(exp(branch+beta(i+1,:)) )<zero)
beta(i,cnt_s)=-infty;

else
beta(i,cnt_s) = log(sum(exp(branch+beta(i+1,:))));
end
end
beta(i,:) = beta(i,:) - alpha_max(i+1);
end

for k = 1:block_s
for cnt_s = 1:no_of_states
branch0 = —Datar(2*k—1)+Datar(2*k)*lst_o(cnt_s,2)—log(1+exp(apriori(k)));
branchi = Datar(2*k—1)+Datar(2*k)*lst_o(cnt_s,4)+apriori(k)—log(1+exp(apriori(k)));
den(cnt_s) = exp( alpha(k,lst_s(cnt_s,1))+brancho+ beta(k,cnt_s));
num(cnt_s) = exp( alpha(k,lst_s(cnt_s,2))+branchi+ beta(k,cnt_s));
end
L(k) = log(sum(num)) - log(sum(den));
end
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function L = BCJLi(Datar, code_g ,apriori)
% log-BCJL (LOG-MAP algorithm) for decoder 1
% Used in Problem 10.36, CS: Haykin

% states, memory, constraint length and block size
block_s = fix(length(Datar)/2);
[n,K] = size(code_g);

m=K-1;
no_of_states = 2°m;
infty = lel0;

Zero=1e-300;

% forward recursion
alpha(1,1) = 0;
alpha(1,2:no_of_states) = —infty*ones(1l,no_of_states-1);

% code-trellis

[nxt_o, nxt_s, lst_o, 1st_s] = cnc_trellis(code_g);
nxt_o = 2*nxt_o-1;

1st_o = 2*1st_o-1;

for i = 1:block_s
for cnt_s = 1:no_of_states
branch = -infty*ones(1,no_of_states);

branch(lst_s(cnt_s,1)) = -Datar(2*i-1)+Datar(2#*i)*. ..
1st_o(cnt_s,2)-log(1+exp(apriori(i)));
branch(1lst_s(cnt_s,2)) = Datar(2+i-1)+Datar(2*i)*. ..
lst_o(cnt_s,4)+apriori(i)-log(1+exp(apriori(i)));
if (sum(exp(branch+alpha(i,:)))>zero)
alpha(i+1,cnt_s) = log( sum( exp( branch+alpha(i,:))));
else
alpha(i+1,cnt_s) =-1*infty;
end
end
alpha_max(i+1) = max(alpha(i+1,:));
alpha(i+1,:) = alpha(i+1,:) - alpha_max(i+1);
end

% backward recursion

beta(block_s,1)=0;
beta(block_s,2:no_of_states) = —infty*ones(1,no_of_states-1);

for i = block_s-1:-1:1
for cnt_s = 1:no_of_states
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branch = -infty*ones(1,no_of_states);

branch(nxt_s(cnt_s,1)) = -Datar(2*i+1)+Datar(2#i+2)x. ..

nxt_o(cnt_s,2)-log(1+exp(apriori(i+1)));

branch(nxt_s(cnt_s,2)) = Datar(2*i+1)+Datar(2%i+2)*. ..

nxt_o(cnt_s,4)+apriori(i+1)-log(i+exp(apriori(i+1)));

if (sum(exp(branch+beta(i+1,:)))<zero)
beta(i,cnt_s)=-infty;

else
beta(i,cnt_s) = log(sum(exp(branch+beta(i+1,:))));
end
end
beta(i,:) = beta(i,:) - alpha_max(i+1);

end

for k = 1:block_s
for cnt_s = 1:no_of_states
branchO = -Datar(2¥k-1)+Datar(2+k)*lst_o(cnt_s,2)-log(1+exp(apriori(k)));
branchl = Datar(2*k-1)+Datar(2*k)*lst_o(cnt_s,4)+apriori(k)—log(1+exp(apriori(k)));
den(cnt_s) = exp( alpha(k,lst_s(cnt_s,1))+brancho+ beta(k,cnt_s));
num{cnt_s) = exp( alpha(k,lst_s(cnt_s,2))+branchi+ beta(k,cnt_s));
end
L(k) = log(sum(num)) - log(sum(den));
end
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Answer to Problem 10.37

T T T T T T

Block size = 400 1]
Block size = 200 .|

: >
o :
L .
L ‘ .......................................
1072 1 I ! i L 1 1
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Figure [: bit error rate Vs. the number of iterations for Block sizes: 200, and
400
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