تقدم لجنة ElCoM الاكاديمية

دفتر لمادة:
الكترونهات (2)

من شرح:
د.هادي الميثْاوي

جزيل الشكر للطالب: 2020

* non-inverting \Rightarrow phase shift $=0^{\circ}$
* inverting $\Rightarrow>$ Phase shiff $=180^{\circ}$
(1)

$V_{0}=A V \cdot V_{i}$

$$
A V=\frac{v 0}{V i}=\frac{10}{0.1}=\frac{100}{}
$$

volk. Gain:

$$
\begin{aligned}
& A V=\frac{v_{0}}{v_{i}}=\frac{-10}{0.1}=-100 \\
& \left(A I=\frac{I_{0}}{I_{i n}}\right.
\end{aligned}
$$

* BJT Amp:-

(2) C.B Amp

(3) C.C Amp

(4) Multistage.

Low \& op \& IIP daclis i 1 il:

* Mosfet Amp :-
G Sate. Mis dirn

(1) C.S Amp
(2) $C G A \mathrm{AP}$
(3) C.D Amp
(4) cascade

Ac. Analy. Uus sat y on 325 de Aralys ve Mosfet il art

* $\int / \frac{d}{d u}$ / Ampfinvert / Amp fron-invert. /mulia Amp , , ,

$$
\begin{aligned}
& * \text { IBQ } \rightarrow I C Q \xrightarrow{\square} V C E Q \Rightarrow D C . \\
& * \text { total response }=D C \operatorname{Res}\left[\frac{D}{3}\right]^{+A C} \text { Res. }
\end{aligned}
$$

ch XI

* The BJT must be biased in F.A.M to be used as an Amp.a
* The Amp. is a linear Net. used to Amplify A.C input signal.
* Any Amp. must contain:-
a) D.C source (s)
to biase the Active device
in proper mode
(b)- Ac. Source to sypply $A C$ input signal

c) - capacitors (coupling \& blocking)
$D c$ $c_{1}, c_{2}, C E \Rightarrow$ open $A C$ $A C_{1}, C_{2}, C E \Rightarrow \begin{gathered}\text { short } \\ \text { ct }\end{gathered} ~$
d) - Resistors
biasing $\left(R_{1}, R_{2}, R_{E}\right)$
To control VCE (R_{C})
Ac ノ
To stab. Q-Pt (RE)
as a load (RL) PC is Pdispoibe Z_{1} source) open coturear ci cap bi Lv.

* $\widehat{R_{L}}=1>$ LId
* $R_{C} \Rightarrow D$ K $E=K C C-I \subset R_{C} \Rightarrow D$

Is $1 \omega^{\prime} \Rightarrow I_{c}^{\text {to }} \mathrm{Pro}$

* $R_{1}, R_{2} \Rightarrow$ volt. devid $\Rightarrow D$ Biasing Res $\Rightarrow D$ to control $I \mathbb{B}$
* RE \Rightarrow stablized Q-point against β varyation

graphical Analysis of basic Amp.
(1) calculate:-
$I B Q, I C Q, V C E Q$
(2) Draw D.C.L.L \&

Located Q.Pt
(3) if vs drives a base arrrent of
the form $i b=20 \sin \omega t \mu A$
calculate:- $A V=\frac{V_{0}}{15}$

$$
A I=\frac{I_{0}}{I_{s}}
$$

(4) write expressions for:-

IB, IC, VCE

Sol:-
since the Amp is Linear cot so superposition is used.
(1) D.C source effect $(V S=0)$
for D.C. Anal. $\Rightarrow D$ A.C \rightarrow Short cot. $\angle a p \rightarrow 0 \cdot c c t$.
\qquad

* Assume BJT in FAM.

$$
-1+I B R_{S}+V B E=0
$$

$$
\begin{aligned}
I B=\frac{(1-0.7) V}{10 \mathrm{~K}} & =0.03 \mathrm{~mA} \\
& =30 M A=I B Q
\end{aligned}
$$

$$
I_{C}=B I B=100 * 0.03=3 \mathrm{~mA}=I_{C Q}
$$

$-V C C+I C R C+V C E=0$

$$
V_{C} E=12-3 * 2=6 V=V_{C E Q}
$$

(2) D.C.L.L

KVL for C-E Loop

$$
\text { slope }=-\frac{1}{R c}
$$

(II) $\begin{aligned} & \text { for } V C E=0, I C=\frac{V C C}{R C}=6 \mathrm{~mA} \\ & \\ & P_{2}(0,6 \mathrm{~mA})\end{aligned}$

$$
P_{2}(0,6 \mathrm{~m} A)
$$

2,10

6
(2) Effect of $A \cdot C$ source $(D C \rightarrow S \cdot C)$

* For $A C$ Analysis
D.C \rightarrow S.C. cap \rightarrow S.C
$i b=20 \sin \omega+M A$
$i c=\beta i b=2 \sin \omega t m A$
$V_{c e}=-i c(R c / / R L)$

te

* According to super Position ic, قالِّكِنِيتح

$$
\begin{aligned}
& I_{B}=I B Q+i b \Rightarrow i B=(30+20 \sin \omega t) \mu A \\
& \overbrace{0} \quad i c=I C Q+i C=(3+2 \sin \omega t) m A \\
& \text { TobalRes A.C } \\
& V_{C E}=V_{C E} E+V C \dot{E} \\
& V_{C} E=-i c\left(R_{C} / / R L\right)=-2 \operatorname{sim} \omega t(3 / 12) \\
& =-2.4 \sin \omega t \text { (v) }
\end{aligned}
$$

$$
v_{c e}=6-2.4 \sin w t v
$$

(3)

$$
\begin{aligned}
& A V=\frac{V_{0}}{V_{s}}=\frac{V_{0} R-P}{N s P-P}=\frac{V_{0}}{V_{s} P} \\
& \text { Vo } P=V_{c e} P=2.4 \text { Volt } \\
& \text { Vop }-P=\text { Vcep }-P=4.8 \text { volt }
\end{aligned}
$$

for this ccb $I_{S}=I_{B}$

$$
A I=\frac{I_{0}}{I_{s}}=\frac{v_{0}}{R_{L}}=-\frac{0.8 \sin \omega t}{0.02 \sin \omega t}=-40 \mathrm{~mA}
$$

* ic max \rightarrow uke $\min \left\langle\begin{array}{l}* \text { vee } \Rightarrow D ? ? \text { ? Ic } N \text { projection der }\end{array}\right.$

BJTinFAM $\quad \leftarrow$ opencct $\leftarrow \in g$ wo Reverse blase PNJuc a
(7)

$$
\begin{aligned}
& \underline{\text { hybrid- } \pi \text { model }} \\
& -g_{m}=\frac{I C Q}{V T}(m A / v) \\
& -r_{0}=\frac{V A}{I C Q} \sim D D \cdot C \text { Anal. }
\end{aligned}
$$

-VA:- Early voltage

$$
(90<V A<300) V
$$

* currents in Red represents
$r \pi$:- Diffusion resistance (B-E resistance)

$$
r \pi=\frac{\beta \vee T}{I \subset Q}
$$

$g_{m}:-\operatorname{Transconductance~}(A / V)$, ma

> * small signal \Rightarrow Linear \quad linearity $112-2 ; 2$ Input signal \rightarrow small $\rightarrow Q(Q t) \mid g b, z$ $|8|$

$$
\begin{aligned}
& r_{0}=\frac{\Delta V C E}{\Delta I C} \cdot \quad(I B=\text { constant } t) \\
& r_{0}=\frac{1}{\text { slope of InClines }} \\
& r_{0}=\frac{V A}{I C Q}
\end{aligned}
$$

small-signal A.C equivalent cot

* Calculate:- AV, AI

Input Res. (Kin) Io 12 Li RL Giotto N'د output Res. (Ro)

- Re J de $\partial 5$

Sol:-

$$
\begin{array}{ll}
A v=\frac{v_{0}}{v_{S}} & \quad \cdot \\
v_{0}=-g_{m} v \pi \overline{R_{L}} & , \overline{R_{L}}=v_{0} / / R_{C} \| R_{L} \\
v \pi=\frac{v_{S} \cdot r \pi}{r \pi+R_{S}} & \therefore v_{0}=-g_{m} \overline{R L} \frac{v_{s} \cdot r \pi}{r \pi+R_{B}}
\end{array}
$$

and λ Input) 20 |Nj

$$
\frac{v_{0}}{V S}=A V=-g_{m} \overline{R L} \frac{r \pi}{r \pi+R B}
$$

- means 180° phase shift between vo \& vs (only inc.E)

$$
\begin{aligned}
& A V=\frac{V_{O}}{V_{S}}=\frac{V_{0}}{V \pi} \cdot \frac{V \pi}{V S} \\
& I C Q=3 m A \\
& =-g_{m} \overline{R L} \frac{r \pi}{r \pi+R B} \\
& g_{m}=\frac{I C Q}{V T}=\frac{3 m A}{26 m V} A / V \rightarrow(\sim A \mid V(v) \cdot . \\
& g m=\frac{3000}{26} \mathrm{~mA} / V \simeq 115 \mathrm{~mA} / \mathrm{V} \\
& r \pi=\frac{\beta V T}{I C Q}=\frac{100 * 26 \mathrm{mV}}{3 \mathrm{~mA}}=860 \Omega \\
& \Rightarrow \dot{R L}=r o\|R C\| R L \\
& r_{0}=\frac{V A}{I C Q}=\frac{90 \mathrm{~V}}{3 m A}=30 \mathrm{~K} \Omega \\
& \therefore \overline{R L}=30 K / / 2 / 13 K \Rightarrow \overline{R L}=1.1 K 1 \\
& A V=115 * 1.1 \frac{0.36}{10+0.86}=-126+0.08=-10 \\
& A V=\frac{V O}{V S}=-10 \Rightarrow V_{0}=-10 \mathrm{Vs} \\
& v_{s} \text { for } v_{s}=0.1 \sin \omega t v \quad \Rightarrow v_{0}=-1 \sin \omega t
\end{aligned}
$$

$$
A I=\frac{I_{0}}{I_{S}}=\frac{I_{0}}{I_{b}} \cdot \frac{I b}{I_{s}}
$$

currost.dev. Is $\overline{I b} \cdot \frac{I b}{I S}$
ox al

$$
\begin{aligned}
& I_{0}=\theta \beta I_{b} \cdot \frac{\overline{R_{c}}}{\overline{R_{c}}+R_{L}} \Rightarrow \frac{I_{0}}{I_{b}}=\frac{-\beta R_{c}}{\overline{R_{c}}+R L} \\
& \overline{R_{c}}=r_{0} / / R_{c} \\
& \frac{I b}{I_{s}}=1 \Rightarrow A I=\frac{-\beta \overline{R_{c}}}{\overline{R_{c}}+R_{L}} \\
& I R_{c}=30 \mathrm{~K} / 12 K=1.8 \mathrm{~K} \\
& \Rightarrow A I=\frac{-100 * 1.8}{1.8+3}=\frac{-180}{4.8}=-37.5
\end{aligned}
$$

kVL at node $C_{5} \quad \sim$ since $u s=0 \Rightarrow v \pi=\frac{u s k T^{\circ}}{\frac{1 \pi}{\pi}+R P}$

$$
\Rightarrow I_{x}=\frac{V_{x}}{R_{c}}+\frac{V_{x}}{r_{0}}+g_{m} V^{4} \pi
$$

$$
\begin{gathered}
\frac{I x}{V x}=\frac{1}{R_{C}}+\frac{1}{r_{0}}=\frac{1}{R_{0}} \\
\therefore R_{0}=R C / / R_{0}
\end{gathered}
$$

When $V s=0 \Rightarrow V T=0 \Rightarrow: g_{n N T}=0$
Dependent C.S is O.C

$$
\therefore R_{0}=R_{C} / 1 r_{0}=21130 \mathrm{~K} \Rightarrow R_{0}=1.98 \mathrm{k} \Omega
$$

Single Stage BJT Amp
(1) common Emitter Amp (CE)

Vi \rightarrow base, vofrom C
$e \rightarrow$ common Terminal

(1) Basic C.E Amp.
$E \rightarrow$ is directly comected to ground
Ex:-
(1) Calculate $I C Q, V C E Q$
(2) Draw S.S.A.C equivalent et of find:- $A V, A I$

$$
R_{i}, R_{0}
$$

(3) Draw D.C. \& A.C.L.L \& find their slope

Sol:-
(1) D.C. Analysis.

$$
\text { cap } \rightarrow 0 \cdot C, A C \rightarrow S \cdot C .
$$

$$
\begin{aligned}
& R+h=R_{1} / / R_{2}=10 / 140=8 K \\
& v+h=\frac{R_{2}}{R_{1}+R_{2}} \Rightarrow v \text { th }=\frac{5 * 10}{40+80}=1 v
\end{aligned}
$$

Assume the $B J T$ in $F A M$

$$
\begin{aligned}
& -U+h+I B R+h+V B E=0 \\
& I B=\frac{(1-0.6) V}{8 k}=\frac{0.4 \mathrm{~V}}{8 K}=0.05 \mathrm{~mA} \\
& I C=B I B=100 * 0.05=5 \mathrm{~mA} \\
& -5+I C R C+V C E=0 \\
& V C E=5-5 * 05=2.5 \mathrm{~V}
\end{aligned}
$$

$$
I B=+1
$$

$$
V C E>V B E
$$

BJT FAM conditions

$$
\Rightarrow
$$

 $G_{D} \operatorname{Rin}=(R L / / v \pi)$ find Pin seen by the volt.jource cup

* Rib \Rightarrow Rinput seen by the base (b)

(13)

(2) A.C. Analysis

7 S.S.A.C equivalent cet.

$$
\begin{aligned}
& \Rightarrow \quad V A=\frac{v_{0}}{v_{s}}=\frac{v_{0}}{v_{\pi}} \cdot \frac{v \pi}{v s} \\
& v_{0}=-g_{m} V \pi\left(R_{C} \| R L\right) \Rightarrow \frac{v_{0}}{V \pi}=-g m\left(R_{C} \| R L\right) \\
& \frac{v \pi}{v s}=\frac{\operatorname{Rin}}{\operatorname{Rin}+R s} \text { (V.D) } \\
& \therefore A V=-g m\left(R_{c} \| R L\right) \frac{R_{i n}}{R_{\text {in }}+R_{S}} . \\
& g m=\frac{I C Q}{V T}=\frac{5 \mathrm{~mA}}{26 \mathrm{mV}}=192 \mathrm{~mA} / \mathrm{V} \\
& R_{\text {in }}=R+h \| R_{\pi} \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rin }=\text { Rth } 11 r \pi \\
& r \pi=\frac{\beta V T}{I C Q}=\frac{100 \times 26 \mathrm{mV}}{5 \mathrm{~mA}} \simeq 0.520 \mathrm{~K} \Omega \\
& T_{\text {in }}=8 / / 0.52^{2} \Omega 0.5 \mathrm{kN} \\
& A V=-192(0.5112) \frac{0.5}{0.5+0.5}=-192 * 0.4 * 0.5 \\
& A V=-38 \\
& \Rightarrow A I=\frac{I_{0}}{I_{S}}=\frac{I_{0}}{I_{a}} \cdot \frac{I_{b}}{I_{S}} \\
& \begin{array}{c}
\text { (current. } \left.I_{0}=-\beta I b\right) \\
R_{c}+R_{L}
\end{array} \frac{R_{0}}{I_{b}}=\frac{-\beta R_{C}}{R_{c}+R_{L}} \\
& I b=\frac{I_{s} \cdot R+h}{R+h+r \pi} \quad \Rightarrow \frac{I b}{I s}=\frac{R+h}{R+h+r \pi} \\
& A I=\frac{-\beta R_{C}}{R_{C}+R L} \cdot \frac{R+h}{R+h+r \pi} \\
& =\frac{-100 \times 0.5}{0.5+2} \cdot \frac{8}{8+0.52}=-18 \\
& R_{D}=\left.\frac{U_{x}}{I_{X}}\right|_{V S=0}
\end{aligned}
$$

(15)

$$
\Rightarrow R 0=\left.\frac{v x}{I x}\right|_{v s=0}
$$

when $v s=0, v \pi=0$
$\mathrm{gmVA}=0^{\circ} \Rightarrow$ DC.s is 0.C

$$
\therefore R O=R C=0.5 \mathrm{~K}
$$

D.C.f A.C.L.L

- KUL for C.E Loop:-
$V_{C} E=V_{C E}-I_{C} R^{\prime}$

$$
\begin{aligned}
& I_{C}=\frac{V C C}{R C}-\frac{V C E}{R C} \text { D.C.L.L } \\
& y=b+m x
\end{aligned}
$$

$\begin{aligned} y & =b+m x \\ \text { slope } & =-\frac{1}{R c}\end{aligned}$
(I) for $I_{C}=0, V C E=V C C$

$$
P_{1}\left(V_{c c}, 0\right)
$$

Pl(Ucc,0)

(II) for $V_{C E}=0, I_{C}=\frac{V C C}{R_{C}}=\frac{5}{0.5}=10$

$$
P_{2}(0,10 \mathrm{~mA})
$$

Q-PL(VCEQ, ICQ)

$$
\begin{equation*}
(2.5 \mathrm{~V}, 5 \mathrm{~mA}) \tag{~g}
\end{equation*}
$$

* The interception between A.c.L.L\& $x-a x_{i s} \Rightarrow$ the max Peak output sighalvol|t without distortion
16

A.C.L.L

Draw A.C et
-KUL for C-e loop vel tic (Rc/IRL)
A.C.LL eq

Ace $=-j c^{\prime}\left(R_{C /} R L\right)$
slope $=\frac{-1}{R 1}$
slope $=\frac{-1}{0.4}$

* slope for $A C>D C$
slope of $A \cdot C=\frac{\Delta I C}{\triangle V C E}$
$\frac{1}{(\text { RCIRL })}=\frac{5-0}{\text { VEE-25 }}$ ~aNibiA

$$
\therefore V C E=2+25=4.5
$$

* Max peak symmytrical dp voltage
$V_{0}(\max)$ peak $=I C Q(R C \| R U)$
* max peak to peak symmytrical op voltage vo. $\left(\max R_{p D}=2 I C Q\left(R_{c} / / R J\right)\right.$

$$
\text { slope (1) } 7 \text { slope (2). }
$$

O्यP क्रि ाडान के,

(β h ăão
 the transistor in sat mode 17 FAM gie $0.7>0$
(1I) CE with RE

* without RE the BJT transistor in sat mode Becuase the Both Junction in forward

* if use add RE \Rightarrow FAM
\rightarrow stablized Q-pt (function) against β varyation
(1) P.C Analysis:-

$$
I B \cong 0.02 \mathrm{~mA}, \quad I C Q \simeq \beta I B=4 \mathrm{~mA}
$$

$$
V_{C E}=V C C-I C R-I E R E
$$

$$
\begin{aligned}
& A C \rightarrow S \cdot C \text {, Cap } \rightarrow O \cdot C \\
& v \text { the }=\frac{5 * 10}{50}=1 v \\
& R t h=101140=8 \mathrm{~K} \\
& -v t h+I B R t h+V B E+I E R E=0 \\
& I B=\frac{V+h-V B E}{R+h+(\beta+1) R E}=\frac{(1-0.6)}{[8+(201) * 60]}=\frac{0.4 \mathrm{~V}}{20 \mathrm{~K}}
\end{aligned}
$$

$$
\begin{aligned}
& I E=(\beta+1) I B=\frac{\beta+1}{\beta} I C=4.02 \mathrm{~mA} \\
& V C E=5-4 * 0.5-4.0 * 0.06=2.76 \mathrm{volt}
\end{aligned}
$$

$\therefore R E$ is used to stablize Q-Pt against \& varyation

* for bias-stable design \Rightarrow choose $R+h=0.1(\beta+1) R E$ * to check bias-stable condition \Rightarrow Rth $\leqslant 0 \cdot 1(\beta+1)$ RE
(2) A.C Analysis

s.S.A. equivalent cet.

$$
\begin{aligned}
& A V=\frac{v_{0}}{V_{S}}=\frac{v_{0}}{V_{i}}+\frac{V_{i}}{V_{S}} \\
& V_{O}=-\beta I b\left(R_{C} \| K L\right)
\end{aligned}
$$

increase Rin t increase Rib $\neq r_{\text {educe } A V} \quad \sigma=R E$) $* A U=1 D$ unitless \rightarrow beaause $[9]^{\text {its }}$ a ratio.

$$
\begin{aligned}
& -v i+v \pi+v e=0 \\
& v_{i}=V \pi+V e=I b r \pi+(\beta+V) I b \cdot R E \\
& =I b(r \pi+(\beta+\nu) R E) \\
& \frac{V O}{V i}=-\frac{\beta(R c / R L)}{V \pi+(\beta+1)} \\
& \checkmark \pi+(\beta+1) R E \\
& \text { - Rin }=\text { Rth } / / \text { Rib } \\
& R_{i b}=\frac{V_{1}^{\prime}}{I b}=\frac{I b(r \pi+(\beta+1) R E)}{I b} \\
& =\gamma \pi+(\beta+1) R E \\
& \frac{v_{i}}{V_{s}}=\frac{R_{\text {in }}}{R_{\text {in }}+R s} \\
& \therefore A V=-\beta(R C \| R L), ~ B i n \quad \therefore R_{E} \text { redaces } A V \\
& I \subset Q=4 m A \\
& r \pi=\frac{\dot{B V T}^{\prime}}{I C Q}=\frac{200 \star 26 \mathrm{mV}}{4 \mathrm{~mA}}=1.3 \mathrm{~K} \Omega \\
& R_{i b}=1.3 K+(201) * 60=13 K \Omega
\end{aligned}
$$

* Resistamee Retliction Rule *important*
* RE stablized the gain AV against Buanyation (Inderodent)

$$
\begin{aligned}
& R_{i n}=8 \mathrm{~K} / 173=9.9 \mathrm{k} \Omega \\
& A v=\frac{-200(0.5112)}{(1.3+12) k} \cdot \frac{4.9}{4.9+0.5} \\
& A V=\frac{-80}{13} \cdot \frac{4.9}{5.4} \Rightarrow A V=-5.9 \\
& -A I=\frac{I_{0}}{I_{s}} \Rightarrow=\frac{I_{0}}{I_{b}} \cdot \frac{I_{b}}{I_{s}} \\
& I_{0}=-\beta I b \frac{R_{c}}{R_{c}+R L} \text { (curr.dev.Rule) } \\
& \frac{I_{0}}{I_{b}}=\frac{-\beta R_{L}}{R_{c}+R_{l}} \\
& I b=\frac{I_{s} \cdot R+h}{R+h+R_{i b}} \\
& \frac{I b}{I s}=\frac{R+h}{R+h+R i b} \\
& R_{i b}=r \pi+(\beta+U) R E \\
& \therefore A I=\frac{-B R C}{R C+R L} \cdot \frac{R+h}{R+h+R_{i b}}=\frac{-200 * 05}{25} \cdot \frac{8}{8+13}=-16 \\
& \therefore \text { RE reduces AI. } \\
& \Rightarrow R_{0}=\left.\frac{V_{x}}{I x}\right|_{V_{s}=0} .
\end{aligned}
$$

When $U S=0, U \pi=0, \quad I b=0$

$$
\beta I b \text { or } \mathrm{gmVN}_{m}=0 \Rightarrow O \cdot C
$$

$$
R O=R C=05 \$
$$

$$
\begin{aligned}
& \therefore A v=-\frac{\beta(R c \| R L)}{r \pi+(\beta+1) R E} \cdot \frac{R_{\text {in }}}{R_{\text {in }} R_{s}} \\
& \text { If }(R+1) \gg A_{1}: \& \gg 1, R_{\text {in }} \gg R_{s} \\
& \Rightarrow A v \simeq \frac{\left(R_{c} \| R L\right)}{R E}
\end{aligned}
$$

Ac of (disadvantages)ata $K+R E\{ \} 10$ small

- ok nap nun

(III) CE with bypass cap. CE:-
(i) for D.C Analysis CE is O.C \& the cat is analyzed as CE with RE

$$
\begin{aligned}
& I C Q=4 \mathrm{~mA} \\
& V C E Q=2.76 \mathrm{~V} .
\end{aligned}
$$

$$
\beta=200, V B E=0.6 V^{\frac{1}{2}}
$$

$$
\text { 包 } Z=R_{\text {in }} \text { 小lif. }
$$

RE) (22)
(2) for Ac Analysis $C E \rightarrow S \cdot C \rightarrow$ carcells RE effect. the cet behaves as Basic C.E Amp.

$$
\begin{aligned}
\Rightarrow A V & \left.=\frac{-\beta\left(R_{c} / / R U\right)}{r \pi} \cdot \frac{R_{\text {in }}}{R_{\text {in }}+R_{S}} \approx-45\right) \\
R_{\text {in }} & =r \pi / / R_{t h}
\end{aligned}
$$

(2) common-collector Amp
C.C. AmP Emiatter follower.
$v_{i} \rightarrow$ to base
Vo from Emitter common Terminaly is (c)

* For A.C Analysis $c \rightarrow$ ground (c-Terminal)

$$
V A=100 \mathrm{~V}
$$

(1) Determine ICQ, VCEQ
(2) Draw $S: S . A . C$ eq. cet \& find AV, AI, Rin, Ro

Sol:-
(1) D.c Analysis

$$
C \rightarrow O \cdot C, A C \rightarrow S \cdot C
$$

$$
\begin{aligned}
& \text { Rth }=80 / 120=16 k \\
& v \text { th }=\frac{10 * 20}{100}=2 \mathrm{~V}
\end{aligned}
$$

$$
-v t h+I B R+h+V B E+(\beta+1) I B R E=0
$$

$$
I B=\frac{(2-0.7) \mathrm{V}}{16+10141}=\frac{1.3 \mathrm{~V}}{117 \mathrm{k} \Lambda}=0.011 \mathrm{~mA}
$$

$$
\begin{aligned}
& I_{C}=\beta I B=1.1 \mathrm{~mA}, I E=\frac{\beta+1}{\beta} I C \\
& V C E=V C C-I E R E=10-1.11 * 1=8.9 \mathrm{Volt} \quad>V B E
\end{aligned}
$$

\therefore BJT in FAM
(2) A.C. Analysis

small signal A.c. eq. cct.

$$
\begin{aligned}
& A v=\frac{V_{0}}{V_{S}}=\frac{v_{0}}{V_{1}} \\
& V_{0}=I_{e} \cdot \overline{R L}=(\beta+1) I b \overline{R L} \\
& \overline{R L}=, ~ N o\|R E\| R L \\
& -v i+v \pi+v_{0}=0 \\
& v_{i}=v \pi+v_{0} \\
& =I b r \pi+(\beta+1) I b \overline{R L}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \varnothing=0^{\circ} \text {, no phase } \\
& \text { If }(R+1) \overline{R L} \gg \pi \\
& \Rightarrow A V \simeq 1 \Rightarrow V 0 \bumpeq U S
\end{aligned}
$$

* vo follows Us in mag. \& sign and it is baker from emitter so it is called Emitter follower
* power $\operatorname{Amp}=A V \cdot A I$
2_{0} this cct is conseder as a power Amp.
$\therefore \frac{I_{0}}{I_{b}}=\frac{(B+1) R \bar{E}}{R \bar{E}+R L} \quad$, where $R \bar{E}=v o / / R E$

$$
\begin{aligned}
& R_{i b}=\frac{v_{i}}{I b}=\frac{I b(r \pi+(\beta+1) R L}{I b} \\
& R_{i b}=r \pi+(\beta+1) \overline{R L} \\
& I b=\frac{I s R+h}{T+h+R_{i b}} \\
& \frac{I b}{I s}=\frac{R+h}{R+h+R_{i b}}
\end{aligned}
$$

$A I=\frac{(\beta+1) R E}{\bar{E}+R L} \cdot \frac{R+h}{R+h+R i b} \Rightarrow * B \quad A I>1 \quad$ (current Amp)

$$
\text { r Rin }=\text { Rth } \| \text { Rib } \Rightarrow \text { *(4) high Rin }
$$

$$
* R_{0}=\left.\frac{U x}{I_{x}}\right|_{U S=0}
$$

Kcl at node e

$$
I x+g m v \pi=\frac{v x}{v_{0}}+\frac{v x}{R E}+\frac{v x}{r_{\pi}}
$$

$$
\begin{aligned}
& A I=\frac{I_{0}}{I_{S}}=\frac{I_{0}}{I_{b}} * \frac{I b}{I_{5}} \\
& I_{0}=\frac{I_{e} \cdot \overline{R E}}{R \bar{E}+R L}=\frac{(\beta+1) I b R \bar{E}}{R \bar{E}+R L}
\end{aligned}
$$

(c.D) J (aodbl opall) Io
but when VS $=0$

$$
\begin{aligned}
& V \pi=-V x \\
& I x=V \times\left(9 m+\frac{1}{r_{0}}+\frac{1}{R E}+\frac{1}{r \pi}\right) \\
& =V x\left(\frac{g m r \pi+1}{r_{\pi}}+\frac{1}{r_{0}}+\frac{1}{R E}\right) \\
& \text { but gmrm}=\frac{I C Q}{Y T} \frac{\beta V T}{I C Q}=\beta \\
& \frac{I x}{V x}=\frac{1}{R_{0}}=\frac{\beta+1}{r \pi}+\frac{1}{r_{0}}+\frac{1}{R_{E}} \quad \text { Req } \quad \text { R } \quad \text { Req }=R_{1} / / R_{2} / / R_{3}
\end{aligned}
$$

(27)
(3) common-Base Amp. C.BAmP

vi to emitter vo taken from collector base is common bermind
(1) Find ICQ, NCEQ, UE
(2) Draw S.S.A.c eq.
cat of find $A V$
, AI, Rein, Roo

sol:-
(1) Pe. Analysis: $C \rightarrow D O \cdot C, A \cdot C-D S \cdot C$

$$
\begin{aligned}
& V B E-2+I E R E=0 \\
& I E=\frac{(2-0.7) V}{1.3 \mathrm{~K}}=\frac{1.3 \mathrm{~V}}{1.3 \mathrm{k}}=1 \mathrm{~mA} \\
& I C=\alpha I E=\frac{100}{100+1} \cdot 1=0.99 \mathrm{~mA} \\
& -V C C+I C R C+V C E-2+I E R E=0 \\
& U C E=10+2-(0.99 \mathrm{k} 5)-(1.3 \mathrm{~A} 1) \Rightarrow V C E=5.8
\end{aligned}
$$

\therefore Trans in FAM

$$
\begin{aligned}
& V E=? ? \\
& \Rightarrow V E=-V B E=-0.7 \\
& O R \quad V E \Rightarrow-V E-2 V+I E R E=0 \ldots \\
& \begin{aligned}
& V C=2 . ? \\
& \Rightarrow V C=V C C-I C R \\
&=(40-0.99 * 5) \quad \Rightarrow V C \simeq 5.1 V
\end{aligned}
\end{aligned}
$$

(2) A.c. Analysis

$$
C a p \rightarrow S \cdot C, D \cdot C \rightarrow D \cdot C
$$

$$
A v=\frac{v e}{v}=\frac{-9 m v \pi(R C \| R L)}{-r \pi}
$$

$$
A V=9 m(R C \| R L)
$$

(1) Av>1
(2) $\varnothing=0^{\circ}$

$$
\begin{aligned}
& g_{m}=\frac{I c Q}{V T}=\frac{0.99 \mathrm{~mA}}{26 \mathrm{mV}} \\
& g_{m}=\frac{38 \mathrm{~m} A}{V} \\
& A V=38(5420)=152
\end{aligned}
$$

s.S.A.c.eq. cct

Ric

 FI PRO~ -12 , P Jive
 $\frac{1}{2} 20$ जा 子吅21

$$
\begin{aligned}
& A I=\frac{I_{0}}{I_{s}}=\frac{I_{0}}{I_{b}} \times \frac{I b}{I_{s}} \\
& I_{0}=\frac{-\beta I b R}{R_{c}+R L} \\
& \frac{I_{0}}{I_{b}}=\frac{-\beta R c}{R c+R L}
\end{aligned}
$$

$$
I b=\frac{-I s R E}{R E+R_{i e}} \quad \Rightarrow \frac{I b}{I s}=\frac{-R E}{R E+R_{i e}}
$$

$$
R_{\text {ie }}=\frac{r \pi}{\beta+1} \quad \Rightarrow R_{\text {in }}=R_{E} \| R_{i e}
$$

(3) AI <1
$\Rightarrow I_{0} \simeq I_{i} \Rightarrow$ current follower
$* R_{0}=R_{c}$

* Resistance Reflection Rule \&it inverse * $(R \cdot R R) \&(I \cdot R \cdot R)$
* Common. $c \rightarrow$ voltage follower / commor.b-D current follower
* High current level \Rightarrow low Resistomeelevel (b)
* Low current level \rightarrow high

$$
\begin{aligned}
& v e=I b(\beta+1) R E \\
& v \pi=I b \cdot r \pi \\
& R_{0}=\frac{r \pi}{\beta+1} / / R E
\end{aligned}
$$

$E \rightarrow$ Base -p R.R.R
$X(\beta+1)$ multiply
$B \rightarrow E \rightarrow I \cdot R \cdot R \cdot R$.
$\frac{1}{\beta+1}$ devide

$$
R_{i b}=r \pi+(\beta+1) R E
$$

summary of single stage BJT Amp.
ar, kina of R th $\sigma=$ E

＊Low Rif Roo

$$
\begin{aligned}
& *<\quad \because=, \phi=180^{\circ} \Rightarrow B \rightarrow C \cdot E \text { C.C.C } \\
& \times A I=(B+1)^{2} \leadsto 1^{3},{ }_{\text {Pf }}=D \rightarrow C \cdot C
\end{aligned}
$$

（1）I＇stagey Load j op（2）stage il Bin Jim 再

＊Multistage BJT AmpS＊
Amps．Contain more than ONE Transistor（AE Least two）．
They are wed to achiel certain combined specifications which can＇nt be achieved using single state such as ：－－very high Av or AI
－Low Re $f A v>1$
－Low Ro \＆Low Ri

Multistage
cascode comection
(2) cascade Multistage

(1) Find ICQ, $\cup C E Q, I C Q_{1}$
$I C Q_{2}, V C E Q_{2}$

$$
\begin{aligned}
& \beta=100, \quad \beta_{2}=50 \\
& V B E_{1}=U B E_{2}=0.7 \mathrm{~V} \\
& V A_{1}=V A_{2}=100 \mathrm{~V}
\end{aligned}
$$

(2) Draw S.S.A.C eg.ccb
f Find $A V, A I, R_{i n}, R_{0}$
Sol:-
(1) $D \cdot C$ Analys is

* Q (C.E)

$$
\begin{aligned}
& \text { Rth }=401110=8 \mathrm{k} \\
& \text { Vth }=\frac{10 \times 10}{50}=2 \mathrm{~V}
\end{aligned}
$$

$Q P t_{1}$

$$
\begin{align*}
& -V+h=I B R t_{h}+V B E+(R+1) I B_{1} R E_{1}=0 \\
& \left.I B_{1}=\frac{(2-0.7) \mathrm{V}}{8+10 * 0.42} \simeq \frac{1.3 \mathrm{~V}}{50 \mathrm{~K}} \simeq 0.026 \mathrm{mt}\right) \\
& I C Q_{1}=\beta_{1} I B_{1}=2.6 \mathrm{~mA} \\
& V C E Q_{1}=10-I C Q_{1} R_{C}-I E, R E, \\
& I E_{1}=\frac{\beta+1}{\beta} I C=2.626 \mathrm{~mA} \\
& V C E Q_{1}=10 \cdot 2.6+1.5-2.625 * 0.4 \\
& \text { VCEQ }{ }_{7}=5 V \\
& * \quad Q_{2}(C: C) \\
& -10+I B_{2} R_{B}+\cup B E_{2}+\left(\beta_{2}+1\right) I B_{2} R_{2}-2=0 \\
& I B_{2}=\frac{(10+2-0.7) V}{R_{B}+\left(\beta_{2}+1\right) R E_{2}} \\
& I B_{2}=\frac{11.3 \mathrm{~V}}{113 \mathrm{~K}}=0.1 \mathrm{~mA} \\
& I C Q_{2}=\beta_{2} I B_{2} \Rightarrow D=50+0.1=5 \mathrm{~mA} \\
& I E_{2}=\frac{\beta_{2}+1}{\beta_{2}} I C Q_{2}=5.1 \mathrm{~mA}
\end{align*}
$$

$$
\begin{aligned}
& -10+V C E_{2}+I_{E_{2}} P E_{2}-2=0 \\
& V C E_{2}=12-5 \cdot 1+1 \\
& V C E_{2}=69 \mathrm{~V}
\end{aligned}
$$

(2) Ac. Analysis

$$
C a p \rightarrow S \cdot C, D \cdot C \rightarrow O \cdot C
$$

S.S.A.C. eq.CCt

$$
\begin{aligned}
& * A V=\frac{V_{0}}{V S}=\frac{V_{0}}{V_{01}} * \frac{V_{01}}{V_{S}} \\
& V_{0}=I e_{2} \cdot r_{2} / / R E=\left(\beta_{2}+1\right) I b_{2}\left(R E_{2} / / r_{2}\right) \\
& -V V_{12}+V_{\pi_{2}}+V_{0}=0 \\
& V_{12}=I b_{2} V \pi_{2}+\left(\beta_{2}+1\right) I b_{2}\left(R E / / r_{O_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v_{0}}{v_{i 2}}=\frac{v_{0}}{v_{01}}=\frac{\left(\beta_{2}+1\right)\left(R E \| r_{02}\right)}{r_{2}+\left(\beta_{2}+1\right)\left(R E_{2} \| r_{02}\right)} \\
& A V_{2}<1 \text { (C.C) } \\
& \Rightarrow V O_{1}=-g m_{1} v \pi_{1}\left(r_{0} \| R_{c} / / \text { Rie }\right) \\
& R_{i 2}=R_{B} / / R_{i} b_{2} \\
& R_{1 b_{2}}=\left(R_{E_{2} / / r O_{2}}\right)\left(\beta_{2+1}\right)+r \pi_{2} \\
& V_{s}=V_{\pi_{1}} \\
& A V_{1}=\frac{V_{01}}{V_{s}}=- \text { gm }_{m_{1}} \mathbb{K L}_{L} \\
& \overline{R_{L}}=R_{c} / r_{0} / / R \operatorname{Rin} 2 \\
& A V_{1} \quad A V_{2} \\
& \Rightarrow V A=\frac{V V_{0}}{V s}=-9 m_{1} R L \frac{\left(\beta_{2}+1\right)\left(R E_{2} / / \mathrm{rO}_{2}\right)}{r \Pi_{2}+\left(\beta_{2}+1\right)\left(R E / / \mathrm{rO}_{2}\right)} \\
& \therefore A V_{1}>1 \quad \Rightarrow \quad A V>1, \varnothing=180^{\circ} \\
& \simeq-150 \\
& \text { * } A I=\frac{I 0}{I S} \\
& \text { AV } \\
& A I=\frac{\frac{V O}{R E}}{\frac{V S}{\operatorname{Rin}}} \Rightarrow A I=\frac{V 0}{V I} \cdot \frac{R_{\text {in }}}{R E} \\
& \wedge A I=\frac{I_{0}}{I s}=\frac{I 0}{I b_{2}} \cdot \frac{I b_{2}}{I b_{1}} \cdot \frac{I b_{1}}{I s} \leadsto X \quad \text { द्रि, } \triangleq
\end{aligned}
$$

$$
\begin{aligned}
& A I=A V \frac{R_{\text {in }}}{R E}, R_{\text {in }}=r \pi / 1 R+h-1 / 18=0.9 \mathrm{~K} \\
& A I=-150 \cdot \frac{0.9}{1 K}=-135
\end{aligned}
$$

* AV \& A I Relations.
(1) A I interms of AV

$$
A I=\frac{I_{0}}{I S}=\frac{\frac{V 0}{R L}}{\frac{V S}{R_{i n}}}=A V \cdot \frac{R_{\text {in }}}{R_{L}}
$$

$$
\frac{v_{s}}{k_{i n}+p_{s}}
$$

(2) AV interms

$$
\begin{aligned}
* R_{0} & =\left.\frac{v_{x}}{I x}\right|_{\|=0} \\
R_{0} & =\left(\underline{\left.r_{1}\left\|R_{c}\right\| R_{B}\right)+r \pi_{2}} / / r_{2} / / R_{2}\right.
\end{aligned}
$$

$$
\overline{0,6 E_{a}} a_{0}=\frac{\beta z+1}{\alpha}
$$

InW.R.R

$$
\left.\begin{array}{c}
g m_{1} r_{1}=0 \quad \sigma=s \cdot c \\
v \pi_{1}=0
\end{array}, \text { is }\right)_{1} \text { a deoi* }
$$

$$
v \pi_{1}=0
$$

 $1.0 \cdot C$ oiN, 单!

- very high current Gain cot.

Cascade: Darlingtor Pair configuration.

$$
\begin{aligned}
& \Rightarrow I_{0}=\beta I b_{2}=\beta I e_{1}=\beta(\beta+1) I b=\left(\beta^{2}+\beta\right) I b_{1} \\
& \therefore A I \simeq \frac{I_{0}}{I b_{1}} \simeq \beta^{2}+\beta \simeq \theta \beta^{2} \\
& \Rightarrow R_{i n}=R B_{1} / / R_{i b_{1}} \\
& R_{i b_{1}}=r \pi_{2}(\beta+1)+r \pi 1
\end{aligned}
$$

- $R_{0}=? 3 \Rightarrow R_{0}=R_{c}$
incase if RE exte was found

$$
\begin{aligned}
& \left.\left.\Rightarrow R_{0}=\frac{\left[\left(\frac{r}{1} 1\right.\right.}{\beta+1}\right)+r \pi_{2}\right] \\
& (\beta+1) \\
& \therefore R E R E
\end{aligned}
$$

IR.R.R \triangle
(2) Cascode Amp.

- $R_{1} \Rightarrow S \cdot C$ in A.C

Ex:-(1) Design the cascode cat shown in Fig :- to have $I C Q=1 \mathrm{MA}, V C E_{1}=V C E_{2}=3 \mathrm{~V}$
 $\Rightarrow \quad I b=0$
choose the biasing current
 $I=10 \%$ of $I C$
The BJT has $V R E=0.7 \mathrm{~V}$
(2) Draw S.S.A.C equt cot \& Find $A V, A I, R_{i n}, R_{0}$:
Sol:-
Re?

$$
\begin{aligned}
& -10+I c R_{c}+V C E_{2}+U C E_{1}+I_{C} R E=0 \\
& I C R c=10-3-3 \mathrm{~K}-1.0 .7=3.3 \mathrm{~V} \\
& R_{c}=\frac{3.3 \mathrm{~V}}{I n A}=3.3 \mathrm{k} \Omega
\end{aligned}
$$

$R_{1} R_{2}, R_{3}$?

$$
\begin{aligned}
& R_{g}=\frac{V B_{1}}{I}, R_{2}=\frac{V B_{2}-V B_{1}}{I}, \cdot R_{1}=\frac{V C C-V B_{2}}{I} \\
& -V B_{1}+V B E_{1}+I E R E=0 \\
& U B_{1}=0.7+1 * 0.7=1.4 \mathrm{~V} \\
& R_{3}=\frac{1.4 \mathrm{~V}}{0.1 \mathrm{~mA}}=14 \mathrm{~K} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-V B_{2}+V E_{2}+V C E_{1}+I_{E R E}=0 \\
& V B_{2}=0.7+3+1 * 0.7 \\
& V B_{2}=4.4 \mathrm{~V} \\
& R_{2}=\frac{(4.4-1.4)}{0.1 \mathrm{M}}=2+1 \\
& R_{1}=\frac{10-4.4}{0.4}=56 \mathrm{kR} \\
& R T=14+30+56 \\
& R T=\frac{V C c}{I}=\frac{100 \mathrm{~V}}{0.1}=100 \mathrm{~K} \\
& R \text { Cor Check }
\end{aligned}
$$

 Ro $)_{1}$ N̈̈r 2,2

200\% U
 $I=\frac{V c c+2}{R T}$
$R \prime$)

S.S.A.C eq. cet.

$$
\begin{aligned}
& A V=\frac{V_{0}}{V S}=\frac{V}{V \pi_{2}} \cdot \frac{V \pi_{2}}{V \pi_{1}} \cdot \frac{V \pi_{1}}{V s} \\
& V_{0}=-g m_{2} V \pi_{2}(R C \| R L) \\
& \frac{V_{0}}{V \pi_{2}}=-y m_{2}(R c \| R L)
\end{aligned}
$$

* KCL at node a

$$
\begin{aligned}
& g_{m_{2}} \forall \pi_{2}+\frac{U \pi_{2}}{r_{\pi_{2}}}=g_{m_{1}} V \pi_{1} \\
& v \pi_{2}\left(9 m_{2}+\frac{1}{r_{2}}\right)=9 m_{1} v \pi_{1} \\
& v \pi_{2}\left(R_{2+1}^{V \pi_{2}}\right)=g_{m_{1}} v \pi_{1} \\
& \frac{v \pi_{2}}{v \pi_{1}}=\frac{v \pi_{2}}{\beta_{2}+1} g m_{1} \Rightarrow \frac{v \pi_{1}}{v_{5}}=1 \\
& \therefore A r=-g m_{2}(R C \| R L)\left(\frac{r \pi_{2}}{\beta_{2}+1}\right) g m_{1} \\
& =-g m_{1}(R c \| R L) \frac{\beta_{2}}{\beta_{2}+1}=-g m_{1}(R c \| R L)
\end{aligned}
$$

- Av of cascode Ω AV for CE Amp because Q2 is C.B which Does not Amplify the current.

$$
\text { * } A I=\frac{I_{0}}{I_{S}}=\frac{\frac{v_{0}}{R L}}{\frac{V_{s}}{R_{\text {in }}}}=A V \frac{R_{\text {in }}}{R L}
$$

* $R_{\text {in }}=r \pi / / R_{2} / R_{3}$
* $R_{o}=R_{c}$

$$
\square V_{S}=0 \rightarrow V \pi_{1}=0 \rightarrow V \pi_{2}=0-\Delta g m_{2}=0
$$

Ex:- Design the et shown to have $I C Q=1 \mathrm{~mA}$ $V \subset E Q=4 \mathrm{~V}, ~ A V=-155^{\circ}$ \& its biase-stable
Determine:-
1* $R_{c}, R_{E}, R_{1}, R_{2}$.
(2) Prow S.S.A.C eq
cell. \& find AI
Bin ITo
(3) write D.C \& A.C.L.L f find their slopes.

Sola:-

$$
\begin{aligned}
& \text { Sols } \\
& g_{m}=\frac{I_{C Q}}{V_{T}}=\frac{1}{26 \mathrm{mV}}=38.5 \frac{\mathrm{~mA}}{V} \\
& -155=-385(R c / / R L)
\end{aligned}
$$

$$
\begin{aligned}
& (R C \| R L)=\frac{155}{38.5}=4 \mathrm{k} \Omega \\
& 4 \mathrm{~K}=R_{C} 1120 \mathrm{~K} \\
& R_{C}=5 \mathrm{~K} \Omega
\end{aligned}
$$

* From D_{c} *

$$
\begin{aligned}
& -10+I_{C} R_{C}+V C E+I E R E=0 \\
& R E=\frac{10-5 \mathrm{k} \mid-4}{I E}=\frac{1}{I E} \Omega 1 \mathrm{k} \Omega
\end{aligned}
$$

(for $I E \bumpeq I_{C}$)

* for biase-stable design

$$
\begin{aligned}
R+h & =0.1(\beta+1) R E \\
& =0.1 * 101 * 1=10.1 \mathrm{k} \Omega
\end{aligned}
$$

$$
R_{t h}=R_{1} \| R_{2}
$$

$$
R_{1} v \text { th }=\frac{\sqrt[V]{N+1} \sqrt{R_{2}}}{R_{1}+R_{2}} \cdot R_{1}
$$

$R_{1} v t h=$ vc. Rth

$$
\begin{aligned}
& R_{1}=\frac{V c c}{v+h} \cdot R t h \\
& \Rightarrow-v t h+I B R+h+v B E+I E R E=0
\end{aligned}
$$

$$
\begin{aligned}
V_{t h} & =\frac{I C Q}{\beta}(10.1)+0.7+\frac{\beta+1}{\beta} I C Q * 1 \\
& =0.01 * 10.1+0.7+1.1=1.9 \mathrm{~V} \\
R_{1} & =\frac{10}{1.9}+10.1=52 \mathrm{k} \Omega \\
R_{2} & =\frac{R_{1} R_{\text {th }}}{R_{1}-R_{t h}}=\frac{52 * 10.1}{52 \cdot 10.1}=\frac{520 \mathrm{~K}}{42}=125 \mathrm{k} \Omega \\
R_{\text {in }} & =R_{\text {th }} / / r \pi \\
* R_{0} & =R_{C} \\
* A I & =A V \cdot \frac{R_{\text {in }}}{R_{L}}
\end{aligned}
$$

* D.c.L.L

$$
\begin{aligned}
& -V C c+I_{C} R_{C}+V C E+\frac{I_{E}}{} \begin{array}{l}
\frac{\beta+1}{\beta} I_{c} \\
V C E
\end{array} \\
& V C C-I_{c}\left(R_{C}+\frac{\beta R E}{\beta+1}\right)
\end{aligned}
$$

家 $\Rightarrow I_{C} \simeq I E$

$$
V C E=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

- Ac. LL

$$
\begin{aligned}
& \text { be tic }(R c / / R L)=0 \\
& \text { ice }=-i c(R C / / R L)
\end{aligned}
$$

* Any voltage Amp can be represented by

*Find overall AV, over ALL AI over all Ri overall Roo

$$
\begin{aligned}
& \text { * } A V_{+}=\frac{V_{0}}{V_{s}}=\frac{V_{0}}{V_{i 2}}+\frac{V_{i 2}}{V_{i 1}} * \frac{V_{i 2}}{V_{s}} \\
& V_{0}=\frac{-100 V_{i 2} R_{L}}{R_{L}+R_{02}} \Rightarrow \frac{V_{0}}{V_{i 2}}=\frac{-100 * 1}{1+2}=\frac{-100}{3} \\
& v_{i 2}=\frac{100 v_{i 1} \cdot R_{i 2}}{R_{i 2}+R_{01}} \Rightarrow \frac{v_{i 2}}{v_{i 1}}=\frac{-160 \times 1}{2+1}=\frac{100}{3} \\
& V_{i 1}=\frac{V_{s}+R_{\text {in1 }}}{R_{\text {in } 1}+R_{s}}=\frac{V_{\text {i1 }}}{V_{s}}=\frac{1}{1+0.25}=0.8 \\
& A V T=\left(-\frac{100}{3}\right) \cdot\left(\frac{-100}{3}\right) * 0.8 \\
& =\frac{10000}{9} * 0.8 \Rightarrow A V_{T}=\frac{8000}{9}=900 \\
& k A I=\frac{I_{0}}{F_{s}}=\frac{\frac{V O}{R L}}{\frac{V_{s}}{R s+R_{i 1}}} \text { : } \\
& =A V \cdot \frac{R_{s}+R_{i}}{R_{L}}=1125
\end{aligned}
$$

\Rightarrow C.C.cet
(1) $v o \Rightarrow$ emitter
(2) for Ac Aralysis $C a P \Rightarrow S . C \Rightarrow$ R'

C. B cet
(1) vo \Rightarrow collector
(2) for $A C$ Aralysis

$$
C a p=D S \cdot C \Rightarrow D B \Rightarrow \text { Gid }
$$

$V V E=V B-V B E$
for $V x=D-V C C+I C R C+V C E+V x-5=$

$Q_{1} \Rightarrow$ design for single stage $Q_{2} \Rightarrow$ multistage
$Q_{3} \Rightarrow$ multiple choice 5 concept 15 calculation

(s) IVevgen G 1) BJT It all noise

49
$\cdots \cdots \quad$ ChXII
M. Mosfet Amplifires.

N-chamle

C.5. Amp

C. G AmP

* Mosfet must be biased in saturation Region to be used as an Amp.
(17) Saturation Region

$$
\begin{aligned}
& \text { ID }=K_{n}(V G s-V I N)^{2} \\
& V T N \rightarrow \text { Given } \\
& K_{n} \rightarrow \text { Given }
\end{aligned}
$$

$$
I D(m A)
$$

Mosfet is used as an Amp.

$$
I D=k n\left[2(V G S-V T N) U D S+V D_{S}^{2}\right]
$$

for small VDS \rightarrow UPS \rightarrow Negligble

$$
\begin{aligned}
& I D \simeq 2 K n(V G S-V T N) V D_{S} \\
& \frac{V D_{s}}{I D}=\frac{1}{2 K n(V G S-V T N)} \\
& R_{m B S}^{A}=\frac{1}{2 K_{n}(V \hat{A} S-V T N)}
\end{aligned}
$$

* In linear Region I can use Mosfet as a Voltage Variable Resistance
* Assume Mosfet in sut

$$
\begin{aligned}
& I D=\Varangle n(V G S-V T N)^{2} \\
& V G S=V G-V S=\frac{5 \times 20-0}{50}=2 V \\
& I D=1(2-1)^{2}=1 \mathrm{~m} A \\
& -5+I D R_{D}+V D_{S}=0 \\
& V D_{S}=5-2 \times 1=3 V \\
& V D_{S}(\text { sat })=V G S-V T N=2-1=1 V
\end{aligned}
$$

since VDS $>$ VDs (sat)
\therefore Mosfer in sat

* D.C.L.L
(i) $(m A)$

$$
\begin{gathered}
-S+I D R D+V D S=0 \\
V D S=5-I D R D \\
\text { slope }=\frac{-1}{R D}
\end{gathered}
$$

(1) for $I_{D}=0, \sqrt[D S]{ }=5 \mathrm{~V}$

$$
P_{1}(S V, o m A)
$$

(11) for $v D s=0 \quad \because I D=\frac{5}{2}=2.5 \mathrm{~mA}$

$$
\begin{aligned}
& \text { for } V D_{s}=0 \quad \because I D=\frac{5}{2}=2.5 \mathrm{~mA} \\
& P_{2}(0 V, 2.5 \mathrm{~mA})
\end{aligned}
$$

$$
\operatorname{VDS}(\mathrm{scat})=1 \mathrm{u}
$$

$V i=\Delta$ Vgs $\Rightarrow I d \Rightarrow$ vds $(A C) \Rightarrow$ valtage controuled $\angle I G=0$ device (mosfet)
52

* According to superposition

$$
i D=I D Q+i d
$$

$$
V_{G S}=V_{G S} Q+V_{g S}
$$

total Res. $D C \quad A C$

$$
U D_{S}=U D S Q+V d s
$$

$$
\begin{gathered}
\text { PID }=k_{n}(\hat{\operatorname{Cus}}-V T N)^{2} \\
\text { vSS }
\end{gathered}
$$

(1) common-source Amp
(I) Basic . C.S
$v_{i} \rightarrow$ bgate
vo from drain $s \rightarrow$ common terminal

common Sowree $=$ common Emitter
1)- Determine IDQ vDSQ
2) - Drow S.S.A.C eg cct \& Find Av, Rin $P R$
sol.
(1) D.c Analysis

Assumse the Mosfet in sot Degion

$$
\begin{aligned}
& I D=k_{x}(V G S-V T N)^{2} \\
& V G S=V G-V S \\
& \quad=\frac{V D D \cdot R_{2}}{R_{1}+R_{2}}-0=\frac{5 * 20}{50}=2 V \\
& \begin{aligned}
& I D=1(2-1)^{2}=1 \mathrm{~mA} \\
&-V D D+I D P D+V D S=0 \\
& V D S=5-1 \times 2=\underline{3 V} \\
& V D S(S(C) H=V G S-V T N \quad \Rightarrow \text { since } \\
&=2-1=1 I V .
\end{aligned}
\end{aligned}
$$

\Rightarrow since VDS $>$ UDS (sat) \therefore Mosfet in sat Reg.
(2) Ac Analysis

$$
C \rightarrow D S \cdot C, D \cdot C \rightarrow D S C
$$

1. $\lambda=0 \Rightarrow r o=\infty$

+ $\lambda=$ value $\Rightarrow r o=$ value
54

$r_{0}=\frac{1}{\lambda I D Q}$ (Mosfet drain-source Resistonce)
N:- Channle length modubtion parametor

$$
\begin{aligned}
& \text { slope }=\frac{\Delta I D}{\Delta V P S} \\
& \text { slope }=\frac{I D Q}{V A} \\
& 10=\frac{V A}{I D}=\frac{1}{I D \lambda}
\end{aligned}
$$

$$
k_{n}=1 m A / v^{2}
$$

$$
A v=\operatorname{gin} \overline{k L} \frac{R+h}{R+h+R s i}
$$

- Mean's 180° phave-shift between vsi fvo (orlyin Cs)

$$
\begin{aligned}
g_{m}=\frac{\partial I D}{\partial V G S} & =\frac{\partial\left(k_{n}(V G S-V T N)^{2}\right)}{\partial V G S} \\
g m & =2 k_{n}(V G S \cdot V T N) \\
O R g m & =2 \sqrt{k n \cdot I D} \quad \\
& =2 \sqrt{|k|}=D J_{m}=\frac{2 m A}{V} \\
r_{0} & =\frac{1}{\lambda I D a}=\frac{1}{0.02 k \cdot 1+10^{-3}}=50 \mathrm{EA}
\end{aligned}
$$

$$
\begin{aligned}
& A V=\frac{V_{0}}{V_{s i}}=\frac{V_{0}}{V_{g s}} \times \frac{V_{g s}}{V_{s i}} \\
& V_{0}=-\operatorname{gmvg} R_{L} \\
& \overline{R L}=V_{0} / / R D \| R L \\
& \frac{v_{01}}{v_{g s}}=-g m \overrightarrow{R L}_{L} \quad, ~ v g s=\frac{V_{s i} A R_{h}}{R_{2+h}+R_{s i}} \\
& \frac{v g s}{v s i}=\frac{R_{1 h}}{R_{4 h}+R_{s i}}
\end{aligned}
$$

$$
\begin{aligned}
& A V=-2(50 / 12118) \frac{12 \mathrm{~K}}{12+3}=-2 \times 1.5 \times 0.8 \\
& \Rightarrow A V=-2.4 \\
& V=-2.4 \mathrm{ksi} \\
& * R_{\text {in }}=R_{1 h}=12 \mathrm{k} \Omega \\
& * R_{0}=? ? \\
& R_{0}=\left.\frac{V x}{I+}\right|_{V S i}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{KCL} \text { at node } \\
& I x=\frac{v x}{R 0}+\frac{v x}{10}+g \times V G \mathrm{~S} \\
& \frac{R x}{I x}=R_{0}=r 0 / \pi \mathrm{DD} \\
& R 0=50 \mathrm{~K} / / 2 \mathrm{~K}=1.85 \mathrm{k} \Omega .
\end{aligned}
$$

(3) Draw D.C\&A.CLL \& find their slopes.

$$
\begin{aligned}
& -U D D+I D R D+V D S=0 \\
& U O S=U D D-I D R D, D C \cdot L \cdot L
\end{aligned}
$$

r $P_{1} \Rightarrow$ cult of of Voltage ($I=0$)
$P_{2}=D$ saturation point ~ 0 short cot (UDs=0)

$$
\begin{aligned}
& V D S+i d(R D / / R L)=0 \\
& V D S=-i d(R O A R L), A \cdot C \cdot L L \\
& S l o P e=\frac{1}{R D / R L}=\frac{-1}{1.6 K}
\end{aligned}
$$

D.C.LL

From D.C.LL eq.
(1) For $I D=0, V D S-V D D=5 \mathrm{~V}$ +becuase the currout $=0$

$$
\text { - } P_{1}(5 v, o m A)
$$

(18) for $U D S=0$, I $D=\frac{V D P}{R D}=2.5 \mathrm{~mA}$, bechase $U D S=0$

$$
\begin{aligned}
& p_{2}(0,2.5 \mathrm{~mA}) \\
& \text { slope }=\frac{1}{(R D \| R L)}=\frac{\Delta I D}{\Delta U R} \\
& \Delta U D S=\Delta I D(R D / / R L) \\
& \Delta I D=I D Q \\
& \Delta U D S=1(21 / 8)=1.6 \mathrm{~V}
\end{aligned}
$$

- \triangle VPS:- max peak symmetrical out put voltage

$$
\triangle \cup D S= \pm D Q(R D / / R L)
$$

$$
\max (p-p)^{\prime} \text { symmetrical } 0 / P \text { voltage }=2 I D Q(R D / R L)
$$

(II) C.S with Rs

$$
\begin{aligned}
& V P_{S}=5-25+2=0 \\
& V D_{S}(\text { sat })=2-1=1 V
\end{aligned}
$$

VDS $<$ VDS(sat \Rightarrow Mosfet in Monsat
D.C Analysis

$$
\begin{aligned}
I D & =K_{n}(V G S-V T N)^{2} \\
V G_{S} & =V G-V S \\
& =\frac{5 * 20}{50}-I D \cdot R S \\
V G S & =2-0.2 I D \\
I D & =\frac{2-V G S}{0.2}
\end{aligned}
$$

$R_{s} \Rightarrow$ stablize $Q-P b$ againsb k_{n} variation

$$
\begin{aligned}
& I D=\frac{2-V G S}{0.2} \\
& \frac{2-V G S}{0.2}=2.5(V G S-1)^{2} \\
& 2-V G S=0.5\left(V G S^{2}-2 V G S+1\right) \\
& 2-V G S=0.5 V G S^{2}-V G S+0.5 \\
& 1.5=0.5 V G s^{2} \\
& V G s^{2}=3 \\
& V G S=+\sqrt{3}= \pm 1.73 V
\end{aligned}
$$

$$
\begin{aligned}
I D & =\frac{2-1.73 \mathrm{~V}}{0.2}=\frac{0.27}{0.2} \\
I D & =1.35 \mathrm{~m} A \\
V D S & =V D D-I D(D D+R S) \\
& =5-\frac{1.35 \mathrm{~m} 2.2}{3} \Rightarrow D D S=2.1 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
V D_{S}(\text { sat }) & =V G S-V T N \\
& =1.73-1
\end{aligned}
$$

\therefore Mosfet in saf Region.

$$
V D_{s}(\text { sat })=0.73 \mathrm{~V}
$$

* Rs stablize Q-pt against Kn Varyation.
* Rs decrease AV (disaduanfage)

AC

$$
\begin{aligned}
& \Rightarrow A V=\frac{v_{0}}{v s i}=\frac{v_{0}}{v g s} * \frac{v_{g s}}{v_{i}} * \frac{v_{i}}{v_{s i}} \\
& v_{0}=-g m v g s(R D / / R L) \\
& * \frac{v_{0}}{v g s}=-g m(R D / / R L) \\
&-v_{i}+v g s+v s=0 \\
& v_{i}=v g s+V s \\
& v i=v g s+g m v g s * R s \\
& \Rightarrow v_{i}=v_{g s}(1+g m R s)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{v i}{v g s}=1+g_{m} R_{s} \rightarrow \frac{v g s}{v i}=\frac{1}{1+g_{m} R s} \\
& \Rightarrow \frac{v i}{v s_{i}}=\frac{R+h}{R+h+R s i} \\
& A V=\frac{-g_{m}(R D \| R U}{1+g_{m} R} \quad \frac{R+h}{R t h+R_{s i}}
\end{aligned}
$$

$* \operatorname{Rin}=R+h$

$$
* R_{0}=\left.\frac{V x}{I x}\right|_{V S_{i}=0}
$$

when $V_{s i}=0, V_{i}=0, V g s=0$
y_{m} vgs $=0 \quad$ (D.C source is open)

$$
\Rightarrow \dot{R}_{0}=R D
$$

* If Rth $>R_{s i}$ f $g_{m} \beta_{s} \gg 1$

$$
A V=-\frac{(R D / / R L)}{R s}
$$

(111) C.S with by pass capacitor C_{s}
(1) D.C Andysis

$$
D_{1}, C_{1}, C_{1}, C_{2} \rightarrow O \mathbb{C}
$$

* This cet. is analyzed as a.C.S with Rs

$$
\begin{aligned}
& k_{n}=2.5 \mathrm{~mA} / \mathrm{V}^{2} \\
& V T N=1 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& * \text { VGS }=1.73 \mathrm{~V} \\
& * I D=1.35 \mathrm{~mA} \\
& * V D_{s}=2.1 \mathrm{~V}
\end{aligned}
$$

(2) A.C Analysis

$$
C \rightarrow D S \cdot C
$$

- The ect behaves as a Basjk
*D.C.L.L eq. $n:-$

$$
\begin{aligned}
& D \cdot C \cdot L \cdot \text { eqn :- } \\
& -V D D+I D R D+V D S_{1}+I D\left(R_{S_{1}}+R_{S_{2}}\right) \\
& \text { UDS }=V D D-I D\left[\left(R_{s_{1}}+R_{S_{2}}\right)+R_{D}\right] \\
& \text { slope }=\frac{-1}{R_{S 1}+R_{2}+R D}
\end{aligned}
$$

* RD $-\triangle$ moderate to high.
* A.C.L.Leqn.
$-v d s+I d\left[R_{S I}+(R D / R L)\right]$

$$
\text { slope }=\frac{-1}{R_{S 1}+(R D / / R L)}
$$

(2) Common-Drain Amp (source foflower)
1)- Determine IDQ, VDSQ
2)- Draw S.S.A.C eq cat. \& find $A V, R_{i}, R_{0}$

(1) D.C Analysis

$$
V T N=1 \mathrm{~V}, \lambda=0.01 \mathrm{~V}^{-1}
$$

Assume the mosfet in sat Reg.

$$
\Rightarrow I D=k_{n}\left(V_{G S}-V_{T N}\right)^{2}
$$

$$
\begin{aligned}
& V G S=V G-V S, V R_{2} \\
& V G S=\frac{V D R_{2}}{R_{1}+R_{2} D 2}-I D R_{S} \\
& \Rightarrow V G S=2-I D, I D=2-V G_{S} \\
& \Rightarrow D 2-V G S=2\left(V G_{s}^{2}-2 V Q s+1\right)
\end{aligned}
$$

$$
\begin{array}{rl}
\Rightarrow & 2 V G s^{2}-3 V G S=0 \\
& V G S(2 V G S-3)=0 \\
\Rightarrow D & V G S=0, V G S=1.5 \mathrm{~V} \\
I D= & 2-1.5=0.5 \mathrm{~mA} \\
\Rightarrow & V D S=10-0.5 \mathrm{kl} \\
& V D S=9.5 \mathrm{~V} \\
\Rightarrow D & V D S(s a t)=1.5-1 \\
& V D S(s a t)=0.5
\end{array}
$$

(2) A.C Analssis

$$
\begin{aligned}
& \Rightarrow A V=\frac{v_{0}}{v s i}=\frac{v_{0}}{v g s} \times \frac{v g s}{v_{1}} \times \frac{v_{i}}{v s i} \\
& * v_{0}=g m v g s^{v}(v o \| R s / / R L) \\
& A \frac{v_{0}}{v_{g S}}=g m \overline{R_{L}}
\end{aligned}
$$

(3) R R_{1} datands on $R_{1} f R_{2}$
(2) $A V<1$
(4) Bo low

$$
\begin{aligned}
& \Rightarrow D-v i+v g s+v o=0 \\
& v i=v g s+g m v g s \\
& V_{L} \\
& v i=v g s(1+g m \overline{R L}) \\
& * \frac{v g s}{v i}=\frac{1}{1+g m R L} \\
& \Rightarrow \frac{v i}{v s}=\frac{R+h}{R h+R_{s i} i} \\
& \Rightarrow A v=\frac{g m \overline{R L}}{1+g m \overline{R L}} \times \frac{R+h}{R h+R_{s i}}
\end{aligned}
$$

* If $\quad R_{ \pm} \ngtr R_{S} ;$ \& $g m \overline{R_{L}} \gg 1$

$$
\Rightarrow A V=1=\frac{V_{0}}{V \operatorname{si}}
$$

\square avo follows usi in magnitude \& phase ? To is taken from source, so it is called Source follower

$$
+R_{\text {in }}=\text { Roth }
$$

$$
\text { * Roc }=? ? \Rightarrow R_{0}=\left.\frac{v x}{I x}\right|_{\text {vs }}
$$

- Mel at node d

$$
\begin{aligned}
& I x+g m v g s=\frac{v x}{r o}+\frac{v x}{1 s} \\
& v g s=-v x \\
& I x=v x\left(9 m+\frac{1}{r 0}+\frac{1}{2 s}\right)
\end{aligned}
$$

$$
\Rightarrow R_{0}=\frac{1}{9_{m}}\left\|r_{0}\right\| R_{s}
$$

(3) Common-Gate Amp (C.6)

DS

$$
\begin{aligned}
& v_{i}=\text { source } \\
& v_{0}=\text { Drain }
\end{aligned}
$$

Gate \rightarrow Common vsi
solve for $V G S$, ID \& VDS

$$
\begin{aligned}
\Rightarrow & I D=k n(V G S-V T N)^{2} \\
& V G S+I D R S-V G G=0
\end{aligned}
$$

$$
U G S=U G G-I D R S
$$

$$
I D=\frac{V G G-V G S}{R_{S}}
$$

ro(if it excested)
AC

$$
\begin{aligned}
& v_{0}=-9 m v g s(R D / R U) \\
& v_{g s}=-v_{s i} \\
& \frac{v_{0}}{v_{s i}}=9 m(R D / / R L)
\end{aligned}
$$

$$
\Rightarrow \triangle D \varnothing D=0^{\circ}
$$

(2) $A \cup \geqslant 1$

$$
\begin{aligned}
& \wedge R_{i n}=R_{s} / R_{i s} \\
& \Rightarrow R_{i s}=\frac{v_{i}}{I}=\frac{-v g s}{-g_{m g s}}=\frac{1}{g m} \\
& \Rightarrow R_{i n}=R_{s} / 1 \frac{1}{g m} \Rightarrow \text { (3) Low Rin }
\end{aligned}
$$

$$
\begin{aligned}
& R_{0}=? 2 \\
& \Rightarrow R_{0}=\left.\frac{v x}{I x}\right|_{v s i}=0
\end{aligned}
$$

when usi $=0, \operatorname{vg}_{s}=0$

$$
g m v g s=0 \quad(D \cdot C \text { source }-D 0 \cdot C)
$$

$$
\Rightarrow R_{0}=R D .
$$

- AV for Mosfeb Amp is Less than AV for BJI Arp due to ban gm value for the same current level.

$$
\begin{array}{rl}
A V=-g m R C & A V=-9 m R D \\
& =\frac{-1 m A}{0.026} \cdot 1 \mathrm{~K}
\end{array} \begin{aligned}
& g_{m}=2 \sqrt{\mathrm{knId}} \\
& A V=-38.5 \text { For } K_{n}=10 \\
& \\
& \\
& \\
& A V=2 \sqrt{10 \mathrm{~A} 1}=6.6 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

69
multistage Amp.
(1) Cascode multistage Amp.

4Desigh the et to have

$$
I D Q=1 m A
$$

$$
V D s_{1}=V D s_{2}=3 V
$$

(1) Find $R_{1}, R_{2}, R_{3}, R_{1} D$
(2) Draw .S.S.A.C eq cot \& Find $A \cup, R i, R_{0}$

$$
\text { - Let } I=10 \% I D
$$

Sol:-

RD??

$$
\begin{aligned}
& V G_{S}=V T N \mp \sqrt{\frac{I D}{k n}} \\
& V G_{1}=1 \mp \sqrt{\frac{1}{1}}=2 V \quad \Phi R O=V G_{2} \\
& V G_{1}=2+1 * 1=3 V \\
& I=0.1 \times I D=0.1 \mathrm{~mA} \\
& +R_{3}=\frac{3 V}{0.1}=30 \mathrm{kR} \\
& -V G_{2}+V G_{2}+V D S_{1}+I D R_{3}=0 \\
& V G_{2}=2+3+1 * 1=6 V \\
& * R_{2}=\frac{6-5}{0.1}=30 \mathrm{KR} \quad R_{T}=30+30+40=100 \mathrm{k} \Omega \\
& * R_{1}=\frac{10-6}{0.1}=40 \mathrm{k} \Omega \quad R_{T}=\frac{V D D}{I D}=\frac{10 \mathrm{~V}}{0.1}=100 \mathrm{kR} \text { (for check) }
\end{aligned}
$$

(2) AC Analogis

Vo $\mu, A I=1=G G \quad h, G G$
 $\Lambda=V_{0}$ r 3 imity corvent, er

* this cat is used to Amplify frequency \& as a wide band Amplifier.

$$
A V=\frac{v_{0}}{v_{s_{i}}}=\frac{\left.-g_{m_{1}} v g_{s_{1}(R D / \mathbb{R L}}\right)}{v_{g_{1}}}
$$

$$
=-9 m(R D / / R L)
$$

$$
\begin{aligned}
& R_{i}=R_{2} \| R_{3}=15 \mathrm{k} \Omega \\
& R_{0}=\left.\frac{v x}{I x}\right|_{v s_{i}=0}=R D \\
& g m=g m 2=2 \sqrt{k n I D}=2 \mathrm{~mA} / \mathrm{V} \\
& A v=-2(3 / 16)=-4
\end{aligned}
$$

(2) cascade multistage

1) Find $V D_{1}, I D_{2}, v D_{s 2}, V s_{7}$
2). Drow S.S.A.C eq cet \& Find $A V=\frac{v o}{\sqrt{s i}}$, Rin $R_{0}, R_{i n_{2}}, A V_{1}=\frac{v o l}{v s_{i}}$

Sol.

(1) D.C Aralysis
$I D_{1}=2 m A$

$$
\begin{aligned}
& K_{n_{1}}=K_{n_{2}}=\operatorname{Lm} A / V^{2} \\
& V T N=? \quad \lambda=0.02 \mathrm{~V}^{-1} \\
& V T N_{1}=V T N_{2}=1 \mathrm{~V}
\end{aligned}
$$

Kel at node D_{1}

$$
\begin{aligned}
& I=I D_{+}+I_{2} \\
& \frac{10-V D_{1}}{3}=2+\frac{V D_{1}}{6} \\
& 20-2 U D_{1}=R+V D_{1} \Rightarrow V D_{1}=\frac{8}{3}=2.66 \mathrm{~V}, V D_{1}=V Q_{2}
\end{aligned}
$$

$$
\begin{aligned}
& I D_{2}=K_{n}\left(V G S_{2}-V T N\right)^{2} \\
& V G_{1}=V G_{1}-\mid 51 \\
& V G_{S}=V T N \mp \sqrt{\frac{D_{1}}{K-1}}=1 \mp \sqrt{\frac{2}{2}}=2 V O R \varnothing
\end{aligned}
$$

$$
\begin{aligned}
V S_{1} & =V G_{1}-V G_{S 1} \\
& =\frac{10 \times 30}{100}-2=1 \mathrm{~V} \mathrm{~V} .
\end{aligned}
$$

$$
\begin{aligned}
& V D_{1}=V D_{1}-V S_{1}=2.66-1=1.66 \mathrm{~V} \\
& V S_{1}(\text { Sat })=V S_{1}-V T N=1 \mathrm{v}
\end{aligned}
$$

$$
\begin{aligned}
& V G_{2}=V G_{2}-V_{S 2}=2.66-I D_{2} R_{S}=266-I D_{2} \\
& I D_{2}=\frac{2.66-V G_{S}}{1}=2.66-V G S_{2} \\
& 2.66-V G_{S_{2}}-2\left(V G_{S_{2}}^{2}-2 V G_{S_{2}}+1\right) \\
& 2 V G S_{2}^{2}-3 V G S_{2}-0.66=0 \\
& V G_{S 2}=\frac{3 \mp \sqrt{9+4 * 2 * 0.66}}{4} \\
& V G S_{2}=\frac{3 \mp \sqrt{14}}{4}=\frac{3 \mp 3.6}{4}=1.66 V
\end{aligned}
$$

(2) AC Analysis

$$
\begin{aligned}
& \text { - } R_{\text {in }}=\operatorname{Rin}_{1}=R \pm h \\
& (701130)=21 \mathrm{k} \mu \\
& A v=\frac{v_{0}}{v s i}=\frac{v_{0}}{v o i} * \frac{v_{0}}{v s i} \\
& v_{0}=g_{m_{2}} V_{S_{2}}\left(R_{s} / / \mathrm{CO}_{2}\right) \\
& -v 0_{1}+\mathrm{vgss}_{2}+g_{m_{2}} \mathrm{vg}_{5} \text { (Rs/l/Oz) } \\
& v 0_{1}=\operatorname{vgs} 2(1+g \mathrm{mz} \text { R_/lro2 }) \\
& \frac{V_{0}}{v_{01}}=\frac{9 m_{2}\left(R_{5} / / r_{2}\right)}{1+9 m_{2}\left(R / / r_{2}\right)} \Rightarrow \mathrm{AV} \\
& v_{01}=-9 m_{1} \mathrm{Ng}_{1}\left(\mathrm{o}_{1} / / \mathrm{RD}_{\mathrm{D}} / / \mathrm{Re}_{\mathrm{s}}\right) \\
& v y_{3}=v s_{i} \\
& \frac{v 0_{1}}{V S i}=-g_{m},(r o,\|R D\| R G) \Rightarrow A V_{1} \\
& A V=\frac{9 m_{2}\left(r_{2} / / R S\right)}{1+9 m_{2}\left(r_{2} / / R\right)} A V_{2} \cdot \frac{\left(-9 m_{1} \text { ro, } / / R D / / R G\right)}{A V_{1}} \\
& r_{01}=\frac{1}{\lambda I D_{1}}=\frac{1}{002+2+10^{-3}}=\frac{10^{5}}{4}=25 \mathrm{kR} \\
& v_{02}=\frac{1}{0.02 \times 1 \times 10^{-3}}=50 \mathrm{KL} \\
& g_{m 1}=2 \sqrt{E_{m_{i}} I D_{1}}=4 \mathrm{~m} A / V
\end{aligned}
$$

$$
\begin{aligned}
& g_{n 2}=2 \sqrt{k_{n z} I D_{2}} \\
& A v_{1}=-4 *(25 / 13 / 16)=-7.2 \text { vott } \\
& A r_{2}=\frac{2.82 N^{1}}{1+2.8}=0.9 \\
& \Rightarrow A V=-7.2(0.9) \Rightarrow A V=-6.7 \\
& R_{\text {in } 2}=R 6=6 K-2 \\
& R O_{1}=R D / / T_{0}=2.5 \mathrm{kM} \\
& R_{0}=R_{0} 2=\left.\frac{V_{x}}{I x}\right|_{v_{i}=0} \\
& \left.R_{0}=R_{O_{2}}=\frac{1}{g_{m 2}} \right\rvert\, / r r_{2} / / R_{s} \\
& =\frac{10^{2}}{2.8} / / 50 \mathrm{~K} / / 1 \mathrm{~K}=500 \Omega
\end{aligned}
$$

Operational Amplifier

* v^{*} :- non inverter terminal
* $\sqrt{ }^{\top}$:- inverter term. $!^{-}-$

$$
\begin{aligned}
v_{a} & =A \cdot d \cdot v d \\
& =\frac{v_{0}}{v \pm v^{-}}
\end{aligned}
$$

* Rin for Mos op-Amp $\approx \infty$
 4 its avery hish gain direct coupled voltage Amp

$$
\begin{aligned}
\operatorname{Rin} 1 & =2 R E(\beta+1)+r \pi_{1} \\
\operatorname{Rin}_{2} & =2 R E(\beta+1)+r \pi_{2} \\
\text { Rid } & =\operatorname{Rin} 1+R_{\text {in }} \\
& =4 R E(\beta+1)+r \pi_{1}+r \pi_{2}
\end{aligned}
$$

BJT :- Cwr. controt. Curr. Sowce c.C.C.S

Mosfet:- Volt. cont. curr. source U.C.C.S

Sain
HOPen loop \Rightarrow 万,LV'chear Scred loop $\Rightarrow A V$ cike closed loopui ${ }^{-}$shpq $11=$ open loop hipts nive civen

So for knowbedye.

$v_{0}=A_{0} \cdot v d$
$\Rightarrow v_{0}$ is independonte ON RL
Ideal op-Amp

$$
v_{0}=\frac{A_{0} \cdot v d \cdot R L}{R L+R_{0}}
$$

\Rightarrow vo depends on PL

Operational Amplifier

v^{+}:- non inverter terminal
$4 \sqrt{ }^{+}$:- invertor term. $\left.\right|^{-}-$

$$
\begin{aligned}
V Q & =A d \cdot v d \\
& =\frac{V O}{V^{\top}} V^{-}
\end{aligned}
$$

* Rim for Mos op-Amp \approx
 * its avery high gain direct coupled voltage Amp 77

$$
\begin{align*}
\operatorname{Rin} 1 & =2 \operatorname{RE}(\beta+1)+r \pi_{1} \\
\operatorname{Rin} 2 & =2 \operatorname{RE}(\beta+1)+r \pi_{2} \\
\operatorname{Rid} & =\operatorname{Rin} 1+\operatorname{Rin} 2 \tag{3}\\
& =4 \operatorname{RE}(\beta+1)+r \pi_{1}+r \pi_{2}
\end{align*}
$$

BJ T :- Curt. controt. cur. source C.C.C.S

Morfet:- Volt. cont. cur. source U.C.C.S

op Amp:- Volt. curl volt. Source V.C.V.S

Sain gl togeterryit

Co for knowledye.

$v_{0}=A_{0} \cdot v d$
$\Rightarrow v_{0}$ is independente ON RL

Ideal op-Amp

$$
v_{0}=\frac{A_{0} \cdot v d \cdot R L}{R L+R_{0}}
$$

\Rightarrow vo depends on RL

* I should operate the Amp under closed Loop so \pm vc (max) the voltage gain is maintain (equal a value,$\neq \infty$) Vol gain Jوَ00
* Transfer che and operating Regions of up. Amp

$V_{0 \text { max }}=\mp V c c$
Lomax $=A_{0} \cdot V d=\mp \mathrm{VCc}$

$$
v d_{\max }=\mp \frac{v_{C S}}{A_{O}}
$$

$$
v_{0}=A_{0}\left(v^{ \pm} v^{-}\right)=A_{0} \cdot v_{d}
$$

(1) For $v d>0 \quad\left(v^{+}>v^{-}\right)$
fideal op -AmP (A0 $=\infty$)

$$
v_{0}=\infty \cdot v d \Rightarrow=+\infty=+v_{C C}
$$

(2) For $. v^{+}<\bar{v}, v d<0$

$$
v_{0}=\infty \cdot\left(-v_{e}\right)=-v_{C C}
$$

* for $741, A_{0}=2 * 10^{5}$, vac $=\mp 15$

$$
\text { vd max }=\mp \frac{15 \mathrm{~V}}{2 * 10^{5}}=\mp 75 \mu \mathrm{~V}
$$

* open Loop \Rightarrow comparator Amp. Involtagse
* virtual short \Rightarrow Vnode $1=$ Unodez \& neither goes to Gud
© virtual Gud \Rightarrow Unode $=$ Unodez fone of them $==$ 80

(closed Loop)

$$
\Rightarrow v_{0}=\frac{\frac{R_{2}}{R_{1}} \text { vi }}{L_{\Delta} \text { lip ovizo }}
$$

Vo N. Navi, ies ratio J_{1}
 +vce Jig
op-Amp Applications
(A) Linear Applications
(vo $\propto v i$)
(1) Inverling Amplifier

* KCL at node x

$$
\begin{aligned}
& I_{1}=I_{2}+I_{i n} \\
& \frac{v_{i}-v_{x}}{R_{1}}=\frac{v^{-}-v_{0}}{R_{2}}+I_{i n}
\end{aligned}
$$

but for ideal op-Amp.

$$
I_{\text {in }}=0,\left(R_{\text {in }}=\infty\right)
$$

$$
V^{-}=v^{+}=0 \text {, (Virtual Ground) }
$$

$$
v_{0}=A_{0}\left(v^{+}-v^{-}\right)
$$

For ideal OP-Amp: AO $=\infty$

Lo C.E \& C.S

ofl äō viber एLl Lio *

 \pm Vce ö́bstij161 suses $v_{0}=1000$, (xpeg ($260 \cdot 2,1$)
$V^{+}-V^{-}=\frac{v_{0}}{\infty}=0 \Rightarrow V^{+}=V^{-} \Rightarrow$ virtual
but $V^{+}=0, \therefore V^{+}=0$ (Virfuad short Groun)
every

* Fovirtual civound = virtual short \rightarrow Virtual shert \neq virtual Ground

$$
\begin{aligned}
& \frac{v_{i}}{R_{1}}=\frac{-v_{0}}{R_{2}} \\
& \Rightarrow v_{0}=\frac{-R_{2}}{R_{1}} v_{i}
\end{aligned}
$$

* closed-loop gain

$$
\therefore A V=\frac{v_{0}}{V_{i}}=\frac{-R_{2}}{R_{1}}
$$

* $\operatorname{Rin} \Rightarrow-v_{i}+I_{1} R_{1}+0=0$, Kin for $c c t=$ value
\qquad Fin for operational AmP $=\infty$
* $R_{0}=R_{0 p-A m p}=0$

EX:-
1)- Design an Inverting Amp to have $A V=-40$ \& $R_{\text {in }}=2 \mathrm{k} \Omega$ (assume ideal op-Amp), $v c= \pm 10 \mathrm{~V}$.
2.). If $v_{i}=0.3 \sin (\omega t)[\mathrm{V}]$ \Rightarrow draw $V_{0}(t)$

3)- If $R L=4 K \Omega, v_{i}=0.2 \mathrm{~V}(d . c)$, calculate $I L_{1} I_{1}$ I_{2}, I_{0}
Sol:

$$
\begin{aligned}
& R_{\text {in }}=R_{1}=2 \mathrm{k} \Omega \\
& A V=\frac{-R_{2}}{R_{1}} \Rightarrow-40=\frac{-R_{2}}{2 k} \quad, R_{2}=80 \mathrm{k} \Omega
\end{aligned}
$$

屎价

* Io \rightarrow dut \Rightarrow sinks op-Amp
* Io \sim dint \Rightarrow source op-Amp.
(2) $V O(t)=A v \cdot v i=-40(0.3 \sin \omega t)$
$=-12 \sin \omega t[\theta]$

(3) $I L=\frac{V_{0}}{R L}$

$$
\begin{array}{ll}
\begin{array}{ll}
V_{0}=A V \cdot V_{i}=-40(0 \cdot 2)=-8 \mathrm{~V} & \\
& I L=\frac{-8}{4}=-2 \mathrm{~mA}
\end{array} & \forall I_{L}=-2 \mathrm{~mA}
\end{array}
$$

\Rightarrow The op-Amp sinks curront D Io vo Ideal.
(11) MON Inverting AmP.

* KCL at node \otimes

$$
\begin{aligned}
& I_{1}=I_{2}+I_{\text {in }} \\
& \frac{0-V^{-}}{R_{1}}=\frac{V^{-}-V_{0}}{R_{2}^{\prime}}+I_{i n}^{0}
\end{aligned}
$$

$\begin{aligned} \text { but } V^{-} & \left.=U^{+}=V i \text { (virtual short) }\right] \Rightarrow \text { for Ideal op -Amp } \\ I_{\text {in }} & =0\end{aligned}$

$$
\begin{aligned}
& \frac{-v i_{i}}{R_{1}}=\frac{v_{i}-v_{0}}{R_{2}} \\
& \frac{v_{0}}{R_{2}}=\frac{v_{i}}{R_{2}}+\frac{v_{i}}{R_{1}} \\
& v_{0}=v_{i}\left(1+\frac{R_{2}}{R_{1}}\right) \\
& \Rightarrow A v=\frac{v_{0}}{v_{i}}=1+\frac{R_{2}}{R_{1}}
\end{aligned}
$$

$$
\text { * } R_{i n}=R_{i}\left(o p-A_{m p}\right)=\infty
$$

$E x=$

$$
v_{0}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{u}+B_{3}}\right) v i_{i}
$$

Jim repp $\quad \Rightarrow$
 * $v_{0}=\frac{q v e}{i-3}=I_{1} \& I_{2} C \cdot(c \cdot \omega), I L \uparrow, I_{0}$

$$
A v=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{u}}{R_{3}+R_{u}}\right)
$$

* For the previous figure:-calculate:- AV, $I_{1}, I_{2}, I_{L}, V_{0}, I_{0}$
Sol:-

$$
\begin{aligned}
& A v=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{u}}{R_{3}+R_{4}}\right)=\left(1+\frac{9}{1}\right)\left(\frac{2}{2+3}\right)=10 * 0.4=4 \\
& V_{0}=A V \cdot V_{i}=4 * 5 \sin \omega t=20 \sin \omega t \cong\left(V_{0}=+v e\right) \\
& \text { Prsource } \\
& \rightarrow I_{0}=\text { DOW } \\
& \Rightarrow I L=\frac{v_{0}}{R L}=\frac{20 \sin \omega t}{10}=2 \sin \omega t \mathrm{~mA} \\
& \Rightarrow I_{1}=\frac{V^{-}}{R_{1}} V^{+}=v^{+}=\frac{V_{i} * R_{4}}{R_{3}+R_{4}}=2 \sin \omega t \underline{V} \\
& \therefore I_{1}=\frac{2 \sin \omega t}{1 \mathrm{~K}}=2 \sin \omega t \mathrm{~mA} \\
& \Rightarrow I_{2}=\frac{v_{0}-v^{-}}{R_{2}}=\frac{(20 \sin \omega t-2 \sin \omega t)}{q} \\
& \therefore I_{2}=2 \sin \omega t m A \quad, I_{1}=I_{2} \text { (Ideal) } \\
& \Rightarrow I_{0}=I_{2}+I_{L}=2 \sin \omega t+2 \sin \omega t \\
& =4 \sin \omega t m A
\end{aligned}
$$

$\therefore O P-A m P \Rightarrow$ source current.

* Ideal Buffer \approx Common Drain (Mosfet) (op-Amp)
(iii) voltage follower (Buffer) \sim non-Inys. $D_{1} 200^{\circ}$ an io al

$$
\begin{aligned}
& R_{1}=\infty \Rightarrow v_{0}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{i} \\
& (0 \cdot C) \quad \nexists v_{0}=v_{i} \\
& R_{2}=0 \Rightarrow v_{0}=\left(1+\frac{0}{R_{1}}\right) v_{i} \\
& (s \cdot C) \quad \Rightarrow v_{0}=v i
\end{aligned}
$$

$$
\frac{v_{0}}{v_{i}}=1 \Rightarrow v o=v_{i}
$$

(1) $A V=$?
(4) $R_{0}=0$
(2) $\phi=0^{\circ}$
(5) It is used to candle loading effect.
(3) $R_{i n}=\infty$

Z only 1% of $V S$ is
across Load. (sever loading effect) ar f arr ipo. Buffer

* after adding a Buffer.

$$
v_{x}=\frac{v s^{\prime} \cdot R_{i} \beta}{R_{i} \beta+R_{s}}
$$

since $R_{i B} \gg R_{s}$
$V x \simeq V_{S}$, but $V x=V^{+}=V^{-}=V L$

$$
\therefore V L=V S
$$

\Rightarrow No Loading effect.
(III) Inverting summing Amp

Kcl at node \otimes

but $V^{-}=V^{+}=0$ (VG)

$$
\begin{aligned}
& I_{\text {in }}=0 \\
& \frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{N}}{R_{N}}=\frac{-V_{0}}{R_{F}} \\
& V_{0}=-\left(\frac{R_{F}}{R_{1}} V_{1}+\frac{R_{F}}{R_{2}} V_{2}+\cdots+\frac{R_{F} V N}{R N}\right)
\end{aligned}
$$

* $v_{1}, v_{2} \& V N$ con be
$A C, D \cdot C$ or $A \cdot C \& D \cdot C$
* Special case.
$R_{1}=R_{2}=R$ ~ Gain hog

$$
\Rightarrow V_{0}=-\frac{R F}{R}\left(V_{1}+V_{2}+\cdots+V N\right)
$$

Ex:- use ideal op-Amp. to design ta. cot to give:-
(I) $v_{0}=-10\left(v_{1}+v_{2}\right)$
(II) $V_{0}=-\left(10 V_{1}+5 V_{2}+3 V_{2}\right)$

Sol:-

$$
\begin{aligned}
& V_{0}=-\frac{R_{F}}{R_{2}}\left(v_{1}+V_{2}\right) \\
& \text { compared } L_{0} V_{0}=-10\left(V_{1}+V_{2}\right) \\
& \frac{R_{F}}{R}=10 \Rightarrow L e t R_{1}=1 \mathrm{k} \Omega \\
& \therefore R F=10 \mathrm{k} \Omega
\end{aligned}
$$

(II)

$$
\begin{aligned}
& V_{0}=-\left(\frac{R_{F}}{R_{1}} V_{1}+\frac{R_{F}}{R_{2}} V_{2}+\frac{R_{F}}{R_{3}} V_{3}\right) \\
& \frac{R_{F}}{R_{1}}=10 \quad, \frac{R_{F}}{R_{2}}=5, \frac{R_{f}}{R_{3}}=3
\end{aligned}
$$

 ebirive \# <R1<\# w le jj,
$\therefore R_{2}=3 k 4, R_{1}=1.5 \mathrm{~K} \Omega \quad$ RFivjus could ω lily Range J $R_{3}=5 \mathrm{~K} 1$

Ex:- Calculate f Draw $v_{0}(t)$ for $v_{1}=-2 V d \cdot c$,

$$
V_{2}=3 \sin \omega_{t}(v) ., v_{0}=-\left(4 V_{1}+2 V_{2}\right) \text {. }
$$

Sol:-

$$
\begin{aligned}
V_{0} & =-(-4 * 2+2 * 3 \sin \omega t) \\
& =(8 v-6 \sin \omega t) \\
& +14{ }^{\prime 0} \\
& +8 \rightarrow t
\end{aligned}
$$

\leadsto Amp the difference between 2 signals
(1) Difference Amplifier

* use super position
(1) Effect of $v_{1} \quad\left(v_{2}=0\right)$

$$
\begin{aligned}
V^{+}= & \frac{V_{2} \cdot R_{4}}{R_{3}+R_{4}}=0 \\
& Q_{0} \quad V_{01}=\frac{\partial R_{2}}{R_{1}} V_{1}
\end{aligned}
$$

(2) Effect of $V_{2}\left(V_{1}=0\right)$

$$
\begin{aligned}
& V^{+}=\frac{v_{2} \cdot R_{4}}{R_{4}+R_{3}}=V^{-} \\
& \Rightarrow V_{02}=\left(1+\frac{R_{2}}{R_{1}}\right) V^{+} \\
& \therefore V_{0} \\
& \therefore V_{0}\left(\frac{R_{1}}{R_{3}}+\frac{R_{u}}{R_{3}}\right) V_{01}+V_{02} \\
& \Rightarrow V_{0}=\left[\left(1+\frac{R_{2}}{R_{1}}\right) \cdot \frac{\frac{R_{4}}{R_{3}}}{\left(1+\frac{R_{4}}{R_{3}}\right)} \cdot V_{2}-\frac{R_{2}}{R_{1}} V_{1}\right]
\end{aligned}
$$

* If we choose $\frac{R_{4}}{R_{3}}=\frac{R_{2}}{R_{4}} \leadsto$ then
 $\bar{a}_{\text {W. }}^{\text {of }}$

$$
\begin{aligned}
& v_{0}=\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}\left(v_{2}-v_{1}\right) \\
& \therefore \frac{v_{0}}{v_{2}-V_{1}}=A d=\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}
\end{aligned}
$$

$$
\begin{array}{ll}
v d=v_{2}-v_{1} \\
-v d+I R_{3}+I R_{1}=0 & R_{d}=R d=R_{1}+R_{3} \\
I & R_{i d}+R_{3}
\end{array}
$$

Ex:- Design a difference Amp. to have $\operatorname{Rin}=20 \mathrm{ks}$
and $A d=500$.

$$
A v=\frac{R_{2}}{R_{1}},\left\{\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}} \quad v_{1} a c c c: c\right.
$$

To satisfy $\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}$
we can choose $R_{1}=R_{3}$ \& $R_{2}=R_{4}$

$$
\begin{aligned}
& \therefore R_{\text {in }}=R_{1}+R_{3}=2 R_{1}=2 R_{3} \\
& R_{1}=R_{3}=10 \mathrm{k} \Omega \\
& A d=\frac{R_{3}}{R_{1}}=500
\end{aligned}
$$

* to increase $A d$, Kin $\Rightarrow D$ Re should be very big and that's undesired in Design
\Rightarrow very High Kin, gain $\quad \Rightarrow$ adjustable
\Rightarrow single element dependent
\Rightarrow using resonable values $4 d$ of Resistance (in $k \Omega$ Pang

$$
\begin{gathered}
R_{2}=500 \times 10=5 \mathrm{M} \Omega \\
R_{2}=R_{4}=5 \mathrm{M} \Omega
\end{gathered}
$$

(1I) Instrumentation Amp.
a)-contains:- difference

Two non-Inverting Amp

$$
\rightarrow A_{1} \& A_{2}
$$

[It is used to achive, high, adjustable and single etement dependent gain, also very high ip Resistor values ($k \Omega$) range]

$$
\Rightarrow v_{0}=\frac{R_{u}}{R_{3}}\left(v_{O_{2}}-v_{O_{1}}\right)
$$

* using super position.

For A_{1} :-
(2) effect of $v_{1}\left(v_{2}=0\right)$

$$
v_{01}=\left(1+\frac{R_{2}}{\bar{R}}\right) v_{1}
$$

(II) effect of $V_{2}\left(V_{1}=0\right)$

$$
\begin{aligned}
\bar{v}_{01} & =\frac{-R_{2}}{R_{1}} v_{2} \\
=\Delta v_{01} & =v_{01}+\overline{v_{01}}=\left(1+\frac{R_{2}}{R_{1}}\right) V_{1}-\frac{R_{2}}{R_{1}} V_{2}
\end{aligned}
$$

* If \Rightarrow to control A (guin)

For A_{2} :-

$$
\begin{aligned}
* v_{02} & =V_{02}+\overline{\overline{v o z}} \\
v_{02} & =\left(1+\frac{R_{2}}{R_{1}}\right) V_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{V_{O_{2}}}{ }=-\frac{R_{2}}{R_{1}} V_{1} \\
& \Rightarrow V_{02}=\left(1+\frac{R_{2}}{R_{1}}\right) V_{2}-\frac{R_{2}}{R_{1}} V_{1}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow V_{0} & =\frac{R_{4}}{R_{3}}\left[\left\{\left(1+\frac{R_{2}}{R_{1}}\right) V_{2}-\frac{R_{2}}{R_{1}} V_{1}\right\}-\left\{\left(1+\frac{R_{2}}{R_{1}} V_{1}\right)-\frac{R_{2}}{R_{1}} V_{2}\right\}\right] \\
V_{0} & =\frac{R_{4}}{R_{3}}\left(1+\frac{2 R_{2}}{R_{1}}\right)\left(V_{2}-V_{1}\right) \\
\frac{V_{0}}{V_{2}-V_{1}} & =A d=\frac{R_{4}}{R_{3}}\left(1+\frac{2 R_{2}}{R_{1}}\right)
\end{aligned}
$$

Ex:- Design an AI to have adjustable gain $(5 \rightarrow 500)$ The max Resistor must Not exceed $100 \mathrm{k} \Omega$.
Sol:

$$
5>500
$$

$A_{\text {min }} \quad A_{\text {max }}$

$$
A d=\frac{R_{4}}{R_{3}}\left(1+\frac{2 R_{2}}{R_{1} \nabla}\right)
$$

Choose R_{1} to be variable Resistor
 so the gain will equal $\Delta 0$ \＆the op－Amp enter the sat mode so I should separate R into two Resistor＇s，one fixed fo the other variable

＊$A_{\text {min }} \rightarrow R_{1}$ max
＊$A_{\text {max }} \rightarrow R_{1}$ min

Let Riv to be a potenchometer of $100 \mathrm{k} \Omega$ ．

$$
\begin{aligned}
& R_{1 \text { max }}=R_{1} F+R_{1 v}(\text { max })=R_{1} F+100 K \\
& R_{1} \min =R_{1} F+R_{1 v}(\text { min })=R_{1} F \\
& 5=\frac{R_{u}}{R_{3}}\left(1+\frac{2 R_{2}}{R_{1 F}+100}\right)
\end{aligned}
$$

Let．$\frac{R_{4}}{R_{3}}=2 \leadsto \frac{A_{\text {min }}}{\text { Ratio }_{\text {sip in }}^{\text {al }}}>1$

$$
\begin{aligned}
& 5=2\left(1+\frac{2 R_{2}}{R_{1} F+100}\right) \\
& 1.5=\frac{2 R_{2}}{R_{1} F+100 \mathrm{~K}} \\
& 2 R_{2}=1.5 R_{1} F+150 \mathrm{~K} \ldots(1) \\
& \Rightarrow 500=2\left[1+\frac{2 R_{2}}{R_{1} F}\right] \\
& 249=\frac{2 R_{2}}{R_{1} F} \\
& 2 R_{2}=249 R_{1 F} \ldots \ldots \text { (2) }
\end{aligned}
$$

equate 1 f ?

$$
\begin{aligned}
& 1.5 R_{1} F+150=2 u 9 R_{1} F \\
& R_{1 F}=\frac{150}{247}=0.62 \neq \Omega \\
& R_{2}=\frac{249 * 0.62}{2}=75 \mathrm{k} \Omega
\end{aligned}
$$

Let $R_{3}=1 \mathrm{k} \Omega$

$$
R_{4}=2 \mathrm{~K} \Omega
$$

(VII) Integrator
$I_{1}=I_{i n}+i c$

$$
\frac{v_{i}-v^{-}}{R}=\operatorname{Iin}^{\circ}+\frac{c d v_{c}}{d t}
$$

$$
V_{C}=V^{-}-V_{0} \Rightarrow \quad V_{0}=V_{c}
$$

but for ideal op -AmP

$$
\begin{aligned}
& \text { I in }=0, v^{t}=V^{-}=0 \quad(U \cdot G) \\
& \Rightarrow \frac{v_{i}}{R}=-c \frac{d v_{0}}{d t} \Rightarrow d v_{0}=\frac{-v_{i}}{R_{C}} \\
& \quad \int d v_{0}=\int-\frac{v_{i}}{R_{c}} \cdot d t \\
& \Rightarrow v_{0}=-\frac{1}{R c} \int v_{i} d t+K^{0}
\end{aligned}
$$

* Draw vo (t) for the input shown.
(1) For. $0<t<T / 2 \Rightarrow V_{i}=10 \mathrm{~V}$

$$
\begin{aligned}
& \left.V_{0}=-\frac{1}{R_{c}} \int_{0}^{R / 2} 10 \cdot d t=\frac{-10 t}{R c}\right]_{0}^{0.5 m 5} \quad-\left.\left.10\right|_{-1 / 2} ^{1 / 2}\right|^{1} \rightarrow t \\
& \left.\Rightarrow v_{0}=-\frac{10 t}{0.5 * 10^{3} * 1 * 10^{-6}}\right]_{0}^{05 \mathrm{~ms}} \quad F=1 \mathrm{KHz}, T=\frac{1}{1 \mathrm{~K}}=1 \mathrm{~ms} \\
& V_{0}=\frac{-10 * 10^{3}}{0.5}(0.5-0) * 10^{-3}=\frac{-5}{0.5}=-10
\end{aligned}
$$

* $-\frac{1}{R_{c}} \Rightarrow$ Gain
* Amp f integral at the same time
(2) For $\frac{1}{2} T<t<T$, $v i=-10 \mathrm{~V}$

$$
\left.v_{0}=\frac{10 t}{0.5 * 10^{3} * 10^{-6}}\right]_{0.5}^{1}=+10 \mathrm{~V}
$$

$*-A v=\frac{-72}{z_{1}} \quad, Z_{1} \rightarrow R_{1}$

$$
z_{2}=x_{c}=\frac{1}{2 \pi f c}
$$

$f c:-$ low freq $\Rightarrow X C=\infty, \quad A V=\infty$
Le parallel 8 g es Res. crete 2 os 4

So. the op-Amp in satisfy]

* $C \rightarrow D Q$

\rightarrow Voltage
compardor
$* C \rightarrow S \cdot c \rightarrow$ Buffer $\left(v^{t} \rightarrow\right.$ Sind $)$
* de or very Low freq. signal shot practical.
* $v_{\text {in }}=$ very high freq. signal \Rightarrow problem
(IX) Differentiator

$$
\begin{aligned}
& i c=I_{0}+I_{\text {in }} \\
& \frac{c d v c}{d t}=\frac{V^{-v_{0}}}{R}+I_{\text {in }}
\end{aligned}
$$

but. In $=0, v^{-}=v^{+}=03$ ideal op-Amp.

$$
\begin{gathered}
\text { but } \operatorname{lin}=0 \quad v=v^{\prime}=03 \text { ideal op- } \\
v c=v_{i}-\hat{x}^{\prime} \leadsto v c=v_{i} \\
\Rightarrow c \frac{d v_{i}}{d t}=\frac{-v_{0}}{R} \\
v_{0}=-R c \frac{d v_{i}}{d t} \Rightarrow \text { vo } \propto \frac{d v_{i}}{d t}
\end{gathered}
$$

* Draw vo (t) for the shown Vil.
(11) For ort $<T / 2$

$$
\begin{aligned}
v_{0} & =-R_{c} \frac{d v_{i}}{d t} \\
\frac{d v_{i}}{d t} & =\frac{\Delta v_{i}}{\Delta t}=\frac{(5-0) r}{(05-0) \mathrm{ms}} \\
& =10 * 10^{3} \mathrm{v} / \mathrm{s} \\
\Rightarrow v_{0} & =-2 * 10^{3} * 1 * 10^{-6} * 10^{4} \\
v_{0} & =-20 \text { volt. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) For } T / 2<t<T \\
& \frac{\Delta v_{i}}{\Delta t}=\frac{(0-5) v}{(1-0.5) \mathrm{ms}}=-10^{4} \mathrm{v} / \mathrm{s} \\
& \Rightarrow \quad v_{0}=-2 * 10^{3} \times 10^{-6}\left(-10^{4}\right) \\
& v_{0}=+20 \mathrm{VolH} .
\end{aligned}
$$

* $A V=\frac{-z_{2}}{z_{1}}$

$z_{1}=x c=\frac{1}{2 \pi f c}, f c:-$ very big

$$
\therefore x_{c}=0 \quad \Rightarrow \quad A v=\infty
$$

(practical diff.)

* if V_{i} = square

(Trigger)
Train Pulse

$$
\text { * ID } \sim \text { 0, noun }
$$

(12) current - to- voltage convertor
VO\&ID

$$
\begin{aligned}
& I D=I_{\text {in }}+I \\
& I D=I I_{n}^{\nabla^{0}}+\frac{V^{-0^{0}}-V_{0}}{R}
\end{aligned}
$$

but. I in $=0 \quad, \quad V^{-}=v^{+}=0 \quad(V \cdot G)$

$$
\Rightarrow V_{0}=-R I D
$$

(1) Voltage-to-current convertor.

$$
\begin{aligned}
& I_{1}=I_{0}+I_{\text {in }} \\
& \frac{v_{s}-V^{-D^{0}}}{R_{1}}=I_{0}+I_{\text {In }}
\end{aligned}
$$

for ideal op-AmP

$$
\begin{array}{ll}
V^{+}=V^{-}=0, & (V \cdot G), \\
I_{0}=\frac{I_{\text {in }}=0}{R}, & I_{0} \times V_{s}
\end{array}
$$

$$
\text { for } R_{1}=1 k \Omega
$$

Vs: $(2 \mathrm{~V} \rightarrow 10 \mathrm{~V})$
Io: $\left(\frac{-2 V}{1 K} \rightarrow \frac{-10 V}{1 K}\right)$
Io: $(-2 m A \rightarrow-10 m A)$.

No NLinear Applications
(1) Precision Rectifier.

so we use on Rectify becuase precision Rectifier

For $\cup p_{2} \Rightarrow$ no

$$
v p<v_{x}
$$

P.R:- op -Amp cit with Diodes) used to Rectify A.C signal with $V P<V x$
(I工) during to +he cycle

* the op-Amp cancle the effect of UN when D \rightarrow off

100
$i_{L}=i d$, the loop will be closed and vo vi

(II) For te Half cycle $v_{0}=v_{i} \Rightarrow-v e$, so iLA

ID $=-I L \Rightarrow D$ (D-off)
Loop is open $\Rightarrow \Delta v_{0}=0$

(III) voltage comparator
\rightarrow op -Amp works in open -loop mode

$$
\rightarrow V_{0}=\mp \mathrm{VCC}
$$

$v_{0}=A_{0}\left(v^{+}-r^{-}\right)$

For Ideal op -Amp, $A_{0}=\infty$
(i) For $v^{+}>v^{-}, v d=+v_{e}, v_{0}=+v_{c c}$
(ii) for $v^{+}<v^{-}, v_{d}=-v_{e}, v_{0}=-v c c$

* op Amp \rightarrow open
* OP \rightarrow symmetrical square wave
* Zero crossing Detector $\sqrt{10 \mid}=$ volt. comp with Vref $=0$
(1) $0<t<b_{1} \quad N^{+}<V^{-}, v_{0}=-v_{c c}$
(2) $t_{1}<t<t_{2}, V^{+}>V^{-}, V_{0}=+v_{c c}$
(3) $t_{2}<t<t_{3}, V^{-1}<V^{-}, v_{0}=-V_{C C}$

symm.

(iii) Zero-crossing Detector (sin \rightarrow square wave) * Voltage comparator which vert $=0$

* If we add $R^{\prime}(s)$

$$
\Rightarrow V_{\text {ref }}=\frac{10 * 2}{8+2}=2 \mathrm{~V}
$$

\sim no connection with Vo

* no connection between vo \& V (inv)
* open loop $\Rightarrow v^{+} \neq v^{-}$
(15. Exponential Amp.

$$
I D=I_{\text {in }}+I_{0}
$$

$$
\text { Is } e^{\frac{V D}{V V_{T}}}=I_{\text {in }}^{\square}+\frac{V_{-V_{0}}^{\square}}{R}
$$

(1) Logarithmic Amp.

$$
\begin{aligned}
& I=I D+I_{i n} \\
& \frac{V i-V^{\prime}}{R}=I_{s} e^{\frac{V D}{n v T}}+I_{i n}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { but } v=v^{+}=0 \quad(v-a) \\
I_{\text {in }}=0 \quad\left(R_{i}=\infty\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { but } \left.V^{+}=V^{-}=0 \quad(U \cdot G)\right\} \\
& I_{\text {in }}=0 \\
& \Rightarrow V D=v_{i}-V^{-V^{\circ}}=v_{i} \\
& I_{s} e^{\frac{\dot{v}^{n N T}}{}}=-\frac{V_{0}}{R} \Rightarrow \underbrace{V}_{n=1, V T=0.026 \mathrm{~V}} \text {, Is } \rightarrow \text { given }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V i}{I S \cdot R}=e^{\frac{-v o}{n V}} \\
& \Rightarrow \frac{-v o}{n V T}=\ln \frac{V i}{I S \cdot R} \\
& \Rightarrow v_{0}=-n V T \ln \frac{V i}{I S \cdot R}
\end{aligned}
$$

* C.M.R.R :- common-mode-Rejection Ratio
\rightarrow given in data sheet
$C M R R=\frac{A d}{A C}$, Ad:- diff mode gain
.) $A C$ Ac:- common - mode gain Lo Ideally $=\infty$
Practically $=$ v er
Lo practically = very high \#

$$
\Rightarrow C M R R(d B)=20 \log \frac{A d}{A C}
$$

For $A d=10^{4} \cdot A C=0.1$

$$
c M R R(d B)=20 \log \frac{10^{4}}{0.1}
$$

$$
=20 \log 10^{5}
$$

$$
=100 \mathrm{~dB}
$$

- for this cot $A c=0 \Rightarrow C M M R$ close to Ideal

* $C M M R_{1}=80, C M M R_{2}=100, \underline{\text { best then } 1}$

Ex:- Given $C M R R=80 \mathrm{~dB}, A d=10^{3}, A C=$??
Sol:

$$
\begin{aligned}
& 80=20 \log \frac{A d}{A C} \\
& \frac{80}{20}=\log \frac{A d}{A C} \Rightarrow 4=\log \frac{A d}{A C} \\
& \frac{A d}{A C}=10^{4} \Rightarrow A C=\frac{10^{3}}{10^{4}}=0.1
\end{aligned}
$$

$$
-10+I z \cdot 2 K+V z=0
$$

$$
I_{z}=\frac{10-v z}{2 k}=\frac{10-4}{2}
$$

$$
I_{Z}=3 m A
$$

since $I Z>0 \quad \therefore Z-D$ is $0 N$

$$
\Rightarrow v^{+}=v z=u v \quad \frac{1}{T} v z=u v
$$

\angle becuase Zinner Diode is off

$$
U^{+}=+10 \mathrm{U} \text { on off } \& Z \cdot D \quad \text { lis } \Rightarrow
$$

$$
\begin{aligned}
& 3 n M=I_{m A}+I z \\
& \begin{array}{ll}
A I I Z \\
\Rightarrow I Z=2 m A \\
2 \sim z D \text { on }
\end{array} \quad V O=\left(1+\frac{5 K}{1 K}\right) V^{+}
\end{aligned}
$$

Write expretion for vo, calculate AV.

$$
\begin{aligned}
& v_{0}=\frac{10}{5}\left(10 v_{i}-\left(-4 v_{i}\right)\right) \\
& \therefore V_{0}=28 v_{i} \quad, A v=\frac{v_{0}}{v_{i}}=28
\end{aligned}
$$

* $\operatorname{Rin} 1=1 k$
* $\operatorname{Rinz}_{2}=\infty$
* $R_{\text {in } 3}=\infty$
- $\operatorname{Rin} y=5+10$

Ex:- Design the et such
1). that $A V=-8, I D Q=1 \mathrm{~mA}$

$$
U D S Q=10 \mathrm{~V}, 4 I=10 \% I D
$$

Find (R P, R, R, R_{1}, R_{2}) ? ?
21- Draw S.S.A.C equct \& find $R_{i} \& R_{0}$.

Sol:-
Given:- $V T N=T V, k_{n}=1 m A / V^{2}$

* From $D-C$

$$
\begin{aligned}
& -20+I D R D+V P S+I D R_{S}=0 \\
& R D+R S=\frac{(20-10) V}{1 m A}=10 \mathrm{k} \Omega
\end{aligned}
$$

- AC. Analysis

$$
\begin{aligned}
& \operatorname{Cog}_{m}=2 \sqrt{k A I D}=2 \sqrt{1+1}=2 m A l V \\
& -8=-2(R D / / R L) \sim(R D \| R L)=4 \mathrm{k} \Omega \\
& 4=\frac{R D \cdot 20 K}{R D+20} \leadsto R D=\frac{20 * 4}{20-4}=5 K \Omega \\
& \therefore R s=10-5=5 \mathrm{k} \Omega \text {. }
\end{aligned}
$$

if $\operatorname{Rin}=45$

禺原 $107 \mid \quad \quad R_{0}=R D$

$$
\begin{aligned}
& I=0.1 * 1=0.1 \mathrm{~mA} \\
& -20+I\left(R_{1}+R_{2}\right)=0
\end{aligned}
$$

$$
\begin{array}{rlr}
R_{1}+R_{2}=\frac{20}{0.1} & =200 k \Omega \\
R_{0} R_{2}=\frac{V G}{I}, & , V G S=V G-V S \\
& & \tau \vee G=V G S-V S
\end{array}
$$

$$
\begin{aligned}
* V G S & =V T N_{ \pm} \sqrt{\frac{I D}{F n}} \\
& =1 \pm \sqrt{1 / 1}=\underline{2 V} O R \underline{O V}
\end{aligned}
$$

$$
* V S=I D \cdot R_{S}=1 m * 5 K=5 \mathrm{~V}
$$

$$
2_{V G G}=5+2=7 V
$$

$$
\Rightarrow R_{2}=\frac{V G}{I}=\frac{7 \mathrm{~V}}{0^{\prime \prime}}=70 \mathrm{k} \Omega
$$

$$
R_{1}+R_{2}=200 \mathrm{k} \Omega
$$

$$
\Rightarrow R_{1}=B 0 \mathrm{Ka}
$$

($D-C$ slope $\Rightarrow \frac{-1}{R D+R_{s}}$
(*) $A-C$ slop $\Rightarrow \quad \frac{-1}{R D / / R L}$
(4) Rin $=R_{1} / / R_{2}=130 / 1170=\frac{130.70}{200}=45.5 \mathrm{KR}$

$$
\text { (1) } R_{0}=R D=5 \mathrm{k}-\Omega
$$

Ex:-
(1) f (2) \Rightarrow as the

Previous Ex.
(3) $I D_{2}, V D_{5}$
(4) Draw S.S.A.c eq cet \& find $A V_{2}$,

Soli-

$$
\begin{aligned}
& I D_{2}=k_{n_{2}}\left(V_{G S_{2}}-V_{T N_{2}}\right)^{2} \\
& V G_{S_{2}}=V G_{2}-V_{S_{2}} \\
& 2^{V S_{2}=I P_{2} \cdot R_{S_{2}}} \\
& \text { 2 } V G_{2}=V D_{1}=20-I D R D \Rightarrow V G_{2}=15 \mathrm{~V} \text {. } \\
& v_{G_{2}}=15-2 I D_{2} \\
& I P_{2}=\frac{15-V G S_{2}}{2} \quad \Rightarrow \quad \frac{15-V G S_{2}}{2}=1\left(V G S_{2}-1\right)^{2} \\
& Z_{D}=V G S_{2}^{2}-2 V G S_{2}+1 \\
& \left(2 V G S_{2}\right)^{2}-3 V G S_{2}-13=0 \\
& V G_{1}=\frac{3 \pm \sqrt{9+104}}{4} \leadsto V_{G_{S}}=\frac{3 \pm 10.5}{4}=\frac{3.9 V}{-V e^{x}} \\
& \Rightarrow V G_{s_{2}}=3.9 \underline{V}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow I D=\frac{15-3.9}{2} \leadsto I D=5.4 \mathrm{~mA} . \\
-20+V D_{s_{2}}+I D_{2}+R_{s 2}=0 \\
V D_{s_{2}}=20-5.4 * 2=9.2 \mathrm{~V} . \\
V D_{s}\left(s_{a t}\right)=V G s-V T N \\
\tau_{D} V D_{s}(s a t)=2.9 \mathrm{~V} .
\end{gathered}
$$

$$
\star A V>1
$$

* Ro $\leadsto \quad$ athé $=R_{s} \| \frac{1}{9 m 2} \quad C \cdot D$

$$
\begin{aligned}
& * \phi=180^{\circ} \\
& * \operatorname{Rin}=R+h \\
& * R 0_{1}=R D \\
& * \operatorname{Rin} 2=\infty
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow A V & =A V_{1} * A V_{2} \\
& =-\underbrace{g_{m_{1}} R D} \cdot \underbrace{g_{m 2} P_{s 2}} \frac{g_{m 2} R_{s 2}}{1+g_{2}}
\end{aligned}
$$

$$
\Rightarrow R_{0}=\left.\frac{I L x}{\sqrt{x}}\right|_{V i=0}
$$

frequency. $) 2$ Amp va Gain $川$ Sion kine

* Any Amp. should have at least coupling or bupass capacitor's

110

Frequency Response of
Amp.
series path of Input signal.

B $\ell, ~ V B E$

* F.R :- Is a plot of Amp gaia Av or AI versus frequency.
- The frequency can be in (Hz) or $\omega \rightarrow \mathrm{rad} / \mathrm{sec}$
- The gain can be unites

$$
A V=\frac{v_{0}}{V_{s}}, A I=\frac{I_{0}}{I_{s}} O R
$$

in $d B \sim$

$A(d B)$

$$
* A=\left|\frac{v_{0}}{v_{s}}\right|, v_{s}=2 \sin 2 \pi f t
$$

so. vo change equally with A, becuase US $=$ cons. (Amp)

* in Low \& high \sim frequency dependent with AV \Rightarrow frAN $f \times \frac{1}{a}$ * In meduim AV $f F \leadsto$ Independent
(1) Typical frequency Response has 3 main Regions. D. Low -freq Region. (LFR)
- extends from ($0 \rightarrow \mathrm{FL}$)
- The gain is freq. dependent. such that as ff, A \hat{F} due to effect of coupling

- As fA, AV . becuare these cap's are in the series path of Input signal, as $£ P, x_{s} p$, voltage drop across xt, vo, Av
2)- medium freq. Reg. (MFR)
- all capacitors are considered short acct. due to their Negligible reactances $x \approx 0$, The Amp behaves as a pure resistive Amp. with a certain gain Av m f a certain Phase $\left(0^{\circ}, 188^{\circ}\right)$
3)- High freq. Reg. $(H \mp R)$.
* at medium Reg the capacitor's values (x c) can be neahiable.
(8) In Reverse bias Junction the diodes acts as

\qquad

$$
\begin{aligned}
& z_{0}=R C / / R L / / \times \mathrm{cm} 2 \\
& A V=\frac{V O}{V \pi} \times \frac{V \pi}{v S} \\
& \Leftrightarrow \frac{v o}{v \pi}=-\operatorname{gm} z_{0} \\
& \frac{V \pi}{V s}=\frac{Z_{i}}{R_{s}+Z_{i}} \quad \leadsto z_{i}=R_{1} / / R_{2} / / \times x_{i}
\end{aligned}
$$

* fir, $\mathrm{Xcm}_{2} \downarrow, Z_{0} \downarrow$, Vo $\downarrow, \mathrm{AV} \downarrow$
- The gain is freq dependent Due to effect of Junction \& Diffusion capacitor [emerge effecitivily] (No physical existence) becuase of physical structure of transistor.
- The gain decrease as frequency increase because these cap's. have shunting effect ab IIP fol side as $F 4, \times \operatorname{Covod}$, AV \downarrow.
* the gain is freq. de? / why??
ans due to Junction \& Diffusion capacitors.
(II) Frequency Response Analysis.

1) - Draw M.F.S.S.A.C eq. ceA \& Find $A V_{m}$.
2) Draw M.F.S.S.A.C eqcet \& Find $F L$.
3)- Draw H.F.S.S.A.Ceq CCt \& Eind FH.
4)- Sketch freq Response (BLode plote). [AV(dB) versus freq.] $\beta=100, V B E=0$ नFV
Sol:-
(1) $c_{1}, c_{2}, C E=\Delta$ exist, $c \pi, c M=0(x c=0)$

$$
V_{A}=\infty, G T=20 P F
$$

$$
c \mu=5 P E
$$

(I) Effect of c_{1} (C2fCE s.c)

$R_{\text {eq }}=$ Rth seen by c_{1}

$$
\begin{array}{r}
2 R_{\text {eq }}^{1}
\end{array}=\left[R_{s i}+\left(R_{t h} / r \pi\right)\right], R_{t h}=R_{1} \| R_{2}
$$

$$
\begin{aligned}
& \star C=0 \Rightarrow O \cdot C \\
& k C=\infty \Rightarrow S \cdot C
\end{aligned}
$$

P．C Analysis（to Find JCQ1

$$
\begin{aligned}
& v \text { th }=\frac{100 * 10}{50}=2 \mathrm{~V} \quad, \text { Rth }=8 \mathrm{k} \Omega \\
& \Rightarrow I B=\frac{(2-0.7)}{8+101 \times 1.25}=\frac{1.3}{13}=0.01 \mathrm{~mA}, I C Q=1 \mathrm{~mA} . \\
& 2 \Rightarrow r \pi=\frac{100 * 26}{7 \mathrm{~mA}} \Rightarrow \operatorname{Req}=[1+(9112.6)]=3 \mathrm{k} \Omega \\
& \Rightarrow F_{1}=\frac{1}{2 \pi * 1 \times 10^{-6} * 3 * 10^{3}}=D+L_{4}=\frac{10^{3}}{20} \Rightarrow F_{L_{1}}=50 \mathrm{~Hz}
\end{aligned}
$$

（III）Effect of $C_{2}\left(c_{1} \& \subset \cdot E \leadsto s . c\right)$

$$
\begin{aligned}
& R_{\text {eq }}^{2}= \\
& 2 \text { th }^{\operatorname{seen}} \text { by } c_{2} \\
& 2 R_{c}=R L=25 \mathrm{~K} \Omega
\end{aligned}
$$

$$
{ }^{D} F L_{2}=\frac{1}{2 \pi A 1 * 10^{-6} \times 25 \times 10^{3}} \Rightarrow F L_{2}=\frac{10^{3}}{50 \pi}=6.4 \mathrm{HZ}
$$

（iII）Effect of $C E\left(C_{1} f C_{2} \leadsto S \cdot C\right)$

$$
\begin{aligned}
& F_{L_{3}}=\frac{1}{2 \pi C_{3} \text { Req }} \\
& \text { Rems = Rah seen by ct } \\
& F L_{3}=\frac{1}{2 \pi+10+10^{-6} * 30} \Rightarrow \mathrm{Fl}_{3}=\frac{10^{4}}{20}=500 \mathrm{~Hz} \\
& \Rightarrow F_{L} \text { is the high value }=500 \mathrm{~Hz} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) M.F.R } \\
& c_{1}, C_{2}, C E \rightarrow \infty(S C) \\
& C \pi, C \mu \rightarrow O(O . C) \\
& A V=\frac{v_{0}}{v s}=\frac{v o}{v \pi} \cdot \frac{v \pi}{v s}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow v 0=-g_{m} v \pi(R C \| R L), v \pi=\frac{V S * R \pm A}{\left.R_{S}+R \neq A\right)} \rightarrow \text { Rin }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A N m=-g_{m}(R c / \| R L) \cdot \frac{R i n}{R 1 A+R_{s}}, g_{m}=\frac{I_{C Q}}{\sqrt{T}}=\frac{1 m}{26 m}=\frac{38 m A}{V} \\
& \text { \& } A V=-38(20 / 15) \frac{2}{2+1} \Rightarrow A V_{m}=-100 \text {. } \\
& C_{0} A \cup(d B)=20 \log (A V) \longrightarrow \text { arsi2er } x \\
& =20 \log (100) \longrightarrow \text { phase shift. }=\omega N_{H} \\
& \Rightarrow A \cup(d B)=40 d B
\end{aligned}
$$

(3) H.F.R $\quad(C L=200 \mathrm{PF})$

$$
C_{1}, c_{2}, C E \rightarrow S \cdot C
$$

- Rin li thés

$$
\begin{aligned}
& \therefore c M_{1}=c M(1-K) \\
& * c M_{2}=c M\left(1-\frac{1}{k}\right) \\
& \& K=\frac{v_{2}}{v_{1}}=\frac{v 0}{v \pi}=\frac{-g m v A(R c / / R L)}{V \pi} \Rightarrow K=-152 \\
& \Rightarrow c M_{1}=5(1-(-152))=765 \text { PF } \\
& \Rightarrow c M_{2}=5\left(1-\left(\frac{1}{152}\right)\right)=5 P F
\end{aligned}
$$

* Rin $=r \pi / /$ Rth $=2 \mathrm{k} \Omega$
* $C_{i}=C M_{1}+C \pi=785 \mathrm{pF}$
* $C_{0}=c M_{2}+c L=205 \mathrm{PF}$
* Ro $=R c 11 \cdot R L=4 \mathrm{k} \Omega$
$C_{D} H_{i}=\frac{1}{2 \pi c i R e q}$
(effect of $c i$)
CFHo $=\frac{1}{2 \pi \text { coReqo }}(c o)$, Rigi:-Rth seen by $c i$

$$
\begin{aligned}
& \Rightarrow F H_{i}=\frac{1}{2 \pi * 0.66 * 785 \times 10^{-12}} \quad \text { Reqi }=R_{\text {s } / / R i n ~}=0.66 \mathrm{k} \Omega \\
& \Rightarrow F H_{i}=\frac{10}{3140}=0.3 \mu \mathrm{~Hz} \\
& \Rightarrow H_{0}=0.194 \mu+1 z
\end{aligned}
$$

$$
\begin{aligned}
& -f_{H i}=\frac{1}{2 \pi * 0.7 * 10^{3} \times 785 * 10^{-12} \sim D=\frac{10^{9}}{1.4 * 785 * \pi}} \\
& \Rightarrow F_{H i}=\frac{10^{9}}{3200}=\frac{10^{17}}{32}=0.298 * 10^{6}=298 \mathrm{KHz}
\end{aligned}
$$

$$
\begin{array}{ll}
-F_{H O}=\frac{1}{2 \pi C o R e q o} & \text { Reqo }^{2}=R C \| R L=4 \mathrm{~K} \Omega \\
C O=C L+C M_{2}=205 \mathrm{PF} \\
F_{0}=\frac{1}{2 \pi * 4 * 10^{3} * 2.05 * 10^{-10}}=\frac{10^{7}}{16 \pi}=194 \mathrm{kHz} .
\end{array}
$$

\therefore Ftleffective $=$ the lowest value

$$
\therefore f_{H}=194 \mathrm{kHz}
$$

file effective.

log. scale

* Design the cet shown to have $\mathrm{FL}_{\mathrm{L}}=200 \mathrm{~Hz}$

$$
F H=500 \mathrm{kHz}, A V m=20 \mathrm{~dB} ., \mathrm{Rin}=50 \mathrm{k} \Omega
$$

\rightarrow Given:K $n=1 \mathrm{~mA} / V^{2}, I D=1 \mathrm{~mA}, ~ N T N=1$.

$2_{D} A V=\frac{v 0}{v s i}=\frac{-g_{m v g s}^{v i}(R D / / R L)}{v g s} \quad \sim A V=-g m(R D / / R L)$
$\overbrace{D} A V(d B)=20 \log A V=20 d B$
$\therefore A V=10=9 m(R D / / R L) \quad, \quad \mu m=2 \sqrt{k n I D}=2 m A / V$
\because rogiven

$$
\begin{aligned}
& \Rightarrow R D \| R L=5 k \Omega \\
& \text { थ } R D=\frac{5 * 20}{20-5}=\frac{100}{15} \Rightarrow R D=6.66 \mathrm{k} \Omega \\
& \text { ID }=K_{n}(V G S-V T \cdot N)^{2} \\
& V G S=V T N \pm \sqrt{\frac{I D}{K N}}=1 \pm 1 \Rightarrow 2 O \text { ORO VGGS=? } \\
& \Rightarrow V G=V G S+V s^{0(a n d)}=2 V
\end{aligned}
$$

$$
R_{1} V G=\frac{V D-R_{2}+R_{1}}{R_{1}+R_{2}} \Rightarrow R_{1}=\frac{10}{2} * 50=250 \mathrm{k} \Omega \quad
$$

* Any cap. in parallel determine (FH)
a Any cap. in series

$$
\begin{aligned}
& R_{2}=\frac{250 * 50}{250-50}=\frac{12500}{200}=62.5 \mathrm{k} \Omega \\
& * C_{1}=?
\end{aligned}
$$

$$
\overline{2} c_{1} \leadsto F_{L}, C_{L} \leadsto F H
$$

$$
F_{L}=\frac{1}{2 \pi c_{1} \operatorname{Req}}
$$

seen by a

* $\mathrm{CL}=$? ?

$$
F H=\frac{1}{2 \pi C L R e q} .
$$

seen by $C l$

$$
\begin{aligned}
& \text { Req }=R D \| R L=5 \mathrm{~K} \Omega \\
& \text { Z Cl }=\frac{1}{2 \pi+F A * R e q}=\frac{1}{2 \pi * 5 * 10^{5} * 10^{2}}=\frac{1}{50 \pi}=\frac{10^{-8}}{50 \pi} \\
& C L=630 \mathrm{PF} .
\end{aligned}
$$

* if c_{2} has a value

$$
\begin{aligned}
& c_{2}=\frac{1}{2 \pi f l \mathrm{Req}} \\
& R_{\mathrm{eq}_{2}}=R D A R L
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {eq }}^{i} 1=\text { Rah }=R_{i}=50 \mathrm{k} \Omega \\
& \Rightarrow c_{1}=\frac{1}{2 \pi f L \times R e q,}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {eq }}=R \text { th }+R_{s} \\
& =\frac{1 * 10^{6}}{2 \pi * 200 * 50 * 10^{3}}=\frac{1}{20 \pi} \mu \mathrm{~F}=17 \mathrm{ff}
\end{aligned}
$$

$$
c_{2}=\frac{10^{6}}{2 \pi \times 200+26.6 * 10^{3}}=\frac{10^{4}}{106 \pi} \simeq 30 n F
$$

living ale. freq

 c_{2} d (LE)

* Freq. Resp. of Mosfet. Amp.

$$
I D=2 m A, C g s=5 P F, \quad c g d=2 P F
$$

1). Draw MF. S.S. eq cot \& Find v_{m}

$$
\text { 2) }-4 . F \cdot S S \cdot 1=\cdots=F L
$$

3) - ". H.F.S.S. $17 \geqslant=15 H$
q) - Sketch Bode plote of Amp.

Sol-

(1) $C_{1}, C_{2}, c_{s} \rightarrow S . c, \mathrm{cgd}_{1} \mathrm{cgs}_{5} \rightarrow 0 . c \quad \mathrm{Kn}=2 \mathrm{~mA} / \mathrm{v}^{2}$

$$
\begin{aligned}
& * \text { cgd } \rightarrow C M \\
& * \text { cgs } \rightarrow C \pi
\end{aligned}
$$

* $\frac{\mathrm{Rg}}{R g+R_{s i}} \sim A V=-g m(R D / / R L)$

$$
* g_{m}=2 \sqrt{k n I D}=4 \frac{m A}{v^{2}}
$$

$$
\operatorname{lov}_{v 95}[-(2 \sqrt{\operatorname{knID}})(3 / 6)]=-8
$$

$$
\text { QAVm }=-8 * \frac{8}{2+8}=-6.4 \text {. }
$$

(2) L.F.R
$Z_{0 \mathrm{cgd}}^{\mathrm{cg}}=\mathrm{cgs}=0 \Rightarrow 0 \cdot C$

$$
c_{1}=c_{2}=\infty \Rightarrow 5 \cdot
$$

$c_{5} \leadsto$ exisits

$$
\begin{array}{ll}
F L_{1}=\frac{1}{2 \pi C_{1} R e_{1}}=0, F L_{2}=\frac{1}{2 \pi C_{2} R_{2}}=0 \\
F L_{3}=\frac{1}{2 \pi C_{S} R e_{3}}, & , \text { Reqs: }-R t h \text { seen by Cs } \\
& R_{\text {eq }}=R_{S}
\end{array}
$$

* any cap in parathet $\Rightarrow>$ High freq. (in Low 4 medium Iconsider it open cot)
* K in Mosfet I can't Ignore it becuase it has a Low value.
) $2 L^{\prime} 1 \dot{1}$, كriplp

(3) H.F.R
$C_{1}, C_{2}, C S \rightarrow S \cdot C$ egd, cgs \rightarrow exist:

$$
\begin{aligned}
& C i=C M_{1}+c g s \\
& c M_{1}=\operatorname{cgd}(1-k) \\
& c \mu_{2}=\operatorname{cgd}\left(1-\frac{1}{k}\right) \\
& K=\frac{v_{2}}{v_{1}}=\frac{v_{0}}{v_{y s}}=\frac{-g m \operatorname{vgs}\left(R D \|_{121}\right)}{y_{g s}} \\
& K=-9 m(R D / R U)=-4 * 2=-8 \\
& 3 c \mu_{1}=2(1-(-8))=18 P F \\
& c \mu_{2}=2\left(1-\left(\frac{-1}{8}\right)\right)=2.25 \mathrm{PF}
\end{aligned}
$$

$$
\begin{array}{rlrl}
F_{H i}=\frac{1}{2 \pi C_{i} \text { Req }}, & \text { Req } & =\text { Rth seen by ci } \\
& =R \text { sillRg }=1.6 \mathrm{~K} \Omega \\
C_{i} & =18+5=23 \mathrm{PF} . \\
F_{H i}=\frac{1}{2 \pi * 1.6 * 10^{3} * 23 * 10^{-12}} & =\frac{10^{9}}{230}=4.3 \mathrm{MHz}
\end{array}
$$

$$
\begin{aligned}
& \begin{aligned}
\left.F H_{0}=\frac{1}{2 \pi c o \text { Req. }} \quad \begin{array}{rl}
\text { Req } & =\text { Rth seen by co } \\
& =R D
\end{array}\right)=2 \mathrm{k} \Omega
\end{aligned} \\
& =R D / / R R=2 \mathrm{k} \Omega \\
& C_{0}=c M_{2}=2.25 \mathrm{PF} \\
& F H=\frac{1}{2 \pi * 2.25 * 10^{-12} \times 2 \times 10^{3}}=\frac{19^{9}}{9 \pi}=\frac{1000}{9 \pi} \mu \mathrm{~Hz}=33 \mu \mathrm{~Hz} \\
& \therefore F H=4.3 \mathrm{MHz} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *C.D\&C.C } \rightarrow C M_{1} r, C M_{2} \times(-v e) \\
& \text { * } C \cdot R \& C, Q_{n} \rightarrow C M_{1} X(-v e), C M_{2} r
\end{aligned}
$$

* frequency Response for C.S \& C.E w

123
(4)

$$
\begin{aligned}
& R_{\text {eq }}=R_{i e} \| R E+R_{s} \\
& R_{i e}=\frac{r \pi}{\beta+1}
\end{aligned}
$$

* If RB \&CB exisit. $\Rightarrow F L B=\frac{1}{2 \pi C B R e q}$

$$
R \text { eq }=\left(R_{s} / / R E\right)(B+1) / / r \pi / / R B
$$

