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PREFACE

In each of the book’s earlier editions, all prior prefaces were reproduced to
show the developments and purposes or the book over time. In_this edition,
they have been combined into one preface. It is, therefore, appropriate to first
summarize the most important topics of prior editions that have either not
changed or have evolved with time. They are:

The level and amount of material remains that of a typical undergraduate
program for courses of not more than one semester. The book is also applic-
able to courses at the first-year graduate level if students have had minimal
or no prior exposure to the book’s topics. Over the past 20 years the book
has seen mostly small additions to aid teaching (more problems, more exam-
ples, and added topics that seemed to be needed in evolving programs).
The more advanced material, and problems that require more than typical
solution times, remain keyed by a star (x), as before.

The need for the book has not changed. Namely, a well-organized teaching
book is needed for lower-level courses (juniors, seniors) as the material has
migrated down from the upper graduate level over the years.

The background needed to study the book remains typmal of junior or senior
undergrate engineering students.

.

In preparation for this fourth edition, comments and suggestions were
sought from many reviewers and instructors who have used the book. The
result was the incorporation of a number of additions that range from rela-
tively minor to important. In the former category, additions inctude: chapter-
end swmmaries, more examples within the text, expanded discussions of prob-
ability as a relative frequency, material on permutations and combinations,
more detailed material on random variable transformations, a bit more detail
on ergodicity, the weak and strong laws of large numbers, sampling and
estimation, various important inequalities (Chebychev, Schwarz, Markov,
Hélder, Chernoff, efc.), some useful properties of impulse functions
(Appendix A), a new appendix on various mathematical topics of interest
(Appendix G), a few new problems, and many other small changes,
Problems at each chapter end have also been combined into a single list
with numbering that corresponds to the chapter's sections to which the
problems mainly apply.

However, probably the most important new material relates to discrete-
time (DT) random processes and sequences and other topics in the general
area of digital signal processing (DSP) such as the DT linear system. There is
now coverage of sampling theorems—baseband and bandpass—for random
processes to establish a foundation for DT processes and sequences. For clear
exposure, this material is placed mainly in Chapter 8, since it requires some
understanding of the passing of random signals through mnetworks.

xvil



xviii

Preface

Correlation functions and power spectrums for these processes and sequences
are developed and connected through the sampling theorems and the discrete-
time Fourier transforms (Chapters 7 and 8). The structure of linear DT digital
systems is developed in both the sequence and transform domains. It is hoped
this new material will better serve those readers with a strong interest in digital
topics.

Other important additions are computer examples and problems scattered
throughout the book at key places—mainly where new DT material is located.
These examples and problems require no special toolboxes and assume the
reader is familiar with the use of version 5.2 of MATLAB software. For the
examples, the necessary coding is given, but the reader is expected to provide
the coding for the problems. All of these examples and problems are keyed by
a “computer” symbol 1. With appreciation, I acknowledge the help of Mr.
Kenneth Hild, a doctoral student, who worked, coded, and verified all these
examples and problems.

Many persons have identified errors in the third edition and have offered
suggestions for this new edition. Several of my students are included in this
group, and I thank them for their contributions, I also appreciate the detailed
comments and suggestions from the following professors who either have used
the book, were reviewers, or both: Scott Acton, Oklahoma State University,
Mahmood R. Azimi, Colorado State University; Ross Baldick, University of
Texas, Austin; Charles Boncelet, University of Delaware; Oscar Norberto Bria,
Universidad Nacional de La Plata; Kevin D. Donohue, University of Kentucky,
Sammie Giles, Jr., University of Toledo; Subhash Kak, Lowisiana State
University; James Kang, California State Polytechmic University, Pontond;
Venkatarama Krishnan, Umiversity of Massachusetts, Lowell; Iian Li,
University of Florida; Rodney Roberts, Florida A&M University and Florida
State University; Sumit Roy, University of Washington; Antal Sarkady, U.5.
Naval Academy; Ness Shroff, Purdue University; Emmanouel Varvarigos,
University of California, Santa Barbara, Donley Winger, California Siate
Polytechnic University, San Luis Obispo. My thanks are also extended to
Ms. Catherine Fields and Ms. Michelle Flomenhoft, editors at McGraw-
Hill who were instrumental in the production of the fourth edition.

Finally, I thank those who have indicated to me that they were pleased
that the third edition had relatively few errors. One even said he knew of none.
Of course, there were some, but a great deal of effort did go into minimizing
the number in print. Those same efforts have also been made in this new
edition in hopes that it will prove as [ree of errors.

Peyton Z. Peebles, Jr,
Gainesville, Florida
March 2000

CHAPTER 1

ety

Probability

1.0
INTRODUCTION TO BOOK AND CHAPTER

The primary goals of this book are to introduce the reader to the principles of
_random signals and to provide tools whereby one can deal with svstems
involving such signals. Toward these goals, perhaps the first thing that should
be done is define what is meant by random signal. A random signal is a time
waveform?t that can be characterized only in some probabilistic manner. In
general, it can be cither a desired or undesired waveform.

The reader has no doubt heard background hiss while listening to an
ordinary broadcast radio receiver. The waveform causing the hiss. when
ol_)served on an oscillescope, would appear as a randomly fluctuating voltage
with time. It is undesirable, since it interferes with our ability to hear the radio
program, and is calied no/se.

Undesired random waveforms (noise) also appear in the outputs of other
types of systems. In a radio astronomer’s recciver, noise interferes with the
desired signal from outer space (which itself is a random, but desirable, sig-
nal). In a television system, noise shows up in the form of picture interference
o_ften called “snow.” In a sonar system, randomly generated sea sounds give
rise to a noise that interferes with the desired echoes.

The number of desirable random signals is aimost limitless. For exam-
ple, the bits in a computer bit stream appear to fluctuate randomly with time

+We shall usually assume random signals 1o be vollage-time waveforms. However, the theory to

be developed throughout the book will apply. in most cases, 10 random functions other than
voltage, of arguments other than time,
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between the zero and one states, thereby creating a random signal. In
another example, the output voltage of & wind-powered generator would
be random because wind speed fluctuates randomly. Similarly, the voltage
from a solar detector varies randomly due to the randomness of cloud and
weather conditions. Still other examples are: the signal from an instrument
designed 1o measure instantaneous ocean wave height; the space-originated
signal at the output of the radio astronomer’s antenna (the relative intensity
of this signal from space allows the astronomer to form radio maps of the
heavens); and the voltage from a vibration analyzer attached to an auto-
mobile driving over rough terrain.

In Chapters 8 and 9 we shall study methods of characterizing systems
having random input signals. However, from the above examples, it is
obvious that random signals only represent the behavior of mere fundamen-
tal underlying random phenomena. Phenomena associated with the desired
signals of the last paragraph are: information source for computer bit
stream; wind speed; various weather conditions such as cloud density and
size, cloud speed, etc.; ocean wave height; sources of outer space signals; and
terrain roughness. All these phenomena must be described in some probabil-
istic way.

Thus, there are actually two things to be considered in characterizing
random signals. One is how to describe any one of a variety of random
phenomena; another is how to bring time into the problem so as to create
the random signal of interest. To accomplish the first item, we shall introduce
mathematical concepts in Chapters 2, 3, 4, and 5 (random variables) that are
sufficiently general they can apply to any suitably defined random phenom-
ena. To accomplish the second item, we shall introduce another mathematical
concept, called a random process, in Chapters 6 and 7. All these concepts are
based on probability theory.

The purpose of this chapter is to introduce the elementary aspects of
probability theory on which all of our later work is based. Several approaches
exist for the definition and discussion of probability. Only two of these are
worthy of modern-day consideration, while all others are mainly of historical
interest and are not commented on further here. Of the more modem
approaches, one uses the relative frequency definition of probability. It
gives a degree of physical insight which is popular with engineers, and is
often used in texts having principal topics other than probability theory itself
(for example, see Peebles, 1976).F

The second approach to probability uses the axiomatic definition. It is the
most mathematically sound of all approaches and is most appropriate for a
text having its topics based principally on probability theory. The axiomatic
approach also serves as the best basis for readers wishing to proceed beyond
the scope of this book to more advanced theory. Because of these facts, we
mainly adopt the axiomatic approach in this book, but occasionally use the
relative frequency method in some practical problems.

fReferences are quoted by name and date of publication. They are listed at the end of the book.

Prior to the introduction of the axioms of probability, it is necessary that
we first develop certain elements of set theory.T

1.1
SET DEFINITIONS

A set is a collection of objects. The objects are called elements of the set and
may be anything whatsoever. We muy have a set of voltages, a set of airplanes
a set of chairs, or even a set of sets, sometimes called a class of sets. A set is:
usually denoted by a capital letter while an element is represented by a lower-
case letter. Thus, if @ is an element of set 4, then we write

acd (1.1-1)
If @ is not an element of A, we write
ag 4 : (1.1-2)

_A set is specified by the content of two braces: {-}. Two methods exist for
specifying content, the tabular method and the rule method. In the tabular
method the elements are envmerated explicitly. For example, the set of all
integers between 5 and 10 would be {6,7,8,9}. In the rule method, a set’s
content is determined by some rule, such as: {integers between 5 and 10}.; The
rule method is usually more convenient to use when the set is large. For
example, {integers from 1 t6~1000 inclusive] would be cumbersome to write
explicitly using the tabular method.

A set is said to be countable if its elements can be put in one-to-one
correspondence with the natural numbers, which are the integers 1, 2, 3,
etc. If a set is not countable, it is called uncountable. A set is said to be
empty if it has no elements. The empty set is given the symbol & and is
often called the nulf set.

] A finite set is one that is either empty or has elements that can be counted
with the counting process terminating. In other words, it has a finite number
of elements. If a set is not finite, it is called infinite. An infinite set having
countable elements is called countably infinite. B

If every element of a set A4 is also an element in another set B, 4 is said to
be contained in B. 4 is known as a subset of B and we write

AcB : (1.1-3)
If at least one element exists in B which is not in A4, then A is a proper subser of
B, denoted by (Thomas, 1969) . )

AcCE (1.1-9)
The null set is clearly a subset of all other sets.

'i‘Ou_r_lreatmcm is limited to the level required to introduce the desired probability concepts. For
addmm}al details the reader is referred to McFadden (1963), or Milton and Tsokos {1976).
iSonEellmes notations such as {f|5 < I < 10, / an integer} or [I: 5 < I < 10, f an integer} are
seen in the literature.
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Two sets, 4 and B, arc called disjoint or nutually exclusive il they have no
common elements.

listed below.
A={135T
B=1{1,2,3,..1
C=1{0.5<¢=<8.5}

The set A4 is tabularly specified, countable, and finite. B is also tabu-
larly specified and countable, but is infinite. Set C is rule-specified,
uncountable, and infinite, since it contains &/l numbers greater than 0.5
but not exceeding 8.5. Similarly, sets D and E are countably finite, while
set F is uncountably infinite. It:should be noted that D is nof the null set;
it has one element, the number zero.

Set A is contained in sets B, C, and F. Similarly, CC F, D C F, and
E C B.Sets Band F are not subsets of any of the other sets or of each other.
Sets A, D, and E are mutnally exclusive of each other. The reader may wish
to identify which of the remaining sets are also mutually exclusive.

D =1{0.0}
E=1{2,4,6,8,10, 12, 14}
F={-50 <f <120}

The largest or all-encompassing set of objects under discussion in a given
situation is called the wniversal set, denoted S. All sets (of the situation con-
sidered) are subsets of the universal set. An example will help clarify the
concept of a universal set. '

EXAMPLE 1.1-2. Suppose we consider the problem of rolling a die. We are
interested in the numbers that show on the upper face. Here the universal
set is $={1,2,3,4,5,6). In a gambling game, suppose a person wins if
the number comes up odd. This person wins for any number in the set
A = {1, 3, 5}. Another person might win if the number shows four or less;
that is, for any number in the set B ={[, 2, 3,4]}.

Observe that both A and B are subsets of S. For any universal set
with N elements, there are 2% possible subsets of S. (The reader should

check this for a few values of N.) For the present example, ¥ =6 and
i 2% — 64, so that there are 64 ways one can define “winning” with one die.

Tt should be noted that winning or losing in the above gambling game is
related to a set. The game itself is partially specified by its universal set (other
games typically have a different universal set). These facts are not just coin-
cidence, and we shall shortly find that sets form the basis on which our study
of probability is constructed.

1.2
SET OPERATIONS

In working with sets, it is helpful to introduce a geometrical representation
that enables us to associate a physical picture with sets.

EXAMPLE 1.1-1. To illustrate the topics discussed above, we identify the sets

Venn Diagram

Such a representation is the Venn diagram.t Here sets are represented by
clqsed-p]ane figures. Elements of the sets are represented by the enclosed
points (area). The universal set S is represented by a rectangle as illustrated

in Figure 1.2-1a, Three seits 4, B, and € are shown. Set Cis disjoint from both
A and B, while set B is a subset of A.

Equality and Difference

Two sets A and B are equal if all elements in 4 are present in B and. all

elements in B are present in A; that is, if A € 8 and B € 4. For equal scts
we write 4 = B,

AT
(4]
FIGURE 1.2-1

Vcn_n diag{ams. (a)_ INlustration of subsets and mutually exclusive sets, and (5) illus-
tration ofm'tersectlon and union of sets. [Adapted from Peebles (1976 ), with permis-
sion of publishers Addison—Wesley, Advanced Book Progrant]

tAlter John Venn (1834-1923), an Englishman.
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The difference of two sets A and B, denoted 4 — B, is the set containing all
elements of A that are not present in B. For example, with 4 = {0.6 < a < 1.6}
and B=1{10<bh=<25), then A—B={06<ec<10] or B—-A=
(1.6 < d < 2.5]. Note that A — B# B~ 4.

Union and Intersection

The union (call it €) of two sets 4 and B is written
C=AUB (1.2-1)

Itis the set of all elements of 4 or B or both. The union is sometimes called the
sum of two sets.
The intersection (call it D) of two sets A and B is written

D=ANB (1.2-2)

1t is the set of all elements common to both A and B. Intersection is sometimes
called the product of two sets. For mutually exclusive sets A4 and B,
AN B=. Figure 1.2-15 illustrates the Venn diagram area to be associated
with the intersection and union of sets.

By repeated application of (1.2-1) or {1.2-2), the union and intersection of
Nsets d,,n=1,2,..., N, become

N

C=AUdyU.--Udy =4, (1.2-3)
n=1
Al

D=ANA NNy =[ |4 (1.2-4)
n=|

Complement

The complentent of a set A, denoted by A, is the set of all elements not in 4.
Thus,

A=5-4 (1.2-3)
It is also easy to see that @ =S, S =&, AU A =5, and And=.

EXAMPLE 12-1. We illustrate intersection, union, and complement by
¥ taking an example with the four sets

B=1{2,6,7,8,9,10,11}
C=1{1,3.4,6,7,8}

S = {1 < integers < 12}
A=1{1,3,512}
Applicable unions and intersections here are:
“AuB=11,2,3,56,7.8,9,10,11,12}

AUuC=1{1,3,4,5¢6,78,12}
BUC=(1,2,3,4,6,7,8,9,10, 11}

ANB=C
AnC ={1,3}
BNC=1(6,7,8}

Complements are:
A=1{2,4.6,7,8,9,10,11)
B={1,3,4,5,12)
C=12,5910,11,12)

The various sets are iilustrated in Figure 1.2-2.

Algebra of Sets

All subsets of the universal set form an algebraic system for which a number
of theorems may be stated (Thomas, 1969). Three of the most important of

these relate to laws involving unions and intersections. The communtative law
states that ’

ANB=BNA4 (1.2-6)
AUB=BUA C(12-7)

The distributive law is written as

AN(BUC)=(ANBUNC) (1.2-8)
AUBNC) =(AUBN(LUC) (1.2-9)

The associative law is written as

(AUBYUC = AU(BUC) = AUBUC
(ANBNC=AN{BNC)=ANBNC

(1.2-10)
(1.2-11)

These are just restatements of {(1.2-3) and (1.2-4).

2,9, 10, 11

FIGURE 1.2-2
Venn diagram applicable to Example 1.2-1.
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De Morgan’s Laws

By use of a Venn diagram we may readily prove De Morgan's lawst, which
state that the complement of a union (intersection) of two sets A and B equals
the intersection {union) of the complements 4 and B. Thus,

&
1
N
b

(1.2-12)
(1.2-13)

N

u

n
AN U

3
I
N
o

From the last two expressions one can show that if in an identity we
replace unions by intersections, intersections by u_nions, and scts by their
complements, then the identity is preserved (Papoulis, 1965, p. 23).

EXAMPLE 1.22. We verify De Morgan’s law (1.2-13) by using the example
sets A={2<a=<16} and B={5<b=<22] when S=2<s5=<24).
First, if we define C= AN B, the reader can readily see from Venn
diagrams that C=ANB={5<c=<16} so C=4ANB={2< c=<35,
16 < ¢ < 24). This result is the left side of (1.2-13). _

Second, we compute A=S—A={l6<a<24} and B=S—-8B=
{2<b=<522<b=<24. Thus, C=AUB={2<c¢cx5, 16_<c§24}.
This result is the right side of (1.2-13) and De Morgan’s law is verified.

Duality Principle

This principle {(see Papoulis, 1965, for additional ljeading) states: if in an
identity we replace unions by intersections, intersections by unions, S by &,
and @ by S, then the identity is preserved. For example, since

ANBUO=ANBUANC) (1.2-14)
is a valid identity from (1.2-8), it follows that
AJBNO)=AuBN4UC) (1.2-15)

is also valid, which is just (1.2-9).

EXAMPLE 1.2-3. We demonstrate (1.2-14) for three sets 4 ={1,2,4,6},
B=1{2,6,8,10}, and C={3<c<4]. Here BUC={2,3<c=<4,6,
8,10}, ANB=(2,6}, ANC={4]. For the left side of (1.2-14) 4N
(BUC)=(2,4,6). For the right side of (1.2—1‘4) AN Buid n )=
{2,4,6). This result is the same as for the left side, demonstrating the
validity of (1.2-14) for these sefs.

tAfter Augustus De Morgan {1806-1871), an English mathematician.

1.3

PROBARILITY INTRODUCED THROUGH SETS AND RELATIVE
FREQUENCY

In this section we define probability in two ways. The first is based on set
theory and fundamental axioms; this approach is the more sound of the two.
Also, it is perhaps a bit more difficult to interpret in a practical sense than the
second, called relative frequency, which is based more on common sense and
engineering or scientific observations. We begin with the introduction of prob-
ability using set concepts.

Basic to our study of probability is the idea of a physical experinient. In
this section we develop a mathematical model of an experiment. Of course, we
are interested only in experiments that are regulated in some probabilistic
way. A single performance of the experiment is called a fria/ for which
there is an outcome.

Experiments and Sample Spaces

Although there exists a precise mathematical procedure for defining an exXperi-
ment, we shall rely on reason and examples. This simplified approach will
ultimately lead us to 2 valid mathematical model for any real experiment.t
To illustrate, one experiment might consist of rolling a single die and obscrving
the number that shows up. There are six such numbers and they form all the
possible cutcomes in the experiment. If the die is “unbiased” our intuition tells
us that each outcome is equally likely to occur and the fikelihood of any one
occurring is § (later we call this number the probabifity of the outcome). This
experiment is seen to be governed, in part, by two sefs. One is the set of all
possible outcomes, and the other is the set of the likelihoods of the outcomes.
Each set has six elements. For the present, we consider only the set of outcomes.

The set of all possible outcomes in any given experiment is called the sample
space and it is given the symbol . In effect, the sample space is a universal set
for the given experiment. S may be different for different experiments, but all
experiments are governed by some sample space. The definition of sample space
forms the first of three elements in our mathematical model of experiments, The
remaining elements are events and probability, as discussed below.

Discrete and Continuous Sample Spaces

In the earlier die-tossing experiment, S was a finite sct of six elements. Such
sample spaces are said to be discrete and finite. The sample space can also be

tMost of our early definitions involving probability are rigorously established only through
concepts beyond our scope. Although we adopt a simplified development of the theory, our
final results are no less valid or useful than if we had used the advanced concepts.
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discrete and infinite for some experiments, For example, S in the experiment
“choose randomly a positive integer” is the countably infinite set {1,2,3. .. J

Some experiments have an uncountabiy infinite sample space. An illustra-
tion would be the experiment “obtain a number by spinning the poihiter on a
wheel of chance numbered from 0 to 12.” Here any number s from 0 io 12 can
result and § = {0 < 5 < 12}. Such a sample space is called continuous.

Events

In most situations, we are interested in some characteristic of the outcomes of
our experiment as opposed to the outcomes themselves. In the experiment
“draw a card from a deck of 52 cards,” we might be more interested in
whether we draw a spade as opposed to having any interest in individual
cards. To handle such situations we define the concept of an event.

An event is defined as a subset of the sample space. Because an event.is a
set, all the earlier definitions and operations applicable 1o sets will apply to
evemts. For example, if two events have no common outcomes they are
mutually exclusive.

In the above card experiment, 13 of the 52 possible outcomes are spades.
Since any one of the spade outcomes satisfies the event “draw a spade,” this
event is a set with 13 elements. We have earlier stated that a set with N elemerits
can have as many as 2% subsets (events defined on a sample sgace having N
possible outcomes). In the present example, 2% — 252 & 4.5(10) events.

As with the sample space, events may be either discrete or continuous. The
card event “draw a spade” is a discrete, finite event. An example of a discrete,
countably infinite event would be “select an odd integer” in the experiment
“randomly select a positive integer.” The event has a countably infinite num-
ber of elements: {1,3, 5,7, ...]. However, events defined on a countably irfi-
pite sample space do not have to be countably infinite. The event {1, 3,5, 7} is
clearly not infinite but applies to the integer selection experiment.

Events defined on continuobs sample spaces are usually continuous. In the
experiment “choose randomly a number & from 6 to 13,” the sample space is
§ = {6 < 5 < 13}. An event of interest might correspond to the chosen number
falling between 7.4 and 7.6; that is, the event (callit AYis A = {74 <a < 7.6}

Discrete events may also be defined on continuous sample spaces. An
example of such an event is 4 = {6.13692} for the sample space S ={6 <5 =
13} of the previous paragraph. We comment Jater on this type of event
{following Example 1.3-1).

The above definition of an event as a subset of the sample space forms the
second of three elements in our mathematical model of experiments. The third
element involves defining probability. :

Probability Definition and Axioms

To each event defined on a sample space §, we shall assign a nonnegative
number called probability. Probability is therefore a function; it is a function

of the events defined. We adopt the notation P(4)f for “the probability of
event A.” When an event is stated explicitly as a set by using braces, we
employ the notation P{-} instead of P({-}). '

The assigned probabilities are chosen $0 as to satisfy three axioms. Let 4
be any event defined on a sample space S. Then the first two axioms are

axiom 1: PAY=0 {1.3-1a)

(1.3-18)

The first 9nly represents our desire to work with nonnegative numbers. The
second axiom recognizes that the sample space itself is an event, and, since it is
the. ail-_encompassing event, it should have the highest possible probability
which is selected as unity. For this reason, § is known as the certain eve:r;
Alternatively, the null set ¢ is an event with no elements; it is known as thf;
impossible event and its probability is 0.

Tt?le t;urd fziixiomdapplies to Nevents 4,, n=1,2,,, .. N, where N may
possibly be infinite, defined on a sample space i
P ey Rt ple space §, and having the property

N N T
P(U An) = EP(A") if AuNAd, =0
n=1 .

n=l

axiom 2 P(S)=1

axiom 3: {1.3-1¢)

for all r?z_;é n=1,2,..., N, with N possibly infinite. The axiom states that the
p}'obablhty .of the event equal to the union of any number of mutually exclu-
sive events is equal to the sum of the individual event probabilities.

An e?camp]e should help give a physical picture of the meaning of the
above axioms,

EXAMPLE 13-1. Let an experiment consist of obtaining a number x by
spinning the pointer on a “fair” wheel of chance that is labeled from 0
to 100 points. The sample space is § = {0 < x < 100}. We reason that
probability of the pointer falling between any two numbers x > x|
should be {x; — x;)/100 since the wheel is fair. As a check on this ass_ign-
ment, we see that the event 4 = {x; < x < x;} satisfies axiom 1 for all x,
and x3, and axiom 2 when x; = 100 and x; = 0. o

Now suppose we break the wheel’s periphery into N contiguous seg-
ments 4, = {x,_; < x < x,}, %, = (MIW/N,n=1,2,..., N, with x5 = 0.
Then P(4,) = 1/N, and, for any N,

N N il 1
P(Ul A,,) =2 PU) =3 5=1=PS)
n= a=l

n=1

from axiom 3.

‘EOoc(:;I;img;ly it will be convenient to use brackets, such as P[4] when A is itself an event such as
— [} . .

Il
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Example 1.3-1 allows us to return to our earlier discussion of discrete
events defined on continuous sample spaces. If the interval x, - X, is
allowed to approach zero (— 0), the probability P(4,) — P(x,); that is,
P(A,) becomes the probability of the pointer falling exactly on the point ;.
Since N — oo in this situation, P(A,) — 0. Thus, the probability of a discreté
event defined on a continuous sample space is 0. This fact is true in general.

A consequence of the above statement Is that events can occur even if their
probability is 0. Intuitively, any number can be obtained from the wheel of
chance, but that precise number may never occur again. The infinite sample
space has only one outcome satisfying such a discrete event, so its probability
is 0. Such events are rot the same as the impossible event which has no
elements and camnof occur. The converse situation can also happen where
events with probability [ may not occur. An example for the wheel of chance
experiment would be the event 4 = {all numbers except the number x,}.
Events with probability 1 {that may not occur) are not the same as the certain
event which must occur.

Mathematical Model of Experiments

The axioms of probability, introduced above, complete our mathematical
model of an experiment. We pause to summarize. Given some real physical
experiment having a set of particular outcomes possible, we first defined a
sample space to mathematically represent the physical outcomes. Second, it
was recognized that certain characteristics of the outcomes in the real experi-
ment were of interest, as opposed to the outcomes themselves; evenis were
defined to mathematically represent these characteristics. Finally, probabifities
were assigned to the defined events to mathematically account for the random
nature of the experiment.

Thus, a real experiment is defined mathematically by three things: (1)
assignment of a sample space; (2) definition of events of interest; and (3)
making probability assignments to the events such that the axioms are satis-
fied, Establishing the correct model for an experiment is probably the single
most difficult step in solving probability problems.

¥1  EXAMPLE 132 An experiment consists of observing the sum of the num-
5 bers showing up when two dice are thrown. We develop a model for this
E} experiment. R

Eﬁ The sample space consists of 6~ = 36 points as shown in Figure 1.3-1.

Each possible outcome corresponds (o a sum having values from 2 to {2.
Suppose we are mainly interested in three events defined by
A={sum=7), B={8 <sum < 11}, and C = {10 < sum). In assigning
probabilities to these events, it is first convenient to define 36 elementary
events Ay = {sum for outcome (i, /) = +/}, where i represents the row
and j represents the column locating a particular possible outcome in
Figure 1.3-1. An elementary event has only one element. L
For probability assignments, intuition indicates that each possible
outcorne has the same likelihood of occurrence if the dice are fair, so

H

FIGURE 1.3-1
Sample space applicable to Example 1.3-2.

P(Ay) =+ Now because the events Aj iand j=1,2,.. N=6, are
mutually exclusive, they must satisfy axiom 3. But since the evenzs A
B, and ‘C are simply the unions of appropriate elementary events, thei.t"
probabilities are derived from axiom 3, From Figure 1.3-1 we easily find

3 [
PA) = P(U A,-.-,_,-) = ZP(AJ‘.?—r') - 6(3]_6) =é
i=l i=1 :

P(B) = 9(3i) :%

1 1
PO =3(=}=—
© (36) 12
As a matter of interest, we also observe the probabilities of the events

BNCand BUC to be P(BNC) = 2(H) =L and PBUC) = 106 = &

Probability as a Relative Frequency

The use pf common sense and engineering and scientific observations leads to
a definition of probability as a relative frequency of occurrence of some event.
For gxample, everyone can surmise that if a fair coin is flipped several times
the s_nde that shows up will be “*heads™ about half the time with good “reg:
ularity.” What reason is saying here is that, if the coin is flipped many times
(say #) and heads shows up »y; times out of the # flips, then

nlirgo(n;,-/n) = P(H) (1.3-2)

where' P(H) is interpreted as the probability of the event “heads.” The ratio
iig/n_ is the relative frequency (or average number of successes) for this event
The 1dea_ of statistical regularity is used to account for the fact that rc[ative:
frequencw:s approach a fixed value (a probability) as r becomes large (Cooper
and McGillem, 1986, p. 9). That such regularity is reasonable is based purely
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on the fact that many different investigators of numerous physical experi-
ments have observed such regularity (Davenport, 1970, p. 10).

Probability as a relative frequency is intuitively satisfying for many prac-
tical problems. In another example, if asked what would be the probability of
drawing a six from a thoroughly shuffled regular deck of 52 cards, most would
say 4/52 = 1/13 because four of the 52 cards are sixes. Many trials of this
experiment would verify this fact when (1.3-2} is used.

To extend the concept of relative frequency, consider the following
example.

EXAMPLE 1.33. In a box there are 80 resistors each having the same size
and shape. Of the 80 resistors 18 are 10£2, 12 are 22 2, 33 are 272, and 17
are 47 §2. If the experiment is to randomly draw out one resistor from the
box with each one being “cqually likely” to be drawn, then relative
frequency suggests that the following probabilities may reasonably be
assumed:

P(draw 10Q) =18/80 P(draw 222) = 12/80
P(draw 27 Q) = 33/80 P(draw 47 ) = 17/80 (D

Since all resistors are distinct, mutually exclusive, both individually and
by type, have only four types, and some resistor maust be chosen, the sum
of the probabilities of ail four events must equal 1.

Next, suppose a 22-2 resistor is drawn from the box and not replaced.
A second resistor is then drawn from the box. We ask, what are now the
probabilities of drawing a resistor of anmy one of the four values? Since the
“population™ in the box is now 79 resistors, we have, for the second
drawing,

P(draw 10Q[22Q) = 18/79  P(draw 22Q|22Q) = 11/79
P(draw 27Q229) =33/79  P(draw 47Q22Q) =17/ (2)

We use the notation P(-|22R) to note that probabilitics on the second
drawing are now conditional on the outcome of the first drawing. This
reasohing is readily extended to other drawings in sequence without
replacement.

In Example 1.3-3 it was seen that the probability of some event may
depend (be conditional) on the occurrence of another event. We consider
such probabilities in more detail in the next section.

14 .
JOINT AND CONDITIONAL PROBABILITY

In some experiments, such as in Example 1.3-2 above, it may be that some
events are not mutuaily exclusive because of common elements in the sample
space. These elements correspond to the simultaneous or jeirs occurrence of
the nonexclusive events. For two events A and B, the common elements form
the event AN B,

Joint Probability

Ths: pr_obability ‘P(A N B) is called the joint probability for two events 4 and B
which intersect in the sample space. A study of a Venn diagram will readily
show that

P(4 N B) = P(A)+ P(B) — P(AU B) (1.4-1)
Equivalently,
P(A U B) = P(4) + P(B) — P(AN B) = P(4}+ P(B) (1.4-2)

In other words, the probability of the union of two events never exceeds the
sum of the event probabilities. The equality holds only for mutually exclusive
events because A N B = &, and therefore, P(4 N B) = P(J) =0.

Conditional Probability

Given some event B with nonzero probability

P(B) >0 (1.4-3)
we define the conditional probability of an event A, given B, by
P(ANB) ©
P(A|B) =——— -
(A18) =5 e

The probability P(A[B) simply reflects the fact that the probability of an event
A may depend on a second event B. If 4 and B are mutually exclusive,
ANB=0, and P(A|B) =0.

Conditional probability is a defined quantity and cannot be proven.
However, as a probability it must satisfy the three axioms given in (1.3-1).
P{A}B) obviously satisfies axiom 1 by its definition because P{4 N B) and P(B)
aSrc nfc;nnegative numbers. The second axiom is shown to be satisfied by letting

P(SNB) P(B)

P(B)  P(B)
The third axiom may be shown to hold by considering the union of A with an
event C, where 4 and C are mutually exclusive. If P(4 U C|B) = P(A|B) +

P(C|B) is true, then axiom 3 holds. Since A N C = @ then events AN B and
BN C are mutually exclusive (use a Venn diagram to verify this fact) and

P(S|B) = (1.4-5)

PAUCYN Bl = Pl(AN BYU{(CN B)] = P(A4n B)+ P(CN B} (1.4-6)
Thus, on substitution into (1.4-4)
_P{AUC)NB] PANB) PICNB)
AUVOBI=""25 = r@®) * P®
= P{A|B}+ P(C|B) (1.4-7)

and axiom 3 holds.
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EXAMPLE i41. In a box there are 100 resistors having resistance and
tolerance as shown in Table 1.4-1. Let a resistor be selected from the
box and assume each resistor has the same likelihood of being chosen.
Define three events: 4 as “draw a 47-2 resistor,” B as “draw a resistor
with 5% tolerance,” and € as “draw a 100-2 resistor.” From the table,
the applicable probabilities aret

44
P(A) = P4TR) =155
oy 02
P(B)= P(5%) = 00
3z
P(C) = P1009) =10
The joint probabilities are
P(ANB)=PATRN5%) =%
PANCO) =PATIQNIN0R)=10
24
P(BNC)=P(5% N100Q) =0
By using (1.4-4) the conditional probabilities become
_PANB) 28
PlAIB) = PB) T 62
F(ANC)
PAIC)="—Fr—=10
(41C) 20o)
P(BNC) 24

PECY =3¢y =5

TABLE 1.4-1
Numbers of resistors in a box having given
resistance and folerance

Tolerance
Resistance (<) 5% 10% Total
22 10 14 24
4 28 16 44
100 24 8 32
Total a2 38 100

11t is reasonable that probabilities are related to the number of resistors in the box that satisfy an

event, since each resistor is equally likely to be selected. An alternative approach would be based
on elementary events similar 1o that used in Example 1.3-2. The reader may view the latter
approach as more rigorous but less readily applied.

P(A|B) = P(47%2|5%) is the probability of drawing a 47-8 resistor given
that the resistor drawn is 5%. P(A[C) = P(47 2100 £2) is the probability
of drawing a 47-$Q resistor given that the resistor drawn is 100 Q; this is
clearly an impossible event so the probability of it is 0. Finally, P{B|C) =
P(5%]110042) is the probability of drawing a resistor of 5% tolerance
given that the resistor is 100 2.

Total Probability

The probability P(4) of any event 4 defined on a sample space S can be
expressed in terms of conditional probabilities. Suppose we are given N
mutually exclusive events B,, n =1,2,..., N, whose union equals § as illu-
strated in Figure 1.4-1. These events satisfy

B,NB, =0 m#Er=12,....N (1.4-8)
N
U B, =8 (1.4-9)
a=l
We shall prove that
N
P4y =y P(4]B,)P(B,) (1.4-10)
n=l1

which is known as the rotal probabifity of event A.
Since 4 NS = A, we may start the proof using (1.4-9) and (1.2-8):

N
Bn) = U(A n Bn)
1 a=1

Now the events 4 N B, are mutually exclusive as seen from the Venn diagram
(Fig. 1.4-1). By applying axiom 3 to these events, we have

N
AﬂS:An( (1.4-11)

A=

N
U B,=5B.NB,=Fforalm=n
=

FIGURE 1.4-1
Venn diagram of N mutually exclusive events B, and another event A.
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=1 ne=1
where (1.4-11) has been used. Finally, (1.4-4) is substituted into (1.4-12) to
obtain {1.4-10).

N N
PAY=PANS) = P[U(A N B,,)il =" P(ANB,) 1.4-12)

Bayes’ Theorem?t

The definition of conditional probability, as given by (1.4-4), applies to any
two events. In particular, let B, be one of the events defined above in the
subsection on total probability. Equation (1.4-4) can be written

B,
Py =LA > (:)A) (1.4-13)
if P(A4) # 0, or, alternatively,
P(A|B,) =L1’f(g—’fﬁ (1.4-14)

if P(B,) # 0. One form of Bayes’ theorem is obtained by equating these two
expressions:

P(AIB.)P(B,)
P(d)
Another form derives from a substitution of P(4) as given by (1.4-10),
P{AIB,)P(B,)
P(A|B)P(B)) + -+ + P(A|By)P(By)

P(B\4)y= (1.4-15)

P(B,|4) = (1.4-16)
forn=1,2,...,N.

An example will serve to Hlustrate Bayes® theorem and conditional prob-
ability.

EXAMPLE 1.42. An elementary binary communication system consists of a
transmitter that sends one of two possible symbols (2 1 or a 0) over a
channel to a receiver. The channel occasionally causes errors to occur so
that a 1 shows up at the receiver as a 0, and vice versa.

The sample space has two elements (0 or 1). We denote by B;, i = 1,2,
the events “the symbol before the channel is 1,” and “the symbol before
the channel is 0, respectively. Furthermore, define 4;, i =1,2, as the
events “the symbol after the channel is 1,” and “the symbol after the
channel is 0,7 respectively. The probabilities that the symbols 1 and 0
are selected for transmission are assumed te be

P(B)=06 and  P(B)) =04

$The theorem is named for Thomas Bayes (1702-1761), an English theclogian and mathemati-
cian.

Conditional probabilities describe the effect the channel has on the
transmitted symbols. The reception probabilities given a 1 was trans-
mitted are assumed to be

P(A4,|1B,) =09
P(A4,]B) = 0.1

The channel is presumed to affect Os in the same manner so
P(4)|8;)=0.1
P(4,|B,) =09

In either case, P{4,[B;} + P(4,|B;) = 1 because A, and 4, are mutually
exclusive and are the only *“receiver” events (other than the uninteresting
events ZF and §) possible. The channel is often shown diagrammatically as
illustrated in Figure 1.4-2. Because of its form it is usually called a binary
symmetric channel.

From {1.4-10) we obtain the “received” symbol probabilities

P(A)) = P(A[|B)P(B) + P(4,|B2)P(By)
= 0.9{0.6) + 0.1(0.4) = 0.58
P(A;) = P(A43|B\)P(B) + P(42| B2} P(By)
= 0.1{0.6) + 0.5(0.4) = 0.42
From either (1.4-15) or {1.4-16) we have
P(A|B)P(B) _ 0.95(0.6) 054

P = - _054
(Bil4) PlA) 058 058 003l
_ P(A;lBy)P(By) _0.9(0.4) 0.36 '
PBrl) = P(4y) 042 042 0.857

FIGURE 1.4-2 :

Binary symmetric communication system diagrammatical model applicable to
Example 1.4-2.
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P(4,]B))P(B;) _ 0.100.6) _ 0.06

P(Biidy) = Pldy) 042 042 0.143
_ P(A|B)PB:)  0.1(0.4) _ 0.04
PB4 = P(4) 058 038 *0.069

These last two numbers are probabilities of system error while
P(B,|4,) and P(B;|4,) are probabilities of correct system transmission
of symbols.

In Bayes’ theorem (1.4-16), the probabilities P(B,) are usually referred to
as a priori probabilities, since they apply to the events B, before the perfor-
mance of the experiment. Similarly, the probabilities P(4]8B,) are numbers
typically known prior to conducting the experiment. Example 1.4-2 described
such a case. The conditional probabilities are sometimes called transition
probabilities in a communications context. On the other hand, the probabil-
itics P(B,|A) are called a posteriori probabilities, since they apply after the
experiment’s performance when some event A4 is obtained.

EXAMPLE 1.4-3, A student takes a commuter train to get to a school’s
campus and to class: The probabllxty the student will arrive at class on
time is 0.95 provided the train is on time. If the train is known to be on
schedule 70% of the time, what is the probability the student will be on
time to class? Here we use Bayes’ rule and interpret the relative frequency
70% as the probability of the train’s being on time. Let C represent the
event the student arrives in class and T represent the train arrives on time.
The student will arrive on time if the joint event CN 7T is true. The
probability of this event is P(CNT)=P(C|T)KT)=0.950. =
0.663, from (1.4-13).

EXAMPLE 1.44. A box contains 6 green balls, 4 black balls, and 10 yellow
balls. All balls are equally likely (probable) to be drawn: What is the
probability of drawing 2 green balls from the box if the ball on the first
draw is not replaced? Let G represent the event ““draw a green ball.” An
application of relative frequency to the first draw suggests that
P(G) = 6/20 = 0.3. On the second draw we operate with 5 green, 4
black, and 10 yellow balls because the first draw must result in a green
ball. For the second draw, P(G|G) = 5/19 and Bayes’ rule gives P(GN
G) = P(GIG)P(G) = (5/19)0.3 = 1.5/19 = 0.789.

1.5
INDEPENDENT EVENTS

In this section we introduce the concept of statistically independent events.
Although a given problem may involve any number of events in general, 1t 1s
most instructive to consider first the simplest possible case of two events.”

Two Events

Let two events A and B have nonzero probabilities of occurrence; that is,
dssume P(A4) # 0 and P(B) # 0. We call the events statistically independent
if the probability of occurrence of one event is not affected by the occcurrence
of the other event. Mathematically, this statement is equivalent to requiring

P(A|B) = P(4) (1.5-1)
for statistically independent events, We also have .
P(B|A) = P(B) (1.5-2)

for statistically independent events. By substitution of (1.5-1) into (1.4-4),
independencet also means that the probability of the joint occurrence (inter-
section) of two events must equal the product of the two event probabilities:

P(AN By = P(A)P(B) (1.5-3)

Not only is (1.5-3) [or (1.5-1)] necessary for two events to be independent but
it is sufficient. As a consequence, (1.5-3) can, and often does, serve as a test of
independence.

Statistical independence is fundamental to much of our later work. When
events are independent, it will often be found that probability problems are
greatly simplified.

It has already been stated that the joint probability of two mutunally
exclusive events is 0:

PANB) =0 (1.5-9)

If the two events have nonzero probabilities of oceurrence, then, by ¢compar-
ison of (1.5-4) with (1.5-3), we easily establish that two events cannot be both
mutually exclusive and statistically independent. Hence, in order for two
events to be independent they must have an intersection 4N B # &,

If a problem involves more than two events, those events satisfying either
(1.5-3) or (1.5-1) are said to be independent by pairs.

EXAMPLE 1.5-1. In an experiment, one card is selecied from an ordinary 52-
card deck. Define events A as “select a king,” B as “select a jack or
queen,” and C as “select a heart From lntumon these events have
probabﬂltles P(4) = 52, P(B)= 52, and P(C)} = 5

It is also easy to state joint probabilities. P(A M B) =0 (it is not
possible to 81multaneously select a king and a jack or queen),
P(ANC) =4, and P(BN C) = 5—
We determine whether 4, B, and € are independent by pairs by
% applying (1.5-3):

TWc shall often use only the word independence to mean statistical independence.
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PANB) =0+ PAPB) = o

1
PANC) = 51_2 = PP(C) =55

) 2 2
PBOC) == PBPO) =55

Thus, 4 and C are independent as a pair, as ar¢ B and C. However, A ang
B are not independent, as we might have guessed from the fact that A and
B are mutually exclusive.

ractical problems, statistical independence of cvepts is often
assufse:il.l a'Il'lge _Ii)lj:tiﬁcatign hinges on j:here being no apparent physical co;n;_c{-
tion between the mechanisms leading to the events. In other cases, proba 1t—
ities assumed for elementary events may lead to independence of other events
defined from them (Cooper and McGillem, 1971, p. 24).

Multiple Events

When more than two events are involved, inqepeudence by pairs: is not sufﬁ-

cient to establish the events as statistically independent, even if every pair
atisfies (1.5-3). _ ) )

B In th(c casg of three events A, A2, and A, they are said to be independent
if, and only if, they are independent by all pairs and are also independent as a
Er’iple;_ that is, they must satisfy the four equations:

P(A1 N Ay) = P(4))P(A) (1.5-5q)
P41 N1 A3) = P(AYP(A3) (1.5-55)
P(A; O As) = P(A2)P(A3) (1.5-5¢)
P(A; N 43 0 A5) = P(A)P(A2)P(A3) (1.5-54)

The reader may wondler if satisfaction of (1.5—§a') m.ight be sufficient to guar;
antee independence by pairs, and therefore, satisfaction of all four condmon_s.
The answer is no, and some further detail on this fact can be found in

Davenport (1970, p. 83). - o
Mgre g(eneraily, for N events Ay, 4, ..., Ay to be called statistically

independent, we require that all the conditions
P(4; 0 A45) = P(A)P(4))
P(A; NV A; N Ag) = P(AP(A)P(A)
. : (1.5-6)
P(A; N Az N N AR) = P(A)P(A3) - P(AN)

N
be satisfied for all 1 <i<j<k<-.-<N. There are 2 — N —1 of these
conditions {(Davenport, 1970, p. 83).

EXAMPLE 1.5-2. Consider drawing four cards from an ordinary 52-card
deck. Let events 4, 4,, A5, A, define drawing an ace on the first, second,
third, and fourth cards, respectively. Consider two cases. First, draw the
cards assuming each is replaced after the draw. Intuition tells us that these
evenls arc independent so P4, NA;NA;NA)= P(A)P(A3)P(A45)
P(Az) = (4/52)* = 3.50(1075). _

On the other hand, suppose we keep each card after it is drawn. We
now expect these are not independent events. In the general case we may
write

P(A4; N Az N A3 N Ay)
= P{A1)P(A; N A3 1 Ay) ;)
= P(ADP(A2| A1) P(A3 N Ayl ) N ALY 35
= P(A)P(Ay| A1)P(A43] 4, N A)P(A4|4) N A; N A43)
4 3 2 1 p
=t — e — a2 3 10~
52 51 50 49 3690107 . o
Thus, we have approximately 9.5 times better chance of drawing four aces
when cards are replaced than when kept. This is an intuitively satisfying

result since replacing the ace drawn raises chances for an ace on the
succeeding draw.

Properties of Independent Events

Many properties of independent events may be summarized by the statement:
I N events 41, 4,,..., Ay are independent, then any one of them is indepen-
dent of any event formed by unions, intersections, and complements of the
others (Papoulis, 1965, p. 42). Several examples of the application of this
statement are worth listing for illustration.

_ For two independent events A; and A4, it results that 4, is independent of
A3, Ay is independent of A,, and A4, is independent of Aj. These statements are
proved as a problem at the end of this chapter. ’

For three independent events 4, 45, and 43 any one is independent of the
joint occurrence of the other two, For example

P41 01 (A3 N 43)] = P(A[)P(A2)P(A3) = P(4,)P(42 N 43) (1.5-7

with similar statements possible for the other cases A3 N{A; N A4y) and

A3 N(A, N A4y). Any one event is also independent of the union of the other
two. For example

P4y N{Az U 43)] = P(4])P(42 U 45) (1.5-8)

This result and (1.5-7) do not necessarily hold if the events are only indepen-
dent by pairs.
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1.6 :
COMBINED EXPERIMENTS

All of our work up to this point is related to outcomes from a single experi:-

ment. Many practical problems arise where such a constrained approach does
not apply. One example would be the simultaneous measurement of wind
speed and barometric presure at some location and instant in time. Two
experiments are actually being conducted; one has the outcome “speed”; the
other outcome is “pressure.” Still another type of problem involves cofiduct-
ing the same experiment several times, such as flipping a coin N times. In this
case there are N performances of the same experiment. To handle these situa-
tions we introduce the concept of a combined experiment.

A combined experiment consists of forming a single experiment by suitably
combining individual experiments, which we now call subexperiments. Recall
that an experiment is defined by specifying three quantities. They are: (1) the
applicable sample space, (2) the events defined on the sample space, and (3)
the probabilities of the events. We specify these three quantities below, begin-
ning with the sample space, for a combined experiment.

Combined Sample Space

Consider only two subexperiments first. Let S, and §; be the sample spaces of
the two subexperiments and let 5, and 5, represent the elements of §; and 35,
respectively. We form a new space 5, called the combined sample space,t
whose elements are all the ordered pairs (sy, 52). Thus, if S|, has M elements
and S, has N elements, then S will have MN elements. The combined sample
space is denoted

S=38 x5 . (1.6-1)

'EXAMPLE 161, If S| corresponds to flipping a coin, then 5, ={H, 7T},
where H is the element “heads” and T represents “tails.” Let
S, ={1,2,3,4,5, 6} corresponding to rolling a single die. The combined
sample space S = §| x 5, becomes
§={(H 1) (HD,(HI3),H$H,H,S5),(H6),(T,1),(T,2),
(7.3).(T.4).(T.5).(T. 6)

In the new space, elements are considered to be single objects, each object
being a pair of items.

tAlso called the carresian product space in some texts.

EXAMPLE 1.6-2. We flip a coin twice, each flip being taken as one sub-
experiment. The applicable sample spaces are now

S ={H,T}
S = {H, T}
S=1{H H).(H,1),(T, B {T.T)

. In this last example, observe that the element (H, T) is considered differ-
ent from the element (T, ); this fact emphasizes the elements of § are ordered
pairs of objects. :

The more general situation of N subexperiments is a direct extension of

the above concepts. For N sample spaces S, 1 = 1,2, ..., N, having elements
s,, the combined sample space 5 is denoted )
S=5 xS x-- xSy (1.6-2)

and it is the set of all ordered N-tuples
(5105202 5x) (1.6-3)

Events on the Combined Space

Events may be defined on the combined sample space through their relation-
ship with events defined on the subexperiment sample spaces. Consider two
subexperiments with sample spaces .§) and S;. Let 4 be any event defined on
S, and B be any event defined on S5, then

C=A4Ax8 (1.6-4)
is an event defined on S consisting of all pairs (s, 52) such that
sied and s eR (1.6-5)

Since elements of 4 correspond to elements of the event 4 x S; defined on §,
and elements of B correspond to the event 8 x B defined on §, we easily find
that

Ax B=(4x 85)N(S x B) (1.6-6)

Thus, the event defined by the subset of S given by 4 x B is the intersection of
the subsets 4 x 5, and 5| x B. We consider all subsets of Sof theform 4 x B
as events. All intersections and unions of such events are also events (Papoulis,
1965, p. 50).

EXAMPLE 1.63. Let 5] = {0 < x < 100} and 53 = {0 < y < 50}. The com-
bined sample space is the set of all pairs of numbers (x, y) with 0 < x <
._100 and 0 < y < 50 as illustrated in Figure 1.6-1. For events

A={x <x <x3}

B={y <y <yl
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XY

FIGURE 1.6-1
A combined sample space for two subexperiments.

where 0 < x| < x; < 100 and 0 <y, < y, =50, the events ) x B and
A x 8, are horizontal and vertical strips as shown, The event

AxB={x<x<x}x{y <y<yl
is the rectangle shown. An event S; x {y = y,} would be a horizontal line.

In the more general case of N subexperiments with sample spaces S, on
which events A4,, are defined, the events on the combined sample space S will
all be sets of the form.

A1XA2X"’XAN (16-7)

and unions and intersections of such sets (Papoulis, 1965, pp. 53-54).

Probabilifies

To complete the definition of a combined experiment we must assign prob-
abilities to the events defined on the combined sample space S. Consider only
two subexperiments first, Since all events defined on § will be unions and
intersections of events of the form 4 x B, where A C §) and B C S5, we
only need to determine P(4 x B) for any A and B. We shall only consider
the case where

P(4 x B) = P(A)P(B) (1.6-8)

Subexperiments for which {1.6-8) is valid are called independent experiments.
To see what elements of S correspond to elements of 4 and B, we only
need substitute S, for B or & for 4 in (1.6-8):

P(A x Sy) = P(A)P(S;) = P(4) (1.69)
P(S, x B) = P(S,}P(B) = P(B) (1.6-10)

I

Thus, elements in the set 4 x §, correspond to elements of 4, and those of
S x B correspond to those of B.
For N independent experiments, the generalization of (1.6-8) becomes

P(A] X A2 Koo X AN) = P(A])P(Az)"'P(AN) (16-11)

where A, C S,,n=1,2,...,N.

With independent experiments, the above results show that probabilities
for events defined on S are completely determined from probabilities of events
defined in the subexperiments. .

Permutations

Experiments often involve multiple trials in which outcomes are elements of a
finite sample space and they are not replaced after each trial. For example, in
drawing four cards from an ordinary 52-card deck, each of the “draws” is not
replaced, so the sample spaces for the second, third, and fourth draws have
only 51, 50, and 49 elements, respectively. In these and other types of pro-
blems, the number of possible sequences of the outcomes is often important.

For n total elements there are n possible outcomes on the first trial, (i1 — 1)
on the second, and so forth. For r elements being drawn, the number of
possible sequences of r elements from the original » is denoted by P; and is
given by

“* Orderings of 7 elements ]
taken from 1 ] =nn—Dr-2)---(n—r+1)

nl
e

(1.6-12}
r=1,2,...,n

This number is the number of permutations, or sequences, of r elements taken
from n elements when order of occurrence is important. This last point is clear
from the card experiment. Suppose the first two cards are both kings, say, a
heart and a spade. Then the king of hearts followed by the king of spades is
considered a different sequence from the spade followed by the heart.

from a 52-card deck? From (1.6-12) P = 521/{52 — 4)! = 52(51)50(49) =

EXAMPLE 1.64. How many permutations are there for four cards taken
6,497,400.

Combinations-

If the order of elements in a sequence is not important, we reason that there
are now fewer possible sequences of r elements taken from # elements without
replacement. In fact, the number of permutations of (1.6-12) is reduced by a
factor given by the number of permutations (orderings) of the r things, which
is P{ =r!. The resulting number of sequences where order is not important is
called the number of combinations of r things taken from #» things. The nota-
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tion (7} is usually used to denote combinations, but other notations are also
used in various sources, Thus,

n L o
(r)"_?;_(n —)in (1.6:13)

The numbers (}) are called binomial coefficients because they are central to
the expansion of the binomial (x + y)" as given by

n At
(x4 = Z(f)fy"" (1.6-14)
r=0
In computing factorials in (1.6-12) and (1.6-13) we define 0! =1, s0 () = |

and ()= 1.

EXAMPLE 1.6-5. A coach has five athletes from whom a 3-person team is to
be selected for a competition. How many such teams could he select? The
answer is the number of combinations of (1.6-13) withr =3 and n = 5, or
S1/(3121) = 10. Note that the same number occurs for a selection of 2-
person teams: 51/(2131) = 10.

The preceding example points out the symmetry of binomial coeffictents:

()-(2)

1.7
BERNOULLI TRIALS

We shall close this chapter on probability by considering a very practical
problem. It involves any experiment for which there are only two possible
outcomes on any trial. Examples of such an experiment are numerous: flipping
a coin, hitting or missing the target in artillery, passing or failing an exam,
receiving a 0 or a I in a computer bit stream, or winning or losing in a game of
chance are just a few.

For this type of experiment, we let 4 be the clementary event having one
of the two possible outcomes as its element. A4 is the only other possible
elementary event. Specifically, we shall repeat the basic experiment N times
and determine the probability that 4 is observed exactly & times out of the N
trials. Such repeated experiments are called Bermoulli trials.t Those readers
familiar with combined experiments will recognize this experiment as the
combination of N identical subexperiments. For readers who omitted the
section on combined experiments, we shall develop the problem so that the
omission will not impair their understanding of the material.

tAfter the Swiss mathematician Jacob Bernoulli (1654-1705).

Assuine that elementary events are statistically independent for every trial.
Let event A occur on any given trial with probability

PA)=p ‘ (1.7-1)
The event A then has probability
PA)=1-p (1.7-2)

After IV trials of the basic experiment, one particular sequence of outcomes has
A oceurring & times, fellowed by 4 occurring N — & times. T Because of assumed
statistical independence of trials, the probability of this one sequence is

P(A)P(A)--- P(4) P(A)P(A) --- P(A) = p*(1 — py"* (1.7-3)

kterms N—Fk terms

Now there are clearly other particular sequences that will yield & events A4
and N —k events 4.1 The probability of each of these sequences is given by
(1.7-3). Since the sum of all such probabilities will be the desired probability of
A occurring exactly k times in & trials, we only need find the number of such
sequences. Some thought will reveal that this is the number of ways of taking &
objects at a time from N objects. The number is known to be the binomial
coefficient of (1.6-13}.

N N
( k ) TR R (1.7-4)

From the product of (1.7-4) and (1.7-3) we finally obtain

P{A occurs exactly k times} = (J:)pk(l - p)N'k (1.7-5)

EXAMPLE 1.7-1. A submarine attempts to sink an aircraft carrier. It will be
successful only if two or more torpedoes hit the carrier. If the sub fires
three torpedoes and the probability of a hit is (.4 for each torpedo, what
is the probability that the carrier will be sunk?

Define the event A4 = {torpedo hits}. Then P{(4) =04, and N =3.
Probabilities are found from (1.7-3):

3

Plexactly no hits} = ( 0)(0.4)"(1 —0.4)° =0.216
3

Plexactly one hit} = (1 )(0.4)'(1 —0.4)° =0.432

1This particular sequence coiresponds to one N-dimensional element in the combined sample
space S.

1 All such sequences define all the elements of § that satisfy the event {A occurs exactly & times
in N trials} defined on the combined sample space,
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3
Plexactly two hits) = (2)(0.4)2(1 — 04! =0.288

3
Plexactly three hits} = (3 )(0.4)3(1 —0.4)° = 0.064

The answer we desire is

P{carrier sunk} = P{two or more hits})
- == Plexactly two hits} 4 Plexactly three hits}
=0.352

EXAMPLE 1.7-2. In a culture used for biclogical research the growth of
unavoidable bacteria occasionally spoils results of an experiment that
requires at least three out of four cultures to be vnspoiled to obtain a
single datum point. Experience has shown that about 6 of every 100
cultures are randomly spoiled by the bacteria. If the experiment requires
three simultaneously derived, unspoiled data points for success, we find
the probability of success for any given set of 12 cultures (three data
points of four cultures each).

We treat individual datum points first as 2 Bernoulli trial problem
with N =4 and p = P{good culture} = 2 = 0.94. Here

Plvalid datum point} = P{3 good cultures} + P{4 good cultures}
4 4 .
= (3)(0.94)‘(1 —0.99)' = (4 )(0.94)4(1 —0.94)° 2 0.98

Finally, we treat the required three data points as a Bernoulli trial
problem with & = 3 and p = P{valid datum point} = 0.98. Now

Plsuccessful experiment} = P{3 valid data points}

= (; )(0.98)3(1 —0.98)" ~ 0.941

Thus, the given experiment will be successful about 94.1 percent of the
time. .

When N, k, and (N — &) are large, the factorials in {].7-5) are difficult to
evaluate, so approximations become useful. One approximation, called
Stirling’s formula, is

ml 2= 2rm)Pnle™ m large (1.7-6)

It is exact for m — co In the sense that the ratio of m! to the right side of
(1.7-6) tends to umity. For other values of m its fractional error is on the
order of 1/(12m), which is quite good (better than 1 percent) even for m as
small as 10.

By applying Stirling’s formula to the factorials, in (1.7-5), and then
approximating some resulting factors by the first two terms in their series
expanstons, it can be shown {see Davenport, 1970, pp. 276-278) that -

N :
P{A occurs exactly k times} = ( k )pk(l —py*

. 2
~ (k— Np) ] (1.7-7)

1 _
”me"p[ 2Np(1 - )

This equation, called the De Moivre—Laplacet approximation, holds for N, k,
and (N — k) large, & near Np such that its deviations from Np (higher or
lower) are small in magnitude relative to both Np and N(1 — p). We illustrate
these restrictions by example.

EXAMPLE 1.7-3. Suppose a certain machine gun fires rounds (cartridges) for
3 seconds at a rate of 2400 per minute, and the probability of any bullet’s
hitting 2 large target is 0.4. We find the probability that exactly 50 of the
bullets hit the target,

Here N = 3(2400/60) = 120, k=50, p=04, Np=120004) =
and N(1 - 120(0 6) = 72. Thus, since N, k, and (N — k) = 70 are
all large, wl:ule k is near Np and the deviation of k from Ap, which is
50 — 48 = 2, is much smaller than both Np =48 and N(1 —p) = 72, we
can use (1.7-7):

N
Plexactly 50 bullets hit the target} = ( k )pk(l -

N 1 exn] 0= 48y
@806 | 206
The approxnnatlon of (1.7-7) fails to be accurate when N becomes very

large while p is very small. For these conditions another approximation is
helpful. It is called the Poissont approximation:

K —Np

:| = 0.0693

N large and p small (1.7-8)

18
SUMMARY

This chapter has developed the basics of preobability, events, and random
experiments by successively building on a basic foundation of set theory. It
has also defined probability through the concept of a relative frequency of
occurrence of events. Specifically, the topics developed were:

tAbraham De Moivre (1667-1754) was a French-born scientist who lived most of his life in
England and contributed to the mathematics of probability. Marquis Pierre Simon De Laplace
(1749-1827) was an outstanding French mathematician.

}After the French mathematician Siméon Denis Poisson (1781-1840),
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» Definitions of sets, characteristics of sets, and how they enter into definitions
of probability.

+ Introduction of probability defined through sets and through the use of the
relative frequency concept.

« Development of special kinds of probability, such as applied to cvents
multiple events (joint probability), and events dependent on each other
(conditional probability).

« Introduction of the statistical independence of events.

+ Discussions of how to combine several separate random experlmcnts ‘Such
that they may be taken as a single (combined} experiment. Through
Bernoulli trials these topics were applied to various practical problems invel-
ving success and failure outcomes of an experiment.

This chapter’s topics form a firm basis te proceed to the important con-
cept of a random variable in the next chapter.

PROBLEMS

1.1-1.

*1.1-7.

1.1-8.

Specify the following sets by the rule methed.

A=(1,2,3), B=1{8.10,12, 14}, C=1{1,3,5,7,.. .}

. Use the tabular method to specify a class of sets for the sets of Problem 1.1-1.

. State whether the following sets are countable or uncountable, or finite or

infinite. 4 = {1}, B={x=1}, C={0 < integers}, D =
school No. §), E = {girls in public school No. 5}, F = {girls in class in public
school No. § at 3:00 am}, G={all lengths not exceeding one meter},
H=[-25=<x=<-3LI={-2,-11I=x=<2}L

{children in public

. For each set of Problem 1.1-3, d_ef.ermine if it is equal to, or a subset of, any of

the other sets.

. Staté ev.ery possible subset of the set of letters {a, &, ¢, ).

. A thermometer measures temperatures from —40 to 130°F (—40 to 54.4°C).

(&) State a universal set to describe temperature measurements. Specify sub-
sets for:

(b) Temperature measurements not exceeding water’s freezing point, and

(¢} Measurements exceeding the freezing point but not exceeding 100°F
(37.8°C).

Prove that a set with N elements has 2V subsets.

A random noise voltage at a given time may have any value from —10 to 10V.
{2) What is the universal set describing noise voltage?

(6) Find a set to describe the voltages available from a half-wave rectifier-for -

positive voltages that has a linear output-input voltage characteristic.”
(c} Repeat parts () and (8) if a dc voltage of —3V is added to the random
noise.

Ry

L.1-9.

1.1-10.

LI-11.

1.I-12,

1.2-3.

1.24.

1.2-5.

1.2-6.

1.2-7.

1.2-8.

Use the tabular method to define a set A4 that contains all integers with
magnitudes not exceeding 7. Define a second set B having odd integers larger
than —2 and not larger than $, Determine if 4 C B and B C A.

A set 4 has three elements ay, @s, and a3. Determine all possible subsets of A.

Specify, by both the tabular and rule methods, each of the following sets: (@)
all integers between 1 and 9, (b} all integers from 1 to 9, (¢) the five values of
equivalent resistance for o identical 10-Q resistors in p"'ﬁallel where n =
1L2,....5 and (d) the six values of equivalent resistance for » identical 2.2-
Q rcs:stors in series whérd w=1,2,....,6.

A box contains 100 capacitors {universal set) of which 40 are 0.01 uF with a

100-V voltage rating, 35 are 0.1 pF at a rating of 50V, and 25 are §.0 uF and

have a 10-V rating. Determine the number of elements in the following sets:

(a) A = {capacitors with capacitance = 0.1 uF}

(b) B = {capacitors with voltage rating > 5V}

(¢} € = {capacitors with both capacitance > 0.1puF and voltage rating
= 50V]. .

. Showthat CCcAifCC Band BCA.

. Two sets are given by A = {6, —4, -0.5,0, 1.6, 8) and B=1{-0.5,0,1,2,4}).

Find:
(@ A—B () B—A4 () AUB (d) ANB
A universal set is given as § = {2,4, 6, 8§, 10, 12}. Define two subsets as A =

{2,4,10) and B = {4, 6, 8, 10}. Determine the following:
(@) A=S—A () A—BandB—A (c) AUB (d) ANB

() AnB .

Using Venn diagrams for three sets A, B, C, shade the areas corresponding to
the sets:

(a) (AU B)— ® Bn4d (@ AnBNC {(d) (AUBNC
Sketch a Venn diagram for three events where ANB#£Y, BNC#,
CNA#£@, but ANBNC =@,

Use Venn diagrams to show that the following identities are true:
(@ (AUBNC=C—-[ANOUENC)] _ _

() (AUBUC)—(ANBNC)={(ANB)UENCYU(CN 4)

() (ANBNC)=AUBUC

Use Venn _diagrams o prove De Morgan's laws (AUB) = ANE and

(ANB)=AUBE.

A universal set is S={-20<s<—4}]. f A={-10<s5<-5} and B=

[—7 < s < —4}, find:

(@) AUB

(b) ANB

(¢) A third set C such that the sets AN C and BN C are as large as possible
while the smallest element in C is —9. ’
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(d) What is the set AN BN C?

1.2-9. Use De Morgan’s laws to show that:

@ An(BuQ) = (fiUB)n(AUC)
) ANBNC)=AUBUC
In each case check your resulis using a Venn diagram.

1.2-10. Shade Venn diagrams to illustrate each of the following sets:

@ (AUBNE, () @ANBUC,
(@ UnBNOUENCND).

(c) (AuBU{CND),

1.2-11. A universal set S is composed of all points in a rectangular area defined by

0<x=<3 and 0<y=<4. Define three sets by A={y<3{x—1)/2},
B={y=>1}, and C={y>3—x]. Shade in Venn diagrams corresponding
tothe sets (@) ANBNC, and (B) CNENA,

1.2-12. The take-off roll distance for aircraft at a certain airport can be any number

from 80m to 1750 m. Propeller aircraft require from 80m to 1050 m while jets

use from 950m te 1750m. The overall runway is 2000 m.

(2) Determine sets A, B, and. C defined as “propel]er aireraft take-off dis-
tances,” “jet aircraft take-off distances,” and “runway length safety
margin,” respectively.

(¥) Determine the set 4N B and give ils physical significance.

() What is the meaning of the set 4 U B?

(d) What are the meanings of the sets AU BUC and AU B?

1.2-13. Prove that De Morgan's law (1.2-13) can be extended to N events A4;, i=

1,2,..., N as follows:

U4y

NN NAg = (4, U4 U
1.2-14. Work Problem 1.2-13 for (1.2-12) to prove
@ UA U Udg)=(4, ndn---0.4y)

1.2-15. Sets A=l <s< 4}, B=

{3,6,14}, and C={2 <5 <9} are defined on a
sample space S. State if each of the following conditions is true or false.

(@) CCB, b Cc4, (c) BnC=0, @) CUB=S,

(e) S=9, (N ANS=O,and(g) CcA4CB.

1.2-16. Draw Venn diagrams and shade the areas comresponding to the sets

(@) (AUBUOINGIUBUE), and (B) (AU B NCJUAU O).

1.2-17. Work Problem 1.2-16 cxcept assume sets () (AN BNC)U(AUBUD),

() B—(4ANB), and () (ANBUUNCUENC)—(ANBNC).

- 1.3-1. A die is tossed. Find the probabilities of the events 4 = {odd number shows

up}, B = {number larger than 3 shows wp}, AU B, and AN B.

1.3-2. In a game of dice, a “shooter”™ can win outright if the sum of the twe numbers

showing up is either 7 or 11 when twe dice are thrown. What is his probability
of winning outright?

LRk

(- po e Sl

1.34.

1.3-5.

L3-6.

1.37.

1.3-8.

1.3-9.

1.3-10.

1.3-I1.

. A pointer is spun on a fair wheel of chance having its periphery labeled from 0

to 100.

(2) What is the sample space for this experiment?

(b) What is the probability that the pointer will stop between 20 and 357
(¢) What is the probability that the wheel will stop on 582

An experiment has 2 sample space with 10 equally likely elements
S={a.a,...,ap). Three events are defined as A4 ={a),as a},
B = {ay, ay, a4, a5}, and C = {ag, ao}. Find the probabilities of:

(@ AUC -
(b)) BUC

{(©) AN(BUQ)
(d) AUB

{e) (AUuBINC

Let A4 be an arbitrary event. Show that P(4) = 1 — P(4).

An experiment consists of rolling 4 single die. Two events are defined as:
= {a 6 shows up} and B ={a 2 or a 5 shows up}.

(2) Find P(A) and P(B).

() Define a third event C so that P(C) =1 — P(4) — F(B).

In a box there are 500 colored balls: 75 black, 150 green, 175 red, 70 white, and
30 blue. What are the probabilities of selecting a ball of each color?

A single card is drawn from a 52-card deck.

(2} What is the probability that the card is a jack?

(5 What is the probability the card will be a 5 or smaller?
(¢} What is the probability that the card is a red 10?

A pair of fair dice are thrown in a gambling problem. Person A wins if the sum
of numbers showing up is six or less and one of the dice shows four. Person B
wins if the sum is five or more and one of the dice shows a four. Find: (g} The
probability that A wins, (b) the probability of B8 winning, and (¢} the prob-
ability that both 4 and B win.

You (person 4) and two others (B and C) each toss a fair coin in a two-step
gambling game. In step 1 the person whose toss is not a match to either of the
other two is “odd man out.” Only the remaining two whose coins match go on
to step 2 to reseclve the ultimate winner.

{2) What is the probability you will advance to step 2 after the first toss?
(b)) What is the probability you will be out after the first toss?

{c) What is the probability that no one will be out after the first toss?

A particular electronic device is known to contain only 10-, 22-, and 48-Q
resistors, but these resistors may have 0.25-, 0.5, or I-W ratings, depending
on how purchases are made to minimize cost. Historically, it is found that the
probabilities of the 10-Q resistors being 0.25, 0.5, or 1 W are 0.08, 0.10, and
0.01, respectively. For the 22-§2 resistors the similar probabilities are 0.20,
0.26, and 0.05. It is also historically found that the probabilities are 0.40,
0.51, and 0.09 that any resistors are 0.25, 0.50, and 1W, respectively. What
are the probabilities that the 48-Q resistors are (a) 0.25, {b) 0.50, and (c) 1 W?
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. Signal Principles 1.3-13. In a game two dice are thrown. Let one die be “weighted” so that a 4 shows up
ir with probability 2, while its other numbers all have probabilities of J. The same
i probabilities apply to the other die except the number 3 is “weighted.”

i3 36 1.3-12. For the sample space defined in Example 1.3-2 find the probabilities that: (a) 1.4-6. For Problem 1{4—5,b list tllle t:;ine conditional probabilities of capacitor selec- 37

f : i one die will show a 2 and the other will show a 3 or larger, and (b) the sum of i ion, given certain box selections. I
fi Probability, the two numbers showing up will be 4 or less or will be 10 or more. 3

i Random Variables, g

‘T

' Probabili
14-7. Rework Example 1.4-2 if P(B)) = 0.6, P(B;) = 0.4, P(4,|B)) = P(4,|B;) = robability
0.95, and P{4;|8;) = P(4;|By) = 0.05.

it

PRNTST

T TREAR S R B e e e e S SHE TR

14-1.

1.4-3.

1.44.

1.4-5.

Determine the probability the shooter will win outright by having tt‘lers.um
of the numbers showing up be 7. What would be the probability for fair dice?

Two cards are drawn from a 52-card deck {the first is not replaced).

(a) Given the first card is a queen, what is the probability that the second is
also a queen?

(5) Repeat part (g) for the first card a queen and the second card a 7.

(c) What is the probability that both cards will be a queen?

. An ordinary 52-card deck is thoroughly shuffled. You are dealt four cards up.

What is the probability that all four cards are sevens?

For the resistor selection experiment of Example 1.4-1, define event D as
“draw a 22-8 resistor,” and E as “draw a resistor with 10% tolerance.”
find P(D), P(E), P(D N E), P(D|E), and P(E|D).

For the resistor selection experiment of Example 1.4-1, define two mutually

exclusive events B) and B; such that B, U B, = 8.

{#) Use the total probability theorem to find the probability of the event
“select a 22-9 resistor,” denoted D.

(1) Use Bayes' theorem to find the probability that the resistor selected had
5% tolerance, given it was 2252,

In three boxes there are capacitors as shown in Table P1.4-5. An experiment

consists of first randomly selecting a box, assuming each has the same like-

lihoad of selection, and then selecting a capacitor from the chosen box.

() What is the probability of selecting a 0.01-pF capacitor, given that box 2
is selected?

() If a 0.01-yF capacitor is selected, what is the probability it came from box
37 (Hint: Use Bayes' and total probability theorems.)

R

1.4-8. Rework Example 1.4-2if P(B,} = 0.7, P(By) = 0.3, P(A,|B)) = P(4;|B5) = 1
{0 and P(4;|8)) = P(A,|B;) = 0. What type of channe] does this system have?

1.4-9. A company sells high fidelity amplifiers capable of generating 10, 25, and 50 W
of audio power. It has of hand 100 of the 10-W units, of which 15% are
defective, 70 of the 25-W units with 10% defective, and 30 of the 50-W units
with 10% defective.

(@) What is the probability that an amplifier sold from the 10-W units is
defective?

(B) I each waitage amplifier sells with equal likelihood, what is the probabil-
ity of a randomly selected unit being 50 W and defective?

() What is the probability that a unit randomly selected for sale is defective?

1.4-10. A missile can be accidentally launched if two relays A and B both have failed.
The probabilities of 4 and B failing are known to be 0.01 and 0.03, respec-
tively. It is also known that B is more [ikely to fail (probability 0.06) if 4 has
failed.

(@) What is the probability of an accidental missile launch?
(&) What is the probability that A will fail if B has failed?
(c) Are the events “4 fails” and “B fails" statistically independent?

*1.4-11. The communication system of Example 1.4-2 is to be extended to the case of
three transmitted symbols 0, 1,'and 2. Define appropriate evenls A; and B;,
i=1,2,3, to represent symbols afier and before the channel, respectively.
Assume channel transition probabilities are all equal at P(418) =0.1,
i#j, and are P{4)|B))=0.8 for i=j=1,2,3, while symbol transmission
probabilities are P(B;) = 0.5, F(8;) = 0.3, and P(B;) = 0.2.

(@) Sketch the diagram analogous to Fig. 1.4-2.
(b) Compute received symbol probabilities P(4,), P{4;), and P(4;).
(¢) Compute the a posteriori probabilities for this system.

() Repeat parts (b) and (¢) for all transmission symbol probabilities equal.
Note the effect.

1.4-12. A pharmaceutical product consists of 100 pills in a bottle. Two production
lines used to produce the product are selected with probabilities 0.45 {line one)
and 0.55 (line two). Each line can overfill or underfill bottles by at most 2 pills.

TABLE P1.4-5 Given that line one is observed, the probabilities are 0.02, 0.06, 0.88, 0.03, and
Capacitors 0.01 that the numbers of pills in a bottle will be 102, 101, 100, 99, and 98,
- respectively. For line two, the similar respective probabilities are 0.03, 0.08,
Number in bax 0.83, 0.04, and 0.02.
Value (uF)} 1 2 3 Totals (@) Find the probability that a bottle of the product will contain 102 pills.
— Repeat for 101, 100, 99, and 98 pills.
¢.01 20 95 25 :2(5) (b)) Given that a bottle contains the correct number of pills, what is the
(I’l; 33 gg 13? 205 probability it came from line one?
- () What is the probability that a purchaser of the product will receive less
Totals . 145 210 245 600

than 100 pills?
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1.4-14.

1.5-1.

1.5-2.

*1.5-3.

1.54.

1.5-5.

1.5-6.

1.6-1.

A manufacturing plant makes radios that each contain an integrated circuit
(IC) supplied by three sources 4, B, and C. The probability that the ICin a
radio came from one of the sources is %, the same for all sources, ICs are
known to be defective with probabilities 0.001, 6.003, and 0.002 for sources 4,
B, and C, respectively.

{g) What is the probability any given radio will contain a defective IC?

(b} If a radio contains a defective IC, find the probability it came from source

A. Repeat for sources B and C.

There are three special decks of cards. The first, deck D;, has all 52 cards of a
regular deck. The second, D5, has only the 16 face cards of a regular deck
(only 4 each of jacks, queens, kings, and aces). The third, D5, has only the 36
numbered cards of a regular deck (4 twos through 4 tens). A random experi-
ment consisits of first randomly choosing one of the three decks, then second,
randornly choosing a card from the chosen deck. If P[4} = %, E(Dy) == %, and
P(Dq) = %, find the probabilities: (@) of drawing an ace, () of drawing a three,
and (¢} of drawing a red card.

Determine whether the three events 4, B, and Cof Example 1.4-1 are statis-
tically independent.

List the various equations that four events 4;, 4;, 4, and A4 must sat:sfy if
they are to be statistically independent.

Given that two events 4; and 4, are statistically independent, show that:
(@) 4, is independent of 4,
(b) 4, is independent of 4,
{¢) 4, is independent of A,

Show that there are 2 ~ N — 1 equations required in (1.5-6). (Hint: Recall
that the binomial coefficient is the number of combinations of N things taken
n at a time.}

In a communication system the signal sent from point @ to point b arrives by
two paths in parallel. Over each path the signal passes through two repeaters
(in series). Each repeater in one path has a probability of failing (becoming an
open circuit) of 0.005. This probability is 0.008 for each repeater on the other
path. All repeaters fail independently of each other. Find the probability that
the signal will not arrive at point b.

Work Problem 1.5-5, except assume the paths and repeaters of Figure P1.5-6,
where the probabilities of the repeaters’ failing (independently) are py =
P(Ry) =0.005, g, = P(R;) = P(R;) == P(Ry) = 0.01, and p3 = P(Rs}) = P(Ry)
= 0.05.

An experiment consists of randomly selecting one of five cities on Florida’s
west coast for a vacation. Ancther experiment consists of selecting at random
one of four acceptable motels in which to stay. Define sample spaces Sy and S
for the two experiments and a combined space S = ) x 3; for the combined
experiment having the two subexperiments.

b R

1.6-2.

1.6-4.

1.7-1.

1.7-2.

1.7-3.

II

FIGURE P1.5-6

Sketch the area in the combined sample space of Example 1.6-3 corresponding
to the event A x B where:

(@) A={10 < x <15} and B={20 <y < 50}

() A=[x=40}and B= {5 < y < 40}

. The six sides of a fair die are numbered from 1 to 6. The die is rolled four

times. How many sequences of the four resulting numbers are possible?

In a S-card poker game, a player is dealt 5 cards. How many pc.)ker hands are
possible for an ordinary 52-card deck?

A production line manufactures 5-gal {18.93-liter) gasoline cans to a volume
tolerance of 5%. The probability of any one can being out of tolerance is 0.03.
If four cans are selected at random:

(a) What is the probability they are all out of tolerance?

(b) What is the probability of exactly two being out?

(¢} What is the probability that all are in tolerance?

Spacecraft are expected to land in a prescribed recovery zone 80% of the time.
Over a period of time, six spacecraft land.
() Find the probability that none lands in the prescribed zone.
{6) Find the probability that at least one will land in the prescribed zone.
(¢) The landing program is called successful if the probability is 0.9 or more
" that three or more out of six spacecraft will land in the prescribed zone. Is
the program successful?

In the submarine problem of Example 1.7-1, find the probabilities of sinking
the carrier when fewer (W = 2) or more (N = 4) torpedoes are fired.
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1.7-4. A student is known to arrive late for a class 40% of the time. If the class meets
five times each week find: (2) the probability the student js late for at least
three classes in a given week, and (§) the probability the student will not be
late at all during a given week.

1.7-5. An airline in a smali city has five departures each day. It is known that any
given flight has a probability of 0.3 of departing late. For any given day find
the probabilities that: {a) no fiights depart late, (b) all flights depart late, and
(c) three or more depart on time.

1.7-6. The local manager of the airiine of Problem 1.7-5 desires to make sure that the
probability that all flights leave on time is 0.9. What is the largest probability
of being late that the individual flights ¢an have if the goal is to be achieved?
Will the operation have to be improved significantly?

1.7-7. A man wins in a gambling game if he gets two heads in five flips of a biased
coin. The probability of getting a head with the coin is 0.7.
(@) Find the probability the man will win. Should he play this game?
(6) What is his probability of winning if he wins by getting at least four heads
in five flips? Should he play this new game?

*1,7-8. A rifieman can achieve a “marksman” award if he passes a test, He is allowed
to fire six shots at a target’s bull’s eye. If he hits the bull's eye with at [east five
of his six shots he wins a set. He becomes a marksman only if he can repeat the
feat three times straight, that is, if he can win three straight sets. If his prob-
ability is 0.8 of hitting a bull’s eye on any one shot, find the probabilitics of his:
(a) winning 2 set, and (¥) becoming a marksman.

1.7-9. A ship can successfully arrive at its destination if its engine and its satellite
navigation system do not fail en route. If the engine and navigation system are
known to fail independently with- respective probabilities of 0.05 and 0.001,
what is the probability of a successful arrival?

1.7-10. At a certain military installation six similar radars are placed in operation. It is
known that a radar’s probability of failing to operate before 500 hours of
“on® time have accumulated is 0.06. What are the probabilities that before
500 hours have elapsed, (g} all will operate, (&) alt will fail, and (c) only one
will fail?

1.7-11. A particular model of automobile is recalled to fix a mechanical problem. The
probability that a car will be properly repaired is 0.9. During the week a dealer
has eight cars to repair.

(@) What is the probability that two or more of the eight cars will have to be
repaired more than once?
{(5) What is the probability all eight cars will be properly repaired?

1.7-12. In a large hotel it is known that 99% of all guests return room keys when
checking out. If 250 engineers check out after a large conference, what is the
probability that not more than three will fail to return their keys? [Hint: Use
the approximation of (1.7-8).}

CHAPTER 2

The Random Variable

2.0
INTRODUCTION

In the previous chapter we introduced the concept of an event to describe
f:h_a‘racteristics of outcomes of an expetiment. Events allowed us more flex-
1b111ty in_determinjng properties of an experiment than could be obtained by
considering only the outcomes themselves. An event could be almost anything
from *‘descriptive,” such as “draw a spade,” to numerical, such as “the out-
come is 3.”

In this chapter, we introduce a new concept that will allow events to be
defined ip 4 more consistent manner; they will always be numerical. The new
concept is that of a random variable, and it will constitute 2 powerful tool in
the solution of practical probabilistic problems.

2.1
THE RANDOM YARIABLE CONCEPT

Definition of 2 Random Variable

We define 2 real rondom variablet as a real function of the elements of a sample
space S. We shall represent a random variable by a capital letter (such as W,
X, or ¥) and any particular value of the random variable by a lowercase letter

(S}Jch,as w, x, or y). Thus, given an experiment defined by a sample space §
W!th elements 5, we assign to every s a real number -

tComplex random variables are considered in Chapier 5.
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according to some rule and call X{s} a random variable.

A random variable X can be considered to be a function that maps all
elements of the sample space into points on the real line or some parts thereof.
We illustrate, by two examples, the mapping of a random variable.

EXAMPLE 2.1-1. An experiment consists of rolling a die and flipping a coin.
The applicable sample space is illustrated in Figure 2.1-1. Let the random
variable be a function X chosen such that (1) a coin head (H) outcome
corresponds to positive values of X that are equal to the numbers that
show up on the die, and (2) a coin tail (T) oulcome corresponds to
negative values of X that are equal in magnitude to twice the number
that shows on the die. Here X maps the sample space of 12 elements into
12 values of X from —12 to 6 as shown in Figure 2.1-1.

EXAMPLE2.1-2. Figure 2.1-2 illustrates an experiment where the pointer on
a wheel of chance is spun. The possible outcomes are the numbers from 0
to 12 marked on the wheel. The sample space consists of the numbers in
the set {0 < 5 < 12}. We define a randem variable by the function

X =X(@) =75

Points in S now map onto the real line as the set {0 < x < 144].

As seen in these two examples, a random variable is a function that maps
each point in S into some point on the real line. It is not necessary thai the
sample-space points map uniquely, however. More than one point in § may
map into a single value of X. For example, in the extreme case, we might map
all six peints in the sample space for the experiment “throw z die and observe
the number that shows up™ into the one point X = 2.

5 .
—{7.5) (H, 6)~
(7. 5} {H, 5)~]
|—(T. %) (H, 49—
L.(h®  (H# 3
L-(12) (1, 2)~
((T.l) (H-I))
- ™
N £ 7 f__ 7

| I ] O I )
[ 12 x

FIGURE 2.1-1
A random variable mapping of a sample space.

o

o L

b 35 80 J D e 2

L
09 36 100 144 0 x

FIGURE 2.1-2
Mapping applicable to Example 2.1-2.

Conditions for a Function to Be a Random Vaﬁable

Thus, a random variable may be almost any function we wish. We shall,
however, require that it not be multivalued. That is, every point in S must
correspond to only one value of the random vanable.

Moreover, we shall require that two additional conditions be satisfied in
order that a function X be a random variable (Papoulis, 1965, p. 88). First, the
set {X < x} shall be an évent for any real number x. The satisfaction of this
condition will be no trouble in practical problems. This set corresponds to those
points s in the sample space for which the random variable X(s) does not exceed
the number x. The probability of this event, denoted by P{X < x}, is equal to
the sum of the probabilities of all the elementary evenis corresponding to
¥ =x}. ‘

The second condition we require is that the probabi]iti;?)f the events
{X¥ =co)and {¥ = —c0} be O:

PX=-00}=0 PX=c0}=0 _ 2.1-2)

This condition does not prevent X from being either —oo or oo for some
values of s; it only requires that the probability of the set of those s be zero.

Discrete and Continuous Random Variables

A discrete random variable is one having only discrete values. Example 2.1-1
tllustrated a discrete random variable. The sample space for a discrete random
variable can be discrete, continuous, or even a mixture of discrete and con-
tinuous points, For example, the “wheel of chance™ of Example 2.1-2 has a
continuous sample space, but we could define a discrete random variable as
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having the value 1 for the set of outcomes {0 < 5 < 6} and —1 for {6 < 5 < 12].
The result is a discrete random variable defined on a continuous sample space.

EXAMPLE 2.13. A sample space is defined by the set §=1{1,2,3,4}. A
random variable X is defined by ¥ = X(s) = 5. Since S is discrete, its
points map to discrete points x in the set {1, 8,27, 64]. If the probabilities
of elements of § are P(1)=4/24, P(2)=13/24, P(3)=7/24, and
P(4) = 10/24, then the probabilities of the random variable’s values
become P{X = 1) =4/24, P{X =8)=3/24, P{X =27)=7/24, and
PLX = 64} = 10/24 because of one-to-one mapping of the discrete points.

A continuous random variable is one having a continuous range of values.
It cannot be produced from a discrete sample space because of our require-
ment that all random variables be single-valued functions of all sample-space
points. Similarly, a purely continuous random variable cannot result from a
mixed sample space because of the presence of the discrete portion of the
sample space. The random variable of Example 2.1-2 is continuous.

EXAMPLE 2.14. Suppose the temperature at some geographical point is
modeled as a continuous random variable T that is known to always
exist from —60°F to +120°F. Further, for ease of illustration, let us
make the (nonrealistic) assumption that all values {—60 < ¢ < 120} are
equally probable. Under these assumptions, we reason, using relative
frequency arguments, that values ¢ of T that fall in a small region 4!
centered anywhere in the range of —60°F to +120°F will have a prob-
ability dt/[120 — (—60)] = dt/180. This reasoning is extended to find the
probability of any single temperaure within dr by letting dt — 0. It
becomes zero. X

Example 2.1-4 serves to demonstrate that the probability of occurrence of
any discrete value of a continuous random variable is zero.

Mixed Random Variable

A mixed random variable is one for which some of its values are discrete and
some are continuous. The mixed case is usually the least important type of
random variable, but it occurs in some problems of practical significance.

2.2
DISTRIBUTION FUNCTION

The probability P{X < x} is the probability of the event [X <x}. It is a
number that depends on x; that is, it is a function of x. We call this function,
denoted Fy(x), the cumulative probability distribution function of the random
variable X. Thus,

Fy(x) = P{X = x} 2.2-1)

We shall often call Fy(x) just the distribution function of X. The argument x is
any real number ranging from —co to co.
The distribution function has some specific properties derived from the

fact that Fy(x) is a probability. These are:f
(1) Fy(—oc0)=10 (2.2-2a)
(2) Fy(o)=1 (2.228)
B) 0=Fe(¥) <1 (2.2-20)
(@) Fe(x) < Fy(x)  if x <% (2.2-2d)
(3) Plx) <X = x3) = Fy(x3) — Fy(x1) (2.2-2¢)
(6) Fx(x") = Fy(x) (2.2-2f)

The first three of these properties are easy to justify, and the reader should
justify them as an exercise. The fourth states that Fy(x) is 2 nondecreasing
function of x. The fifth property states that the probability that X" will have
values Jarger than some number x; but not exceeding another number x, is
equal to the difference in Fy(x) evalvated at the two points. It is justified from
the fact that the events {X < x;} and {x, < X < x;} are mutually exclusive, so
the probability of the event {X < x;} = {X < x;}U{x; < X <x} is the sum
of the probabilities P{X =< x,} and P{x| < X =< x;}. The sixth property states
that Fy(x) is a function continuous from the right,

Properties 1, 2, 4, and 6 may be used as tests to determine if some func-
tion, say, Gy(x), could be a valid distribution function. If so, all four tests
must be passed. [See Papoulis (1965), p. 99.]

If X is a discrete random variable, consideration of its distribution func-
tion defined by (2.2-1) shows that Fy(x) must have a stairstep form, such as
shown in Figure 2.2-1a. The amplitude of a step will equal the probability of
occurrence of the value of X where the step occurs. If the values of X are
denoted x;, we may write Fy(x) as

N
Fy(x) =3 P{X = x;u(x — x;) (2.2-3)
i=l
where u(-) is the unit-step function defined by}
1 x>0
u(x) = {0 <0 (2.2-4)

and N may be infinite for some random variables. By introducing the
shortened notation
P(x;) = P(X = x;} (2.2-5)

(2.2-3) can be written as

tWe‘ use tht? _nouufon x* to imply x+ 5 where £ > 0 s infinitesimally small; that is, £ = 4. .
1This definition differs slightly from (A-5) by including the equality so that u(x) satisfies (2.2-2f).
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FIGURE 2.2-1

Distribution function (4) and density function (b) applicable to the discrete random
variable of Example 2.2-1. [Adapted from Peebles (1976) with permission of publish-
ers Addison—Wesley, Advanced Book Program.]

N
Fy(x) =) | Plxu(x — x;) (2.2-6)
=1
‘We next consider an example that illustrates the distribution function of a
discrete random variable.

EXAMPLE 2.2-1. Let X have the discrete values in the set {—1,—0.5,0.7,
1.5, 3}. The corresponding probabilities are assumed to be {0.1,0.2,0.1,
0.4, 0.2}. Now P{X < —1} = 0 because there are no sample space points
in the set {X < —1}. Only when X = —1 do we obtain one outcome. Thus,
there is an immediate jump in probability of 0.1 in the function Fy(x) at
the point x = —1. For —1 < x < —0.5, there are no additional sample
space points so Fy(x) remains constant af the value 0.1. At x=—0.5
there is another jump of 0.2 in Fy{x). This process continues until all
points are included. Fy(x) then equals 1.0 for all x above the last point.
Figure 2.2-1a illustrates Fy(s) for this discrete random variable.

A continuous random variable will have a continuous distribution func-
tion. We consider an example for which Fy(x) is the continuous function
shown in Figore 2.2-24.

Fe(x)
Lo}
1
1
1
1
)
1
1}
1
[)
1
05| )
1
i
]
1
h
]
1
1 ]
0 6 12 =
(a)
flx)
L
[#
1
0 6 2 =x

&)

FIGURE 2.2-2 )

Distribution function {a} and density function (5) applicable to the continuous ran-
dom variable of Example 2.2-2. [Adapted from Peebles (1976} with permission of
publishers Addison-Wesley, Advanced Book Program.]

EXAMPLE 2.2-2. We refurn to the fair wheel-of-chance experiment. Let the
wheel be numbered from 0 to 12 as shown in Figure 2.1-2. Clearly the
probability of the event {X < 0} is 0 because there are no sample space
points in this set. For 0 < x < 12 the probability of {0 < X < x} will
increase linearly with x for a fair wheel. Thus, Fy(x) will behave as
shown in Figure 2.2-2a.

The distribution function of a mixed random variable will be a sum of two
parts, one of stairstep form, the other continuous.

2.3
DENSITY FUNCTION

The probability density fumction, denoted by fx(i), is defined as the derivative
of the distribution function:

dFy(x)

2 2.3-1)

Jr(x) =

We often call fy(x) just the density funcribu of the random variable X,
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Existence

If the derivative of Fy(x) exists, then fy(x) exists and is given by (2.3-1). There
may, however, be places where dFy(x)/dx is not defined. For example, a
continuous random variable will have a continuons distribution Fye(x), but
Fyx(x) may have corners (points of abrupt change in slope). The distribution
shown in Figure 2.2-2a is such a function. For such cases, we plot fx(x) as a
function with step-type discontinuities (such as in Figure 2.2-2b).

For discrete random variables having a stairstep form of distribution
function, we introduce the concept of the wnit-impulse function §(x) to describe
the derivative of Fy(x) at its stairstep points. The unit-impulse function and its
properties are reviewed in Appendix A. It is shown there that §(x) may be
defined by its integral property :

$x0) = j_ S0IBx — o) dlx @2.32)

where ¢{x) is any function continuous at the point x = xy; 8(x) can be inter-
preted as a “function™ with infinite amplitude, area of unity, and zero dura-
tion, The unit-impulse and the unit-step functions are related by

5(x) = d‘;(;) (2.33)
or
| swds=ue 234

The more general impulse function is shown symbolically as a vertical arrow
occurring at the point x = xp and having an amplitude equal to the amplitude
of the step function for which it is the derivative.

We return to the case of a discrete random variable and differentiate
Fy(x), as given by (2.2-6), to obtain

x
felxy =) PL)d(x — x) (23-5)
=l

Thus, the density function for a discrete random variable exists in the sense
that we use impulse functions to describe the derivative of Fy(x) at its stairstep
points. Figure 2.2-1b is an example of the density function for the random
variable having the function of Figure 2.2-1a as its distribution.

A physical interpretation of (2.3-5) is readily achieved. Clearly, the prob-
ability of X" having one of its particular values, say, x;, is a number P(x;). If
this probability is assigned to the point x;, then the density of probability is
influite because a point has no “width” on the x axis. The infinite “amplitude™
of the impulse function describes this infinite density. The “size” of the density
of probability at x = x; is accounted for by the scale factor P(x;) giving P(x;
)8(x — x;) for the density at the point x = x;.

Properties of Density Functions

Several properties that fy(x) satisfies may be stated:

(1) 0= fe(x) all x (2.3-6a)
2) Jm fy(¥)dx =1 (2.3-6b)
RELN
0 B@=| s (2360
- —0 _\-ﬁ‘
@) Pl <Xsx)= J Jelods (2.3-6d)

Proofs of these properties are left to the reader as exercises. Properties 1 and 2
require that the density function be nonnegative and have an area of unity.
These two properties may also be used as tests to see if some function, say,
gx(x), can be a valid probability density function (Papoulis, 1965, p. 99). Both
tests must be satisfied for validity. Property 3 is just another way of writing
{2.3-1) and serves as the link between Fy(x) and fy(x). Property 4 relates the
probability that X will have values from x| to, and including, x; to the density
function.

EXAMPLE 2.3-1, Let us test the function gy(s) shown in Figure 2.3-1a to see
il it can be a valid density function. It obvioudly satisfies property | since
it is nonnegative. Its area is ax, which must equal unity to satisfy property
2. Therefere, @ = 1/« is necessary if gy(x) is to be a density.

Suppose a = 1/«. To find the applicable distribution function we first
write

0 Xp—a>Xx=xpto
1
ex(®) = ?(x—xo-l-a) Xp—a =X <Xy
11
;—;(x—xo) XpEx<xpta
Next, by using (2.3-6¢), we obtain
Gx{x) =
0 Xg—E>X
X l 5
J gx(é)dfzﬁ(x—xo+a) Xp— 05X <Xy
Xo—er ]

LI 1,1 1
5+Lngx(-‘?)dé=5+a(x—xo)—E(x_xo)z Yo < x < Xp+er

1 Xptoe=<x
This function is plotted in Figure 2.3-15,
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FIGURE 2.3-1
A possible probability density function {(a) and a distribution function (§) applicable
to Example 2.3-1.

EXAMPLE23-2. Suppose a random variable is known to have the {riangular
probability density of the preceding example with xy =8, @ =35, and
& = 1fo = 1. From the earlier work

0 I>x>13
Sr(x) = 1 (x—3)/25 J=x<«8
0.2 —(x—8)/25 8<x<13

- We shall use this ﬁrobabllity density in (2.3-64) to find the probability
that X has values greater than 4.5 but not greater than 6.7. The prob-
ability is

6.7
P45 <X <67} = J [(x — 3)/25]dx
4.5
6.7
— 0.2288

1]
55+,

Thus, the event {4.5 < X =< 6.7} has a probability of 0.2288 or 22.88%.

EXAMPLE 233, A tandom variable X is known to have a distribution
function

Fy() = u(a)[1 — 7]

=(1- e*-‘z y5(x) + u(x)%e_xl 1 = u(x)—b—e‘*‘ b

The impulse term disappears because its coefficient is zero at x = 0 where
the impulse “exists.” [See (A-29).]

2.4
THE GAUSSIAN RANDOM VARIABLE

A random variable X is called gaussiant if its density function has the form

Je) = e @2.4-1)
2mo%

where oy > 0 and —co < ay < oo are real constants. This function is sketched
in Figure 2.4-1a. Its maximum value (2]10’%()_ 2 ocours at x = ay. Its “spread”
about the point x = ay is related to oy. The function decreases to 0.607 times
its maximum at x = ay + oy and x = ay —oy. It was first derived by De
Moivre some 200 years ago and later independently by both Gauss and
Laplace (Kennedy and Neville, 1986, p. 175).

The gaussian density is the most important of all densities and it enters
into nearly all areas of science and engineering. This importance stems from
its accurate description of many practical and significant real-world quanti-
ties, especially when such quantities are the result of many small indepen-
dent random effects acting to create the quantity of interest. For example,
the voltage across a resistor at the output of an amplifier can be random (a
noise voltage) due to a random current that is the result of many contribu-
tions from other random currents at various places within the amplifier.
Random thermal agitation of electrons causes the randomness of the various
currents. This type of noise is cailed gaussian because the random variable
representing the noise voltage has the gaussian density.

The distribution function is found from (2.3-6¢) using (2.4-1). The integral
is

X
Fx) = — j e~ CaxP i g (2.4-2)
Vg ) e _
This integral has no known closed-form solution and must be evaluated by
numerical or approximation methods. To make the results generally available,

we could develop a set of tables of Fy(x) for varicus x with ay and oy as

tAfter the German mathematician Johann Friedrich Carl Gauss (1777-1855). The gaussian density is

often called the normal density.
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FIGURE 2.4-1
Density {g) and distribution (b} functions of a gaussian random variable.

parameters, However, this approach has limited value because there is an

“=infinite nuwmber of possible combinations of @y and 6y, which requires an

infinite number of tables, A better approach is possible where only one
table of Fy(x) is developed that corresponds to normalized (specific) values
of ay and ¢,. We then show that the one table can be used in the general case
where ay and gy can be arbitrary.

We start by first selecting the normalized case where ay =0 and oy = 1.
Denote the corresponding distribution function by F(x). From (2.4-2), F(x) is

Fx) = J%Jime-f’ " dg 2.4-3)

which is a function of x only. Thls function is tabularized in Appendix B for
x = 0. For a negative value of x we use the relationship .

F(—x) = 1 — F(%) _ {2.474)

To show that the general distribution function Fy(x) of (2.4-2) can be
found in terms of F(x)} of (2.4-3), we make the variable change

= (§ — ay)foy ) 2.45)
in {2.4-2) to obtain

x—ay)foy

,/—

From (2.4-3), this expression is clearly equivalent to

_ pfx—ay
Fy() _F( = ) (2.4-7)

Figure 2.4-15 depicts the behavior of Fy(x).
We consider two examples to illustrate the application of (2.4-7).

Flx) = e gy (2.4-6)

EXAMPLE 2.4-1. We find the probability of the event {X < 5.5} for a gaus-
sian random variable having ay = 3 and oy = 2.
Here (x — ay)/o, = (5.5-3)/2 = 1.25. From (2.4-7) and the definition
of Fy(x) _
PLX < 5.5} = Fy(5.5) = F(1.25)
By using the table in Appendix B

PIX < 5.5} = F(1.25) = 0.8944

EXAMPLE 2.4-2. Assume that the height of clouds above the ground at some
location is a gaussian random variable X with ay = 1830m and
oy =460m. We find the probability that clouds will be higher than
2750 m (about 9000 ft). From (2.4-7) and Appendix B:

P{X > 2750} = | — P(X < 2750} = 1 — Fy(2750)
2750 — 1830
=1- F(—T) =1 — F(2.0)
=1-10.9772 = 0.0228

The probability that clouds are higher than 2750 m is therefore about 2.28
percent if their behavior is as assumed.

The function F(x) can also be evaluated by approximation. First, we write
F(x) of (2.4-3) as

Fx)=1-0(x) (2.4-8)

where

00 = J R g (2.49)

Vam
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is known as the Q-function. As with F(x), Q(x) has no known closed-form
solution, but does have an excellent approximation given by

1 e_"l"2
~ >
o) |:(I —a)x+a\/x2+b:| Nz *=

where @ and b are consiants. This approximation has been found to give
minimum absolute relative error, for any x>0, when «=0.339 and
b = 5.510 (see Borjesson and Sundberg, 1979). With these values of a and 5,
the approximation of (2.4-10) is said to equal the true value of Q(x} within 2
maximum absolute error of 0.27% of Q(x)} for any x = 0. We consider a
simple example.

0 (2.4-10)

EXAMPLE 2.4-3. We assume a gaussian random variable for which ay =7
and oy = 0.5 and find the probability of the event {X <7.3}. From
(2.4-T) and (2.4-8)

PIX <73} = Fy(1.3) = F(%) = F(0.6) = 1 — Q(0.6)
1 e—(o.s)’/z
~ ] —
0.661(0.6) +0.339,/(0.67 + 551 V2T
7 0.7264

From Table B-1 the answer is F(0.6) = 0.7257 so an absolute error of
about [0.7264 — 0.7257|/0.7257 = 0.00096 {or 0.096%) exists.

2.5
OTHER DISTRIBUTION AND DENSITY EXAMPLES

Many distribution functions are important enough to have been given names.
We give five examples. The first two are for discrete random variables; the
remaining three are for continuous random variables. Other distributions are
listed in Appendix F.

Binomial

Let0 < p < 1,and N=1,2,..., then the function

N
709 = 3} )t -ttty

k=0

is called the binomial density function. The quantity (},‘:) is the binomial coeffi-
cient defined in (1.7-4) as

2.5-1)

N N
( k ) TR - B! 2.5-2)
The binomial density can be applied to the Bernoulli trial experiment of
Chapter 1. It applies to many games of chance, detection problems in radar
and sonar, and many experiments having only two possible outcomes on any
given trial. )
By integration of (2.5-1), the binomial distribution function is found:

N
Frd = ()t = - i

k=0

(2.5-3)

Figure 2.5-1 illustrates the binomial density and distribution functions for
N =6 and p=0.25.

Jel®)
0.3560
0.2866
03
0.1780 1318
0.0330
f 0.0044 0.0002
L 0
[ 1 2 3 4 5 3 <
(@)
Frlx)
Lo 09624 09954 09998 10000
0.8306
0.5340
a5
0.1780
1 1 1 L . .
0 1 2 3 4 5 t -

FIGURE 2.5-1
Binomial density () and distribution {5) functions for the case N = 6 and p = 0.25.
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Poisson

The Poisson random variable X has 2 density and distribution given by

oo ik
fel)=¢e"? Z%S(x - (2.5-4)
k=0""

5 20 bk
Fy(x)=¢ Zﬁu(x -k (2.5-5)
k=0 " -
where b > 0 is a real constant. When plotted, these functions appear quite
similar to those for the binomial random variable (Figure 2.5-1). In fact, if N
— co and p — 0 for the binomial case in such a way that Np = b, a constant,
the Poisson case resulfs,

The Poisson random variable applies to a wide variety of counting-type
applications. It describes the number of defective units in a sample taken from
a production line, the number of telephone calls made during a period of time,
the number of electrons emitted from a small section of a cathode in a given
time interval, etc. If the time interval of interest has duration T, and the events
being counted are known to occur at an average rate A and have a Poisson
distribution, then & in {2.5-4) is given by

b=AT (2.5-6)

We illustrate these points by means of an example,

EXAMPLE 251 Assume automobile arrivals at a gasoline station are
Poisson and occur at an average rate of 50/h. The station has only one
gasoline pump. If all cars are assumed to require one minute to obtain
fuel, what is the probability that a waiting line will occur at the pump?

A waiting line will occur if two or more cars arrive in any one-minute
interval. The probability of this event is one minus the probability that
either none or one car arrives. From (2.5-6), with A = % cars/minute and
T = 1 minute, we have b =2. On using (2.5-5)

Probability of a waiting line =1 — FX(I)W
=1- e‘5f6[1 + %] =0.2032

We therefore expect a line at the pump about 20.32% of the time.

Uniform

The uniform probability density and distribution fﬁnctio;ns are defined by:

fx(sz{ll(b_a) a<x<b

2.5-
0 elsewhere 237

AT R R
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@

FIGURE 2.5-2
Uniform probability density function (g) and its distribution function (b).
0 x<a
Fy(x)= 14 (x —a)/(b—a) a<x<b (2.5-8)
1 b<x

for real constants —oo < @ < 0o and & > a. Figure 2.5-2 illustrates the beha-
vior of the above two functions.

The uniform density finds a number of practical uses. A particularly impor-
tant application is in the quantization of signal samples prior to encoding in
digital communication systems. Quantization amounts to “rounding off” the
actual sample to the nearest of a large number of discrete “quantum levels.”
The errors introduced in the round-off process are uniformly distributed.

Exponential

The exponential density and distribution functions are:

-
Se=1{5° x>d (2.5-9)
0 x<da
_ ox—a)fb
Fe=117¢ x>a (2.5-10)
0 x<a

Ki"_qr"f'eal numbers —oo < a < 00 and b > 0. These functions are plotted in

Figure 2.5-3.
The exponential density is useful in describing raindrop sizes when a large
number of rainstorm measurements are made. It is also known to approxi-
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4 “{x—a)e x>a
J Fxx) =15 (2.5-11)
5° ¢ x<a
_ —x—a (b -
Fy(x) = [ L—e xza (2.5-12)
0 a T XxX<a
(@) .
for real constants —oo < @ < 0o and b > 0. These functions are plotted in
Fx(x) Figure 2.54.
Lo
fl®)
1—ete-as
2
0607 2
aQ a x

)

FIGURE 2.5-3
Exponential density (o) and distribution () functions.

mately describe the fluctuations in signal strength received by radar from
certain types of aircraft as illustrated by the following example.

Fy(x)
EXAMPLE 252, The power reflected from an aircraft of complicated shape
that is received by a radar can be described by an exponential random
variable P. The density of P is therefore

1
— PP >0
fr(p) =1 Po ?

0 r=<0

where Py is the average.amount of received power. At some given time P
may have a value different from its average value and we ask: what is the
probability that the received power is larger than the power received on
the average? L

We must find PP > Py} =1— P[P < Py} =1 Fp{Py). From
(2.5-10) : '

FIGURE 2.54
- . ; Rayleigh density (a) and distribution (&) functions. .
PP > Py} =1—(1—eP/Py=¢" 0368 , :

In other words, the received power is larger than its average value about ,
36.8 percent of the time.

Named for the English physicist John William Strute, Lord Rayleigh (1842-1919).
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The Rayleigh density describes the envelope of one type of noise when
passed through a bandpass filter. It also is important in analysis of errors in
various measurement systems.

EXAMPLE2.53. We find the value x = x;, of a Rayleigh random variable for
which P{X < x3} = P{xy < X}. This value of X is called the median of the
random variable. The probability condition requires P{X < xp} =
Fy(xg) = 0.5. From (2.5-12) Fy(xg) = 1 —expl— (xy — a)*/b] = 0. 5. The
solution for x, follows the natural logarithm. We find xy = o+ [510(2)]"2.
The median is similarly defined for random variables other than Rayleigh;
it is the value of X for which the probability is 0.5 that values of X do not
exceed the median.

2.6
CONDITIONAL DISTRIBUTION AND DENSITY FUNCTIONS

The concept of conditional probability was introduced in Chapter 1. Recall
that, for two events A and B where P(B) # 0, the conditional probability of A
given B had occurred was :

P(AN B)
P(B)
In this section we extend the conditional probability concept to include

random variables.

P(A|B) = (2.6-1)

Conditional Distribution

Let 4 in (2.6-1) be identified as the event {X < x} for the random variable X
The resulting probability P{X < x[B) is defined as the condmonal distribution
funcuan of X, which we denote Fy{x|5). Thus
P(X <xNB)
F(B)
where we use the notation {X < xN B} to imply the joint event {X < x}N B.
This joint event consists of all outcomes s such that
¥ =<x and seB (2.6-3)

The conditional distribution {2.6-2) applies to discrete, continuous, or
mixed random variables.

Fy(x]B) = P[X < x|B} = (2.6-2)

Properties of Conditional Distribution

All the properties of ordinary distributions apply to F, X(x]B) In other words,
it has the following characteristics:

ELPIECER LY

LIRS IR

(1) Fy(—o0|B)y= (2.6-4a) &)

(2) FyloolB)=1 (2.6-4b) chaPTER 2:
(3) 0=Fy(x|B) <1 . Q6-4e) he Random
@) Fx(nq|B) = Fylx|B) if x<x (2.6-44)

() Plx; < X = %318} = Fy(x3]B) — Fy(x|B) (2.6-4¢)

(6) Fxlx™|B)= Fy(xB) (2.6-4)

These characteristics have the same general meanings as described earlier
following (2.2-2).

Conditional Density

In a manner similar to the ordinary density function, we define cenditional
density function of the random variable X as the derivative of the conditional
distribution function. If we denote this density by fi{x|B), then

Fetapy = LxAB)

If Fy(x|B) contains step discontinuities, as when X is a discrete or mixed
random variable, we assume that impulse functions are present in Jx(x|B) to
account for the derivatives at the discontinuities.

(2.6-5)

Properties of Conditional Density

Because conditional density is related to conditional distribution through the
derivative, it satisfies the same properties as the ordinary density function.
They are:

1) fx(x1B)=0 (2.6-6a)
) Jw Jr(x|B)dx =1 (2.6-6b)
- ® Fp= J’;mfx(&w)cf (2660
e 4 Plxy <X =xiBl= J::fx(xlB) dx (2.6-6d)

We take an example to illustrate conditional density and distribution.

EXAMPLE 2.6-1. Two boxes have red, green, and blue balls in them; the
number of balls of each color is given in Table 2.6-1. Our experiment will
be to select a2 box and then a ball from the selected box. One box (number
2) is slightly larger than the other, causing it to be selected more fre-
quently. Let B, be the event “select the larger box™ while B, is the
event “select the smaller box.” Assumne P(B)) = % and P(B;) = %. (B
and B, are mutunally exclusive and B; U B, is the certain event, since some
box must be selected; therefore, P(B,) 4+ P(B,) must equal unity.)
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TABLE 2.6-1
Numbers of colored balls in two boxes
Box

X Ball eolor 1 2 Totals
-1 ~Red 5 80 85

2 Green 35 60 95

3 Blue 60 10 70

Totals | - 100 150 250

Now define a discrete random variable X to have values x; =1,

x3 =2, and x3 = 3 when a red, green, or blue ball is selected, and let B
be an event equal to either By or B;. From Table 2.6-1:

5 80

, P(X=1|B =,131)=ﬁ)-0' P(X—IIB—Bz)—m

. 35 60

P(X:S[B:BQ:% P(X =3|B= Bz)_E
The conditional probability density fy{(x]5,) becomes

5 35
SCe1By) = Tos8(x = 1t o 8~ 2+ il =)

By direct integration of fy(x|.B):

> —ux— 1) +— 35 u(x 3)

100 100 100

For comparison, we may find the density and distribution of X by
determining the probabilities P(X = 1), P(X = 2), and P(X = 3). These
are found from the total probability theorem embodied in (1.4-10):

PX =1)=P(X = 1|B)P(B) + P(X = 1|B)P(By)

5 /2 80 /8
=100 (1—0) + 150 (Tﬁ) = 0.437
35 60 /8
PX=2)= 100 (10) + 150 (-1*-6) =0.390

60 10 /8
PX=3)= 100( )-l-ﬁ(m) =0.173

fx(x)= 0.437 8(x — 1) +0.390 8(x — 2) + 0.173 8(x — 3)

Fy(x|B)) = T lx—2) +

Thus

and
Fy(x) = 0.437u(x — 1) + 0.390 u(x — 2) + 0.173u(x - 3)
These distributions and densities are plotted in Figure 2.6-1.

Fylx) or Fx(xi2))

10

SlsBy)

0.6
0.4

02

Sxx)
0.4

0.2

FIGURE 2.6-1
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Distributions (a) and densities (5) and (¢) applicable to Example 2.6-1.

*Methods of Defining Conditioning Event

The preceding example illustrates how the conditioning event B can be defined
from some characteristic of the physical experiment. There are several other
ways of defining B (Cooper and McGillem, 1971, p. 61). We shall consider two

of these in detail.

In one method, event B is defined in terms of the random variable X. We
discuss this case further in the next paragraph. In another method, event B



(&

Probability,
Random Variables,
and Random
Signal Principles

may depend on some random variable other than X. We discuss this case
further in Chapter 4.
One way to define event B in terms of X is to let

={X < b} (2.6-7)
where b is some real number —oo < & < 00, After substituting (2.6-7) in
(2.6-2), we gett
PX=xnNX <h

P{X < b}
for all events {X < b} for which P{XS b} # 0. Two cases must be considered;
one is where b < x; the second is where x < b. If b < x, the event (X < b} isa

subset of the event (X < x}, so {X < xJN{X < b} = {X < b}. Equation (2.6-8)
becomes

Fy(x|X <b)=PlY <x|X <b) = -(2.6-8)

Fy(x|X < b) =

PIX<xNX<b PX<bt)
roren Srxen=! 5% 069

When x < b the event [X < x} is a subset of the event {X < &),s0 (X <x} N
{X = b} = X = x} and (2.6-8) becomes

PIX<xNX<h) PX<x| Fyl

Tf{y(xl}." <b)= PX < 5] =P =b " Fy () x<bh (2.6-10)
By combining the last two expressions, we obtain
Fy(x)
—_— b
Fy(x|X <b) = [ Fe®) T (2.6-11)
1 b=x

The conditional density function derives from the derivative of (2.6-11):

fex) _ Sy}

== x<h
C pexsy= |0 CE @61

0 x>b

Figure 2.6-2 sketches possible functions representing (2.6-11) and (2.6-12).

From our assumplions that the conditioning event has nonzero probabil-
ity, we have 0 < Fy(b} < 1, so the expression of (2.6-11) shows that the con-
ditional distribution function is never smaller than the ordinary distribution
function:

Fy(x|X = b) = Fy(x) (26-13)

A similar statement holds for the conditional density function of (2.6-12)
wherever it is nonzero:

tNotation used has allowed for deletion of some braces for convenience. Thus, Fy(xj[X < b]) is
written Fy(xlX" < 8) and P({X < x} N {X < b}) becomes P(X < xNX < 4.

Fr(aX<b)or Fy(x)

2] PRI SR S

4}

IeX<b) acfxlz}

-—-/

o b x
&)

FIGURE 2.6-2

Possible distribution functions () and density functions (b) applicable to a condi-
tioning event B = {X < b}.

SGX 20) = fx(x)  x<b (2.6-14)

The principal results (2.6-11) and (2.6-12) can readily be extended to the
more general event B = [a < ¥ < b} (see Problem 2.6-2).

EXAMPLE 2.62. The radial “miss-distance™ of landmgs from parachuting
sky divers, as measured from a target’s center, is a Rayleigh random
variable with b = 800m® and @ = 0. From (2.5-12) we have

Fy(x) = [1 — e "y (x)

The target is a circle of 50-m radius with a bull’s eye of 10-m radius. We

find the probability of a parachuter hitting the bull’s eye given that the
landing is on the target.

The required probability is given by (2.6-11) with x = 10 and & = 50:
P(bull's eyellanding on target) = Fy(10)/Fy(50)
— (] _ e—loofgﬂﬂ)/(l _ e—2500]300) =(.1229

Parachuter accuracy js such that about 12.29% of landings falling on the
target will actually hit the bull’s eye.
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2.7
SUMMARY

Not all random experiments involve outcomes and events thal are numerical.
Since engineers and scientists work best with numerical quantities, this chapter
is concerned with two things: (1) the definition of a random varaible; it is
always a numerical quantity, regardless of the random experiment from which
it derives; and (2) the various functions that describe the probabilistic beha-
vior of a2 random variable. Specific principal topics that were covered are:

« The various types of random variables {discrete, continuous, mixed) were
defined.

"« The concepts of probability density and cumulative probability distribution

functions were introduced to define the probabilistic behavior of a random
variable. .

- The important gaussian random variable was discussed in detail, while
others (binomial, Poisson, etc.) were defined.

- Finally, conditional distribution and density functions were discussed to
demonstrate how probabilities that are associated with a random variable
can depend on some random event.

The chapter’s material is basic to understanding topics of the next chapter,
which develops ways of operating on (working with) random variables.

PROBLEMS

2.1-1. The sample space for an experiment is § = {0, 1, 2.5, 6). List all possible values
of the following random variables:

(@ X=2s

®) Y=5¢-1
() X =cos(xs)
(d) X ={1—35"

2.1-2. Work Problem 2.1-1 for $={-2 <s =5}

2.1-3. Given that a random variable X has the following possible values, state ifXis
discrete, continugus, or mixed.
(a) {—20 < x <—3}
&) (10,12 < x < 14,15,17}
{¢) {—10fors>2and 5fors£2, where 1l <5< 6}
@ ¥,3.1,1,-2}

2.1-4. A random variable X is a function. So is probability P, Recall that the domain
of 2 function is the set of values its argument may take on while its range is the
set of corresponding values of the function. In terms of scts, events, and
sample spaces, state the domain and range for X and P.

2.1-5. A man matches coin flips with a friend. He wins $2 if coins match and loses $2
if they do not match. Sketch a sample space showing possible outcomes for
this experiment and illustrate how the points map onto the real line x that

2.1-6.

2.1-7.

*2.1-8.

i

2.1-9.

2.1-10.

2.1-11.

defines the values of the random variable X = ‘‘dollars won on a trial.” Show
a second mapping for a random variable ¥ = “dollars won by the friend on a
trial.”

Temperature in a given city varies randomly during any year from —21 to
49°C. A house in the city has a thermostat that assumes only three positions: 1
represents “cail for heat below 18.3°C,” 2 represents **dead or idle zone,” and
3 represents “call for air conditioning above 21,7°C.” Draw a sample space for
this problem showing the mapping necessary to define a random variable X =
“thermostate setting.” .

A random voltage can have any value defined by the set S = {a<s=<bhj. A

quantizer divides § into 6 equal-sized contiguous subsets and generates a

voltage random variable X having values {--4, —2,0,2,4,6}). Each value of

X is equal to the midpoint of the subset of § from which it is mapped.

(a) Sketch the sample space and the mapping to the line x that defines the
values of X

(b) Find ¢ and b.

A random signal can have any voltage value (at a given time) defined by the
set S = {ap < 5 < ay}, where ay and gy are real numbers and N is any integer
N > 1. A voltage quantizer divides S into N-equal-sized contiguous subsets
and converts the signal level into ome of a set of discrete levels a,
n=1,2,.... N, that correspond to the “input™ subsets {@,_y <5 < g,}. The
set {ay, a3, . .., ay} can be taken as the discrete values of an “output” random
variable X of the quantizer. If the smallest “input™ subset is defined by & =
a, — ay and other subsets by @, —a,_| = 2% A, determine A and the quanti-
zer levels a, in terms of &g, ay, and N.

An honest coin is tossed three times.

{a) Sketch the applicable sample space S showing all possible elements. Let X
be a random variable that has values representing the number of heads
obtained on any triple toss. Sketch the mapping of S onto the real line
defining X.

(b) Find the probabilitics of the values of X.

‘Work Problem 2.1-9 for z biased coin for which P{head} = 0.6.

Resistor R, in Figure P2.1-11 is randomly selected from a box of resistors
containing 180-Q, 470-2, 1000-2, and 2200-8 resistors. All resistor values
have the same likelihood of being selected. The voltage E; Is a discrete random
variable. Find the set of values £ can have and give their probabilities.

R=5200Q

Fy

FIGURE P2.1-11

&
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2.1-12.

2.1-13.

2.1-14.

2.2-1.

A sample space is defined by $={1,2=<s=<
defined by X =2 for 05 <25 X =
35<=ss5<6.

{a) Is X discrete, continuous, or mixed?
(&) Givea set that defines the values X can have.

=< 3,4, 5). A random variable is
3 for 2.5 <5< 3.5 and X =5 for

A gambler flips a fair coin three times.

(@) Draw a samplc space § for this experiment. A random variable X repre-
senting his wummgs is defined as follows: He loses 31 if he gets no heads in
three flips; he wins §1, $2, and 33 if he obtains 1, 2, or 3 heads; respec-
tively. Show how elements of S map to values of X

(b) What are the probabilities of the various values of X?

A random current is described by the sample space S={-4<i=<12}. A
random variable X is defined by

-2 i<—2
i —2<i=x]

X@) = 1 l<i<4
6 4«<i

(a) Show, by a sketch, the value x into which the values of / are mapped by X
{B) What type of random variable is X?

Bolts made on & production line are nomidally designed to have a 760-mm
length, A go-no-go testing device eliminates all bolts less than 650 mm and
over 920 mm in length. The surviving bolts are then made available for sale
and their lengths are known to be described by a uniform probability density
function. A certain buyer orders all bolts that can be produced with a +5%
tolerance about the nominal length. What fraction of the production line’s

_ output is he purchasing?

2.2-2.

2.2-3.

2.2-4.

2.2-5.

Find and sketch the density and distribution functions for the random vari-
ables of parts (2}, (5), and {(¢) in Problem 2.1-1 if the sample space elements
have equal likelihoods of occurrence.

If temperature in Problem 2.1-6 is uniformly distributed, sketch the density
and distribution functions of the random variable X

For the uniferm random variable defined by (2.5-7) find:
(@) P{09a+ 0.1 <X < 0.7a+0.38)
®) Plla+5)/2 <X <b}

Determine which of the following are valid distribution functions:

1—g*? xEO
@ o= (377" 720 ’
0 T x<0
(®) Gplx) =1 05+05sin[n(x—1)/2} O=x<2
1 x=2

(&) Gr(x) = [ulx — @) — sx - 20)]

2.34.

2.2-7.

2.2:8.

2.2-9.

2.2-10.

232,

2,33,

defined for all 0o < x < 0o, where ¢> 0, b, and g are real constants and
rect (-) is defined by (E-2). Find any conditions on a, &, and ¢ that will
make Gy(x) a valid probability distribution function. Discuss what choices
of constants correspond te a continuous, discrete, or mixed random variable.

(2) Generalize Problem 2.2-5(a) by finding values of real constanis o and &
such that

Gx{(x) =[1 — aexp(—x/B)Ju(x)
is a valid distribution function.

(8) Are there any values of @ and & such that Gy(x) corresponds to a mixed
random variable X7

Os yalores de.i <60 eti.u potizn
{a) Find the probabilities associated with all values of the random variable X
of Problem 2.1-14.

(5) Sketch the probability distribution function of the random variable X.
A random variable X has the distribution function
2 2
Fy(x)= Eﬁ—sou(x —n)

Find the probabilities: () Pl—o0 < X <6.5),

(5 PlX >4}, and (o)
Plo<X <9).

If the function

N
Ge(X) =Ky mu(x —n)
n=1

must be a valid probability distribution function, determine X to make it
valid. (Hine: Use a series from Appendix C.)

. Determine the real constant g, for arbitrary real constants 52 and 0 < b, such

that

Sl = et

.is a valid density function {called the Laplace density).

An intercom system master siation provides music to six hospital rooms. The

probability that any one room will be switched on and draw power at any time

is 0.4, When on, a room draws 0.5W.

(a) Find and plot the density and distribution functions for the random vari-
able “power delivered by the master station.”

(&) If the master-station amplifier is overloaded when more than 2W is
demanded, what is its probability of overload?

The amplifier in the master station of Problem 2.3-2 is replaced by a 4-W unit
that must now supply 12 rooms. Is the probability of overload better than if
two independent 2-W units supplied six rooms each?

Jusify that a distribution function Fy(x) satisfies (2.2-2q, b, ¢).

2.2-6. A function Gy(x) = e[l +(2/m)sin™"(x/c)] rect{x/2c) + (a+b)u(x — c} is (6
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2.3 5. Use the definition of the impulse function to evaluate the following integrals.
(Hint: Refer to Appendix A.)

4
(@) L(sxz +2x — 4)8(x — 3.2) dx

cos(6rx)8(x — 1) dx

24(x — 2 dx
o X 3xE+2

oo =
3(x — xp)e ™" dx
—00

®)

©
@
5]

2.3-6. Show that the properties of a density function fy(x), as given by (2.3-6), are
valid.

_.c__.o_.....,'_.g

’ wlx — 2)5(x — B dx
-3

2.3-7. For the random variable defined in Example 2.3-1, find:
(@) Pixp— 0.6 <X < xp+03c}
&) PLX =x)

2.3-8. Find a constant b > 0 so that the function

_[&4  0s<x<bh
Sl = [ 0 elsewhere

is a valid probability density.
2.3-9. Given the function
2x(x} = 4 cos(mx/2b) rect (x/2h)
find a value of b so that gy(x) is a valid probability density.
2.3-10. A random variable X has the density function
Sx() = @ulx) exp(—=x/2)

Define events A=f{l < X <3}, B={X <2.5), and C=AnNB. Find the
probabilities. of :cve'nts {a) A, () B, and (¢) C.

*2.3-11. Let gb(x) I-Jc'a conﬁll-uous, but otherwise arbitrary real function, and let e and b
‘be real constants. Find G(a, b) defined by

Gla, by = J ' $() Sax + b dx

{Hint: Use the deﬁ:x)ition of the impulse function.)

+The quantity 7 is the unit-imaginary; that is, j = +/—1.

-

2.3-12. For real constants b > 0, ¢ > 0, and any g, find a condition on constant ¢ and
a relationship between ¢ and a (for given §) such that the function

fx(x) = {g[l - (x/b)]

is a valid probability density.

O=x=<¢
elsewhere”

2.3-13. Use the properties or definition of the impulse function (Appendix A) to
evaluate the following integrals:
=
=]
(b) J 8(x — 3}cos(mx/6)dx
i

(@) ro a(x+5)%dx

o
© J g 1 1) dx
—_0
2.3-14. Work Problem 2.3-13 except for the following integrals;
6 .
@ J (8Cx — 1)+ 80¢ + 3) + &(x — 5] dx
-2

6
()] J_mﬁ(x — Nu{x+3) dx

e
1424 x°

2.3-15. Find a value for constant 4 such that

2
© J B - +2)] dx

4] x<-—1
Fr(¥) = { A(1 — x*ycos(rx/2) ~l=x=<l
[¢] lex

is 2 valid probability density function.

2.4-1. A random variable X is gaussian with éx =0and oy = 1.
(@) What is the probability that |X| > 27
(b) What is the probability that X > 27

2.4-2. Work Problem 2.4-1 if gy = 4 and oy = 2.

2.4-3. For the gaussian density function of (2.4-1}, show that
| teoas=az
=00
2.44, For the gaussian density function of (2.4-1), show that
| _-aiptade=ct

2.4-5. A production line manufactures 1000-63 resistors that must satisfy a 10%
. tolerance.
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2.4-6.

2.4-7.

24-8,

2.4-9.

2.4-10.

2.4-11.

2.4-12.

2.4-13.

(@) If resistance is adequately described by a gaussian random variable X’ for
which ay = 100082 and ey =40%2, what fraction of the resistors is
expected to be rejected?

(b) If a machine is not properly adjusted, the product resistances change to
the case where ay = 1050 &2 (5% shift). What fraction is now rejected?

Cannon shell impact position, as measured along the line of fire from the
target point, can be described by a gaussian random variable X. It is found
that 15.15% of shells fall 11.2m or farther from the target in a diréction
toward the cannon, while 5.05% fall farther than 95.6m beyond the target.
what are ay and oy for X7

A gaussian random variable X has ay =2, and oy = 2.
{a) Find P{X > 1.0}.
(#) Find P{X < -1.0}.

In a certain “junior™ olympics, javelin throw distances are well approximated
by a gaussian distribution for which ay = 30m and oy = 5m. In a qualifying
round, contestants must throw farther than 26 m to qualify. In the main event
the record throw is 42m.

(a) What is the probability of being disqualified in the qualifying round?
(b} In the main event what is the probability the record will be broken?

Suppose height to the bottom of clouds is a gaussian random variable X for
which 2y = 4000 m, and oy = 1000 m. A person bets that clond height tomor-
row will fall in the set 4 = {1000m < X < 3300m} while a second person bets
that height will be satisfied by B = {2000m < X =< 4200m}. A third person
bets they are both correct. Find the probabilities that each person will win the
bet.

The output voltage X from the receiver in a particular binary digital commu-
nication system, when a binary zero is being received, is gaussian (noise only)
as defined by ay =0 and .oy =0.3. When a binary one is being received it
is also gaussian (signal-plus-noisc now), but as defined by ay = 0.9 and
oy = 0.3. The receiver’s decision logic specifies that at the end of a binary
(bit) interval, if X > 0.45 a binary one is being received. If X < 0.45 a binary
zero is decided. If it is given that a binary zero is truly being received, find the
probabilities that (@) a binary one (mistake) will be decided, and (b} a binary
zero is decided (correct decision).

A paussian random veltage X for which ay = 0 and 6y = 4.2 V appears across
a 100-© resistor with a power rating of 0.25W. What is the probability that
the voltage will cause an instantaneous power that exceeds the resistor’s
rating? ’

Work Problem 2.4-11 except assume a 0.5-W resistor.

For the gaussian random variable, show that the curve’s points of inflection
{where the first derivative of the probability density function with respect to x
has a zero slope} occur at ay £ ay.
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2.4-14.

2.4-15.

2.4-16,

2.417.

2.5-1

2.5-2,

2.53.

A random variable X is known to be gaussian with gy = 1.6 and oy = 0.4.
Find: (2) P(1.4 < X < 2.0}, and (8} P{—0.6 < (X — 1.6} < 0.6).

The radial distance to the impact points for shells fired over land by a cannon
is well-approximated as a gaussian random variable With gy = 2000m and
oy = 40m when the cannon is aimed at a target located at 1980m distance.
() Find the probability that shells will fall within £68m of the target.

(b) Find the probability that shells will fall at distances of 2050 m or more.

Assume that the time of arrival of birds at a particular place on a migratory

route, as measured in days from the first of the year (January 1 is the first day),

is approximated as a gaussian random variable X with ay =200 and

oy = 20days. : ’ .

(a) What is the probability the birds arrive after 160 days but on or before the
210th day? i

(b) What is the probability the birds will arrive after the 231st day?

Assume fluorescent lamps made by a manufacturer have a probability of 0.05

of being inoperable when new, A person purchases eight of the lamps for
home use.

(a) Plot the probability distribution function for a random variable “the
number of inoperable lamps.”

(b) What is the probability that exactly one lamp is inoperable of the eight?
(¢) What isl the probability that all eight lamps are functional?
(d) Determine the probability that one or more lamps are not operable.

(@) Use the exponential density of (2.5-9) and solve for I, defined by

L= j:x’fx(x) dx

{b) Solve for I) defined by

L= Jw ()

—0a

(¢) Verify that I; and [, satisfy the equation 7, — I,z =5,

Verify that the maximum value of fy(x)} for the Rayleigh density function of
(2.5-11) occurs at x = a - JB/2 and is equal 10 /275 exp(-—4) = 0.607./2/b.
This value of x is called the meode of the random variable. (In general, a
random variable may have more than one such value—explain.)

The lifetime of a system expressed in weeks is a Rayleigh random variable ¥
for which '

0<x

= [ xy200)e 100
1) [0 0sx

(a) What is the probability that the system will not last 2 full week?
(6) What is the probability the system lifetime will exceed one year?
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74 ’ 2.5-4. The Cauchy} random variable has the probability density function
Probability, _ bfr
Random Variables, = B+ (x— a)2
d Rand N .
;?gnal lgrizc:u}ples for real numbers 0 < b and —co < a < co. Show that the distribution function
of X is

=L (59)

2.5-5. The log-normal density function is given by

exp{—[In{x — B) — ay)* {20%)
fex) = 2nay(x — b)

x=b
0 x<b

for real constants (0 < gy, —00 < ay < 00, and —00 < b < 0, w_her_e ln_(x)
denotes the natural logarithm of x. Show that the corresponding distribution

function is
In(x — b) — ax]
Fl————— x>b
Fylx) = [ [ oy
0

x<b

where F(-} is given by (2.4-3).

2.5-6. A random variable X is known to be Poisson with b =4. )
{a) Plot the density and distribution functions for this random vanable,
(5) What is the probability of the event {0 < X < 5)?

2.5-7. The number of cars ardving at a certain bank drive-in window during any
10-min period is a Poisson random variable X with b = 2. Find:
(@) The probability that more than 3 cars will arrive during any 10-min
period.
(b} The probability that no cars will arrive.

2.5-8. Let X be a Rayleigh random variable with @ = 0. Find the probability that X
will have values larger than its mode (see Problem 2.5-2).

2.5-9, A certain large city averages three murders per week and their occurrences

follow a Poisson distribution. o

(4) What is the probability that there will be five or more murders in a givel
week?

(5) On the average, how many weeks a year can this city expect to have no
murders? .

(&) How many weeks per year (average) can the city expect the number of
murders per week to equal or exceed the average number per week?

2.5-10. A certain military radar is set up at 2 remote site with no repair facilities. If the
radar is known to have a mean-time-between-failures (MTBF) of 2005, find

tAfter the French mathematician Augustin Louis Cauchy (1789-1857).

O S IR T IR

2.5-11.

2.5-12.

2.5-13.

2.6-1.

*2.6-2.

*2.6-3.

*2.64.

*2.6-5.

the probability that the radar is still in operation one week later when picked
up for maintenance and repairs.

If the radar of Problem 2.5-10 is permanently located at the remote site, find
the probability that it will be operational as a function of time since its setup.

A computer undergoes downtime if a certain critical component fails. This

component is known to fail at an average rate of once per four weeks. No

significant downtime occurs if replacement components are on hand because

repair can be made rapidly. There are three components on hand, and ordered

replacements are not due for six weeks.

(e} What is the probability of significant downtime occurring before the
ordered components arrive?

(5} If the shipment is delayed two weeks, what is the probability of significant
downtime occurring before the shipment arrives?

The envelope (amplitude) of the output signal of a radar system that is receiv-
ing only noise (no signal) is a Rayleigh random voltage X for which a =0 and
b =2V. The system gets a false target detection if X exceeds a threshold level
¥ volts. How large must ¥ be to make the probability of false detection 0.001?

Rework Example 2.6-1 to find fy(x|B;) and Fy{x]8,). Sketch the two func-
tions.

Extend the analysis of the text that leads to (2.6-11) and (2.6-12) to the more
general event B = {a < X < b). Specifically, show that now

1] x<da
Fy(x)— Fyla)

Bl <X=B=\F o Fig =
L hb<x
and
0 xX=<a
Sx(x) - Sx(x)
Sedla < X 5= | Fx@®—Fx@ [eoas aExst
0 “ be<x

Consider the system having a lifetime defined by the random vagable X in
Problem 2.5-3. Given that the system will survive beyond 20 weeks, find the
probability that it will survive beyond 26 weeks.

Assume the lifetime of a laboratory research animal is defined by a Rayleigh
density with =0 and b = 30 weeks in (2.5-11} and (2.5-12). If for some
clinical reasons it is known that the animal will live at most 20 weeks, what
is the probability it will live 10 weeks or less?

Suppose the depth of water, measured in meters, behind a dam is described by
an exponential random variable having a density

) = (1/13.5)ulx) exp(—x/13.5)
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There is an emergency overfiow at the top of the dam that prevents the depth

from exceeding 40.6m. There is a pipe placed 32.0m below the overflow

(ignore the pipe’s finite diameter) that fecds water to a hydroelectric generator.

(&) What is the probability that water is wasted through emergency averflow?

(b) Given that water is not wasted in overflow, what is the probability the
generator will have water to drive it?

(¢} What is the probability that water will be too low to produce power?

*2.6-6. In Problem 2.6-5 find and sketch the distribution and density functions of
water depth given that water will be deep enough to generate powef but no
water is wasted by emergency overflow. Also sketch for comparisons the
distribution and density of water depth without any conditions.

*2.6-7. In Example 2.6-2 a parachuter is an “expert” if he hits the bull’s eye. If he falls
outside the bull’s eye but within a circle of 25-m radius, he is called “qualified”
for competition. Given that a parachuter is not an expert but hits the target,
what is the probability of being “qualified”?

2.6-8. Ina game show contestants choose one of three doors to determine what prize
they win. History shows that the three doors, 1, 2, and 3, are chosen with
probabilities 0.30, 0.45, and (.25, respectively. It is also known that given door
i is chosen, the probabilities of winning prizes of $0, $100, and $1000 are 0.10,
0.20, and 0.70. For door 2 the respective probabilities are 0.50, 0.35, and 0.15,
and for door 3 they are 0.80, 0.15, and 0.05. If X is a random vanable
describing doliars won, and D describes the door sclected (values of D are
Dy, =1,D, =2, and Dy =3), find: (g} Fy(x|D = D)) and fy(x|D =Dy}, (&)
Jx(x|D = Dy), (&) fx{x|D = Dy), and (d) fx(x).

2.6-9. Again consider the game show of Problem 2.6-8 and find the probabilities of
winning (z) $0, () $100, and {c) $1000.

*2 6-10. Divers return each day to the site of a sunken treasure ship. Due to random
navigational errors, they arrive with a radial positional error (from the true
site) described by a random variable X (in kilometers) defined by

Fe(x) = [1— & Putx)

(this is the Weibuflj distribution; see Appendix F). If they must arrive with an
error of not more than 1.2km to prevent having to move to a new position,
and within 0.6km for optimum use of air tanks, what is the probability of
optimum use of tanks given they arrive on site on the first effort?

*2.6-11. For the navigational errors of Problem 2.6-10 find and plot the conditional
density fy(x]X < 1.2km).

fAfter Ernst Hjalmar Waloddi Weibull (1887-1979), a Swedish applied physicist.

CHAPTER 3

Operations on One Random Variable—

Expectation

3.0
INTRODUCTION

The random variable was introduced in Chapter 2 as a means of providing a
systematic definition of events defined on a sample space. Specifically, it
formed a mathematical model for describing characteristics of some real,
physical world random phenomenon. In this chapter, we extend our work
to include some important operations that may be performed on a random
variable. Most of these operations are based on a single conoept-;-expectation.

31
EXPECTATION

Expectation is the name given to the process of averaging when a random
variable is involved. For a random variable X, we use the notation E[X],
which may be read *“the mathematical expectation of X,” “the expected
value of X,” “the mean value of X,” or “the statistical average of X.”
Occasionally we also use the notation X, which is read the same way as
E[X]; that is, X = E[X].1

Nearly everyone is familiar with averaging procedures. An example that
serves to tie a familiar problem to the new concept of expectation may be the
easiest way to proceed. :

{Up to this point in this book an overbar has rep ited the compl of a set or event.

Henceforth, unless specifically stated otherwise, the overbar will always represent a mean value.
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EXAMPLE 3.1-1. Ninety people are randomly selected and the fractional
dollar value of coins in their pockets is counted. If the count goes
above a dollar, the doilar value is discarded and only the portion from
§ 0¢ to 99¢ is accepted. It is found that 8, 12, 28, 22, 15, and 5 people had
- 18¢, 45¢, 64¢, 724, T7¢, and 95¢ in their pockets, respectively.
Our everyday experiences indicate that the average of these values is

8 12 28 22
Average $ = 0.18(9—0) 4045 (%) + 0.64(%) +40.72 (ﬁ)

15 5
+0.77 (%) - 0.95 (%)

~2 $0.632

Expected Value of a Random Variable

The everyday averaging procedure used in the above example carries over
directly to random varables. In fact, if X is the discrete random variable
“fractional dollar value of pocket coins,” it has 100 discrete values x;-that
occur with probabilities P(x;), and its expected value E[X] is found in the same
way as in the example:

100
E[X]=_ x:P(x}) (3.1-1)

=l
The values x; identify with the fractional dollar values in the example, while
P(x;) is identified with the ratio of the number of people for the given dollar
value to the {otal number of people. If a large number of people had been used
in the “sample™ of the example, all fractional dollar values would have shown
up and the ratios would have approached P(x;). Thus, the average in the
example would have become more like (3.1-1) for many more than 90 people.

In general, the expected value of any random variable X' is defined by
o0

X=X = | sflydx

—oo
If X happens to be discrete with N possible values x; having probabilities P(x;)
of occurrence, then

(S. 1-2)

N
Sl =" Px)é(x — x;) (3.1-3)
: =1
from (2.3-3). Upoen substitution of (3.1-3) into (3.1-2), we have
N -
- EX}= Zx,-P(x,-) discrete random variable (3.1-4)
i=t

Hence, (3.1-1) is a special case of (3.1-4) when N = 100. For some discrete
random variables, N may be infinite in {3.1-3) and (3.1-4).

oot e

Ll g b

EXAMPLE 3.1-2. We determine the mean value of the continuous, exponen-
tially distributed random variable for which (2.5-9) applies:

1 —x{x—a)fb

fx0) = I »¢
0

X>da
X <da

From (3.1-2) and an integral from Appendix C:
oo afb roo
EX}= J %e'(""’)ﬂ’dx Z-ETJ xe Ay =at b
a

If a2 random variable’s density is symmetrical about a line x = g, then
E[X] = a; that is,

EX]=a if fylx-a)=fi(-x+a) (3.1-5)

Expected Value of 2 Funcfion of a Random Variable

As will be evident in the next section, many useful parameters relating to a
random variable X can be derived by finding the expected value of a real
function g(-} of X. It can be shown (ses Papoulis, -1965, p. 142) that this
expected value is given by

Elgo)] = jm 200 [ () de

-0

(3.1-6)

If X is a discrete random variable, (3.1-3) applies and (3.1-6) reduces to

N
Efg(X)) = Z 2{x)P(x;) discrete random variable 3.1-7
=1 .

where N may be infinite for some random variables.

EXAMPLE 3.1-3. It is known that a particular random voltage can be repre-
sented as a Rayleigh random variable ¥ having a density function given
by (2.5-11) with @ = 0 and & = 5. The voltage is applied to a device that
generates a voltage ¥ = g(¥) = P2 that is equal, numercally, to the
power in V' (in a 1-§2 resistor). We find the average power in ¥ by
means of (3.1-6): :

00n,3
Power in ¥ = E[g(V)] = E[I?] =J 2% P
0
8 By letting £ = v*/5, d& = 2vdv/5, we obtain
. ! °
Powerin ¥V = Sj EetdE=5W
0

after using (C-46).

9.
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Note that if g(X) in (3.1-6) is 2 sum of N functions g,{X),n=1,2,.... N,
then the expected value of the sum of N functions of a random variable X is
the sum of the N expected values of the individual functions of the random
variable. .

EXAMPLE 3.1-4. A problem in communication systems is how to define the
information of a source. Consider modeling a source capable of issuing
any one of [ distinct symbols (messages) represented as values x;,
i=1,2,...,L, of a discrete random variable X (I =2 is the=binary
case). Let P{x;) be the probabilities of the symbols X =x; We ask
what is the information contained in this sonrce, on the average, We
form three considerations.

First, we reason that information should be largest for source outputs
with small probabilities. After all, it conveys little information to predict
hot, dry weather for the Sahara desert since these conditions prevail
almost all the time. But to predict cool heavy rain carries much “infor-
mation.” Next, information from two independent sources should rea-
sonably add. Finally, information should be a positive quantity (a choice
we make) and should be zero for an event that is certain to occur. The
only function with these characteristics is the logarithm [Carlson (1975),
p. 343). Now since two quantities represent the smallest measure of
choice, the logarithm to the base 2 is chosen for measuring information,
and its unit is called the bit.

For our source we are led to define the information in symbol x; as
fogy[1/P(x)] = — logs[P{x;)]. By use of (3.1-7) we obtain the average
information, or entropy, of a discrete source as

L — L
H == 3 B og[P(39) = 35 > POs) nlPCs)]
i=1 i=l

where In() is the natural logarithm (to base ). The unit of H is bits/
symbol; it results from averaging the information over all source sym-
bols.

*Conditional Expected Value

If, in (3.1-2), fy(x) is replaced by the conditional density fy(x|B), where B is
any event defined on the sample space, we have the conditional expected value
of X, denoted E[X|B]:

o0
E[X|B] = J xfy(xB) dx (3.1-8)
—o0
One way to define event B, as shown in Chapter 2, is to let it depend on
the random variable X by defining

B={X <#} —co<b <00 - (319

We showed there that

_x®
[
Jr(xX =b)y= I Sx(xYydx . (3.1-10)
0 x>b
Thus, by substituting (3.1-10) into (3.1-8):
b
J xfy(x) dx
EX[X sp]=2s2 @311
B Sx(X)dx

which is the mean value of X when X is constrained to the set {X < b).

3.2
MOMENTS

An immediate application of the expected value of a function g(-) of a random
variable X is in calculating moments. Two types of moments are of interest,
those about the origin and those about the mean.

Moments about the Origin

The function
gX)=X" n=0,1,2,... (3.2-1)

when vsed in (3.1-6) gives the moments about the origin of the random vari-
able X. Denote the #th moment by m,. Then,

o = EL "1=J°° X fie) dx (3.2:2)

Clearly sy = 1, the area of the function fy(x), while m, = X, the expected
value of X.

Central Moments

Moments about the mean value of X are called central moments and are given
the symbol u,. They are defined as the expected value of the function

gX)=(X-Xy a=0,1,2... (3.2-3)
which is

o= B~ D)= | G B fatods (3.24)

The moment uq = 1, the area of fy(x), while ; = 0. (Why?)
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Variance and Skew

The second central moment g, is so important we shall give it the name
variance and the special notation o%. Thus, variance is given byt

[

(x — X fp(x) dx (3.2-5)

—03

% == E(X — 2] =

The positive square root oy of varance is called the srandard deviation of X; it
is a measure of the spread in the function fy(x) about the mean.

Variance can be found from a knowledge of first and second moments. By
expanding (3.2-5), we have}

0% = E[X? - 2XX + X%} = E[X*] — 2X E[X] + X*
=EXN -3 =m—mi (3.2-6)

EXAMPLE 32-1. Let X have the exponential density function given in
Example 3.1-2. By substitution into (3.2-5), the variance of X is

0 -2l
6% = J {x- X)zge"x"’)"' b dx
a

By making the change of variable £ =x — X we obtain

e_(jf_a)/b S - 5
o§=TJ e dE=(a+b— XY +b
a—X
after using an integral from Appendix C. However, from Example 3.1-2,
X =EX]=(a+D), 50

&=t

The reader may wish to verify this result by finding the second moment
E[X”] and using (3.2-6).

The third central moment gy = E[{(X — X)"]is a measure of the asymme-
try of fy(x) about x = X = m,. It will be called the skew of the density func-
tion. If a density is symmetric about x = X, it has zero skew. In fact, for this
case i, =0 for all odd values of #. (Why?) The normalized third central
moment p;/oy is known as the skewness of the density function, or, alterna-
tively, as the coefficient of skewness.

coefficient of skewness for the exponential density. From (3.2-4) with n =

EXAMPLE 32-2. We continue Example 3.2-1 and compute the skew and
3 we have

1The subscript indicates that g% is the variance of a randem variable X. For a random varizble ¥ its
variance would be o%.

$We use the fact that the expected value of a sum of functions of X equals the sum of expected
values of individual functions, as previously noted.

e LD e b e (L e

ALt et Gacheiit

w3 = E{(X — XY = E[X* - 3%x? +37°x — X7
=X? - 3XX2+2X° = X3 — 3X(o} + XV + 2%°
= X3 —3¥¢% — ¥

Next, we have
et
¥i_ J ?e—tx—a)fb dx = & + 3ab + 6ab® + 6b°
a

after using (C-48). On substituting X =a+ & and o3 =& from the
carlier example, and reducing the algebra we find

py =20
H3

L |
o%

This density has a relatively large coefficient of skewness, as can be seen
intuitively from Figure 2.5-3.

Chebychev’s Inequality

A useful tool in some probability prob_lcmé is Chebychev’s inequality.T For a
random variable ¥ with mean value ¥ and variance a%, it states that

P{lX — X| > ¢} < 0%/ (32-7)
for any e > 0. This expression can be demonstrated by integration of the
probability density, using (2.3-6¢):

) Fe oo ¥
rix-fiza=| fwas| pea="  swa 629
—o0 X+e

lx—X|ze

But since
/

o= - Difodee f’} _

|x—X|=e

(x — X)fx(x) dx

5 [ VIR
ze J . fx(Ndx =Pl —X| = ¢} (3.2-9)

|x—Xlze i

must be true, we solve to show the validity of (3.2-7).

EXAMPLE 3.2-3. We find the largest probability that any random variable’s
values are smaller than its mean by 3 standard deviations or larger than
its mean by the same amount. This probability is P{X = X + 3oy]}+-
PLX < X — 30y} = P{|X — X| > 303}. From (3.2-7) with ¢ =230y we
have P{|X — X| = 3oy} = o’fy/(3ax) =1/9, or about 11.1%.

tAfter the Russian mathematician Pafnuty Lvovich Chebychev (1821-1894).
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By a procedure similar to that above, an alternative form of Chebychev’s
inequality can be proved. It is
PIX - % <€) 21~ (03/€) (3.2-'10)

for any € > 0. An interesting result derives immediately from (3.2-10). If ot =
0 for a random variable, then P{|X — Xl < ¢} — 1, for any ¢. For arbitrarily
small € we have P{|X — X] — 0} = lor P[X = XY — 1. In other words, if the
variance of a random variable X approaches zero, the probability approaches
1 that X will equal its mean value. ;

Markov’s Inequality
Another inequality that is useful in probability problems is Markov's inequal-
fty, which applies to a nonnegative random variable X it is

PlX = a) < E[X])/a a=0 (3.2-11)

The restriction to nonnegative random variables is relieved by Chernoff’s
inequality, which is developed in Example 3.3-3 below.

*33
FUNCTIONS THAT GIVE MOMENTS

Two functions can be defined that allow moments to be calculated for a
random variable X. They are the characteristic function and the moment
generating function.

*Characteristic Function

The characteristic function of a random variable X is defined by
@ (@) = Efe¥] 33-1)

where j = +/—1. It is a function of the real variable ~00 < @ < c0. If (3.3-1) is
written in terms of the density function, ®y{w) is seen to be the Fourfer
transformt (with the sign of w reversed) of fy(x):

B y(w) = Jc_o Je()e™™ dx (3.3-2)

Because of this fact, if ®y{w) is known, fy(x) can be found from the inverse
Fourier transform (with sign of x reversed)

4Readers unfamiliar with Fourier transforms should interpret ¢ () as simply the expected valile of
the function g(X) = exp(jwX). Appendix D is included as a review for others wishing to refresh their
background in Fourier transform theory.

1 [® . 85
fx(x) = 2— <1>X(w)e ¥ deo (3.3-3) _
T} oo CHAPTER 3:
By formal differentiation of (3.3-2) n times with respect to w and setting o = (0 Operations on One
in the derivative, we may show that the nth moment ofX is given by Random

Variable—
= (i T 2x(@) d"CDX(w) Expectation

(3.3-4)

=1}

A major advantage of using ®y(w) to find moments is that @y (w) always
exists (Davenport, 1970, p. 426), so the moments can always be found if @ y(w)
is known, provided, of course, both the moments and the derivatives of ® y(w)
exist.

It can be shown that the maximum magnitude of a characteristic function
is unity and occurs at w = 0; that is,

jPx(w) = Px() =1 (3.3-5)
(See Problem 3.3-1.)
EXAMPLE 3.3-1. Again we consider the random variable with the exponen-

tial density of Example 3.1-2 and find its characteristic function and first
moment. By substituting the density function into (3.3-2), we get

™ 1 b ea/b 00 i
q’X(GD) = J Ee—(x—a)j e dx = TJ. e_(ll"’_ﬂ")xdx'
a a

Evaluation of the integral follows the use of an integral from Appendix C:

® ea}' oo
)= =) |,
The derivative of ®y(w) is .
d0x(e) _ e,-;a[ Ja b_]

g (/h-ju)x

=1 — job

ejma
dew 1—jwb (1 —jwh)?
so the first moment becomes

my = (- 22

=a+b

w=0

in agreement with »7, found in Example 3.1-2.

*Moment Generating Function

_ Another statistical average closely related to the characteristic function is the

moment generating function, defined by
My(v) = E[e"] (3.3-6)
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where v is a real number —co < v < co. Thus, My(v) is given by
o0
M) = | Syt ds 337
—co

The main advantage of the moment generating function derives from its
ability to give the moments. Moments are related to My(v) by the expression:

d"M X(U)
My =————=
avt |,
The main disadvantage of the moment generating function, as opposed to
the characteristic function, is that it may not exist for all random variables and

all values of v. However, if My(v) exists for all values of vin the neighborhood
of v =0 the moments are given by (3.3-8) (Wilks, 1962, p. 114).

(3.3-8)

EXAMPLE 332. To illustrate the calculation and use of the moment gen-
erating function, let us reconsider the exponential density of the earlier
examples. On use of (3.3-7) we have
(=]
My(v) = J le—(x—a)lb & dx
a b
b
- ijmelv—(ubnx dx
b

a

1
eﬂ

T by
In evaluating My (v) we have used an integral from Appendix C.
By differentiation we have the first moment
dMx(v)
ny = ——
dv o
av —
I CURTORE, | I
(1 —bv) =0
which, of course, is the same as previously found.

*Chernoff’s Inequality and Bound

As another example of an application of the moment generating function, we
develop Chernoffs inequality through an example.

EXAMPLE 333. Let X be any random variable, nonnegative or not. For
any real v > 0 it is clear from some sketches that

expl{x — )] = u(x —a) )]
where u{-) is the unit-step function and a is an arbitrary real constant.
Since - )
0o o i
Pz a = frds= | frtutx—ads @
a —oQ

B T R AT

we have
PiX>a) = Jw J(x)eD dx = e My(v) 3)

from (1), {2), and (3.3-7). Equation (3) is called Chernoff’s inequality.

Because the right side is a function of parameter v, it can be minimized

with respect to this parameter. The minimum value is called Chernoff’s
. bound [Viniotis (1998), p. 144].

34
TRANSFORMATIONS OF A RANDOM VARIABLE

Quite often one may wish to transform {change) one random variable X into a
new random variable ¥ by means of a transformation

Y =T(X) @4-1)

Typically, the density function fy(x) or distribution function Fy(x) of X is
known, and the problem is to determine either the density function f(») or
distribution function Fy(y) of ¥. The problem can be viewed as a “black box™
with input X, output Y, and “transfer characteristic” ¥ = T'(X), as illustrated
in Figure 3.4-1. ;

In general, X can be a discrete, continuous, or mixed random variable. In
turn, the transformation T can be linear, nonlinear, segmented, staircase, efc.
Clearly, there are many cases to consider in a general study, depending on the
form of X and T. In this section we shall consider only three cases: (1) X
continuous and T continuous and either monotonically increasing or decreas-
ing with X; (2) X continuous and I" continuous but nonmeonotonic; (3} X
discrete and T continuous. Note that the transformation in all three cases is
assumed continuous. The concepts introduced in these three situations are
broad enough that the reader should have no difficulty in extending them
to other cases (see Problem 3.4-2).

Monotonic Transformations of a Continuocus Random Variable

A transformation T is called monotonically increasing if T(x;) < T(x;) for any

x| < X, It is monotonically decreasing if T{(x,) > T{x;) for any x; < x5.
Consider first the increasing transformation. We assume that T is contin-

vous and differentiable at all values of x for which fy(x) #£ 0. Let ¥ have a

£ KO

FIGURE 3.4-1
Transformation of a random varable X to a new randem variable ¥.
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particular value y, corresponding to the particular value x, of X as shown in
Figure 3.4-2a. The two numbers are related by

=Tl o x=T 'Oy (34:2)

where T~ tepresents the inverse of the transformation T'. Now the probabil-
ity of the event {¥ < y,} must equal the probability of the event {X < xp}
because of the one-to-one correspondence between X and Y. Thus,

Fy(yp) = P{Y = yo} = PIX = xp) = Fy(p) (3.4:3)
or
Yo x9=T "{yq)
[* rova=["" " (3.4
—00 —00
Next, we differentiate both sides of (3.4-4) with respect to y using Leibniz’s
rulef to get

»=T@)

(@

&)}

S \ x
FIGURE 3.4-2

Monotonic transformations: (g) increasing, and (b) decreasing. {Adapted from
Peebles (1976) with permission of publishers Addison—Wesley, Advanced Book
Program.] .-

§Leibniz’s rule is given in {G-2) of Appendix G.

Jhrea

g B

R

b, AT
Sr0) =1~ ol 00 (345)
Since this result applies for any y;, we may now drop the subscript and write
- T_
S =T o 2 (3.46)
or, more compactly,
dx
fr0) =fx(X)d—y (34-7)

In (3.4-7) it is understood that x is a function of y through (3.4-2).
A consideration of Figure 3.4-25 for the decreasing transformation verifies
that
Fy(yo) = P{Y < yg} = P(X = xo} = 1 — Fx(xo) (3.4-8)

A repetition of the steps leading to (3.4-6) will again produce (3. 4 -6) except
that the right side is negative. However; since the slope of T7'() is also
negative, we conclude that for either type of monotonic transformation

T“ (y)

Sy =fIT7'0)] (3.4-9)

or simply

(3.4-10)

S0P

EXAMPLE 3.4-1. If we take T to be the linear transformation ¥ = T(X)
=@aX + b, where ¢ and b are any real constants, then X = T~'(¥) =
(Y —b)/a and dx/dy = t/a. From (3.4-9)

7o) =i(*)k

a

If X is assumed to be gaussian with the density function given by (2.4-1),

we get
1§ bl s3e2 | 1
Fy(0) = oot st |1
! 2oy a

1 beay 8 2a'0y
JIndal,
which is the density function of another gaussian random variable having

G -dcy -

Thus, a linear transformation of a gaussian random variable produces
another gaussian random variable. A linear amplifier having a random
voltage X as its input is one example of a linear transformation.

ay =aay + b and
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Nonmonotonic Transformations of a Continuous Random Variable

A transformation may not be monotonic in the more general case. Figure
3.4-3 illustrates one such transformation. There may now be more than one
interval of values of X that correspond to the event {Y =< y,). For the value of
¥ shown in the figure, the event {Y < yq} corresponds to the event {X = x;
and x, < X < x3}. Thus, the probability of the event {¥Y < y;} now equals the
probability of the event {x values yielding ¥ < y;}, which we shall write as
[x]¥ < yq)- In other words

FOO=PY syl =PRY syl =|  fdx  GaID
[x[¥<pol
Formally, one may differentiate to obtain the density function of ¥
d
fro) = d_J Sx(x)dx (3.4-12)
Vo Jx v <yl

Although we shall not give a proof, the density function is aiso given by
(Papoulis, 1965, p. 126)

_ fX(xn)
ro)= Z,,:W (3.4-13)
’ dx X=X,
where the sum is taken so as to include all the roots x,,, 7 =1, 2, ..., which are

the real solutions of the equationy

y=10)

Sof a5

/ 1
FIGURE 34-3

A nonmenotonic transformation. [Adupted from Pecbles (1976} with permission of
publishers Addison—Wesley, Advanced Book Program.]

[ SYErRRY
e fermmmm

[V DU,
"

o
»

fIf y = T(x} has no real roots for a given value of y, then fr () =0.

L

I
I
g

y=Tx

We illustrate the above concepts by an example.

(3.4-14)

EXAMPIE 3.4-2. We find fy(p) for the square-law transformation
Y = T(X)=cX?

shown in Figure 3.4-4, where ¢ is a real constant ¢ > 0. We shall use both
the procedure leading to (3.4-12) and that leading to (3.4-13).

In the former case, the event {¥ <y} occurs when {—/yfc<x
< . fyfel = (x| ¥ <y}, so (3.4-12) becomes

’,

d [V
fy(y)=d—yJJ_fx(x)dx yz0

—f Tl
Upon use of Leibniz's rule we obtain
d di—
Pl
th(\/W.E) +fx(—~/F/C) o
B 2./ep vz

In the latter case where we use (3.4-13), wehave X = +./¥ /e, ¥ > 0,
50 x; = —/yf¢ and x, = /yfc. Furthermore, dT(x)/dx = 2¢x so

dT{x) _ _ J; _
- & | =2¢x =—2¢ = 2./cy
P dT(x)
dx — 2y
y=cx®

- FIGURE 3.44
A square-law transformation. [Adapted from Peebles (1976} with permission of pub-
lishers Addison—Wesley, Advanced Book Program.]
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From (3.4-13) we again have

_ Sx(rTe) + S (=YTe) -
)= WG y=0

Transformation of a Discrete Random Variable

If X is a discrete random variable while Y = T(X) is a continuous transfor-
mation, the problem is especially simple. Here

Se@) =Y P(xa)5(x — x,) (3.4-15)

Fy(® =) P(x,u(x - x,) (3.4-16)

where the sum is taken to include all the possible values x,,, = 1,2,..., of X,

If the transformation is monotonic, there is a one-to-one correspondence
between X and Y so that a set {y,} corresponds to the set {x,] through the
equation y, = T(x,). The probability P(y,) equals P(x,). Thus,

Sy0Y =Y Pon)sy — ya) (3.4-17)
Fy() =Y POraYu(y — ) (3.4-18)
where
Fu=T(x) (3.4-19)
P(y,) = P(x,) (3.4-20)

If T is not monotonic, the above procedure remains valid except there
now exists the possibility that more than one value x, corresponds to a value
v,.. Insuch a case P(y,) will equal the sum of the probabilities of the various x,
for which y, = T'(x,).

EXAMPLE 34-3. Let a discrete random variable X have values x =—1,0, 1,
and 2 with respective probabilities 0.1, 0.3, 0.4, and 0.2, so that
Sr(x) = 0.18(x + 1) + 0.38(x) + 0.48(x — 1) + 0.28(x — 2). We assume X
is transformed to ¥ =2 — X%+ (X*/3) and find the density of ¥. The
values of X map to respective values of ¥ given by y = 2/3, 2, 4/3, and
2/3. The two values x = —1 and x =2 map to one value y = 2/3. The
probability of {¥ =2/3) is the sum of probabilities P{X = —1} and
P{X =2}, s0 E

Fy() = 038y — (2/3)] + 048]y — (4/3)] -+ 0.35(» — 2)

3.5
COMPUTER GENERATION OF ONE RANDOM VARIABLE

A digital computer is often used to simulate systems in order to estimate their
performance with noise prior to the actual construction of the system. These
simulations usually require that random numbers be generated that are values
of random variables having prescribed distributions. If software (a computer
program, or subroutine, that can be called vp on demand) exists for the
specified distribution, there is no problem. However, if the computer “library”
does not contain the desired program, it is necessary for the simulation to
generate its own random numbers. In this section we briefly describe how to
generate a random variable with specified probability distribution, given
mainly that the computer is able to generate random numbers that are values
of a random variable with uniform distribution on (0,1}, a commoniy satisfied
condition in most cases.

The problem, then, is te find the transformation T(X) in Figure 3.4-1 that
will create a random variable ¥ of prescribed distribution function when X
has a uniform distribution on (0,1). We assume initially that T(X)} is 2 mono-
tonically nondecreasing function so that (3.4-3) applies. Our work will show
that this condition is antomatically satisfied. From (3.4-3) we have (for any x
and y)

Fyly = T(] = Fy(%) 3.5-1)

* But for uniform X, Fy(x) = x when 0 < x < 1, from (2.5-8). Thus, we solve

for the inverse in (3.5-1) to get

y=TEX)=FY(x 0O0<x<lI (3.5-2)
Since any distribution function Fy(y} is nondecreasing, its inverse is non-
decreasing, and the initial assumption is always satisfied.

Equation (3.5-2) is our principal result. It states that, given a specified
distribution Fy(p) for ¥, we find the inverse function by solving Fy(y) = x for
y. The result is T(x). An example will illustrate this simple procedure to create
a Rayleigh random variable.

EXAMPLE 35-1. We find the transformation required to generate the
Rayleigh random variable of (2.5-12) with ¢ = (. On setting

Fy(y)=l—e_);’rb=x for0<x<l1
we solve for p and find
y=T{x})=+—-bln(1 —x D<x<l

We give another example for the arcsine distribution.
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EXAMPLE 352, A computer software program can generate random num-
bers on request that are values of a random variable uniformly distributed
on (0,1). We find the required transformation to convert these values to
those of a random variable with the arcsine distribution of (F-23) in
Appendix F. From (F-23) and (3.5-1) we require

0, 0<x<0

0, y<-a
Fy(y}= 0.5+%Sin"l(y/a), —a<y<a f=43x%x 0<x<l
1, a=<y 1, 1<x

The solution for y is direct. We obtain

y = asinfr(2x — 1)/2] D<x=<l

Equation (3.5-2) can be readily applied to any distribution for which its
inverse can be analytically determined (see Problems 3.5-1 through 3.5-3 for
other examples). For other distributions the required inverse can be stored in
the computer for a number of points (3, x), and the simulation can then use
interpolation between computed points to obtain values of y for any value of
x. '

The paussian random variable is an important example of a distribution
for which the inverse cannot be found analytically. Because computer simula-
tions often require panssian random numbers to be generated, we show in
Section 5.6 how this important problem ¢an be solved by extension of the
methods of this section.

EXAMPLE 3.5-3. We use MATLAB to generate a sequence of 100 random
numbers x; that correspond to a random variable uniformly distributed
on (0,1). The results of Example 3.5-1 are then used to convert the ran-
dom numbets to a Rayleigh random variable by means of the transfor-
mation y; = [—In(l — x3)] 2 We generate a histogram of the uniform
values by classifying them into 10 “bins” of width 0.1. A histogram is a
plot of the number of values falling in a bin divided by the total number
of values generated. Such histograms approximate the probability density
of the random variable for which the values apply. For the Rayleigh
values a histogram using 22 bins of width 0.1 from 0 to 2.2 is reated.
Finally, to show that the histograms equal, approximately, the probabil-
ity densities of the random variables, the true densities are also plotted for
comparison. :

The applicable MATLAB code is shown in Figure 3.5-1. Results for
the uniform random variable are shown in Figore 3.5-2, while the plots
for the Rayleigh case are shown in Figure 3.5-3. If more than 100 values
of y; were used, the histograms would tend to approximate the true
densities more closely.

i

iy A

%%%%%%%% %% % %% %% Example 3.5-3 % &

clear

N =100; % number of random variables to generate
stp = 0.1; % step size
b = 1; % Rayleigh parameter

x = rand(1,N); % uniformly digtributed random numbers
¥ = sqgqrt(-b*log{l-x)); % Rayleigh distributed random numbers

£ = find(y > 2.2); % £ind values cut of the range of interest
¥{(£) = {]1; % remove these values

xcenter = [0.05:5tp:1]; % centers of the bing for the histogram
yocenter = [0.05:8tp:2.2];

xabscigsa = 0:stp:l; % abscissa used for analytic resulta
vabgcissa = 0:8tp:2.5;

xhist = higt{x,xcenter); % compute higtograms (not normalized)
yhiast = hist (y,ycenter);

Xtrue = ones (size(xabscissa)); % compute the analytic valuas
ytrue = 2*yabscissa/b.*exp(-yabscisgsa.*2/b};

% plot resgults

clfE

bar(xcenter,xhist./(N*stp).1l, v’} % plot normalized histogram
hold on

plot (xabscissa,xtrue, 'k’ ) % uniform distribution

xlabel { ‘Magnitude Bins’)
ylaba_l (’Relative Number of Samplesg’)
title(’Histogram of Uniform Distribution’}

£igure

bar(ycenter,yhist./(N*stp),1, 'w’)

held on

plot (yabecissa, ytrue, "k’) % Rayleigh distribution

xlabel (‘Magnitude Bing’)
ylabel (‘Relative Number of Samplaes’)
title(‘Histogram of Rayleigh Distribution’)

FIGURE 3.5-1 -
MATLAB code wsed in Example 3.5-3.
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Histogram of uniferm distribution
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FIGURE 3.5-2 ) .
Histogram and true density function for the uniform random variable of Example
3.53,

Histogram of Rayleigh distribution
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FIGURE 3.5-3

Histogram and true density function for the Rayleigh random variable of Example
3.5-3.

3.6
SUMMARY

Although the preceding chapter dlscusscd the random variable and’ how to
calculate probabilities of its having particular values, these topics afe- not
sufficient for many practical applications. One must also be able to determine

b
E

.
¥
o
b
3

useful characteristics of random variables, and know how to convert (trans-
fotm) one random variable into another. These were the subjects of this
chapter All these subjects were developed from a single concept: expectation,

which is nothing more than an averaging procedure for-random quanmles
Items covered were;

* Expectation was defined in general for a random variable or some function
of a random variable.

-s*Moments (about the origin, and central) were developed as valuable mea-

sures of a random variable’s characteristics. Of particular valve were mean
value, variance, and skew.

« The characteristic function and moment generating function were given as
convenient methods for finding moments.

+ Methods were given to transform one random variable into another, and to
find distribution and density functions of the new random variable.

+ The important concepts of how to generate a specified random variable by
computer were developed and an example and chapter-end problems were
included that are based on use of MATLAB software.

PROBLEMS

3.1-1. A discrete random variable X has possible values x; =12, i=1, 2, 3, 4, 5,

which occur with probabilities 0.4, 0.25, 0.15, 0.1, and 0.1, respectively. Find
the mean value X = E[X] of X.

3.1-2, The natural sumbers are the possible values of a random variable X: that is,

x,=n, n=1,2,.... These numbers occur with probablhtles Plx,}) = (,)
Find the expected va!ue of X.

3.1-3. If the probabilities in Problem 3.1-2 are P(x,) =p",0 < p < 1, show thatp = 1;
is the only value of p that is allowed for the prob]em as formulated. (Hm 1 Use
the fact that j'°° Sy(x)dx =1 is necessary.)

3.1-4. (a) Find the average amount the gambler in Problem 2.1-13 can expect to win.
(5) What is his probability of winning on any given playing of the game?

3.1-5. The aresine probability density is defined by

rect(x/2a)
M= =

for any real constant ¢ = 0. Show that ¥ = 0 and Xi= a* /2 for this density.

*3.1-6. For the animal described in Problem 2.6-4 find its expected llfenme given that
it will not live beyond 20 weeks.

Find the expected value of the function g{X)= X where X is a random
variable defined by the density

Fx(x) = Gulx) exp(—x/2)
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3.1-8. A random variable X represents the value of coins (in cents) given in change
when purchases are made at a particular store. Suppose the probabilities of 14,

5¢, 10¢, 25¢, and 50¢ being present in change are 0.35, 0.25, 0.20, 0.15, and

0.05, respectively.
{(g) Write an expression for the probability density function of X.
(b} Find the mean of X

3.1-9. In the circuit of Figure P2.1-11 of Chapter 2 let the resistance of Ry be a

random variable uniformly distributed on (R — AR, Ry + AR) where Ry and

AR are constants.

(a) Find an expression for the power dissipated in R, for any constant voltage
El -

(&) Find the mean value of power when R, is random.

{c) Evaluate the mean power for £} = 12V, Ry = 10002, Ry = 150082, and
AR=1009.

*3,1-10. The power (in milliwatts) reterned to a radar from & certain class of aircraft

has the probability density function

Jop) = 35¢ " u(p)

Suppose a given aircraft belongs to this class but is known to not prodirce a
power larger than 15mW,

(a) Find the probability density function of P conditional on P < 15mW.
(b) Find the conditional mean value of P

3.1-11. A random variable X has a probability density
1/2)cos(x, —wf2 < x <uf2
fx(x)=[§,” @ - /

elsewhere in x
Find the mean value of the function g{X) = 4%~
3.1-12. Work Problem 3.1-11, except assume a function g(X} = 4.

3.1-13. An information source can emit (generate) any one of 128 levels where each is
equally probable and independent of all others. What average information
does the source represent? (Hinz: Use the results of Example 3.1-4.)

3.1-14. A random variable X is uniformly distributed on the interval (-5, 15).
Another random variable ¥ = ¢~*/* is formed. Find E[Y].

3.1-15. A gaussian voltage random variable X [see (2.4-1)] has a mean value ¥=
ay =0 and variance o% = 9. The voltage X is applied to a square-law; full-
wave diode detector with a transfer characteristic ¥ = 5X2. Find the mean
value of the cutput voltage Y.

*3.1-16. For the system having a lifetime specified in Problem 2.5-3 of Chapter 2,

determine the expected lifetime of the system given that the system has sur-
vived 20 weeks.

3.2-1. Give an example of a random variable where its mean value might not equal
any of its possible values.

3.2-2. Find:
(@) the expected value, and

() the variance of the random variable with the triangular density of Figure
23-1aifa=1fe.

3.2-3. Show that the mean value and variance of the random variable having the
uniform density function of (2.5-7) are:

X = E(X] = (a+ 5)/2

and
ok =B —a)/12

3.2.4. A pointer is spun on a fair wheel of chance numbered from 0 to 100 around its
circumference,

(a) What is the average value of all possible pointer positions?

(6} What deviation from its average value will the pointer position take on the
average; that is, what is the pointer’s root-mean-squared deviation from
its mean? (Hinz: Use results of Problem 3.2-3.)

3.2-5. Find:
{@) the mean value, and

(b) the variance of the random variable X defined by Problems 2.1-6 and
2.2-3 of Chapter 2.

*3.2-6. For the binomial density of (2.5-1), show that
E[X]=X=Np

and
0% = Np(1 —p)

3.2-7. (&) Let resistance be a random variable in Problem 2.1-11 of Chapter 2. Find
the mean value of resistance,
(5) What is the output voltage F; if an average resistor were used in the
circuit?
(¢) For the resistors specified, what is the mean value of E,? Does the voltage
of part (b) equal this value? Explain your results.

3.2-8. (@) Use the symmetry of the density function given by (2.4-1) to justify that
the parameter ey in the gaussian density is the mean value of the random
variable: ¥ = ay.

() Prove that the parameter o is the variance. (Fine: Use an equation from
Appendix C.)

3.2.9. Show that the mean value E[X] and variance o% of the Rayleigh random
variable, with density given by (2.5-11), are

ElX) = a+/7b/4 o
and

o = b4 — ny4

9%
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3.2-10.

3.2-1L.

3.2-12.

*3.2-13.

3.2-14.

3.2-15.

3.2-16.

3217

3.2-18.

3.2-19.

What is the expected lifetime of the system defined in Problem 2,53 of
Chapter 27

Find:
(a) the mean value, and ) .
(b} the variance for a randem vamnable with the Laplace density

1 —lx—m|fb
=—¢
=5
where & and m are real constants, b > 0, and —oo < m < 02.

Determine the mean value of the Cauchy random variable in Prublem‘2.5-4 of
Chapter 2. What can you say about the variance of this random variable?

For the Poisson random variable defined in (2.5-4) show that:
() the mean value is b and
(#) the variance also equals b.

(a) Use (3.2-2) to find the first three moments #zy, my, and #t3 for the expo-
nential density of Example 3.1-2. o ) )

(6) Find n1,, ma, and m, from the charactenistic function found in Example
3.3-1. Verify that they agree with those of part ().

Find the expressions for all the moments about the orgin and central
moments for the uniform density of {2.5-7).

Define a function g(-) of a random variable X by
gX) = [(1,
where xp is.a real number —oo < x¢ < 0. Show that
Elg(X)} = 1 - Fx(x)
Show that the second moment of any random variable X about an arbitrary

point a is minimum when a = X; that is, show that Ef{(X — )] is miniraum for
a=X.

X=X
X < Xg

For any discrete random variable X with values x; having probabilities of
occurrence P(x;), show that the moments of X are

N
Nty = ZX?P(X,)

=l

N -
tn = Y 05— XYPOx)

i=1

where N may be infinite for some X.

Prove that central moments j4,, are related to moments my about the origin by

Mg = g(z ) (—3.;)"~kmk

v o o b sy il

i ¥ T

g e

<3 W i

S

s e B b ik

3.2-20. A random variable X has a density function fy(x) and moments 1. If the

density is shifted higher in x by an amount & > 0 to a new origin, show that
the moments of the shifted density, denoted m,, are related to the moments m,
by

n
n\ .
By, = Z(k)a" i
k=0

3.2-21. Continue Problem 3.1-14 by finding all moments of ¥. (Hinz: Treat ¥ zs a

function of ¥, not as a transformation.)

3.2-22. Reconsider the production line that manufactures bolts in Problem 2.2-1.

{a) What is the average length of bolts that are placed up for sale?

(b) What is the standard deviation of length of bolts sotd?

(c) What percentage of all bolts sold are expected to have a length within one
standard deviation of the average length?

(d) By what tolerance (as a percentage) does the average length of bolts sold
match the nominally desired length of 760 mm?

3.2-23. A random variable X has 2 probability density

—4<x<4
elsewhere

S = [ Gef16)cos(ex/S)

Find: {a) its mean value X, (3} its second moment F, and (c) its variance.

3.2-24. A certain meter is designed to measure small dc voltages but makes errors

because of noise. The errors are accurately represented as a §aussian random
variable with a mean of zero and a standard deviation of 107°-V. When the dc
voltage is disconnected it is found that the probability is 0.5 that the meter
reading is positive due to noise. With the dc voltage present, this probability
becomes 0.2514. What is the dc voltage?

3.2-25. Find the skew and coefficient of skewness for a Rayleigh random variable for

which & =0 in (2.5-11).

3.2-26. A random variable X has the density

2<x=<6
elsewhere

Sr(x) = [ ((]%)(—xz +8x—13)

Find the following moments: (@} mg, (&) my, {c) my, and {d) u,.

3.2-27. The chi-square density with N depress of freedom is defined by

AN72)-1
2¥ID(N 1)
where I'(-) is the gamma function

u(x)e—*"?

fxlx) =
=]

I'(z) =J £letdr realpartof z> 0
o

and N=1,2,.... Show that () ¥ = N, (1) X2 = N(¥ + 2), and (c) 0% = 2N
for th_js density.
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3.2-38. For the density of Problem 3.2:27 find its arbitrary moment X7, n=

0,1,2,....

3.229. A random variable X is called Weibuil it its density has the form

F2() = abx® exp(—axt)u(x)

where a > 0 and b > 0 are real constants. Use the definition of the gamma
function of Problem 3.2-27 to find (&) the mean value, (2) the second moment,
and (¢) the variance of X.

" +3.2-30. Show that the characteristic function of a random variable having the bi-

nomial density of (2.5-1) is
Gy(w) =[1—p+pe™l”

.~ *3.2-31. Show that the characteristic function of a Poisson random variable defined by

(2.5-4) is
' @ () = expl--b{1 — )]

*3.2.32. The Erlangt random variable X has a characteristic function

o
Dylw)= [a _ajm]

for a>0 and N=1,2,.... Show that ¥ =N/a, X2 = N(N+ 1)/&, and
o% = Njd.

3.2-33. A tandom variable X has ¥ = -3, E: 11, and o} = 2. For a new random

variable ¥ = 2X — 3, find {a) ¥, (8) 72, and (¢) o}

3.2-34. A random variable has a probability density

sal—x)  O0<x<1
fX(I)=[g/ H1=x3 el::wjfhereinx

Find: (a) E[X], (6) E[4X +2], and (¢} E[X?].

3.2-35, Use the definition of the gamma functon as given by (F-1f} in Appendix F to

obtain an expression for the moments EX", n=0,1,2,..., for the gamma
density defined by (F—50). Use the expression to prove that (F-52) and (F-53)
are frue.

3.2-36. Suppose it is found that the function

16/m
@+
is a pood empirical fit to the probability density function of some random

experimental data represented by a random variable X', Find the mean, second
moment, and variance of X.

Sxlx)y=

1A. K. Erlang (1878-1929) was a Danish engineer.

&
E

i pud i el e s e A 0

*3.3-1. Show that any characteristic function ®y(w) satisfies

[0x(e)l < Dz} =1

*3.3-2. The characteristic function for a gaussian random variable X, having a mean

value of @, is

@ ylw) = exp(—oyw’/2)
Find all the moments of X using @;{w).

*3.3-3. Work Problem 3.3-2 using the moment generating function

My (v) = exp(o§*/2)

for the zero-ean gaussian random variable,

*3,3-4, A discrete random variable X can have N + 1 values x; = kA, k=0,1,..., N,

where A > § i5 a real number. Its values occur with equal probability. Show
that the characteristic function of X is

1 sin[(N 4 LA /2] oNwAR
N4+l sin{wA /2)

by(w) =

*3,3-5. The characteristic function of the Laplace density of Problem 3.2-11 is known

to be
_e
1+ ()

Use this result to find the mean, second moment, and variance of the random
variable X.

Oy(w) =

*3.3-6. The chi-square density of Problem 3.2-27 has a characteristic function

1
(1 —j2w)™?

Use this function with (3.3-4) to verify the mean and a second moment found
in Problem 3.2-27.

Dy(w) =

*3.3-7. Solve for the Chernoff bound for a gaussian random variable with zero mean

and variance one. [Hinz: First find M() by use of (C-51).]

3.4-1. A random variable X is uniformly distributed on the interval (—x/2, 7/2). X is

transformed to the new random variable ¥ = T(X) = atan(X), where ¢ > 0.
Find the probability density function of ¥.

3.4-2. Work Problem 3.4-1 if X is uniform on the interval (—x, 7).

3.4-3. A random variable X undergoes the transformation” ¥ == a/X, where ¢ is a

_ real number. Find the density function of ¥.

3.44. A random variable X is uniformly distributed on the interval (—a, @). It is

transformed fo a new variable ¥ by the transformation ¥ = eX? defined in
Example 3.4-2. Find and sketch the density function of ¥.
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3.4-5. A zero-mean gaussian random variable X is transformed to the random vari-

able ¥ determined by

eX X>0
Y={0 X=0

where ¢ is & real constant, ¢ > 0. Find and sketch the density function of Y.

3.4-6. If the transformation of Problem 3.4-5 is applied to a Rayleigh randqm_vari-

able with a > 0, what is its effect?

*3 4-7. A random variable @ is uniformly distributed on the interval (8, ;) where &,

and ¢, are teal and satisfy
0<8 <b<m

Find and sketch the probability density function of the transformed random
variable ¥ = cos(®).

34.8. A random variable X can have values ~4, —1, 2, 3, and 4, each with prob-

ability 4. Find:
(g) the density function,
(b} the mean, and

(¢) the variance of the random ¥ = 3.X 3

349. A gaussian random variable, for which

S0 = (2//7) exp(—4x?)

is applied to a square-law device to produce a new {output) random varial::!e
¥ = X*/2. (a) Find the density of Y. () Find the moments 1, = E[Y7],
n=0,1,.... (Hint: Put your answer in terms of the gamma function defined
in Problem 3.2-27.)

3.4-10. A gaussian random variable, for which X = 0.6 and o = 0.8, is transformed

to a new random variable by the transformation

4 10X <00

2 0<X <10
Y=TN=1_35 . 10=<x<0
—4 —o<X <—10

(2} Find the density function of ¥.
{t) Find the mean and variance of ¥.

3.4-11. Work Problem 3.4-1 except assume a transformation Y = T{(X) = asin(X)

with a > 0.

34-12. Let X be a gaussian random variable with density given by (2.4-1). If X is

trapsformed to a new random varable ¥ =5+ e, where b is a redl con-
sdtant, show that the density of ¥ is log-normal as defined in Problem
2.5-5. This transformation allows log-normal random npumbers to be gener-
ated from gaussian random numbers by a digital computer.

3.4-13.

3.4-14,

3.4-15,

34-16.

3.51.

3.5-2.

3.5-3.

3.54.

A random variable X is uniformly distributed on (0, ). If X is transformed to
aznew random variable ¥ =2(X — 3)* — 4, find: {a) the density of ¥, (&) ¥, (¢}
oy.

It is known that the envelope of the bandpass noise“that emerges from a
communication or radar receiver can be modeled as a Rayleigh random vari-
able X with the probability density of (2.5-11) when a =0, b = 20%, and o is
the power in the bandpass noise. If the envelope is transformed to a new
variable ¥ = cX* where cis a constant, find the density of Y. This transfor-
ation is equivalent to a diede envelope detector where the noise level is smal]
and the diode behaves approximately as a square-law device.

A certain “soft” Hmiter accepis a random input voltage X and limits the
amplitudes of an output random variable ¥ according to

y=| va-e*y o=x
v - X =<0

where ¥ > 0 and a > 0 are constants. Show that the probability density of ¥
is

a V
+ [y —aln{ =) |u(—
7o) o
where fy(x} is the probability density of X.

If X in Problem 3.4-15 has the Laplace density of Problem 3.2-11 with m =0,
find the density of the output Y. If a = b, how is ¥ distributed?

In a computer simulation it is desired to transform numbers that are values of
a random variable uniformly distributed on (0, 1) to numbers that are values
of an exponentially distributed random variable, as defined by (2.5-10) with
a =10, Find the required transformation.

Work Problem 3.5-1, except to generate a random variable with a Weibull
distribution as defined by (F-91) in Appendix F.

‘Work Problem 3.5-1, except to generate a Cauchy random variable as defined
by {(F-31) of Appendix F with a = 0.

A random variable ¥ has the probability density function

_ Ad'yu(y)
HOY= iy

where a is a real positive constant and «(y) is the unit-step function of (A-5).
Find the mean value, second moment, variance, and cumulative distribution
function of Y. Show that the transformation needed to generate ¥ from a
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random variable X that is uniformly distributed on (0, 1) is

1 7R 72
Y=T(X)=a[[1_X] —1} 0<X <1

3.5-5. Extend Example 3.5-3 by repeating the procedures for 1000 randem numbers.
Compare the accuracy of the results with those of the example.

3.5-6. Work Example 3.5-3 except generate the histogram of a rar}dom variable with
arcsine distribution (as defined in Example 3.5-2) using 1000 random

numbers.

CHAPTER 4

Multiple Random Variables

4.0
INTRODUCTION

In Chapters 2 and 3, various aspeets of the theory of a single random variable
were studied. The random variable was found to be a powerful concept. It
enabled many realistic problems to be described in a probabilistic way such
that practical measures could be applied to the problem even though it was
random. ¥or example, we have seen that shell impact position along the line of
fire from a cannon to a target can be described by a random variable (Problem
2.4-6). From knowledge of the probability distribution or density function of
impact position, we can solve for such practical measures as the mean value of
impact position, its variance, and skew. These measures are not, however, a
complete enough description of the problem in most cases.

Naturally, we may also be interested in how much. the impact positions
deviate from the line of fire in, say, the perpendicular {cross-fire) direction. In
other words, we prefer to describe impact position as a point in a plane as
opposed to being a point along 2 line. To handle such situations it is necessary
that we extend our theory to include fivo random variables, one for each
coordinate axis of the plane in our example. In other problems it may be
necessary to extend the theory to include several random variables. We accom-
plish these extensions in this and the next chapter.

Fortunately, many situations of interest in engineering can be handled by
the theory of two random variables.t Because of this fact, we emphasize the
two-variable case, although the more general theory is also stated in most
discussions to follow.

in pariicular, it will be found in Chapter 6 that such important concepts as amocorrelation, cross-
correlation, and covariance functions, which apply to random processes, are based on two random
variables.
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where specific values of X and Y are denoted by x and y, respectively. Then
any ordered pair of numbers (x, y) may be conveniently considered to be a
random point in the xy plane. The point may be taken as a specific valuc'of 2
vector random variable or a random vector.§ Figure 4.1-1 illustrates the map-
ping involved in going from S to the xy plane.

The plane of all points {x, y) in the ranges of X and ¥ may be considered a
new sample space. It is in reality a vector space where the components of any
vector are the values of the random variables X and ¥. The new space is
sometimes called the range sample space (Davenport, 1970) or the fwo-dimen-
sional produet space. In this section and all following work we shall just call it
a joint sample space and give it the symbol 5.

As in the case of one random variable, let us define an event 4 by

A=(X < x} (4.1-1)
A similar event B can be defined for ¥:
B={¥ <y (.1-2)

Events 4 and B refer to the sample space 5, while events {X < x} and {¥ < y)
refer to the joint sample space S;.i Figure 4.1-2 illustrates the correspon-

5
-------- T Xlsz Y1)
1

]
i
]
i
]
i
1
i
1
1
'
]
I
]
1
'

Function X'

FIGURE 4.1-1
Mapping from the sample space S to the joint sample space Sy (xy plane).

4There are some specific conditions that must be satisfied in a complete definition of a random vector
(Davenport, 1970, Chapter 5). They are somewhat advanced for our scope and we shall simply
assume the validity of our randam vectors.

1Do not forget that elements s of S form the link between the two events since by writing {X <
x} we really refer to the set of those 5 such that X(s) < x for some real number x. A similar
statement holds for the event {¥ < y}. ’

."‘/% 1 % . .

i
SR B = [ ¥ < y}
Satatelebotatote!
ehofetolatess .;:&
SR
LS
.“""""‘.
ST
FIGUIRE 4.1-2

Comparisons of events in 5 with those in 5.

dences between events in the two spaces. Event A corresponds to all points in
S, for which the X coordinate values are not greater than x. Similarly, event B
Forresponds to the ¥ coordinate values in Sy not exceeding y. Of special
interest is to observe that the event A N B defined on § corresponds to the
Jjoint event {X < x and ¥ % y} defined on S, which we write (¥ < x, ¥ < ).
This joint event is shown crosshatched in figure 4.1-2.

In the more general case where N random variables X, X5, ..., X,y are
defined on a sample space S, we consider them to be components of an M-
dimensional random vector or N-dimensional random variable. The joint sample
space Sy is now N-dimensional.

4.2
JOINT DISTRIBUTION AND ITS PROPERTIES

The probabilities of the two events A ={X <x} and B=(¥ <] have
already been defined as functions of x and y, respectively, called probability
distribution functions:

Fy(x) = P{X < x} (4.2-1)
Fy(y)=PY =y} (4.2-2)

We must introduce a new concept to include the probability of the joint event
{X¥=x, Y =yh .

Joint Distribution Function

We define the probability of the joint event {X < x, ¥ < y), which is 2 func-
tion of .the numbers x and p, by a joint probability distribution function and
denote it by the symbol Fy y(x, y}. Hence,

Fey(x, ) =P{X <x,¥ <y} 4.2-3)
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It should be clear that P{X < x, ¥ <y} = P(4 N B), where the joint event
AN B is defined on S.

To illustrate joint distribution, we take an example where both random
variables X and ¥ are discrete.

EXAMPLE 4.2-1. Assume that the joint sample space S; has only three
possible elements: (1, 1), {2, 1}, and (3, 3). The probabilities of these cle-
ments are to be P(1,1)=0.2, P2, 1)=0.3, and P(3,3)=0.5. We find
Fy v(x,3). ’ ) ]

In constructing the joint distribution function, we observe that the
event {X < x, ¥ < y} has no elements for any x < 1 and/for y < 1. Only at
the point (1, 1) does the function assume a step value. So long as x > |
and y > 1, this probability is maintained so that Fy y(x, y) has a stair step
holding in the region x > 1 and y > 1 as shown in Figure 4.2-1a. For
larger x and y, the point (2, 1) produces a second stair step of amplitude
0.3 which holds in the region x > 2 and y > 1. The second step adds to the
first. Finally, a third stair step of amplitude 0.5 is added to the first two
when x and y are in the region x > 3 and y = 3. The final function is
shown in Figure.4.2-1a.

Fy 19

Fx, &y

FIGURE 4.2-1 .
A joint distribution function (g), and its corresponding joint density function (b),
that apply to Examples 4.2-1 and 4.2.2.

3

<
£
e
E
E:
4

The preceding example can be used to identify the form of the joint
distribution function for two general discrete random variables: Let X have
N possible values x, and ¥ have M possible values y,, then

N M “
FX. Y(xv y) = Z Z P(xm ym)u(_x - xu)u(y - ym)

n=1 m=1

(4.2-4)

where P(x,, y,) is the probability of the joint event {X = x,, ¥ = y,,} and u(-)
is the unii-step function. As seen in Example 4.2-1, some couples {x,, y,,) may
have zero probability. In some cases N or M, or both, may be infinite.

If Fy y(x,) is plotted for continvous random variables X and Y, the
same general behavior as shown in Figure 4.2-1a is obtained except the surface
becomes smooth and has no stairstep discontinuities.

For N random variables X, n =1, 2, ..., N, the generalization of (4.2-3)
is direct. The joint distribution function, denoted by F. X1 Ko Ky

(x1. %3, ..., xy), is defined as the probability of the joint event {X, < x|, X3 <
Xgsenos Ay < Xy
Fy, sy i@ X2, o X)) = PIX, €, X0 S 20, .., Xy < x3) (4.2-5)

For a single random variable X, we found in Chapter 2 that Fy(x) could
be expressed in general as the sum of a function of stairstep form (due to the
discrete portion of a mixed random variable X) and a function that was
continuons (due to the continuous portion of X). Such a simple decomposi-
tion of the joint distribution when N > 1 is not generally true [Cramér, 1946,
Section 8.4]. However, it is true that joint density functions in practice often
correspond to all random variables being either discrete or continuous.
Therefore, we shall limit our consideration in this book almost entirely to
these two cases when N > |,

Properties of the Joint Distribution

A joint distribution fanetion for two random variables ¥ and ¥ has several
properties that follow readily from its definition. We list them:
() Fxy(—o0, —oc0) =0

Fyy(—00,)=0  Fyy(x,—o0)=0 (4.2-6a)

(2) Fx y(oo,00)=1 (4.2-6b)
3) 0<Fpy(x, =l (4.2-6c)
1G] F v, y(, ¥) is a nondecreasing function of both x and y (4.2-64)
(5)  Fy y(x2,y2) + Fy y(x1, 31) — Fx, (%1, y2) — Fy y(x2, 1)

=Px <X <xpn<Y=mlz=0 (4.2-6¢2)
6) Fyy(x,00)=Fylx)  Fyy(00,))=Fy(y) 4.2-6f)

The first five of these properties are just the two-dimensional extensions of
the properties of one random variable given in (2.2-2). Properties 1, 2, and 3
may be used as tests to determine whether some function can be a valid
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distribution function for two random variables X and ¥ (Papoulis, 1963,
p. 169). Property 6 deserves a few special comments.

Marginal Distribution Functions

Property 6 above states that the distribution function of one random variable
can be obtained by setting the value of the other variable to infinity in
Fy y(x, ). The functions Fy{x) or Fy(y) obtained in this manner are called
marginal distribution functions.

To justify property 6, it is easiest to return to the basic events 4 and B,
defined by A={X¥ <x} and B={Y <y}, and observe that Fy y(x,)) =
P{X <x,Y <y} = P(4N B). Now if we set y to co, this is equivalent to
making B the certain event; that is, B = {¥ < co} = §. Furthermore, since 4
NEB=ANS =4, thenwe have Fy y(x,00) = P(ANS) = P(A) = PlX = x} =
Fy(x). A similar proof can be stated for obtaining Fy(y).

EXAMPLE 422, We find explicit expressions for Fy y(x, y), and the mar-
ginal distributions Fy(x) and Fy(y) for the joint sample space of Example
4.2-1.
The joint distribution derives from (4.2-4) if we recognize that only
three probabilities are nonzero:
Fy y(x,3) = P(L, Du(x — Du(y — 1)
+ P2, Dulx — 2y — 1)
+ P(3, ulx — 3pu(y —3)
where P(1,1) =0.2, P(2,1) = 0.3, and P(3,3) = 0.5. If we set y = co:
Fy(x) = Fy y(x, 00)
= P(1, Du(x — 1)+ P(2, Dulx — 2)+ P(3, 3)u(x — 3)
= 0.2u(x — 1) + 0.3u(x — 2) +0.5u(x — 3)
If we set x = oo
Fe(y) = Fyy(00. 5)
=02y~ 1)+ 0.3u(y— 1)+ 0.5(y - 3)
=051y — 1)+ 0.5y —3)

Plots of these marginal distributions are shown in Figure 4.2-2.

From an N-dimensional joint distribution function we may obtain a k-
dimensional marginal distribution function, for any selected group of k of the N
random variables, by setting the values of the other ¥ — k random variables to
infinity. Here & can be any integer 1,2,3, ..., N —1.

Frlx
Lol 10
05t L
02
| 1 1
0 1 2 3 x
{a)
Fr(3)
10f 10
st o8
1 1
0 1 2 3 ¥

FIGURE 4.2-2
Marginal distributions applicable to Figure 4.2-1 and Example 4.2-2; (2} Fy(x) and

(&) Fy(p).

4.3
JOINT DENSITY AND ITS PROPERTIES

In this section the concept of a probability density function is extended to
include multiple random variables,

Joint Density Function

For two random \Tariables X and ¥, the joint probability density function,
denoted fy y(x, y), is defined by the second derivative of the joint distribution
function wherever it exists: .

FFy v(x,))

Jry(e )= ax 3y

(4.3-1)
We shall refer often to fy y(x, y) as the joint density function.

If X and ¥ are discrate random variables, Fy y(x,y) will possess step
discontinuities (see Example 4.2-1 and Figure 4.2-1). Derivatives at these dis-
continuities are normally undefined. However, by admitting impulse functions
{see Appendix A), we are able to define /i y(x, ) at these points. Therefore,
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the joint density function may be found for any two discrete random variables
by substitution of (4.2-4) into (4.3-1):

N M
S ) =32 Pl yu) 8(x = %,) (¥ = Yor) (4.3-2)

n=1 m=1

An example of the joint density function of two discrete random variables is
shown in Figure 4.2-15.

When N random variables X;, X5, ..., Xy are involved, the joint density
function becomes the N-fold partial derivative of the N-dimensional distribu-
tion function: S

# Fyox...x, (xlt;vzs----st)
fX: .Xz-—--vXN(xz‘ Xyyoona XN) = 1 5361 3.:2 Oy “.3-3)
By direct integration this result is equivalent to
Fy, .Xz,....xﬂ(xls X2y een s Xy)
XN R I |
=[" [ St bt a3
- -0 J—00

Properties of the Joint Density

Several properties of a joint density function may be listed that derive from its
definition (4.3-1) and the properties (4.2-6) of the joint distribution function:

1) ferlxy)=0 (4.3-5a)
@ [ [ satenasa=1 @3-59)
@ Fren=|[ [ frrte s (4350
@ Fyo)= J_; J:fx.y(sl, &) di d; (3.3-54)

Fy(y) = JJ_A Jlfx.y(&. &) dfy c{&'z (4.3-5¢)
©) Pl <X Sy <¥<y)= E Efx.y(x, Pdxdy @35
© £0=|" frrnd @359

0= fertmnas (4.3-59)

Properties ]iand 2 may be used as sufficient tests to determine if some function
can be a valid density function. Both tests must be satisfied (Papoulis, 1965,
p.169).

LA g i

LA ot

Eiy

E
i
®
&
5,
%
)
&

EXAMPLE 4.3-1. Suppose b is a positive constant and we test the function

_JBe*cos(y) 0<x<2and0<y=<xf2
&)= {0 ail other x and y

to see if it can be wvalid probability density function. For the allowed
values of x and y the function is not negative and satisfies (4.3-54). The
final test is (4.3-5b)

fr o2 o2 w2 .
J J be " cos(yydxdy = bJ--e—"‘de cos(y) dy
o Jo 0 0

T =bl-eH=1
Thus, to be valid & = 1/[1 — exp(—2)] is necessary.

The first five of the above properties are readily verified from earlier work,
and the reader should go through the necessary logic as an exercise. Property 6
introduces a new concept.

Marginal Density Functions

The functions fy(x) and fy(y) of property 6 are called marginal probability
density functions or just marginal density functions. They are the density func-
tions of the single variables X and ¥ and are defined as the derivatives of the
marginal distribution functions:

_ dFy(x)
fxx)= — (4.3-6)
(= dF;JEy ) 43-7)

By substituting (4.3-5d) and (4.3-5¢) into (4.3-6) and (4.3-7), respectively, we
are able to verify the equations of property 6.

We shall illustrate the calculation of marginal density functions from a
given joint density function with an example.

EXAMPLE 43.2. We find fy(x) and fy(») when the joint density function is
given by (Clarke and Disney, 1970, p. 108):

Sx.y(x, ) = ulx)u( y)xe"‘(-"*‘)

From (4.3-5é) and the above equation:

(=]

) = J.:ou(.vc)xe"‘(er Dy = u(x)xe“’Jo e dy

= (X (1/x) = u(x)e™

after using an integral from Appendix C.

115

CHAPTER 4:
Multiple Random
Variables




116
Probability,

Random Variables,

and Random
Signal Principles

From (4.3-5h):
® - u(y)
( )=J u(P)xe I gy = 22
fY hg o (}’ (y+ 1)2
after using another integral from Appendix C.

For N random variables X7, X», ..., Xy, the k-dimensional marginal den-
sity function is defined as the k-fold partial derivative of the k-dimensiondl
marginal distribution function. It can also be found from the joint density
function by integrating out all variables except the k variables of interest
X;,Xz,...,XkZ

Sroxn 2 (60 X2, 00 5

oo o0
= J - J Sxo . XXl X2y o XN AX 1 Xy - - Xy (4.3-8)
00

44
CONDITIONAL DISTRIBUTION AND DENSITY

In Section 2.6, the conditional distribution function of a random variable X,

" given some event B, was defined as

F(x|B) = P{X < x|B} = %ﬁ

4.4-1)
for any event B with nonzero probability. The corresponding conditional
density function was defined through the derivative

Sty = D) (442)

In this section these two functions are extended to include a second random
variable through suitable definitions of event B.

Conditional Distribution and Density—Point Conditioning

Often in practical problems we are interested in the distribution function of
one random variable X conditioned by the fact that a second random variable
¥ has some specific value p. This is called point conditioning, and we can
handle such problems by defining event B by
B={y—Ay< ¥ <y+ Ay} (4.4-3)

where Ay is a small quantity that we eventually let approach 0. For this':eveut,
(4.4-1) can be written S

y+Ay rx
J J Jer(Er. 62} dE dE
Fe@ly - Ay < ¥ =y Ay)=2028r w0 _ (4.4-4)

Ay
j f(®) dt

y-Ay

. where we have used (4.3-5/) and (2.3-6d).

Consider two cases of (4.4-4). In the first case, assume X and Y are both
discrete random variables with valees x;, i=1,2,..., N, and p;, j=1,2,
..., M, respectively, while the probabilities of these values are denoted P(x;)
and P(yy), respectively. The probability of the joint occurrence of x; and y; is
denoted P(x;, y;). Thus,

M
fr) =2 P38y -y} (4.4-5)
=1
JN M
Sry@® ) =33 P, ) 80x — x)8(y — ) (4.4-6)

=1 j=1

Now suppose that the specific value of y of interest is y;. With substitution of
(4.4-5) and (4.4-6) into (4.4-4) and allowing Ay — 0, we obtain

X\ PG i)
FrxlY=p)= Y —"Zulx—x 4.4.7
X i) ; o) (x — x;) 447
After differentiation we have
N
P(x,, 1
S Y =p) = %f)ﬁ 8(x — x) (4.4-8)

=]

EXAMPLE 4.4-1. To Hlustrate the use of (4.4-8) assume a joint density fune-
tion as given in Figure 4.4-la. Here P(xy, ;) = £, P(xy, ) =%, etc.
Since P(y3) =G + (%) =% use of (4.4-8) will give fy(x|¥ = ;) as
shown in Figure 4.4-15. .

The second case of (4.4-4) that is of interest corresponds to X and ¥ both
continuous random variables. As Ay — ( the denominator in (4.4-4) becomes
0. However, we can still show that the conditional density fy(x|¥ = 3) may
exist. If Ay is very small, (4.4-4) can be written as

J FevlE ) dg 28y

e O (4.4-9)

Fy(xly—Ay <Y 2y+Ap) = Ay
Y

and, in the limit as Ay — 0

J Sx.r(& yyds
Fy(d¥Y = p) =2

> e (4.4-10)
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Jerle )

Selxl¥=y3)

FIGURE 4.4-1
A joint density function {a) and a conditional density function (b} applicable to

Example 4.4-1.

for every y such that fy( y) # 0. After differentiation of both sides of (4.4-10)
with respect to x:

fx Y(x »

When there is no confusion as to meaning, we shall often write (4.4-1 1) as

fX Y(x’y) 4‘4_12
Sx(xly)= ) ( )
It can also be shown that
fX Y(x y) 4_4_13
Friph) =L (4.413)

EXAMPLE 442 We find fy(y|x) for the density functions defined in
Example 4.3-1. Since
Fr.r(x, ¥) = u(x)u(y)xe ™0+
and
Sy = u(x)e™

are nonzero only for 0 < y and 0 < x, fy( y|x) is nonzero only for 0 <y
and 0 < x. Tt is

Fr(31%) = u(x)u(y)xe ™
from (4.4-13).

*Conditional Distribution and Density—Interval Conditioning

It is sometimes convenient to define event B in {4.4-1) and (4.4-2) in terms of a
random variable ¥ by

B={y, <Y =y} (4.4-14)

where y, and y, are real numbers and we assume P(B) = P{y, < ¥ < y;} £ 0.
With this definition it is readily shown that (4.4-1) and (4.4-2) become

Fy ylx ¥e) — Fxy(x. 32)
Fy{yp) — Fy(ya)

J”: J;f vy (& p)dEdy
= rbj S ) dedy (“44-15)

'a

Fy(xly, < Y 2 ) =

and

[ frrtnay
Felya < ¥ < 3) =t (4.4-16)
[*] sertsnyasar

a

These last two expressions hold for X and Y either continuous or discrete
random variables. In the discrete case, the joint density is given by (4.3-2). The
resulting distribution and density will be defined, however, only for y, and y,
such that the denominators of (4.4-15) and (4.4-16) are nonzero. This require-
ment is satisfied so long as the interval y, < y < y, spans at least one possible
value of ¥ having a nonzero probability of occarrence.

An example will serve to illustrate the application of (4.4-16) when X and
¥ are continuous random variables.
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EXAMPLE 4.4-3. We use (4.4-16) to find fy{(x]¥ < y) for the joint density
function of Example 4.3-1. Since we have here defined B = {Y < y}, then
¥, = —oo and y, = y. Furthermore, since fy y(x, y) is nonzero only for
0 < x and 0 < y, we need only consider this region of x and y in finding
the conditional density function. The denominator of (4.4-16) can be
written as [¥_ fy(¢)d&. By using results from Example 4.3-1:

y P ou©dE [ dE
J_mfy(e)dg—j_m@ H)z—jo y>0

GE+17 y+l

and zero for y < 0, after using an integral from Appendix C. The numera-
tor of (4.4-16) becomes

J.y fX.Y(x. B dE = JJ‘ u(x)xe“"(f*")dg
—oo o

= u(x)xe”" r et dt
0

=ux)e(1—e) y>0

and zero for y < 0, after using another integral from Appendix C. Thus
fx=Y = 9) = ux)u(y) (yyj) e (1—e™)

This function is plotted in Figure 4.4-2 for several values of y.

F=Y <3}

FIGURE 4.4-2
Conditional probability density functions applicable to Example 4.4-3.

4.5
STATISTICAL INDEPENDENCE

It will be recalled from (1.5-3) that two events A4 and B are statistically inde-
pendent if (and only if)

P(ANB)=PAYP(B) (4.5-1)

This condition can be used to apply to two random variables X and ¥ by

defining the events 4 = {X < x} and B = {¥ < y} for two real numbers x and

y. Thus, X and Y are said to be statistically independent random variables if
{and only if)

PY <x, ¥ =y} =PX =x}P{Y <y} 4.5-2)

From this expression and the definitions of distribution functions, it
follows that

Fy y(x.3) = Fx(x)Fy(y) (4.5-3)
if ¥ and ¥ are independent. From the definitions of density functions, (4.5-3)
gives

JFx v ¥) = (W r(9) (4.549
by differentiation, if X" and Y are independent, Either (4.5-3) or (4.5-4) may
serve as a sufficient definition of, or test for, independence of two random
variables.

The form of the conditional distribution function for independent events
is found by uvse of (4.4-1) with B={Y <y}

PIX=x, ¥ 2y} Fry(ry)

F Y < = = 4.5'5
WAV =N="27 5 T RG) @39

By substituting (4.5-3) into (4.5-5), we have
Fy(x]Y =)= Fx(x) (4.5-6)

In other words, the conditional distribution ceases to be conditional and
simply equals the marginal distribution for independent random variables.
It can also be shown that

Fy(ylX =x) =Fy(y) 4.5-7)

Conditional density function forms, for independent X and Y, are found
by differentiation of (4.5-6) and (4.5-7):

F(X1Y =y} =fx(x) (4.5-8)
FrX = x)=1y(3) (4.59)

EXAMPLE 4.5-1. For the densities of Example 4.3-1:

) = MBI
Sy (3) = ulx)u( y)(}:__l)2 £fx r(x3)

Therefore, the random variables X and Y are not independent.
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EXAMPLE 4.5-2. The joint density of two random variables X and Y is

Jerxy) = 11—2 {x)ue( y)e—(-fl“)—(yﬂ)
We determine if X and ¥ are statistically independent, From (4.3-5g) and
(4.3-5i) :

fex)= J:(ll i2)u(X)£’_x" e dy = (1/Du(x)e ™

S = J:o(ll 12)u( ye e dx = (1/3)u()e P

Since fy(x)fy(¥) =fx.y(x,y), then X and Y are independent.

In the more general study of the statistical independence of N random
variables X1, X5, ..., Xy, we define events A4; by

Ai={X;<x} i=12...,N (4.5-10)

where the x; are real numbers. With these definitions, the random variables X;
are said to be statistically independent if (1.5-6) is satisfied.

It can be shown that if X7, X3, ..., Xy are statistically independent then
any group of these random variables is independent of any other group.
Furthermore, a function of any group is independent of any function of
any other group of the random variables. For example, with N = 4 random
variables: X is independent of X3 + X5 + X7; Xj is independent of X, 4+ X,
etc. (see Papoulis, 1965, p. 238).

4.6
DISTRIBUTION AND DENSITY OF A SUM OF RANDOM
VARTABLES

The problem of finding the distribution and density functions for a sum of
statistically independent random variables is considered in this section.

Sum of Two Random Variables
Let W be a random variable equal to the sum of two independent random
variables X and ¥

W=X4+Y (4.6-1)

This is a very practical problem because X" might represent a random signal

voltage and Y could represent random noise at some instant in time. The sum

W would represent a signal-plus-noise voltage available to some receiver.
The probability distribution function we seek is defined by

Fyp(w)=P{W <w}=P{X+Y <w) (4.6-2)

L i
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FIGURE 4.6-1
Region in xy plane where x +y < w.

Figure 4.6-1 illustrates the region in the xy plane where x + y < w. Now from
{4.3-5f), the probability corresponding to an eclemental area dx dy in the xy
plane located at the point (x, y) is fy y{x, ¥)dxdy. If we sum all such prob-
abilities over the region where x + y < w we will obtain Fy(w). Thus

e 463

00 JX=—00

and, after using (4.5-4):

o0 =y '
Fiy(w) = J_ £) j Sx()didy (4.6-4)

x=—0od

By differentiating (4.6-4), using Leibniz’s rule, we get the desired density
function :

firli0) = J FrM o=y dy 4.6-5)

This expression is recognized as a convolution integral. Consequently, we
have shown that the density function of the sum of two statistically independent
random variables is the convolution of their individual density functions.

EXAMPLE 4.6-1. We use (4.6-5) to find the density of W = X + ¥ where the
densities of X and ¥ are assumed to be .

Sl = 2 lulx) — il — )

Sr() = 4(3) ~ uly ~ B)

with 0 < a < b, as shown in Figure 4.6-2a and b. Now because 0 < X and
0 < ¥, we only need examine the case W =X + ¥ > 0. From (4.6-5) we
write )
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FIGURE 4.6-2
Two density functions (a) and (&) and their convolution {c).

St = 20) =ty = e = ) — e —y — Ay
C =] 0= Bt — ) — -y - ey
= 51-5 Uo u(w— P dy — -Io u(w —y—a)dy

- J:ou(y — byu(w — yydy + j:ou(y —bulw—y—a) dy]

All these integrands are unity; the values of the integrals are determined
by the unit-step functions through their control over limits of integration.
After straightforward evaluation we get

w/ab O<w<a

e Cazw=<b
Swlw)= {(a+b—w)fab bxw<a+b
0 w>a+b

which is sketched in Figure 4.6-2¢.

*Sum of Several Random Variables

When the sum Y of N independent random variables X7, X5, ..., Xy is to be
considered, we may extend the above analysis for two random variables. Let
Yy =X+ X;. Then we know from the preceding work that fy (y) =
Sy, (x2)  fy, (x1).T Next, we know that X3 will be independent of ¥y = X
X, because Xj is independent of both X; and X;. Thus, by applying (4.6-5) to
the two variables X, and ¥ to find the density function of Y5 = X5+ ¥, we
get

£ Y;=X,+X2+X;(y2) :fxs(x."») *f; Y|=X|+Xz(yl)
= f, (%3) % fr (32) * fx, (1) (4.6-6)

By continuing the process we find that the density functionof ¥ = X7+ X +
- - -+ X is the (W — 1)-fold convolution of the & individual density functions:

Jr(¥) =T, (en) =y Gen) - - % S, () (4.6-7)

The distribution function of ¥ is found from the integral of fy(y) using
(2.3-6¢).

Another method using characteristic functions can also be employed to
find the density function of a sum of random variables. A discussion of the
method is given in Section 5.2 for statistically independent random variables.

*4.7
CENTRAL LIMIT THEOREM

Broadly defined, the central limit theorem says that the probability distribution
function of the sum of a large number of random variables approaches a
gaussian distribution. Although the theorem is known to apply to some
cases of stafistically dependent random variables (Crameér, 1946, p. 219),
most applications, and the largest body of knowledge, are directed toward
statistically independent random variables. Thus, in all succeeding discussions
we assume statistically independent random variables.

*Unequal Distributions

Let X; and oﬁri be the means and variances, respectively, of N random vari-
ables X;, i = 1,2,..., N, which may have arbitrary probability densities. The
central limit theorem states that the sum Yy = X, + X3 + - -- + X}, which has
mean Yy =X+ X;+--- Xy and varianceozyh_ =a};l +a}rz+- .- +a'§vw, hasa
probability distribution that asymptotically approaches gaussian as ¥ — oo.
Necessary conditions for the theorem’s validity are difficult to state, but suffi-
cient conditions are known to be (Cramér, 1946; Thomas, 1969)

4The asterisk denoles convolution.

n".'
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i=1,2,...,N (4.7-1a)
i=1,2,....N (4.7-1b)

O%’J > B >0
ENX; — X'l < B

where B, and B, are positive numbers. These conditions gunarantee that no one
random variable in the sum dominates. :

The reader should observe that the central limit theorem guarantees only
that the distribution of the sum of random variables becomes gaussian. It.does
not follow that the probability density is always gaussian. For continuous
random variables there is usually no problem, but certain conditions imposed
on the individual random variables (Cramér, 1946; Papoulis, 1965 and 1984)
will guarantee that the density is gaussian.

For discrete random variables X; the sum Yy will also be discrete so its
density will contain impulses and is, therefore, not gaussian, even though the
distribution, approaches gaussian. When the possible discrete values of each
random variable are kb, k =0, 1, £2, ..., with b a constant,} the envelope
of the impulses in the density of the sum will be gaussian (with mean Yy and
variance olyﬂ). This case is discussed in some detail by Papoulis (1965).

The practical usefulness of the central limit theorem does not reside so
much in the exactness of the gaussian distribution for N — oo because the
variance of Y, becomes infinite from (4.7-1a). Usefulness derives more from
the fact that ¥y for finite N may have a distribution that is closely approxi-
mated as gaussian. The approximation can be guite accurate, even for rela-
tively small values of N, in the central region of the gaussian curve near the
mean. However, the approximation can be very inaccurate in the tail regions
away from the mean, even for large values of N (Davenport, 1970; Melsa and
Sage, 1973). Of course, the approximation is made more accurate by increas-
ing N.

*Equal Distributions

If all of the statistically independent random variables being summed are
continuous and have the same distribution function, and therefore the same
density, the proof of the central limit theorem is relatively straightforward and
is next developed.

Because the sum Yy = X, + X3 +---+ Xy has an infinite variance as
N — o0, we shall work with the zero-mean, unit-variance random variable

N _ N 12
Wy =Yy — Tn)foy, = 3 _(Xi— X)) / [Z oi]
f: i=l

i=1

N
= JNlo’X Z(‘Xl - ‘f) 7 (4'7-2)

i=1

{These are calied latfice-type discrete random variables (Papoulis, 1965).

~

instead. Here we define X and o% by 127
X=X ali '(4.7-3) CHATER4:
2 2 . Multiple Random
X, = 9% all i - (4.7-4) Variables
since all the X; have the same distribution.
’{'he theorem’s proof consis}s of showing that the characteristic function of
Wy is that of a zero-mean, unit-variance gaussian random variable, which is
Oy, (w) = exp(—e’/2) (4.7-5)
from Problem 3.3-2. If this is proved the density of Wy, must be gaussian from
(3.3—3.) and the fact that Fourier transforms are unique. The characteristic
function of Wy is
& ( ) E| ej Hy j u
w, (@) = E[e/¥¥] = E| ex X;— X
w by ;j( =X ]
b : N
- Jw 7 )
= E{ex Xi— -
?{efer] 00 0] w19

The last step in (4.7-6) follows from the independence and equal distribution

of_' the X;. Ne.axt, the exponential in (4.7-6} is expanded in a Taylor polynomial
with a remainder term Ry/N: i

#fool gy -]

el (2 N _ o (42 Y Xi—XP Ry
[ * (\/17‘7,\’)(){t O+ (‘\/NO'X) 2 +T
=1—(*/2N) + E[Ry)/N 4.7-7)

WE’[CR? E[Ry] approf'iches zero as N —» oo (Davenport, 1970, p. 442). On sub-
stitution of (4.7-7) into (4.7-6) and forming the natural logarithm, we have

In[@ ()] = N In{l — (&*/2N) + E[Ry]/ N} 4.7-8)
Since
1n(1—z)=—[z+£22-+§~+-“] lzt < 1 4.7-9)
we identify z with (&?/2N) — E[fRy]/N and write (4.7-8) as
In[®y, (@)] = ~(@*/2) + E[Ry] — % [% _E [ﬁ“’]}: . (4.7-10)
S0
Jim (In[@, @) = 1n{Nu_{%o CDWN(m)} =—w?/2 @.7-11)
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Finally, we have
lim @y (w) = 2 4.7-12)
N—=o0o ‘

which was to be shown.
We iliustrate the use of the central limit theorem through an example.

EXAMPLE 4.7-1. Consider the sum of just two independent uniformly dis-
tributed random variables X; and X, having the same density

S = 2 — (s — )

where a > 0 is a constant. The means and variances of X;and Xz are X =
a/2and 0% = a2/ 12, respectively. The density of the sum W = X} + X3 is
available from Example 4.6-1 (with b = a):

flow) = i(%)
where the function tri(-) is deﬁned in (E-4). The gaussian approximation
to W has variance o3y = 20% = ¢°/6 and mean W = 2(a/2) = a:
o~ Ur=aP 1 13)

7(a*/3)

Figure 4.7-1 illustrates fj-(w) and its gaussian approximation. Even for
the case of only two random variables being summed the gaussian
approximation is a fairly good one. For other densities the approximation
may be very poor (sce Problem 4.7-1).

Approximation to fi(w) =

Gaussian approximation

3 (v alHa™)
\[;e( )’1(')

151 afp(w)

]
0 a 2a w

FIGURE 4.7-1 _ .
The triangular density function of Example 4.7-1 and its gaussian approximation.

LoAw e e

%

4.8
SUMMARY

One random variable is inadequate to represent many practical problems, The
theory of multiple random variables is needed and was developed in this
chapter. The main points covered were:

« Multiple (vector) random variables were defined and related through exam-
ples to real problems.

* The earlier concepts of joint den51ty and distribution fun¢tions, and their
properties, were extended to include several random variables.

+ Conditional density and distribution functlons were developed for several
random variables.

+ Multiple-variable statistical independence was developed.

+ Methods were given to find the distribution and density functions of two or
more statistically independent random variables. For some cases the pro-
blem can be approximated by the central limit theorem, which is developed
in some detail.

This chapter consisted mainly of the extension of the one-variable theory
of Chapter 2 to the multiple-random-variable case. The next logical step is to
extend the one-variable operations of Chapter 3 fo cover several random
variables. This extension follows in the next chapter.

PROBLEMS

4.1-1. Two events 4 and B defined on a sample space S are related to a joint sample
space through random variables X and ¥ and are defined by 4 = {X < x} and
B={y < ¥ =< ). Make a sketch of the two sample spaces showing areas
corresponding to both events and the event ANB=[X <z, < ¥ < p,).

4.1-2. Work Problem 4.1-1 for the two events 4=
m=<¥Y=ph

1 <X =x} and B=

4.1-3. Work Problem 4.1-1 for the two events 4 =
and B={y < ¥ < p}.

X <Xsxorxy<¥ <x)

4.1-4. Three events A, B, and C satisfy C C BC 4 and are defined by 4 =
Xsxu, Y2y}, B=X<x, Y2 3), and C={X <x, ¥ <y} for two
random variables X and Y,

(a) Sketch the two sample spaces S and S and show the regions cgrrespond-
ing to the three events.
(¥) What region corresponds to the event AN BN C?

. In a gambling game two fair dice are tossed and the sum of the numbers that
show up determings who wins among two players. Random variables X and ¥
represent the winnings of the first and second numbered players, respectively.
The first wins $3 if the sum is 4, 5, or 6, and loses $2 if the sum is 1} or 12; he
neither wins nor loses for all other sums. The second player wins $2 for a sum
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4.1-6.

4.2-1.

4.2-2.

4.2.3.

4.2-4.

4.2.5.

4.2-6.

4.279.

4.2-8.

of 8 or more, loses $3 for a sum of 5 or less, and neither wins nor loses for

other sums.

(@) Draw sample spaces § and S; and show how elements of § map to
elements of S;.

(b) Find the probabilities of all joint outcomes possible in §;.

Sketch the joint sample space for two random variables X and ¥ and define
the regions that correspond to the events A = {¥ < 2X}, B={X <4}, and
C ={¥ > —2). Indicate the region defined by ANEBNC.

A joint sample space for two random variables X and ¥ has four elements
1, 1),(2,2), (3, 3), and (4, 4). Probabilities of these elements are 0.1, 0.35, 0.05,
and 0.5, respectively.

(@) Determine through logic and sketch the distribution function Fy y(x, y).
(%) Find the probability of the event {1 < 2.5, ¥ < 6}.

{c) Find the probability of the event {X < 3).

Write a mathematical equation for Fy, y(x,y) of Problem 4.2-1.

The joint distribution function for two random variables X and ¥ is
Fyy(x.3) = u(uON1 — e — ™ 479
where u(-) is the unit-step function and a > 0. Sketch Fy y(x, ).

By use of the joint distribution function in Problem 4.2-3, and assuming ¢ =
0.5 in each case, find the probabilities:

(a) PIX <1, ¥ <2}

&) PIOS <X <15} )

(€) Pl-15<X <21 <Y =<3}

Find and sketch the marginal distribution functions for the joint distribution
function of Problem 4.2-1.

Find and sketch the marginal distribution functions for the joint distribution
function of Problem 4.2-3. - . -

Given the function

Gy y(x. 3 = 1)1 — o)

Show that this function satisfies the first four properties of (4.2-6) but fails the
fifth one. The function is therefore not a valid joint probability distribution
function.

Random variables X and ¥ are components of a two-dimensional random
vector and have a joint distribution

0 x<0 or y<0

Xy 0=x<l and 0<y=<l
Frylx, ) =19 x% 0=zx<l and 1<y
l=x and 0<y<l
l=<x and 1<y

—

Ve e e

PRl

4.2-9,

4.2-10.

4.2-11.

42-12,

4.2-13.

4.2-14.

4.2-15.

(@) Sketch Fy y(x,y).
(¥ Find and sketch the marginal distribution functions Fy(x} and Fy(y).

Show the function

x<y

1]
Gy r(x. )= [ 1 x>y

o
cannot be a valid joint distribution function. [Hins: Use (4.233').]

Discrete random variables X and Y have a joint distribution function

Fy p(x, ) = 0.10uf{x + 4)u(y — I} 4 0.15u{x 4 3)u( y -+ 5)
+0.17u(x + Dp(y — 3} + 0.05u(x)ul y — 1}
+ 0.180(x — Du(y + 2) + 0.23u(x — u(y — 4)
+0.12u(x — Ay +3)

"Find: (a) the marginal distributions Fy{x) and Fy(y) and sketch the two

functions, (b} X and Y, and (c) the probability P{—1 < X 54, —3 < ¥ < 3}.

Random variables X" and Y have the joint distribution
5(xgett o
Z(x—-i-l_e W) 0sxs4
Fryn9) =10 x<0ory<0
i 5
1+Ze_5-‘2—ze_”1 4<xand anyy >0

Find: (@) The marginal distribution functions of X and ¥, and (b) the prob-
ability P3 <X <5, 1< ¥ =2].

Find the joint distribution function of the random variables having the joint
density of Problem 4.3-16.

The function

Fyplx, ) = a[%+ tan™ (%)] [g + tan;l @)]

is a valid joint distribution function for random variables X and Y if the
constant 4 is chosen properly. What should be the value of o?

Work Problem 4.2-13, except assume the function

Fyylx, )= a[g + 5% + tan™ (%)]

v ()

Suppose that a pair of random numbers generated by a computer are repre-
sented as values of random vartables X and Y having the joint distribution
function :
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4.3-1.

4.3-2.

4.3-3.

4.34.

4.3-5.

4.3-6.

4.3-7.

4.3-9

[ 0 x<Qory<0

27 (. ot
Fr i Y
Fy,y(e.y) = %y(l —{—7)

27 X '
%"y(' "*"zT)

1 l<xand 1<y

O=<x<landl=<y

l2sxand0=<y=<1

O0<x<land0=<y<l

{a) Determine the marginal distribution functions of X and Y.
{b) Find the probability of the event {0 < X <0.5,0 < Y <0.25}.

A fair coin is tossed twice. Define random variables by: X = “number of
heads on the first toss” and ¥ = “*number of heads on the second toss”
(note that ¥ and ¥ can have only the values 0 or 1).

() Find and sketch the joint density function of X and Y.

(b} Find and sketch the joint distribution function.

A joint probability density function is

1/ab D<x=a and

_ Qey<h
frylx )= [ 0 elsewhere
Find.and sketch Fy y(x, ¥).

If @ < b in Problem 4.3-2, find:
(@ PIX+ Y = 3a/d4} b)Y P{Y < 26X /o)

Find the joint distribution function applicable to Example 4.3-2.

Sketch the joint density function fy y(x, y) applicable to Prolem 4.2-1. Write
an equation for fy y(x, y). :

Determine the joint density and both marginal density functions for Problem
4.2-3.

Find and sketch the joint density function for the distribution function in
Problem 4.2-8.

. {¢) Find a constant b (in terms of &} so that the function
_ [ pet O<x<a and O<y<oo
Seren = { 0 elsewhere '

is a valid joint density function.
() Find an expression for the joint distribution function.

. (@) By use of the joint density function of Problem 4.3-8, find the marginal
density functions. :

R Y

b g gk

e AR i

ER LRI

3

[

54

4.3-10.

*4,3-11.

*4,3-12.

4.3-13.

4.3-14.

4.3-15.

(b) What is P{0.5¢ < X < 0.75q} in terms of @ and 5?

Determine a constant b such that each of the following are valid joint density
functions:

Inp Dex=<l and O<y<bh

[ elsewhere

@ feyle)= [

G Syl = [bx(l—y) 0<x <05 and Doyl
1] elsewhere
b 44 0

© JFerloy)= (o +45%) <lx| <1 and 0=y<2
1] clsewhere

Given the function

C N — (.\‘2+y2)/8rt xz-}-y2 < b
fo,y(-x,y ) [ 0 elsewhere

(a) Find a constant & so that this is a valid joint density function.
(%} Find P{0.5b < X%+ ¥* < 0.8h). (Hinr: Use polar coordinates in both
parts.)

On a firing range the coordinates of buliet strikes relative to the target bull’s-
eye are random variables X and Y having a joint density given by

g
X, ) =———
Sr vy el

Here o° is a constant related to the accuracy of manufacturing a gun’s barrel.
What value of o” will allow 80% of all bullets to fall inside a circle of diameter
6cm? (Hint: Use polar coordinates.)

Given the function

2
Srylxyy= [g(x+Y) 2<x<2 and

clsewhere

—3<y<3

(2) Find the constant & such that this is a valid joint density function.
(6} Determine the marginal density functions fy(x) and fy ().

Find a value of the constant & so that the function
Sx.r(x, p) = bxy® exp(~2xp)u(x — 2u(y ~ 1)
is a valid joint probability density,
The locations of hits of darts thrown at a round dartboard of radius r are

determined by a vector random variable with components X and ¥. The joint
density of X and ¥ is uniform, that is,

1 x2+_v2 <

0 elsewhere

Fr () = [

Find the densities of X and ¥.
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4.3-16.

4.3-17.

4.3-18.

4.3-19.

4.3-20.

4.3-21.

4.3-22.

4.3-23,

4.4-1.

4.4-2.

4.4-3.

4.4-4,

Two random variables X and Y have a joint density
Frre ) =1100) — ulx — () ¥ expl~(x + 1)y
Find the marginal densities and distributions of X and Y.

Find the marginal densitics of X and Y using the joint density
Sr.r(% 1) = 2u(xhu( ) exp[«»(a{.y + %)]

Random variables X and ¥ have the joint density of Problem 4.3-17. Find the
probability that the values of ¥ azre not greater than twice the values of X for
x=<3.

The joint density of two random variables X and ¥ is

S (33 = 0.18(x)8( ) + 0.128(x — 4)5(3)
+0.055(x)8(y — 1) + 0.258(x — 2)5(y — 1)
+0.35(x — 2)8( y — 3) + 0.188(x — H)a(y — 3)

Find and plot the marginal distributions of X and Y.

Assume a has the proper value in Problem 4.2-13 and determine the joint
density of X and Y. Find the marginal densities of X and ¥.

Work Problem 4.3-20 but assume the distribution of Problem 4.2-14.

(@) Find the joint probability density function for the computer-generated
numbers of Problem 4.2-15.

() Find the marginal densities of X and Y.

(¢) Find the probability of the event {¥ < 1 — X}..

The joint density function of random variables X and Y is

fry(x )= [%(%)[1 - (%)4(%’)3] ~b<x<bard0<y=<a

0 elsewhere
where a > 0 and b > 0 are constants, Find the marginal densities of X and Y.

Find the conditional density functions fy(xly,), fx(xly2), fr(ylx;), and
fr(¥lx;) for the joint density defined in Example 4.4-1.

Find the conditional density function fy(x|y) applicable to Example 4.4-2.

By using the results of Example 4.4-2, calculate the probability of the event
(Y <21¥=1}.

Find the conditional densities fy(x|Y = y) and fy (X = x) applicable to the
joint density of Problem 4.3-15.

7
R

4.4-5. For the joint density of Problem 4.3-16 determine the conditional densities
Jx(x|Y =y} and fr(y|X = x).

*4.4-6. The time it takes a person to drive to work is a random variable ¥. Because of
traffic, driving time depends on the (tandom) time of depérture, denoted X,
which occurs In an interval of duration Ty that begins at 7:30 Am. each day.
There is @ minimum driving time T; required, regardless of the time of depar-
ture, The joint density of X and ¥ is known to be

Srr( ) = ey = TPu(y — Tl — ulx ~ Tollexpl—(y — T))(x + 1)]

where

< i, Bt G L S Ak e

= (1+ TpP /21 + Ty — 1]

b () Find the average driving time that results when it is given that departure
ki .. occurs at 7:30 am. Evaluate your results for Ty = 1 h.

(&) Repeat part (g) given that departure time is 7:30 am. plus Ty,

(¢} What is the average time of departure if Ty = 1 h? (Hint: Note that point
# conditioning applies.)

*4,4-7, Start with the expressions

Fy(y1B)y= P{Y < y|B} =w- .
Fr(yiB) = %J"_m

which are analogous to (4.4-1) and (4.4-2), and derive Fy(y|x, < X < x;) and
fr(¥lx, < X < x;) which are analogous to (4.4-15) and (4.4-16).

distribution and density of random variables X and ¥, conditional on the

i *4.4-8. Extend the procedures of the text that lead to (4.4-16) to show that the joint
= event B={y, < ¥ < ), are

) 0 PESA
: Fy y{x, ¥) - Fx y(x. y2)
g 3 ey <
; Fryila<¥Ysm={" FOn-—Frlyy 2 <V=
_E Fyv(x yp) = Fxy(%¥a)
o <
: Fy(y5)— Fy(72) =y
and
0 Y=y, and  y>y
fX.Y(xv NWra<Y =2 p)= fX-Y(x’ » Va < Y

Fy(yp) — Fy(ya) 7

*4.4-9. Assume that transoceanic aircraft arrive at a random point x (value of random
variable X) within a strip of coastal region of width 10km centered on a small
city. Aircraft altitude at the time of arrival is not more than 25km and is a
random variable ¥. If X and ¥ have the joint density of Problem 4.3-23, find
the probability density of arrival altitude, given that aircraft arrive on one side
of the city. Repeat for arrivals on the other side of the city.
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4.5-1. Random variables X and Y ate joint gaussian and normalized if

1 x —2pxy+y2
Syl yy= /-2 ‘-’-XP[ 2= )

] where —1<p=1

{(2) Show that the marginal density functions are

fe) = ﬁ exp—/2)  fr)= 4% exp(—32/2)

(Hint: Complete the square and use the fact that the area under a gaussian
density is unity.)

(5 Arc X and ¥ statistically independent?
4.5-2, By use of the joint density of Problem 4.5-1, show that
a7
1 exp x pyg
V2a(1—pD 21— p9)
4,5-3. Given the joint distribution function

Fry(%,) = ()1 — ™™ — ™7 4]

XY =p=

find:
(@) The conditional density functions fy(x]Y¥ = y) and fy(y|X = x).
_(b) Are the random variables X and ¥ statistically independent?

4.5-4. For two independent random variables X and ¥ show that

Py sxi=|" R dx

or

o
Py =x=1-{" FOM0D
O3
4.5-5. Two random variables X and Y have a joint probability density function
2y b<y<x=<2

5
Jryay) = ‘ 6

0 elsewhere

{a) Find the marginal density functions of X and Y.
{b) Are X and Y statistically independent?

4.5-6. Determine if random variables ¥ and ¥ of Problem 4.4-6 are statistically
independent.

4.5-7. Determine if X and ¥ of Problem 4.3-17 are statlistically independent.

|~y s i

4.5-8.

4.59.

4.5-10.

4.6-1.

*4.6-2.

The joint density of four random variables X;,i=1,2,3, and 4, is

4
xyx00,00,20, 030 X20 X3, X4) = Hﬁxp(—zlxel)
i=1 :
Find densities
(@) Fx 0000 X2, x30%4)
&) S, x,(x1, X21x3, x4), and
(©) [, (x1|x2, x3, x4)

Assume that random variables X and Y have the joint density

2 (%
fx'y(x’y}___[kcos (ny) —l<x<land —1<y<l
. 0 elsewhere
where
__m?
“ism 0.315
and the sine integral is defined by
x s
Si(x) =J Sin®) e
0 £

{see Abramowitz and Stegun, 1964). By use of (4.54), determine whether X
and Y are statistically independent.

Random variables X and ¥ have the joint density

Fry(x y) = Fu(u( e -0
Find:
(@) PR<X=<d4,—1 <Y <5)and
@) Pl0<X <00,—00< ¥ 52}

Show, by use of (4.4-13), that the area under fy(p[x) is unity.

Two random variables R and @ have the joint density funetion

u(r)[u(d) — u(@ — 2m)r e

Jrolr,8) = o

(@) Find Pl0 < R=<1,0 < @ < n/2}.

(2] F@nde(r|® =n).

(¢} Find /z(+]® < ) and compare to the result found in part (5), and explain
the comparison.

. Random variables X and ¥ have respective density functions

S) = 210~ ~ )
Fr9) = b e

where a > 0 and b > 0. Find and sketch the density function of W = X + Y if
& and Y are statistically independent.
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4.64.

4.6-5.

4.6-6.

*4,6-7.

4.6-8.

469

4.6-10.

*4.6-11.

Random variables X and ¥ have respective density functions

Fi(x) = 0.18(x — 1) +0.280x — 2) + 0.48(x — 3) + 0.36(x ~ 4)
J¥(3) =048y —5)+0.58(y — 6) -+ 0.15(y — 7)

Find and sketch the density function of W =X + Y if X and Y are indepen-
dent.

Find and sketch the density function of W = X + ¥, where the random vari-
able X is that of Problem 4.6-3 with # = 5 and Y is that of Problem 4.6-4.
Assume X and ¥ are independent.

Find the density function of W = X - ¥, where the random variable X is that
of Problem 4.6-4 and ¥ is that-of Problem 4.6-3. Assume A and Y are inde-
pendent. Sketch the density function for b=1and b =4.

Three statistically independent random variables X;, X5, and X3 all have the
same density function

i .
Jx (e} = E[u(xi) — u{x; — a)] i=1273
Find and sketch the density function of ¥ = X; + X + X3 if @ > 0 is constant.
If the difference W = X — Y is formed instead of the sum in (4.6-1), develop
the probability density of W. Compare the result with (4.6-5). Is the density
still a convolution of the densities of X" and Y'? Discuss.

Statistically indepéndent random variables X and ¥ have respective densities

Felx) = [+ 12) — ulx — I2[1 — [x/120])/12
Sr(3) = (8u( ) exp(—r/4)
Find the probabilities of the events:
(@) {Y =8 —(21X1/3)), and (B} {¥ = 8+ (24X|/3)}
Compare the two results.

Statistically independent random variables X and ¥ have respective densities

Fy(x} = Su(x) exp(—5x)
Sr(¥) = 2 yyexp(=2y)

Find the density of the sum W =X +47Y.

N statistically independent random variables X;,i=1,2,..., N, all have the
same density

S 06) = aux) exp(—ax)

where @ > 0 is 2 constant. Find an expression for the density of the sum W=
X1 +Xp+---+ Xy forany N.

N e

PSR

L Eeiei

Lyt il o T T

s U o il

by i

*4.6-12,

4.6-13.

4.6-14.

*4.7-1.

*4.7-2.

*4.7-3.

*4.74,

Statistically independent random variables X and ¥ have probability densities
3
fr() = ﬁ[u(x +ay—ux—a)lx* a>=/2

1
Fr(9) =75 rect (F) costy)
Find the exact probability density of the sum W =X+ 7.

The probability density functions of two statistically independent random
variables X and ¥ are

() =R — )00
Sy =y -3 7
Find the probability density of the sum W =X+ Y.

Statistically independent random variables X and ¥ have probability densities

0

elsewhere in x
Se(D=1ulyp+ 1) —u(y 1)
Find the exact probability density of the sum W =X 4- Y.

Find the exact probability density for the sum of two statistically independent
random variables each having the density

Jr(x) = 3[u(x + @) ~ u(x — a)]* /22

}vhcre a > 0 is a constant. Plot the density along with_the gaussian approx-
imation (to the density of the sum) that has variance 20% and mean 2.¥. Is the
approximation & good one?

Work Problem 4.7-1 except assume
Sx(x) = (1/2) cos(x) rect (x/x)

Three statistically independent random variables X}, X3, and X; are defined by

¥i=-1 o% =20
X, =06 of=15
Xy=18 of =08

Write_ the equaticn describing the gaussian apprOXimation for the density
function of the sum & = X + X, + X3. (Hint: Refer to the text on the central
limit theorem.)

Two statistically independent random variables X; and X, have the same
probability density given by

St ={ 35

for i =1 and 2, where g > 0 is a constant.

O=x<a
elsewhere in x;
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140 (#) Find the exact density of the sum W = X, + X, ) o
(b)) Compute the mean and variance of W and find a gaussian approximation

El;m'b;blhtg; sables. for the density of W having the computed mean and variance. CHAPTER §
a:él l{)amn d omna ’ (¢) Plot the density of ¥ and the gaussian approximation to see the accuracy

Signal Principles of the approximation.

Operations on Multiple Random Variables

*4.7-5. The probability density functions of statistically independent random
variables X and Y are '

2x D<x<a -
sg={a OEYE
B ¢ elsewhere in x =2

e = bul)e™

where @ > 0 and 5> 0 are constants.

(@) Find the probability density function of the sum W =X +7Y.

(/) Find a gaussian approximation for W that has the same mean and
variance as W. z

(c) Plot the approximation and the density of W for products ab=1/2, i,
and 2.

5.0

INTRODUCTION

After establishing some of the basic theory of several randomn variables in
the previous chapter, it is appropriate to now extend the operations
g described in Chapter 3 to include multiple random variables. This chapter
is dedicated to these extensions. Mainly, the concept of efpectation is
enlarged to include two or more random variables. Other operatiohs invol-
: ving moments, characteristic functions, and transformations are all special
E applications of expectation.

5.1
EXPECTED VALUE OF A FUNCTION OF RANDOM VARTABLES

When more than a single random variable is involved, expectation must be
taken with respect to all the variables involved. For example, if g(X, ¥) is
some function of two random variables X and ¥ the expected value of g{-, -) is
given by

§= Efg(x, 7)] = Jm jw g eyl Ddedy  (5.1-1)

—03J —00

This expression is the two-variable extension of (3.1-6).
.. For N randem variables X, X, ..., Xy and some function of these vari-
ables, denoted g(X1, ..., Xy), the expected value of the function becomes
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g=Eg(X,.... Xy
=J°° ...j g(xl, ...,xN)fxl____‘X_v(x,, ....xN)dxl ...de

-0 —od

(5.1-2)

Thus, expectation in general involves an N-fold integration when N random
variables are involved. It should be clear to the reader from (5.1-2) that the
expected value of a sum of fumctions is equal to the sum of the expected values
of the individual functions.

We illustrate the application of (5.1-2) with an example that will develop

an imporiant point.

EXAMPLE 5.1-1. We shall find the mean {expected) value of a sum of N
weighted random variables. If we let

N
X Xy =Y X,
=1

where the “weights™ are the constants o, the mean value of the weighted
sum becomes

: N
Elg(Xy, ..., Xy) = E[Z a.-X,]

=1

N oo o
=EJ J X fxy @00 <oy XN dXp L dXy

=] ¥ —oa

from (5.1-2). After using (4.3-8), the terms in the sum all reduce to the
form

Jm s fi (e by = Bl 7] = e E1X,]

50

N N
E[Z a,—Xi] =3 uElX]
i=I i=1

o which says that the mean value of a weighted sum of random variables
| equals the weighted sum of mean values.

The above extensions (5.1-1) and (5.1-2) of expectation do not invalidate
any of our single random variable results. For example, let

2(X1. ..., Xx) = g(Xy)

and substitute into (5.1-2), After integrating with respect to all random vari-
ables except X, (5.1-2) becomes

(5.1-3)

& = Elg(x))] = jm £0e) fr () vy (5.14)

—00

which is the same as previously given in (3.1-6) for one random variable. Some
reflection on the reader’s part will verify that (5.1-4) also validates such earlier
topics as moments, central moments, characteristic function, etc., for a single
random variable.

Joint Moments about the Origin

One important application of (5.1-1) is in defining joint moments about the
origin. They are denoted by m,,. are are defined by

ma= B = [ [ o fratndedy

for the case of two random vanables X and Y. Clearly s, = E[X"] are the
moments nt, of X, while s = E[¥*] are the moments of Y. The sum » 4 k is
called the order of the moments. Thus ry,, iy, and ry) are all second-order
moments of X and ¥. The first-order moments niy; = E[Y] = ¥ and myg =
E{X] =X are the expected values of ¥ and X, respectively, and are the co-
ordinates of the “center of gravity” of the function fy y(x, y). -

The second-order moment n1); = E[X¥]1is called the correlation of X and
Y. It is so important to later work that we give it the symbol Ryy. Hence,

(5.1-5)

o (=]
Ryy =myy =E[XYJ=J J xyfx,y(x, yydx dy {5.1-6)
—00d =0
If correlation can be written in the form
Ryy = EIX]1E[Y] (>.1-7)

then X and ¥ are said to be wncorrelated. Statistical independence of X and ¥
is sufficient to guarantee they are uncorrelated, as is readily proven by (5.1-6)
using (4.5-4). The converse of this statement, that is, that X" and Y are inde-
pendent if X and ¥ are uncorrelated, is not necessarily true in general.T

if

Ryy=0

for two random variables X and ¥, they are called orthogonal.
A simple example is next developed that illustrates the important new
topic of correlation.

(5.1-8)

EXAMPLE 5.1-2. Let X be a random variable that has a mean value ¥ =
E[X]=13 and variance o3 =2. From (3. 2—6) we easil detern‘une the
second moment of X about the origin: E[X?] = iy = o5 + X2 =11.

© Next, let another random variable ¥ be defined by

Y=-6X+22

TUncufrelaled gaussian tandom variables are, however, known to also be independent (see Section
5.3).
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The mean value of ¥ is ¥ = E[¥] = E[-6X +22] = —6X +22 =4. The
correlation of X and Y is found from (5.1-6)

Ryy =my = E[X¥] = E[—6X2 +22X%] =
=—6(11)422(3) =

Since Ryy =0, X and Y are orthogonal from (5.1 8) On the other hand
Ryy # E[X]E[Y] = 12, so X and Y are nof uncorrelated [see (5.1-7)].

We note that two random variables can be orthogonal even though
correlated when one, Y, is related to the other, X, by the linear finction
Y =aX +b. It can be shown that X and Y are always correlated if
|a| # 0, regardless of the value of b (see Problem 5.1-9). They are un-
correlated if @ =10, but this is not a case of much practical interest.
Orthogonahty can likewise be shown to occur when # and b are related
by b = —aFE[X?)/E{X] whenever £[X] # 0. If E[X] =0, X and Y cannot
be orthogonal for any value of @ except @ = 0, 2 noninteresting problem.
The reader may wish to verify these statements as an exercise,

Xy, the (n +n3+--- + ny)-order

—6E[X"] 22X

For N random variables Xj, X5,....
joint moments are defined by

Myg.ng = EIX{“X;: .- 'X;'N]

-] =]
:J ...J X{“ X”fol _____ XN(xI,...,xN)dxl...de

-0

(5.1-9)

where ny, ny, ..., Hy are all integers =0,1,2,....

Joint Central Moments

Another important application of (5.1-1) is in defining joint central moments.
For two random variables X and ¥, these moments, denoted by ., are given
by

ke = E (X X )"(Y Y)k]

o _ (5.1-10)
=" |7 =20t - Dert ey
The second-order central moments
pio = E[(X — X)] = 0% (5:1-11)
po = E[(Y — YY) =0} (5.1-12)

are just the variances of X and Y.
The second-order joint moment wy; is very important. It is called the
covariance of X and Y and is given the symbol Cyy. Hence

Ciry = w1 = EX — )Y — F)]
= [ c-Do-Drenday G

—oird —

A R oy

By direct expansion of the product (x — X)(y — ¥, this integral reduces to the
form
Cxy = Ryy — X¥ = Ryy — E[X]E[Y] (5.1-14)

when (5.1-6) is nsed. If X" and Y are cither independent or uncorrelated, then
(5.1-7) applies and (5.1-14) shows their covariance is zero:

Cyy =10 X and Y independent or uncorrelated (5.1-15)
If X and Y are orthogonal random variables, then
Cyy = —E[X]E[Y] X and Y orthogonal (5.1-16)

from use of (5.1-8) with (5.1-14). Clearly, Cyy = 0.if either X or ¥ also has
zero mean value, ‘
The normalized second-order moment

P = py/fouke = Cyr/oxoy {5.1-17a)
given by
- E[M M] (5.1-178)
Iy Gy

is known as the correlation coefficient of X and Y. It can be shown (see
Problem 5.1-10) that

—1<p<l (5.1-18)
For N random variables X, X5,..., Xy the (i +ny + - -- + np)-order
joint central moment is defined by
Hagms.np = B — XY (X2 — X)2 .. (X — Xn)™]
o 00 _
=-[ ...J (.Y]‘*X])"'...
- J-e0

(XN—XN)NNfXI ..... XN(x;,...,xN)dx|...xN (5.1-]9)

An example is next developed that involves the use of covariances.

EXAMPLE 5.1-3. Again let X be a weighted sum of ¥ random variables Xj;
that is, let

N
X=) aX
i=1

where the «; are real weighting constants, The variance of X will be
found. From Example 5.1-1,

N N
ElX]=) aflX)=) aX;=X
=1 i=1
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s0 we have
- N —
X-X=3 oX;—X)
i=1

and

N N :
ok = E[(X — X)'1= E[Z (X — %)Y ey — X;—)]
' =l . i=l
N N N
> ey ElX; — X)(X 1= 2 emCyy,
j=1 =1 j=1

Thus, the variance of a weighted sum of N random variables X; (weights
;) equals the weighted sum of all their covariances Cy, x, (weights oic0;).
For the special case of uncorrelated random variables, Where

i#j
CX’X"=[0§4 i=j

Mz

i
1

i:

is true, we get

N
=Y i,

=1
In words: the variance of a weighted sum of uncorrelated random variables
{weights o;) equals the weighted sum of the variances of the random vari-
ables (weights o).

*5.2
JOINT CHARACTERISTIC FUNCTIONS

The joint characteristic function of two random variables X and Y is defined
by

Dy y(o), wp) = E[e/ ¥ 2T (5.2-1)
where @, and a» are real numbers. An equivalent form is
(=]
by, yleor, @) =J J T y(x, el dx dy (52-2)
—00.

This expression is recognized as the two-dimcnsional Fourier transform (with
signs of e and w, reversed) of the joint density function. From the inverse
Fourier transform we also have

00 o R N i
j Dy y(w), en)e VY doy dany (5.2-3)

1
Syl yy= (7”.55]—00 .

wis kAL Fish,

i}?l!~:JIa;'.f)'\'ria"g}lij-:-m“}&:iﬁ»ﬁ,t‘g""' Bl fabith

By setting either w; = 0 or @ = 0 in (5.2-2), the characteristic functions of
X or Y are obtained. They are called_marginal characteristic functions:
- Dxlen} = Py, y(w, 0) (5.2-4)
Py{en) = @y y(0, e0) (5.2-5)
Joint moments m,; can be found from the joint characteristic function as
follows:
3Oy vy, )

ik (5.2-6)

My = (_j)n-z'
o =0en=0

This expression is the two-dimensional extension of (3.3-4).
EXAMPLE 5.2-1. Two random variables X and Y have the joint character-
istic function
_ Dy, y(o1, @) = exp(—20f — 8wl
We show that X and ¥ arc both zero-mean random variables and that

they are uncorrelated.
The means derive from (5.2-6):

i 80y v, @)

¥ =E[X]=myy=—
l oy wn=0.y=0
= —j(—4w) exp(— 2] — 803)) =0
an =0,my=0
¥ = E[¥] = my; = —j(—16e,) exp(—2e0; — 8e}) —0
an=0,an=0
Also from (5.2-6); e EE
&
Ryy = E[XY] = my = () exp(—2wF — 8wk
xr = E[XY]=my = (=) aw,awl[ p{—2wi — 8uy)] ot

=0
w=0,0n=0
Since means are zero, Cyy = Ryy from (5.1-14). Therefore, Cyy = 0 and
X and Y are uncorrelated.

= —{(—4w,)(—16w,) exp(—2w] — 8w3)

The joint characteristic function for N random variables X, X5, ..., Xy is
defined by
q)A';....,XN(wI: ey “’N) — E[ejmlxt+v..+ijXN] (52_7)
Joint moments are obtained from
BRCIDX X (CD],.';.,CUN)
My ity = (“‘J') 2 Ié N (5-2'8)

N
. BQ)N all w=0
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where
: R=m+n+--+ny (5.2-9)
The joint characteristic function is especially useful in certain practical
problems where the probability density function is needed for the sum of N

statistically independent random variables. We use an example to show how
the desired probability density is found.

EXAMPLE 5.2-2. Let ¥ = X, + X; + - -- + Xy be the sum of N statistically
independent random variables X;, i = 1,2, ..., N. Denote their probabil-
ity densities and characteristic functions, respectwe!y, by fy(x;) and
Oy (w;). Because of independence the joint probability den31ty is the
product of all the individual densities and (5.2-7) can be written as

(I)X, ..... Xw(wl, crsON)

=" [HfX(IJ}CXP[J‘Z }h, -
_1‘[ J Sy, Gee?™ 5 d; = l—[cb,,(m,)

Next, we write the characteristic function of ¥ using (3.3-1) and note that
it is the same as (5.2-7) with «; = w, ail i. Hence,

N
@ y(w) = E[e] = E[cxp(jz wX,-)}

i=l
N
=&y, x o @)= ].—I Dy (w)
Finally, we use (3.3-3} to obtain the desired density of ¥:
11 {5 :
frn=sz||TTox@ | do
27 ) oo i

In the special case where the X; are identically distribuied such that
@y (w) = y(w), all i, our result reduces to

| I .
f=gz|_1exane do

5.3
JOINTLY GAUSSIAN RANDOM VARIABLES

Gaussian random variables are very important because they show up in nearly
every area of science and engineering. In this section, the case of two gaussian

. random variables is first examined. The more advanced case of N random

variables is then introduced.

Two Random Variables

Two random variables X and Y are said to be jointly gaussian if their joint
density function is of the form

Sery) = L

2]70')"0'1'1.‘ 1-— p2
[ -1 [(x - X¢ 2p(x—
. exp —_—

Ho-9, (- Y)”

21-p| o} oxoy o3
(5.3-1)
which is sometimes called the bivariate gaussian density. Here

X = E[X] ' (5.3-2)

¥ = E[Y] (5.3-3)

o% = E[(X — XY (5.3-4)

o4 = E[(Y - )7 (5.3-5)

p=E[(X — X)(Y — D)lfoxoy (5.3-6)

Figure 5.3-1a illustrates the appearance of the joint-gaussian density func-
tion (5.3-1). Its maximum is located at the peint (X, ¥). The maximum value
is obtained from :

1
Inoyoy/1— p?
The locus of constant values of fy, y(x, y) will be an ellipsef as shown in Figure
5.3-1b. This is equivalent to saying that the line of intersection formed by
slicing the function fy, y(x, ¥) with a plane parallel to the xy plane is an ellipse.

Observe that if p = 0, corresponding to uncorrelated X and Y, (5.3-1) can
be written as

ferxp) < fryX D)= (5.3-7)

Ty ) =00/ () (5.3-8)
where fy(x} and fy(y) are the marginal density functions of X and ¥ given by

1 x-X i
Jrlx)= ool cxp[ 2% } (5.3-9)
e _o=¥) i
Sr() = = GXP[ 37 } (5.3-10)

Now the form of (5.3-8) is sufficient to guarantee that X and Y are statistically
independent. Therefore, we conclude that any uncorrelated gaussian random

tWhen gy =gy and p=0 the cllipse degenerates into a circle; when p=+1 or -1 the ellipses
degenerate into axes rotated by angles wf4 and —x/4 respectively that pass through the point (X, ¥).
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Sr.r(m )

FIGURE 5.3-1
Sketch of the joint density function of two gaussian random variables.

variables are also statistically independent. It results that a coordinate rotation
(linear transformation of X and ¥ through an angle

1 -1 2pa'x0’y
== o 5.3-11
7] 3 tan |:0'§:—U§;| { )

is sufficient to convert correlated random variables X and ¥, having variances
a} and &%, respectively, correlation coefficient p, and the joint density of
(5.3-1), into two statistically independent gaussian random variables.T

By direct application of (4.4-12) and (4.4-13), the conditional density

functions fy(x]¥ =) and fy(¥|X = x) can be found from the above expres-

sions {see Problem 5.3-2).

+Wozencraft and Jacobs (1963), p. 155.

EXAMPLE 5.3-1. We show by example that (5.3-11) applies to arbitrary as
well as gaussian random variables. Consider random variables Y and ¥;
related to arbitrary random variables X and ¥ by the coordinate rotation

¥, = X cos(f) + ¥ sin(@)
¥> = —X sin(6) + Y cos(6)

If X and ¥ are the means of X and Y, respectively, the means of ¥, and
¥, are clearly ¥; = X cos(¢) + Fsin(g) and ¥, = —X sin(8) + ¥ cos(8),
respectively. The covariance of Y; and Y3 is

Cr,y, = E(¥; — 11)(Y2 — T2l
= E[{(X - X)cos(f) + (¥ — ¥)sin(6)}
A—(X — X)sin(@) + (¥ — ¥)cos(B)]]
= (o} — o) sin(9) cos(6) + Cyy[cos*(6) -- sin’(O)]
= (o} — o} )3 sin(28) + Cyy cos(20)

Here Cyy = E[(X — X)(¥ — ¥)] = poyoy. If we require ¥, and ¥ to be
uncorrelated, we must have Cy, y, = 0. By equating the above equation to
zero we obtain (5.3-11). Thus (5 3-11) applies to arbitrary as well as
gaussian random variables.

*N Random Variables

N random variables X\, Xy, ..., Xy are called jointly gaussian if their joint
density function can be written ast

(2zr)”f2 2

fX, ..... XN(XL- R

where we define matrices

x;— X
-%]=|" _:Xz (5.3-13)
xn— By
and 7
Cy Cin -+ Cy
[cx] = Cfl Cn o C:m (5.3-14)
C.;v1 C;vz C;VN

FWe denote a matrix symhbolically by use of heavy brackets [-].

ot
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We use the notation []" for the matrix transpose, [-]_l for the matrix inverse,
and |[-]| for the determinant. Elements of [Cy], called the covariance matrix of
the N random variables, are given by

— |
O S S I SN Y .
Cy = BICG— X, X,)lm{cmj AN CESD

The density (3.3-12) is often called the N-variate gaussian density fungtion.
For the special case where ¥ = 2, the covariance matrix becomes -~

— Ui’l POy, Ox, .
[cx] = [p%% 2 (5.3-16)
SCG
-1 1 1/0'-2% —plox,0x,
[ ™= 5= pi)[_p foon, /el ] (5.3-17)
[lex] ™1 = ok, oh,(1 - A (5.3-18)

On substitution of (5.3-17) and (5.3-18) into (5.3-12), and letting X, = X and
X> =7, it is easy to verify that the bivariate density of (5.3-1) results.

*Some Properties of Gaussian Random Variables

‘We state without proof some of the properties exhibited by N jointly gaussian
random variables X, ..., Xy.

1. Gaussian random variables are completely defined through only their first-
and second-order moments; that is, by their means, variances, and covar-
iances. This fact is readily apparent since only these quantities are needed
to completely determine (5.3-12).

2. If the random variables are uncorrelated, they are also statistically inde-
pendent. This property was given earlier for two variables.

3. Random variables produced by a linear transformation of X, .
also be paussian, as will be proven in Section 5.5.

4. Any k-dimensional (k-variate) marginal density function obtained from the
N-dimensional density function (5.3-12) by integrating out NV — k random
variables will be gaussian. If the variables are ordered so that X,,..., X}
occur in the marginal density and Xy, ..., Xy are integrated out, then the
covariance matrix of X7,..., X is equal to the léading k x k submatrix of
the covariance matrix of X1, ..., Xy (Wilks, 1962, p. 168). .

5. The conditional density fy, . x(x1,-- ) %[ Xpqt = Xt - - Xy =Xpy) Is
gaussian {Papoulis, 1965, p. 257). This holds for any & < N. :

o Xy will

AR T

o
g

S

G- b s

Letiaidely

L.y

L

*5.4
TRANSFORMATIONS OF MULTIPLE RANDOM VARIABLES

The function g in either (5.1-1} or (5.1-2) can be considered a transformation
involving more than one random variable. By defining a new variable
Y =g(X), Xa, ..., Xy), we see that (5.1-2) is the expected value of ¥. In
calculating expected values it was not necessary to determine the density
function of the new random variable ¥. It may be, however, that the density
function ¥ is required in some practical problems, and its determination is
briefly considered in this section. First we consider a single functional trans-
formation of more than one random variable. Then we develop the case of
several functions of several random variables.

*One Function

Here ¥ = g(X, Xy, --., Xn). We seek to first define the probability distri-
bution of Y and then the probability density. The distribution is
Fy(y) = P{Y <y} = P{g{X,, X2, ..., Xx) < y}. This probability is associated
with all points in the (¥, xs,..., Xy) hyperspace that map such that
g(xy, X3, ..., xy) <y for any y. Formally, we integrate over all such points
according to

Fy(y)=PlglX), X, ..., X)) = §)
= J“'JfXI’sz----X.\'(xhxz’ . .,XN)dxlde.. .de

lg(x1, X2, ... xp) = 3}
The density follows differentiation

_ aFy(y)
="
d .
= d—yj. v J-fxl'xln_"x‘\,(xl, Xy unnsy xN)dxldxz - dIN

(5.4-1)

(5.4-2)

{g(xl! X34 4ns ’xN) = y}

Perhaps the use of (5.4-1) and (5.4-2) is best demonstrated by example. We
take two cases.

EXAMPLE 5.4-1. We find the density function for the ratio ¥ = g{X}, X5) =
X/X; of two positive random variables X| and X,. The event (Y =
X1/X; =y} corresponds to points 0 < x;/xs <y in the xx; plane as
shown shaded in Figure 5.4-1. Now the distribution of Y is
Fy(y) = P{Y = X;/X; < y}; this probability equals the integral of the
joint density of X| and X7, over the shaded areas. On integrating, when
using the horizontal strip as shown, we have (for y > 0)

) VX3
Fr(=PXi/X; =yl = Jo A--L T, 3,000, %0y doeydy
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M dxl } dxz (4)

The last term in (4) is zero since the joint density is not dependent on y.
Finally, the result is .

"
Sr(y) = J [fx..x, [ — )2 %)
FIGURE 5.4-1 - .
Regions in x;x; plane applicable to Example 5.4-1.

()
- +fX|-X1[_(y2 - x%)”z.xﬂ] (yz .2)1!2 dx,

The density results from differentiation according to (2.3-1) and Leibniz’s This result is evaluated in Problem 5.4-3 for jointly gaussian X, and X3.

tule

=

To progress further requires a specific density be specified.

dF. oo
T _ [ s, 052, m)
o *Multiple Functions

More generally, we are interested in finding the joint density function of a set

of functions that defines a set of random variables
EXAMPLE 542 As a second example consider the function ¥ =

(X? + X2)'/2, which is instructive because it involves using Leibniz’s
rule with a double integral. Here Fy(y)= P{Y = &+ X <) is
the probability of all points in the x)x, plane that fall on, and inside, a
circle of radius y.

Y;=I‘,'(X1,X2,...,XN) f=1,2,...,N (54-3)

defined by functional transformations T;. Now all the possible cases described
in Chapter 3 for one random variable carry over to the N-dimensional

Itis . x problem. That is, the X; can be continuous, discrete, or mixed, while the
N _aya ] _ functions 7; can be lir&ear, nonlinear, coutiu_uous, segmented, etc. Because
Fy(p) = J Jﬂ) Ft, a1, X2) dxydxy & §0 many cases are possible, many of them being beyond our scope, we shall
wy=—p =P : d:scuss_ only one representative problem.
p We shall assume that the new random variables ¥, given by (5.4-3), are
= J Iy, xa) dxp (1) g produced by single-valued continuous functions 7; having continuous partial
- E derivatives everywhere. It is further assumed that a set of inverse continuous
where we define functions T}-‘l exists such that the old variables may be expressed as single-
PR valued continuous functions of the new variables:
)= sy O ) @ X T T T J= 120 N sad)

From Leibniz’s rule applied to the last form of (I):

dFy(») N (O
Sy )——y =y, N+ Iy, y)+J_y—ay dx

These assumptions mean that a point in the joint sample space of the X; maps
into only one point in the space of the new variables ¥}, and vice versa.

Let Ry be a closed region of points in the space of the X; and Ry be the
corresponding region of mapped points in the space of the Y}, then the prob-
ability that a point falls in Ry will equal the probability that its mapped point
falls in Ry. These probabilities, in terms of joint densities, are given by

3)

Direct use of (2) proves the first two right-side terms in (3) are zero. On
applying Leibniz’s rule to the last term in (3), we have
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(5.4-5)
= J‘R“Jf}’1...,.¥~(ylv e yrdy - dvy o
Y .

This equation may be solved for fy, .y, (¥, ..., s} by treating it as simply a
multiple integral involving a change of variables. -

By working on the left side of (5.4-5) we change the variables x; to new
variables y; by means of the variable changes (5.4-4). The integrand is chatiged
by direct functional substitution. The limits change from the region Ry to the
region Ry. Finally, the gifferential hypervolume dx, ... dxy will change to the
value [J|dy, ...dyy (Speigel, 1963, p. 182), where |J] is the magnitude of the
jacobiant J of the transformations. The jacobian is the determinant of a
matrix of derivatives defined by

817! ary!
ay,  aYy
J=| - 5 : (5.4-6)
aTy' ary'
Y, Yy

Thus, the left side of (5.4-5) becomes

L{. .jfx, ..... (X Xy)dxy L dxy

X

= [ [ =Ty = TRy S
¥
Since this result must equal the right side of (5.4-5), we conclude that

U et ) =S =TTy =TRW (548)

When N = 1, (5.4-8) reduces to (3.4-9) previously derived for a single random
variable.

The solution (5.4-8) for the joint density of the new variables ¥; is iflu-
strated here with an example. '

EXAMPLE 543, Let the transformations be linear and given by
Y =TX, Xa)=aX +bX;
Y, = TolXy, Xp) = oX) +dX;

where a, b, ¢, and d are real constants. The inverse functions are easy to
obtain by solving these two equations for the two variables X and X5:

TAfter the German mathematician Karl Gustav Jakob Jacobi {1804-1851).

Xy = T\ (Y1, Ya) = (dY, — 6Yy)/(ad — be)
Xy = T3 (Y1, ¥p) = (—c¥; +aYy)/(ad — bc)
where we shall assume (ad — be) # 0. From (5.4-6):

s_| dntad—be)  —bjiad —bo)
T | —¢f{ad — bc) af(ad — be)

Finally, from (5.4-8),

_ 1
" {ad — be)

1 dyi— by —en tan
XN gd —be T ad — be

|lad — bc|

fY,.n(J’ls Yy} =

*5.5
LINEAR TRANSFORMATION OF GAUSSIAN RANDOM
YARIABLES )

Equation (5.4-8) can be readily applied to the problem of linearly transform-
ing a set of gaussian random variables X, X3,..., Xy for which the joint
density of (5.3-12) applies. The new variables Y7, ¥3,..., Yy are

Vi=anXi+apXs+---+agnXn
Yy =anXy +apXy+---+agnXn

. (5.5-1)
YN=£IN|X] +(IN2X2+'--+GNNXN

where the coefficients ay, { and j=1,2,..., N, are real numbers. Now if we
define the following matrices:

an Oz - iy
dz1 an -+ Oy
1=\ . ] ) (5.5-2)
LNy 9N2 - GNN
¥ [ ¥, X X
[¥1=] : [¥]1=1] : x]1=] : [X1=] : | G653
Yy | ¥ Xy Xy
then it is clear from (5.5-1) that
[¥]=[T][x] [¥ - Y] =[T][x - X] (5.5-4)
X=[r1'[¥1 -2 =[71"[r-7] (5.5-5)
sb"long as T is nonsingular. Thus,
X=TY(Y..... V) ="V, +d° Y, + .- +a" ¥y (5.5-6)
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ax, ar7'
57, 3y, ¢ (.57

X -X=d"(Y, - T+ +d" ¥y — Ty

from (5.5-5). Here & represents the jjth element of [T]_l.

The density function of the new variables ¥, ..., Yy is found by solving
the right side of (5.4-8) in two steps. The first step is to determine |J|. By usin]g
(5.5-7) with (5.4-6) we find that J equals the determinant of the matrix [T]™.
Hence, 1

(5.5-8)

W= i)™ =ﬁ (5.5-9)

The second step in solving (5.4;8) proceeds by using (5.5-8) to obtain

N N _
Cyx, = E[(X; — X)X~ X)) = Y " d* ) " E|(¥) — F)(¥, — T))

k=1 m=1
N
— Zaik Zajmcl’kl’m

k=1 m=1

Since Cy,x, is the ijth element in the covariance mairix [Cy] of (5.3-12) and
Cy,y,, is the kmth element of the covariance matrix of the new variables ¥7,
which we denote [Cy], (5.5-10) can be written in the form

[ex] =[] [exnde ]y
Here [T’ represents the transpose of [T]. The inverse of (5.5-11) is
[e] ™= [7]ey] 7]

(5.5-10)

(5.5-11)

7 (5.5-12)
which has a determinant

™' (= el

On substitution of (5.5-13) and (5.5-12) into (5.3-12):

(5.5-13)

-’

St @ =T Xy = TRY
B 1] e exp{_ e )?]‘[T]'[CZY]_1 (71— ﬂ} (5.5-14)

(ZJT)NIZ

Finally, (5.5-14) and (5.5-9) are substituted into (5.4-8), and (5.5-4) is used to
obtain

’yN)‘:

Frpr(Fr- - lex | ™ exp{u- y — F]t[cgl_l[y - ?]} (5.5-15)

(ZFT)N 2

+We represent the magmitude of the determinant of a matrix by ||1]|)-

R Y e P LY

i

This result shows that the new random variables ¥, ¥5,..., ¥y are jointly
gaussian because (5.5-15) is of the required form.

In summary, (5.5-15) shows that a linear transformation of gaussian ran-
dom variables produces gaussian random variables. The new variables have

mean values :

N
¥i=> anXi (5.5-16)
k=1

fron:@ (5.5-1) and covariances given by the elements of the covariance matrix
¢yl = [Z1lcx] ) (5.5-17)
as found from (5.5-11). 7

EXAMPLE 5.5-1. Two gaussian random variables X; and X, have zero
means and variances aﬁvl =4 and o}l = 9. Their covariance Cy,y, equals
3. If X; and X, are linearly transformed to new variables ¥, and Y,
according to

Y =X —2X,
Y2 = 3X 1 + 4X2 7
we use the above results to find the means, variances, and covariance of
Yl. and Yz. -
Here

=[5 5] e rea-[d ]

Since X, and X; are zero-mean and gaussian, ¥ and ¥, will also be zero-
mean and gaussian, thus ¥} =0 and ¥; = 0. From (5.5-17):

R OO H HH B R ]

Thus 0%, = 28, 0%, = 252, and Cy,y, = --66.

5.6
COMPUTER GENERATION OF MULTIPLE RANDOM
VARIABLES

In Section 3.5 we discussed the generation of a single random varable of
prescribed probability density by transformation of a random variable that
was uniformly distributed on (0,1). Here, we shall utilize resuits of the pre-
ceding two sections to show how some usefully distributed random variables
can be generated by computer when the generation initially requires either two
uniformly distributed random varables or two gaussian variables. We
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describe several examples, the first based on transformation of two statistically
independent random variables X, and X, both uniformly distributed on (0,1).
One common problem in the simulation of systems by a digital comiputer
is the generation of gaussian random variables. As a first example, we note
that two statistically independent gaussian random variables ¥} and ¥3, each
with zero mean and unit variance, can be generated by the transformations
(sce Dillard, 1967)

Y, = T1(X}, X3) = /—2In(X}) cos(2xXy) (5:6-1a)
Y, = Ty(X1, Xo) = /2 1n(Xy) sin(2mX5) (5.6-1b)

It can be shown {(Problem 5.6-1) that the joint density of ¥} and ¥; is
o2 i
fy,.yz(y:afz) = E N

as it should be for statistically independent ¥7 and ¥>. Our example can be
generalized to include arbitrary means and variances (Problem 5.6-2).

As another example, assume we start with two zero-mean. vnit-variance,
statistically independent gaussian random variables ¥; and Y5 (perhaps gen-
erated as in our first example above), and seek to transform them to two zero-
mean gaussian variates W; and W that have arbitrary variances, afyl and
JZWZ, and arbitrary correlation coefficient ppr. From (5.3-16) applied to #; and
W,, and from (5.5-17) for a linear transformation, we have

o=, koo |- i

Pwow,Tw, W

(5.62)

(5.6-3)

The covariance matrix of ¥, and ¥, does not explicitly appear in (5.5-17)
because it is a unit matrix due to the unit-variance assumption about Y7 and
¥,. Our goal is obtained if we solve for [T] that makes (5.6-3) true for
arbitrarily specified O'ZW], 02% and py. As long as [CW] is nonsingular (the
usual case), [T] can be expressed as a lower triangular matrix of the form

m-% 7 =
On using (5.6-4) in (5.6-3), and solving for the elements, we have
Ty =ow, (5.6-5a)
Ty = pwow, (5.6-56)
Ty =omyft — oy (5.6-5¢)
The final transformations yielding W, and W, become
W= Ty Y, = ow T (5.6-60)
Wy =Ty Y +TnYs = ppow, Yy +owpf1 — 03 Vo (5.6-6b)

a
.:l
E
"
]

from the form of (5.5-4). Thus, if zero-mean, unit-variance, statistically inde-
pendent gaussian random variables ¥, and ¥; are transformed according to
(5.6-6), then W/, and W, are correlated gaussian random variables having zero
means, respective variances of oy, and o*%yz, and correlation coefficient py.

EXAMPLE 56-1. We use MATLAB to generate N =100 values xy,,
n=12,...,N, of a random variable X, uniform on (0, ). We then
repeat the process for a second random variable X; with values x,,.
Next, we successively use (5.6-1) and (5.6-6) to create two scts of vaiues
wy, and wa,, #=1,2,.:., N, of two zero-mean gaussian random vari-
ables W/, and W, having respective variances O’%VI =4 and O‘%VI =9, and
normalized correlation coefficient pyp = —0.4. To determine the quality
of our random variable’s values, we find their means according to

A 1 N A
W= N; Wy i=land2 6]
their variances according to
Foly PACH
o}y, = EZ(W,-H - W), i=land2 @
n=1

and their normalized correlation coefficient according to

OT c—;i__ SN > 2
= %g(, — W)oras — W) )
The applicable MATLAB code is shown in Figure 5.6-1. Our results
are tabulated in Table 5.6-1, where the standard deviations and normal-
ized correlation coefficient are found to be in error by —7.5%, —2.3%,
and 45.2%, respectively. For N = 1000 values, these eirors improve (see
Problem 5.6-5).

If arbitrary means W, and W, are desired for W, and W, in the preceding
example, we only need to add these to right sides of (5.6-6):

W] = W; = U;yl Y] (5.6-7“)

Wa= Wi+ pwoin, Y1 + o,/ 1 — 03y 1a (5.6-75)
TARLE 5.6-1
Results applicable to Example 5.6-1

Mean Standard deviation Correlation coefficient
nn "y o [os p

True values 0 0 2 3 0.4
Estimated (N = 1030) -0.02 —0.17 185 293 -0.57
Percent error _ — —7.5% —-23% 42.5%
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Example 5.6-1 %% %% %%%% %% % %%
clear
N = 100; % number of random variables to generate

sigwl = sqrt(4); % standard deviation
sigw2 = sqrt(9};
rho = ~0.4; % normalized correlation coefficient

x1 = rand(i,N); % uniformly distributed random numbers
x2 = rand(1,N};

¥i = sqrt{-2*log(xl)).*cos(2*pi*x2); % independent Gaussian
% random variables
¥2 = sgre{-2*log(xl)} *gin(2%*pi*x2);

711 = siqwl; % constants
T21 = rho*sigw?; )
T22 = sigw2*sqgrt (l-rhor2);

wl = T11*yl; % correlated Gaussian random variables
w2 = T21%y] + T22*%y2;

wmean = [mean(wl)} mean{w2}]:; % sample mean
weov = [cov{wl,l) cov(w2,1)]; % (biased) sample covariance

tmp = corrcoef (wl,w2);
rho_hat = tmp(2,1); % estimate of normalized correlation
% coefficient

cov_err = 100* {sgrt (wcov) -~ (Isigwl sigw21.42})./ ...
([sigwl sigw2] .*2) % percent error
rho_err = 100* (rho_hat - xho)./rho

FIGURE 5.6-1
MATLAB code used in Example 5.6-1.

The foregoing transformations can be extended to generate any number of
zero-mean correlated gaussian random varables by transforming the same
number of zero-mean, unit-variance, independent gaussian random variables.
For N random variables, [CW] becomes an N x N specified (arbitrary) sym-
metric matrix and the form of {5.6-3) again applies. The elements of [T] can
be found from the Cholesky method of factoring matrices, as described in
Ralston and Wilf (1967).

As a final example, suppose two statistically independent gaussian ran-
dom variables ¥, and W,, with respective means W, and ¥, and variances
both equal to o2, are subjected to the transformations ’

R=T\(Wy, Wy) = | W2+ W2 (5.6:8)

A O = To(W,, W) = tan\(Wo/ W) (5.6-9)

From the inverse transformations

W, = TT YR, ®) = Reos(®) . (5.6-10)
W, = T7 (R, ®) = Rsin(©) (5.6-11)
and the use of (5.5-4), we find the Jacobian equals R. Since

fwl'wz(wl, Wy) = ﬁe_[(“’l“"-’l Y+~ 192)7)/(25%) (5.6-12)
(5.4-8) yields ‘ ‘
S0 = 2 exp{~[Ircos(@) — Wl + [rsin@) — W)/ 22%)
_ rur)

1 -y - - _
T e:{p[—zftz[r2 + (WE+ W) — 2r W, cos(@) — 2¢ W, sm(B)]}

(5.6-13)

where u(r) is the unit-step function. If we now define

Ag= W2+ W} ' (5.6-14)
_ 8o = tan™ (W, W) . (5.6-15)
(5.6-13) can be written as '

Srolr. 6) = % exp[—%‘z[rz + A2~ 2rdycos(f — eo)]} (5.6-16)

Equation (5.6-16) is our principal resuit. It is important in system simulations
because it is the joint density of the envelope (R) and phase (®) of the sum of a
sinusoidal signal (with peak amplitude 4, and phase 6;) and a zero-mean
gaussian bandpass noise of power o. This density is developed further in
Section 10.6.

5.7
SAMPLING AND SOME LIMIT THEOREMS

In this section we briefly introduce some basic concepts of sampling. The topic
will be expanded further in Chapter 8. Although we shall develop the topics
around an example practical problem, the results will apply to much more
general situations.

Sampling and Estimation

Engineers and scientists are frequently confronted with the problem of mea-
suring some quantity. For example, if we need to measure a dec voltage, we use
a dc voltmeter, which provides a scale indication of the voltage. Now regard-
less of the mechanism used by the meter to provide its indication, one typically
“reads™ this scale to obtain a “value” we say is the measurement of the
voltage. In other words, we sample the indication to get our measurement.
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-identically distributed, random variables X, n=1,2,.

The measurement can only be considered as an estimate of voltage, however,
because of meter drifts, accuracy tolerances, ete, In fact, any measurement can
only be considered as an estimate of the quantity of interest. In our example,
our estimate uses only one sample. More generally, we may estimate (measure)
a quantity by using more than one sample (observation).

To quantify these practical thoughts further, consider the problem of
measuring the average (dc) value of some random noise voltage If we had
a large number of identical such sources, we could imagine sampling. the
voltage of each (at a given time) and form an estimate of the de voltdzd by
averaging the samples. For N sources, each sample could be considered a
value of one of N random variables that form the N dimensions of a combined

experiment, as in Section 1.6. Here samples from each of N subexperiments’

are combined.

In our practical world we usually must take another approach because we
never have multiple identical sources with which to work. We seek another
model. Suppose we now take a sequence of N samples over time under the
assumption (model) that the voltage's statistical properties stay unchanged
with time.7 Again, each sample is taken as the value of one of N statistically
independent random variables, all having the same probability distribution.
We again have a combined experiment, but it is now N repetitions of one basic

_experiment.

Estimation of Mean, Power, and Variance

For either of the above approaches the N samples x, represent values of
.. N, Assume the X,
are independent at least by pairs; they have the same mean value X and
variance o2 because of identical distributions. Since we wish to estimate
(measure) the mean noise voltage, intuition indicates we should form the
average of the sample values as follows:f

: X 1&
Xxp = estimate of average of N samples = —ﬁZx,, (5.7-1)

Equation (5.7-1} is a function of the set of specific samples {x,}; it gives a
number which we call an estimate or measurement of the mean of the random
variables. Another set of specific samples would produce a different number
%x. When all possible sample sets are considered, we form the function

- 1 N .
¥y= ﬁgx,, (5.7-2)

TMore is said about this medel in the next chapter (Section 6.2).
$The circumflex is notation to imply an estimate, or estimator; in this case an estimate of the
time average of N samples denoted by xy.

to represent the effect of averaging over the random variables. Equation
(5.7-2) is called an estimator; it produces a specific estimate of X for a specific
set of samples. We refer to (5.7-2) as the sample mean.

Of great interest is: How does our estimator of the sample mean perform?
To seek an answer, we find the mean and variance of our estimator.

2 1 N
ElXy) = EI:F > X,,]
n=|
Any estimator (measurement function) for which the mean of the estimator of

some quantity equals the quantity being estimated is called unbiased. For the
variance:

ZE[X]_ X any N (5.7-3)

H_

E[(Ry— 1= o = E[XN —2X Ky + X7
= Blfy] - ¥ X2+E[NZ NZX,,,]

=—X%q NQZZE{X ] (5.7-9)

n=1 m=l

But E[X,X,] = E[X?] for n = m and equals X2 for n # m because of assumed
independence by pairs. Thus,

o =X+ %[NE(XZ) +(N - NPy

= HIEE) — Bl =od/N (5.7-5)

From {5.7-5) the variance of our sample mean estimator goes to zero as ¥V -—»
oo for finite source variance a%. This fact implies that for large N our esti-
mator will give an estimate nearly equal to the quantity being estimated with
high probability. To prove the implication, we use Chebychev's inequality of
(3.2-10). For our notation it says

s o
PllXy—X) <€)= 1—(o%/) =1 —ﬁ (5.7-6)
Which tends fo 1 as ¥ — co for any finite € > 0 and fimte o%. This result

indicates that Xy converges to X with probability 1 as N — oc. Such estima-
tors are called consistent,

EXAMPLE 5.7-1. Suppose the mean of our example noise voltage is to be
estimated to within 5% of its true value with a probability of 0.95 when
N =50 samples are used. We find what mean and variance are allowed.
From (5.7-6) with € = 0.05X we require

9k
50(0.05%)
which means X < (160)"2gy for the accuracies desired.

0.95

!
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Thus far, our discussion has centered on estimating the mean of some
random quantity. Estimates of functions of randem quantities are also pos-

sible. For example, an estimator for the power in a random voltage can be
defined as
=3 _lxn,e
XL=—3% % 5.7-7
P (577

while the estimator for the variance of the voltage can be defined as
—_ 1 & &
% = o1 e = Ew (5.7-8)

Here Xy is defined in {5.7-2). The estimator of (5.7-7) is found in Problem 5.7-1
to be unbiased. Its variance is found in Problem 5.7-2. Similarly, the mean of the
variance estimator of (5.7-8) is unbiased, but becomes biased if the factor 1f
(N —1) is changed to 1/N as in the mean and power estimators (Problem
5.7-3). .

EXAMPLE 572 A random noise voltage behaves approximately as an
exponential random variable with a mean value of 4 and a variance of
16. Eleven samples are taken having values 0.1V, 0.4, 0.9, 1.4, 2.0, 2.8,
3.7, 4.8, 6.4, 9.2, and 12.0 V. We use (5.7-2) and (5.7-8) to find the respec-
tive mean and variance of these samples. From (5.7-2) i

= %(0.1 F04409+---+92412.0)=3973V
From (5.7-8)
o= 11—0[(0.1 —3.973)* + (0.4 — 3.973)

+---+{12.0 — 3.973)
=14.75V?

Here the sample mean is in error by less than 1% for the given set of
sample values, but the estimate of variance is in error by about 7.8%. The
reader should be aware that any other set of 11 samples may give
different values and different percentage errors.

EXAMPLE 5.7-3. The random variable ¥ of Problem 3.5-4 can be generated
by the transformation ¥ = af(l— Vo2 0<Xx <1. We use
MATLAB to generate 250 values of ¥ from which the sample mean of
(5.7-2), the second moment of (5.7-7), and the variance of (5.7-8) are then
calculated. These values are compared to the true mean, second moment,
and variance of ¥, which are known to be ma/4, a*, and a2(16 — nz)/ 16,
respectively. For the calculations we assume g = 2.

The MATLAB code for this example is given in Figure 5.7-1.
Calculated data, shown in Table 5.7-1, reveals errors in estimating
mean, second moment, and variance to be —35.7%, —10.3%, and
—8.5%, respectively. Problem 5.7-4 reconsiders this example, but for N =
1000 values of Y.

TABLE 5.7-1
Data applicable to Example 5.7-3
Mean Second moment  Variance
True values 1.57 400 7153
Estimated (N =250) 1.48 3.39 1.40
Percent error -57% —10.3% —8.5%
8 %6%%%%%% Exanple 5.7-3 %%%%%%%%%%%% 6%

clear

N = 250; % number of random variables to generate
a=2; % constant

x =rand(1,N);
¥ =a*sgrt (sqgrt(l./{1-x))~-1); % random variable

ymean = mean(y) % sample mean
yZ2moment = mean(y.*2) % second moment
yvar = coviy) % variance

yestimated = [ymean y2moment yvar];
yErue = [pi/2 4.0 (16-pir2)/4]1;

per_error = 100* (yvestimated - ytrue)./ytrue

FIGURE 5.7-1

MATLAB code used in Example 5.7-3.

Weak Law of Large Numbers

The preceding developments have shown that the sample mean estimator of
(5.7-2), where the random variables X, are identically distributed (same mean

and same finite variance) and are at least pairwise statistically independent,
satisfies -

Jim| PRy ~F|<el]=1 anye>0 (5.7-9)

Ex}iression (5.7-9) is known as the weak law of large mambers.

Strong Law of Large Numbers

Another important relationship is the sirong law of large numbers. For N
random variables, X, defined as for the weak law, it states that, as N - oo,

P[ Jim &) = X} =1 ' (5.7-10)
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*5.8
COMPLEX RANDOM VARIABLES

A complex random variable Z can be defined in terms of real random variables
X and Y by

Z=X+jY - (5.8-1)
where j = +/—[. In considering expected values mv01vmg Z, the joint density

of X and ¥ must be used. For instance, if g(-) is some function (real or
complex) of Z, the expected value of g(Z) is obtained from

Elg(Z)] = jm J ey (e 3) drdy (5.8:2)

Various important quantities such as the mean value and variance are
obtained through application of (5.8-2). The mean value of Z is
Z = E[Z] = E[X] +jE[Y] =X +j¥ (5.8-3)
The variance o5 of Z is defined as the mean valuc of the function
8(Z) =1Z — E[Z); that is,
o% = E[|1Z — E[Z]] (5.8-49)
Equation (5.8-2) can be extended to include functions of two random
vanables

m = X+ ¥ m (5.8-5)

and
Z, =X, +it, (5.8-6)
n # m, if expectation is taken with respect to four random variables X, Y.,
X,, ¥, through their joint density function fx_ v, x,.v, G Y X ¥u)- I thls
den51ty satisfies
fX o Yoo Xn Yo (xm1 Yms Xns yn) f){ ) 4 (xm’ ym)fX,. Yu (xrn yrr) (5 8'7)

then Z,,, and Z, are called statistically independent. The extension to N ran-
dom variables is straightforward.

The correlation and covariance of
RZ,,,Z,, = E[Z;lzn]

Z., and Z, are defined by

n#m (5.8-8)

and
CZ z, = E[{Zm - E[Zml}*{z - E[Zn]]] H ?é t (58—9)

respectively, where the superscnpted asterisk* represents the complex conju-
gate, If the covariance is 0, Z,, and Z, are said to be uncorrelated random
variables. By sefting (5.8-9) to 07_ we find that

Roz, = FZEZ)  m#n (5810)

for uncorrelated random variables. Statistical independence is sufficient to
guarantee that Z,, and Z, are uncorrelated.

5.1-2. Extend Problem 35.i-1 by

Finally, we note that two complex random variables are called orthogonal
if their correlation, given by (5.8-8), equals 0.

5.9
SUMMARY

This chapter extended the operations performed on a single random variable
in Chapter 3 to include operatlons on multiple random variables. Topics
extended were: :

« Expected values were developed of functions of random variables, which
included both joint moments about the origin and central moments, as well
as joint characteristic functions that are useful in finding moments. New
moments of special interest were correlation and covariance.

Multiple gaussian random variables were defined.

Single and multiple functional transformations of several random variables

were developed.

Transformation results were used to show how linear transformation of

Jjointly gaussian random variables is especially important, as it produces

random variables that are also joint gaussian.

The important technigue of how to generate multiple random variables by

computer was next infroduced. The material was illustrated by a computer

example using MATLAB software.

+ Some new material on the basics of sampling and estimation of mean,
power, and variance was given. It was supported by both regular and a
computer example and problem (MATLAB). .

* Finally, some more advanced material was given that defines complex
random variables and their characteristics.

-

PROBLEMS

5.1-1. Random variables X and ¥ have the joint density

D<x<b and Q<y<4d

Sl p) =

1] elsewhere

What is the expected value of the function g(X, ¥) =(xX¥)*?

finding the ecxpected value of
(X, Xy, X3, Xg) = X7 XD XD X, where np, ny, 13, and n, are integers > 0

and

O<xy<agandO0<x; <b

and0<xy<cand Q< x4 <d
0 elsewhere

1
le-XZ-XLX‘c(xl » X2, X3, X4) = abed
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5.1-3. The density function of two random variables X and ¥ is

5.1-4.

5.1-5.

5.1-6.

5.1-7.

5.1-8.

5.1-9.

Ty ) = w167

Find the mean value of the function

b=

5 0<X§% and
g, = -1 l<X
2

and/for
1] all other X and ¥

0¥ =<

b —

For the random variables in Problem 5.1-3, find the mean value of the func-
tion

X, V)= AT

Three statistically independent random variables X, Xa, and X3 have mean
values ¥} =3, X, = 6, and X3 = —2. Find the mean values of the following
functions:

(@) gX). X5, X3) = X; +3X, +4X;

@) (X, X5, X3) =X X045

(©) g(X1, Xr, X3} = -2X1 X, — 3K, X5+ 4X0X;

@) g(X), X2, Xa)=X1+ X, + X3

Find the mean value of the function
X . N=x'+7
where X and Y are random variables defined by the density function
' DA
Sl = T
with o a constant.

Two statistically independent random variables X and ¥ have mean values X
— E[X] =2 and ¥ = E[¥] = 4. They have second moments X? = E[X*] =8
and ¥? = E[Y?] = 25. Find:

(a) the mean value (b) the second moment and

(c) the variance of the random variable W =3X ~ Y.

Two random variables X and ¥ havemeans ¥ = 1and ¥ =2, varia.nces-c;2 =
4 and % = 1, and a correlation coefficient gyy = 0.4, New random variables

W and V are defined by
V=—X-12Y W=Xx+3Y

Find:

() the means . (b) the variances {c) the correlations and

{(d) the correlation coefficient ppy- of ¥ and W.

Two random variables X and Y are related by the expression
Y=aX+b

where g and b are any real numbers.

AR et e LA
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*5.1-10.

5.1-11.

5.1-12.

5.1-13.

5.1-14,

5.1-15.

5.1-16.

(@) Show that their correlation coefficient is
|1 if > 0 for any b
P=1-1 if @ <0foranyé
(b) Show that their covariance is
’ Cyy = aa}
where oﬁr is the variance of X.

Show that the correlation coefficient satisfies the expression
42,
lol=—2— <1
~/Hozitzo

Find all the second-order moments and central moments for the density func-
tion given in Problem 5.1-3,

Random variables X and ¥ have the joint density function
_ [ +240 —l<-x<1 and —3<y=<l
Sryy) = [ 0 elsewhere

{@) Find all the second-order moments of X" and ¥.
(&) What are the variances of X and ¥?
(¢) What is the correlation coefficient?

Find all the third-order moments by using (5.1-5) for X and ¥ defined in
Problem 5.1-12.

For discrete random variables X and ¥, show that:
{a) Joint moments are

N M
Mo =Y Y POy
) =1 j=1
(#) Joint central moments are
. N M

o= Y 3 P, y)(x: — Xy — F)F
=1 j=1
where P(x;, ) = P{X = x;, ¥ =y}, X has N possible values x;, and ¥
has M possible vatues y;.

For two random variables X and ¥:
Sr.y(x, ¥) = 0.158(x + 1)3(y) + 0.18(x)8(y) + 0.18()8(y -~ 2) |

+ 0480 — )&y +2) + 0.25(x — 18y — 1) + 0.58(x — 1)3(y — 3)
Find: (a) the correlation, (&) the covariance, and (¢} the correlation coefficient
of X and Y. (d) Are X and Y either uncorrelated or orthogonal?
Discrete random variables X and ¥ have the joint density

Jrx(x, p) = 0.48(x 4 a)d(y — 2) + 0.38(x — &) y — 2)
+0.18(x — a)8(y — o) + 0.280x — 1)3(y — 1)

Determine the value of &, if any, that minimizes the correlation between X and
¥ and find the minimum correlation. Are X" and ¥ orthogonal?
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§,1-17. For two discrete random variables X and Y

Sx,p(x, ) = 0.38(x — )8(y — &) + 0.58(x + )5y — ) + 0.28(x +2)5(y +2)

Determine the value of e, if any, that minimizes the covariance of X" and Y.
Find the minimum covariance. Are X and Y uncorrelated?

5.1-18. The density function

fX.Y(xiy):[ 9

0 elsewhere

Dcx<2 and O<y<3

applies to two random variables X and Y.
{a) Show, by use of (5.1-6) and (5.1-7), that X and ¥ are uncorrelated.
{b) Show that X and Y are also statistically independent.

5.1-19. Two random variables X and Y have the density function

i(x+ 057 O0<x<2 and

- 0 3
Fer(xy) = l43 =r=
0

elsewhere
{a) Find all the first- and second-order moments.

() Find the covariance.
(&) Are X and Y uncorrelated?

5,1-20. Define random variables ¥ and W by

V=X+a¥
W=X—aY

where a i5 a real number and X and Y are random variables. Determine a in
terms of moments of ¥ and ¥ such that ¥ and W are orthogonal.

#5,1-21, If X and Y in Problem 5. 1-20 are aaussmn, show that W and ¥V are statisti-

cally independent il o = o3 /0%, where 0% and o} are the variances of X and
Y, respectively.

*5,1-22, Three uncorrelated random variables Xy, X», and X; have means X, =1,

= —3, and ¥; = 1.5 and second moments ExH =25, El¥f1=11, and
EIX%] =13.5. Let ¥ = X, — 2X5 + 3X; be a new random variable and find:
(a) the mean value, (b) the variance of Y.

5.1-23. Given W = {aX + 3Y)* where X and ¥ are zero-mean random variables with

variances o == 4 and o% = 16. Their correlation coefficient is p = —0.5.
(a) Find a value for the parameter a that minimizes the mean value of #.
() Find the minimum mean value.

5.1-24. Two random variables have a uniform density on a circular region defined by

N Ly sr
elsewhere

Jrorte) = { e

Find the mean value of the function g(X, ¥) = 14 v

*5.1-25. Define the conditional expected value of a function g(X, ¥) of random vari-

5.1-26.

5.1-27.

5.1-2%.

5.1-30,

5.1-31.

5.1-32.

5.1-33.

5.1-34.

ables X and Y as
B, Vil = [ [ et v B dsdy

(a) If event B is defined as B={y, < Y < y;}, where y, < y;, are constants,
evaluate E[g(X, ¥)|B). (Hint: Use resuits of Problem 4.4-8).

(b) II Bis defined by B = {¥ = y} what does the conditional expected value of
part (g} become?

For random variablés ¥ and ¥ having X =1, ¥ =2, 0% =6, 0% =9, and
0= —— find (#) the covariance of X and ¥, (b) the correlation of X and ¥,
and (c) r.he IMOMERLS Mag and nigy.

¥=lx1=§¥=2 F:l—g-
and ¥.

(@) Find o%,0%, Ryy, and p.
(b} What is the mean value of the random variable W = (X +3¥)¥ +2Y + 37

and Cyy = —1/(2+/3) for random variables X

3 Let X and Y be statistically independent random variables with ¥ = =3

=4, ¥ =1, and Y2 =S5. For a random variable W =X —2Y -1 ﬁnd
(a) Ryy. (B) Ryw, (©) Ry, and (d) Cyy. (€) Are X and Y uncorreiated?

Statistically independent random variables X and ¥ have moments myg = 2,
nyy = 14, mgy = 12, and my, = —6. Find the moment fi5,.

A joint density is given as
1.5
Jry(x, )= [g(y+ )

Find all the joint moments m,, nand k=0,1,....

Decx<l and
elsewhere

Q<y=<l

Find all the joint central moments g, # and k=0, 1,..., for the density of
Problem 5.1-30.

Random variables X and ¥ are defined by the joint density of Problem 4.3-19.
Find all first- and second-order joint moments for these random variables. Are
X and Y orthogonal? Are they uncorrelated?

In a control system, a random voltage X is known to have 2 mean value
X=p =-2V and a second moment X2 =n, =9V, If the voltage X

is amMed by an amplifier that gives an output ¥ = —1.5X +2, find
O‘i-, Y Y O'zy, and ny

Two random variables X and ¥ are deﬁned by ¥=0, ¥=-1, X2=2,
=4, and Ryy = —2. Two new random variables W and {/ are:

W=2X+Y
U=-X-3Y.

Find W, U, W2, 17, Ry, 0%, and o%.
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5.1-35.

5.1-36.

5.1-37.

5.1-38.

*5.2-1.

*5.2-2.

*5.2-3.

*5.2-4.

*5.2-5.

*5.2-6.

Statistically independent random variables X and ¥ have respective means ¥

=1 and ¥ =—1/2. Their second moments arc X2=4 and Y2 = 11/4.

Another random variable is defined as # =3X 243Y+1. Find o7,
¥+ Ryrs Cxy, W, and Rypy.

Determine the correlation Ryy and correlation coefficient for the random
variables defined in Problem 4.5-9.

The cosine inequality, sometimes called Schwarz’s inequality for random vari-
ables X and ¥ is

(BT < E(X)E(Y?)

Show its validity. (Hinr: Expand the nonnegatwe quantity Ef(aX — Y)]
where a is a real parameter.)

The triangle inequality for random varables X and Y is
{E[X + YY) < (EQX3% +{E(r D>

Show its validity. (Hint: Expand and combine E[(X + ¥)*] and {[E(X1)]* +
[ECYH)™}1? and use the cosine inequality of Problem 5.1-37.)

Find the joint characteristic function for X" and ¥ defined in Problem 5.1-3.

Show that the joint characteristic function of N independent random variables
X;, having characteristic functions € y,(w) is

N
o) =[x e
el

For N random variables, show that

Py, @ o)l £ Dy x, (0,0} =1

For lwo zero-mean gaussian random vartables X and Y, show that their joint
characteristic fanction is

.yl wy) = exp{—Lokol + 2poxoyeen + aFed]}

Find the joint characteristic function for random variables X and ¥ defined by
Je.r(x p) = (1/27) wect (x/m) rect [(x + p)/n] cos(x +3)

Use the result to find the marginal characteristic functions of X and ¥.

Random variables X, and X3 have the joint characteristic function
Dy, xy (0, @) = [(L — 2oy )(1 —j2)] "7

where N = 0 is an integer.

(a) Find the correlation and moments myp and g,
(b) Determine the means of X, and X5.

(¢) What is the correlation coefficient?

*5.2-7.

*5.2-8.

The joint probability density of two discrete-random variables X and ¥ con-
sists of impulses located at all lattice points (mb, #d), whete m=0,1,..., M
andn=1,2,..., N with b > 0 and 4 > 0 being constants. All possible points
are equally probable, Determine ihe joint characterisic function.

Let X, k= 1,2,..., K, be statistically independent Poisson random variables,
each with its own variance b (Problem 3.2-13). Show that the sum X = X; +
X+ -+ Xy is a Poisson random variable. (Hinr: Use results of Problems

- 5.2-2and 3.2-31)

*5.2-9,

*3.2-10.

*5.2-11.

*35.3-1.

*5.3-2.

5.3-3.

5.34.

Show that the sum X or N statistically independent Poisson random variables
X;, with different means &;, is also a Poisson random variable but its mean is
b=by +by+ -+ by. [Hinr: Use (5.2-7) and the result of Problem 5.2-2.]

Show that the sum of N identically distributed statistically independent expo-
nential random variables X}, as given by (2.5-9) with @ = 0 and b replaced by
1/a, is an Erlang random variable, as defined in Problem 3.2-32 and in
Appendix F. [Hinf: Use (5.2-7) and the result of Problem 5.2-2.]

The chi-square random variable with one degree of freedom is defined by the
density

u(x)e™*/?

A YW,

where I'{1/2) is a constant approximately equal to 1.772. Show that the sum X
of N identically distributed statistically independent chi-square random vari-
ables, each with one degree of freedom, is a chi-square random variable with
N degrees of freedom as defined in Problem 3.2-27 and Appendix F [see (F-35)
through (F-39)]. [Hins: Use (5.2-7) and the result of Problem 5.2-2.)

Zero-mean gaussian random variables X and ¥ have variances 0% = 3 and

% =4, respectively, and a correlation coefficient p = —41.

(2} Write an expression for the joint density function.

(b} Show that a rotation of coordinates through the angle given by (5.3-11}
will produce new statistically independent random variables.

Find the conditional density functions fy{x|¥ = y) and fy(|X = x) applic-
able to two gaussian random variables X and ¥ defined by (5.3-1) and show
that they are also gaussian.

Assume o, = oy = ¢ in (5.3-1) and show that the locus of the maximum of the
joint density is a line passing through the point (X, ¥) with slope /4 (or
—nf4) when p=1 (or —1).

Two gaussian random variables X and ¥ have variances o> =9 and o5 = 4,
respectively, and correlation coefficient p. It is known that a coordinate rota-
tion by an angle —x/8 results in new random variables Y, and Y, that are
uncorrelated. What is p?
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*5.3-5.

5.3-6.

5.3-7.

5.3-8.

*5.39.

*5.4-1.

*5.4-2,

Let X and Y be jointly gaussian random variables where o =oyand p=—1.
Find a transformation matrix such that new random variables ¥ and ¥, are
statistically independent.

Gaussian random variables X and ¥ have first- and second-order moments
X¥=—-10,X2=1.16,¥ =15, ¥? = 2.89, and Ryy = —1.724. Find: (a) Cyy
and (%) p. Also find the angle @ of a coordinate rotation that will generate new
random variables that are statistically independent.

Suppose the annual snowfalls (accumulated depths in meters) for two nearby
alpine ski resorts are adequately represented by jointly gaussian random vari-
ables X and Y, for which 0 =0.82, oy =1.5m, oy =1.2m, and Ryy =
81476 m. If the average snowfall at one resort is 10m, what is the average
at the other resort?

Two gaussian random variables X and ¥ have a correlation coefficient
p = 025. The standard deviation of X is 1.9. A linear transformation (coor-
dinate rotation of w/6) is known to transform X and Y to new random
variables that are statistically independent. What is a%

Gaussian random variables X; and X,, for which Xy =2,0%, =9, X, = -1,
oﬁ-2 =4, and Cy,y, = —3, ate transformed to new random variables ¥; and ¥
according to

Yy =—-X|+X;
Yo = —2X] — 3X,.
Find: (@) X7, (6} X3, () ox, x> (@) 0%, (@) 6%, 20d () -
Random variables X and ¥ having the joint density
Sr.r(6) = Qulx — Du(y — Ny exp(d — 2xp)

undergo a transformation
I 1
m-[1 ]

to generate new random variables ¥; and Y5.

{¢) Find the joint density of ¥, and ¥5.

(b} Show what points in the p ¥, plane correspond to a nonzero value of the
new density.

Three random variables X;, X, and X; represent samples of a random noise
voltage taken at three times. Their covariance matirix is defined by

[30 1.8 1.1]
[cx]=]18 30 18]
| 1.1 1.8 3.0]
A transformation matrix
4 -1 -2
[f1=] 2 2 1
-3 -1 3

*5.4-3.

*551.

*5.5-2.

*5.6-1.

*5.6-2.

- *5.6-3.

coriverts the variables to new random variables Y|, ¥;, and Y;. Find the
covariance matrix of the new random variables.

Determine the density of ¥ = (X7 + X3)* when X, and X, are jointly gaus-
sian random variables with zero means and the same variance, (Hine: Use the
results of Example 5.4-2.)

Zero-mean gaussian random variables X, X, and X3 having a covariance
matrix

4 205 105
TCx]=1205 4 205
105 205 4

arc transformed to new variables
Y, =5X, +2X;, — X;
Yz = —X] +3X2+X3
Yy =2X, - X, +2X;

(a) Find the covariance matrix of ¥y, ¥5, and ¥3.
(#) Write an expression for the joint density function of ¥y, ¥,, and Y;.

Two gaussian random variables X, and X, are defined by the mean and
covariance matrices

=] 2] te-] :{’*’5]

Two new random variables ¥y and ¥, are formed using the transformation

m-; 1]

Find the matrices (@) [ F] and (5) [C]. (¢) Also find the correlation coefficient
of ¥, and ¥».

Show that (5.6-2) results from the translormations of {(5.6-).

Extend the text and show that (5.6-1) can be replaced by

Vi=T(X.X)="F + ‘/—202,1 In(X,)cos(2nX;)
=T, X)=F:+ ,/—2a§.z In(X}) sin{2mX5)

to generaie statistically_independent gaussian random variables ¥ and Ys,
with respective means Y, and ¥;, and respective variances crzy and a,

Extend the text that leads to (5.6-7) and find transformations of two statisti-
cally independent random variables X, and X, both uniform on (0, 1}, that
will directly create two correlated gaussian_random vanablcs Wl and W,
having corrclation coefficient gy, means W; and W, and variances afy
and oy,
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*5.6-4.

*5.6-5.

5.7-1.

5.7-2.

5.7-3.

5.74.

*5.8-1.

*5.8-2.

Work Problem 5.6-3, except generate the random variables R and © for which
{5.6-16) applies.

Repeat Example 5.6-1 except use N = 1000 values of X; and 1000 values of
X,. Note the improvement in the accutacy of the estimated quantities for
random variables ¥, and W5 as compared to the example.

Find the mean value of the power estimator of (5.7-7) and give arguments why
the estimator is unbiased. '

Find the variance of the power estimator of (5.7-7) and show that it
approaches zero as N becomes infinite.

If the factor 1/{(N = 1) in the variance estimator of (5.7-8) is replaced by 1/N,
show that the mean of the modified estimator is biased. Determine the amount
of bias. How does the bias behave as N becomes very large?

Rework Example 5.7-3 for 1000 values of Y generated by MATLAB.
Compare the new values of sample mean, second moment, and variance
with those found in the example. Are they more accurate?

A complex random variable Z is defined by
Z =cos(X)+jsin(Y)

where X and Y are independent teal random variables uniformly distributed
from —x to m.

{a) Find the mean value of Z.

{#) Find the variance of Z.

Complex random variables Z) and Z, have zero means. The correlation of the
real parts of Z; and Z, is 4, while the correlation of the imaginary parts is 6.
The real part of Z| and the imaginary part of Z, are statistically independent
as a pair, as are the imaginary part of Z, and the real part of Z;.

(@) What is the correlation of Z; and Z,?

(B Are Z; and Z, statistically independent?
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CHAPTER 6

Random Processes—Temporal Characteristics

6.0
INTRODUCTION

In the real world of engineering and science, it is necessary that we be able to
deal with time waveforms. Indeed, we frequently encounter random time
waveforms in practical systems. More often than not, a desired signal in
some system is random. For example, the bit stream in a binary communica-
tion system is a random message because each bit in the stream occurs ran-
domly. On the other hand, a desired signal is often accompanied by an
undesired random waveform, noise. The noise interferes with the message
and ultimately limits the performance of the system. Thus, any hope we
have of determining the performance of systems with random waveforms
hinges on our ability to describe and deal with such waveforms. In this chapter
we introduce concepts that allow the description of random waveforms in a
probabilistic sense.

61

THE RANDOM PROCESS CONCEPT

The concept of a random process is based on enlarging the random variable
concept to include time. Since a random variable X is, by its definition, a
function of the possible outcomes s of an experiment, it now becomes a func-
tion of both s and time. In other words, we assign, according to some rule, a
time function

x(,5) 6.1-1)
to every outcome s, The family of all such functions, denoted X(2, ), is called a
random process. As with random variables where x was denoted as a specific
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value of the random variable X, we shall often use the convenient short-form
notation x{7) to represent a specific waveform of a random process denoted by
X(0).

Clearly, a random process X(1, 5) represents a family or ensemble of time
functions when ¢ and 5 are variables. Figure 6.1-1 illustrates a few members of
an ensemble. Each member time function is called a sample fumction, ensemble
member, or sometimes a realization of the process. Thus, a random process
also represents a single time function when ¢ is a variable and s is fixed at a
specific value (ontcome). S

A random process also represents a random variable when ¢ is fixed and s
is a variable. For example, the random variable X{z(, s} = X(#;) is obtained
from the process when time is “frozen™ at the value 1. We often use the
notation X, to denote the random variable associated with the process X(r)
at time ¢,. X corresponds to a vertical “slice’” through the ensemble at time #,,
as illustrated in Figure 6.1-1. The statistical properties of X} = X{(1,) describe
the statistical properties of the random process at time ¢;. The expected value
of X, is called the ensemble average as well as the expected or mean value of

Xp 2l

Yt BN
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S |
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FIGURE 6.1-1
A continuous random process. [Reproduced from Peebles (1976} with permission of
publishers Addison-Wesley, Advanced Book Program.]
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b

e

:I‘
3
£

O R

the random process (at time £;). Since ¢; may have various values, the mean
value of a process may not be constant; in general, it may be a function of
time. We easily visualize any number of random variables X; derived from a
random process X(f) at times #;, i=1,2,...: .

Xi=X(t,5) = X(1) (6.1-2)

A random process can also represent a mere number when f and s are both
fixed.

Classification of Processes

It is convenient to classify random processes according to the characteristics
of z and the random variable X = X(¢) at time ¢, We shall consider only four
cases based on t and X having values in the ranges —oo <t < co and
—o0 < x < 00.F

If X is continuous and ¢ can have any of a continuum of values, then X (¢)
is called a continious random process. Figure 6.1-1 is an illustration of this
class of process. Thermal noise generated by any realizable network is a
practical example of a waveform that is modeled as a sample function of a
continuous random process. In this example, the network is the outcome in
the underlying random experiment of selecting a network. (The presumption
is that many networks are available from which to choose; this may not be the
case in the real world, but it should not prevent us from imagining a produc-
tion line producing any number of similar networks.) Each network estab-
lishes a sample function, and all sample functions form the process.]

A second class of random process, called a discrete random process, cor-
responds to the random variable X having only discrete values while ¢ is
continuons. Figure 6.1-2 illustrates such a process derived by heavily limiting
the sample functions shown in Figure 6.1-1. The sample functions have only
two discrete values: the positive level is generated whenever a sample function
in Figure 6.1-1 is positive and the negative level occurs for other times.

A random process for which X is continuous but time has only discrete
values is called a continuous random sequence {Thomas, 1969, p. 80). One
example of such a sequence can be formed by periodically sampling the ensen-
ble members of Figure 6.1-1. The result is illustrated in Figure 6.1-3. Since a
continuous random sequence is defined at only discrete (sample) times, it is also
frequently called a discrete-time (DT) random process; its sample functions are
often referred to as a DT random signal. Technically, a DT random process is a
set of random variables denoted by {X(¢,)} for sample times 1, = nT,, n =0,
+1, £2,..., with T, called the sampling interval. The sampling rate is 1/T,

F#0Other cases can be defined based on a definilion of random processes on a finite time interval (see for
example: Rosenblatt {1974}, p. 91; Prabhu (1965), p. 1; Miller (1974), p. 31; Parzen {1962), p. 7;
Dubes (1958), p. 320; Ross {1972), p. 56). Other recent texts on random processes are Helstrom
(1984), and Gray and Davisson (1986).

{Note that finding the mean value of the process at any time 715 equivalent to finding the average
voltage that would be produced by all the various networks at time 2.
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FIGURE 6.1-2

A discrete random process formed by heavily [imiting the waveforms of Figure
6.1-1. [Reproduced from Peebles (1976} with permission of publishers Addison—
Wesley, Advanced Book Program.)

samples per second. However, for most practical work it is sufficient to refer to
a DT random process as X(nT;)}. These types of processes are important in the
analysis of various digital signal processing (DSP) systems where the consant T

is not important.t The process is then usually referred to as a discrete-time

sequence, and notation X#] is adopted.}

TAs subsequently deseribed, T, becomes important in digital systems mainly when a digital signal is
required to be converted back to its analog form.

$In most DSP fiterature brackets are used-to imply 2 DT sequence from which some sampling
interval has been tacitly omitted. In essence, X[n] becomes a DT sequence function of index 2.
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FIGURE 6.1-3

A continuous random sequence (or discrete-time random process) formed by sam-
pling the waveforms of Figure 6.1-1. [ddapted from Peebles (1976}, with permission
of publishers Addison-Wesley, Advanced Book Program.] :

A fourth class of random process, called a discrete random sequence, cor-
responds to both time and the random variable being discrete. Figure 6.1-4
illustrates a discrete random sequence developed by sampling the sample fune-
tions of Figure 6.1-2. Alternatively, it can derive from rounding off samples of
a DT random process (continuous random sequence). This operation is exactly
what happens in DSP systems. The rounding consists of choosing a discrete
amplitude, from a finite set of discrete amplitudes, that most closely equals
each sample value of the DT random process. The operation is called guantiza-
tion and is necessary to convert the process to a form suitable for usein a digital
computer, For the DSP application one might refer to the quantized DT ran-
dom process as a digital process. However, as we shall subsequently note, there
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FIGURE 6.14

A discrete random sequence formed by sampling the waveforms of Figure 6.1-2.
[Adapted from Peebles (1976) with permission of publishers Addison—Wesley,
Advanced Book Program.)

is usually no need to model DSP signals as a digital process because the errors
committed in quantization are typically small enough to be ignored. Analysis
then proceeds based on the nonguantized DT random process.

Deterministic and Nondeterministic Processes

In addition to the classes described above, a random process can be described
by the form of its sample functions. If future values of any sample function
cannot be predicted exacily from observed past values, the process is called
nondeterministic. The process of Figure 6.1-1 is one example.

A process is called deterministic if future values of any sample function
can be predicted from past values, An example is the random process defined
by

(BRI A e ey

X} = A cos(wyt -+ O) (6.1-3)

Here A, ©, or w, (or all) may be random variables. Any one sample function
corresponds to (6.1-3) with particular values of these random variables.
Therefore, knowledge of the sample function prior to any time instant auto-
matically allows prediction of the sample function’s future values because its
form is known.

6.2
STATIONARITY AND INDEPENDENCE

As previously stated, a random process becomes a random variable when time
is fixed at some particular value. The random variable will possess statistical
propertics, such as a mean value, moments, variance, etc., that are related to
its density function. If fivo random variables are obtained from the process for
two time instants, they will have statistical properties (means, variances, joint
moments, etc.) related to their joint density function. More generally, ¥ ran-
dom variables will possess statistical properties related to their N-dimensional
joint density function. ’

Broadly speaking, a random process is said to be stationary if all its
statistical propertics do not change with time. Other processes are called non-
stationary. These statements are not intended as definitions of stationarity but
are meant to convey only a general meaning. More concrete definitions.follow.
Indeed, there are several “levels™ of stationarity, all of which depend on the
density functions of the random variables of the process. OQur definitions apply
to both continuous and discrete processes.

Distribution and Density Functions

To define stationarity, we must first define distribution and density functions
as they apply to a random process X(#). For a particular time ¢;, the distribu-
tion function associated with the random variable X, = X{(¢,) will be denoted
Fy(xy; 2y). It is defined ast

Fy(xi 1) = PLX(n) = x} _ (6.2-1)

for any real number x,. This is the same definition used all along for the
distribution function of one random variable. Only the notation has been
altered to reflect the fact that it is possibly now a function of time choice ;.

For two random variables X; = X(¢)) and X, = X(1,)}, the second-order
Joint distribution function is the two-dimensional extension of (6.2-1):

Fy(xy, x9; 1, 1) = P{X{1} < %, X(?) =< X3} (6.2-2)

FFy(x; t1) is known as the first-order distribution function of the process X'(r).
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In a similar manner, for ¥ random variables X; = X{(1;),i=1,2,..., N, the

Nth-order joint distribution function is
Fx(xl, [, 5 50N J SR tN) = P{X(f|) < o P X(f.N) < xN} (6.2“3)
Joint density functions of interest are found from appropriate derivatives

of the above three relationships:{

SxCeys 01} = dFy(xy; 1}/ dxy (6.2-4)
S e, %03 11, 1) = FFy(xy, X33 11, 1)/ (@ 8x2) (6.2-5)
Sl oo s XN e ) =BV Fy (s oo Xs By o, I8y -~ Bxy)  (6.2-6)

Statistical Independence

Two processes X{¢) and Y(1) are statistically independent if the random vari-
able group X(4,), X(t3), ..., X(ty) is independent of the group ¥ (1), ¥(13),
..., Y{t}) for any choice of times #;, &2, ..., ty» 8, 12, - - - » {34~ Independence
requires that the joint density be factorable by groups:

Fx vt e s XN Pl Fari Hy oo s B ooy Bh)
=l Xns e IV P o TR {6.2-7)

First-Order Stationary Processes

A random process is called stationary to order one if its first-order density
function does not change with a shift in time origin. In other words

S ) =fxCaiti +4) (6.2-8)

must be true for any ¢, and any real number A if X(?) is to be a first-order
stationary process.

Consequences of (6.2-8) are that fy(x;; #;) is independent of #; and the
process mean value E{X(#)] is a constant:

E[X(A] = X = constant (6.2-9)
To prove (6.2-9), we find mean values of the random variables X, = X{t) and
Xz:X(iz). FOI'X]_: ’

X, = EIX()] = jm xefie 1) 62-10)

—0a

tAnalogous to distribution functions, these are called first-, second, and Nih-order density functions,
respectively.

el AL Ak 1

FRTTERI E

Vi

For X;:
oS

E[X:) = E[X(12)] = J (6.2-11)

-0

x1.fx(xs ydxt

Now by letting & = #; + A in (6.2-11), substituting (6.2-8), and using (6.2-10),
we getl
E[X(6 + &) = EIX(1,)]

which must be a constant because £, and A are arbitrary.

(6.2-12)

Second-Order and Wide-Sense Stationarity

A process is called stationary 1o order two if its second-order density function
satisfies

Sr (@ x23 g, t2) = flxy, Xos fy + A, 12 + A) (6.2-13)

for all 1, t,, and A. After some thought, the reader will conclude that (6.2-13)
is a function of time differences £, — ¢, and not absolute time (let arbitrary
A = —1)). A second-order stationary process is also first-order stationary
because the second-order density function determines the lower, first-order,
density.

Now the correlation E[X;Xa] = E[X(1))X (23] of a random process will, in
general, be a function of ¢; and ;. Let us denote this function by Ryy(f1, &)
and call it the autocorrelation fimnction of the random process X(2): -

Ryx(1y, 12} = E[X(1) X (1)) (6.2-14)

A consequence of (6.2-13), however, is that the autocorrelation function of a
second-order stationary process is a functio\r‘NKlyof time differences and not
absolute time; that is, if

T=1I —At]_ (6.2-15)

then (6.2-14) becomes
Ryxlty, 1 +7) = EX()X(1) + )] = Ryx(7) (6.2-16)

Proof of (6.2-16) uses (6.2-13); it is left as a reader exercise (see Problem 6.2-2).
Many practical problems require that we deal with the autocorrelation
function and mean value of a random process. Problem solutions are greatly
simplified if these quantities are not dependent on absolute time. OF course,
second-order stationarity is sufficient to guarantee these characteristics.
However, it is often more restrictive than necessary, and a more relaxed
form of stationarity is desirable. The most useful form is the wide-sense
stationary process, defined as that for which two conditions are true:

+Note that the varable x, of integration has been replaced by the alternative variable x| for con-
venience.
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E[X()] = X = constant (6.2-174)
E[X(NX {1+ )] = Ryx(z) (6.2-17b)
A process stationary to order 2 is clearly wide-sense stationary. However, the
converse is not necessarily true. : C
EXAMPLE 6.2-1. We show that the random process
X(H) = Acos(wyt + @)
is wide-sense sfationary ilit is assumed that A and ey, are constant'szand e

is a uniformly distributed random variable on the interval (0, 2x). The
mean value is

2
EX(0) = L A cos(mwg! + 9)%(19 =0

The autocorrelation function, from (6.2-14) with f{ =t and & =1r+7,
becomes

Ryx(1, t + 1) = E[A cos{ey! + ©)A cos(ewy? + eyt + O)]

42

= TE{cos(wgr) 4 cos(2wy! + wyT +20)]
Ve A

= cos(wy )+ 7E[cos(2ruot + wytT +20)]

The second term easily evaluates to 0. Thus, the autocorrelation function

depends only on 7 and the mean value is a constant, so X(f) is wide-sense

stationary.

When we are contcerned with two random processes X(#) and ¥{2), we say
they are jointly wide-sense stationary if each satisfies (6.2-17) and their cross-
correlation function, defined in general by

Ryy(t, f2) = E[X (1)) Y(#2)] (6.2-18)
is a function only of time difference T = # — ¢, and not absolute time; that is,
if

Ryy(t, t+7) = EX()Y(t + )] = Ryy(7) (6.2-19)

N-Order and Strict-Sense Stationarity

By extending the above reasoning to N random variables X; = X(),
i=1,2,...,N, we say a random process is stationary to order N if its Nth-
order density function is invariant to a time origin shift; that is, if

Selen o oxps by, ) =Sl L X A e A) (6.2-20)
for all £,,...,¢y and A, Stationarity of order & implies stationarity to all
orders k& < N. A process stationary to aff orders N=1,2,..., is called

strict-sense stationary.

5
i
3
o

Time Averages and Ergodicity

The time average of a quantity is defined as

1 T
J= lim — -] dt 6.2-21
AL = fim J_T[] ©.2:21)
Here A4 is used to denote time average in a manner analogous to F for the
statistical average. Time average is taken over all time because, as applied to
random processes, sample functions of processes are presumed to exist for all
time.

Specific averages of interest are the mean value ¥ = A[x(s)] of a sample
function (a lowercase letter is used to imply a sample function), and the time
autocorrelation function, denoted 2,..(t) = A[x(D)x(t + 7)]. These functions are
defined by

- R I
%= Al()] = Jim = J_Tx(t) dt (6.2-22)
Rr(7) = A[(Dx(t + )]
T
= fim %Jﬁr HOx( + D dr 6.2-23)

For any one sample function of the process X(¥), these last two integrals
simply produce two numbers (for a fixed value of 7). However, when all
sample functions are considered, we see that ¥ and £,..(z) are actually random
variables. By taking the expected value on both sides of (6.2-22) and (6.2-23),
and assuming the expectation can be brought inside the integrals, we obtainy

Ez=X (6.2-24)
E[Zx (D) = Ryx(®) (6.2-25)

Now suppose by some theorem the random variables X and #,.(7) could
be made to have zero variances; that is, x and £,.(7) actually become con-
stants. Then we could write

X=X
@xx(-c) = RXX(-E)

In other words, the time averages X and 2,.(t) equal the statistical averages X
and Ryy(1), respectively. The ergodic theorem allows the validity of (6.2-26)
and (6.2-27). Stated in loose terms, it more generally allows all time averages
to equal the corresponding statistical averages. Processes that satisfy the ergo-
dic theorem are called ergedic processes.

Ergodicity is a very restrictive form of stationarity, and it may be difficuit
to prove that it constitutes a reasonable assumption in any physical situation.

(6.2-26)
(6.2-27)

{We assume also that X'(f) is a stationary process so that the mean and the autocorrelation function
ate not tims-dependent.
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Nevertheless, we shall often assume a process is ergodic to simplify problems.
In the real world, we are usually forced to work with only o mple function
of a process and therefore must, like it or not, derive mean value, correlation
functions, etc., from the time waveform. By assuming ergodicity, we may infer
the similar statistical characteristics of the process. The reader may feel that
our theory is on shaky ground on the basis of these comments. However, it
must be remembered that all our theory only serves to model real-world
conditions. Therefore, what difference do our assumptions really make pro-
vided the assumed model does truly reflect real conditions?

Two random processes are called jointly ergodic if they are individually
ergodic and also have a time cross-correlation function that equals the statis-
tical cross-correlation function: '

T
B () = Jim ——J ()t + ) dt = Ryy (D) (6.2-28)
T—ooo -7

The above discussion of ergodic processes is meant to convey only a
general idea of the meaning of ergodicity; it is not intended to be very rigorous
or precise. Indeed, a careful discussion of ergodic processes requires that
several levels of ergodicity be defined, somewhat analogous to stationarity
of processes. In the following two subsections we give slightly more detailed
discussions of two forms of ergodicity. For more rigorous additional devel-
opments the reader is referred to the literature [see, for example, Papoulis
(1965, 1991), pp. 323-332, 427442; Gray and Davisson (1986), pp. 170-
178; Gardner (1990), Chapter 8; and Viniotis (1998), pp. 413-417].

Mean-Ergodic Processes

A process X{f) with a constant mean value X is called mean-ergodic, or ergadic
in the mean, if its statistical average X equals the time average X of any sample
function x(f) with probability 1 for all sample functions; that is, if

EXWO=X = A[x()] =%

with probability 1 for all x(¢).

To develop a proof of the preceding statements, we start by assuming four
conditions are true for X (). First, X(#) has a finite constant mean X for all ¢.
Second, X (7} is bounded; that is, [x(#)| < co for all 7 and all x{¢) comprising
X(#). Third,

(6.2-29)

Jim lJT EX(D}dt < 00 (6.2-30)

2r
The second and third asSumptions are necessary to allow the interchange of
operations of expectation and integration subsequently needed. The fourth
assumption is that X(¢) is a regular process [Prabhu {1965), p. 20]; that is,

EIX(DP] = Ryy(t, 1) < o0 (6.2-31)

3
b
el
&
E
-3

For a real wide-sense stanonary process this is equivalent to
E{[X(nf) = RX,"_(,O) < 00, and since X is finite by assnmption, it means Cyy
(0) = Ry»(0) — X~ < oo is also true. {See (6.3-21) for 2 deﬁnmon of the auto-
covarignee function Cyy(1, 1 +1).]

Equation (6 2-22) represents a number ¥ for a given process sample func-
tion x{7). If we imagine the time average 1s taken of the process, we can define
a random variable 4y by

1T
Ay = ?153(1,0 ﬁLr X dt (6.2-32)
to define all values of % produced by all process sample functions. The mean
value of Ay is

Ay = E[4y]
.1 T 1T
= E[}Lngoﬁj_r}.’(t) dr] = j!i:}goﬁj_Tth = (6.2-33)
Cn use of Chebychev’s inequality of (3.2-10) Vv,rc have
Plldy — Ayl <€) > 1— (o4, /¥) anye>0 (6.2-34)

where 02 is the variance of Ay. Now for any € > 0, no matter how small, if
aix =0, then 4 ¥ = Ay with probability 1. In other words the random vari-
able Ay is a constant.

From (6.2-34) we have found that Ay = %, all x(f), with probablhty Iif
the variance of 4 is zero. We next show conditions under which the variance
is zero. Begin with

0%, = El(Ay — AgF] = E{[ lim %J (X () ~ X1 dr] ]
. 1 2,T T o _
- E{ gin (5) |, [ ovo = Fixen — e }

TS S
:T!E}-olc(z_f) J J Cxx(f, !])dfdl|

Thus, aﬁ = 01if, and only if, the last form of (6.2-35) equals zero. This general
condition can be specialized for wide-sense stationary processes where
Cyy(t, H}=Cyy(3), t= H—t dny =dz:

1 2T T—t
@ = fim [ J J
i T"W(ZT) =T Jie—1—¢

This integral represents using horizontal Riemann stnps in the region of
integration over the tt plane as sketched in Figure 6.2-1. If vertical strips
are used instead, ditd the symmetry Cxx(mr) Cxx(r) is invoked, the
integral evaluates readily (Problem 6.2- 19)

(6:2-35)

Cxx(D)drdt (6.2-36)

UZ _ i 1 2T | l 1 2T
A = Tﬂoﬁ‘[-zr I- o7 Cxx(r)dr < llm ﬁ.l.—zr 1Cyx(D)|dr (6.2-37)
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‘

FIGURE 6.2-1
Closed region of integration applicable to (6.2-36).

Finally, we see from (6.2-37) that the variance is zero if

1. Cyy(0) < co and Cyy(z) = 0 as {7} — o0, and (6.2-38a)
o 41

2. j [Cxx()] < o0 (6.2-385)
—00

Consequently, X(#) will be mean-ergodic.

EXAMEPLE 622, A zero-mean wide-sense stationary process X(f) has an
autocorrelation function Ryy(r) = Cyx(r) = exp(—2¢c|t]) for e > 0 a con-
stant. We determine if X (/) is mean-ergodic. Let 7 represent the middle
form of (6.2-37) and observe that Cyy{(—t} = Cyx(7), 50

I= Jim . ZT(I — D)2 dr
= T L 27
Simple integrals from Appendix C produce

s«irl (1—e*T 4are"‘”)] =0

Since Cyy(7) satisfies (6.2-37) and ok ¢ = 0, then X(z) is mean-ergodic.

1
7= lim [m (1—e*") -

T—oo

Let a sequence of values be generated from a wide-sense stationary ran-
dom process X(t) with constant mean value X by sampling at 2¥ 4 1 times at
periodic points in time from —7 to + 7. The samples may be represented by a
discrete-time sequence of identically distributed random variables XTn] for
sample n. Samples are assumed to be statistically independent, which is
approximately true in practice if samples are scparated far enough in time.
The discrete sequence is called mean-ergodic if the time average of samples
equals the statistical average with probability 1.

. I & .
Ay = Jim oy 2 X=X,

probability 1 (6.2-39)

S e el

P b

i

It can be shown that this resuit is true if

_ 1 2N |f'1| .
2 _ — — =
0y = El(dx — Ax)]= lim INT 1"=§_2N(l TN+ I)Cxx["] 0

(6.2-40)

[See Papoulis, 1991, p. 432; Childers, 1997, p. 277; Leon-Garcia, 1989, p. 364.]

Correlation-Ergoedic Procésses: -

Analogous to a mean-ergodic process, a stationary continuous process X(£)
with autocorrelation function Ryy(%) is called autocorrelation-ergodic or ergo-
dic in the autocorrelation if, and only if, for all =

T
lim % J_T X(OX(t + 1) dt = Ry (2) (6.2-41)

T—oo

A necessary and sufficient condition for (6.2-41) to be true follows a similar
development leading to (6.2-37) except with X(¢) replaced now by

W) = X(OX(t + 1) (6.2-42)
where A is a time offset. We have )
E[W{H] = E[X(DX(t + X)) = Ryy(L) (6.2-43)
Ryw(n) = E[W(W (i +1)]
=EX(DX(+0X+ DX+ 7t+ )] (6.2-44)
Crw(t) = Ry (z) — {EIW (O]
= Ry (z) — Rex () (6.2-45)

Thus, X(¢) is avtocorrelation-ergodic if Cyy(r) of the middle form of (6.2-37)
is replaced by Cyy(x) of (6.2-45), and the integral is zero. This and other
forms of ergodicity are described in Papoulis (1984). We note that autocorre-
lation-ergodicity requires fourth-order moments of X (1), as defined in (6.2-44),
For processes in general this requirement may be severe. However, for gaus-
sian processes, fourth-order moments are known in terms of only moments of
order two or less [Thomas (1969), p. 64).

A wide-sense stationary sequence X[#] is autocorrelation-ergodic if, and
only if, for all &

. I N
A;n_:ggommz_ﬂ X[ X[n + k] = Ryxlk]

(6.2-46)

_[Childers (1997), p. 278].
% #-" Finally, we mention that two processes X(¢) and ¥(¢) may be called cross-

correlation-ergodic, or ergodic in the correlation, if the time cross-correlation
function is equal to the statistical cross-correlation function.

193

CHAPTER 6:
Random
Processes—
Temporal
Characteristics




194

Probability,
Random Variables,
and Random
Signal Principles

63
CORRELATION FUNCTIONS

The autocorrelation and cross-correlation functions were introduced in the
previous section. These functions are examined further in this section, along
with their properties. In addition, other correlation-type functions are intro-
duced that are important to the study of random processes.

Autocorrelation Function and Its Properties

Recall that the autocorrelation function of a random process X(z) is the
correlation E[X,X>] of two random variables X; = X{(#,) and X; = X(f;)
defined by the process at times #; and #,. Mathematically, .

Ryx(t, ) = E[X (1) X(22)] (6.3-1)

For time assignments, £ = and & = + r, with 7 a real number, (6.3-1)
assumes the convenient form
Ryy(t,t-+7) = E[X(NX(t 4 )] (6.3-2)

If X(#} is at least wide-sense stationary, it was noted in Section 6.2 that
Ryy(t, t + ) must be a function only of time difference r = #; — ¢,. Thus, for
wide-sense stationary processes

- EX()X(t + 7))

Ryx(7) (6.3-3)

_For such processes the autocorrelation function exhibits the following proper-
ties:

(1) |Rxx(D)] < Ryx(0) (6.3-4)

(2} Ryx(~7) = Ryx(7) (6.3-5)

(3) Ryx(0) = ELX* (D) (6.3-6)

The first property shows that Ryy{r) is bounded by its value at the origin,
while the third property states that this bound is equal to the mean-squdred
value called the power in the process. The second property indicates that an
autocorrelation function has even symmetry.

Other properties of stationary processes may also be stated [see Cooper
and McGillem (1971}, pp- 112-114, and (1986), pp. 196-199, Melsa and Sage
(1973), pp. 207-208, and Leon-Garcia (1989), pp. 357-358]:

4) If E[x(] =X # 0 and X(¥) i5 ergodic with no periodic components
then
fim Ryy(r) = X* 6.3-7)
fr}—>co U

(5) If X(¢) has a periodic component, then Ryy(z) will have a periodic
comaponent with the same period. {6.3-8)

s sl Bl e

R N,

s
>

WAl b ity i,

{6) If X(1) is ergodic, zero-mean, and has no periodic component, then
I]{]_ﬂ'l Rxx(l') (6-3'9)
T|—>

(7) Ryy(r) cannot have an arbitrary shape. (6.3-10)

Properties 4 through 6 are more or less self-explanatory. Property 7 simply
says that any arbitrary function cannot be an autocorrelation function. This
fact will be more apparent when the power density spectrum is introduced in
Chapter 7. It will be shown there that Ryy(r) is related to the power density
spectrum through the Fourier transform and the form of the spectrum is not
arbitrary. .

EXAMPLE 6.3-1. Given the autocorrelation function, for a stationary ergo-
dic process with no periodic comp0nents, is

Rxx(T) 25+ 1+ 62 3

we shall find the mean value and vanancc of the process X(r). From
property 4, the mean value is E[X(¢)] = X = +/25 = %5. Note that prop-
erty 4 yields only the magnitude of X it cannot reveal its sign. The
variance is given by (3.2-6), so

o% = E[x*(9)] — (E[X(1)])’
But E[X%(5)] = Ryy(0) = 25+ 4 = 29 from property 3, so

0r =29-25=4

EXAMPLE 6.3-2. Let X(?) be a wide-sense stationary random process with
autocorrelation function

Ryx() =& ™

where a > 0 is a constant. We assume X(f) “amplitude modulates” a
“carrier’’ cos{uy? + ©) as shown in Figure 6.3-1a, where e, is a constant
and © is a random variable uniform on (—m, ) that is statistically inde-
pehdent of X(f). We determine the autocorrelation function of ¥ ().

Ryy(t, 1+ 2} = E[Y(OY (¢t + 7)]
= E[X(D)X(t + t)cos(wyt + B) coslwyl + wpt + G))]
= RXX(I)EE[cos(wor) + cos(2wg! + ayt + 28]
Since

Elcosapt + oyt + 20)] = J %[cos@wc,t + a7+ QB)] do
=0
we_have o
Ryp(t, £+ 1) = L Ryy() cos(eyr) =
which is sketched in Figure 6.3-15.

Ryy(?)
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X —>®—> ¥() = X(2) cos (wet + €)

€08 {wyt + &)
{a)
Ryy(7)
1Rt
I A
SR, . ~. Cycles at angular
2 H(r)\} i - fatearg

\Z..___\’_/_“\\j /\j'—’y___}-/ T

®

FIGURE 6.3-1
{a)-Amplitude modulation of a carrier with random phase by a random process
X(0. (6) A plot of the ainocorrelation function of Y(1).

Cross-Correlation Function and Its Properties

The cross-correlation function of two random processes X (f) and Y(r) was

defined in {6.2-18). Setting ¢; = ¢t and T = 7, — #;, we may write (6.2-18) as
Ryylt, t+0) = E[X(NY(t + 1)] (6.3-11)

If X(2) and ¥{¢) are at least jointly wide-sense stationary, Ryy(f, f-+1) is
independent of absolute time and we can write

Ryy(7) = ELX(DY(t + 7)) (6.3-12)

If

Ryy{t.t+7) =0 (6.3-13)

then X(f) and Y{(¢) are called orthogonal processes. If the two processes are
statistically independent, the cross-correlation function becomes

Ryy(t, 1+ v) = E[X(DIE[Y (¢ -+ 2)]

If, in addition to being independent, X(r).and. ¥(r) are at least wide-sense
stationary, (6.3-14) becomes -

ny(l') = A_’Y—'

(6.3-14)

6315

which is a constant.
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We may list some properties of the cross-correlation function applicable
to processes that are at least wide-sense stationary:

(1} Ryp(—1) = Ryx(1) 6.3-16)
@) 1Ryy(@)] = v Ryx(0)Ryy(0) {6.3-17)
(3) IRyy(D)] = I[Rxx(0) + Ryy(0)] (6.3-18)

Property 1 follows from the definition (6.3-12). It describes the symmetry of
Ryy(z). Property 2 can be proven by expanding the inequality

E[{Y(t + 1)+ aX (@] = 0 (6.3-19)

where « is a real number (see Problem 6.3-18). Properties 2 and 3 both con-
stitute bounds on the magnitude of Ryy(z). Equation (6.3-17) represents a
tighter bound than that of (6.3-18), because the geometric mean of two posi-
tive numbers cannot exceed their arithmetic mean; that is

VRyx@Ryy(0) < H[Ryx (0) + Ryyp(0)] (6.3-20)

EXAMPLE 6.3-3. Let two random processes X (¢} and Y(£) be defined by
X(#) = A cos(wy!) + Bsin(wy?)
Y () = Bcos(wyl) — A sin(wg?)
where 4 and B are random variables and ey is a constant. It can be shown
(Problem 6.3-3) that X(¢) is wide-sense stationary if 4 and B are uncor-
related, zero-mean random variables with the same variance (they may
have different density functions, however). With these same constraints
on A4 and B, Y(f} is also wide-sense stationary. We shall now find the
cross-correlation function Ryy (2, ¢+ 7) and show that X{r} and ¥{s) are
Jointly wide-sense stationary. By use of (6.3-11) we have
ny(l, t+1)= E[X(I)Y(I'l' I')]
= E[AB cos{wyf) cos(wy! + wyt)
+ B sin{ewy) cos(aq! + wqt)
. cos{wgl) sinfwg! + wyT)
— ABsin{wy!) sinfwy! + wyT)]
= E[AB]cos(2wyt + wpT)
+ E[B?] sinfey ) cos{ewg! + )
— E[4%]cos(ayf) sin(wy! - eyt)
Since 4 and B are assumed to be zero-mean, uncorrelated random vari-

_ ables, E[4B] = 0. Also, since 4 and B are assumed to have equal var-
¥ ‘iances, E[4%) = F[B*] = ¢” and we obtain

Ryy(t, f + ) = —¢ sinfewy?)
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Thus, X(¢) and Y{7) are jointly wide-sense stationary because Ryy
(#,r+ 1) depends only on t.

. Note from the above results that cross-correlation functtons are not
necessarily even functions of = with the maximum at T =0, as is the case
with autocorrelation funetions.

Covariance Functions

The concept of the covariance of two random variables, as defined by (5.1-13),
can be extended to random processes. The autocovariance function is defined
by

Cyx(t t+ vy = E[{X (D) — E[X(OIMX (e +7) — E[X(1 + 7))} (6321
which can also be put in the form
Cyy(t, £+ 1) = Ryy(t, 1 +7) — EIX(D)EX (¢ + )] (6.3-22)
‘The cross-covariance furiction for two processes X(2) and Y(#) is defined by
Cyy(t, t -+ 7) = E[{X(0) — EIX(OIHY (7 + 7) — E[Y (e + 7)]]] (6.3-23)
or, alternatively, _
Cyy{t, 1+ 1) = Ryp(t, t + ©) — E[X())E[Y{(t + 7)) (6.3-24)

For processes that are at least jointly wide-sense stationary, (6.3-22) and
(6.3-24) reduce to ’

Cyx(?) = Ryy(z) — (6.325)

énd
Cyy(t) = Ryy(7) — (6.3-26)

The variance of a random process is given in general by (6.3-21) with
t=0. For 2 wide-sense stationary process, variance does not depend on
time and is given by (6.3-25) with T =0:

0% = E{{X () — EIX(OF'] = Rex (@) — X° (6.3-27)
For two random processes, if
Cyr(t, t+7) = (6.3-28)
they are called uncorrelated. From (6.3-24) this means that
Ryylt, 1 + 1) = E[X(DIE[Y(t + )] (6.3-29)

Since this result is the same as (6.3-14), which applies to independent pro-
cesses, we conclude that independent processes are uncorrelated. The converse
case is not necessarily true, although it is true for joint gaussian processes,
which we consider in Section 6.5.

RO

Sl

-Diserete-TFime-Processes-and-Sequences

The preceding results for various correlation functions hold for BE-processes
-and-DF sequences. However, such processes-and sequences are defined only at
thé “sample” times nT}, as discussed in Section 6.1. Therefore, time offsets,
dengled above generally by 7, can now have only discrete values, say, kT,. For
_a-—D;"—-precess X(nT,) we summarize the specific definitions for the process
mean, autocorrelation, and autocovariance functions as follows:

Mean = E[X(nT,)] (6.3-30)
Ryy(nTo nT, +kT)) = E[X(HTS)X(JTT + kT (6.3-31)
CXX(nTsv HT; + kTs)
= E({X(nT,) — E[XGIINX (T, + kT) ~ EQX(n T, + kT))
. = Ryy(nT, 0T, + kT — E[X(nTE[X (T, 4 kT,)] {6.3-32)

Similar statements hold for a DT process Y(nT,). For cross-correlation and
cross-covariance functions we have

Ryy(nT,, nT, +kT,) = E[X(nT)Y(nT, + kT,)] (6.3-33)
Car(nT,, T, +KT,) ) :
= E((X(nT,) — EIX(TIY Y (nT, + kT.) — ELY (T, + kTN
= Ryy(nTy, nT, + kT,) — E[X(nT)E[¥(nT, + kT,)] (6.3-34)

For the functions Ryy(-,-) and Cyx(-,-) simply interchange ¥ and ¥ in
(6.3-33) and {6.3-34).

For processes that are at least jointly wide-sense stationary, our expres-
sions reduce to constants (¥ or Y) and functions of only k7.

EX(nT) =X EYnT)=7 (6.3-35)
Ryx{nTy, 0T, + kT;) = Ryy(kT.) (6.3-36)
Ryy(nTy, 0T, + kT,) = Ryy(kT,) (6.3-37)
Cyx(nT, 1T, + kT) = Ry (kT) ~ X2 (6.3-38)
Cyy(nTy, nT, + kT,) = Ryy(kT,) — 7* (6.3-39)
Ryy(nds, nT; + kT) = Ryy(kT,) (6.3-40)
Ryx(aTs, nT; + kT5) = Ryx(kT,) (6.3-41)
Cxy(nTo, 0T + KT} = Ryy(kT) — XY (6.3-42)
Cyx(T,, 0T, +kT) = Ryy(kT,) — ¥ X {6.3-43)

Finally, we note that for DT sequences, where the dependence on Ty is
dropped (only implied) as discussed in Section 6.1, all the above results apply
if 7 is everywhere omitted and the functional notation is everywhere replaced
by brackets As examples: Ryy(nT,, nT, + kT) becomes Ryy[n, 7 -+ k] while E
[X(nT,)] becomes E{Xn]}.
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6.4
MEASUREMENT OF CORRELATION FUNCTIONS

In the real world, we can never measure the true correlation functions of two
random processes X(r) and Y (f) because we never have all sample functions of
the ensemble at our disposal. Indeed, we may typically have available for
measurements only a portion of one sample function from each process.
Thus, our only recourse is to determine time averages based on finite time
portions of single sample functions, taken large enough to approximate true
results for ergodic processes. Because we are able to work only with time
functions, we are forced, like it or not, to presume that given processes are
ergodic. This fact should not prove too disconcerting, however, if we remember
that assumptions only reflect the details of our mathematical model of a real-
world situation. Provided that the model gives consistent agreement with the
real situation, it is of little importance whether ergodicity is assumed or not.

Figure 6.4-1 illustrates the block diagram of a possible system for measur-
ing the approximate time cross-correfation function of two jointly ergedic
random processes X(#) and Y (). Sample functions x(f) and (¢} are delayed
by amounts T and T — , respectively, and the product of the delayed wave-
forms is formed. This product is then integrated to form the output which
equals the integral at time #; + 2T, where 1, is arbitrary and 27T is the integra-
tion period. The integrator can be of the integrate-and-dump variety described
by Peebles (1976, p. 361).

If we assume x(7) and y(f) exist at least during the interval -7 < rand 1, is
an arbitrary time except 0 < #;, then the output is easily found to be

t+T
R, +2T) = ﬁJ-; i x(v(t+ 0 dr {6.4-1)

Now if we choose 1, = 0} and assume T is large, then we have

T
R,(2T) = %jT Y+ DS B(D) = Ryy(D) (642)

1y+27T
% t: (ydt | R,(y +2T}

FIGURE 6.4-1
A time cross-correlation function measurement system. Autocorrelation function
measurement is possible by connecting points 4 and B and applying either x(f) or

M.

1Since the processes are assumed jointly ergodic and therefore jointly stationary, the integral (6.4-1)
will tend 1o be independent of ¢ if T is large enough.

Thus, for jointly ergodic processes, the system of Figure 6.4-1 can approxi-
mately measure their cross-correlation function (z is varied to obtain the
complete function).

Clearly, by connecting points 4 and B and applying either x(?) or y(f) to
the system, we can also measure the autocorrelation functions Ryy(r) and
Ryy(7).

EXAMPLE 6.4-1. We connect points 4 and B together in Figure 6.4-1 and
use the system to measure the autocorrelation function of the process X (¢)
of Example 6.2-1. From (6.4-2}

1 7
R,(2T) = ﬁj A% cos(angt + 6) cos(ewp! + 6 + wot) dt
-7 -
2
Tar

In writing this result & represents a specific value of the random variable
, the value that corresponds to the specific ensemble member being used
in (6.4-2). On straightforward reduction of the above integral we obtain

R,2T) = Ryx(z) +&(T)

T
J [cos(ewyt) + cos(2wy! + 26 + wyT)] dt
-7

where

Ryx(z) = (47/2) cos{an7)
is the true autocorrelation function of X (7), and

#(8) = (A2/2) cos(ayT + 20) P2%T)
2apT
is an error term. If we require the error term’s magnitude to be at least 20
times smaller than the largest value of the true autocorrelation function
then |e(T)| < 0.05Ryx(0) is necessary. Thus, we must have 1/2wm,T < 0.05
or

T > 10/e,

In other words, if T > 10/wy the error in using Figure 6.4-1 to measure
the autocorrelation function of the process X(f) = A cos(wy! + @) will be
5% or less of the largest value of the true autocorrelation function.

6.5
GAUSSIAN RANDOM PROCESSES

A number of random processes are important enough to have been given
names. In this section we shall discuss the most important of these, the gaus-
sian random process.

- Consider a continuous random process such as illustrated in Figure 6.1-1
and define ¥ random variables X} = X(3))....,X; = X(#;).... Xy = X{ty)
corresponding to N time instants #;,...,8,..., & If, for any N=1,2,...
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and any times ¢, ..., iy, these random variables are jointly gaussian, tha? is,
they have a joint density as given by (5.3-12), the process is called gaussian.
Eguation (5.3-12) can be written in the form

exol=(/Df = A" -2 o5y

JenMcx

where matrices [x — ¥] and [Cy] are defined in (5.3-13) and (5.3-14) and
(5.3-15), respectively. The mean values X; of X(z) are
" X; = EiX]] = ElX(4) (6.5-2)
The elements of the covariance matrix [CX] are
Cax = Cr, = EIX; — X)Xz — X
= E[{X (%) — EIX (@)X (%) — EIX ()]
= Cxx{t;, 1) (6.5-3)
which is the autocovariance of X(¢;) and X(#) from (6.3-21).
From (6.5-2) and (6.5-3), when used in (6.5-1), we see that the mean and

autocovariance functions are all that are needed to completely specify a gaus-
sian random process. By expanding (6.5-3) to get

Crx{ti, 1) = Rxx (8 1) — EIX (E[X ()] (6.5-4)

we see that an alternative specification using only the mean and autocorrela-
tion function Ryx(f;, #) is possible. )

If the pgaussian process is not stationary the mean and autocovariance
functions will, in general, depend on absolute time. However, for the impor-
tant case where the process is wide-sense stationary, the mean will be constant,

Y =EX(@)N=X  (constant) (6.5-5)
whﬂe the autocovariance and autocorrelation functions will depend only on
time differences and not absolute time,

Cx (s 1) = Cxx(te — 1)) ©(6.5-6)
Ryxtps te) = Ryx{ti — 1)) (6.5-7)
1t follows from the preceding discussions that a wide-sense stationary

gaussian process is also strictly stationary. )
We illustrate some of the above remarks with an example.

Sx@ep o Xnifyy e ) =

EXAMPLE 65-1. A gaussian random process is known fo be wide-sense
stationary with a mean of ¥ = 4 and autocorrelation function

Ryx(7) = 25¢73

We seek to specify the joint density function for three r'andom variables
X(@), i =1,2,3, defined at times #; =t + [(i — 1)/2)], with fy a constant.
Here t, —t;=(c—Df2,iand k=1,2,3, s0

Ryxlt — 1)) = 2572

and
Cyylty — 1y = 252 _ 16

from (6.5-4) through (6.5-7). Elements of the covariance matrix are found
from (6.5-3). Thus

: 25-16) (25¢ ¥ —16) (25¢7% —16)
[Cx]=1 (@52 -16) (25-16) (25¢ 2 —16)
(25752 —16) (25¢737—16) (25-16)
and X; = 4 completely determine (6.5-1) for this case where N = 3.

Two random processes X{#) and ¥{({) are said to be jeintly gaussian if the
random variables X{(¢)), ..., X(ty), Y1), ..., ¥(t}s) defined at times ¢,..

ty for X(£) and times ¢{,..., s for Y(f), are jointly gaussian for any N,
LS F 1 M, Ii’,...,f;.;.
6.6

POISSON RANDOM PROCESS

In this section we consider an important example of a discrete random process
known as the Poisson process.t It describes the number of times that some
event has occurred as a function of time, where the events occur at random
times. The event might be the arrival of a customer at a bank or supermarket
check-out register, the occurrence of a lightning strike within some prescribed
area, the failure of some component in a system, or the emission of an electron
from the surface of a light-sensitive material {(photodetector). In each of these
examples a single event occurs at a random time and the process amounts to
counting the number of such occurrences with time. For this reason, the
process is also known as the Poisson counting process. -

To visualize the Poisson process, let X{/) represent the number of event
occurrences with time (the process); then X(¢) has integer-valued, nondecreas-
ing sample functions, as illustrated in Figure 6.6-1a for the random occurrence
times of Figure 6.6-1b. For convenience, we take X()=0atr=0;for ¢ = 0,
X(¢) is the number of occurrences in the interval (0, ); for ¢ < 0, X(?) is the
negative of the number of occurrences in the interval (¢, 0). (See Shanmugan
and Briepohl, 1988, p. 296.) In many situations only the process’ behavior for
¢ = 0 is of interest, and in the remainder of this section we shall assume the
process is defined only for ¢ > 0 (and is zero for £ < 0).

To define the Poisson process we shall require two conditions. First, we
require that the event occur only once in any vanishingly small interval of
time. In essence, we require that only one event can occur at a time. This
condition does not prevent the times of occurrence of events from being very

t For additicnal reading, some recent books that also cover this topic are Shanmugan and Briepohl
(1988) and Gardner (1990).
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x{f), a sample
functionof X(9) 6
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FIGURE 6.6-1
{a) A sample function of a Poisson discrete random process, and (b) the random
times of occurrence of events being counted to form the process.

close together, only that they do not coincide. Second, we require that occur-
rence times be statistically independent so that the number that occurs in any
given time interval is independent of the number in any other nonoverlapping
time interval; this independence is required to apply regardless of the number

* of-time intervals of interest. A consequence of the two conditions is that the

number of event occurrences in any finite interval of time is described by the
Poisson distribution where the averape rate of occurrences is denoted by A [see
Section 2.5, equations (2.5-4)(2.5-6)]. [For more detail, see Gray and
Davisson (1986), pp. 282-284.]

Probability Density Function

Thus, from (2.5-4) with & = Jt, the probability of exactly k occurrences over a

. time interval {0, 1} is

(e ™ ed’
TR

and the probability density of the number of occurrences is

PIX() =K] = k=0,1,2,... (6.6-1)

YRR R

—Al
Sy = Z( e S —k) (6.6-2)

From Problem 3.2-13 we know that the mean and variance of a Poisson
random variable are each equal to Az. Thus, from (3.2- 6) we also know the
second moment, which is E[Xz(z)] =0+ {E[X(r)]}2 = Af + 222 These facts
are used to establish useful equations by formally computing the mean and
second moment:

80 A —At
mxo1=|" e[ 5T Vs —Ryax
—00 =
2 ke :
=) g =M (6.6-3)
k=0 :
'3 -J.t
E[XYn) = r () dx = Zkl(“) =al+rl  (6.6-9

k=0

Joint Probability Density

To determine the joint probability density function for the Poisson process at
times 0 < h <, first observe that the probability of k; event occurrences
over (0,1)) is

(ry)te
k!

from (6.6-1). Next, the conditional probability of k> occurrences over (0, 1,),

given that k; events occurred over (0, 1), is just the probability that &, — k,
events occurred over (2, £,), which is

PIX(1) = k] = k,=0,1,2,... (6.6-5)

[A(ty — ) g
{kea — &)}

for k; = k. The joint probability of k; occurrences at time ¢, and &, occur-
rences at ime ¢, is the product of (6.6-5) and (6.6-6):

Plky, k) = PIX (1) = kol X (1)) = Ky - PLX (1)) = K]
_ Q)M — e
h key ik — Ky}t

The joint density now becomes

PIX () = kol X(#)) = key] =

(6.6-6)

ky = &y (6:6-7)

Gl =3 3 Pl kit

k=0 K=k

— k1)8(x3 — k2) (6.6-8)

for the process’ random variables X(t) = X, and X(£,) = X5.
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A principal reason for developing (6.6-8) is that the autocorrelation func-
tion of the process can be determined. This is left as an exercise for the reader

(see Problem 6.6-5).

EXAMPLE 66-1. By example, we illustrate how the higher-dimensional
probability density of the Poisson process can be derived. We take only
the case of three random variables defined at times 0 < # < #; < 43. For
k| < ky < k; occurrences at the respective times, we have
Py, k. kes) = PIX(8) = k| X(8) = by, X (1) = K]

- PRX (1) = kal X (1)) = & 1PLX (51) = ki)

Mes — Irz)"ts—’ﬂz‘,',ﬁl(l:—fz) At — !l)]kz—kle—l(lrhl

(k3 — ko)l (k2 — ey )!
Qe () — B)FRIG — )R
TR T Ty — K ks — ko)t

and

e, x) =3 3 3 Pl ko, ks)30x — k)30 — k)dloe ~ k3)

k=0 kep=Fy Kiy=ks

*6.7 .
COMPLEX RANDOM PROCESSES

If the complex random variable of Section 5.8 is generalized to include time,
the result is a complex random process Z(t) given by

ZIH =X +7Y (6.7-1)

where X(f) and ¥'(7) are real processes. Z(#) is called stationary if X (/) and Y9
are jointly stationary. If X'() and ¥(#) are jointly wide-sense stationary, then
Z(¥) is said to be wide-sense stationary.

‘Two complex processes Z;{f) and Z;(r) are jointly wide-sense stationary if
each is wide-sense stationary and their cross-correlation function {(defined
below) is a function of time differences only and not absolute time.

We may extend the operations involving process mean value, autocorrela-
tion function, and autocovariance function to include complex processes, The
mean value of Z(1) is

E[Z(1)] = E[X(N] +JE[Y(N (6.7-2)
Autocorrelation function is defined be
Rez(t t+7) = E[Z¥Dz(+ + 1)) (6.7-3}

where the asterisk * denotes the complex conjugate. Autocovariance function is
defined by

Czz(t, t + 7) = E[{Z(1) - E[Z(t)]}*{Z(t + 1) — ElZ(t + 0l (6.7-4)

If Z(r) is at least wide-sense stationary, the mean value becomes a constant
Z=X+jY (6.7-5)
and the correlation functions are independent of absolute time:
Rzz(t, 1+ 7) = Rzz(2) {6.7-6)
Czz(t, 1+ 1) = Cz4(7) 6.7-7)
\ For two complex processes Z(t) and Z,(1), cross-correlation and cross-
i covariance functions are defined by '
Rzz (L.t + D) =E[ZI(DZ(t+0)]  i#] (6.7-8)
) and .
B Crz(t, 1 +7) = ENZ{0) — EIZOWZ(t + 1) — B2t + DN i)
- (6.7-9)
E respectively, If the two processes are at least jointly wide-sense stationary, we
- obtain
Ryz(t.1+7)=Rzz(r) i#£j (6.7-10)
Czz(t, 1+ 7)=Czz7(D) i#j (6.7:11)

K Z{f) and Z(r) are said to be uncorrelated processes if Czlz_,(t, t+1)=0,i%j.
They are called orthogonal processes if Rzz(t.t+7)=0,i#].

EXAMPLE 6.7-1. A complex random process V(7) is cdmpriscd of a sum of
N complex signals:

N
V() = Ay

n=1 B
HC[:C wy/2m is the (constant) frequency of each signal. A, is a random
van.able representing the random amplitude of the nth signal. Similarly,
©, is a random variable representing a random phase angle. We assume
all the variables 4, and @,, forn =1, 2,..., N, are statistically indepen-
dent and the @, are uniformly distributed on (0, 2x). We find the auto-
correlation function of ¥(2).

From (6.7-3):

Ryp(t, 1+ 7) = E[V* () (1 + 9

N N
E[Z Ao~ Z Ay, ej"@ar+jmot+j®m:|

n=1 m=l1

It

2l T E[4, Amej(e""_ ,.)] = Ryp()
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N

From statistical indep  ndence:

Rpp(t) = eja),,r Z Z E[A,,A,,“E[EXPU(G,,, a,N]

n=1 nr=1
Howezver,

Efexpl{i(®,, — eNl= E[COS(G,” - 9")] +jE[Siﬂ(@,,, — 8.

2w pdw L .
= Jo L —(231_)1 [cos(B,, — B,} +jsin{G, — 6,)]d8, d8,,

[0 m#En

1 m=n

50

N —
RV;/(T) = Gim':'t Z A;E,
n=1

6.8
SUMMARY

This chapter represents 2 major change in the book’s direction. All prior
malerial was extended to include fime so that random processes could be
defined in order to model random time signals. In essence, the randem vari-
able concept was extended to include time, which results in a random process.
Many details were covered regarding random processes:

+ The random process was defined and both deterministic and nondetermi-
nistic types were discussed.

. Statlonanty and statistical independence of processes were defined, includ-
«ing various forms of ergodic processes.

. )\utocorrelatlou, cross-correlation, autocovariance, and cross-covariance
futictions were defined for continuous-time, as well as discrete-time, pro-
cesses and sequences.

« Measurement of correlation functions was included.

- Both gaussian and Poisson processes were developed in some detail.

« Finaily, the more advanced concepts of complex random processes and their
characteristics were included.

PROBLEMS

6.1-1. A random experiment consists of selecting a point on some city street thal has
two-way automobile traffic. Define and classify a random process for this
experiment that is related to traffic flow.

i, 5

e

iy AP e

6.1-2. A 10-meter section of a busy downtown sidewalk is actually the platform of a
scale that produces a voltage proportional to the total weight of people on the
scale at any time.

{a) Sketch a typical sample function for this process.
(&) What is the underlying random experiment for the process?
{c) Classify the process,

*6.1-3. An experiment consists of measuring the weight 17 of some person each 10
minutes. The person is randomiy male or female (which is not known though)
with equal probability. A two-level discrete process X(r) is generated where

X =10
The level —10 is generated in the period following a measurement if the
measured weight does nol exceed W, (some constant). Level +10 is generated
if weight exceeds IV, Let the weight of men in kg be a random variable having
the gaussian densily

Sir(rimale) = TP 2011377

1
Taaits el

Similarly, lor women

Su(wlfemale) = exp[—(r — 54.4)2/2(6.8)%]

1
JZ_Jré.S

(a) Find Wy so that P[IV > W lmalel is equal io P{W < Wyllemale}.

(b)Y IF the levels £10 are interpreted as “decisions” about whether the weight
measurement of a person corresponds te a male or female, give a physical
significance of their generation.

{c) Sketch a possible sample function.

6.1-4. The two-level semirandont binary process is defined by
X({f)=Aor — A4 m—DT <t <nl

where the levels 4 and —A4 occur with equal probability, T is a positive
constant, and n =0, %1, 42, .... '

(a) Sketch a typical sample function.

() Classify the process.

(¢) Is the process deterministic?

6.1-8. For a random process X(r) it is known that f5{x}, x5, X33 ), I3, 13) = Sv(xg,
Xp Xt + AL+ A+ A) for any 1, 6, 13 and A, Indicate which of the
following statements are unequivocally true: X(r) is {a} stationary to order 1.
{(b) stationary to order 2, (¢) stationary to order 3, {d) strictly stationary, ()
wide-sense stationary, (f) not stationary in any sense, and (g} ergodic.

6.1-6. A random process is defined by X (1} = 4, where A is a continuous random
variable uniformly distributed on (0, 1}.
(@) Determine the form of the sample functions.
(&) Classify the process.
- i{c) Is it deterministic?

6.1-7. Work Problem 6.1-6 except assume X (1) = At (7 represents time).
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6.2-2.

*6.2-3.

6.2-4.

g

6.2-6.

Sample functions in a discrete random process are constants; that is
X(f) = C = constant

where C is a discrete random variazble having possible values ¢; = 1,63 =2,
and ¢; = 3 occurring with probabilities 0.6, 0.3, and 0.1, respecnvely

(@) Is X (1) deterministic?

(b) Find the first-order density function of X(r) at any time 1.

hilize (6.2-13) to prove (6.2-16}.

A random process X{r) has periodic sample functions as shown in Figure
P6.2-3 where B, T, and 44 < T are constants but £ is a random variable
uniformly distributed on the interval (0, 7).

(&) Find the first-order distribution function of X{s).

(b) Find the ﬁrsl—order density function.

(&) Find E[X(9], E[X*{(1), and o%.

WANAS

£ £t e+T I

x()

FIGURE P6.2-3

Work Problem 6.2-3 for the waveform of Figure P6.2-4. Assume 2fy < 7.

x(2)
—
A
*es av e
- L] - ; R +r50 £ -I'- r H
FIGURE P6.2-4

Work Problein 6.2-3 for the waveform of Figure P6.2-5. Assume 47y < T.

A random process is defined by X(#) = Xj + Vr where X and V' are statisti-
cally independent random variables uniformly distributed on intervals [Xy,,
Xp5) and [V, V5], respectively. Find (&) the meaan, (5) the autocorrelation, and
(¢) the autocovariance functions of X(7). (d) Is X'(¢} stationary in any sense? If
s0, state the type.

L i

F e b

*6.2-7.

6.2-8.

6.2-9..

6.2-10.

6.2-11.

x{n

-ty £ty

FIGURE P6.2-5

(@) Find the first-order densily of the random process of Problem 6.2-6.
(5 Plot the density for ¢ = k(X — X))/ (F2 — V1) with £=0, §, 1, and 2
Assume ¥, =3V in al plots.

Assume a wide-sense stationary process X(7) has a known mean X and 2
known autocorrelation function Ryy(1). Now suppose the process is observed
al time #, and we wish to estimate, that is, predict, what the process will be at
time f; + 7 with ¢ > 0. We assume the estimate has the form

R+ 1) =aX(n)+8

where o and # are constants. -
(@) Find @ and § so that the mean-squared prediction error

& = AX( + 9 - R + o7
is minimum,
(b) Find the minimum mean-squared error in terms of Ryy(z). Develop an
alternative form in terms of the autocovariance function.

Find the time average and time autocorrelation function of the random pro-
cess of Example 6.2-1. Compare these results with the statlst:cal mean and
autocorrelation found in the example.

Assume that an ergodic random process X{(s) has an antocorrelation function

Ryy (r) =18 + , [] + 4005(121')]

(@) Find |X -

{6} Does this process have a perlodlc component”
(¢} What is ihe average power in X1 (1)"-‘ :

Define a random process X (t) as follows (l) }.’ (1) assumes only ) of two
possible levels 1 or —1 atany time, (7) X(#) switches back and forth between its
two levels randomly with time, (3) the number of level transttlous in, any time
interval t is a Poisson random vanable, that is; the probablhty of exact]y k
transitions, when the average rate of tramsitions is. A, is givén by
[(A2)* fit) exp(—A1), (4) transitions occurring in any time interval are-statisti-
cally independent of transitions in any other interval, 4nd (5) the levels at the

211

CHAPTER 6:
Random

- Processes—

Temporal
Characteristics



212

Probability,
Random Variables,
and Random
Signal Principles

6.2-12,

6.2-13.

6.2-14.

6.2-15.

6.2-16.

6.2-17.

6.2-18.

6.2-19.

6.3-1.

6.3-2.

start of any interval are equally probable. X (¢} is usually called the random
telegrapht process. It is an example of a diserete random process.

(&) Find the autocorrelation function of the process.

(b) Find probabilities P{X{f) = 1} and P{X (1) = —1} for any ¢

(¢) What is E[X()]?

() Discuss the stationarity of X(r).

Work Problem 6.2-11 assuming the random telegraph signal has levels 0 and 1.

X =06 and Ryylt, (4 1) =36+ 25exp(—|z]) for a random process X().
Indicate which of the following statements are true based on what is known
with certainty. X(#) () is first-order stationary, (b) has total average power of
61 W, (c) is ergodic, () is wide-sense stationary, {¢) has a periodic component,
and (/) has an ac power of 36 W. -

{@) Deiermine whether the process of Problem 6.1-6 is first-order stationary.

() Also determine whether it is wide-sense stationary.

(¢) How would the results of {a) and () change if the random variable 4 had
a nonuiform density?

Find the first- and second-order density functions for the process of Problem
6.1-6.

Find the autocorrelation function and mean of the process of Problem 6.1-6.

Determine if the constant process X(#) = A, where 4 is a random variable with
mean A and variance &y, is mean-ergodic.

Let N(f) be a zero-mean wide-sense stationary noise process for which
Ryn(t) = (A'o/2)8(1), where A7 > 0 is a finite constant. Determine if N(7)

is mean-ergodic.

Evaluate the integral of (6.2-36) as indicated in the text and show that (6.2-37)
-is true.

Given the random process
X(1) = Asin{wyt + Q)

where A and «, are constants and @ is a random variable uniformly distrib-
uted on the interval (—m, ir). Define a new random process Y(f) = & 2.

{«) Find the autocorrelation function of Y{¥).

(b) Find the cross-correlation function of X{¢) and ¥(1).

{c) Are X(1) and ¥(¢) wide-sense stationary?

(d) Are X(f) and Y(?) jointly wide-sense stationary?

A random process is defined by
¥(1) = X (1) cos(wns -!-‘G)_)_

where X(#) is a wide-sense stationary random process that amplitude-modu-
lates a carrier of constant angular frequency wy with a random phase ©
independent of X(¢) and uniformly distributed on (—m, ).

() Find E[Y(#)]. o

6.3-3.

6.34.

6.3-3,

6.3-6.

6.3-7.

6.3-8.

{#) Find the autocorrelation function of ¥(¢).
{¢) Is Y (1) wide-sense stationary?

Given the random process
X(9) = A cos{eyp!) + Bsin{wg?)

where @y is a constant, and A and B are uncorrelated zero-mean random
variables having different density functions but the same variances o7, show
that X(¢) is wide-sense stationary but not strictly stationary.

If X(f) is a stationary random process having a mean value E[X(#)] = 3 and
autocorrelation function Ryy(z) =9 +2¢7", find:

(a) the mean value and

(&) the variance of the random variable

2
Y=Lxmm

(iinr: Assume expectation and integration operations are interchange-
able.)

Define a random process by
X () = Acos(re)

where A is a gaussian random variable with zero mean and variance o5
(a) Find the density functions of X(0) and X(1).
(b) Is X(¢) stationary in any sense?

For the random process of Problem 6.1-4, calculate:

(@) the mean value E[X(£)] (b)) Ryx(t) =0.57, 1, =0.7T)

(C) Rxx(ﬁ =0.2T, iy = 1.2T).

A random process consists of three sample functions X(¢, 5) =2, X(1,5,) =

2cos(?), and X(¢, 53) = 3sin?), each occurring with equal probability. Is the
process stationary in any sense?

Statistically independent, zero-mean random processes X{f) and ¥{(f) have
autocorrelation functions

Ryy(z) =M
and
Ryy(1t) = cos(2rT)

respectively.
(a) Find the autocorrelation function of the sum W {t) = X(1} + Y ().

 (¥) Find the autocorrelation function of the difference W,(f) = X(8) — ¥(1).

W

6.3-9.

{¢) Find the cross-correlation function of Wi{f) and Wa(f).

Define a random process as X(¢) = p(1 - £), where p({) is any periodic wave-
form with period T and € is a random variable uniformly distributed on the
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*6.3-10.

6.3-11.

6.3-12.

6.3-13.

6.3-14.

6.3-15.

6.3-16.

interval (0, 77}, Show that

- T
EXOX@+ D=7 || p0pE+ D= R

Use the result of Problem 6.3-2 to find the autocorrelation function of random
processes having periodic sample function waveforms p(f) defined

(a) by Figure P6.2-3 with e=0and 41, < 7, and

(b) by Figure P6.24 with e=0and 24, < T.

Define two random processes by X(0) = p (¢ + &) and Y{#) = p,(¢+ &) when
21(#) and py(7) are both periodic waveforms with period T and £ is 2 random
variable uniformly distributed on the interval (0, T"). Find an expression for the
cross-correlation function E[X()¥{r + 1))

Prove:
(@) (634) and ) (6.3-3).
Give arguments to justify (6.3-9).

For a stationary ergodic random process having the autocorrelation function
shown in Figure P6.3-14, find:

(@ EX(] @) EXH] and  (Jof.
Ry (¥)
50
f 2w Y
—;D [1] 1I0 T
FIGURE P6.3-14

A random process Y(#) = X(¢) — X (t + r} is defined in terms of a process X(r)
that is at least wide-sense stationary.

{a) Show that mean value of ¥{¢) is 0 even if X'(7} has a nonzero mean value.
(# Show that

0% = 2[Ryx(0) — Ryx(3)]

() If Y{¥) = X(2) + X(¢ + 7}, find E[¥{r)] and o%. How do these results com-
pare to those of parts (@) and (&).

For two zero-mean, jointly wide-sense stationary random processes X{#) and
¥(1), it is known that o% =5 and &% = 10. Explain why each of the following
functions cannot apply to the processes if they have no periodic components.

6.3-17.

6.3-18.

6.3-19.

6.3-20.

6.3-21.

6.3-22.

6.3-23,

(6) Ryx() = 6ufr) exp(-37)
(€) Ryy(d)=9(1+2%)"
sin(307?

@ Ryy() = S[T]

Given two random processes X(¢) and Y (7). Find expressions for autocorrela-
tion function of W({f) = X(f) 4 Y{ i:

() X(#) and Y(¢) are correlated.

(b) They are uncorrelated.

(¢) They are uncorrelated with zero means.

(b) RX)\'(T:) = 55iﬂ(51’)
(d) Ryy(z) = —cos(6r}exp(-|z()

() Ryr() =6+ 4[ﬁ—_5‘“féf")]

Use (6.3-19) to prove (6.3-17).

Let X(f) be a stationary continuous randem process that is differentiable.
Denote its time-derivative by X(#).

{a) show that E[X{/)] =0.

(&) Find Ry (7} in terms of Ryy(1).

{¢) Find Ry () in terms of Ryy(z). (Hint: Use the definition of the derivative

; X(r — X(!
X() = lim XETEL=X0O
£=0 £
and assume the order of the limit and expectation operations can be
interchanged.)

A stationary zero-mean random process X{(7) is ergodic, has average power of
24 W, and has no periodic components. Which of the following can be a valid
autocorrelation function? If one cannot, state at least one reason why. (a)

16+ 18 cos(31), () 24Sa’(21), () [1 + 3771 exp(—61), and (d) 243(1 — 7).

Use the result of Problem 6.3-9 io find the autocorrelation function of a
random process with periedic sample function waveform p(f} defined by

) = Acos’(2mt/T)

where A and T > ( are constants.

For the random process of Problem 6.1;7, find
(@) E[X(0]

(b) Rxx(f., I 'L').

(€} Is the process stationary in any sense?

A number of practical systems have “square-law” detectors that produce an
output W) that is the square of its input ¥(s). Let the detector’s output be
defined by

W)y = () = X*(9) cos’(wpt + ©)

_ where ay is 2 constant, X(?) is second-order stationary, and @ is a random

variable independent of X(#) and uniform on {0, 27). Find (2) E[W (1)), ()
Ry (t, t + T), and (¢) whether or not W(¢) is wide-sense stationary.
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6.3-24.

6.3-25.

6.3-26,

6.3-27,

6.4-1.

A random process X{/) is known to bec wide-sense stationary with
E[X*()] = 11. Give one or more reasons why each of the following expres-
sions cannot be the autocorrelation function of the process. ’

@ Ryt t+10= (:('::;(8:)9":”"}2

® Rex 169 =327
sin[5(z—2))
(C) R_rx(f, 4+ 'l.') = T—Z)——
(d) Ry(t, 141 =—11g
il
(&) Ryy(h1+7)= T332 +47

A wide-sense stationary random process ¥{f} has a power of E[Y3(n)] = 4.
Give at least one reasen why each of the following expressions cannot be its
autocorrelation function.

(@ Ryplt, 14+ 1) =4dtan™(z)

(B) Ryylt, t+1) =6exp[—2° — ||]

(&) Ryy(t,t+7)=1u(z)

_ 05t

@) Ryy(t,t+1)= 1484
_ cos(67)

(& Ryy(tt+7)= 2+ cos2(4r}

Two random processes are defined by

¥1(#) = X(1) cos{wp?)
¥a(t) = Y(1) cosfag! + ©)

where X(f} and ¥{{) are jointly wide-sense stationary processes.

{a) If © is a constant (nonrandom), is there any value of @ that will make
Yi() and Y5(r) orthogonal? :

(6) If © is a uniform random variable, statistically independent of X () and
¥(1), are there any conditions on @ that will make ¥,(#) and Y,{r) ortho-
gonal?

Determine the largest constant X such that the function
Ryr(d) = Ke™ sin{me)

can possibly be a valid cross-correlation function of two jointly wide-sense
stationary processes X(¢) and ¥(f) for which E[X(9)] = 6 and E[Y?()] = 4.

An engineer wants to measure the mean value of a noise signal that can be
well-modeled as a sample function of a gaussian process. He uses the sampling
estimator of (5.7-4). After 100 samples he wishes his estimate to be within
30.1 V of the true mean with probability 0.9606. What is the largest variance
the process can have such that his wishes will be true?

T L

Wby iy A

by g e

6.4-2.

6.4-3.

6.4-4.

6.4-5.

6.4-6.

.

o

L
A 6.5-1.

Let X(1) be the sum of a deterministic signal s(f} and a wide-sense stationary
noise process N{f). Find the mean value, and autocorrelation and autocovar-
iance functions of X{f). Discuss the stationarity of X(/).

Random processes X(f} and Y (f) are defined by

X(ry = Acos{ap! +©)
Y () = Bsin{ayt + ©)

where 4, B, and w, are constants while © is a random variable uniform on
{0, 27). By the procedures of Example 6.2-1 it is easy to find that X'(#) and ¥ {7}
are zero-mean, widc-sense stationary with autocorrelation functions

Ryx(7) = (A2 /2) cos(ony)
Ryy(r) = (B2 /2) cos(wy?)

{a) Find the cross-cotrelation function Ryy (¥, ¢ + ) and show that X(f) and
Y(1) are jointly wide-sense stationary.

{6) Solve (6.4-2) and show that the response of the system of Figure 6.4-1
equals the true eross-correlation function plus an error term £(T) that
decreases as T increases.

(¢) Sketch je(T7)| versus T to show its behavior. How large must T be to make
[e(T)] less than 1% of the largest value the correct cross-correlation fune-
tion can have?

Consider random processes

X = Acos(mﬂt +@)
Y{() = Beos(w ! + D)

where 4, B, e, and wy are constants, while @ and ¢ are statisticafly inde-

pendent random variables each uniform on (0, 27).

(a) Show that X{r) and Y(!) are jointly wide-sense stationary.

(b) If @ = @ show that X() and ¥(r) are not jointly wide-sense stationary
unless @, = wp.

A zero-mean gaussian random process has an autocorrelation function
_ JBlL—-(z/6) <86
Ryx(r) = [0 elsewhere

Find the covariance function necessary to specify the joint density of random
variables defined at times ;=2(i—1),i=1,2,...,5. Give the covariance
matrix for the X7 = X(¢,).

A random process, as defined by Y{#) = X(#) cos(wg? + ©) in Preblem 6.3-23,
is applied to both inputs of the measurement system of Figure 6.4-1.
Determine Ry(2T) if ey is large enough so that cos(wg! + @) cycles rapidly
compared to X{{).

A gaussian random process has an autocorrelation function

Ryx(z} = 6exp{—I7i/2)
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6.5-2,

6.5-3.

6.6-1.

6.6-2.

6.6-3.

6.6-4.

6.6-5.

6.6-6,

*6.7-1.

*6.7-2.

Determine a covariance matrix for the random variables X(f), X(r-+ 1),
X(r+2), and X(7 + 3).

Work Problem 6.5-1 if

sin(mt)

R =6
xx (1) o

If the gaussian process of Problem 6.4-5 is shifted to have a constant mean
X = -2 but all else is unchanged, discuss how the autccorrelation function
and covariance mafrix change. What is the effect on the joint density of the
five random variables?

Aircraft arrive at an airport according to a Poisson process at a rate of 12 per
hour. All aircraft are handled by one air-traffic controller. If the controller
takes a 2-minute coffee break, what is the probability that he will miss one or
more arriving aircraft? .

Telephone calls are initiated through an exchange at the average rate of 75 per
minute and are described by a Poisson process. Find the probability that more
than 3 calls are initiated in any 5-second period.

A small store has two check-out lanes that develop waiting lines if more than
two customers arrive in any one minute interval. Assume that a Poisson
process describes the number of customers that arrive for check-out. Find
the probability of a waiting line if the average rate of customer arrivals is
{a) 2 per minutes, (B) 1 per minute, and (¢) % per minete.

A particular commercial system for controlling a petroleum distiliation plant
has failures {resulting in plant down time) that occur at the average rate of two
per 30 days. Assume that the number of failures is a Poisson process and find
the probability that one failure will occur during the first 30 days and no other
failures will occur for the next 30 days.

Show that the autocorrelation function of the Poisson process is

Al el <t
Ryx(t1, 2) = { Anll+an] 4> h

{Hint; Make use of the sums in {6.6-3) and (6.6-4}.]

Determine the autocovariance function of the Poisson process. (Hint: Make
use of the result of Problem 6.6-5.)

A complex random pmc&ss Z(t) = X(&) +j¥(1) is defined by jointly stationary
real processes X(f) and ¥(r). Show that
ENZ()*] = Ryx(0) + Ryy(0)

Let X;(2), X5(2), ¥7(8), and Yz_(r) be real random processes and define
Zi =X +/1() ZA0 = X0 — YD

Find the expressions for the cross-correlation function of Z;(f) and Z,(#) if:
(@) All the real processes are correlated.

*6.7-3.

*6.7-4.

*6.7-5-

*6.7-6.

*6.7-7.

® Thej' are uncorrelated.
{c) They are uncorrelated with zero means.

Let Z(f) be a stationary complex random process with an autocorrelation
function Ryz(t). Define the random variable ’

+T
We| Z@d

a

where T-> 0 and a are real numbers. Show that
T
Ewel= [ (- 1Rz
-T

Extend Example 6.7-1 to allow the sum of complex-amplitude unequal-
frequency phasors. Let Z;, i = 1,2,..., N be N complex zero-mean, uncorre-
lated random variables with variances g%" Form a random process

N
Z() =" Zie
i=1

where @; are the angular frequencies of the phasors.

(@) Show that E[Z(r)] =0.

(5) Derive the autocorrelation function and show that Z{7) is wide-sense
stationary.

A complex random process is defined by
Z(f) = exp(js26}

where € is a zero-meazn random variable uniformly distributed on the interval
from wy — Aw 10 @y -+ Acw, where wy and Aw are positive constants. Find:
(a) The mean value, and (&) the autocorrelation function of Z(#).

{c) Ts Z() wide-sense stationary?

Work Problem 6.7-5 except assume the process
Z(0) = &/ 4 ¢ = 2cos(Q1)
Let X(f) and Y(f) be statistically independent wide-sense stationary real

processes having the same autocorrelation function R(z). Define the complex
process

Z(0) = X() cos(awgt) + Y1) sin{wp!)

where ay is a positive constant, Find the autocorrelation function of Z(#). Is
Z(#) wide-sense stationary?
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CHAPTER 7

Random Processes—Spectral Characteristics

7.0
INTRODUCTION

All of the foregoing discussions concerning random processes have involved
the time domain. That is, we have characterized processes by means of auto-
correlation, cross-correlation, and covariance functions without any consider-
tion of spectral properties. As is well known, both time domain and frequency
domain analysis methods exist for analyzing linear systems and deterministic
waveforms. But what about random waveforms? Is there some way to
describe random processes in the frequency domain? The answer is yes, and
it is the purpose of this chapter to introduce the most important concepts that
apply to characterizing random processes in the frequency domain.

The spectral description of a deterministic waveform is obtained by
Fourier transforming the waveform, and the reader would be correct in con-
cluding that Fourier transforms play an important role in the spectral char-
acterization of random waveforms. However, the direct transformation
approach is not attractive for random waveforms because the transform
may not exist. Thus, spectral analysis of random processes requires a bit
more subtlety than do deterministic signals.

An appropriate spectrum to be associated with a random process is intro-
duced in the following section. The concepts rely heavily on theory of Fourier
transforms, Readers wishing to refresh their background on Fourier theory
are referred to Appendix D, where a short review is given.

7.1
POWER DENSITY SPECTRUM AND ITS PROPERTIES

The spectral properties of a deterministic signal x(f) are contained in its
Fourier transform X(w) given by

220

oG
X(w) = J x(De™™ di (7.1-1)

—0Q
The function X (), sometimes called simply the spectrum of x(), has the unit
of volts per hertz when x(¢} is a voltage and describes the way in which relative
signal voltage is distributed with frequency. The Fourier transform can, there-
fore, be considered to be a voltage density spectrum applicable to x(7). Both the
amplitudes and the phases of the frequencies present in x(#) are described by
X{w). For this reason, if X(e) is known then x{r) can be recovered by means of
the inverse Fouricr transform

o
x() = iJ Y(@)e™ do> (7.1-2)
2 ) _ .
In other words, X{w) forms a complete description of x(¢) and vice versa.

In attempting to apply (7.1-1) to a random process, we immediately
encounter problems. The principal problem is the fact that X{w) may not
exist for most sample functions of the process. Thus, we conclude that a
spectral description of a random process utilizing a voltage density spectrum
(Fourier transform) is not feasible because such a spectrum may not exist.
Other problems arise if Laplace transforms are.-considered (Cooper and
McGillem, 1971, p. 132).

On the other hand, if we turn our aftention to the description of the power
in the random process as a function of frequency, instead of voltage, it results
that such a function does exist. We next proceed to develop this function,
cailed the power density spectrumt of the random process.

The Power Density Spectrum

For a random process X(¢), let xy(f) be defined as that porticn of a sample
function x(z) that exists between —T and T that is

xT(O:{g(I) —T<t<T

elsewhere
Now so long as T is finite, we presume that x¢(f) has bounded variation, will
satisfy

(7.1-3)

T
J |xp(D)]| dt < o0 (7.1-4)
-

and will have a Fourier transform (see Appendix D for conditions sufficient
for the existence of Fourier transforms), which we denote X{w), given by

T . T )
Xp(e) = J_T xT(t)e”f_“" dt = J x(He ™ dt (7.1-5)

$Many books call this function a power speciral density. We shall occasionally use also the names
power density or pewer specirun:.
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The energy contained in x(#) in the interval (=T, T) is{

T T
E(T) = J (D) dt = J () dt (7.1-6)
-T -r
Since xp(f) is Fourier transformable, its energy must alsg be related to Xr(w)
by Parseval’s theorem. Thus, from (7.1-6) and (D-21) of Appendix D
T o .
E(T) =J ) de = ij (Xr(e)* deo (7.1-7)
—r 27 ) —eo
By dividing the expressions in (7.1-7) by 2T, we obtain the average power
P(T) in x(f) over the interval (—T, T):
S 1 [™ Xl
P(T) _-ZTJ_Tx (D dr TZJrJ_m 2T dew
At this point we observe that }X(w)[>/2T is a power density spectrum because
power results through its integration. However, it is not the function that we
seek, for two reasons. One is the fact that (7.1-8) does not represent the power
in an entire sample function. There remains the step of letting T become
arbitrarily large so as to include all power in the ensemble member. The
second reason is that (7.1-8) is only the power in one sample function and
does not represent the process. In other words, P{T) is actually a random
variable with respect to the random process. By taking the expected value in
(7.1-8), we can obtain an average power Pyy for the random process.f
From the above discussion it is clear that we must still form the limit as
T — co and take the expected value of (7.1-8) to obtain a suitable power
density spectrum for the random process. It is important that the limiting
operation be done last (Thomas, 1969, p. 98, or Cooper and McGillem,
1971, p. 134, and 1986, p. 233). After these operations are performed,
(7.1-8) can be written ’

(7.1-8)

e T 1 B X (@)l
e = i o [ o= | S

dw (7.1-9)

Equation (7.1-9) establishes two important facts. First, average power
Pyy in a random process X(f) is given by the time average of its second
moment:

17 R
Pyy= }Egoz—Tj_T E[X"(ldt = AE[X ()]} (7.1-10)

TWe assume a real process X'(r) and interpret x(7) as either the voltage across a 1-82 impedance or the
current through 1. In other words, we shall assume a 1- real impedance whenever we discuss
energy o1 power in subsequent work, unless specifically stated otherwise,

+In taking the expected value we replace x(f) by X{#} in (7.1-8) since the integral of 22(1) is an
operation performed on 21l sample functions of X(z).

For a process that is at least wide-sense stationary, E[X*(1)] = X2, a constant,
and Pyy = X*. Second, Pyy can be obtained by a frequency domain integra-
tion. If we define the power density spectrum for the random process by

_ o ElX @)
Fyx(w) = Tl'Ln;o—ZT - (7.1-11)
the applicable integral, which we call the power formuda, is
1 o
PXX = '—J yxx(w) dw (7.1-12)
27 ) oo

from (7.1-9). Two examples will illustrate the above concepts.

EXAMPLE 7.1-1. Consider the random process
X(f) = Agcos(wyt + ©)

where Ay and ey are real constants and @ is a random variable uniformly-
distributed on the interval (0, 7/2). We shall find the average power Pyy
in X(7) by use of (7.1-10). Mean-squared value is

2 2
EX(0)] = E[45 cosH{wyt + @) = 5[1422 + %gcos(Qmut + 2@)]
A5 A rﬂ 2

=3 + 5 cos(2w0t+26)d9_

T
A A

—_—— o 2ewnl
2 nsm(wo)

This process is not even wide-sense stationary, since the above function is
time-dependent. The time average of the above expression is

ALE[X2 (D]} = lim Lr A—%—A—gsin@w 1 | dt
- T=oo 2T —F 2 b4 _‘0
which easily evaluates to
Pxy = MEX*(0)]} = 43/2
EXAMPLE 7.1-2. We reconsider the process of the above example to find

& yy(w) and average power Pyy by use of (7.1-11) and (7.1-12), respec-
tively. First we find Xr{w):

T .
Xrlw)= J_T A cos{wpt + ©) exp(—jwe) dt
Aq [T .
=32 exp(j6) j expli(wo )] dt
-T

A T
+ Sexp(-10) [ expl-san +
-r
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= AOTexp(jQ)%ﬂ

sinf(w + wp)T]
(o+w))T
Next we determine |X{w}]® = Xp(w)X}(w) and find its expected vaiue
After some simple algebraic reduction we obtain
EQr(@)’] _ Aom | T sin’llw — wq)T) | T sin’{(@ -+ w0)T]
27 2 |7 llw—e)TF 7 [o+w)T]
In obtaining this result we have neglected cross terms each having factors

at widely separate frequencies wy and —wy such that their product is
small. Now it is known that

im L I:Sm(ozT)] - 5@)
T—o0 ¥ T

(Lathi, 1968, p. 24), so (7.1-11) and the above result give

+ Ay T exp(—j®)

& xx(©) =

Finally, we use this result to obtain average power from (7.1-12):

2
7 150 — ) + 80+ )]

1 [® Apm A
Por=: | 2o —an) + S+ an)ldo =3

Thus, Pyy found here agrees with that of the earlier Example 7.1-1.

Properties of the Power Density Spectrum

The power density spectrum possesses a number of important properties:

() Fxxl@)=0 (7.1-13)
() Fyp(—0) = Fyxlw) X real (7.1-14)
(3) Fyylw) is real (7.1-15)
(@) %JZS/’H(@) dw = A(E[X*(1))) (7.1-16)

Property 1 follows from the definition (7.1-11) and the fact that the expected
value of a nonnegative functlon is nonnegative. Similarly, property 3 is true
from (7.1-11) since |Xp{w)® is real. Some reflection on the properties of
Fourier trapsforms of real functions will verify property 2 {see Problem
7.1-9). Property 4 is just another statement of (7.1-9).

Sometimes another property is included in a list of properties:

() &Fppl) = F xx(w) (.1-17)

AT ARRENNEE

It says that the power density spectrum of the derivative X(1) = dX (£)/dr is o’
times the power spectrum of X(¢). Proof of this property is left as a reader
exercise (Problem 7.1-10).
A final property we list is
1

O 32| S rxret do = AlRiets 1 +9)

7 (7.1-18)

o0 .
FLyxlw) = J ARxy(t, t + D)7 dr (7.1-19)
—00

Tt states that the power density spectrum and the time average of the auto-
correlation function form a Fourier transform pair. We prove this very impor-
tant property in Section 7.2. Of course, if X{¢) is at least wide-sense stationary,
A[Ryy(t, t + 1)] = Ryy(7), and property 6 indicates that the power spectrum
and the antocorrelation function form a Fourier transform pair. Thus

[=4]
Vxx(w)=j Ryx(0)e " dr (7.1-20)
Rxx(f)=§l;J Z xel@)e™ deo (7.1-21)
—o0

for a wide-sense stationary process.

Bandwidth of the Power Density Spectrum

Assume that X(¢) is a lowpass process; that is, its spectral components are
clustered near e = 0 and have decreasing magnitudes at higher frequencies.
Such processes are also called baseband. Except for the fact that the area of
& yx(w) is not necessarily unity, & yy{@) has characteristics similar to a prob-
ability density function (it is nonnegative and real). Indeed, by dividing
Fyx(w) by its area, a new function is formed with area of unity that is
analogous to a density function.

Recall that standard deviation is a measure of the spread in a density
function. The analogous quantity for the normalized power spectrum is a
measure of its spread that we call rms bandwidth,t which we denote W,
(rad/s). Now since & yy(w) is an even function for a real process, its “mean
value™ is zero and its “standard deviation” is the square root of its second
moment. Thus, upon normalization, the rms bandwidth is given by

s j WP F ple) dw
W ==

s = T (7.1-22)
|~ #terdo

fThe notation rms bandwidth stands for root-mean-squared bandwidih.
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EXAMPLE 7.1-3. Given the power spectrum
10
[1 -+ (w/10¥T

where the 6-dB bandwidth is 10 radians per second, we find an First,
using (C-28) from Appendix C, '

& xxlw) =

r° Wdo =~ s J°° dw
—eo[l +(@/1077 ) 60 (100 + o?)?
[s.=] oo
_ .5 w 1 @
=10 [200(100 Tab |, T 2000 (10)\_‘”]
= 507
Next, from (C-30) of Appendix C:
J‘” 106* deo _ SJ“’" o dw
o[l (/107 ) oo (100 + &?)?
oo [+
5 — 1 ar
PR — t —
=10 {2(100 o (Io)l_m}
= 5000x
Thus )
5000
Wrms = W =10 rad/s

Although W, and the 6-dB bandwidth of & yy(w) are equal in this case,
they are not equal in general.

The above concept is readily extended to a process that has a bandpass
form of power spectrum; that is, its significant spectral components cluster
near some frequencies &y and —a,. If we assume that the process X(7) is real,
& yy(ew) will be real and have even symmetry about e = 0. With this assump-
tion we define a mean frequency &, by

Jmmsfxx(w)dw
do T (7.1-23)
Jo yxx(&)) dw

§|

and rms bandwidth by

(=]
4] (@ — 302 yy(w) do
W2 = 1]
ms

= (7.1-24)
Jo 9’){;((0)) dew

The reader is encouraged to sketch a few lowpass and bandpass power spec-
trums and justify for himself why the factor of 4 appears in (7.1-24).
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7.2
RELATIONSHIP BETWEEN POWER SPECTRUM AND
AUTOCORRELATION FUNCTION

In Section 7.1 it was stated that the inverse Fourier transfarm of the power
density spectrum is the time average of the autocorrelation function; that is
1
ﬁj & (@) doo = A[Ryx(, 1 + -9 (1.2-1)
27 ) _oo
This expression will now be proved.

If we use (7.1-5), which is the definition of X- T(a)), in the defining equation
(7.1-11) for the power spectrum we havef

. T N
Fax(@) = lim E[%J. TX(tl)e"”" dtlj X(tp)e7en dzz}

= 2T (7.2:2)

1 (T T .
= lim —J J E[X(e)X (t)]e 2" dpy dy
TJ-T

The expectation in the integrand of (7.2-2) is identified as the autocorrelation
function of X(¢):

E[X(11)X(52)] = Ryx(t1, £2) —T<{handp)<T (7.2-3)
Thus, (7.2-2) becomes ‘
1 (F T .
Faxt)=Jim 7= | [ Rexton e an iy 7.2:9)
T—o02T -TJ-7

Next, we seek the inverse Fourier transform of (7.2-4).] The transform
will exist since the power spectrum is real, nonnegative, and is absolutely

integrable from (7.1-12) because we presume Pyy < oo. The inverse transform
18

I[*= P
ﬂJ‘gmg,XX(w) & deo

1

00 1 T T ) 3
— : - —jaft—1) Wt ~
= ZnI 71513,027‘]_? J“TRH(t, He dt dt; ¥ dew (7.2-5)

1 1 fe{v—1y+1)
= lim — — —=h
m ZTj I R;»X(t,tl)z J- e’ dwdty dt

From (A-23) and the event symmeiry of impulses, we recognize the inner
integral of (7.2-5) as the impulse 278(r — #; + ) = 278(t; — t — 1), 50

1We use X(r) in (7.1-5), rather than x(#), to imply that the opcrat:ons performed take place on the

process as oppesed to one sample function.
1Our development follows that of Middleton (1950), pp. 142, 194,
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[0 ;
—J ffxx(w) e’"‘r dw
27 ) oo

i I T T
= ;ll[’éo -2?[_? LT Ryx(t, 1)8(1y — 1 — 1) dty dt (7.2-6)
The definition of the impulse given in (A-16) allows the immediate evaluation
of the integral over #;: :

17 i
EJ‘ yxx(ﬂt)) eJ“" de

T
= lim LJ Ryx(t, t+2)dt —T<t+z<T

TSo2T -T
In the limit as T — co the condition —7" < ¢+ v < T has little meaning. The
quantity on the right side of (7.2-7) is recognized as the time average of the
process’ autocorrelation function

(7.27

.1
A[Rgy(t, 1+ 7)) = lim —J Ryy(t, t+2)dt
T 2T |_7
Thus, (7.2-7) says that the inverse Fourier transform of the power density
spectrum is the time average of the process’ autocorrelation function, which
proves (7.2-1). The direct transform must also hold, giving

(7.2-8)

Fyy(@) = ro AlRyx(t, t + De ¥ dv (7.29)

—00
which shows that & y,{(w) and A[Ryy(t, t + 7)] form a Fourter transform pair:
A[Ryy(t, £+ 1T)] © & xx(e) (7.2-10)
For the imporiant case where X(f) is at least wide-sense stationary,
A[Ryy(t, t + 1)] = Ryx(7) and we get

o

Fyylw) = j Ryx()e ™ de (7.2-11)
Ryy(r) = %;J P yx(w)e™" deo (7.2-12)

or
Ryx(7) & Fyx(e) (7.2-13)

The expressions (7.2-11) and (7.2-12) are usually called the Wiener-Khintchine
relations after the great American mathematician Norbert Wiener (1894-1964)
and the Russian mathematician A. L. Khintchine (1894-1959). They form the
basic link between the time domain description (correlation functions) of
processes and their description in the frequency domain (power spectrum).

From (7.2-13), it is clear that knowledge of the power spectrum of a
process allows complete recovery of the autocorrelation function when X(r)
is at least wide-sense stationary; for a nonstationary process, only the time
average of the autocorrelation fanction is recoverable from (7.2-10).

A s b o i S RS

n
A

R

g w b
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EXAMPLE 7.2-1. The power spectrum will be found for the random process
of Example 6.2-1 that has the autocorrelation function

Ryp(r) = (4} 12) cos(uyT) '
where 4y and @y are constants, This equation can be written in the form

4 ;
Ryx(z) = T(c"m"r + N

Now we note that the inverse transform of a frequency domain impulse
function is :

A . 1
—J Hw)e'™ de = ——
2%

2r) e
from (A-2) of Appendix A. Thus
1 < 278{w)

and, from the frequency-shifting property of Fourier transforms given by
(D-T) of Appendix D, we get

& o 218w — wy)

By using this last result, the Fourier transform of Ryy(7) becomes
Adw
F xx(@) = =~ [(@ = @) + 8w+ wy)]
This function and Ryy(r) are illustrated in Figure 7.2-1.

EXAMPLE 7.22. As another example, assume a wide-sense stationary
process X () has an autocorrelation function

Regd) = { Adll = (/1)

where T > 0 and A, are constants. Ryy{7) is sketched in Figure 7.2-2a for
Ay = 0. The power spectrum is found from the Fourier transform

Faxto) =

—Ir<i<T
clsewhere

o .
Ryy(De " dr
—0Q

; T _
= Aor (1 + (/D)™ dz + Ay J [1— (/e dr
=T o
These integrals evalnate using (C-43) and (C-46) to give

Lyy(w) = Ay T SaXwT/2)
which is sketched in Figure 7.2-25.
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FIGURE 7.2-1 ) _
The autocorrelation function () and power density spectrum (b) of the wide-sense

‘stationary random process of Example 7.2-1.

73
CROSS-POWER DENSITY SPECTRUM AND ITS PROPERTIES

Consider a real random process W(f) given by the sum of two other real
processes X{(#) and Y{5):
Wy =X+ Y0
The autocorrelation function of W{7) is
Rywlt, 14+ 1) = E[W(O)W(t +7)]
= E{[X()+ YOIX(+ D+ Y+ D
= Ryy(t, t+ 1)+ Ryy(t. 1+ 7)
+ Ryy(t, ¢+ 0+ Ryx(t,t + 1) (7.3-2)
Now if we take the time average of both sides of (7.3-2) and Fourier transform
the resulting expréssion by applying (7.2-9), we have
& ww(w) = & yx@) + P yr(@) + F{ARgy(t, t + D} -+ F{ARyx (1 4+ D)
(7.3-3)

(7.3-1)

AR

3L

Ban

A S

Rz}
Ay
=T 0 T T
(a)
Fx(e)
AT,
LN | ase
—4x =2z ¢ 2z 4w
T Fi Fa T

FIGURE 7.2-2 : i
The autocerrelation function (a), and power spectrum (b), for the wide-sense
stationary process of Example 7.2-2.

where %{.} represents the Fourier transform. It is clear that the left side of
(7.3-3) is just the power spectrum of W(z). Similarly, the first two right-side
terms are the power spectrums of X(¢) and ¥(¥), respectively. The second two
right-side terms are new quantities that are the subjects of this section. It will
be shown that they are cross-power density spectrums defined by (7.3-12) and
(7.3-14) below. '

The Cross-Power Density Spectrum

For two real random processes X(f) and ¥(¥), we define x7(f) and y4(r) as
truncated ensemble members; that is

—T<t<T

_ | >0
xXr(t) = [ 0 elsewhere (734
and l
_ |y ~T<tzT
yrif) = {0 elsewhere (7.3-5)

Both xr(f) and yz(?) are assumed to have bounded variation and to be mag-
nitude integrable over the interval (—T, T) as indicated by (7.1-4). As a con-
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sequence, they will possess Fourier transforms that we denote by Xo(w) and
Y r(w), respectively: B
xr(f) « Xr(w) : - (1.3-6)
yri) < Yr{w) : (7.3-7)
We next define the cross power Pyy(T) in the two processes within the
interval (—7°, T by
T

1 LT
P =5z | xrOy@de=yz | xtoyod 039

-7
Since x(¢) and yr(f) are Fourier transformable, Parseval’s theorem (D-20)
applies; its left side is the same as {7.3-8). Thus, we may write

T oo *
Pyr(T) =*2—%:Jﬁfx(t)y(t)dt ::'ZITTJ_ w do

This cross power is a random quantity since its value will vary depending on
which engemble member is considered. We form the average cross power,
denoted Pyp(T), by taking the expected value in (7.3-9). The result is

- T L 1% EXHw)T.

Finally, we form the total average cross power Pyy by letting T — oco:

1T 1 . E[X7()Yr(w)]
Pxy = }%ﬁj_r Ryy(t, Ddi = EJ_M Am 5T
It is clear that the integrand involving w can be defined as a cross-power

density spectruny; it is a function of @ which we denote

(7.39)

do  (7.3-10)

do (1.3-11)

. E[XT(e) Yr{ew)]
Fyxlw) = }EI;OT (7.3-12)
Thus, we obtain what we call the cross-power formula
[v2)
Pyy = iJ & yylwydew {7.3-13)
27 ) oo

By repeating the above procedure, we can also define another cross-power
density spectrum by

i AYH@X @)

Fyxw) = lim T (7.3-14)
Cross power is given by
(=]
Prv=3:| Sm@do=Fir @315
2n ) _o

Total cross power Pyy + Pyy can be interpreted as the additional power two
processes are capable of generating, over and above their individual powers,
due to the fact that they are not orthogonal.

g et o

g b e

3 e

Properties of the Cross-Power Density Spectrum

Some properties of the cross-power spectrum of real random processes X (1)
and ¥Y{#) are listed below without formal proofs,

(1) Fyy@) = Fyp(—w) = Fizlw) (7.3-16)
(2) Re [¥yy(w)] and Re [& yx{e)] are even functions of  (see Problem 7.3-4)

(7.3-17)
(3) Im {# yy(w)] and Im (& yy{e)] are odd funclions of e (see Problem 7.3-4).
(7.3-18)
4 Pyy(w) =0 and & yy(w) =0 if X(¢) and ¥(r) are orthogonal.  (7.3-19)

(5) If X(¢) and ¥(r) are uncorrelated and have constant means X and ¥

Fyyle) = F yx(w) = 27X ¥é(w) (7.3-20)
®) A[Ryy(t t+ 7 < Fxy(w) (7.3-21)
AlRyy(t, t + )] < Fyy(w) {7.3-22)

In the above properties, Re [-] and Tm [] represent the real and imaginary
parts, respectively, and A[-] represents the time average, as usual, defined by
(6.2-21),

Property 1 follows from (7.3-12) and (7.3-14). Properties 2 and 3 are
proved by considering the symmetry that X7{(e) and ¥Y(w) must possess for
real processes. Properties 4 and 5 may be proved by substituting the integral
(Fourier transform) forms for Xy(w) and Y (w) into E[XF(®)¥(w)] and
showing that the function has the necessary behavior under the stated assump-
tions.

Property 6 states that the cross-power density spectrum and the time
average of the cross-correlation function are a Fourier transform pair; its
development is given in Section 7.4. For the case of jointly wide-sense sta-
tionary processes, (7.3-21) and {7.3-22) reduce to the especially useful forms

o

Srr@r=| " Rere s (7.3-23)
Fyylw) = JioRyx(r)eﬁj"” dt (7.3-24)
Ry =3[ Srr(re do (7.3:25)
Rird =52 | Ftaredo (7326)

EXAMPLE 7.3-1. Suppose we are given a4 cross-power spectrum defined by

_ Ja+ibesw W <w<W
Lxr(@) = { ] elsewhere
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where W > 0, g and & are real constants. We use (7.3-25) to find the cross-
correlation function. It is

i w b 5
Ryy(@) = —j , (a +Jj —I‘; )e"’”r daw
W

a i X b 3
= Jor - e}mr
MJ_WL’ dw +j '-—ZH_WJ_WGJ des

On using (C-45) and (C-46) this expression will readily reduce to

a [efor | ¥ b @ Rl
Rt =2, [— _,,,] i i {‘” 57l

jT
[(@Wz — b)sin(WT) + bWt cos( W )]

1
7Wt?

EXAMPLE 7.3-2. We determine the cross-correlation function corresponding
to the cross-power density specirum

_ 8

(o + jo)’

where @ >0 is a constant. We write #yp{w) =4G(w) where Glw) =
2/(x + jwy'. From pair 17 of Appendix E, we have |

2(0) = (D) e ™ « Glw)
From the linearity property of Fourier transforms and pair 17, we get
Ryy(0) = du(x)?e™
| yy(@)]| and Ryy(z) are sketched in Figure 7.3-1.

& XY-(w) =

*74 )
RELATIONSHIP BETWEEN CROSS-POWER SPECTRUM AND
CROSS-CORRELATION FUNCTION

In the following discussion we show that

oo " 1 T .
Fey(@) =J { lim —J Ryy(t, 1+7) dt]e Jor gy (7.4-1)
oo T=oo2T -T
as indicated in (7.3-21).
The development consists of using the transforms of the truncated
processes given by '

X?(m)=jfTX(:)e-f”‘ dt o (74-2)

(1.4-3)

T -
Yr(w) = J Y(fl)e_"w,’ dy

< ¥ P a iR

@Ry (x)
3 -
2l =—16272 .
I -
1 ' '
0 2 4 6 ar
@
o
& | et
1.0
oS
I . 1 1 ' [
-15 -1 ] 0 05 1.0 L5
e

O]

FIGURE 7.3-1
Cross-correlation function (@) and magnitude of cross-power spectrum (#) for the
process of Example 7.3-2. .

in (7.3-12). First, we use (7.4-2) and (7.4-3) to form

. T ] T .
XH@)Yr(w) = J X(e! di .[—r Fit)e N dt

(7.4-4)

This result is used in (7.3-12) to form the cross-power density spectrum.
E(X7() Yr{w)]

Fyyl) = lim =57

1 T . T . ’
= lim ~—EU X(He™ dIJ Y7 a‘z]]
T—oo T _7r
T 7T - _—
= lim — —Jwlf =1
'Il'ile:olozTJ_TJ-_T ny(f, t])e dt dtl

Next, we use a procedure similar to that developed in Section 7.2. First, we
inverse Fourier transform both sides of (7.4-5) and identify one integral as an
impulse function

(7.4-5)

235

CHAPTER 7:
Random
Processes—
Spectral
Characteristics




236
Probability,

Random Variables,

and Random
Signal Principles

1 e ejmr
E J- ﬁmyxy((d) dw

L lim lr J Ryyl(t, t)e‘f“’("“"drdz ™" dew
_211' T—>oo2T T Y !

A )
?llm -2~1§_,'J- J .ny(l, II)EJ e}n)('r—l[-i-l) dcudtl dt
=00 —00

i T T
'_‘T!L)MZTJ’ J ny(f, l])s(f[—f—f)dt] dt
Further reduction is possible on use of (A-16). The definition of the
impulse allows the immediate solution for the integral over 7,.
T
%J_w.?’xy(w)ew‘ do= lim %J_T Ryy(t, t +1) dt (7.4-7)
which is valid for —T < t + 7 < T. This condition arises from the requirement
that the impulse in (7.4-6) be within the range of integration. The condition
can be ignored as T — oc in the limit. Equation (7.4-7} indicates that the
cross-power spectrum and the time-average cross-correlation function form
a Fourder transform pair. The result proves (7.4-1) because it is the direct
transform part of the pair, while (7.2-7) is the inverse part.

Tt should be noted from (7.4-7) that given the cross-power spectrum, the
cross-correlation function cannot in general be recovered; only its time aver-
age can. For jointly wide-sense statiomary processes, however, the cross-
correlation function Ryy(t) can be found from & yy(w) since its time average
is just Ryy(z).

Although we shall not give the proof, a development similar to the above
shows that (7.3-22) is true.

- {7:4-6)

EXAMPLE 7.4-1. Let the cross-correlation function of two processes X(f)
and ¥{1) be

Ryy(t,t+7) = %{sin(wor) + cos[wy(2t 4 )]} -

where 4, B, and @, are constants. We find the cross-power spectrum by
use of (7.4-1). First, the time average is formed

i T
im — ! dr
lim 3T j—'f Ryy(t,t +7)

T—oo0
1 T
= %ljsin(mgr) = 48 11111 ﬁj cos[wg(21 + D) dr

The integral is readily evaluated and is found to be zero. Finally we
Fourier transform the time-averaged cross-correlation function with the
aid of pair 12 of Appendix E:

e

Fer(@) = "’;[%—BSin(wof)}

_]R’AB

[8(e — eop} — (e + eny)]

7.3
POWER SPECTRUMS FOR DISCRETE-TIME PROCESSES AND
SEQUENCES

As with continuous time processes, power spectrums for discrete-time (DT)
processes and sequences, as defined in Section 6.1, result from Fourier trans-
formation of appropriate correlation functions. To fully appreciate these
topics, we need material to be developed in Chapter 8. The reason is that
the developments depend, in part, on sampling theory and the response of a
network to a random signal (the material of Chapter 8). However, for com-
pleteness here, it is reasonable to just summarize the important results, with-
out proofs. We shall consider only baseband processes and sequences that are
at least jointly wide-sense stationary.

Discrete-Time Processes

Let X(¥) be a band-limited} random process for which samples are taken at
times nT,n=0,41,42,..., to form a discrete-time process X(nT,). When
sampling is the result of multxplymg X(1) by a periodic “sampling” plusé train
con51st1ng of rectangular pulses of short duration 7, and amplitude 1/ T,
oocurrmg each T, seconds, the sampling theory of Chapter 8 shows that the
process’ autocorrelatlon function Ryy(r). has a sampled representation,
denoted by Ry x (7), that is given by

Ryx (D)= Rxx('f)— i rect (T —nT,)

P n=—00 TP

= Ryx(7) Z 8(r - nTy)

N==0G
= ¥ Ryx(nT)s(x —nTy)
H=—00

The second sum is an approximation to the first sum that results from use of
narrow sample pulses (7}, small). The third sum derives from the second by use

(7.5-1)

tA band-limited process, for our present purposcs, is one with a power density spectrum that is zero

at all frequencies except over a finite band where || < w,/2, with e, = 2x/7, and T, is the constant
time between any adjacent pairs of samples. T, is called the sampling interval or sampling period.

\
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of (A-29). Sampling with very narrow pulses (impulses in the limit) is called
ideal sampling.

Direct Fourier transformation of (7.5-1) defines the power spectrum of the
discrete-time {DT) random process, which we denote by &y y (@)

o0
Frxfw)= Y Ryx(nT)e ™ (7.5-2)
a=—00 .
It is to be noted that (7.5-2) is periodic in the variable w with period
w; = 2mfT,.
It is of interest to show how the power spectrum of the DT random
process is related to the power spectrum of the process X(r). First, we sub-
stitute the relationship (Problem 7.5-2)

DO
3 dr—nT)= Z P (7.53)
n=—0o ' 5 #=—00
into the middle form of (7.5-1) and then Fourier transform the result to get
(Problem 7.5-3) -

Py, (@) = Z & yxle — new,) (7.5-4)

-f H=—00
Now Pyy(w) is the central term of (7.5-4) where # = 0. If we write a rectan-
gular function rect(w/w;) on both sides to select out & 'yy(w), we have

P yyl(w) = T rect{w/w) x, x, (@) (7.5-5)

Our result, (7.5-5), shows that the process’ power spectrum is T, times the
central period portion of the periodic power spectrum of the DT process.
Thus, (7.5-2) in its central period yields the process’ power spectrum within
a constant factor.

Alternatively, (7.5-5) can be obtained another way. In Chapter 8 it is
shown that the autocorrelation function has the following valid representa-
tion:

Ryx(z) = i Ryx(nT) Sales (v — nT,)/2] (7.5-6)

H=—00

based on sampling theory. The direct Fourier transformation of (7.5-6)
produces

oo
Fxxlw) = T, rect(w/w;) » | Ryx(nTo)e 7T

n=—00

=T rect(w/w)S x,x, (@) (7.5-7)

Which is the same as (7.5-5).

The above procedures and results apply to any other wide-sense station-
ary, band-limited, baseband process, say, ¥(2). One only needs to revise sub-
scripts. Similarly, for X(7) and ¥(r) jointly wide-sense stationary, appropriate

cross-correlation functions and cross-power spectrums result from subscripts
XY and YX.

It is emphasized that the above results require processes to be band-
limited and the sample rate w, to be large enough.t For processes that are not
perfectly band-limited, there is usually a practical value of @ above which the
power spectrum can be considered negligible. If the sample rate exceeds at
least twice this practical value, the power density expressions can still be used,
but give the desired density with a small (negligible) error. The error is due to
an effect called afiasing, and it can be reduced by faster sampling,.

Discrete-Time Sequences

Asnoted in Section 6.1, the DT sequence is essentially a DT process, but some
notation is changed to be consistent with that in the DSP (digita! signal
processing) literature. Since computers treat samples as simply a sequence
of numbers, they care not about the time separation (T}) used between sam-
ples. In recognition of this fact, the explicit dependence on 7 is dropped and
X(nTy) is written as X[n], a function of index » denoted by brackets rather
than parentheses. Two other changes must also be recognized.

First, a2 new “variable” £, called the discrete frequency, is defined, even
though it is actually an angle, as

Q=oT, - (758)

Second it results that z-transforms are extensively used in DSP. For our
purposes it can be recognized that the right side of (7.5-2) is a z-transform
of the sequence of samples of the autocorrelation function. For example, the
bilateral (or two-sided) z-transform, denoted by Zyx(2) (boldface type used
for the z-transform), of the sequence Ryy[n] is

Pyx )= Z Ryylnjz™ (7.5-9)

n=—=0o0

By comparmg (7.5-2) with (7.5-9) we have

Py lw) = Z Ryylrle T = Z Ryyli] e

n=—00 He=—00
= JGX.(:)| =Py, x,(e™) (7.5-10)
=c' -

In general, z can be any complex number. However, (7.5-10) shows that the
power density spectrum is the z-transform evaluated on the unit circle fwhere
z =exp(j), |z| = 1, and the angle of z is ]. The second right-side sum of
(7.5-10) is called the discrete-time Fourier transform (DTFT) of the sequence

Ryxln].

1t the frequency of the highest nonzero spectral term in & yy(w) is Wy, called the spectral exten, the
sampling rate must be a, > 2Wy, where 2Wy is known as the Nyquist rate (see Section 8.7).
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EXAMPLE 7.5-1. Suppose the autocorrelation sequence of a DT sequence
X[n] is ]

Ryyil=d"™ o] <1
We use (7.5-10) to find the DTFT of X[n].

E Rxx["le J’ﬂQ Z atnl —jnSt

n=—cd HN=—00

= i a e —}nﬂ_l_zane—ﬂ,sz E (1)

n=—o0 n=0

We use the sum of (C-62) by identifying w=|[a exp(OT™! and w=
aexp(—j<), respectively, for the two sums in the last form of (1). We have

Sy x(@)

a 1
T rx @)= a—e ¥t 1 — g
(1-d%)

T+ &) — 2acos(Q) @=ol;

Note that this power spectrum is periodic in the variable Q, as are all
power spectrums of all DT sequences.

Developments similar to those leading to (7.5-10) produce expressions for
the power spectrum of ¥{n] for a process Y(#) and for the applicable cross-
power spectrums for X[n] and ¥[n]. These are left as reader exercises.

In (7.5- 10) the DTFT was defined as the second right-side form where we
say Sy, X(ef } is the DTFT of Ryy[n]. There is also an inverse DTFT (or
IDTFI") where Ryy[n] can be recovered from &y X(e’ ). The two form a
DTFT pair:

Py @) = i Ryy[nle 2 : (DTFT) (7.5-11)

H=-00

Rxx[n]:%‘[_ Lyx (@ de  (IDTFT)  (7.5-12)

:  EXAMPLE 7.52, We show that (7.5-12) is valid by proving that the right
side resuits in Ryy[n].

T o " . .

ST e;nQ a0 = J R -jmst e}nﬂdg

271’]—;1 Frxle) I ﬂ”":_s__w xxlmle
oa

T
=3 RXX[m]-il;J R 4@

HM=—0a

Z Ryl ]sm[(n m)r]

nieZoo (n — m

Since sin[(nr — m)x]/[(r — m)r] =0 for all m # n and equals umity for
m =n, the sum reduces to Ryy[x]. This result equals the left side of
(7.5-12), proving the IDTFT is valid.

EXAMPLE 7.53. Let X(7) be a (whitet) gaussian noise random process
having a sequence of samples Xn]. Assume the sequence of autocorrela-
tion values is such that Ryy[k] = % = 4 when &£ =0 and is zero for all
other values of k. If a new sequence Y[n] = X[n] + 0.5X[n — 1] + 0.25%
[# — 2] is formed, then it can be shown (Problem 7.5-13) that

(2171602 k=0
/%)y k=+land —1 )
(1 /Aoy k=+2and —2
7 all other &
It can also be shown {Problem 7.5-14) that the power spectrum of ¥{n] is

Ryy[kl=

2
Sy o) =L yy @)= Ryylk]e?™
=-2

, ,
= ‘;—’6“[21 + 20 cos() + 8 cos(22)) )

from (7.5-11).

Our example consists of using MATLAB for simulating the sequence
Y[x], computing estimates of its autocorrelation function and power spec-
trum, and comparing the results to the true quantities. The MATLAB
code used is given in Figure 7.5-1. Specifically, we first use the procedures
of Example 5.6-1 to generate 1002 values of zero-mean, gaussian random
variable X with a variance of 4. These values are used to generate 1000
values of Y[n] as defined above. Next, we estimate the autocorrelation
sequence Ryy[k] using the formula (Childers, 1997, p. 297)

—1-k|
RyylK] =% S0 YuYle+ Kl W <N
n=0
where N = 1000. Results are shown as the stem plot of Figure 7.5-2,
where the exact function of (1) is shown as the piecewise continuous
curve for comparison. We see that some significant errors remain, even
with & = 1000 data points. Finally, we compute an estimate of the power
spectrum using the formula (Childers, 1997, p. 303)
n N“l AA o
Fo@= 3. RplKe™®  a=ol
k=—(N—1)
Direct results shown in Figure 7.5-3 for N = 1000 prove to be very noisy,
s0 the code that was used has averaged adjacent intervals of 100 frequen-
cies to smooth the plot to that shown in Figure 7.5-4 [the lower curve is
the exact result of (2)]. Clearly, even for 1000 data values our estimate
shows some significant error.
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L yla 7.5=3

cleax

K =1000;
xvar = 4; % variance of x

‘lag = 10;

randn(’state’,140);

x = gqrt (xvar) *randn(l,N-i-z) ;s % i.i.4. Gaussian random variable

o = x{3:N+2); % x(n}
xnl = x(2:N+1); B x(n-1)
xn2 =xmi{l:N}; % x(n-2)

vy =1+ 0.5%*xnl + 0.25%xn2;

Ryv = zercos(l,2*N-1}; % initizslize
fork =-N+1:N-1
ndxl =max([1 1+k]) :min([N+k N]
ndx2 = max([1 1-k]) :min([N-k N]
Ryy {(N+k) = sum(y (ndxl) .*y(ndx2))./N; % autocorrelation
end

}i
}i

Rtrue = xvar*[0 0 1/4 5/8 21/16 5/8 1/4 0 0]; % true value of Ryy

M=2*N-1;
w=-pi+pi/M:2*pi/M:pi; % frequency vactor

Strue = xvar/1l6*{21+20*cos(w) + B*cos(2*w)); % true value of Syy
Syv_noisy = abs{Fftshift (£££{Ry¥))); % power spectral egtimate .

Bti: =100; % number of points to average {stp must be evenly divisible

% by M+1)
Syy = zaros (1, (M+l)/stp);
for i = 1:8tp:M % smooth the power spectIum estimate
if i< (M¥1)/2
Syy{{i-1) /stp+1) = mean(Syy noisy(i:it+stp~-1}};
else
Syv{{i-1}/stp+1l) = mean(Syy noisy(i-l:i+stp-2));
end
end

clf

plot{[-lag -3:3 lag] ,Rtxue, 'k’)

hold
stem({-lag:lag,Ryy(N-lag:N+lag), k')

xlabel(’Lag’}
vlabhel (‘Magnitude’)
title(’Autocorrelation’) -

figure

plot {w, Syy_noisy(1l:M)}, 'k’}
xlabel('Normalized Frequency {(rad)’)
vlabel(‘Magnitude’)

title(Powex Spectrum’)

figure
plot{w(round{stp/2) :stp:length(w) ), Syy, --k’,w,Strue, 'k’}

xlabel ( ‘Normalized Frequency {rad}’}
ylabel (*Hagunitude’)
title(’Power Spectrum’)

FIGURE 7.5-1
The MATLAB code used in Example 7.5-3.

i aasaborn e o s

Ty
PRt

PR

10 4o

V

geilsdeied

ot

Autocamrelation

FIGURE 7.5-2
True autocorrelation function and estimated autocorrelation sequence applicable to
Example 7.5-3.

Discrete Fourier Transform

Equations {7.5-11) and (7.5-12) apply to a band-limited signal, be it determi-
nistic or random. The principal points to be made are: (1) there is theoretically
an infinite number of values of autocorrelation function needed to complete
the sampled signal’s power spectrum, and (2) this computed power spectrum is
a continuous function of Q that consists of nonoverlapping replicas of the
power spectrum of the continuous signal that was sampled. When a digital

2 i 2

FIGURE 7.5-3
Unsmoothed power specirum estimate applicable to Example 7.5-3.
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FIGURE 7.54 :
Smoothed estimated and exact power spectrums applicable to Example 7.5-3.

computer is used to compute either (7.5-11) or (7.5-12) some problems imme-
diately arise.
In regard to point (1), the computer cannot use an infinite number of

" values Ryxln], even if they were available, since we cannot wait forever for

the final result. Furthermore, such a procedure could involve an infinite
amount of memory andfor an infinite number of calculations. Thus, from a
practical standpoint, the computer typically works with a finite number of
values of Ryy[#], say, N. For truly band-limited signals this limitation requires
teuncation of Ryx[#] to N values, and some error will result in computing the
power spectrum. Truncation results in some spectral distortion and aliasing
(the overlap of spectral replicas due to distortion-caused spectral spread—see
Section 8.7 for more detail). Because even truncated waveforms have spec-
trums that decrease with increasing frequency, there is always some practical
frequency beyond which the spectrum’s magnitude becomes negligible; this
fact allows truncation errors to be reduced by sampling at a rate higher than
twice the practical frequency.

In regard to point (2), even if a computer could determine the continuous
power spectrum (the DTFT), it must still produce results for discrete values of
Q2 (or w, since 2 = wT,). Thus, it is common practice to discretize the variable
2 (or o) to a finite number of values. Usually the number is chosen the same
as the number of sample values (denoted by N above) to facilitate practical
computations (by using the fast Fourier transform or FFT).

From the above comments it is clear that the practical use of the DTFT of
(7.5-11) and the IDTFT of (7.5-12) involves sequences of finite length N. Let
us define the extent of the samples as N7, and the discrete values ey and §2;, of
w and £2, respectively, by

oy, = 2k f(NT)
Qe = 0T gy, = 20k/N

(7.5-13)
(7.5-14)

k=0,1,....(N—1)
k=0,1,...,(N=1)

e, il

Next, we define the discrete values of the power spectrum by
Py xfen) = Py (%) = Py x (T (7.5-15)
Pyl = Ly, @) = Ly 5, (7.5-16)
These definitions allow us to write the truncated version of (7.5-11) and the

discretized version of (7.5-12}, respectively, as

N-l

Frxlkl = Ryxlnl kN
n=()

N-1

1 T
RXX["] = N Z ymxs [k] ejl k(N
k=0

k=01,....(N—1) (7.5-17)

n=01,...,(N-1) (7.5-18)

Equation (7.5-17) is called the discrete Fourier transform (DFT) of the
finite autocorrelation sequence, while (7.5-18) is known as the inverse discrete
Fourier transform (IDFT) of the discretized power spectrum. Together the two
results form 2 DFT pair. ’

An alternative version of the DFT pair results from use of the DT
sequence Ryy(nT):

N—1

Pra@) =Y Reg(nT)e 7T
n=0

k=0,1,...,(N~1)  (7.5-19)

N=I
Rey@T) == Y Fyp@)e™h =01, (N=1)  (1.520)
k=0

EXAMPLE 7.54. To set the stage for the following example we determine
the autocorrelation function Ryy(7) for a continuous time process X(£)
that we assume has the power spectrum

T w
yxx(&)) = Kcos (m) rect (M)

Here K > 0 is a real constant and WYy is the spectral extent of the process.
On inverse Fourier transformation we get

Riel®) = & (Sal Wt — e/ 2)] + Sal Wt + (/)
_ (KW {2)cos(WyT)

= 1

(/2" = (W)’ ®
In computing (1) we have used (C-7) and (C-45) to easily evaluate the
inverse transform’s integral.

EXAMPLE 7.55 We demonstrate the solution of (7.5-19) by use of
MATLARB software. First, we assume values of the power spectrum are
to be found at N = 5 frequencies. Next, we choose to calculate the power
spectrum of Example 7.5-4 by using five true values of the autocorrelation
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function of (1) when the sampling rate is @, = 2a/T; =2Wy. These
values are found to be

Ryxl0] = K2/xT)  Ryxlll = K2/(32T))
Ryy[21= —K2/(151T)  Ryy[3]= K2/(35xT;)
- Ryy[4] = —K2/(63%T}) :

The MATLAB code to solve (7.5-19) when these values are used is given
in Figure 7.5-5.

In Figure 7.5-6 the solid line curve is the amplitude-normalized plot
of the true power spectrum of (1) in Example 7.5-4 versus normalized
frequency [-x < (R = wT) < #]. The computed frequency values are
shown as the stem plots at five points. Clearly, the program is producing
the correct values of the power spectrum at the limited number of points
used. This example is revisited in Problem 7.5-15, where the number of
frequencies is increased to show that accuracy is preserved while calculat-
ing the function at more discrete points.

7.6
SOME NOISE DEFINITIONS AND OTHER TOFPICS

In many practical problems it is helpful to sometimes characterize noise
through its power density spectrum. Indeed, in the following discussions we
define two forms of noise on the basis of their power spectrums. We also
consider the response of a product device when one of its input waveforms
is a random signal or noise.

White and Colored Noise

A sample function 7(z) of a wide-sense stationary noise random process N{r) is
called white noise if the power density spectrum of N(?) is a constant at all
frequencies. Thus, we define

Fanlw) = /2 (7.6-1)

for white noise, where #; is a8 real positive constant. By inverse Fourier
transformation of (7.6-1), the autocorrelation function of N(¢) is found to be

Ryp(z) = (A70/D 8(z) (7.6-2)

The above two functions are illustrated in Figure 7.6-1. White noise derives its
name by analogy with “white” light, which contains all visible light frequen-
cies in its spectrum.

‘White noise is unrealizable, as can be seen by the fact that it possesses
infinite average power:

1

Ej_wg””(”) do =00 (7.6-3)

5 26%%%%%% Example 7.5-5 %%%%%% %5%%6% %% 247
alear CHAPTER 7¢
Random
N=5; B Processes—
k=1; Speciral
s = 1; Characteristics

wx = pi/Ts;

if rem(N,2) ==

W= -wx : 2%*wx/N : wx - 2*wx/N; % £requency vector
else

W= =-wx + wx/N : 2*wx/N : wx;
end

tau = -0,5*N: (0.5*N-1);

£ingl = zeros (1,length{tau));
sinc2 = zeros(1l,length(tau));

£ = £ind(pi*tau - pi/2 ~= 0); % avoid sin(0}/0
sinel(f) = gin(pi*taul{f) - pi/2)./(pi*taun(f) -pi/2);
£ =Eind{pi*tau -pi/2 ==0); % sin{0}/0 =

sincl(f) =ones{l,length(f));

f = find(pi*tau + pi/2 ~=0);

sinc2(f) = sin{pi*taun(f) +pi/f2). /(p:.*tau(f) +pl/2);
f = find(pi*tau + pi/2 ==0);

ginc2{f) = cnes(1l,length{£));

Rtrue = Ts*k*wx/ (2%*pi) *(sincl + sinc2); % true
autocorrelation

w2 = ~wx : 2%wx/128 : wr - 2+*wx/128; % frequency vector
Strue = k*cos{pi*w2/ (2%wx)); % true power spectrum
Sxx =abs{fftehift (£t (Rtrue,N))); % estimated power spectrum

clf-

plot (w2, Strue, k")
hold |

stem{w, Sxx, 'k'}

xlabel{‘Normalized Frequency (rad)”’}
ylabel (‘Magnitude’)
title{ Power Spectzum’)

FIGURE 7.3-5
MATLAB code used in Example 7.5-5.

However, one type of real-world noise closely approximates white noise:-
Thermal noise generated by thermal agitation of electrons in any electrical
conductor has a power spectrum that is constant up to very high frequencies
and then decreases. For example, a resistor at temperature T in Kelvin
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Nomalized frequency (rad)

FIGURE 7.5-6
True power spectrum (solid curve) and MATLAB-calculated power spectrum (stem
plot) applicable to Example 7.5-5.

produces a noise voltage across its open-circuited terminals having the power

“spectrumt (Carlson, 1975, p. 118)

Ao/ 2)(wl/T)

yNN(w) = e&lm}/T 1

where @ = 7.64(107'?) kelvin-seconds is a constant. At a temperature of
T = 290K (usuvally called room temprature although it corresponds to a rather
caol room at 63°F), this function remains above 0.9 (Ao/2) for frequencies up

(7.64)

B Fla)
Nof2, Nyi2
o T 0 a
(a} (L)

FIGURE 7.6-1 .

(@) The autocorrelation function and () the power density spectrum of white noise.
[Adapted from Pecbles { 1976) with permission of publishers Addison-Wesley,
Advanced Book Program.]

tThe unit of & yy(w) is actually volts squared per hertz. According to our convention, we obtain
watts per hertz by presuming the veltage exists across a 1-© resistor,

to 10'2 Hz or 1000 GHz. Thus, thermal noise has a nearly flat spectrum at all
frequencies that are likely to ever be used in radio, microwave, or millimeter-
wave systems.T

Noise having a nonzero and constant power spectrum over a finite fre-
quency band and zero everywhere else is called band-limited white noise.

Figure 7.6-2a depicts such a power spectrum that is lowpass. Here
Pr
Pmley= W T <e<W (7.6-5)
0 . elsewhere

Inverse transforimation of (7.6-5) gives the autocorrelation function shown in
Figure 7.6-2b:

- sin(#7)
R =pP— 7.6-6
(T Frm (7.6-6)
Falw)
Pr
W
- 1] " o
(=}
Ry (@)
P

(&)

FIGURE 7.6-2
Power density spectrum (&) and autocorrelation function (5) of lowpass band-
limited white noise.

$This statement must be reexamined for T < 290K, such as in some superconducting systems ot

other low-temperature devices (masers).
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The constant P equals the power in the noise.
Band-limited white noise can also be bandpass as illustrated in Figure
7.6-3. The applicable power spectrum and autocorrelation function are:

Fa@={¢7" G D lel<eot WD )
and
in( W t/2
RNN(r) = P% COS((D(}I') (7.6-8)

where wp and W are constants and P is the power in the noise.

F(er)

I

—ty 1] ay o

"%"‘% o= aln‘l-E

Rl

&g~

Rons)

FIGURE 7.6-3

Power density spectrum (a} and autocorrelation function (6) for bandpass band-
limited white noise. [4dapted from Peebles (1976) with permission of publishers
Addison-Wesley, Advanced Book Program.)

Again, by analogy with colored light that has only a portion of the visible
light frequencies in its spectrum, we define colored noise as any noise that is
not white. An example serves to illustrate colored noise.

EXAMPLE 7.6-1. A wide-sense stationary noise process N(f) has an auto-
correlation function

Ryy(z) = Pt
where P is a constant. We find its power spectrum. It is

& »
& anlw) = J Pe g g

-0
= Per—:_m"’-“’)r dt+ PJ'q B g
0 —0a

These integrals easily evaluate using (C-45) to give

P P 6P

S un(w) _3+jw+3 o 9t aP

This power spectrum is sketched in Figure 7.6-4 along with the preceding
autocorrelation function. . .

Ryn()

P

Peel

FIGURE 7.6-4

The autocorrelation function () and power spectrum (b) of the colored noise of
Example 7.6-1. [Adapted from Peebles (1976) witlh permission of publishers Addison-
Wesley, Advanced Book Program.}
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Product Device Response fo a Random Signal

Product devices are frequently encountered in electrical systems. Often they
involve the product of a random waveform X (¢} (either signal or noise or the
sum of signal and noise) with a cosine (or sine) “carrier” wave as illustrated in
Figure 7.6-5. The response is the new process

Y1) = X() 4y coseoyt} : (7.6-9)
where A, and y, are constants. We seek to find the power spectrum & yy{w) of

Y{#) in terms of the power spectrum & yy () of X ().
The autocorrelation function of ¥(#) is

Ryy(f. [ T) = E[Y(!) Y(f + '[')I
= E[A2X (DX (¢ + 7) cos{wg cos(ap! + wpT)]

£
= 70 Ryx(t, t + t)[cos(wy 1) + cos(ent + wyt)] (7.6-10)

Even if X(¢) is wide-sense stationary Y(¢) is not since Ryy(t, ¢ + 1) depends on
t. Thus, we apply (7.1-19) to obtain & yy(w) after we take the time average of
Ryy(t,t-+ 7). Let X(f) be assumed wide-sense stationary. Then (7.6-10)
becomes

2
ARy (14 9] =52 Ry coson?) 7.6-11)

On Fourier transforming {7.6-11) we have

2
Fyy(w) = %[yxx(w — ) + Fxx{w + wg)] (7.6-12)

-A possible power density spectrum of X{(f) and that given by (7.6-12) are
illustrated in Figure 7.6-6. [t presumes that X(¢) is a lowpass process, although
this is not a constraint in applyving (7.6-12).

EXAMPLE 7.62. One important use of the product device is in recovery
" {demodulation) of the information signal {music, speech, etc.) conveyed
in the wave transmitted from a conventional broadcast radio station that
uses AM (amplitude modulation). The wave received by a receiver tuned to
a station with frequency wy/27 is one input to the product device. The

Ay cos {agd)

FIGURE 7.6-5
A product of interest in electrical systems. [Adapted from Peebles (1976) with
permission of publishers Addison-Wesley, Advanced Book Program.]

Fylo)

_I

e s

<
&
2

®)

FIGURE 7.6-6

Power density spectrums applicable to Figure 7.6-5; (a) at the input and (d) at the
output. [Adapted from Peebles (1976) with permission of publishers Addison-Wesley,
Advanced Book Program.]

other is a “local oscillator’ signal Ay cos{wy!) generated within the recei-
ver. The product device output passes through a lowpass filter which has
as its output the desired information signal. Unfortunately, this signal
also contains noise because noise is also present at the input to the pro-
duct device; the input noise is added to the received radio wave. We shall
calculate the power in the output noise of the product demodulator.

Let the power spectrum of the input noise, denoted X'(), be approxi-
mated by an idealized (rectangular) function with bandwidth Wgp cen-
tered at dtey. Thus,

Ae/2 —wy — (Wee/2) < © < —wy + (Wger/2)
Fyrw) =1 /2 wy— (Werf2) <© < @y + (Wre/2)
0 elsewhere
where 47/2 is the power density within the noise band. By applying

(7.6-12) the power density spectrum of the output noise Y(f) of the pro-
duct device is readily found (by sketch) to be
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Aodaf8  —2wy — (Warf2) < 0 < —2ag + (Wrp/2)

MNASfA —Wrp/2 < < Wep/2

Fyy@y=1{" ", N Wty
Hodof8 2wy —(Wgr/2) < @ < 2wg +(Wrr/2)
0 elsewhere

Now only the noise in the band —Wjip/2 < & < Wgp/2 cannot be
removed by a lowpass filter (which usually follows the product device
to remove unwanted noise and other undesired outputs) because the
desired signal is in the same band. This remaining component of & yy
(w) gives rise to the final ouiput noise power, denoted N,

i J"’wﬁ N AR dw_.A’oA%WRF
e 2 —I¥aef2 4 87

*7.7
POWER SPECTRUMS OF COMPLEX PROCESSES

Power spectrums may readily be defined for complex processes. We consider
only those processes that are at least wide-sense stationary. In terms of the
autocorrelation function Rzz(t) of a complex random process Z{{), the power
density spectrum is defined as its Fourier transform

Pasw) = | Rez i dn @.7.1)
-0
The inverse transform applies, so
Rzz(1) = LJ P 2™ de (1.7-2)
27)

For two jointly wide-sense stationary complex processes Z,,(1) and Z, (1),
their cross-power density spectrum and cross-correlation function are a
Fourier transform pair;

Fz,2,(w) =J Rz 7 (D) dv (7.7-3)
l—w‘” o
Rzmz"(f)=§J & 7.z (@)e"" dw (7.7-4)
=0

An equivalent statement is:
Rz, z(0) & ¥z z (@) (7.6-5)

EXAMPLE 7.7-1. We reconsider the complex process V() of Example 6.7-1
and find its power spectrum. From the previous example

N —
Ryp(z) = ej")"rz 45

n=1

On Fourier transforming this autocorrelation function we obtain
N N _
yyy(w) = E’rwat ZA?'
n=1

N — +
=Y LF (/)

n=|

N
= 2md(w — wg) y_ A2

n=]

after using pair 9 of Appendix E.

78 .
SUMMARY

The material of Chapter 6 developed random processes through the use of
time domain concepts. This chapter developed processes from the standpoint
of the frequency domain. Central to the development is the concept of a
spectrum describing the manner in which pewer is distributed with frequency
in a random process. This power density spectrum defines the process’ spectral
properties, and is somewhat analogous to the volrage densify with frequency
for deterministic waveforms. However, the analogy is principally due to the
fact that in both cases, the time domain characteristics are related to those of
the frequency domain through Fourier transforms. Important topics discussed
herein were:

« The power density spectrum and its properties were developed for any
(stationary or nonstationary) random process.

It was proven that the time average of a process’ autocorrelation function
and the power density spectrum form a Fourier transform pair.

Similarly, a cross-power density spectrum and its properties were presented
for two random processes. .

The power density spectrums of discrete-time processes and sequences were
developed and related to the power spectrums of the continuous-time pro-
cess from which they were derived via sampling. The relationship of the
discrete-time Fourier transform (DTFT) and the inverse DTFT (IDTFT)
were related to the bilateral z-transform and methods used in digital signal
processing {(DSP).

Computer examples (and chapter-end problems) were included to support
(using MATLAB) the materials on discrete-time processes and sequences.
Some practical noise definitions of white and colored noise were included.
The response of a product device was analyzed; it is valuable as a model for
some mixers and phase detectors used in the practical world.

The chapter closed with some more advanced material on power spectrums
of complex random processes.

.
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PROBLEMS

7.1-1.

7.1-2.

*7.1-3.
7.1-4.

*7.1-5.

7.1-6.

7.1

7.1-8.

We are given the random process
X{f) = Agcos(wy! + O)

where 4, and @y are constants and © is a random variable uniformly distrib-

uted on the interval (0, x).

(@) Is X(#) wide-sense stationary"

(b) Find the power in X{¢) by using (7.1- 10)

{c) Find the power spectrum of X(f} by using {7.1-11) and calculat powcr
from (7.1-12). Do your two powers agree?

Work Problem 7.1-1 if the process is defined by
X(8) = u(t)4g cos(wyt + ©)
where #(f} is the unit-step function.
‘Work Problem 7.1-2 assuming © is uniform on the interval (0, 7/2).

Work Problem 7.1-1 if the random process is given by X(f) = 4g sin(wy! 4 ).

Work Problem 7.1-1 if the random process is
X)) = A} cos(wot + @)

Let 4y and By be random variables. We form the random process
X(8) = Ay cos{wyt) + By sin{uwy?)

where wy 1s a real constant.
{a) Show that if 4, and B; are uncorrelated with zero means and equal
variances, then X(¢) is wide-sense stationary.

{&) Find the autocorrelation function of X().

(¢) Find the power density spectrum.

A limiting form for the impulse function was given in Example 7.1-2. Give
arguments to show that the following are also true:

(a) ]!Lngo Texp[——mzsz] = §(a)
® Jim Texpl—talT1 = 50)

Work Problem 7.1-7 for the following cases:

@ ) Tﬁ‘“‘m) 5@

eeT\aT
® ;ga; T — [al7] = 5()
[SETrd
7.1-%, Show that (7.1-14) is true.

. Prove (7.1-7). [Hint: Use {D-6) of Appendix D and the definition of the deri-

vative.]

b el i

Lo ga e

7.1-11.

7.1-12.

71-13.

7.1-14.

7.1-15.

7.1-16.

7.1-17.

A random process is defined by
Y() = X(t)cos(wyi -+ @)

where X{) is a lowpass wide-scnse stationary process, wy is a real constant,
and @ is a random variable uniformly distributed on the interval (0, 2). Find
and sketch the power density spectrum of Y(i) in terms of that of X(r).
Assume O is independent of X(¢).

Determine which of the following functions can and cannot be valid power

density spectrums. For those that are not, explain why.
3

(@) Frii s ®) expl—(o— 1]
Cl)z (1)4
OFa~%@ @ ey

Work Problem 7.1-12 for the following functions.

cos(3w) 1
One O ey
el I
O v D e

Given that X{(¢) = Zfi 1o X (1} where (o) is a set of real constants and the
processes X;(t) are stationary and orthogonal, show that

N
S yx(w) = Z“?S” x,x,(w)
i=1
A random process is given by
X(1) = Aycos(R + ©)

where A is a real constant, £ is a random variable with density function f5(-),
and © is a random variable uniformly distributed on the interval (0, 2x)
independent of €. Show that the power spectrum of X (1) is

& xxlw) = ——Tfn(w) +/fal(—w)]

If X(¢) is a stationary process, find the power specirum of
Y{) = Ay + B X(1)

in terms of the power spectrum of X(¢) if’ 4 and By are real constants.

Find the rms bandwidth of the power spectrum
P

1+ (w/ W)
0 lw| = KW

w| < KW
Fyx(w) = ol

where P, W, and K are real positive constants. If X — oo, what happens?
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7.1-18.

7.1-19.

*1.1-20.

7.1-21.

7.1-22.

7.1-23.

7.1-24.

Find the rms bandwidth of the power spectrum

Pcos(rnwf2W)

-yn'(&’)=[0 lof = W

lw| > W
where W > 0 and P > 0 are constants.

Determine the rms bandwidths of the power spectrums given by:
P o] < W

0 lw] = W

Pl—lo/Wll  lol<W

0 lw| = W

@ Fyriw) = {

(B) & yx(@)= [
where P and W are real positive constants.
Given the power spectrum

cuP— 27? * mP-l- 72
[+&9T [+
where P, a, and W are real positive constants, find the mean frequency and
rins bandwidth,

& yx(ew) =

Show that the rms bandwidth of the power spectrum of a real bandpass
process X(#) is given by

Wians = 4] — &)
where & is given by (7.1-23) and W is given by the right side of (7.1-22).

The autocorrelation function of a random process X (1) is
Ryx(t) =342 exp(—47%)

() Find the power spectrum of X{(1).

(b) What is the average power in X(¢)?

(¢} What fraction of the power lies in the frequency band —1/+Z =<
w =< 1/J2

State whether or not each of the following functions can be a valid power
density spectrum. For those that cannot, explain why.

|| exp(—da®)
1+ jw

(06

© (12 + a®)®
{e) cos(w)exp(—8w?)

(@) () cos(3w)exp(—w’ + j20)

(@) 6tanfl2o/(1 + o))
() () B —jo'(3 +jw)
If #yx(w) is a valid power spectrum of a random ?rooess X(1), discuss

whether the functions d& yy(w)/dw and d2& yy(w)/dw” can be valid power
spectrums. :

7.1-25,

7.1-26.

7.1-27.

7.1-28.

7.1-29.

*7.1-30.

*7.1-31.

7.1-32.

7.1-33.

(#) Rework Problem 7.1-15 and show that even if ® is a constant (oot
random) the power spectrum is still given by :

(@) = (AL D fale) + fal—o)]

[Hine: Time-average autocorrelation function before Fourier transform-
ing to obtain & yy(w).]

(b) Find the total power in x(¢) and show that it is independent of the form of
the density function fp(w).

Find the rms bandwidth of the power spectrum
Fxx(@) = 1/[1 + (/WY

where ¥ > 0 is a constant.

Work Problem 7.1-26 for the power spectrum
Fxx(@) = J[1 +(w/WYT

Work Problem 7.1-26 for the power spectrum
&xxtw) = 111 + @/ WYL

Work Problem 7.1-26 for the power spectrum
xx(o) = /1 + @/ WYT

Generalize Problems 7.1-26 and 7.1-28 by finding the nns bandwidth of the
power spectrum

& xxle) = L1 + (/WY1

where N = 2 is an integer.

Generalize Problems 7.1-27 and 7.1-29 by finding the rms bandwidth of the
power spectrum

Fxlw) = & 11 + (i WYTY

where N > 3 is an integer.
Assume a random process has a power spectrum

F (@) = [g —@9) el =6

elsewhere

Find {a) the average power, () the rms bandwidth, and (¢) the zutocorrelation
function of the process.

Show that rms bandwidth of a lowpass random process X(7}, as given by
(7.1-22), can also be obtained from

w2 "L @R
T Ryx()  dTP |

where Ryy(v) is the autocorrelation function of X ().
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7.1-34.

7.1-35.

7.1-36.

7.1-37.

7.1-38.

7.2-1.

7.2-2.

7.2-3.

724,

Assume a random process X{r} has a power specirum
6lew]|

& yxlw) = W

where W > 0 is a constant.

(a) Sketch & yy(w).

(F) At what positive value of o, dencted by @pa.. does Fyy(w) reach a
maximum value?

Treat the power spectrum of Problem 7.1-34 as bandpass and find its mean
frequency @y and rms bandwidth Wi,

Work Problem 7.1-35, except assume the power spectrum
6lo|

Fxxle) = oty

Determine which of the following functions can be a valid power density of
some random process. For those that cannot, give at least one reason why.

3
@ > (-2 8(w—3n)

n=-1

(&) exp[—4sin{6w)]

() Ho—)+ow+ 4+ &1 cos?(10w)

-3

@ (10 + oY)’

Find &y and W,y for the power spectrum shown in Figure P7.6-6.

Find the power density spectrum of the random process for which

Ryx(z) = Peos*(amyr)

if P and wy are constants, Determine the power in the process by use of
(7.1-12). :

A random process has the power density spectrum

6o

& yxlw) = Tiaf

Find the average power in the process.

Work Problem 7.2-2 for the power spectrum
2

6w
Fyxlw)= +aF

Work Problem 7.2-2 for the power spectrum
6aw'®

Fxxlw) =——3

(1+e®°

7.2-5.

7.2-6.

7.2-1

*7.2-8.

7.2-9.

7.2-10.

7.2-11.

7.2-12.

7.2-13.

Assume X(f) is a wide-sensc stationary process with nonzero mean value
X # 0. Show that

o]

Fyvlw) = 20X%5(w) + j Cyx(D)e ™" dz

where Cyy(7) is the autocovariance function of X(¥).

For a random process X(f), assume that
Ryyf(r) = pei

where P> 0 and @ > 0 are constants. Find the power density spectrum of
X(r). [Hine: Use Appendix E lo evaluate the Fourier transform of Ryy(z).]

A random process has an autocorrelation function

P[1—(2r/T)] 0<t=<T/2
Ryx()= P1+(2¢/T)] -T/2=<1<0
0

< -—T/2 and > T/2

Find and sketch its power density spectrum. (Hint: Use Appendix E.)

A random process X(f) has a periodic autocorrelation function where the
function of Problem 7.2-7 forms the central period of duration T. Find and
sketch the power spectrum.

if the random processes of Problem 7.1-14 are stationary, zero-mean, statis-
tically independent processes, show that the power spectrum of the sum is the
same as for orthogonal processes. For stationary independent processes with
nonzero means, what is #yy(w)? .

Given that a process X'(r) has the autocorrelation function .

Ryxy(2y = Ae™ cos(wyr)
where 4 >0, & > 0, and e are real constants, find the power spectrum of
X().

A random process X(¢) having the power spectrum of Problem 7.2-3 is applied
to an ideal differentiator.

(a) Find the power spectrum of the differentiator’s cutput.

(b) What is the power in the derivative?

Work Problem 7.2-11 for the power spectrum of Problem 7.2-4,

A wide-sense stationary random process X(/) is used to define another process
by

o= mexe-gas

where A(r) is some real function having a Fourier transform H(w). Show that
the power spectrum of ¥(J) is given by

& yy(e) = & yx(w)| Hiw)
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7.2-14. A deterministic signal 4 cos(wy?), where A4 and «wy are real constants, is added
to a noise process N(7) for which ‘

2

SFNN(aJ) =P—V-2T-0—)2—

and W > 0 is a constant.

(@) Find the ratio of average signal power to average noise power.

() What value of 7 maximizes the signal-to-noise ratio? What is the con-
sequence of choosing this value of #7?

7.1-15. A random process has the autocorrelation function

Ryy() = Bcos*(wyt) exp(— Witl)

where B, wy, and W are posgive constants.

{a) Find and sketch the power spectrum of X{7) when @y is at least several
times larger than W.

(b)) Compute the average power in the lowpass part of the power spectrurm.
Repeat for the bandpass part. In each case assume wp 3> W.

#7.2-16. Generalize Problem 7.2-15 by replacing c05*(wy) with cos” (wyr) where N = 0
is an integer. What is the resulting power spectrum when N is (a) odd, and (5}
even?

*7,2-17. The product of a wide-sense stationary gaussian random process X{/) with
itself delayed by T seconds forms a new process ¥(f} = X()X(t—T).
Determine (2) the autocorrelation function, and () the power spectrum of
Y{(¥). {Hint: Use the fact that E[X]X2X3X4]=E[X1X2]E[X3X4]+E[X[X3]
E[X, X, ]+ E[X, X;] E[X>X3]— 2ELX)ELX,|E[X5}E[X,] for gaussian random
variables Xy, X, X3, and Xj. (Thomas, 1969, p. 64.)}

7.2-18. For a random process X(f), assume its autocorrelation function is

Ryy(t 14+ 1) = 12~ cos’(24)

(@) Is X(f) wide-sense stationary?
(b) Find Rxx(l').
{c¢) Find the power spectrum of X{(7).

7.2-19. A random process is defined by Y() = X{1) — X{(1 — @), where X(¥) is a wide-
sense stationary process and a > 0 is a constant. Find the autocorrelation
function and power density spectrum of Y{(#) in terms of the corresponding
quantities for X(1).

7.2-20. Find the autocorrelation function corresponding to the power density spec-
trum

157 + 120

Lo0) = e T A0+ oD

.[Hint: Use a partial fraction expansion (Peebles and Giuma,‘ 1991; Dp-
149156} and Table E-1.]

7.2-21. Find the autocorrelation function corresponding to the power spectrum
g
F () =———=
XX ( ) (9 i 0)2)2
[int: Use the convolution property of Fourier transforms given by (D-16).]

*7.2-22. Find the power spectrum corresponding to the autocorrelation function

Ryx(7) = [cos(ez) + sinfe|])le M

where & > 0 is a constant.

*7.3-1. Joint wide-sense stationary random processcs X{z) and Y(t) define a process
w1 by

W () = X(f) cos(ewy?) + Y (1) sin{ey?)

where @y is a real positive constant,

(a} Develop some conditions on the mean values and correlation functions of
X (1) and Y(2) such that W(¥) is wide-sense stationary.

(&) With the conditions of part () applied to W(s), find its power spectrum in
terms of power spectrums of X{#) and ¥(?).

(0 I}; (X(r) and Y(#) are also uncorrelated, what is the power spectrum of
0?

7.3-2. A random process is given by
W@ =AX({)+ BY()

whe_re A4 and B are real constants and X(f) and Y{(£) are jointly wide-sense
stationary processes.

(&) Find the power spectrum & yy(w) of W(1).

(b} Find & yp(w) if X(7) and ¥(f) are uncorrelated.

{¢) Find the cross-power spectrums & ypi(w) and & yp(w).

*7.3-3. Define two random processes by

X(t) = 4 coslwot + @)
Y (1) = W(t)cos(wy! + ©)
where A4 and ey aze real positive constants, @ is a random variable indepen-

dent of W(1), and W(s) is a random process with a constant mean value ¥, By
using (7.3-12), show that

Fxylw) = ——-[5(w wp) + 8w -+ ay)]
regardiess of the form of the probability density function of ©.

7.34. Decompose the cross-power spectrums into real and imaginary paris accord-
ing to .

Fxr@) = Ryy(w) +ﬁn(w)
FLyx(w) = Ryy(w) + jlyx (@)
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and prove that
Ryy{w) = Ryy(—w) = —Ryy(w)
Ley(@) = Iyx(—w) = —Iyy(w)

7.3-5. From the results of Problem 7.3-4, prove (7.3-16). -
7.3-6. Show that (7.3-19) and (7.3-20} are true.

7.3-7. Find the cross-correlation function Ryy(f, ¢+ 1) and cross-powef specteum

Fyy(@) for the delay-and-multiply device of Problem 7.2-17. {Hini: Use
the fact that E[X|XoX3] = E[X(]1E{X:Xq] + E[X]ELX:X ]+ E[XG]ELY, Xo]—
2E[X\]E[X>]E[X3] for three gaussian random variables Xj, X;, and Xj.
(Thomas, 1969, p. 64.)}

7.3-8. If X(f) and Y{) are real rtandom processes, determine which of the following

functions can be valid. For those that are not, state at least one reason why.
(@) Ryy(r) = exp{—It]) (8} |Ryey(z)) 2 j Ryx(O)Ryy(0)
(6) Ryy(r) =2sin(37) () Fyx()=6/(6+7")

dexp(—3|t .
@ Su@ =22 () g =34t

(8) & yy(w)=188e)

7.3-9. Form the product of twe statistically independent jointly wide-sense station-
ary random processes X(1) and Y(s} as

W) = X(OY{)

Find general expressions for the following correlation functions and power
spectrums in terms of those of X(f) and Y(2): (@) Ryw(t, t -+ 1) and & pppp(w),
(B) Ryw(t, £+ 1) and & gyple), and (¢} Ryt ¢+ 1) and & px{w). (@) 11

Ryx(1) = (W /m)Sa(W7)
and
Ryy{1) = (W2 /m)Sa(WaT)

with constants W, > W,, find explicit functions for Ry (s,7-+7) and
& wirlw)-

7.3-10. An engineer is working with the function

Rypl(1) = P(1 + Dyexp(— W)

where P > 0 and ¥ > 0 are constants, He suspects that the function may not
be a valid cross-correlation for two jointly stationary processes X(¢) and ¥(1),
as he has been told. Determine if his suspicions are true. [Hins: Find the cross-
power spectrum and see if it satisfies properties (7.3-16) through (7.3-18).]

7.311. A .>vide-sense stationary process X(;) is applied to an ideal differentiator

having the response ¥(f) = dX(s}/dr. The cross-correlation of the input-
output processes is known to be

Ryy(7) = dRyx(z)/dT

7.3-12.

7.3-13.

7.3-14,

7.3-15.

7.3-16.

*1.4-1.

7.5-1.

(a) chtezmine Fyriw) and & yy(w) in terms of the power spectrum & gy (w)
of X(1).

(b) Since & yy{w) must be real, nonnegative, and have even symmetry, what
are the properties of % yy(w)?

The cross-correlation of jointly wide-sense stationary processes X(f} and ¥(£}
is assumed to be

Ryy(7) = Bu(r)exp(— W)
where B > 0 and W > 0 are constants,
(a) Find Ryg{7).
(b) Find & yy{w) and Fyy(w).
Work Problem 7.3-12 for the function

Ryy(¥) = Bu(t)rexp(—W71)
The cross-power spectrum for random processes X(f) and Y{f) can be written
as

Fxy(@) = L xx(0)H(w)

}vherc & yx(w) is the power spectrum of X(¢) and H(w) is a function with an
inverse Fourier transform /(r). Derive expressions for Ryy(r) and Ryy(z) in
terms of Ryy(r)} and A(7).

Determine the cross-power density spectrum corresponding to the cross-
correlation function

& (e
+—3
at+bh’ @t — b

where a > 0 and b > 0 are constants.

Ryy(z) = u(—1) [a+ 6 — 2607

Find the cross-correlation function corresponding to the cross-power spec-
trum

6

& .= R —
) = G

Again consider the random processes of Problem 7.3-3,
(@) Use (6.3-11) to show that the cross-correlation function is given by

Ryy(t,1+10)= %[cos(@r) + Efcos(2€)] cos(2ay! + wyr)

— E[5in(20)] sin(2eyt + ayz)}

w.hcre the expectation is with respect to © only.
(b Find the time average of Ryy(f,¢+ ) and determine the cross-power
density specirum &y (). )

Fourier transform the first right-side form of (7.5-1), assuming 7, is small
enough that Ryy(t) does not change appreciably over any time interval of
length T,. Does your result become (7.5-2) when T, — 07
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7.5-2. Show that (7.5-3) is true.

7.5-3. Substitute (7.5-3) into the middie form of (7.5-1) and prove that (7.5-4) is true. ‘

7.5-4. Fourier transform (7.5-6) and show that (7.5-7) is true. (Hins: Make use of the
table of transforms in Appendix E.) o

7.5-5. Periodic samples of the autocorrelation function of white noise N(1) with
period T are defined by

_o k=0
Ry (kT —[0 k£0

Find the power spectrum of the DT random process.

7.5-6. A discrete-time random sequence XTr] has a DTFT given by
i = Q—n2z
oy _ t
Py x (€)= Agcos(2) E rec ( — )

n==09

where Aq is a real positive constant. Find the sequence Ryx[#]} by use of the
IDTFT of (7.5-12).

7.5-7. A random sequence Y[} is formed by adding the white noise sequence of
Problem 7.5-5 to a one-unit delayed white noise sequence according to

¥[r] = N[ + b N — 1]
where b is a real constant. Show that

(+beky k=0
Ryylkl = § byo? k=41 and —1
0 all other k&

7.5-8. Find the power density spectrum of the sequence ¥[#] of Problem 7.5-7 by use
of (7.5-11).

7.5-9. Work Problem 7.5-7 except for the sequence Y[#] = Nn} + b,.N[n — m), where
b, is a real constant and m is a positive integer. Use (7.5-11) to find the power
spectrum of ¥{n].

7.5-10. Extend Problem 7.5-7 to consider the sequence
¥Y[n] = N[l + 5 N[n — 1]+ b2 N[ — 2]

where b, is a real constant. Find Ryyfk] and the applicable power spectrum
from (7.5-11).

7.5-11. The white noise of Problem 7.5-5 is added to a “signal” X that is a random
variable statistically independent of the noise and having 2 mean value of zero
and a variance a}( Assume X is a constant with time. Penote the DT sequence
of samples of signal-plus-noise by W[n]l= X[n]-+ N[n] where, of course,

. X=X, a constant with ». Find the autocorrelation function of this
sequence and then determine the DTFT of the sequence. [Hin: Use the
known sum

ek

-~

kil

o0

Z exp(—jmQ) =2z i 882 — n2m)]

R—=—pa n=—02

7.5-12. A DT random sequence X[n] has an autocorrelation function defined by the .

sequence Ryy[#] = (1 — |n|/N) for |n| = N and is zero for |n| > N, with N a
positive integer. Find the DTFT of the sequence,

7.5-13. For the sequence Y[#] defined in Example 7.5-3, show that its autocorrelation
sequence is given by (1).

7.5-14. Show that the autocorrelation sequence defined in Equation (1) of Example
7.5-3 has the power spectrum of equation (2).

7.5-15. Rework Example 7.5-5 except use N = 10 and observe the effect of increasing
N. :

7.5-16. Exte_nd Exampie 7.5-4 by showing that the autocorrelation function for the
continuous-time process having the power spectrum

- & = Kcos?{ =2 @
xx (et} cos' (2Wx rect W,

Ryy() = —Iﬂ’:x [2Sa( Wy T) + Sa(Wyv — ) + Sa(Wyt + 7))
_ (KWyn/2)sin(WyT)
T Wyt — (1)

7.5-17. Rework Example 7.5-5 except assume the random process defined in Problem
7.5-16. Rework your results for ¥ = 10 and compare to the results for N = 5.

7.5-18. Show that (7.5-12) can be written as

R [ —5 s & ejmuf;
=5 - x,x,{0) des

7.6-1. (a) Sketch the power spectrum of (7.6-4) as a function of ww/T.
() For what values of o will #yy{w) remain above 0.5(4/2) when
T =42K (the value of liquid helium at one atmosphere of pressure)?
These values form the region where thermal noise is approximately
white in some amplifiers operated at very low temperatures, such as a
maser.

7.6-2. For the power spectrum given in Figure 7.6-2a, show that (7.6-6) defines the
corresponding band-limited noise autocorrelation function.

7.6-3. Show that (7.6-8) gives the autocorrelation function of the bandpass band-
limited noise defined by Figure 7.6-3a.
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7.64,

7.6-5.

7.6-6.

7.6-7.

7.6-8.

7.6-9.

7.6-10.

A lowpass random process X(¢) has a continuous power spectrum &y () and
& () £ 0. Find the bandwidth W of a lowpass band-limited whitc:noise
power spectrum having a density &y, (0) and the same total power as in X (7).

Work Problem 7.6-4 for a bandpass process assuming & yy{awy) # 0, where ay
is some convenient frequency about which the spectral components of X(#)
cluster.

Falw)

—tlg 0 [ g | o
—wy—2W —ahgt W wy+2W

FIGURE P7.6-6

The power spectrum of a bandpass process X(f} is shown in Figure P7.6-6.
X() is applied to a product device where the second multiplying input
is 3cos(wyt). Plot the power spectrum of the device’s output 3X(f) cos(awyf).

Let the “carrier” Agcos(wyr) in Figure 7.6-5 be modified to add a phase
random variable © so that Y (£} = AgX(f) cos(wy! -+ ©). If © is uniformly dis-
tributed on (0, 2x) and is independent of X(#), find Ryy(r, 1--7) and & yy(w)
when X(7) is wide-sense stationary.

Assume a stationary Bandpass process X(¢) is adequately approximated by the
power spectrum

Fxlw) = Pulw — wo)ew — wp)expl—(e — wy) /5]
+ Pu(—w — wp)(—w — wo)exp[—{w + wn)’ /6]

where wy, P > 0, and b > 0 are constanis. The product Y(f} = X{7) cos(wy?) is
formed. .

(@) Find and sketch the power spectrum of ¥{#).

(5) Determine the average power in X{f) and ¥(s).

Approximate (7.6-4) as a rectangular lowpass power spectrum with a constant
amplitude A47g/2 for |@] < W where W is the angular frequency at which
(7.6-4) drops to A75/4 when T = 2K. What average noise power exists in
the approximate power spectrum if A7/2 = 5.5(10"9)‘? (Hint: Assume the

exponential is adequately approximated by the first three terms in its series

representation.)

A signal 5,(/) = 2.3cos(1000) plus an input noise process N () having the
power spectrum shown in Figure P7.6-10a are applied 1o the product device
shown in (#). The ideal lowpass filter (LPF) acts only to remove all speciral

*1.7-1.

*1.7-2.

*1.7-3.

Fn )

107!

1
—1500 —1000 -500 O 500 1000 1500 o
@

K=1v1

Ideal
5 () + N o | LeF

¥ T Nol)

3 cos (10001)
)

FIGURE P7.6-10

components (signal and noise) that are outside the band |w} < 500rad/s and

does not affect components inside the band.

(2) Find the output dc ievel V.

(b) Sketch the power density spectrum of No(f).

(€} What signal power to average noise power ratio, Va/E[N3(1)], occurs at
the output? Note that this circuit acts as a detector of the signal’s ampli-
tude in the presence of noise.

A complex random process is given by
Z{) = Ae’™

where £2 is a random variable with probability density function fo(-Yand A isa
complex constant. Show that the power spectrum of Z() is

& 22(0) = 2m14|* o)
Compute the power spectrum of the complex process of Problem 6.7-4.

Let X{¢) and ¥(#) be statistically independent processes with power spectrums
& yx(e) = 28(w) + 1/[1 + (0/ 10)]
and
Fyy(w) = 41+ (/2]
A complex process
Z(0) = [X(0) + jY (Y] exp(jewg)

is formed where ey is a constant much larger than 10,
(a) Determine the autocorrelation function of Z(1).
(b) Find and sketch the power spectrum of Z(f).
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CHAPTER 8

Linear Systems with Random Inputs

8.0
INTRODUCTION

A large part of our preceding work has been aimed at describing a random
signal by modeling it as a sample function of a random process. We have
found that time domain methods based on correlation functions, and fre-
quency domain techniques based on power spectrums, constitute powerful
ways of defining the behavior of random signals. Our work must not stop
here, however, because one of the most important aspects of random signals is
how they interact with linear systems. The knowledge of how to describe a
random waveform would be of little value to a communication or control
system engineer, for example, unless he was also able to determine how
such a waveform would alter the desired output of his system.

In this chapter, we explore methods of describing the response of a linear
system when the applied waveform is random. We begin by discussing some
basic aspects of linear systems in the following section. Those readers well-
versed in linear system theory can proceed directly to Section 8.2 without
loss. For others, the topic of Section 8.1 should serve as a brief review and
SUMIMAary.

81
LINEAR SYSTEM FUNDAMENTALS

In this section, a brief suinmary of the basic aspects of linear systems is given.
Attention wiil be limited to a system having only one input and one output, or
response, as illustrated in Figure 8.1-1, It is assumed that the input signal x(¢}
and the response y(t) are deterministic signals, even though some of the topics

270

Lingar

Input x(r) ——= system Qutput (1)

1)

LTI
system

R
Hiw)

®)

Input x(f) —»| —= Output y ()

FIGURE 8.1-1

(a) A general single-input single-output [mear system, and () a similar linear, time-
invariant (LTI) system.

'd_iscusscd.apply to random waveforms. Which topics are applicable to random
signals will be made clear when they are used in later sections.

The General Linear System

Clearly, the linear system {Figure 8.1-1a) will, in general, cause the response
¥() to be different from the input signal x(z). We think of the system as
operating on x(1) to cause y(f) and write

H0) = Llx(D)] 8.1-D)
Here L is an operator representing the action of the system on x{7).
A system is said to be linear if its response to a sum of inputs x,(f),
#=12,...,N, is equal to the sum of responses taken separately. Thus, rf
x,(f) causes a response y,(f),n=1,2,..., N, then for a linear system

y(t) = L[E anxn(r)} = EanL{xn(t)] = Zurryn(g- (81'2)
n=1 =1 =1

must hold, where the o, are arbitrary constants and N may be infinite.
From the definition {2.3-2) and properties of the impulse function we may
write

() = Jm X3 £) 8.13)

—ca
By substituting (8.1-3) into (8.1-1) and observing that the operator operates on
the time function, we obtain .

o0

s =) =1 [~ sewe-oa]= [ xomse-ma 619

-0
We now define a new function A(t, &) as the impulse response of the linear
system; that is,

L[5(t — &)] = Kz &) 815
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Equation (8.1-4) becomes

o

0 =j XN, &) d& @16

-0
which shows that the response of a general linear system is completely deter-
mined by its impulse response through (8.1-6). )

Linear Time-Invariant Systems

A general linear system is said to be also time-invariant if the form of its
impulse response /A{t, %) does not depend on the time that the impulse is
applied. Thus, if an impulse 3(f), occurring at £ =0, causes the response
(5, then an impulse &( — &), occurring at ¢ = §, must cause the response
k(t — &) if the system is time-invariant. This fact means that

A& =h{t—§) 8.1-7)

for a lincar-time invariant system, so (8.1-6) becomes

oC

) =J XOh(t — B dt (8.1-8)

—ca
Equation (8.1-8) is known as the convolution integral of x{t) and h(f); it is
sometimes written in the short form

¥o) = x(2} = A1) 819
By a suitable change of variables, (8.1-8) can be put in the alternative form
¥ = J h(E)x(t — £) dt (8.1-10)

Time-Invariant System Transfer Function

Either (8.1-8} or (8.1-10) shows that a linear time-invariant system is com-
pletely characterized by its impulse response, which is a temporal character-
ization. By Fourier transformation of y{f), we may derive an equivalent
characterization in the frequency domain. Hence, if X(w), ¥{w), and H(w)
are the respective Fourier transforms of x{f), ¥(¢), and f(?), then

v =" s [[7 sone-pdlea
= JDO x(&){Jm h([ — g)e“ja(t—f) dt]e—f@E d;
- J " HOH@e M dt = X)) | 8.L-11)

The function H(w) is called the transfer function of the system. Equation
(8.1-11) shows that the Fourier transform of the response of any linear time-

invariant system is equal to the product of the transform of the input signal
and the transform of the network impulse response.

In the actual calculation of a transfer function for a given network, an
alternative definition based on the response of the system te an exponential
signal

x(f) = ™ (8.1-12)

may be more convenient. It can be shown (Thomas, 1969, p. 142), or Papoulis,
1962, p. 83) thatf

XN

H(w) = (8.1-13)

where

(o) = L™ (8.1-14)
An example serves to illustrate the determination of H{w) by means of
(8.1-13).

EXAMPLE 8.1-1. We find H{w) for the network shown in Figure 8.1-2. By
assuming a clockwise current i (and no loading in the output circuit), we
havej

di
X =L+ ¥
But y{#) = iR so

di 1 dy(t)
dt™ R di
and
L dy()
{l) =——— !
x()) =2 2490
£
° B0 — ©
Input x{¢} R Qutput y{1)
o— o

FIGURE 8.1-2
A linear time-invariant network. [Reproduced from Peebles (1976) with permission
of publishers Addison-Wesley, Advanced Book Program.)

$It should be carefully observed that (8.1-13) holds ondy for x{f) given by (8.1-12): that is, for an X

exponential waveform.
1L in the network 1s an inductance and should not be confused with L above, which stands for a
linear system operator,
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With x(f) = exp{jwr) as the input we must have an output y(f) = H(aw)x()
from (8.1-13). Hence, dy{r)/dt = H(w) jwx() and

x() = £ H@)jex(t) + H@»()

Finally, we solve for H(e):
i

B =1 Gori®

EXAM;’LE 8.1-2. As a second example we prove (8.1-13) by direct use of
(8.1-10). For x(f) = exp(jwi) we have

W)= Jm HE) d = x(r)jio I d

But the integral is H{w), the Fourier transform of A(f), so
(1) = x(H{w)
which gives (8.1-13).

Idealized Systems

To simplify the analysis of many complex systems, it is often convenient to
approximate the system’s transfer function H(w) by an idealized one. Idealized
transfer functions are illustrated in Figure 8.1-3a for a lowpass system; (b}
applies to a highpass system and (¢) applies to a bandpass system. In every
case the idealized system has a transfer function magnitode that is flat within
its passband and zero outside this band; its midband gain is unity and its
phase (w) is defined to be a linear function of frequency.

In replacing an actual system with an idealized one, the latter would be
assigned a midband gain and phase slope that approximate the actual values.
The bandwidth W (in-lowpass and bandpass cases) is chosen according to
some convenient basis. For example, W could be made equal to the 3-dB
bandwidth of the actual system, or aliernatively, it could be chosen to satisfy
a specific requirement. An example of the latter case is considered in Section
8.5 where W, called noise bandwidth, is selected to cause the actnal and ideal
systems to produce the same output noise power when each is excited by the
same noise source.

Causal and Stable Systems

To complete our summary of basic topics in linear system theory, we consider
two final items.

A linear time-invariant system is said to be causal if it does not respond
prior to the application of an input signal. Mathematically, this implies that

|#{a)| or 8(w)

S |H@)

| (e)] or 8(er)

- |

i IH(w)

1 = : :
—wy )] ~— gy o

®@ ")

FIGURE 8.1-3

Ideal system transfer function. (@) Lowpass, () highpass, and {¢) bandpass systems.
[Reproduced from Peebles {1976) with permission of publishers Addison-Wesley,
Advanced Book Progranm.]

() =0 for 1 < ty if x(£} = 0 for ¢ < 1y, where £, is any real constant. From
(8.1-10), this condition requires that :

=0 for =<0 (8.1-15)

All passive, linear time-invariant networks that can be constructed will
satisfy (8.1-13). As a consequence, a system satisfying (8.1-15) is often called
physically realizable.

A linear time-invariant system is said to be stable if its response to any
bounded input is bounded; that is, if [x(f)] < M, where M is some constant,
then |p(#)] < MT for a stable system where [ is another constant independent
of the input. By considering (8.1-10), it is readily shown that

I= Jm k()| dt < oo (8.1-16)

—0C

will ensure that a system having the impulse response A(f) will be stable.
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8.2
RANDOM SIGNAL RESPONSE OF LINEAR SYSTEMS

With the preceding summary of linear systems theory in mind, we proceed
now to determine characteristics of the response of a- stable, linear, time-
invariant system as illustrated in Figure 8.1-15 when the applied waveform
is an ensemble.member x(¢) of a random process X {f). We assume in all work
that the system’s impulse response A(#) is a real function.} In this section we
restrict our attention to temporal characteristics such as mean value and
mean-squared value of the response, its autocorrelation function, and applic-
able cross-correlation functions. Spectral characteristics are developed in
Section 8.4.

System Response—Convolution

Even when x{{) is a random signal, the network’s response y(#} is given by the
convolution integral:

y(z)=ji° *EE — £ dt @21
or
0= esa-gat 82:2)

where A(t) is the network’s impulse response.
We may view (8.2-2) as an operation on an ensemble member x{f) of the
random process X(¢) that produces an ensemble member of a new process

- ¥(#). With this viewpoint, we may think of (8.2-2) as defining the process ¥ (1)

in terms of the process X (¢}
(=]

() =j HEX( — ) de

Thus, we may envision the system as accepting the random process X(¢) as its
input and responding with the new process ¥(7) according to (8.2-3).

(8.2-3)

Mean and Mean-Squared Value of System Response

We may readily apply (8.2-3) to find the mean value of the system’s response,
By assuming X (7} is wide-sense stationary, we havel

1Al real-world networks have real impulse responses.

We shall assume that expectation and integration operations are interchangeable whenever
needed. Some justification can be found in Cooper and McGillem (1986), p. 288, who state
that the operation

oo Nkl

svon=£| | woxa-pa|

- J HE)EX(t — 8] dé

-0

=]

= )Z’J hE)ds=Y  (constant) (8.2-4)
-0

This expression indicates that the mean value of Y(f) equals the mean value of

X(#) times the area under the impulse response if X (¢) is wide-sense stationary.

For the mean-squared value of ¥ (1), we calculate

a1 = 2| vt -syan|” s -sds]

=" [ mxe-sxe-pmenerad 629
If we assume the input is wide-sense stationary then
EX (e — 50X — 5)] = Rux (61 — £2) (8.2-6)
and (8.2-5) becomes independent of «:
P=mrol=| | Rt -phehedad 627

Although this expression gives the power in ¥ (¢}, it may be tedious to calcu-
late in most cases. We develop an example of its solution for a simple case.

EXAMPLE 8.2-1. We find ¥2 for a system having white noise at its input.
Here :

Ryx{&r — &) = (A o/ )i — &)
where .47 is a positive real constant. From (8.2-7)

=" [ romete - i dsite s

= (JVoIZ)J 1) di

Output power becomes proportional to the area under the square of (¥)
in this case.

iy L
EU W (h(0) di] = J E[W M)t
1 T
is valid, where #{f) is some bounded function of a random process fon the interval (¢, £,)] and
h(#) is a nonrandom time function, if '

j" ENW@II] de < 60

1)
where ¢) and 1, are real constants lha]n may be infinite. This condition is satisfied in all physical
cases if (1) is wide-sense stationary because W{} will be bounded and the systems are stable
{see (8.1-16)]. See also Appendix G. ’
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Autocorrelation Function of Response

Let X(f) be wide-sense stationary. The autocorrelation function of ¥Y(¥) is
Ryy(t, 1+ )= E[Y(DY(t + )]

=EU h(sl)X(z—a)dslj ra(&)X(Hr—&:)dﬁ]

—ood —

=[" [ mxe-soxere-auene s @29

which reduces to

Ryy(z) = j

because X(¥) is assumed wide-sense stationary.

Two facts result from (8.2-9). First, Y(?) is wide-sense stationary if X(f) is
wide-sense stationary because Ryy(7) does not depend on ¢ and E[Y(f)] is a
constant from (8.2-4). Second, the form of (8.2-9) shows that Ryy(z) is the
twofold convolution of the input autocorrelation function with the network’s
impulse response; that is

Ryy(t) = Ryy(t) + A{—7) = A(x) (8.2-10)

[>=]

j Rt + & — EDHEHE:) d8 d&y 8.2:9)

—0od —i

Cross-Correlation Functions of Input and Output

The cross-correlation function of X(7) and Y(¥) is

Rurlt, 147 = EIXQ) Y (1 +2)) = [X(r) j II(E)X(HT—E)dE]

=[" Exoxero-onea @2-11)
If X () is wide-sense stationary, (8.2-11) reduces to
Ra@=| R — e dg 82-12)
which is the convolution Ryy(z) with ii(7):
Ryy(r) = Ryx (%) * h(z) (8.2-13)
A similar development shows that
Ryy(t)= J Ryy(z — () d& (8.2-14)
or
Ryx(7) = Ryy (@) # h(—7) (8.2-15)

From (8.2-12) and (8.2-14), it is clear that the cross-correlation functions
depend on 7 arld not on absolute time r. As a consequence of this fact X(¢) and

Y (i) are jointly wide-sense stationary if X(f) is wide-sense stationary, because
we have already shown Y(#) to be wide-sense stationary.

By substituting (8.2-12) into (8.2-9), autocorrelation function and cross-
correlation functions are seen to be related by

Ryy(z) = j Ryy(t + EDNE)) d&, (8.2-16)
or ‘
Ryy(v) = Ryy(r) = (—7) (8.2-17)
A similar'substitute of (8.2-14) into (8.2-9) gives
Ry = Reple—p)iten) dsy (32-18)
or
Ryy(1) = Ryx(t) * k(1) (8.2-19)

EXAMPLE 8.2-2. We shall continue Exampié 8.2-1 by finding the cross-
correlation functions Ryy(r) and Ryy(t). From (8.2-12)

Ry = (ro2pse - i ds
= (oD
From (8.2-14)
Rex(= [ (Hro/D8(e ~ - d

= (A 0/Dh(—7} = Rey(-T)
These two results are scen to satisfy (6.3-16), as they should.

83
SYSTEM EVALUATION USING RANDOM NOISE

A practical application of the foregoing theory can be immediately developed;
it is based on the cross-correlation function of (8.2-12). Suppose we desire to
find the impulse response of some linear time-invariant system. If we have
available a broadband (relative to the system) noise source having a flat power
spectrum, and 2 cross-correlation measurement device, such as shown in
Figure 6.4-1, k(¢} can easily be determined.

For the approxm‘nately white noise source

Rexr®~ (@) 52) (8:3-1)

With this noise applied to the system, the cross-correlation function from
(8.2-12) or Example 8.2-2 becomes :
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X —gs] Srm | O

WO

Cross-comrelation
measurement
system

> Rurley

FIGURE 8.3-1
A method for finding a system’s impulse response. [Reproduced from Peebles ( 1976)
with permission of publishers Addison-Wesley, Advanced Book Program.]

Rer0~ [~ (52)ote - pierae
= (ﬂgﬁ) (z)

) ~ () Raro

Since a measurement ﬁxy(t) of Ryy(tr) can be obtained from the cross-
correlation measurement device, (8.3-3) gives us a measurement 2(z) of A(z)

i = ( Z )ny(r) ~ I(2)

Figure 8.3-1 illustrates the concepts described here.

(8.3-2)
or

(8.3-3)

(8.3-4)

84
SPECTRAL CHARACTERISTICS OF SYSTEM RESPONSE

Because the Fourier transform of a correlation function (autocorrelation or
cross-correlation) is a power spectrum for wide-sense stationary processes, it
would seem that if Ryy{7) is known for the input process, one can find Ryy(t),
Ryy(z), and Ryy(r) as described in Section 8.2 and therefore obtain power
spectrums by transformation. Indeed, this approach is conceptually valid.
However, from a practical standpoint the integrals involved may be difficult
to evaluate.

In this section an alternative approach is taken where the desired power
spectrum involving the system’s reponse is related to the power spectrum of
the input. In every case, the input process X{f) is assumed to be wide-sense
stationary, which, as previously proved, means that ¥{¢) and X (1) are jointly
wide-sense stationary.

Power Density Spectrum of Response

We show now that the power density spectrum & yp(@) of the response of a
linear time-invariant system having a transfer function H(w) is given by

e iR

P yy(@) = & xx (@) Hw) (8.4-1)

where 5/’ yxl@) is the power spectrum of the input process X{f). We call
|H (w)l the power transfer function of the system.

The proof of (8.4-1) begins by writing & yy(w) as the Fourier transform of
the output autocorrelation function

Pry(w) = j
On substitution of (8.2-9), (8.4-2)} becomes
(@) = j h(a)j h(sz)j Ryx(t+ 6 — B dedy df, (3.4-3)

The change of variable £ =1+ §

oo -
R yy(r)e_""'r dr
-0

(8.4-2)

— &, dE = dt, produces
Frrl@) = J hge™ d, j i) d*‘:'zj " R@Hde (844

These three integrals are recognized as H*(w), H(ew), and & yx{w), respectively.
Hence

Fyylw) = &y H (o)

and (8.4-1) is proved.
The average power, denoted Pyy, in the system’s response is readily found
by using (8.4-5): .

HY(w)}H (@) yy(w) = (8.4-5)

1 o
Py =5z ] FxlHO do (8.4-6)

EXAMPLE 8.4-1. The power spectrum and average power of the response of
the network of Example 8.1-1 will be found when X{¢) is white noise for
which

A
Faxle) =30

Here H{w) = 1 + (jwL/R)]™ so
1
[H() m—
and
Nof2

Fyy(w) = m

Pyx(@)H @)
Average power in Y(#), from (8.4-6), is

1 Ao [® dw AR
Pyy =— & di =
Yy ZWJ_m yr(@) do = = Jﬂ1+(wL/R)2 4L

after an integral from Appendix C is used.
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As a check on the calculation of Pyy, we note that (pair 15, Appendix
E)

1
T+ L/
for this network, and, using the result of Example 8.2-1, we get
— (AN R\ HoR
_vz_{Ne BN —ergr g Y0
Prr=17= ( 2 )LX,(L) =

The two powers are in agreement.

B = (RfDu(e ™ & H{w) =

Cross-Power Density Spectrums of Input and OQutput

1t is easily shown (see Problem 8.4-5) that the Fourier transforms of the cross-
correlation functions of (8.2-12) and (8.2-14) may be written as

Fxyv(w) = Fyy(w)H (W) (84-7)
& yxw) = F xx{@)H(-w) (8.4-8)

‘Tespectively.

Measurement of Power Density Spectrums

The practical measurement of 2 power density spectrum is usually discussed in
books as an “estimation™ of the power spectrum. Although the theory behind
spectral estimation is extensive and detailed,t a simple discussion can be given
that provides insight and a plausible basis for measuring power spectrums.

To measure the power spectrum of a lowpass process X{z), consider. the
system of Figure 8.4-1a. X{2), having the power spectrum of (5), is applied to a
real linear filter with a very narrowband, bandpass transfer function as illu-
strated in (c). The center frequency, wy, or the filter's transfer function is
presumed adjustable from near « = 0 out to angular frequency W, the spec-
tral extent of X (7). The filter’s output, Y(f), is applied to a power meter that
measures the average power in Y (/). Both X(¢) and ¥{¢) are assumed station-
ary, ergodic processes. We also assume that the power meter averages V&0
over a very long time such that any fluctuations in its reading are small relative
to the measured power.

By assuming the spectral extent, Wy, of the filter is very small relative to
W, and using the facts that |H’(cu)|2 and & yy(w) are even functions of o for
real filters and real X{¥), we can expand the power, Pyy(wy), in Y(f) as

tFor additional detail the reader is referred to some of the literature, such as Bendal and Piersol
(1986), Kay (1986}, and Blackman and Tukey (1958).

TR AT

X Tunable narrowband, b
.(')—-. bandpass, filter tuned W ]::::
10w =wy
Transfer function = H{gr)
(a)
Feler)
i d 0 ¥ w
&)
| i)
e
|||l
-ty 0 o @

FIGURE 8.4-1
(a} A system for the measurement of a [owpass power density spectrum as in (6},
and {c) the squared magnitude of the filter’s transfer function.

Prvtep) =3- | SxrelH@ do

=ﬂo P ir @ H@)P deo

] (2]
s ;,g’xx(wf)Jo ]H(co)]%dcu

_ Zaxle)H@) Wy
T

(8.4-9)

The last form in (8.4-9) uses a quantity called noise bandwidth, defined in the
next section, as given by

Jmm(w)ﬁ'dw
0

Wy =
N |H (eop)I?

(8.4-10)
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Finally, we write (8.4-9) as

7 Pyy(wr)
Wyl H(wp)

In words, the power Pyy(wy), measured when the ﬁlter is tuned to w = ey,
is multiplied by the known constant :r/{Wh-lH(an)l Y, and the result is an
approximation to & yy(w) at & = ey. By varying ey, the system can measure
the power spectrum for various w.

When X(f) is a bandpass process, the system of Figure 8.4-24 is more
convenient to use. Here X(/) has a power spectrumn centered at some high
angular frequency wp, as sketched in {(b). From (7.5-12), the effect of the
product device is to scale the power spectrum of X(¢) by An/4 and shift it
both higher and lower in angular frequency by an amount wy + @i + ey, the
frequency of the local oscillator. Four spectral components are created, as
shown in (¢}, for the product signal P(f). The narrowband filter has a transfer
function centered at a fixed angular frequency wyp, as sketched in (). Its
spectral extent Wy is assumed to be much smaller than the spectral extent
W of the process X(¢).

For the system of Figure §.4-2, the power in Y () becomes

& yx iy =~ (8.4-11)

o0

1
Pyylag+ar)= ZJ

=

+ P xx(@ + wg + o + )| Ho) do

—49[-9",\'1'((0 — @y - o — Gy}

1 [® A2 2
- 22_J 22 yxw — an — one — ap| HE) do

A3 1
HTU ﬂj & xx(@— op — o — w)| H@) do

A ®
~ 2 prl—wo — ap)| IH@ do
T 0

AZ
=7 xx(n + ) Wyl Hnp)? (8.4-12)

where W)y is the filter’s noise bandwidth according to (8.4-10). Thus,
4JTPyy((1)[] =+ w_‘r)
AWy H (o)

In words, an approximation (measurement) of & yx(w) at angular frequency
wq + ey is equal to the known constant 4Jl'/[A0 Wy H{enp)?] multiplied by the
average power Pyy(mg + wy), measured in ¥(#) when the local oscillator is
tuned to an angular frequency /arger than the center frequency wp of the filter
by an amount wy+ @y By varying the frequency of the local oscillator
(changing wy), & yx(w) can be measured for all frequencies around .

For proper performance of the system of Figure 8.4-2, Wy W is
required so that & pp{w) *2 & pplw;p) for all frequencies near wy that are in
the passband of the filter. Furthermore wyz must not be chosen too small; it
should satisfy wie > W - (W, /2) if the spectral terms in Figure 8.4-2¢ are not

Fyxlwy + o) = (8.4-13)

Product
device
X9 P4 MNamowhand ) | power
Bandpass filter meter
tuned toanp -
Ay cos Tlwy +ane +wf)t}
Local oscillator signal
(=)
T Fodw)
W
I 1 1 1
—2y Far Y a 7N 2wq @
. “ ® \
\ \
/ \ .
N
/ » S
S N ~

L ," .
oo

kma

—2atg— mm—mf —m,r wy W +mf 2M0+W|F+ wy

©@

V()

)
1 1 1 1
—2wy —twy T 1] T wp 2wy w

e Wy

)
FIGURE 8.4-2

(a) System for the measurement of a bandpass power spectrum as in (8). (¢) The
power density spectrum of P(t). (d) The squared magnitude of the filter’s transfer
function.

to overlap when changes take place in w;. We next discuss an upper bound for
erp by means of an example.

EXAMPLE 84-2. When a real, practical device is used to form the product in
_ Figure 8.4-2, the cutput P(r) always contains « term proportional to the
» input X(¢) because of practical “leakage,” sometimes called “feed-
through.” This leakage causes two additional terms in the spectrum of
(c) centered at wy and —ay. As the other spectral terms change their
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positions in frequency in response to the oscillator’s frequency adjust-
ments, the leakage terms do not move. When oy has its largest value of
(W + W,)/2, the highest frequency in the spectral component being mea-
sured is at eyp + (W + W)/ 2+ (W/2D) = e + W+ (W /2). If the fre-
quency is to be lower than the lowest frequency in the leakage spectrum,
which is ey — (W /2), then we require

o < wy — [(3W 4 W;)/2]

This expression provides an upper bound on the choice of wip in design.

85
NOJISE BANDWIDTH

Consider a system having a lowpass transfer function H{w). Assume white
noise is applied at the inpunt. The power density of this white noise is /2
where g is a real positive constant. The total average power emerging from
the network is [from (8.4-6)]
1 [* (A% 2
= — ||H d
Pyy ZJrJ._w( 5 )l ()" do

By assuming the system impulse response is real,} |H(w)? will be an even
function of e and (8.5-1) can be written .

./V [=+]

Pry =52 [ i@ do
Now consider an idealized system that is equivalent to the actnal system in
the sense that both produce the same output average power when they both
are excited by the same white noise source, and both have the same value of
power transfer function at midband; that is, 1H{0)® is the same in both
systems. The principal difference between the two systems is that the idealized

one has a rectangularly shaped power transfer function |H (e))® defined by

2
|H (@) = [{,H O

where Wy is a positive constant selected to make output powers in the two
systems equal. The ontput power in the idealized system is

L™ (4 20 A" o g — A HO Wy
2| () dw= 32| " 1HOF do= T
By equating (8.5-2) and (8.5-4), we require that Wy be given by

(8.5-1)

(8.5-2)

|} < Wy

|w| > Wy @353

The impulse response of any physical system is always real.

N
&

. sl ,
RN R

(8.54)

e .
J |H(w)|* do
o

HO)
Wy is called the noise bandwidth of the system.

Wy = (8.5-5)

EXAMPLE 85-1. The noise bandwidth is found for a system having the
power transfer function

1
H@) = ————s
L+ (/WY
where W is the 3-dB bandwidth in radians per second. Here |H (0)]2 =1,
S0

Wl o\|® Wx
Wy = —_— =W el - —
¥ J 0 Wt =+ o tan (W) 0 2
This expression shows that Wy is larger than the system 3-dB bandwidth
by a factor of about 1.57.

If we repeat the above development for 2 bandpass transfer function with
a centerband frequency wy it will be found that ’

o0
J |H (@) de
Wy=290 8.5-6
o)l €9
Proof of this result is left as a reader cxercise (see Problem 8.5-1). The devel-
opment also provides a simple expression for output noise power in terms of
noise bandwidth:

A
Pyy =22 | Hlen) Wy (8.5-7)

For a lowpass filter, (8.5-7) applies by letting ey = 0.

8.6 . .
BANDPASS, BAND-LIMITED, AND NARROWBAND PROCESSES

A random process N(f) will be called bandpass if its power density spectrum
& nw(w) has its significant components clustered in a band of width W (rad/s)
that does not include @ = 0. Such a power spectrum is illustrated in Figure
8.6-1a. Our definition does not prevent the power spectrum from being non-
zero at w=0; it only requires that &y,(0) be small in relation to more

tPower spectrums arising in physical systems will ahways decrease as frequency becormnes sulficiently
large, so a suitable value of B can always be found. For cxample, I could be chosen to include alf
frequencies for which & yx(02) 2 0.15 yy(wy)where ey, is some convenient frequency near where & yy
{w) has its largest magnitnde (see Figure 3.6-1).
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FIGURE 38.6-1
Power density spectrums {a) for a bandpass random process and (b) for 2 band-lim-
ited bandpass process.

significant values, so as to distinguish the bandpass ¢ase from a lowpass power
spectrum with significant peaking at higher frequencics.

All subsequent discussions in this section will relate to special forms of
bandpass processes.

Band-Limifed Processes

If the power spectrum of a bandpass random process Is zero outside some
frequency band of width W (rad/s) that does not include @ == 0, the process is
called band-limited. The concept of a band-limited process forms a convenient
approximation for physical processes that often allows analytical problem
solutions that otherwise might not be possible. A band-limited bandpass
process power spectrum is illustrated in Figure §.6-15.

Narrowband Processes

A band-limited random process is said to be narrowband il W < wy, where g
is some conveniently chosen frequency nedr band-center or near where the
power spectrum is at its maximum. A power spectrum of a narrowband
process Is sketched in Figure 8.6-2a. A typical sample function, if viewed on

" an oscilloscope, might look as shown in (). The appearance of n(f) suggests

that the process might be represented by a cosine function with angular fre-
quency wy and slowly varying amplitude and phase; that is, by

N(f) = A(t) cosfwgt + O1)] 7 (8.6-1)

ORER Ay, Fleh v o pirien o

Sy ()
f\ - ) /W\
—l;Jq 0 a;., o
(a)
Carricr with 6] Randomly
randomly fluctuating

-

Muctuating, . cnwlope
phase s ul N\
N / \
~— \ SE—
WAGYA A

PR

-, -

L}

FIGURE 8.6-2

{a) A power spectrum of a narrowband random process N(f} and () a typical
ensemble member n{¢). [Reproduced from Pecbles {1976) with permission of publish-
ers Addison-Wesley, Advanced Book Program.)

where A(1) is a random process representing the slowly varying amplitude and
@(¢) is a process representing the slowly varying phase. Indeed this is the case,
and, for the important practical case where N(7) is gaussian noise, it is known
that 4(7) and ©(r) have Rayleigh and uniform (over 2x) first-order-probability
density functions, respectively. The processes A(f) and @(¢) are not statistically
independent when N(f) is gaussian (Davenport, 1970, p. 522, or Davenport
and Root, 1958, pp. 161-165), but for any onc instant in time the process
random variables are independent.

In some problems, (8.6-1) is a preferred representation for N(f). For
others, it is convenient to use the equivalent form

N(f) = X(t)cos(wgt) — Y{7) sin(ewgt) (8.6-2)

where the processes X(/) and Y(¢) are given by ’
X(1) = A(t)ycos[B()] (8.6-3)
Y(1) = A()sin[©(1) (8.6-4)

Expressions relating A(f) and O(r) to X (1) and ¥{¢) are

A = J X0 + Y1) : (865

O() = tan~' (¥ (1)/ X ()] (8.6-6)
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Properties of Band-Limited Processes

The representations (8.6-1) and (8.6-2) are actually more general than implied

.zbove; they can also be applied to any band-limited random process, For the

remainder of this section we concern ourselves only with (8.6-2).
Let N(7) be any band-limited wide-sense stationary real random process
with a mean value of zero and a power density spectrum that satisfies

Funlw) #0
Funlw) =10

0<d)0_— Wi<|lol<wy— W+ W
elscwhere (8.6-7)

where W, ‘and W are real positive constants. Then N(1) can be represented by
the right side of (8.6-2),} where the random processes X(£) and ¥{1) have the
following properties;

(1) X(2) and Y(r) are jointly wide-sense stationary (8.6-8)

@) EX@]=0 E[¥(@))=0 8.69)
() EX*(n]= E[Y* ()] = EIN*(0)] (8.6-10)
(@ R =}rjo & (@) cosl(@ - wy)t] de @611

(5) Ryy(®) = Ryx(D) 8.6-12)
© Rep(d) = %L P @) sinl(@ — wo)l doo 8.6-13)
(N Ryx(®)=—-Ryp()  Ryy(®) = —Ryy(-7) - (8.6:14)
®) Ryy(0) = EIXOY(D]=0  Ryy(0) =0 (8.6-15)
©) & ux(@) = LIZ yulw — o) +  yy(w + )] (8.6-16)

(10) Fyyp(w) = Fxy(w) 8.6-17)
(1) & yy(w) =jLIS yn{w — wy) — & nnle + ay)] (3-§-|8)
(12} Pyxlw) =—Fyy{w) (8.6-19)

In the preceding 12 results, ey is any convenient frequency within the band of
Fun(w); Ryx(r), Ryy(7), Rxy(7), and Ryy(r) are autocorrelation and cross-
correlation functions of X(f) and Y{(f) while & yy{w), & ypy(w), & yy(w), and
% yx(w) are the corresponding power spectrums; and L,[-] denotes preserving
only the lowpass part of the quantity within the brackets

We outline the proofs of the above properties in the next subsection. Here
we discuss their meaning and develop an example. We see that in addition to
being zero-mean (property 2) wide-sense stationary (property 1) processes,
X{#) and Y () also have equal powers (property 3), the same autocorrelation
function (property 5), and therefore the same power spectrum (property 10).

TIT we denole the right side of (8.6-2) by .!’C’(!), the equality in (8.6-2) must be interpreted in the sense
of zero mean-squared error; that is, N{r) equals N(f) in the sense that

EUNG — NP} =0
(Ziemer and Tranter, 1976, p. 241).

Random variables defined for the processes X(#) and Y(¢) at any one time are
orthogonal (property 8). If N(¢) has a power spectrum with componerits hav-
ing even symmetry about @ = %y, then X(f) and Y (1) will be orthogonal
processes (property 6). A consequence of this last point is that the cross-
power spectrums of X(r) and Y(¢) are zero (properues i and 12).

EXAMPLE 8.6-1. Consider the bandpass process having the power density
spectrum shown in Figure 8.6-3a. We shall find & yy{w), ¥ xy(w), and
Ryy(z). By shifling & yy{w) by +wy and —ey, 25 shown in (b), we may
construct Fyy(w) according to (8.6-16} as the lowpass portion of
S un(w — o) + L ynle -+ ay), as illustrated in (). This function also
equals & yy(w) by (8.6-17). Similarly, we form the difference of the spec-
trums in (5) to obtain & yy(w) according to (8.6-18) as shown in (d) Thls
function also gives & yy(w) from (8.6-19) as shown.

L] 1 ]
2wy —tg 0 - W' 2oy w

—wy— Wy —wpt W, we=¥, @yt
(@)

Fwler — )
I

R e s D v

=2uw, —ty —¥, [ g Zwy ]

el + )

L
=209 —ury - 0 Wy g 2y W

Fxlw) orFy (w)

2P
l_r ’
' L

2 N (IS o
-

=i Fr(w) or | F{w)
P

A

~H, -, 0 L_l-.v w

@

FIGURE 8.6-3

- Power spectrums applicable to Example 8.6-1.
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To find Ryy(r) we apply (8.6-13):

1 et
Ryy(x) = ;J

wy—W¥

Wt
sin(x) dx

] _ P
Psinf{w — wp)tjde = T J Wy

= ﬁ{cos( W) — cos{W#51)]
"t

EF“P%ZMEJ%_MW
T

2

2 2

_ Esin[(Wz + WI)T] sin[(wz - Wl)l']

T 2 2

Now since W + W, = W, we may write this result as

Wwp sin{Wt/2)
T (Wt/2)

which is an odd function of ¢ as (8.6-14) indicates it should be. Figure

8.6-4 illustrates a plot of Ryy(t) for the special casec #) = W /6.

It should be noted that if W, = W /2, corresponding to & yy(w)
having even components about w = wpy, we get Ryy(z) =0 for gll T.
In this case, X(¢) and ¥{¢) arc orthogonal processes; they are also inde-
pendent if N({) is gaussian.

_m$%+mrg%—mq}

"Ryy(r) = sin[{ I — 2W}x/2]

' ’ X ‘,;_.;':Rn(f)
¥ . POE Y
D4t w=¥
0z
-2 -1 -8 6noS -4\ -2 2 \4g/ ¢\ /10 12
L 0.2 "
’--0.4
_;0'6

FIGURE 8.64 T
Cross-correlation function of Example 8,_6;],‘_ o

: *Proof of Properties of Band-Limited Processes

: Itis a quite long and involved task 1o prove all 12 properties of band-limited

‘processes in detail. Therefore, we shall outline most of the proofs and give the

details on only a few. . )
Properly 2 is proved by taking the expected value on both sides of (8.6-2).

"Since N(1) is assumed wide-sense stationary with a mean value of zero, then

E[X ()] = 0 and E[¥(7)] = 0 are necessary and property 2 follows.

. The sequence of developments leading to the proofs of properties 9 and 4
will now be given. We begin by assuming the usual case W, = W[2 (see
Figure 8.6-1b) and observing that the network of Figure 8.6-5a gives X (N at
its output if the ideal lowpass filter has a bandwidth W2 and if wy = W/2.1
We shall assume these conditions true. Thus

V(1) = 2N (1) cos(ap!)
= 2[X (1) cos*(wo?) — ¥{t) sinfwgt) cos(wy)]

= X(1) -+ [X (1) cos(e?) — ¥(£) sin(ay )] (8.6-20)

The filier will remove the bandpass process contained within the brackets so
that only X() appears in the output. Next, we develop an expression for
R XX(’ A+ '!'): ’

[ o | e
) Io X0
"*m =

Bandwidih =%
2 cos (wyl)
(@)
Ideal -
NN Product lowpass |— (1)
¥l filter X
Bandwidth = %

=2 5in (wyf)

)

FIGURE 8.6-5 ) :

Block diagrams of networks that realize () X(f) and (b) Y() from a random pro-
cess N(¥) = X(f) cos(ey?) — Y (1) sin{wot). [Reproduced from Peebies (1976 ) with per-
mission of publishers Addison- Wesley, Advanced Book Program.)

.. ﬁ‘hdsc are idealized values based on an ideal product device. Practical values of bandwidth and ey
i+ 7viay be considerably different. The assumption # = W72 is for simple definition of filter bandwidth
*. 'and is not a constraint in the proofs of properties 9 or 4,
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= E[X()X( + D)
= EUDO AQOV (1 — 1) d‘uJ-m

—03

s Ryl 1+ 7)
o)V i+ 1 —v) dv]

- ro r Hh(0) Ry (¢ + 1 — v)d coslwolt — )]

—004 —C0

(8.6:21)

In developing (8.6-21), we have written X() and X{7 4 1) in terms of the
convolution integral involving h(f), the impulse reponse of the lowpass filter,
substituted ¥;(¢) from (8.6-20), and used the fact that N(¢} is assumed wide-
sense stationary. The further reduction of (8.6-21) is lengthy (Peebles, 1976, p.
157) and will only be outlined. If the cosine factors are replaced by their
exponential forms and if Ryy(r +u—v) is replaced by its equivalent, the
inverse transform of the power spectrum & yy(w), (8.6-21) becomes the sum

- cosfwy(t + 1 — vj] i dv

of four integrals. It can be shown that two of these integrals, the only two -

involving ¢, are zero. Thus, Ryy (¢, £ + 7) becomes a function of  only and X'(¢)
is therefore wide-sense stationary, proving part of property 1. The two remain-
ing integrals are used to prove properties 9 and 4,

A procedure exactly the same as discussed in the last paragraph can be
used to prove first that Y(f) is wide-sense stationary, thereby providing the
proof of andiher part of property 1. The development also proves properties
10 and 5; it is based on the fact that ¥{¢) is produced by the operations shown
in Figure 8.6-5b.

~ Property 3 next resulis from use of property 5 with t =0 and the integra-
tion of & yy{w) using property 9.

Properties 11, 6, 8, and the balance of property 1 are proved by consider-

ing the cross-correlation function

Ryy(t, 1 +7) = E[X(DY(( + 7))

= EUDO V(e —u) dujw hA V(47— w) dv]

—_00

= —Jw Jw Al (v) Ry (T + u — v)4 cos{wg(t — u))

—oo) —

- sinfwq(r + 7 — v)] dvdu (8.6-22)

which is developed in a manner analogous to (8.6-21). Reduction of {8.6-22) as
discussed earlier shows that Ryy(¢, ¢ + 7) depends only on 7, s0 that X () and
Y(#} are jointly wide-sense stationary {proving property 1); it also proves
properiies 11 and 6. Property 8 results from properly 6 with © ='0. _
Proofs of the remaining properties, 7 and 12, follow from cpnsxdcratlon of
the autocorrelation function of N(¢). It is readily found by using (8.6-2) that
RNN(: t+ 1) = E[N({ON( + 1))
=[Ryx(7) + Ryy(r)] jCoS(tp7)
+ [Ryx(T) — Ryy(D)]3008(2wpt + o7}
— [Ryp(1) — Ryy(2)]}sin(uyr)

— [Ryy (7} + Ryx (Dl sinQegt + 7). (8.6-23)

" Finally, recognizing that Ryy(z) =

Since N(1) is wide-sense siationary by original assumption, its autocorrelation
function cannot be a function of . Thus, we require
Ryx{(t} = Ryy(7) (8.6-24)

and |
(8.6-25)

2 and the first part of property 7.
Ryy(—1) for a cross-correlation function,
we obtain the second part of property 7, which says that Ry y(l’) is an odd
function of z.

Ryy(T) = —Ryy(7)
in (8.6-23); these results prove property

8.7 .

" SAMPLING OF PROCESSES

The concept of a band-limited function is exceptionally important. It forms a
basis on which digital systems become possible. The reason is that digital
systems (computers) cannot work with a complete waveform.. They must
rely on samples of waveforms taken (usually) at periodic points in time. If
somechow these samples are to be useful, they must ‘be-able to represent

~ (reconstruct) a waveform without error for afl time. The existence of a

band-limited waveform allows these results to be true (as we prove below).

The reader may be aware that there are no truly band-limited waveforms
available to us in the real world for two reasons. First, we never have an
infinite amount of time over which to take and process samples, as needed
for a truly band-limited signal (an example is any periodic waveform with a
finite number of frequencies in its Fourier series). Second, real waveforms are
always time-limited and cannot be truly band-limited. .

So, how can we even consider band-limited signals? The answer makes use
of thé fact that the spectrum of any practical signal decreases as frequency gets
farther away from center band. For a baseband function, this means the
spectral terms approach zero in amplitude as |w] — co. For a bandpass func-
tion with principal spectral terms clustered near frequencies +w,, it means
amplitudes become small at frequencies far removed from —w, or +w;,. These
practical observations allow us to say that there is usually some bandwidth of
important frequencies in any real signal such that outside this bandwidth the
spectral terms can be considered negligible and approximated as zero, We then
say the practical waveform is band-limited to tlus bandwidth and accept the
negligible error that can result.

On having justified that a band-limited assumptton is always possible for
real waveforms, it remains to show that the assumption always allows a signal
to be completely specified at all times by use of only its samples. The proof
resides in the famous sampling theorem.

" Sampling theory for deterministic waveforms is well developed and under-
stood. A review of the various methods, with historical references, is given by
Peebles (1987). Here we are interested more in sampling random waveforms.
Our principal interests are in the most-needed theorems, those applying to
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Probability, random signal is modeled as sampling of the corresponding random process . - CHAPTER §:
Random Variables, from which the signal is taken. However, to best understand sampling of oAl - Linear Systemé
and Random random processes, it is first necessary to consider nonrandom signals, as we : ) ‘ “p(r), sampling pulse Sain . ’ with Random
Signal Principles develop below. R . - Lo . ' ] Tnputs

Our work is especially appropriate to the modern world because samp]mg
produces a discrete-time (DT} signal which is modeled as a sample functjor 6f
a DT random process. Because DT signals are used in modern digital §ignal
processing (DSP), it is important to define ways of modeling such signals. We
consider the baseband case first.

Baseband Sampling Theorem

THEOREM. Let g(f) be a real or complex baseband nonrandom waveform
having a Fourier transform G(w) that is band-limited such that it is nonzero
only over a band'-—Wg sw= W, where W, >0 is a constant called the
spectral extent -of g(0); it is the highest spectral frequency in g(f) having non-
zero amplitude, as illustrated in Figure 8.7-1. The signal g(f) can be completely
specified (recovered) without error from its periodic samples taken at times

nTy, n="0,%1,+£2,..., provided the sample rate , satisfies

©,=2nfT, > 2W,  (radfs) (8.7-1)

V-Whei'e T, is the sampling interval and the lower bound 2, is called the

Nyquist rate.

To demonstrate the theorem’s proof we enlist the help of Figure 8.7-24,
which illustrates narural sompling. For convenience we assume p(7) has rec-
tangular pulses of duration T, and amplitude 1/ T,. More general natural
sampling can use pulses of arb[lrary shape and amplitude {Pecbles (1987)];
however, the general developments are more difficult to visualize, while the
final results differ from our case by only a constant of proportionality. The

- Gl

FIGURE 8.7-1 - A
Sketch of G(ew), the band-limited spectrum of a. nonmndom waveform g(r)

- 0 Tt T, . -Ty+2n, ¢
() '

a— e -2

Voltage gain= 7,
5}

FIGURE 8.7-2 -

(@) Natural sampling of a waveform g(1) to generate its sampled version g,(t) (b)
Recovery of g(¢) by filtering,

pulse amplitude choice of 1/7, allows natural sampling to become ideal sam-
pling it T, — 0, that is, pulscs in p{#) become impulses when T, — 0.

The constant Ty in the pulse train p(s) is present to afllow arbltrary timing
of the train, It is reasonably obvious that

=3 rect(ﬂ;f—"'r’) - 62

P n=—co P

which has the Fourier transform (Probiem 8.7-1)

Plo) = c"°T°Sa(cuT /2) Z So—nw)y . (873)
Since the sampled version of g(¢) is g,{¢) = g(Hp(r), its transforni; dcnoied by

Gi(w), is the convolution of P{w) and G{ew), the transform of g(7) [see (D-17)].
‘We have (Problem 8.7-2)

G,fe) = —HJ G)Pw ~ 8t

=— Z‘ Sa(rw, Tp/2) ™0 Glw — nw,) (8.74)
5 n=—oa '

A skelch of Gy{w), neglecting the phase term involving 7Tj, is shown in
Figure 8.7-3. Note the replicas of G(w) displaced to frequencics ne,, 1 =
1,2,,... Thereis a spectral taper due to the samplmg pulse’s shape that scales
lhe repltcas by a factor {1/7;)Sa(nw, T,/2). If T, is small, that is, if T, —0,
lhen Sa(nw,T,/2) — 1 for all values of n. For T — 0 we have the samp]ed
sngnal’s spectrum for ideal sampling
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(M) $a (T2 0 (/7 Giw)
I
e o
(1/T;) Sa (T, .vz) — .
N
ﬁ\\
- - du
L 4];.;, 3m, ) , , \\3;14. Aa, ,
of \ [ - SN e
- -Zm'T . o+ W, 2alT, -

w

FIGURE 8.7-3 ) )
Skeich of the spectrum Gy(w) of the sampled signal g,{r) showing spectral replicas
of G{w) displaced to multiples of a, about w = 0.

GieMr, 0= Y Gl —nan e ®.7:5)
T5 H=—3C )
Because lTater work is little affected by letting T, — 0, we use (8.7-5) in the
following developments.
On inverse transformation of (8.7-3) an especially useful form is ach:eved
for g.(#) (sce Problem 8.7-3)

gl)=gld) > o —nT,+Ty)

(=] .
= Z gnT, — Tp)8(t — nT, + To) (8.7-6)

This representation is used to show how g(f) can be represented at ail times
through its per:odlc samples.

Imaginc g,(f) is applied to an ideal lowpass filter with a transfer funcuon
H{e) and impulise response Iz} defined by

W(1) = Sa(w,/2) © Hiw) = T, rect{w/w;) (8.7-7)

This o;;cralion is shown in Figure 8.7-2b. The response go{f) is

[=]
g = Y guT, ~ To)Salwy(t — nT, + To)/2] = g1) (8.7-8)
H=—0G

since each impulse in (8.7-6) evokes an impulse response in the output; The
last equality in (8.7-8) must be true because the filter passes only the central
term of (8.7-5) for n = 0. Observe that for the filter to pass an undistorted
spectrum G(w) for n = 0, it is necessary (hat w, > 2, be true so that spectral
replicas do not overlap, a condition calted aliasing. Also note that the gain of
the filter was chosen to give g(#) as its response rather than a response propor-
tional to g(f).

e

If we let Ty == 0 in (8.7-8), then

g = Z g(nT)Sa[w,(:—nT)/Z] - (s-.7-9)

H=—00

which is the statement typically seen for the baseband sampling theorem. It
states that g(f) is represented (known) for all time without error by an infinite
sum of termms. Each tcrm has an amplitude equal to a sample value and a form
given by the function Sa{w,r/2) displaced to the time of the sample. Sa(-) is
called a sampling function. At any given sample time all these functions pass
through nulls except the one associated with the sample at the sample time.
Thus, at any sample time g{f) equals its sample value. At all times between
samples the sum of the sampling functions provides error-free interpolation to
give g(7) exactly. Because of this action the sampling function is also known as
the interpolating function. Inherent in the validity of (8.7-9) is that g(1) be
bandvlimitcd to W, and sampling is at a rate w; > 2W, to avoid aliasing.

EXAMPLE 8.7-1. As an example relaled to samphng functions, we “show
their orthogonality. Since .

Safwy(t — mT)/2] & T,é_j"'“n rect(w/w,) -
where w, = 2n/T,, we use Parseval’s theorem _ .
' oo 1 [ .
J x(y* (D de= —J X(e) Y {w)dw 2)
—o 2r ] s

where x(i) + X(w) and p(2) . ¥{w). On substituting (1) into (2):
ro Salw.(t — mT,)/2]8afw,(t — kT,)/2) dt

= %{J T, rectlw/w,)e ™ T, rectiew/o,)e™™ dw

TZ @, /2 . T . )
= —’J T oy = T.Sa(k — myr}
2 _

_f9 kF#Em. . ) :
“[T, k=m -9

When any two sampling functions satisfy (3), they are called orthogonal.

Baseband Sampling Theorem for Random Processes

The above sampling theorem is easily applied to the sampling of band-limited,
baseband, wide-sense stationary (WSS) random processes. First, we state the
theorem and then discuss and show its validity.

299

CHAPTER 8:
Linear Systems
with Random
Inputs




300
Probability,

Random Variables,

and Random
Signal Principles

. where ¥ (0} com{érges to X{(f) in the sense of zero mean-squared errotié?u That

THEOREM. A wide-sense stationary baseband random process X(r) with auto-
correlation function Ryy(t) and power spectrizm &y (w) that is band-limifed
such that & yy{w) = 0 for all |w| > W, can be represented by S

)= 3 XaT)Sala—nT2)

=00

3(‘3.7.'&1_0)

is,

2= E{[:?(:) - X(z)]Z] =0 8.7-11)

Proof of (8.7-10) begins by noting that Ryy(r) is analogous to g(¢) in the
development of the baseband samplmg theorem where (8.7-8) holds. Thus, for
the present problem

Rex@ = 3 RuplnT, ~ To) Sala(c — T, + To)/2) (8.7-12)

r=—0a

' -mu&;l be true, Since (8.7-12) is the sampling theorem representation of Ryy(7)

over all time z, the result must also hold for a delay, or time shift, of Ty. After
the shift we have

Ryx(t—To) = Y Ryx(nT; — Tp)Salw(r — nT,)/2] (8.7-13)
These last two results are needed in the proof of (8.7-11).
On expanding (8.7-11)
E[[X(r)] —2X(DX @ + X)) }
= Ryx(0) — ZE[X (DX () + ELX*()] 8.7-14)
We now cxpand thc mlddlc nghi 51de term as follows:
E[X() X = E{X(r) > X(nT)Safwy(r — nT_r)/Z]}
= i Ryyv(nT, — 1)Salew(t — nT,)/2] (8.7-15)

a=—00

where (8.7-10) has been used. Since Ty can have any value in (8.7-12), we set

" To=tand r =0and find thal (8.7-15) equals RXX(O) Asa conscqucncc (8 7-

14) reduces to . ) e

& = Ry + FLE0)] _ké.7:i6)

R PR - L VR s R LAt E P

_ Again using (8.7-10) we expand the last term in (8.7-16) E17) IS
. 00 CHAPTER 8:
EX% ) = E[ Z X(nT,)Sa[w,(t —aT}/2] Linear Systems’
. - n=—00 i : with Random
' ) inputs
Z X(mT,)Sa[w,(z ‘mT, )/2]} :
m=—c0
= Z Z ka(firi} - nTy)Safw{t — mT,)/Z}]
n=--00 | m=—00 .

- Safe(t —nT,)/2) 8.7-17)
From (8.7- 13) with n, t, and Ty replaced, respectively, by 1, 4 and Ty, the
inner sum in (8.7-17) evaluates to Ryy(nT; — 1), so

ELX () = Z Ryx(nT, ~ Salw(t — nT,)/2) = Ryx(0)

H==—00

(8.7-18)

The last form derives from (8.7-12) with T} and 7 equal, respectively, to ¢ and
zero. Finally, when (8.7-18) is used in (8.7-16), we have €% == 0 and (8.7-11) is
proved which means (8.7-10) is a valid representauon of X{(#) and cqual to it
in the sense of zero mean-squared error in thei dlf{'erence

Bandpass Sampling of Random Processes

Consider a bandpass random process X(f) that is at least wide-sense stationary
and has a power densxty spectrum & yx(w) that is band-limited and centered
about some “carrier” frequency e +ﬂ’d=T as shown in Figure 8.7-4. The
spectral width of the power spectrum is Wy, Since the highest nonzero spec-
tral term is at frequency wy + ey + (Wy/2), if we tried to represent X| () by the
baseband sampling theorem, one would expect to sample at over twice this

Falw)

I
-y — &y L] gty w

FIGURE 8.74
Power density spectrum of a band-limited bandpass random process.

“§The quantity o, represents an offset, o slight difference, between the neminal freq uency of X(r) and

the frequcncy of the 7 and @ processor to be developed below.
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highest frequency. Such a rate can be excessive if wy 4 wy is large and is, in
fact, not necessary. There are “bandpass” sampling theorems where sampling
can occur at a rate near 2y if the baseband sampling function in (8.7-10) is
replaced by a suitable bandpass sampling function [see Peebles (1987) for a
summary and discussion, and Kohlenberg (1953), for ‘the ongmal theory}.
However, such direct bandpass sampling is not usually done in practice.
Instead, a method called I and O sampling is used to achieve certain praclical
advantages.

I and @ sampling is illustrated in Figure 8.7-5a. Let X () be represented in

the form of (8.6-1) .
' X{t) = A() cosl(wp + @yt + O] (8.7-19)

where A(f) and ©(f) are baseband processes representing the amplitude and
phase of X{¢). Because the lowpass filters in Figure 8.7-5¢ remove terms at
frequency Qe + wy), 51mple analysis shows that .

X,(6) = A(f) coslwyt -+ 6(1)] (8.7-20)
Xo(t) = Aty sinfwat + ©(0)] (8.7-21)

For w, small each of these responses is baseband and it is easy to show they
have spectral extent @y 4 (Wy/2). Each can be sampled at a rate of at least

Voluage

X({) —

. Complex sample
20 of X (1) +£Xplt)
Pl Tmmg

FIGURE 8.7-5

(a) Functions performed in 7 and @ sampling of bandpass process X(1). (b} An - .
equivalent interpretation of sampling by use of the complex representation Z(¢) for
X

2er; + Wy and completely recovered, as guaranteed by the baseband sampling
theorem.

If recovery of X(1) is desired, first X;(f) and’ Xo(0) are recovcred using a
baseband recovery methodf and then X(f) is recovered by the method of
‘Figure 8.7-6 (see Problem 8.7-4).

An interesting interpretation of f and @ sampling is derived by thinking of
samples of X;(f) and Xp(r) as components of a complex number treated as a
sample of X,(¥) +jXp(n. To visualize this idea, suppose X(¢) of (8.7-19) is
written in its complex representation as

Z(1) = A(r)eltewt o0 (8.7-22)
The pro.duct of Figure 8.7-5b gives the complex response
Z(t)e_jw"’ = A( r)ejw.;r+j9(f)
= A(f)cosfwgt + O] + jA(f) sinfewyt + B(1)]
= X,;(0) + jX (1) (8.7-23)

A sampie of this response is a complex sample of X;(1) + JXp(D). Thus, if
samples in the 7 and Q processor are used to form a complex sample, this
sample is the same as the sample denved from the equivalent complex
processor of Figure 8.7-55.

" )

Discrete-Time Power Spectrums

The power spectrums of DT processes and DT sequences were stated without .

Jjustification in Section 7.5 because of the need to develop the above topics it
sampling theory. We may now show some details on the development of these
power spectrums.

—— 05 (wal)

[z ]

~5in (wyr)

o

+¥
. (E Yliy=X(0
" - .

FIGURE 8.7-6

Recovery of a bandpass random process X{f} alter recovery of X;(f) and Xp(#) from '

th_eir I and Q samples.

1We have described only the filter method of rccovery glven in Figure 8.7-2b. Olher methods are

. described by Peebles (1987).
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We have shown above that (8.7-10) is a valid representation of a band-
limited, wide-sense stationary baseband random process in terms-of its
periodic samples. The proof evolved around the use of Figure 8.7-2 as a
representation of the sampling process with g{/) representing the autocorrela-
tion function Ryy(7) of the process prior to sampling. The output .of the
product device, which is Ryy{z)p(z), must represent the sampled form of the
process’ autecorrelation function, which we denote by Ry . (7). Thus if sam-
‘ple pulse duration T, is small :

Ry, x,(7) = Ryx(D)p(r) = RXX(r)TL Z rect (t _THTS)

P ri=—00 2

—nT,
"_Z_:WRXX(HT) ( TP )

where we have let Ty’ =0 in using the pulse train of (8.7-2).

~ The power spectrum of the DT process is defined as the Fourier transform
of its autocorrelation function of (8.7-24) (Viniotis, 1998, p. 479; Leon-Garcia,
1989, p. 386). Denote the power spectrum by &y v (w). Then

0O
Fxxw) = E Ryy(nT;) Sa(wl, V) Paaath

n=—0cQ

For almost instantaneous samples, as is approached in practice, we can
assume T}, — 0 so that Sa(w7},/2) — 1 for all w. Finally,

Lol .
Z Ryx(nT,)e T

A=+00

(8.7-24)

(8.7-25)

Fyx (@)= (8.7-26)

7 Equation (8.7-26) is the same as (7.5-2) given earlier with only minimal devel-

opment.

The logic showmg how the power spectrum of a DT sequence is derived
from (8.7-26) was previously given in Section 7.5, with the result being the
discrete-time Fourier transform. (DTFT) of (7.5-11). Also given was the
inverse'DTFT (or IDTFT) of (7.5-12) that allows recovery of Ryyfn] from

the power spectrum of the DT sequence.

¥ EXAMPLE 8.7-2. Consider a DT random process for which the autocorrela-
E  tion sequence

R.V.'( (n T_,.) = (a/Z)e—Rln[T, a )

applies with & > 0 a constant. For the continuous random process that
produced (1), ¢ is the 3-dB bandwidth of its power spectrum in rad/s.
We use MATLAB to approximate the power spectrum- of (8.7-26) by
using 2N -+ 1 samples at times nT,, —N <»# < N. We also assume
T, = n/(5a), or «T, = m/5, which allows our range of discrete frequencies
to extend to five times the bandwidth. The MATLAB code is shown in
Figure 8.7-7. Figure 8.7-8 plots (2/a)& . v {w), for N = 10, as linear line
segments connecting calcolated points at normalized frequencies
k=2 fo.—10 <k < 10, When @y reaches the 3- dB bandwudth of the
power spectrum k=2ufa= ) :

3

W g R G

el

“““““““ %%%% Example 8.7-2 %%%%%%%%%% %% %% %% %%
clear ‘

N=10; 56 number of samples

Lalpha = 1; .
“Te = 2*pi/{ll*alpha); % sample period

k = -N:N;
M= 2*N+1;

Rxx = (alpha/2)%*exp (- alpha*abs (k}*Ts): % auto-corxralation
Sxx = abs (Eftshift (fft(Rxx)))};: % estimated power spectrum

clf
plot(k,2/alpha*Sxx, k')

xlahel (‘Normalized Freguency (rad), normalized to alpha )
ylabel('Magnitude’)
title(’Power Spectrum’)

FIGURE 8.7-7
MATLADBR code applicable to Example 8.7-2.

o L L . L ! L ' L 1
-0 -8 -6 -4 -2 0 2 4 ¢ 8 10
Normalized frequency (rad), normalized to alpha

FIGURE 8.7-8
Normalized power spectrum applicable to Example 8.7-2 as l'ound from a ﬁmlc—
term approximation of (8.7-26).

3.8
DISCRETE- TIME SYSTEMS

The most common 2nd important problem solved in modern digital 51gﬁal

. proccssmg (DSP) systems is to convert an analog information signal to digital

f'orm process the signal to achieve some modified signal, and then (perbaps)

cor vcrl the modified signal back to analog form for further use. Clearly, three
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major operations are involved. We label these analog-to-digital (A/D) conver-
sion, digital-to-digital (D/D) processing, and digital-to-analog (D/A) conver-
sion, respectively.

For example, a radar’s received signal (a pulse) might be converted to a
digital form, processed in a computer to impart special filtering to the pulse to
maximize performance, and then regencrate the filtered pulse waveform in
analog form for usc by other operations. With modern, fast computers, the
advantages gained are smaller size, less weight and power consumption,
greater flexibility (ﬁilcrs can be adaplable or changed easily), and absolute
control over the processing, as compared Lo construction of a jumped-clement
filter. "

In this section we give brief overviews of A/D and D/A conversions so
that the overall DSP operations can be placed in focus. However, most of our
efforts will be centered on D/D processing where the.computer (calied here a
discrete-time system) processes a discrete-time sequence representing a dis-
crele-time process formed from samples of a conlinuous-time process X{1)
that is assumed to be at least wide-sense stationary.

A/D Conversion

A/D conversion usually consists of three things. First is sampling of the
analog signal. Second is a procedure called guantization, where the sample
amplitudes are each rounded off to the closest one of a finite number of
amplitudes. The third item is to encode each of the quantized samples into
a suitable digital codeword compatible with the computer being used. This
codeword is nearly always a binary. word. In some definitions of digital sys-
tems encoding might be considered part of the D/D processor. Either choice
is, of course, valid.

Since our interest is in random processes, let X (1) represent some informa-
tion source and assume the process to be at least wide-sense stationary.
Sampling produces the DT random process X(nT,) for samples at times
nTy, n=0,%1,42, . ., where T, is the sampling interval. As noted earlier
(Section 6.1), the D/D processor has little need for the value of T,. Its value
becomes important mainly when D/A conversion occurs. Thus, the computer
(DT system) views the stream of samples as a sequence function of the integer
index n, denoted by X[#]. Since most DSP literature uses brackets rather than
parcnthcses to imply a DT sequence, we also use this notation.

The digital processor {DT system) cannot work with the continuous-
amplitude values of the scquence X[r] and they must be rounded off, or
quantized, to the nearest of a finite number, say, L, of values in a device called
a gquantizer. Clearly, some information is lost in quantization that can never be
recovered. The loss is called a quantization error. This error can be minimized,
or reduced to an acceptable level, in practical systems by choosing L large.
The L levels must also span the entire variation of the sequence. In other
words, if 1X[n]] < | X|nax then all L levels should at least span amplitudes
from —|Xlpnax 10 +|X|qax- If some sample amplitudes exceed the quantizer's
amplitude range it is said to suffer amplitude overioad. Overload can cause

4 EnaY

[P

At

2 b

serious Joss in performance over and above the effect of quantization error.
There are many forms of quantizers, and most of lhese are discussed by
Pechles (1987).

EXAMPLESS-1. A uniform quantizer places its L levels uniformly separated
by a constant amount A. If Ny, is a positive interger such that L = 2% and
the extreme quantizer levels are 10 be set at &6 V, we find A. Since L is an
even number, half the levels are positive and half are negative. A s:mple
sketch indicates levels at . .

L,~=—(%)A+m.; Pi=0,1,2....(L—=1)

S0 LL—] =
assume L =

=(L—-1A/2=6V and A = 12/{L — 1). For a numerical value,
128, so A = 12/127 = 94.488 mV. In this case, N, =7,

EXAMPLE88-2. We conlinue Example 8.8-1 by noting that the power in the
error represents a performance degradation in the recovery of the original
signal represented by the quantized version of the DT sequence X[n}. One
common performance measure is the signal power-to-quantization -noise
power ratio, denoted by 5,/N,. For a uniform quantizer operated at its
limit before amphtudc overload and using L levels it is given by (Peebles

1998, p. 632) _
So 2 ) '
3L
(N,,) /K |

where K, is called a crest factor. K,, is related to the form (shape} of the
original signal. K, is typically larger than 1. For our case, with K, = 4
assumed, (S¢/N,} = 3(128%)716 = 3072.0, or about 34. 87 dB (a falrly
decent, but not an excellent, value).

Coding of samples is important to the actual digital processor (its hard-
ware). However, the processor only performs operations of addition, subtrac-
tion, multiplication, division, storage, and delay, which are just mathematical
operations. Furthermore, all these operations are done only on command
from a suitable mathematical algorithm (programming). For purposes here
it is not necessary to study these hardware principles. It is sufficient to describe
the mathematical operations that the processor must carry out. Because of
these facts, we may ignore coding and quantization (with L chosen large
enough), and only describe how a digital system is structured aud how it
behaves with the DT sequence X[#] at its mput

D {A Conversion

‘This operation is essentially the inverse of A/D conversion. First, the code-
words from the computer are converted back to discrete amplitudes. Strictly,
there is no inverse operation to quantization. For large enough L, the discrete
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(perhaps to base 10), as needed in a display.

"levels are a good representatlon of samples of the desired response and recov-

ery is generated using procedures dictated by the sampling theorem.
In many applications DfA conversion is not used at all. For example, an
aircraft that measures its altitude may output results directly in digital forrn

The Discrete-Time System

For present purposes, a discrete-time (DT) system will refer to the digital
operations involved in accepting an “input™ DT sequence X[i] and gencrating
an “output” sequence Y[#] having some desired properties typically different
from those of the input.

A DT system is called finite-dimensional if, for some positive integer N and
nonnegative integer M, ¥[n] is some function only of the N most recent past
output values, », and the current and A most recent past values of the input
[Kamen and Heck (1997), p. 42]. The integer N is called the order or dimension
of the system. Any other system is infinite-dimensional. The function forms an
input-outpul di _[fcrence equation. The system is called fincar if, and only if, the
dlffcrence ‘equation is lmear that is, if it can be written in the form

Y] = — Za,.(n)Y[n -+ Zb,-(n)X[n —i (8.8-1)
i=1 =0
where a,(n) and b;(n) are coefficients that may, in general, depend on a.

- Analogous to a continuous-time, linear, time-invariant system, the linear
system of (8.8-1) is time-invariant if, and only if, the coefficients are constants,
that is, a;(n) = a; and b;(s) = b, are independent of » for all i, For a lincar
time-invariant (LTI) DT systemt

j__'_ i OE Z &Yl — i+ Zb X[ — 1]

i=0

If the LTIDT systern is initially at rest, (8.8-2) shows that there is no response
prior to application of a nonzero input, a condition that defines the system as
causal when N = M [Taylor (1994), p. 442]. In statistical literature ¥[n] of
(8.8-2) is called an autoregressive moving average (ARMAY) process when X[n}
corresponds to white noise (see Section 8.9).

In the subsequent discussions we shall only discuss DT systems defined by
(8.8-2). If we label the sccond sum in (8.8-2) as ¥q[n], the structure of the
syslem can be drawn as in Figure 8.8-1a, where D represents one unit of delay.
This structure is called direct form 1, since it is a direct realization of (8.8-2). It
results that two DT systems in cascade are invariant to order, which means the
two poriions of Figure 8.8-1a can be reversed. The result allows some com-

" monility of delay units as given in (b). This form is called the canonic form or

TLTI DT systems arc sometimes called linear shifi-invaride tLSIJ.

882)

S W e b

a1 PRI : .
X[} &y I ; E+ \ v E [[:I ¥[n]
D
x[,.—ul b ll - ¥ ¥ + e ¥[a-1]
+ + LT
f -y
R
Xn—M) By ay Y[n-N]
{a)
x——(2) (o)
D
Th—1 @ | o (3
+ +
|I LT f " ¥
&
by |
L |

FIGURE 8.8-1
Block diagram of a linear, time-invariant, discrete-time system. {a) Direct form I,
and (b) direct form II, also called thé canonic form.

direct form 11 [Oppenheim and Schafer (1989), p. 296]; it minimizes the

quired number of delay units for given &N and M.
The specification of an LTI DT system is complete lf the cocfﬁcwms in
(8.8-2) are determined. The (wo most important analysis/synthesis methods
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involve sequence domain and transform demain techniques, These are analo-
gous to time and frequency domain.methods of CT systems, where impulse
responses and transfer functions are important. DT systems alse have impulse
responses and transfer funclions that we subsequently define.

Sequence Domain Methods for DT Systems

-In DT systems we define a unit-impulse (also culled a unit-pulse sequence,'imir
- samiple, or Kronecker delta function) by a single value of amplitude 1 at n = 0:

1 n=0
8m = { 0 a0 (8.8-3)
It behaves as an even function, that is, 8[--#] = 8[n)], and satisfies the property
oo .
> =1 (8.8-4)
n=—00

If a unit-impulse is applied to an LTI system it evokes a response, denoted by
A[n] and called the inpulse response. Because of time invariance, a shifled
impulse 3[n — k] evokes a shifted response h[n — k]. Since any sequence can
be written as

X = i X[m]é[n — ni] (8.8—-_5)

mM=—00

This general sequence evokes a general response

Y[ = i X[mlhln —m] = i Xn — kJA[k] (8.8-6)

H=—00 =—00

The last form of (8.8-6) results from a simple index change. :
Equation (8.8-6) is called a convolution sum, or just a convolution. On usmg
the short-form notation of (3.1-9) to represent convolution, (8.8-6) becomes

Y[n]= i X{mh[n — m] = X[n) * H[#] (8.8-7)

M=—00

We mention some properties of LTI DT systems without proof. Order of

cascade of two systems will impulse responses iy [1] and f,[#] is unimportant;

this means Afn] for the cascade is
hjn] = ky[n] * Ifn) = hgla) = by [n) (8.8-8)

The impulse response of two systems placed in parallel is the sum of their
impulse responses: A{nj = i, [n] + Aylr]. LTI DT systems at rest are inherently
linear such that if ¥[#] and ¥3f»] are the respective responses of a system to
inputs Xjl#] and X;[#], then the response to a linear combination of the inputs
is the linear combination of responses. That is, for input Xn] = q X, l[n]+
a3 Xa[n] the response is

Yin] = a, ¥\[n] + a2 Y[n] (8.8-9)

I3

for any inputs and -any constants a; and a,. Fmally, lf an LTI DT system is
excited by any bounded input sequence, the responsc | is called bounded-inpue-
bounded-output (BIBO) stable if it is bounded for every bounded 1nput A
systern is BIBO stable if, and only if,

Z [h[n]] <00

Hn=—00

5-10)

A DT system falls into one of two categories. If it has a purely feed-
forward structure where 4, =0, all §, in (8.8-2), it is called finite mzpuise
respanse (FIR) and

M .
¥inl = Zb,—X[n —i (8.8-11)

i=0

For an input impulse, X[n] = &{n], the FIR system’s impﬁlse response reduces

to

] = Z bidln—i=

[,, d<n<M
i=0

“all other n- : (8'8__12)
In one type of problem an impulse response A[n] is specified. The system
coefficients then derive directly from A[n] according to (8.8-12). FIR systems
are simple but usually require high complexity (large M) for modern-day
applications [Taylor (1994), p. 424]. The responses of FIR systems are some-
times known as moving average processes when the input is a white noise
sequence.

EXAMPLE 8.8-3. Suppose an LTI discrete-time system is defined by (8.8-2)
-with a; =0, all /, and b =1/4, i=0, 1, 2, 3. We discuss the system’s
" behavior.

From (8.8-2) Y[n]= {X[n]+ X[n — 1]+ X[n — 2]+ XTn — 3]}(1/4).
This system uniformly averages four input values: the most current
input X{n], and the three most recent past input values. It is, therefore,
a uniform sliding-(moving) averager over the four most recent input
values. The average “slides” because it includes only the most recent

- four input values. The system is uniform because the b; all have the
same (uniform) values,

A nonuniform sliding averager would correspond to §; being different
with index i. For example, if |b;| decrease for increasing f, the averager
would place less “weight,” or importance, on increasingly distant past
values of the input. ' B

The second category of DT system is called an mﬁmre impulse response
(IIR) system. It is one with both feed-forward and feed-back connections, as in
Figure 8.8-1. TIR systems may be less complex than an FIR system for a given
requirement, but can suffer stability problems. IIR systems are sometimes
called recursive because output values can be recursively computed from

" input and past output values.
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Transform Domain Methods for DT Systems

The concept of a transfer function is critical to the transform domain analysxs]
synthesis of a DT system. We previously derived (7.5- ]I) as the discrete-time
Fourier transform (DTFT) of an autocorrelation sequérnce to be .

Frx @) =Fyxh =3 Ryyln)e?® (88-13)

n=—0

where
Q=oT, (8.8-14)
and %y, (¢’ is defined by the z-transform of (7.5-9). Since Afn] is a DT

sequence that we consider applicable to a stable system, it has a DTFT,

denotcd by H (e’ ), given by

H™) = Z M[r) e ™R (88-15)
. . H=—00
This function is called the transgfer function (or ‘sometimes the frequency
response function) of the DT system.
The transfer function can be derived for a DT system for which (8.8-2)
applies. For an impuise at the input, X[x] = &[x], we have

N M
Hal= =3 ahn—r]+ ) bdn-1] (8.3-16)
r=1 - r=0
It can be shown that (see Problems 8.8-1 through 8.8-3)
8[n] - 1 (8.8-17)
8 — 1] < &I (8.8-18)
il — ] & H(e™™) e (8.8-19)

50 the DTFT of (8.8-16) becomes

H(e™) = Ea,H{e’Q) e 4 Z be i (8.8-20)

=1 . r=0

or

M

Z b e #8

HMy=—= (8821

14 Z a,.c:kf"n

-Equation (8.8-21) defines the transfer function {transtorm domain) in terms of

sequence domain coefficients a, and b, For a desired transfer function _it

allows the solution for these coefficients, a procedure equlvalent to. d]gltal,

filter design. In essence, by choice of pole and zero locations in the right-
side function, a synthesis of some desired {rausfer function results. -

"EXAMPLE 884, Assume a DT system is defined by (8.8-16) with a, = 0, ali
r, and b, =1, all r. We find the FIR system’s transfer function from
(8.8-21%:

M. T
H( %) = bed™
r=0 -~
- ie—jrn _ sin[(M -+ 1)2/2] T 0
sin(£2/2) ‘

from use of (C-60). This example is an extension of the uniform sliding
averaging system of Example 8.8-3 to M + | terms. For M large so that
the principal responses of tH{c™) oceur for relatively small £, we have
sin[(M + 112/2] @
[(M + DQ/2)
il the delay term (exponential factor) is ignored in (I}). In terms of w, (2)
becomes . .

H(e™) = (M + 1)

sin[(M + D T/2]

WM + DwT/2]
Thus, the DT system behaves as a lowpass filter with a transfer function
having the shape of a sampling function, and a delay of M7T,/2.

H(@“™ ~ (M + 1)

To emphasize the utility of (8.8-15), we develop the autocorrelation fune-
tion and power spectrum of the response Y[#] of a DT system. By analogy
with (8.8-13), the power spectrum is the DTFT of Ryy[n]. From (8.8-6} with
X[n] assumed wide-sense stationary:

Ryylnl = E(Y[K] YTk + ]}

=FE i X[k — m)ii[m] i Xk + n — plhp]

m=—00 p=—00
00 o
= Z hm) Z APl Ryyln+m—p} -~ (8.8-22)
H=—00 p=—c0

The DTFT becomes

o0
Py ylw)=FLyyle) = Z Ryy[mle™™®

=—00
o0 00 00 L
= Z h[m) Z hp] Z Ryyln+ m — ple®
m=—ra p=—-00 - H=—-20
= > Mpge™ 3 nple ™ Y Ryylrle™® (8.8-23}
Mm=—00 p=—00 r=—00 .

ere the fast form results from the index changc r=n+m—p. The left ard

- mlddle terms in the last form are recognized as H'(e’®) and H('®), respec-
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uvely, from (8.8-15), while the right sum is the power spectrum of the sampled
version of X(n. Hence,

Ly @) = Py 0 () = Py g (PNHED) (8.8-24)

The dependenee on w is more obvious if §2 is replaced by T from (8.8-14),
8 9
MODELING OF NOISE SOURCES

All our work in (his chapter so far has related to finding the response of a
linear system when a random waveform (desired signal or undesired noise)

- was applied at its input. In every case, the system was assumed to not contain

any internal sources. In particular, the system was assumed to be free of any
internally gencrated neise. In the real world, such an assumpiion is never
justificd because all networks (systems) generate one or more types of noise
internally. For example, all conductors or semiconductors in a circuit are
known to generate thermal noise (see Section 7.6) because of thermal agitation
of free electrons.t The question naturally arises: How can we handle practical
networks that produce internally generated noise? The remainder of this chap-
ter is concefned with-answering this question.

We shall find that, by suitable modeling techniques for both the network
and for the external source that drives the network, all the internally generated
network noise can be thought of as having been caused by the external source.
In effect, we shall replace the noisy practical network with a noise-free iden-
tical network that is driven by a “more noisy” source.

Cur work begins by developing models for noise sources.

Resistive (T hermal) Noise Source .

Suppose we have an ideal (n01sc free, infinite input impedance) voltmeter thdt
responds to voltages that fall in a small ideal (rectangular) frequency band
def2m centered at angular frequency w. If such a voltmeter is used to measure
the voltage across a resistor of resistance R {ohms), it is found, both in
practice and theoretlcally, that a noise voltage e,(f) would exist havmg a
mean-squared value given by

2 = 2R de 8.9-1)

: T

Here & = 1.38(1072) joule per Kelvin is Boltzmann's constant,f and T is
temperature in Kelvin. This result is independent of the value of w up to

{There arc many other Lypes of internally generated noise such as shot noise, partition noise, idiiced
grid noise, flicker noise, secondary emission noise, ete. The reader is zeferred to 1hc literature for more
detail (Mumford and Scheibe, 1968; van der Ziel, 1970).

" jLudwig Boltzmann (1844-1906) was an Austrian physicist.

extremely high frequencies. (See Section 7.6 where A47y/2 equals 2kTR here.
The reader should justify this fact as an exercise.)

Now because the voltmeter does not load the resistor, eﬁ(l) is the mean-
squared open-circuit voltage of the resistor which can be treated as a voltage
source with internal impedance R, In other words, the noisy resistor can be
modeled as a Thevenin{ voltage source as shown in Figure 8.9-1a. An equiva-
lent current source is shown in (&) where

2kT dw
R

ZE = r(!)/R' = - (8.9-2)

is the short-circuit mean-squared current.

From Figure 8.9-1a it is found that the incremental noise power diN;
delivered to the foad in the incremental band de by the noisy resistor as a
source is

DR, _2kTRR dw
(R+ R,y mR+ R

L = (8.9-3)

Noisy Noise .
Tesistor

1)

'

1

)

i

|3 Mide
1=
V2 AR
1

1

1

1

1

FIGURE 8.9-1 :
Equivalent circuit models of a noisy resistor: (a) voltage model and (&) current
model. [ddapted from Peebles (1976} with permission of pub[:shers Addisan-Wes!ey,
Advanced Book Program.]

{Mamed lor the French physicist Léon Thevenin {1857-1926).
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The maximum delivered power occurs when R; = R. We call this maximum
power the incremental available power of the source and denote it by dN,; it is
given by

ANy = G(0/4R = kT do

(894)

We see from (8.9-4) that the incremental power available from a re51slor
source is independent of the resistance of the source and depends only on its
physical temperature 7. These facts may be used as a basis for modeling

“arbitrary sources.

Arbitrary Noise Sources, Effective Noise Temperature

Suppose an actual noise source has an incremental available nose power dN,,
opet-circuit output mean-squared voltage e2(¢), and impedance as measured
between its output terminals of Z (&) = R,{w) +jX, (). The available noise
power is easily found to be

i, e D)

s = 2R (@) (®5-3)

If we now ascribe all the source's noise to the resistive part R,(«) of its output
impedance by defining an effective noise temperature T, such that (8.9-1)
applies, then

) = ZkTJR,,(w)d?w (8.9-6)

As with a purely resistive source, available power is still independent of the

source impedance but depends on the source’s temperature
'-‘:‘ T [N IS dw

e .d'Nas = kT e

We consider two examples that iflustrate effective noise temperature.

(8.9-7)

EXAMPLE 89-1. Two different resistors al different physical temperatures
are placed in series. The effective noise temperature of the series combi-
nation as a noise source is to be found.

Figure 8.9-2 illustrates Thevenin equivalent circuits for the combina-
tion. Since the individual resistors as sources may be considered indepen-
H _ dent, their mean-squared voltages add. Hence,

() + ) = &)
By applying (8.9-1} to both sides of the prccedlng expressmn we obtam

TRy + Tsz]—v— TR, + Rz)]—.

—O
Temperature
' Ry +R,
e? m el
Temperature T ;,?
—0

FIGURE 8.9-2
Equivalent circuits for two resistors at different temperatures in scries.

or
1. = LR+ TRy
TRt R
Example 8.9-1 clearly shows that effective noise temperature of a source is
not necessarily equal to its physical temperature. In the special case where
Ty =Ty =T, then T, = T. More generally, it is true that any passive, two-
terminal source that contains only resistors, capacitors, and inductors, all at
the same physical temperature T, will have an effective noise temperature
T, = T. (Ziemer and Tranter, 1976, p. 471). The next example can be used

.to illustrate this last point,

EXAMPLE 8.9-2. We reconsider Example 8.9-1, except we now allow a capa-
citor to be placed across one resistor as shown in Figure 8.9-3.

By superposition, €2(1) is the sum of contributions from each resistor
as a noise source. The mean-squared voltage, denoted eﬁ](r), due to the
first resistor is readily seen to be -

1P 0
l+ij1C|| 1+ o®RICE

,,|(0 = e](’)
That due to the second resistor is
&%) = e 7
Thus, by applying (8.9-1) to the two individual resistor mean-squared

voltages, we have

- s nR do
&R0 = 0+ 50 = 2| + Tal |

" Next, we find the outpul impedance of the network as an overall source

B - by imagining the noise sources set to 0. We get
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&

M

Temperature Ty ~ Ci

Sl

a0 = ~—Zyiw) €t

L
Temperature T

ol

FIGURE 8.9-3
Equivalent circuits for a linear, passwc two-terminal network of two resistors and
one capacitor,

Ri(1/jwCy) R
Z =Rt =Rt —
A= Rt g ey~ T TR R G
_ Ry(l —joR,Cy)
. TR TORG
which has a resistive part -
R
| MO TR
By applying {8.9-6) to the equivalent source, we have
—_ R] dﬂ)
e,;'.,,(f) = 2kT,|:R2 + W] —_—

Fmally, we equale eﬁ(l) for the actual and equivalent networks to ﬁnd T
T\ Ry + TaRy(1 + &S RICH)
R, + Ryl + w?R3CYH)

T, =

‘The preceding example shows that effective noise temperature may be a
function of frequency. In this case, the available noise power is also frequency
dependent.

Again we see that T; = T in the above example if ) =T, = T, as it st

because it is a linear, passive, two-terminal netwerk with only resistors and a -

capacitor, as noted previously.

An Anfenna as a Noise Source -~ -

In practice, all antennas produce noise at their output because of reception of
electromagnetic radiation from noise sources external to the antenna.t The

FThere are many sources of external noise; several of these are described by Peebles (1976, pp
463464}, .

N
i

amount of available noise power dN in an incremental band dw dependsin a
rather complicated maaner on all the space surrounding the antenna.
However, it is possible t¢ maodel the antenna in a simple way by assigning
10 it an_antenna temperature T, chosen so that dN, and T, are related by
(8.9-4). Thus,
. do o

dNy; = kT, 5 o " (8.9-8)
In general, antenna temperature may vary with frequency. However, in many
applications T, can be considered constant (with respect to @} because its
variation with frequency over a frequency band comparable to that of the
desired signal being received is often small.

-EXAMPLE 89-3, A very sensitive meter that is capable of measuring noise
power in a (small) frequency band 1 kHz wide at any frequency w/2r is
attached to a microwave antenna used in a radio relay link. It registers 2.0
(107'%) W when the meter's input impedance is matched to the antenna so
that its reading is maximum. We find the antenna temperature 7T,.
 Since maximum power is extracted from the antenna, the power is its
available power and (8.9-8) gives . I
' 2 dN,, 2m(2)107"® 200

Ta= de 138010200105~ 1.38

I449K

8.10
INCREMENTAL MODELING OF NOISY NETWORKS

In this section we shall show how a noisy network can be modeled as a noise-
free network excited by a suitably chosen external noise source. We also
develop some measures of the “noisiness” of a network. All our work is
applicable to an incremental band dew. ' :

Ai'ailable Power Gain

Consider first a linear, noise-free, two-port (4-terminal) network having an
input impedance Z; when the output port is open-circuited. Its output impe-
dance, found by looking back into its output port, is Z, when being driven by
a source with source impedance Z,. The source open-circuit voltage is €,{¢) and

" the network’s open-circuit output voltage is e,(#). The applicable nclwork is

illustrated in Figure 8.10-1.
The available power, denoted dN,;, of the source is

ez(t)

(8.10-1
T 4R, @.10-1

dN
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. ————2 o 3
Lincar \
e Zp—] two-part [—2Z, €,
: netwotk '/ 3
I ——0 .o i

' FIGURE 8.10-1

A linear two-port network driven by a source of impedance Z,.

where R, is the real part of Z,. This power is independent of Z;. The available
power, denoted dN,,,, in the output due to the source is

0]
4R,

where R, is the real part of Z,. This power does depend on Z; through its
influence on the generation of ¢,{7) but does not depend on the load impe-
dance Z;. We define the available power gain denoted G, of the two-port
network as the ratio of the available powers

_ dNaox _ RED

, T ANy Rel(n)
When a cascade of M noise-free networks is involved where M = 1,2, ...,

it is easy to sce that the overall available power gain G, is the product of
available power gains G,,, m=1,2,..., M, if G,, is the gain of stage m when

all preceding stages are connected and treated as its source (see Problem
8.10- l) Thus,

. a=fla.

m=1

ANgos =

(8.10-2)

(8.10-3)

(8.10-4)

Equivalent Networks, Effective Input Noise Temperature

Consider next the case of a linear two-port network with internally generated
noise. The network is assumed to be driven from a source with effective noise
temperature T, as shown in Figure 8.10-2a. If G, is the network’s available
power gain, the available output noise power due to the source zlone is

d

WNgos = GodMNog = GokT, § (8.10-5)

“from (8.10-3) and (8.9-7). R T
Total available output noise power a’N,m is larger than dNaos because of -

internally generated noise. Let AN“ represent the excess available noise power
at the output. We shall imagine that AN, is generated by the source’ by
defining effective input noise temperature T, as the iemprature increase that

Naisy | o gy + AN, =dN,,

Souree 1 g 7, ——
© CTPERIUE £y netwark

)

i Nolse-fr .
Source temperature T, +.T, ——] :::o::c — dN,, + AN, = dN,;

o ®

4,90

~

dw
Hoox 2T

Noise-free -
network bt AN+ AN = dN,,

()

FIGURE 8.10-2

A network with internally generated noise driven from a noise source (@), and
equvialent noise-free networks (h) and (¢). [Reproduced from Peebles (1976) wrrh
permission of publishers Addison- Wesley, Advanced Book Progrant.)

the source would require to account for all output available noise power. It
therefore follows that

AN,y = G,kT, d"’

(8.10-6)
With this definition, the noisy network is replaced by a noise-free network
driven by a source of temperature T, + T, as shown in Figure 8.10-2b..

It is somewhat helpful to model the available source noise power by use of
two inputs, as shown in Figure 8.10-2¢. The second inpuf represents the
internally generated noise due to the network. The representation is conveni-
ent in visuvalizing noise effects when networks are cascaded as illustrated in
Figure 8.10-3. By equating expressions for output available noise powers in
the cascade and equivalent network, the effective input noise temperature 7,
of the cascade is determined to be

T Ta T.
T T 2 eM
A T R P
where T, and G,,, m=1,2,..., M, are the effective input noise temperature
and available power gain, respectively, for theé mth stage when all m — 1 pre-
vious stages are connected and form its source.
‘An especially useful application of (8.10-7) is to the cascade of stagesin an

(8.10-7)

amplifier. We develop an example.

' EXAMPLE 8.10-1. The stages in a three-stage ampliﬁe.r have effective ihpul
noise temperatures T,) = [350K, T,; = 1700K, and T,3 = 2600K. The
respective available power gains are &) = 16, G; = 10, and G; = 6. We
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G G;

_ G, G,
Souree—1 Network Netwark - Network e 4N
1 2 m M + AN,
du dw de dw
Haiom Hag, Mox Mg
a).
L G= GGy Gy
S
ST
da
A1, 2x

FIGURE 8.10-3

(@) M_networks in cascade and (b) the equivalent network. [Reproduced from
Pechles (1976} with permission of publishers Addison-Wesley, Advanced Book
Program.]

find the effective i mpul nmse temperature of the overall amplifier by use of
(8.10-7): '
1700 =~ 2600
=13504+— TR T600)
=1472.5K

§  We sce that, even though T,; and T,y are larger than T,;, the contribu-

" lions to T, by the second and third stages are much smaller than that of
the first stage because of the gain of previous stages. In general, it is clear
from (8.10-7) that an amplifier should have its lowest noise, highest gain
stage first, followed by its next best stage, etc., for best noise performance.

= 1350 4- [06.25 4- 16.25

Spot:- Noise Figures

Effective input noise temperature T, of a network is a measure of its noise
performance. Better performance corresponds to lower values of T,. Another
measure of performance is incremental or spot noise figure denoted by F and
defined as the total incremental available output noise power dN,, divided by
the incremental available output noise power due to the source alone:

dNao dN a0s + ANao ANBD

dN. aos dan, ao0s an, a0s

An alternauve form derives from the substitution of (8.10-3) and (8.10- 6)
T,
=1+= 8.10-9
F=1+ T ( )

E

(8.10-8)

In an ideal network, T, =050 F = 1. For any real network, F is largcr lhan

“umity.

In practice, a given network might be driven by a variety of sources. For
example, an amplifier might be driven by an antenna, mixer, attenuator, other

amplifier, etc. Its spot noise figure is therefore a function of the effective noise -

temperature of the source. However, by defining a standard source as having a
standard noise temperatiure Ty = 290 K and standard spot noise figure Fy, given
by ' o

T,
Fp=1+2% (8.10-10)
 To .

a network can be specified indcpenden't of its application.

When a network is used with the source for which it is'intended to operate
F will be called the oper armg spot noise figure and given the symbol F,. From
(8. 10 -9 '

Fop=1+-§£ - '(3.10-11)

-y

_bperaling and standard spot noise figures can also be developed for a
cascade of networks (sce Problems 8.10-2 and 8.10-4).

EXAMPLE 8.10-2. An engincer purchases an amplifier that has a narrow
B bandwidth of 1 kHz and standard spot-noise figure of 3.8 at its frequency

- of operation. The amplifier’s available output noise power is 0.1 mW
when its input is connected 10 a radio receiving antenna having an
antenna temperature of 80K, We find the amplifier’s input effective
noise temperature T, its operating spot noise figure F,p, and its available
power gain G,,.

T, derives from (8.10-10):

T,=Tu(Fa—1)=290(3.8—1)=812K
Wc can now use (8.10-11) to obtaln .op'

812
Fop =142 =11.15

From (8.10-5) and (8.10-6) we add to get total available output noise
power:
oo = dNyog + AN, = w
2r
" S0

_ 2wdNe 2r(0.110°2 ~ 8120107
KT+ Tyde  1.38(10725)(812 + 80)2%(10°)
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8.11
MODELING OF PRACTICAL NOISY NETWORKS

In a rea}istic network, the frequency band of interest is not inéremer}tal.

_ Therefore, such quantities as available power gain, noise temperature, and
‘noise figure are nol necessarily constant but become frequency dcpcndént

in general. In this section we extend the earlicr concepts based on an incre-

mental frequency band to include practical networks, by deﬁmng aw:mge'

noise temperatures and average noise ﬁglll’ES

Average Noise Figures

We define average operating noise figure F_'op as the total output available noise
power Ny, from a network divided by the totafl output available noise power
Ny due to the source alone. Thus,

N,

F,=-2C (8.11-1)
. . . °p Naos
Na,_,s is found by integration of (8.10-5):
. £ [
Nups = EJO T.G,dew (8.11-2)
We may similarly use (8.10-8) with (8.10-5) to determine N,,:
oo (=]
N, = J dN,, = J Fop dN,os = ij Fop TG dew (8.11-3)
) 0 2 Fi]
Thus, from_(8.l 1-1}
£ _ i J FopT,G,dow

op ]
f TG, dw
. 0 .

In many cases the source’s temperature is approximately constant. Operating
average noise figure then becomes

o -
J FopGyde
0

Fop==20_ T, constant

OrL N (8.11-5)
J G.dw
0

" An antenna is an example of a source having an approximately constant noise

temperature (3o long as the surroundings viewed by the antenna are‘ﬁiéd)

Another example is a standard source for which T, = T, = 290K is constant )

We define average standard noise figure Fy as lhal for which the sourée is
standard. In this case

B j‘ FOG,,dw
=20 (8.11-6)
_J" G,dw
0

as can be shown by rqpeaﬁng ‘the steps leading to (8.11-4).

Average Noise Temperatures

From the definition of effective input noise temperature T, it follows that the
incremental available output noise power from a network with available
power gain G, that is driven by a source of temperature 7, is

p .
dNyo = G K(T, + Te)ﬁ (8.11-7)
Total available power is therefore
o k(™ .
M= | =52 [ "6l + T (8.11-8)
0 migy

Next, we define average effective source temperature T, and average effec-
tive input noise temparature T, as constant temperatures that produce the same
total available power as given by (8.11-8). Hence

Ny (T + Tc)J G,dw (8.11-9)
By equating (8.11-9) and (8.1 1-8) on a term-by-term basis, we get
J TG, dw
To=ntl ©(8.11-10)
J G, dw .
0
and
o
o J TG dw i
=0 8.11-11)
j G, dw

If (8.10-10) and (8.10-11) are substituted into (8. 11 -6y and (8. 11-4) respec-
:vc]y, we obtain the mlerrclauonshlps

T,
Fa=1 +F0 (8.11-12)
. T,
Fop=1+ (8.11-13)

E3

- By equating 7, from these last two expressions, we obtain aliernative inter-

relationships
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7o
=1 +T;(FD,,— 1) (8.11-14)

Fp=1 +'ﬁ(ﬁ.J -1 (8.11-15)
. Ts
Average effective noise temperature is a very useful concept for modeling
network noise in a simple way. To demonstrate this fact, note that (8.11-9) can
be writlen as
<]

P G (w)dw
Nao = 5=(T5 + T, )G,(ex) g (8.11-16)
2

: Ga(wt))
where wy is the centerband angu]ar frequency of the function G,(w). Since G,
{t) is the available power gain (or power transfer function) of the network, we
identify

oo
J G (o) dw
Wy="—ro0w—— (8. 11—17)
THTT Gyl
as the noise bandwidth of the network, by analogy with {8.5-6). Equation
(8.11-16) becomes
: . oW
Ny = Gola)(Ts + T) (8.11-18)
which says that actual available oulput noise power is that due to a source
with constant temperature T, + T, driving an equivalent noise-free netwqu
with an ideal rectangular transfer function of bandwidth Wy (rad/s) and mid-

band available power gain G,(wg). This result represents a very simple net-
work model.

Modeling of Attenuators

Cansider a source of average effective temperature 7, driving an impedance-
matched lossy attenuator with power loss L {(a number not less than one) at all
frequencies. The attenuator has a physical temperature T;. It can be shown
(Peebles, 1976, p. 463; Mumford and Scheibe, 1968, p. 23} that the average
effective input noise temperature of the attenuator is

T,=Ty(L—1) {8.11-19)
From (8.11-12) and (8.11-13) the applicable average noise figures are

=1 +£(L— 1) (8.11-20)

Fp=1 + o (L— 1 (8.11-21)

N

Note thatif T, = T or if Ty = T,, the average noise figure of the attenuator is
just equal to its loss.

Mode! of Example System

One of the most important app[ications of the theory of this and the preceding
two sections is in modeling receiving systems. As illustrated in Figure 8.11-1q,
consider a receiving antenna that drives a receiver amplifier through various
broad-band components having an overall loss L. These components {which
may include microwave transmission lines, isolators, or other dev1ces) are all
assumed to have physical temperature T,_ The antenna temperature is T, and
the receiver average effective input noise temperature is- Tp. The receiver’s
noise bandwidth is W) and it has a centerband available power gam
Grlewp). We demonstrate that the system is equivalent to that shown in
Figure 8.11-15.

The equivalent system las the same noise bandwidth as the actual system
and has a centerband available power gain Gg{wg)/L. It is driven by a su'nple
source with system noise temperature Ty, The available output noise power in
the actual system is the sum of the antenna’s contribution plus those due to

excess noises in the attenuator'and recéiver, By using eérller mode]s this noise "

pOWEl’ is
= o Gplwg) Wy
Ny s k[T, + T (L 1) 4 Tpl] =22 8.11-22
ao [ a L( ) R ] L(z}l') ( )
Antenna Physical Available power
temperature T, temperature gain = Gy{an)
I
A
Noise-frec " Noise-free
loss L rzlcseivef Mo
A KTaWn
I FE3
@
Gai G"i‘"")
kT, ) i
";;r ¥ _4 szoc N,

FIGURE 8.11-1 )
A model of a receiving system (a) and its equivalent (b). [Reproduced from Peebles
(1976) witlh permission of publishers Addison-Wesley, Advanced Book Program.]
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For the equivalent system

— Grlwo) Wy .
=K —_— 8.[ 1-23
Nao TS}S L(2J’r) ( )
By equating the above two expressions, we oblain
Ty =T, + T (L—1)+T¢L 8.11:24)

From {8.11-24), the average effective input noise temperature of thi;__
taken at point 4 in Figure 8.11-1a i is

&

T, = T,_(L — D+ TRL (8.11-25)
From (8.11-13) the average system operating noise figure is
Fo,,_1+—(L 1)+TRL (8.11-26)

EXAMPLE 8.11-L. An antenna with temperature T, = 150 K is connected to
a receiver by means of a waveguide that is at a physical temperature of
280K and has a loss of 1.5 {1.76 dB).T The receiver has a noise bandwidth
of Wy/2r =10°Hz and an average effective input noise _temperature
Tr=THOK. We determine the system’s noise temperature Tsys, its oper-
ating average noise figure FOP, and its available output noise power when
Grlag) = 10" (120 dR).
From (8.11-24)

f‘sys- = 150 + 280(1.5 — 1} + 700(1.5) = 1340K
From (8.11-26)

- ~ 9.51dB
Fpp= 1+150(15 1)+150(15) 893  or _

Finally, we use (8.11-23) to find Ny,

— a1y 10°
N = 1.38(10—"-3)1340.0(10‘2)ﬁ 2123 mW

8.12
SUMMARY

With temporal (Chapter 6) and spectral (Chapter 7) characteristics of random
processes having been defined, this chapter concentrated on using earlier
results to examine the behavior of (mainly) linear time-invariant systems to

- random input signals modeled as randor' processes. The prlncrpa] tOplCS and

results follow. - . . _ .

-

1A number L expressed in decibels (dB) denoted Lgp. is related to Lasa numeric (pnwer r:mo)_ by L

Lgp =10%ogyg(L).

ystem .

* The basics of lincar systems were reviewed as they apply to both determi-
- nistic and random signals.
The response of a linear time-invariant system to a random signal was
developed in detail. The temporal characteristics {autocorrelation function,
mean-square value of the system’s response, and cross-correlation funcnon
of input and output) were developcd for Iater use.
It was shown how random noise can be used to evaluate the [mpulse
response of a linear time-invariant system.
The all-important power density spectrum was deﬁned The cross- power
spectrum was also developed for the mput/oulput random signals of a.linear
time-invariant network, "
The measurement of power spectrums was discussed and the noise band-
width of a random process was defined.
Special, but important, cases of bandpass, band-fimited, and narrowband
processes and their properties were discussed in detail.
Sampling procedures for baseband and bandpass random processes were
developed to show how continuous-time processes are related to discrete-
time processes and sequences. Discrete-time power spectrums were. devel-
oped in detail.
A detailed discussion was given for discrete-time systems. Included were
developments of A/D conversion. Discussions centered mainly around lin-
ear shift-invariant discrete-time systems, with general block diagrams given.
Both direct form I and direct form 11 (canonic form) were shown.
Detailed developments of discrete-time systems in the sequence domain were
given, including impulse response, convolution, stability, and definitions of
FIR and IIR systems.
Discrete-time systems were further developed using transform domain meth-
ods. In particular, the discrete-time Fourier transform (DTFT) was intro-
duced and the concept of a transfer function was developed. In addition, the
autocorrelation function and the power spectrum of the network’s response
were discussed.

.

computer examples using MATLAB.

Practical aspects of modeling real network noises were defined and devel-
oped. Of special interest were spot noise temperatures and spol noise figures
of noisy networks (for a small incremental frequency band). These topics
were extended to the full frequency axis and called average noise tempera-
tures and average noise figures. The concepts were next combined to model
the total noise within any typical linear system.

.

PROBLEMS

8]-1 A signal x(f) = u(ryexp(—of) is applied to a network having an impulse
response A(1) = Wu(s) exp{—Wr). Here « and W are real positive constants

and i(-) is the unit-step function. Find the system’s response by use of (8.1-
10).

The various topics surroundmg the d1screte—tlmc system were supported by -
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8.1-2. Work Problem 8.1-1 by using (8.1-11) to find the spectrum ¥Y{w) of the
response.

8.1-3. A rectangular pulse of amplitude 4 and duration T, defined by
() = [ g 0<t=T

elsewhere
is applicd to the sysiem of Problem 8.1-1.
() Find the time response y{(¢). ‘
(5 Sketch your response for W = /T and W = 2xfT.

8.1-4. A filter is called gaussian if it has a wansfer function

1 ]
H = PR o1
©=
where W, is the root-mcan-square (rms) bandwidth.
(a) Skeich H{w).
{6) How is Wy, related to the 3-dB bandwidth?

8.1-5. Two systems have transfer functions #,(w) and Ha(w). ’
(@) Show that the transfer function H(w) of the cascade of the two, which
means that the output of the first feeds the input of the second system, is
- “H{w) = H () Hx(w).
(8) For a cascade of N systems with transfer functions H,(w),n=1,2,... N,
show that

N
H(w) = [ | Halew)
a=1

*8.1-6. Work Problem 8.1-1 if the output of the given network is applied to a second
identical network and the response is taken from the second network.

8.1-7. The impulse response of a éystcm is

W) = { ::e"'z

D<t
t<0

By use of (8.1-8) or (8.1-10), find the response of the network to the pulse
.\‘(I) = [ g 0<i=T

elsewhere
where A and T are real positive constants,

8.1-8. Work Problem 8.1-7 il the network’s tmpulse response is

h(t) = { ge—r 0=t

t<0

8.1-9. Given the network shown in Figure P8.1-9.
(a) Find the impulse response A(s).
(b) By Fourier transforming #(t), find H{cw).
{c) Sketch M(#) and H(w).

RSN R
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Input x{r)

;l,f_'_,(-) dx F— Output y()-

-+ Network
H(w)

FIGURE P8.1-9
{Reproduced from Peebles { 1976) with permission of publishers Addison-
 Wesley, Advanced Book Program.]
8.1-10. Find the transfer function of the network of Figure P8.1-9 by use of (8.1-13).
8.1-11. By using (8.1-13), find the transfer function of the network illustrated in

Figure P3.1-11. Assume that noloading is present due to any output circui-
try.

Input < II Output

FIGURE P8.1-11

8.1-12. Work Problem 8.1-11 for the network of Figure P8.1-12.
c -
]
Input R ‘LCz Cutput
[+ T <

FIGURE P8.1-12

O

*8.1-13. (a) Work Problem 8.1-11 for the network Figure P8.1-13.
(b} Under what conditions will the network behave approximately as a Iow-

pass filier?

Cl
It
[AY

O AAAVA O
R

topt R,% TG Oupu
o )

FIGURE P8.1-13

[Reproduced from Peebles (1976) with permission of publishers Adduan—
Wesiey, Advanced Book Program.}
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(¢} Find a relationship between Ry, C;, Ry, and C; such that the network
bchaves at all frequencics as a pure resistive altenuator.

8.1-14. Given the network shown in Figure P8.1-14.
(a) I the oulpul causcs no loading on the network, find the transfer function
Hiw).
{6) Dcline wy = 1/+/LC and 0y = RfewyL. Plot 1H{w)| as a funcuon of x =
{ew — awo)Qp/ewy for Oy large and e near ay. (Hini: Use the dppl’OledlIOn
@ = wy for the most significant values of w when @y is I.u'gc)

R

Input CT . L Ouipn
. <

<

FIGURE P8.1-14

*8.1-15. (@) Find the transfer function H{e) for the network shown in Figure P8.1-15.
(b) Define wy = 1/+/LC and @y = Lfwy(R + R)C and assume @y > 1, so
. that the values of e for which H(w) is significant correspond 10 @ = ay.
Use these facts to obtain an approximation for f(e).
(¢) If an impulse is applied to the network, find an expression for the
approximate encrgy absorbed by R;. (Hinr: Use Parseval’s theorem.)

L R C
Input x(1) Ry Outpury(r)
o . Q

FIGURE P8.1-15

8.1-16. A class of filters called Bucterworth piters has a power transfer function
defined by

[H (@)™ = T

where r = 1,2, .. _, is a number related to the number of circuit elcments and
W is the 3-dB bandwidth in radians per second. Sketch |H{(w) for
#=1,2,4, and 8 and note the behavior. As n — co, what docs |H ()}
become?

Determine which of the foliowing impulse responses do not correspond to a
system that is stable, or realizable, or both, and state why

(@) B = ut + ’z) )

(6) (1) = ul)e” . s

(€) k(D) = &' sin{wyd) wy & real constant

(d) k()= u(t)e"‘ sinfewyr} ay 2 real constant

8.1-17.

BT

8.1-18.

8.1-19.

8.1-20.

8.1-21.

Use (8.1-10) and prove (8.1-15). 333
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A system is defined by .
" \
s = s@ds

for all x(t) for which the integral exists. Show that the system is linear, time-
invariant, and causal.

A network is driven by 4 resistive source as shown in Figure P8.1-21. Find:

8.1-24.

(@) Z;, (b} Z,, and (¢) G,. (d} Is the network a maiched attenuator?
|
£ : 500 : £o
el E PAAR s Cr
Source 5 e 00e ! Load
i i 00
1. |
o— 1 * al Fiiad .
] 1
I | Lo Mework .. :
R=1000Q 7, Z,,
FIGURE P§.1-21
8.1-22. A network has the transfer function
Fef20
Hw)= %
, (20 + jow)
(a) Determine and sketch its impulse response. (Himt: Use Appendix E.)
(&) Is the network physically realizable?
(¢) Determmine if the network is stable by evaluating 7 in (8.1-16).
*8.1-23. Show that the impulse response of a cascade of N identical networks, each
with transfer function
H\(w) = 1/{et + jo)
where « > 0 is a constant, is given by '
; -1
1} = tH ——— —_
wlt) = U0} e | exp(-ac)
If T in the circuit of Figure P8.1-9 is changed to 7, show that the circuit is

equivalent to the operation

=7 s
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8.1-25. Show that the network of Problem 8.F-24 is equivalent to a linear filter with
impulse response .

ey = lT[u(r) —uft— 1]

and find its transfer function.

8.1-26. Work Problem 8.1-11 for the network of Figure P8.1-26.

\7
[+ 1§ O
Input L R Output
© — o

FIGURE P8.1-26 )
8.1-27. Work Problem 8.1-11 for the network of Figure P8.1-27.

— 1.

FIGURE P3.1-27

8.2-1. A random process
X (1) = Asin(wyt + ©)

where A and ay :;re real poéitive constants and © is a random variable
uniformly distributed on the interval (—x/n), is applicd to the netowrk of
Problem 8.1-1. Find an expression for the network’s response process using
(8.2-3).

8.2-2, Work Problem 8.2-1 for a network with impulse response

) = ulidte™

" 8.2-3." A random process X(7) is applied to a linear time-invariant system. A
' response ¥{r) = X(f) — X(f = 1) occurs where t is a real constant.
(a) Sketch a block diagram of the system.
© (b Find the system’s transfer function,

8.24. Work Problem 8.2-3 if the rcspoﬁse is
n
H0=X0—ﬂ+JX0—B#
L]
where 7, and 1; are real constants.

8.2-5. A random process X(¢) has an autocorrelation function
Ryy(ty= A2 4 Be™™
where 4 and B are positive constants, Find the mean value of the response of
" a system having an impulse response
—HWr
0=t
wn=1¢

@ [ 0 t<0

where W is a real positive constant, for which X(s) is its input.

8.2-6. Work Problem 8.2-5 for the system for which
. —wr
_ |z D<=t
by = [ 0 P<0

8.2-7.  Work Problem 8.2-5 for the system for which

' —Wi -
o ) e T sin{egt) D<=t
o = {0 t<0

where W and @, are real positive constants.

8.2-8. White noise with power density 5W/Hz is applied to the system of Problem

8.2-5. Find the mear-squared value of the response using (8.2-7).
8.2-9. Work Problem 8.2-8 for the system of Problem 8.2-6.

8.2-10.. Work Problem 8.2-8 for the system of Problem 8. 2-

33.2-_1] Let Jo:ntly wide-sense siationary processes X;(#) and Xz(!) €ause responscs

Yi(f) and Y(r), respectively, from a linear time-invariant .system with
impulse response i(r). I the sum X{f) = X, (1} + X3(1) is applied, the response
is ¥(). Find expressions, in terms of h(r) and characteristics of X,(r) and
Xy(n), for {a) ETY()] () Ryy(t 1+ )

8.2-12. Show that the cross-correlation function for the output componcnls ¥i(n
and ¥5(f) in Problem 8.2-11 is given by

s oo ’

Ry p{t.t+7)= J J Ry, (T + u — w)h(ih(v) du dv
=oaJ -0

= Ry, (D)

8.2-13. Two scharate systems have impuise responses h; (1) and hy(f). A process X, (1)

is applied Lo the first system and its response is Yy(r). Similarly, a process Xy

(f) invokes a response ¥5(1) from the second system. Find the cross-correla-
tion function of Y, (1) and ¥,(r) in terms of &1 (1), k,(r}, and the cross-correla-
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8.2-14,

8.2-15.

8.2-16.

8.2-17.
8.2-18.

E2-19.

8.2-20.

8.2-21.
8.2-22.

tion function of X,(¥) and X5(¢). Assume X,(r) and X,(¢) are Jomlly wide-
sense stationary.

Two systems are cascaded. A random process X(¢) is applied to the input of -

the first system that has impulse response Ji (1); its response W(r) is the input
to the second system having impulse response /(f). The second system’s
output «is ¥(f). Find the cross-corrclation function of W({) and Y(s) in
terms of & (r) and h3(f), and the autocorrelation function of Y{9) if. X(1) is
wide-sense stationary. Co

Let the two Syslems of Problem 8.2-14 be identical, cach with the impulse
response given in Problem 8.2-6. If E{X(1)) =2 and W =3radfs, find
E[Y (0]
A random process X(r} having autocorrelation function

Ryp(t) = P
where P and o are real positive constants, is applied to the mput of a system
with impulse response

N =

we W 0<t
0 t<0

where W is a real positive constant. Find the autocorrelation function of the
network’s response Y(7).

Find the cross-correlation function Ryy(z) for Problem 8.2-16.
A signal
x(r} = u(f) exp(—at)
is applied to a network having an impulse response
N = wWiexp(— 10

Here o > 0 and W > (are real constants. By use of (8.2-2) find the network’s
rresponse y(f).

Work Problem 8.2-18 assuming
I = u(yw?e exp(— W}

A stationary random process X{1} is applied to the input of a system for
which

B = (o) exp(—81)
If E[X ()] = 2 what is the mean value of the system’s response ¥{#)?
Work Problem 8.2-8 for thc system of Problem 8.2-20.

White noise with power density .J’n/Z is applied to a nctwork with impulse
response - e

h(ry = u(r)‘Wr cxp(— W

where I > 0 is a constant. Find the cross-correlations of the mput and
output. .

8.2-23.

8.2-24.

8.2-25.

8.2-26.

8.2-17,

Work Problem 8.2-22 for a network with impulse response
() = vyt sm(wur) cxp(—Wi)

" where @’ isa consl'ml* :

A random proccss X{1) is.applied to a network with imﬁulsc response
I}y = w()rexp(—b0)

wherc 4 > 0 is a conslant. The cross-correlation of X{#) with the outpui Y (1)
is known to have the same form:

Ryy(1) = u(t)rexp(—h1)

(a) Find the antocorrelation of Y(r).
(h) What is the average power in ¥(1)?

Work Problem 8.2-24 except assume
WO = u()® exp(—br)
and
Ryvle) = ue)e cxpl—be)
Two identical networks are cascaded. Each has impulse response
7 ll(r) = u(f)3texp{—40)

A wide-sense stationary process X{1) is applied to the cascade’s input.
(o) Find an expression for the response Y{r) of the cascade.
(5) If E[Xtdl = X =6, find E[Y (). -

If a “time autocorrelation funclion” for the impulse response A} of a linear
filter is defined {for finite-energy impulse responses) by

Rid®) = J RO + &) dr

. show that (8.2-9) can be writlen as

8.2-28.

8.31.

oo

Ryy(@) = j Rexedr — ) e = Rix(0)+ )

—00

Use the results of Problcm 8.2-27 to find Ryy(1) app]lc.lblc Lo a system
defined by the impulse response

@) = e l0) =t = 7]
where T > 0 is a constant.

Suppose the system of Figure 8.3-1 defined by M) is in operation while the
low-level white noise X () is applied. Thal is, suppose the system’s input is an
operating (random) input signal 5(f) added to X(¢). ¥ (1) will then contain a
response, the operating output, due to S(1), and a response, the output noise,
due to X(1). The cross-correlation measurement system’s inputs are still X(1)
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8.4-1.

8.4-2.

8.4-3.

8.4-4.

8.4-5,
8.4-6.

8.4-7.

8.4-8.

and ¥{¢). Show that (8.3-4) still applies provided S(r) is a process that is
orthogonal to X{1). Assume X(#) and S(r} are jointly wide-sense stationary.

The random process X(f) of Problem 8.2-1 {the signal} is added to whitc

noisc with power density A7/2, where 47 is a positive constant, and the

sum is applied to the network of Example 8.1-1.

{a) Find the power spectrums of the output signal and output noise.

(b) Find the ratio of output signal average power to outpul noise average
power,

(¢) What value of W R/L will maximize the ratio of part (b)"

For the processes and system of Problem 8.2-11, show that the power spec-
trum of ¥{1) is

& yr(@) = [H@W I 5 60) + 10 0) + L0} + & ox, (@)

If X,(#) and X5(r) are statistically independent random processes in Prob]cm
8.2-11, use the resulis of Problem 8.4-2 to show that the output power
spectrum becomes

Fyy(@) = |H@) [P g, 5,(@) + & x5, (w) + 45X, X18(e)]

Rework Example 8.4-1 when the network is replaced by two identical net-
Wworks in cascade that is, when H{w) = [l + (oL/R)]™2.

Show that (8;4-7) and (8.4-8) are true.
A network with transfer function H{w) = jw is a differentiator, its input is the

wide-sense siationary random process X(#) and its output is X(¢) = dX(f)/dr.
{a) By using (8.4-7), show that

dRyy(T
Regte) = 22050
{&) By using (8.4-1), show that
(l Ry (T
Ry = d)g( )

-Given the random process -

1 +T
Y0 = 55 L_T X@)dz

where X(1) is'a wide-sense stationary process. Use (8.2-1) to show that the
power spectrum of Y{#) is

Z vt = St 2D

A stationary random process X(¢), having an autecorrelation function

Ryp(r) = 2exp(—4[z])

is applied to the network of Figure P8.4-8. Find: (@) & yx (), (b) 1H ()P, and
(’—‘) Fyr(w).

C\ =4F
I1£
1¥
o——+ ©
b0
! VWAL
X@) R=15Q ~G=2F
o o

FIGURE P8.4-8

8.495. A wide-sense stationary process X(1), with mean value 5 and power specirum
P yxlew) = S0m8(w) + 3/[1 + (w/2)]
is applied to a network with impulse response
(1) = 4exp(—4|t])

(a) Find H{w) for the network.
Detcemine: (£) the mean Y and (¢) the power spectrum of the response ¥{1).

8.4-10. White noise, for which Ryy(r) = 10725(0), is applied to a network with
" impulse response

h(t) = u(i)y3exp(—41)

{a) Use (8.2-9) to obtain the network’s output rioise power {in a I-ohm
resistor).
() Obtain an expression for the output power spectrum.

8.4-11. Whitc noise with power density Ap/2 = 6(107%)W/Hz is applied to an ideal
filter (gain = 1) with bandwidth W (rad/s). Find W so that the output’s
average noise power is 15 watts. ‘

8.4-12. An ideal filter with a midband power gain of 8 and bandwidth of 4 rad/s has
noise X(f) at its input with power spectrum

Frx(w) = (50/~./s_z) xp(—a? /8)
What is the noise power at the network's output?

8.4-13. A stationary random signal X(f has an autocorrelation function
Ryy(t) = 10exp(—|z). It is added to white noise [independent of X()] for
which A4 p/2= 10~% and the sum is applied to a filter having a transfer
function

2

H =0
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. 8.4-14,

8.5-1.

8.5-2.

8.5-3.

. - T 1 T ’ S .
where W/ is'a real positive constant.

8.54.
8.5-5.

8.5-6.

{a) Find the signal component of the output power spectrum and the aver-
age power in the output signal.

{6) Find the power spectrum of, and average power in, the output noise.

() What is the ratio of the output signal's power to the output average noise
power?

A random noise X(r), having a power spectrum

Sy} =

3
49 4 o’
is applied to & differentiator that has a transfer function H,{w) = je. The
differentiator’s output is applied to a network for which

ha(f) = w1 exp(—T71).
The network’s response is a noise denoted by Y(2).
(@) What js the average power in X{1)?
(5} Find the power spectrum of Y(7).
(¢) Find the average power in Y(£).
Prove (8.5-6).

A random process X (1) has a power spectrum & yy(ew) that is nonzero only
for —Wy < w < Wy, where Wy is a real positive constant. X(¥) is applied to

a system with transfer function

H{w) =14+ flw/Wy) Wy <w< Wy

Find the average power Pyy in the network’s response Y{f) in terms of the
ms bandwidth of & yy(w). the constant Wy, and the average power Pyy in
X(1). Discuss the effect of letting Wy -> oc.

Find the neise bandwidth of the system having the power transfer function

! . . 1 1

Hiw) = —
|H(e) 1 4 (ewf WY

¥

Work Problem 8.5-3 for the function

N = Ty

Work Problem 8.5-3 for the function

1

1H (e )[“ =
Ut /WYY

White noise wuth powcr densuy A7f2 is applied {6 a iowpass nelwork for

which |H(0) = 2; it has a noise bandwidth of 2 MHz. If the average output
noise power is 0.1 W in a 1-Q resistor, wh‘l[ isA?

8.5-7. White noise with power density 473/2, 47 > 0 a constant, is applied to a
lowpass network for which H(0) =8 and its noise bandwidth is 12 MHz. If
average output noise power is O.SW in a I-ohm resistor, what is .{7)?

8.5-8. A systcm s power lransl‘er funcnon is
| Hte) = 16/[256 +ot

(a) What is its noise bandwidth?
() If white noise with power density 6(10_“3) W/Hz is applied to the input,
find the noise pou{er'in the system's output.

8.59. Suppose
o
{l + (/WYY
for a network where W > 0 is a constant. Treat |H(w)]* as a bandpass
function.

(@) Find ey, the value of @ where |H(c.))|2 is maximum.
(&) Find the network’s noise bandwidth.

1H(e) =

8.5-10, Work Problem 8.5-9 except for a network defined by

wd

= g

8.6-1. While noise with power density A4"/2 is aﬁpticd to an ideal lowpass filter

with bandwidth #.
(#) Find and sketch the autocorrelation function of the response.
(5) If samples of the output noise taken at times 1, = nr/W, n =0, 1, £2,
., are considered as values of random variables, what €an you say
aboul these random variables?

8.6-2. Work Problem 8.6-1 for an idcal bandpass filter centered on a: frequency ay
f2m that has a bandwidth ¥, Assume sample times are now t,, = mnfW,
n=0,+1,%2,. -

8.6-3. A band-limited random process N(r) has the power density spcctrum

P eosfr(w — ap)/ W]
Funlw) = | Peoslr(w + wy)/ W]
0

WIS w—g< W/2
—W2swtwy s W/2
elsewhere

where P, W, and ay > W are real positive constants.

{a) Find the power in N(7).

() Find the power spectrum & yy{w} of X(r) when N(1) is rcprcscnlcd by
(8.6-2).

(¢) Find the cross-correlation function Ryy().

d) Arc X(1) and Y{(7) orthogonal processes?

'8 .6-4. A band-limited random process is given by (8.6-2) and has lhc power density
spectrutn shown in Figure PR.6-4.
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Hiedw)
o P wp> W
/.\ /.\
= W
Wy 0 w‘,—% uhy w+ w

FIGURE P8.64

(@) Sketch & yy{w).
(&) Sketch Fyxy(w), il a sketch is possible.

8.6-5. Work Problem 8.6-4 for the power spectrum of Figure P8.6-5.

Frler)

: Wy W,
Wy .__Z_é_l.
kL

wy> Wy . P }-——4
- ) . 0 wy @
}_—WI_—‘—

FIGURE P8.6-5

*8.6-6. Use (8.6-2) and derive (3.6-23).
*8.6-7. Assume a band-limited random process N(?) has a power spectrum

& yplw) = Bluler — wy + Wy} — wlw — wy — Wajlexpl—a(er — wp + #1)]
+ Bluw - g+ W) — -0 — wg — Wa)]expl—a(—w —wy + W3]

where B, wy, W, and W, are positive constants, and a is a constant.
Assume 2wy > W, + W, and find analytical expressions for {a) the power

spectrum & yy(w) and (b) the cross-power spectrum & yy(w) for the pro-

cesses X(f) and Y(2) involved in the representation of (8.6-2) for N(1).

(C) Sketch yxx(w) and y.ry(m) for W| W2/2 and @ = 1/W|

(d) Repeat part (¢) except witha = —1/W,.

8.6-8. Find the functions Ryy(r) and Ryy(t) applicable in Problem 8.6-7.

e

H

8.6-9.

8.6-10.

8.7-1.
8.7-2.
“8.7-3.

8.74.

8.7-5.

Work Problem 8.6-3 except assume N(f) has the power density spectrum

K +A,( W‘”") —W < w—wy < W/2
Tan@ =1 g Lk, (‘" ;’V“"’ —W2 <t wy < W2
0 elsewhere in @ 7

where K| > 0, K3 > 0, and ¥ > 0 are real constants.

A bandpass band-limited noise N(f) has the power density spectrum of
Problem 8.6-9. Find its autocorrelation function by using (8.6-11).

Show that (8.7-3) is the Fourier transform of tS.?-Z).

Solve the convolution of (8.7-4) and prove its last fo’ﬁn.

Inverse Fourier transform (8.7-5) and show that (8.7-6) is valid,

Show that the response Y{1) of the network in Figure 8.7-6 is X(¢), the band-
limited bandpass random process having baseband components Xp(¢) and X

(1) which are recovered from their / and Q samples.:

By use of the lowpass sampling theorem show that the band-limited signal
woos(Wy)
(@/2F — (Wyi)*

is the sumn of only two sampling [unctions separated in time by T, = w/Wy.

.\‘(}.) =.

 (Hinr: Choose T/2 and —T,/2 as the sample times.}

8.7-6.

A signal x(r) = BSa(W 1), where B is a constant, is band-limited to a band
lw| < Wy. Use sampling theory to Jusnfy that only one sample is adequate to

. reconstruct x(1) for all time.

8.7-7.

A nonrandom signal x(f) is band-limited 1o jo| < 2:r(l?.5)103 rad/fs. It is to
be reconstructed exactly from its samples using an ideal lowpass filter. (a)

* What is the filter’s minimum allowed bandwidth? (5) At what rate must the

8.7-8.

8.7-9.

signal be sampled?

A band-limited nonrandom signal tS) is passed through a square;law non-
linearity to produce a signal y(f} = x“(#). Give arguments to justify. lhat ¥(1}
can be represemed by the samplmg thcorem

A music signal (considered random) is often classified as “high fidelity” if its
maximum spcctra! extent is 20kHz. Ifa compact disk player is to reconstruct
the music using samples at four times the minimum sample rate, what is the

- sample rate?

8.7-10.

Begin with (8.7-24) and let T, — 0 so that the rectangular functions become
impulses, Next, nse (A-29) to obtain a medified form. Finally, use (7.5-3) and
Fourier transform the result to show that (8.7-25) can be expressed in the
equivalent form
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8.7-11.

8.7-12,

78.7- 13.

8.7-14,

Sy x (@)= Z Fyxlw — nay)

-’ A=—00

Assume a random process X(f) has a power specirum & yy(w) =

AO/[I + (w/ WP, where Ag and W are real posmve constants. If the replicas
in the power spectrum of the sampled version of X(f) are to fall to 5% of
thetr peak value when frequency is halfway between a pair of rep]lcas what
must the sampling rate w, be in terms of #?

Work Problem 8.7-11
Ag/{L -+ (e WYL

except for the power spectrum Fyy(w)=

Use the results of Problem 8.7-10 to sketch the sampled process’ power
spectrum, assuming the autocorrelation of the unsampled process is defined
in Problem 8.7-11. Note the effect of aliasing. Assume o, = 2W for the
sketch.

A nonrandom signal is given by

o o5 )
sn-sle)] o

where K > 0 and Wy > 0 arc real constants. (g) Show that the Fourier
transform G{w) of g(f} is the band-limited function

Glw)y=K cos® (%) rect (%) (2)

(b) Assume g(1) is to be sampled with sampling interval T, = x/ W y. Write an
expression for gft — (T;/2)] in terms of T and e = 2r/T,. (c) Discuss sam-

- pling of glt — (¥,/2)] and define where in time only four samples are needed

to completely define the function, (d) Assume T, = =/ Wy as in part (§) and
define Ty = 7,/2. Use (8.7-8) te write an expression for g(f) in terms of Ty
and T,. (e} Repeal part (c) except use the expression for g(£) of part (d).

. The system of Problem 8.7-14 is band-limited and nonnegative, so (2) could

_ represent the power spectrum ol some process. That is, a process X'(f) may be

8.7-16.

assumed to have the power spectrum % yy{w) and autocorrclation function
equal, respectively, to the right sides of (2) and (I} (with ¢ replaced by 7) of
Problem 8.7-14. Assume a sampling interval of T, = nr/ Wy and take N = 11
samples of Ryz(r) at times 1, = nT,, —-5<n<35. Usc these samples in a
truncated version of (8.7-26) to calculate &y v () for several values of
—wf2 < w <2 Plot .5y (m)/K for these va]ucs and compare to a
similarly normalized plot of .9",“ (cu)‘

<

In (8.6-2) suppose X(;) and ¥(ry aré baseband, band-limited, statistically
- independent, zero-mean, processcs representing two sources of mforrnalmn
The spectral exient of X(7) is 1.6 MHz and that of ¥(!) is 3.2 MHz. Discuss

ileapiac
oy
. 120

8.7-17.

8.8-1.

8.8-2.

8.8-3.

8.84.

8.8-5.

8.8-6.

*8.8-7.

8.8-8.

889,

how I and @ sampling can be applied to the right side of (8.6-2). What
minimum total sampling rate can be used, in principle?

Rework Example 8.7-2 except use ¥ = 20. Is there a significant change in
results from doubling N7 Discuss your results.

Show that the DTFT of 4[n] is unity.

Show that the DTFT of 3(n —r], where » is any integer shift in &8[n], is
exp(mjrﬂ) L

If the DTFT of h[n] is H(e’“), show that the DTFT of h[rr—r] for r an
integer, is H{exp(jQ)} exp(—jre2).

A DT system is defined by

ot n=0

] = lg n<0

for @ > 0 a constant. Determine if this sytem is BIBO stable. [ffin: Use

(C62).]

Find the transfer function for the DT system of Problem §.8-4.

A DT random sequence is defined by
Ryylnf = =M

for Wy > 0aconstant. Find the power spectrum of this sequence. Is it band-
limited? If not, what value of Wy is required for a given sample interval T, so
that the power spectrum is 5% of its maximum value when w = a/2?

A DT system is to satisfy (8.8-21) with only by and &; nonzero constants. (a)
Find an expression for the magnitude squared |H{exp(jQJi® of the system’s
teansler function (in terms of by and &), Determine its value for = 0, /2,
and . () Il the DT system is to approximate the lowpass filter function
iy _ ! e
B =T sermg

where § is a real positive conslanl find by and &, in terms of € such that
|H[exp(JQ)][ = [Hf[Exp(jQ)H at @ =0 and = n/2. To what values must
Qy be restricted for 4y and b to be rcal" (c) For the smallcst value of £
found in part (8), find |Hlexp(jm)]I> and IHf[exp(pr)]l' and observe the
accuracy of the approximation,

A DT systemn has an impulse response A[n} = 8[n] 4 28{n — 1] + (1/2)8{n — 2.
(«) Find all coelficients a, and b, in (8.8-21). Is this an FIR or IIR system?
What are M and N? (b) If an input random process to the system cotre-
sponds to the autocorrclation sequence Ryy[n] =a", 0 <a < |, find the

-response sequence Y[u] and its autocorrelation sequence Ryy[k].

A while nmsc sequence X[n], having an autocorrclation sequence
Ryyln] = a%8[n], is applied 1o an FIR system defined by (88 11) with
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8.8-10.

8.8-11.

8.8-12.

M =.3. {a) Find the avtocorrelation sequence of the response sequence Y[n].
(b) Find the power spectrum of the response.

If a_slalionzlry white noise -scqu.cncc X[} for which Ryg[n] = a%3[n] is
applicd 10 a DT system, use (8.8-22) to show that the response sequence ¥
[#] has the autocorrelation sequence '

N oo
Ryyln] = a}- Z Hmjhlm 4+ 1] [¢)]
m=—eo
:l‘he sum of (1) can be taken as the autocorrelation funciion of the system’s
impulse response.

Use the results of Problem 8.8-10 and (8.8-12) to show that an FIR DT

. syslem’s response 1o while input noise has the autocorrelation sequence

M—|n|
RY}’[‘"] = 0'}( Z bmbm+|n] 0 = |lll = M
m={

=0 all other n

Assume that a DT FIR system is to approximate a lowpass filter where

o

- o) = auye™ & Hw) = ——

From (8.8-12) the sequence of samples of A(r} define the system’s cocfficients
to be

M =hinT)=ce™ =b, O<ns<M

" (@) Use MATLAB and the résults of Problem 8.8-11 to find and plot the

8.8-13.

§.8-14.

8.8-15.

8.8-16.

normalized autocorrelation sequence Ry,-[n]/(afzoﬁz) when aT, = 7/4 and

M =8. (b) Rework part (a) except assume M =2 and note the effect of
reducing M.

l{se (8.8-15) and MATLAB to find the normalized transfer function Hlexp
(7N)/a and plot its magnitude for the DT system defined by the impulse
response  sequence of Problem 8.8-12. Plot the magnitude versus

- —m < 2 < x. Observe the effect of changing M from 8 to 2.

Work .Problcm 8.8-12 except assume the DT system is to approximate the
following impulse response

(!2

Aty = ou(tre™ < H{w) = m

and use a7, = x/[4(2** — 1)*9).

Work Problem 8.8-13 except assume the DT system defined in Problem 8.8-
14, .

Work Problem 8.8-12 except assume the DT system is to approximate the
following impulse responsc

al 2 —al ﬂ3
e = Zutey " B =
and use oT, = 742" — 1)*3].

8.8-17. Work Problem 8.8-13 except assume the DT system defined in Problem $.3-
16. .

8.8-18. The impulse response of a DT system is fi[k] = ufk] exﬁ[—ak]. where e > 0 is
a real constant and (k] is the unit-step function given by

I k20
“["']={0 k<0

The system’s input is defined by the sequence

a” mz=0and0<a<l
X = { 0 otherwise

Find the response sequence Y[n].
8.3-19. Dctermine if the DT system of Problem 8.8-18 is BIBO stable.

8.8-20. Use (8.8-10) to prove whether or not the DT system ol Problem 8.8-14 is
- BIBO stable. ’ o K

§.8-21. Assume the only nonzero coefficients in (8.8-21) are b5 =1, 4y =0.5, and
’ a; =02, Use MATLAB with N =32 to calculate the autocorrelation
sequence Af#] from (7.5-12). Plot both A[n) and 1H (™).

8.8-22. Work Problem 8.8-21 except assume the only nonzero cocfficients of (8.3-2 1)
are by= 1, by = 0.5, and &, = 0.2

8.9-1. A sonar echo system on a submarine transmits a random noise n{f} to deter-
mine the distance 1o another “target’” submarine. Distance R is given by v
7x/2 where v is the speed of the sound waves in water and tp is the time it
takes the reflected version of #(f) to return. Tts block diagram is shown in
Figure P8.9-1. Assume that #(f} is a sample function of an ergodic random
process N(¢) and T is very farge. -~ . .

. (@) Find V in terms of a correlation function of N(1)., :
() What value of the delay 7 will cause ¥ to be maximum?
(c) State in words how the submarine can determine the distance to the
target. : ’ :

8.9-2. Two resistors with resistances R; and R; are connected in parallel and have
physical temperatures T} and T3, respectively.
{a) Find the cflective noise temperature of 7 of an equivalent resistor with
resistance equal to the parallel combination of R; and R.
B HT) =T, =T, whatis 7,?

8.9-3. Work Problem 8.9-2 for three resistances Ry, R;, and R; in parallel when
they have physical temperatures T\, T3, and 73, respectively.
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Round trip delay =1,

aff) lﬂ ,

Hydmphans AR
Product Dlstance

¥ ! i'ff, ) dr

i of

Z_i&_

Delay 1

FIGURE F8.9-1

8.9-4. Work Example 8.9-2 if a second capacitor is placed across the resistance R,.
Is it possible 1o choose C; so that Ty is independent of frequency? -

*8.9-5. Find the effective noise teﬁ‘lperature of the network of Figure P8.9-5 il R,
-.and R, are at physical temperatures T, and T, respectively,

FIGURE P8.9-5

8 9-6. A two-port nctwork is |I[ustratcd in Figure P8.9-6. Find its available power
gain.

Temperature = T

Termperature T,

..—o

" FIGURE P8.9-6

89

8.9-7. If the two-port network of Problem 8.9-6 has a physical temperature 7, and
is driven by a source of resistance R, and effective noise temperature T, what
is the effective input noise temperature of the network?

8.9-8. If the output of the nciwork of Problem 8.9-6 is connected to the input of 4
second identical network, what is the available power gain of the cascade if
Ry = 5Q, R, =30, and R, =7Q?

7899, Dclermiﬁe the effective noise temperature of the network of Figure P8.9-9 if

resistors Ry-and R, aré; at different physical lcmperatures T and T, respec~

tively.
O
Ry
at I
H at

]

FiGURE P8.59

8.9-10. Two resistors in series have different physical temperatures as in Example

8.9-1. Let R) and R, be independent random variables uniformly distributed

on (1000, 1500) and (2200, 2700), respectively. Their average resistances are

then Ry = 1250Q and R; = 2450 Q2.

{a) What is the effective noise temperature of the two resistors as a source if
T, =250K and T3 = 330K and average resistors are used?

(b) What is the mean effective noise temperature of the source for the same
values of Ty and 73?7

8.9-11. Find the effective noise temperature T, of the network of Figure P8.9-11.
© What values does T assume for w = [/+/LC, w = —0, and w = co?

I
o]

0

—~

RiatT 'Rz aTy

C

FIGURE P8.9-11

12. Work Problem 8.9-11, except replace the series I—C circuit by a parai[el —-C
circuit.

£.10-1. Show that (8.10-4) is valid.
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8.10-2. In a cascade of M network stages (or which the mih stage has available
power gain G,, and operaling spol noise figure Fyy, when driven by all
previous stages as ils source, show that the overall cascade’s operating
spot noise figure is ’

. Tyas—1y{Foprt — 1)
T.6G\Gye - Gy

Tsl(Fopz - 1)
'TsGl

Fop= opt +

where T,—yy is the temperature of all stages prior to stage i treated as a
source. .

8.10-3. An atﬁpliﬁcr has a s}andafd spot noise figure Fy = 6.31 (8.0dB). An engineer

uscs the amplifier to amplify the output of an antenna that is known to have
anlenna lemperaturc of T, = 180 K.
(@) What is the effective input noise temperature of the amplifier?

(5) What is the operating spot noise figure?

8.10-4. In a cascade of M stages for which Fy,,, m=1,2,..., M, is the standard spot
noise figure of stage m which has available power gain G, show thai the
standard spot noise figure of the cascade of networks is

Fp—1 Fy—1

CR— Fo + Foy—1
PTG T GG, GGy Guy

8.10-5. An amplifier has three stages for which T, =200K (first stage),
T,» = 450K, and T,y = 1000K (last stage). If the available power gain of
the second stage is 5, what gain must the first stage have to guarantee an
effective input noise temperature of 250K?

8.10-6. An amplifier has an operating spot noise figure of 10dE when driven by a
source of effective noise temperature 225K?

{2) What is the standard spot noise figure of the amplifier?

{6) If a matched attenuator with a loss of 3.2dB is placed between the source
and the amplifier’s input, what is the operating spot noise figure of the
atlenuator-amplifier cascade if the attenuator's physical temperature is
290K? o

(c) What is the standard spot noise figure of the cascade in (5)?

8.10-7. One manufacturer sells a microwave receiver having an operating spof noise
figure of 10dB when driven by a source with effective noise temperiture
~ "130K. Another sclls a receiver with a standard spot noise figure of 6dB.
(a) Find the effective input noise temperatures of the two receivers,
(&) All other parameters, such as gain, cost, elc., being the same, which
receiver would be the best to purchase?

8.10-8. An amplifier has three stages for which T, = I50K (first  stage),
© T =350K, and T3 = 600K {output stage). Available power gain of the
_ first stage is 10 and overall input effective noise temperature is 190K.
() What is the available power gain of the second stage?
© (b) What is the cascade’s standard spot noise figure? -
{¢) What is the cascade’s operating spot noise figure when used with a source
of noise temperature T, = 50K?

‘o

8.10-9. Three networks are cascaded. Available power gains are G|, =8 (input
stage), Ga = 6, and G3 = 20 (output stage). Respective input effective spot
noise temperatures are T, = 40K, T» = 100K, and T,; = 280 K.
(a) What is the input effective spot noise temperature of the cascade?
(b} If the cascade is used with a source of noise temperature T, = 30X, find
the percentage of total available cutput noise power (in a band dw) due
1o each of the following: (1) source, and the excess noises of (2) network
1, (3) network 2, and (4) network 3. - .

8.10-10. An antenna witk effective noise temperature T, = 90K is connected to an
*. . attenuator that is at a physical temperature of 270K and has a loss of 1.9.
. Whalt is the eliective spot noise temperature of the antenna-atienuator cas-

cade if its output is considered as a noise source? .

8.10-11. Three identical amplifiers, each having a spot effective input noise tempera-
~ - ture of 125K and available power gain G, are cascaded. The overall spot
effective input noise temperature of the cascade is 155 K. What is G?

8.10-12, Three amplifiers that may be connected in any order in a cascade are defined
as follows: L

TABLE P3.10-12

Effective input noise ™ Available power

"o Amplifier temperature s gain;
A : 110K 4 .
B 120K . &
C 150K 12

What sequence of connections will give the lowest overall effective input
noise temperature for the cascade? - ’

8.10-13. In an amplifier the first stage in a cascade of 5 stages has T,) = 75K and

' G, = 0.5. Each succeeding stage has an effective input noise temperature and
an available power gain that are each 1.75 times that of the stage preceding
it. What is the cascade’s effective input noise temperature?

*8.10-14. Generalize Problem 8.10-13 by letting T,y and Gl be arbitrary and letting

each succeeding stage have an effective input noise temperature and available
power gain of X times that of the stage before it, where X > 0. Find-a valuc
of K that minimizes T, for the cascade. Use the valuc of X found to deter-
mine the minimum value of 7, (for any G,).

8.10-15. A designer requires an amplificr to give an operating spot noise figure of not
more than 1.8 when operating with a 160-K source. What is the largest vaiue
of standard spot noise figure that will be acceptable in a purchased amplifier?

8.10-16. Two amplifiers have standard spot noise figures of £y, = 1.6 (unit 1) and Fy
= 1.4 (unit 2). They have respective available power gains of G, =12 and
G,; = 8. The two amplifiers are to be used in a cascade driven from an
antenna to obtain an overall available power gain of (8)12 = 96.
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8.10-17.

8.11-1.

8.11-2.

8.11-3.

L8114,

- 8.11-5.

8.11-6.

8.11-7.

(@) For best performance, which unit should be driven by the antenna?
(&) What is the standard spot noise figure of the best cascade?

An antenna with an effective noise temperature of 80K drives a cascade of

two amplifiers. The first (fed by the antenna) has an-available power gain of
15 while the second has an input effective noise temperature of 600 K. The

input effective noise temperature of the cascade is [40K. The avallable .

power at the cascade’s output in a small 1000-Hz band is 4. l4(10' Sy w;
(@) What is the input effective noise temperature of the first amphﬁer SR
(h) What is the available power gain of the second stage? ’

{c) What is the cascade’s operating spot noise figure?

() What is the cascade’s standard spot noise figure?

What is the maximuin average effective input noise temperature that an
amplifier can have if its average standard noisc figure is to not exceed 1.7?

An ampliﬁcr has an average standard noise figure of 2.0dB and an average
operating noise figure of 6.5dB when used with a source of average effective
source temperaturc T, What is 737

An antenna with average noise temperature 60K connects to a receiver

through various microwave clements that can be modeled as an impe-

dance-matched attenuator with an overall loss of 2.4dB and a physical tem-

perature of 275K, The overall system noise temperature is T, = 820 K.

(@) What is the average effective input noise temperature of the receiver?

{b) What is the average operating noise figure of the attenuator-receiver
cascade?

_ (¢) What is the available output noise power of the receiver if it has an

available power gain of 110dB and a noise bandwidth of 10 MHz?

If the antenna-attenuator cascade of Problem 8.11-3 is considered as a noise
source, whal is its average effective noise temperature?

The loss L in Figure 8.11-1a is replaced by two cascaded matched attenua-
tors, one with loss L, at temperature 7 attached to the antenna output, and
one with loss L; at temperature 75 that connects to the receiver. Derive a
new expression for T, analogous to (8.11-24).

An amplifier, when used with a source of average noise temperature 60K,

has an average operating noise figure of 5.

(&) What is T,?

(h) Ifthe amphﬁcr is sold to 1he engineering public, what noise figure would
be quoted in a catalog (give a numerical answer)?

{¢} What average operating noise figure results when the amplifier is used
with an antenna of temperature 30 K7

An engineer purchases an amplifier with average operating hoisc figure of 1.8
when used with a 50-Q broadband source having average source temperature
of 80 K. When used with a different 50-Q source the average operating noise
figure is 1.25. What is the average noise temperature of the source?

8.11-8.

*8.11-9.

8.11-10.

8.11-11.

8.11-12.

An amplifier with a noise bandwidth of at least 1.8 MHz is needed by an
cngineer Two units from which he can choose are: unit 1—average standard
noise l‘ igure = 3.98, noise bandwidth = 2.0 MHz, and available power gain
= 10% unit 2—average standard notsc figure = 2. 82 nmse bandwidth = 2.9
MHz, and available power gain = 108,

Find: {a} T, for unit 1, () T for unit 2, (c) excess noise powcr of unit 1,
and {d) excess noise power of unit 2.
() If the source’s noise temperature T, is very small, which unit is the best to

purchase and why7?

(f) if T, > T,, which is best and why?

A resistor is cooled to 75K and serves as a noise source for a network with
available power gain

G, () = 10°°/(10° + w?)*

(a) Write an expression for the power spectrum of the network’s output
noise that is due to the source.

() Compute the available output noise power that is duc to the source
alone.

A broadband antenna, for which T, = 120K, connects through an attenua-

tor with loss 2.5 to a receiver wﬁh average input effeciive noise temperature

80K, available power gain 10'2, and noise bandwidth 20 MHz. The antenna

and attenunator both have a phys:cal temperature of 200K.

{a) What is the attenuator’s input cffective noise temperaturc?

(6) Whal is the system’s noise temperature?

{c) Find the average standard noise figure of the receiver by itself.

(d) What is the available noise power at the receiver's output (in system
operation)?

{¢) Determine the input effective noise temperature of the altenuator-recei-
ver taken as a unit. :

(f) What is the average operating noise figure of this system when the
anienna is the source?

An antenna with average noise temperature 120K connects to a receiver

through an impedance-matched attenuator havmg a loss of 135 and physical

temperature 75 K. For the overall system T, = S00K.

(@) What is the average effective input nolsc lcmperature of the receiver?

(6) What is the average opcratmg noise figure of the attenuator-receiver
cascade?

() What is the available output noise power of the receiver if its available
power gain is 120dB and its noise bandwidth is 20 MHz (syslcm is con-
nected)? .

A receiving systcm consists of an antenna with noise temperature 80 K that
feeds a matched attenuator with physical temperature 220K and foss 2.6.
The attenuator drives an amplifier with average effective nmse temperature

170K, noise bandwidth 4 MHz, and available powet gain 105,

Find: (a) the overall system’s average noise temperature T, {b) the avail-
able noise power N, at the system’s output, (¢) the total noise power avail-
able at the attenuator's output (within the neise bandwidth) and how much
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8.11-13.

8.11-14.

8.11-15.

8.11-16.

8.11-17.

of the total (as a percentage) is due to the antenna alone, and (d) the average
operating noise figure £, of the system.

Assume a source has an effective noise temperature of

' 8000

100 -+ o

and feeds an amplificr that has an available power gain of

2

Ts () =

Gl =

10 + jeo

{a) Find T, for this source.

(») Find the amplifier’s noise bandwidth.

(¢} What is the noise power available at the amplifier’s output due to the
source?

The available power gain of a network is
Ko )
_ (W2 + %
where K and W are positive constants.
(a) At what value of w, denoted by ey, does G {w) reach & maximum?

Guw) =

“(B) “If G,(w) is considered to be a bandpass function with nominal (center)

frequency iy, what is its noise bandwidth? -

Work Problem 8.11-14, except assume an available power gain
Ko’

Gylw) = Wit

For ihe neiwork of Problem 8.11-14, assume its input spot effective noise
temperature varies as T, = 50 + (dw/W)* and find its average input effective

" poise temperature.

A receiving system can be modeled as in Figure 8.11-1 if 7, = i30 K.
L=16, T, =200K, Wy/2r=8MHz, Gwy) = 5(10%), and Ty = 558K.

- A sinusoidal signal with an anguiar fre?uency ey is also being received that

8.11-18.

produces an available power of 55(10 YW at the antenna’s output. Find:
(a) Tg, (B) Ny, (c) available output signal power S,,, (d) the signal-to-noise
ratio S,q/Nao, (€) Fo for the receiver, and (f) the effective input noise tem-
peraturc of the loss, Tpes-

A receiving system has an antenna, for which T, = 120K, driving two

broadband matched-impedance attenuators in cascade, which then drive a

receiver for which Ty = 100K, Wy/27 = 5MHz, and Gglwg) = 10 The

attenuator to which the antenna is connected has a physical temperature of

70K and a loss of 1.6. The other attenuator’s physical temperature is 250 K

and its loss is 1.9, )

(a) What is the recciver’s available output noise power?

() What available signal power at the antenna’s output will produce a
signal-to-noise power ratio of 1000 (or 30dB) at the receiver's output?

(c) What is T,?

8.11-19. An-antenna, for which T,=060K, feeds a cascade of two irhpedancc-

maiched attenvators. The first, connected to the antenna, has a physical

temperature of 75K and a loss of 1.9. The second attenuator, at a physical

temperature of 290K and with a loss of 1.4, drives a broadband mixer that

has an available power gain of 0.5 and T, = S00K. Finally, the mixer drives

an amplifier for which G,{wy) = 107, Fy = 5, and Wy = 27(10%) rad/s.

(a) What is the input effective noise temperature of the attenuator that is at
physical temperature 75K?

(b} Repeat (o) for the sccond attenuator.

{c} What is the average input eflective noise temperature of the whole
cascade? _ . .

(d) What is T,;? s )

(¢) What is the average operaling noise figure of the cascade having the
antenna as its source?

(/) What average noise power is available at the amplifier’s output?
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CHAPTER 9

Optimum Linear Systems

9.0
INTRODUCTION

The developments of the preceding chapter related entirely to the analysis of a
linear system. In this chapter we do an about-face and concentrate only on the

synthesis of a linear system. In particular, we choose the system ir such a way '

that is salisfies the certain rules that make it optimum.

In designing any optimum system we must consider three things: input
specficiation, system constraints, and criterion of optimality.

Input specification means that at least some knowledge must be available

.about the jnput to the system. For example, we might specily the input to
-consist of the sum of a random signal and a noise. Alternatively, the input
~could be the sum of a deterministic signal and a noise. In addition, we may be

able to specify signal and noise correlation functions, power spectrums, or
probability densities, Thus, we may know a great deal about the inputs in
some cases or little in others. Regardless, however, there is some minimum
knowledge required of the characteristics of the input for any given problem.

System constraints define the form of the resulting system. For example,
we might allow the system to be linear, nonlinear, time-invariant, realizable,
etc. In our work we shall be exclusively concerned with linear time-invariant
systems but will not necessarily require that they be realizable. By relaxing the
realizability constraint, we shall be able to introduce the most important
topics of interest without undue mathematical complexity.

In principle, there is great latitude available in choosing the criterion of
optimality. In a practical sense, however, it should be a meaningful measure of
“goodness™ for the problem at hand and should correspond to equations that
are mathematically tractable. We shall be concerned with only two criteria.
One will involve the minimization of a suvitably defined error quantity. The

356

other will relate to maximization of the ratio of a signal power (o a noise

- power. This last criterion leads us to an optimum system often called a

malched filter.

9.1 : RN
SYSTEMS THAT MAXIMIZE SIGNAL-TO-NOISE RATIO
An important class of systems involves the transmission of a deterministic
signal of known form in noise. A digital communication system is one exam-
plef where, during a time interval T, a known signal may arrive at the receiver
in the presence of additive noise. The presence of the signal corresponds to
transmission of a digital “1,” while absence of the signal occurs when a digital
“0™ is transmitted (noise is always present). It would seem reasonable that
some system (or filter]) could be found that would enhance its output signal
power at some instant in time while reducing its output average noise power.
Indeed, such a filter that maximizes this oulput signal-to-noise ratio can be
found and it is called a matcied filter. It can be shown that decisions made as
to whether the signal was present or not during time interval T have the
smallest probability of being in error if they are based on samples taken at
the times of maximum signai-to-noise ratio. Although our comments here are
directed toward a digital communication system, we shall find as we progress
that the matched filter concept is a broad one, applying to many situations.
In this section we shall consider the optimization of a linear time-invariant

system when the input consists of the sum of a Fourier-transformable deter-

ministic signal x(¢) of known form and continuous noise n(¢). If we denote by
Xo{t) and n,(f) the output signal and noise, the criterion of optimality we
choose is the maximization of the ratio of the output signal power at some
time ¢, to the output average noise power. Thus, with #,(f) assumed to be a
sample function of a wide-sense stationary random process§ N,(f), we max-

imize '
& 2
(%_) =% PN CAB))
where
8o = Ixa{to)? (9.1-2)
is the output signal power at time ¢, and
N, = EIN;(9)] (9.1-3)

is the output average noise power.

tAlthough we discuss only this example, many systems such s radars, sonars, radio allimeters,
ionospheric sounders, and. automebile crash avoidance systems are other examples,

“IWe often use the words system, filter, or network in this chapter to convey the same meaning.

§This" assumption is equivalent to assuming the input noise is from a wide-sense stationary

 fafidom process since the system is assumed to be lincar and tifme-invariant (sce Scclion 8.2).
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Matched Filter for Colored Noise

Dcﬁﬁc X(w) as the Fourier transform of x(¢), and H(w) as the transfer func-
tion of the system. The output signal at any time 7 is

=5 | X@H@E do ©.1-4

From {8.4-6), the oulput average noise power can be written in the form

N, = E(NX()] = ir P N H @ do ©.1-5)

—00
where & yy{w) is the power density spectrum of the random process, denoted
N(f), that represents the input noise n(f). By use of (9.1-4) at time f, and
(9.1-5), we can write (9.1-1) as

<y lirc X(e)H(w)e™ des ’
i _Prl_
(No) - .}-Jm & ()| H @) des
) oo _
- To find H(w) that maximizes (9.1-6), we shall apply the Schwarzt mequal—

ity. If A(@Y and B(ew) are two possibly complex functions of the real variable w,
the inequality states that

(9.1-6)

'sj 4@ dwj 1B@)lPdo  (O.17)

Hw Alw)B(e) dw

The equality holds only when B(w) is proportional to the compelx conjugate
of A(es); that is, when

B(w) = CA*(w) (9.1-8)
where C is any arbitrary real constant. ’
By making the substitutions .
Alw) = /& yn(w)H{w) (9.-_1-9)
‘ X(w)e'™
Blw) = ———— (9.1-10)
= Tt
in (9.1-7) we obtain
LI™ ppH@e do| < Jm FlEr dos " @l
EJ— (ch) ((.:J) dw| = o NN (27[,)2 oo yNN(ﬂJ); ,
' (9.1-11)

* tNamed for the German .ma"lhernalician Hermann Amandus Schwarz (1843-1921).

e
.7_',:'.:4-.,;;*

With this last result, we write (9.1-6} as

& o0 2

Sa < 1 j [X(w}] de

N, 21 ) _o L unlw)
The maximum value of (§,/N,) occurs when the equality holds in (9.1-12),
which implies that (9.1-8) is true. Denote the optimum filter transfer function

(9.1-12)

. by Hyp(w): We find this function by solving (9.1-8) using (9.1-9) and (9.1-10);

the result is B
1 X‘(ﬂ)) e_j‘”’"
2JTC SPNN(w)

From (9.1-13), we find that the optimum filter is proportional to the
complex conjugate of the input signal’s spectrum; we might say that the
system is therefore maiched to the specified signal since it depends so inti-
mately on it. () is also inversely proportional to the power spectrum of
the input noise. In general, this noise has been assumed nonwhite; that is,
colored. Because of these facts, an opumum ﬁltcr gwcn by {9.1-13) is called a
matched filter for colored noise.

Hgpi(w) is also proportional to the inverse of the arb:trary constant C In
other words, Hy, (@) has an arbitrary absolute magnitude. This fact.aliows-the
optimal system to have arbitrary gain. Intuitively, we feel that this should be
true because gain affects both input signal and input noise in the same way,
and, in the ratio of (9.1-1), gain cancels.

The time ¢, at which the output ratio ($,/N,) is maximum enters into the
optimum system transfer function only through the factor exp(—jwz,). Such a
factor only represents an ideal delay. Since ¢, is a parameter that a designer
may have some latitude in choosing, its value may be selected in some cases to
make the optimum filter causal.

In general, the system defined by (9.1-13) may not be realizable. For
certain forms of colored noise realizable filters may be found (Thomas,
1969, Chapter 5). In practice, one can always apprommate (9.1-13) by a
sunably chosen real filter.

Hop[(w) = (9.1-13)

Matched Filter for White Noise

If the input noiée is white with power density A7/2, the-optimum filter of
(9.1-13) becomes : .

Hyy (@) = KX (@)™ C9.1-14)

where K = 1/xCA7 is an arbitrary constant. Here the optimum filter is
related only to the input signal’s spectrum and the time that ($,/N,) is max-
imum, Thus, the name maiched filter is very approprate. Indeed, the name
was originally attached to the filter in white noise; we have liberalized the
name to include the preceding colored noise case.

The impulse response denoted Ay (1) of the optlmum filter is the mverse
Fourier transform of Hyp(w). From (9.1-14), it is easily found that . -
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hop(t) = Kx*(t, — 1) (9.1-15)
For real signals x(f), (9.1-15) reduces to wr e
hopt(’) = Kx(1, — 1) (9 l [6)

- Equation (9.1-16) indicates that the impulse response is equal to the mput
« signal displaced to a new crigin at ¢ = t, and folded about this point s0 4s to

“run backward.”

EXAMPLE 9.1-1. We éhall find the matched filter for the signal of Figure
9.1-lz when received in white noise. From (9.1-16), the matched filter’s
impulse response is as shown in (). By Fourier transformatlon of the
waveform in (b), we readily obtain

. sin(wt/2) Il t—(e/2)]
Hopt(w)—KA ( t/2)

An alternative development consmts of Fourier-transforming the input
signal to get X{w) and then using (9.1-14).

Whether or not any chance exists for the matched filter to be realiz-
able may be determined from the impulse response of Figure 9.1-15.

x(f)
A
-1, [] -, f
(@
(8}
- KA '
. :
i
i
[ 4 [} 1, [ i
' )
Inpt I.n}e(g-r):l::r — Oulpulr
FIGURE 9.1-1

A matched filter and its related signals. (a) input 51gnal (&) the ﬁltcr s lmpulse g
response, and (¢) the filter’s block diagram. [Reproduced from Peebles (1976}, with
permission of publishers Addison-Wesley, Advanced Book Program.]

Clearly, to be caunsal, and thereforc rca[tzable the delay must be at least
T— ro, that is

L,Z2T—1,

If we assume this [ast condition is satisfied, the optimum filter is illu-
strated in {c) where the arbitrary constant K is set equal to I/4. This
filter still requires that perfect integralors be possible. Of course, they are
not. However, very pood approximations are possible using modern
@ operational amplifiers with feedback, so for all practical purposes
matched filters for rectangular pulses in white noise may be constructed.f

9.2
SYSTEMS THAT MINIMIZE MEAN-SQUARED ERROR

A second class of optimum systems is concerned with causing the outpitt 10 be
a good estimate of some function of the input signal which arrives along with
additive noise. One example corresponds to the output being a good estimate
of the derivative of the input signal. In another case, the system could be
designed so that its output is a good estimate of either the past, present, ot
future value of the input signal. We shall concern ourselves with only this last
case. The optimum system or filter that resuits is called a Wiener filter.}

Wiener Filters

The basic problem to be studied is deplctcd by Fignre 9.2-1. The input signal
x(#) is now assumed to be randon; it is therefore modcled as a sample function

Actual system path.
W= Mo —= S e v =0 8,

-t

. 2 e b= ) Y
by
1]
H
Dclay | e
o s X(r+1,)}

Idcafized (concepiual)
outpul generation

FIGURE 9.2-1
Operations that define the Wiener filter problem.

Ottier techniques usmg integrate-and-dump methods exlst Sce Pecbles (1976), pp. 361-362.
JAfer Norbert Wiener (1894-1964), a greal American mathematician whose work has tremea-
dously afTected many areas of science and engineering.
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of a random process X{7). It is applied to the input of the system along with
additive noise n(r) (hat is 2 samptle function of a noise process N(y). We assume
X(i) and N(1) are jointly wide-sense stationary processes and that N(z) has
zero mean. The sum of signal and noise is denoted W((): ‘ :

W) = X() + N(1) (9.2-i')

The system is assumed to be lnear and lime-invariant with a real impulse
“response A(f) and a transfer function H{w). The ouiput of the system is

denoted Y(r). - - )

- In general, we shall select H{w) so that ¥ (£} is the best possible estimate of
the input signal X (1) at a time { + ¢,; that is, the best estimate of X(f + ¢,). I
1, > 0, ¥{() is an estimate of a future value of X{7) corresponding to a predic-
tion filter. If 1, < 0, Y(f) is an estimate of a pas! value of X(r) and we have a
smoothing filter. If 1, =0, Y(#) is an estimate of the current value of X{).

Now if Y(#) differs from the desired true value of X(¢ + £,), we make an
error of ‘

) = X(t +1,) — Y() (9.2-2)

This error is illustrated conceptually in Figure 9.2-1 by dashed lines. The
optimum filter will be chosen so as to minimize the mean-squared value of
£(f).+ We shall not be concerned with obtaining a system that is realizable.
Some infofation is given by Thomas (1969) on the more difficult problem
where H(w) muist be realizablé. Thus, we seek to find H{w) that minimizes

El(0 = ERX( + 1) — Y(OY]
= EQXAt + 1) — 2Y(DX(t + ) + Y (1) :
= Ryx(0) — 2Ryx(t,) + Ryy(0) (§.2-3)
From the Fourier transform relationship between an autocorrelation

function and a power spectrum, we have

1 [ _
Ra®=35: | Farddo (9.2-4)

where & ex{eo) is the 56wer density spectrum of X (#). From a similar relation-
ship and (8.4-1) we have '

1
Ry © =5

where & () is the power spectrum of W/(s). By substitution of (9.2-4) and
(9.2-5) into (9.2-3), we have )

(-]

L (@) H (o) de (9.2-5)

B0 = 2R +3z | @+ S H@ N 026

We conld elect to miinimize the average error, or even force such an error to be zero. This approach
does not prevent large positive errors from being offset by large negalive errors, however, By mini-
mizing the squared error, we climinate such possibilitics.

To reduce (9.2-6) further, we develop the cross-correlation function:
o ;

Rx() = BUYOX(-+ )] = [ X+ )| mowee—pag|
—o0 7

=j Riplto + DH(E) dt 027

-0

where Ry (-) is the cross-correlation function of W(r) and X (/). After repla-

cing Ry (1, + &) by its equivalent, the inverse Fourier transform of the cross-

power spectrum & yy(@), we obtain

Ryx(to) = J %J S xl(w)e’ ot de h(g) dt

= %J‘ . y;yx(w)(.’jm!"{J h(‘i:)ejwé df,"l dw

—o0
1

oQ -
= Ej m.?wx(w)H(—w)e’"’” de -

Substitution of this expression into (9.2-6} allows it to be written as-

(0.2

BP0 =5 | (#ixle) = 28 ix( -0 + L) H@P) do
| o (9:2:9)

“The transfer function that minimizes E[£%(/)] is now found. We-may write
H(w) in the form : - '

H(w) = A(m):ejs(“’) 9.2-10)

where A(w) is the magnitude of H{w), and B(w) is its phase. Next we observe
that #yy(w) and &y (w) are real nonnegative functions, since they are
power spectrums, while the cross-power spectrum & yp(w) is complex in
general and can be written as

Fwxlw) = Cl@)e’™® 621
After using (5.2-10) and (9.2-11) in (9.2-9) and invoking the fact that
H(—~w) = HY{w) {9.2-12)
fqr filters having a real impulse response A({), we obtain
1 [ ' '
EE (0] = 2—] (#xx(@) + Lyw(@) 4 @) do
7 ) _eo SRR ) o
1 1 . )
- —J 2C(w) A{w)e e D) -Be 4, (8.2-13)
27 ) oo . .

We minimize E[s2(f)] by first selecting the phase of H{w) to maximize the
second integral in (9.2-13) and then, with the optimum phase substituted,
minimize the resulting expression by choice of A(w). Clearly, choosing

B(w) = o1, + D(w) (9.2-14)
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. Minimum Meén-Squared._Error

will maximize the second integral and give the expression

N -
P01 = 3z | (#xx(0) = 200 + L @) do
. —0a

1 §® CHw) T Clw) 2.

wilw)

. 2-15)

In writing the last form of (9.2-15), we have compleled the square“'i
Finally, it is clear that choosing
_Clw)

Alw) = -

will minimize the nght side of (9.2-15). By combining {9.2-16), (9.2-14), and
(9.2-11) with (9.2-10) we have the optimum filter transfer function which we
denote H,(w):

(9.2-16)

opt(m) — ‘q’ Wx(“’) ejmr 9.2-17)

W(C'J)

For the special case where input signal and noise are uncorrelated, it is
easy to show that

Fwwlw) = & xx(@) + £ unlw)
Fixlw) = & xx(w)
where & yy(w) is the power spectrum of N(f). Hence, for this special case

& yx(w) e
& yx(w) + F (o)

(9.2-18)
(9.2-19)

(9.2-20)

- EXAMPLE 9.2-1. We find the optimum filter for estimating X(f + ¢,) when
there is no input noise. We let & yn(w) =0 in (9.2-20):
SR Lo opl(a’) = ¢
This expression corresponds Lo an ideal delay line with delay —¢,. If
t, > 0, corresponding to prediction, we require an unrealizable negative
delay line. If ¢, > 0, corresponding to a smoothing filter, the required
detay is positive and realizable. Of course, ¢, = 0 results in Hop‘(cu) =1
In other words, the optimum filter for estimating X () when no noise is
- present is just a direct connection from input to output, a resull that is
intuitively agreeable.

On substitution of (9.2-17) into (9.2-15), we readily find the mean-squai‘ed
error of the optimum filter

@

Ll ©.221)

2 _ 1% L) wlw) -
Bl @hin = 211'] -0 S wl(w)

For the special case where input signal and noise are uncorrelated this equa-

- tion reduces to

1 Jm -?’xx(w)yivﬁ(m) do

— G.2-
27 ) o Lyx (@) + & n{w) (.2-22)

Elgz(f)]min =

23
OPTIMIZATION BY PARAMETER SELECTION

We conclude our discussions of optimum linear systems by briefly considering
a second approach that minimizes mean-squared error. The problem we
undertake is identical to that of the last section up to {9.2-9), which defines
the mean-squared error. Now, however, rather than seeking the filter that
minimizes this error, we specify the form of the filter in terms of a number
of unknown parameters and then determing the parameter values that mini-
mize the mean-squared error. This procedure necessarily leads to a real filter
so long as the form we choose corresponds to such a filter, .

If we assume the special case where the input 51gnal X{(1) and noise N(1)
are uncorrelated, (9.2-9) can be written as -

E[£*(n) = E;Jio & () dw 9.3-1)

where

Foi(@) = Lyx(@) = 2 g3 (@ H(=)e™ + [ yx(@) + & @) H@)

(9.3-2)
Since the imaginary part of H(—w)exp(jw!,) is an odd function of @ when /(2
is real (as assumed), the only contribution to the integral of (9.3-1) due to the

middie term in (9.3-2) results from the real part of H(—w)exp(jor,): Thus, the
error-contributing part of {9.3-2) can be written ast

Fow = S x(@)] - H@)e ™ — H(-)™ + 1H@)) + £ yu(@)| H)
= Lxx (@)1 — H-w)e!" [ + L (@) H(w)’ (9.3-3)

because H(—w) = A*(w).

We summarize the synthesis procedure. First, a ﬁlter form is chosen for a
real filter, The applicable transfer function H(w) will depend on a number of
unknown parameters. H(w) is next substituted into (9.3-3), to obtain '9’££(m),
the power density spectrum of the error e{7). Finally, the error E[e? (t)] is
caleulated from (9.3-1) and the parameters are then found by formally mini-
.mizing this error. Although this procedure is direct and conceptually simple to

¥In writing (9.3-3), we also use the fact that 2 Re(z) = z 4+ z* for any corﬁplcx number z.
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apply, the solution of the integral of (9.3-1) may be tedious. For the case
where &y (w) and & yp(w) arc rational functions of w and H(w) corresponds
1o a real filter form, the resulting integral has been tabulated for a number of
functions &, (w) involving orders of e up to 14 (Thomas, 1969, pp. 249 and
636, und James, ct al., 1947, p. 369).

All the preceding dlscussmn has relaied to the special case where the input
signal and input zero-mean noise are joinlly wide-sense stationary and uncor-
related. For the more general case of correlated signal and noise, the choice of
form for H{ew) must be substituted inte (9.2-9) and the :ntcgml solvcd The

- unknown filter cocfﬁcncnls arc then determined that minimize E[%(1)].

9.4
SUMMARY

All earlier chapters concentrated on definitions and analysis of random pro-
cesses and the system responses to such processes. This chapter has given a
very brief introduction to the synthesis of optimum systems. In essence, we
sought to find the best system for a given problem. Two main categories of
problem were introduced and the specific topics covered were:

« The system-(filter) was derived that causes the maximum ratio of peak signal
power (at a point in time) to the average noise power at the system'’s output.
The optimum filter.is called a matched filter; two results were developed, one
for arbitrary noise and one for white noise. Results were general and thc
filters were not constrained to be realizable.

The second system category involved the optimum filter that minimized a
suitable mean-squared-error crilerion. One such filter, called the Wiener
filter, was chosen for development. It minimized the square of the difference
between the filter’s response and a desired response defined as the input
signal at any chosen past, present, or future time (a prediction filter).
The Wiener and matched filters that were found were not necessarily realiz-
able. The chapter closed with a brief discussion of a method of selecting a
realizable filier, defined by a finite number of parameters, to approximate
the optimum filter. The procedure was called parameter selection.

PROBLEMS

9.1-I. A maiched filter is to be found for a signal defined by

AT+ 0/t —r<r=<0 . 2
M=+ Ar-fr  O<t<rt <« X{w)= At[wrzﬂ)]
] " elsewhere wtf

when added to noise having a power density spectrum
Wy
W3+ a?

where A, 1, and W, are real positive constants.

Fnlw) =

9.1-2,

9.13.

*9.14.
_ response Jign(e) of the matched filter for signals in colored noise satisfies

9.1-5.

(4) Find the matched filter’s transfer function Hy, (w).
(6) Find ihe filler's impulse response ligp,(f). Plot Ay {0).
(c) Is there a value of ¢, for which the fikter is causal? If so, find it. -

(#) Skeich the block diagram of a network that has H,(w) as its transfer
function. : ’

Work Problem 9.1-1 (), (b). and (¢} lor the siénal
Xy = )™ — Y]

il & > 1 is a real constant.

Work Problem 9.1-1 (a), (). and (¢) for the signal
() = u(— e - 0

il > 1 is a real constant.

By proper inverse Fourier transformation of (9.1-13), show that the impulse

J bRl =145 = 5 =)

A signal x{r) and colored noise N(t) are apphed "to thé neétwork of Figure
P9.1-5. We select [H, (@) = 1/ yn(w) so that the noise N(9) is white, We

. also make H,(w) a matched filter for the signal x({r) in the white noise N{{1).

Show that the cascade is a matched filter for x(r) in the noise N(1).

X[+ N() | [ X0+ Ny() |‘ " [
Colored H M,

naise

%+ N ()

- FIGURE P9.1-5

9.1-6.

9.1-7.

9.1-8.

For the matched filter of Example 9.1-1, find and sketch the output signal.
[Aine: Fourier-transform x(7) and use a transform pair from Appendix E to
obtain x,{1).]

Assume the poser density of the white noise at the input to the matched filter
of Example 9.1-1 is .#7/2 with A"y > 0 a real constant. Find the output
signal-to-noise ratio of the filter at time ¢,.

Show that the maximum output signal-to-noise ratio cbtainable from a filter
matched to a signal x() in white noise with power density 475/2 is

8, 2 r" 2, 2E
= =— N de=—
(Na) miax A Lml o Ao

where E is the energy in x(f) and A7y > 0 is a real constant.
[}
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9.1-9. Let 7 be a positive real constant. A pulse
Acos{mefT) 1] < /2
() = I fl > /2
is added to white noise with a power deansity of A"y/2. Find (§,,/No)mx for a
filter matched to x(r) by using the result of Problem 9.1-8.

""9.1-10. Find the matched filter's transfer function applicable to Problem 9.1-9. -

§.l-l 1. Show that the output signal x,(r} from a filter matched to a signal x(..f)—iiﬁ'w}iiié ’

noise is
[+
0 =K| @n+i-)ds
—o0
That is, x,(r) is proportional to the correlation integral of x(1).

9.1-12. Show that the output signal x,(f) from a filter matched to a signal in white
. noise reaches its maximum magnitude at ¢ = ¢, if the filter impulse response is
given by (9.1-15). (Hint: Use the result of Problem 9.1-11.)

9.1-13. Fourier-transform the signal of Figure 9.1-14, and use (9.1-14) to verify the
optimum system transfer function given in Example 9.1-1.

9.1-14. The signal
x(0) = u(te

where W > 0 is a real constant, is applied to a filter along with white noise
with power density .4#7/2, #7 > 0 being a real constant. .
» (a) Find the transfer function of the filter matched to x(f) at time ¢,.
(5} Find and sketch the filter's impulse tesponse.
(c) Is there any value of ¢, that will make the filter causal?
{d) Find the output maximum signal-to-noisec ratio.

9.1-15. Work Problem 9.1-14 for the signal

SR . x(0) = te{—ne™"

9.i-16_.‘ Work Iéroblcm 9.[—1.4 for the signal

x() = n(r)re™™

9.1-17. Work Problem 9.1-14 for the signal
) = —re(—)e™"

9.1-18. If a réal signal x{r) exists only in the interval 0 < f < T, show that the correla-
tion receiver of Figure P3.1-18 is a matched filler at time 1 = T; that is, show
that the ratio of peak signal power to average noise power, both at time T, is

 the same as the ordinary matched filigr; Assume white input noise.

9.1-19. Find the matched filter for the signal L s
Ay = Ae™"

9.1-20.

9.1-21.

9.1-22.

) + M —]  Product i) o’(-)a‘: [ Y +x,(0) + No(d) 369 !
. CHAPTER 9:
T Optimum Lidear
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x()

FIGURE P9.1-18

in white noise with power dcnstty /2 where .A’o > 0,a >0, and 4 arc real
constants.:.; o o meise

A sngnal X0 = ul{ry5:2 exp(—24) is added to white noise for which Af2 =
1072 W/Hz. The sum is applied to a matched filter.

(a) What is the filter’s transfer function?

(b) What is (S,,/Na)"

{c} Sketch the impulse responsc of the filter.

(d} Is the filter realizable?

A signal
X() = u(f) (-3;£p(— Wi
is added to noise with power spectrum
Fanlw) = P(Wi +0%) -

where W, P, and Wy are positive constanis. The sum is applicd to a matched
filter.

(@} Find the filter’s transfer function.

(#) Find the filter’s impulse response.

(c) What is the maximum signal-to-noise ratio at the output?

A pulse of amplitude A4 > 0 and duration v > 0 is x(#) = A4 rect{r/7). The pulse
is added to white noise of power dcnsity A7p/2 when it arrives at a recciver,
For some practical reasons the receiver (filter) is not a matchcd filter bui is a
simple lowpass filter with transfer function

H(w) = WIW +jo)

W = 0 a constant.

(@) Find the ratio of instantaneous output signal power ru(:) at any time ! to
average noise power E[N(1)] at the filter’s output. At what time, denoted
by 1,, is the ratio maximum?

(5) At time ¢, what bandwidth I will maximize signal-to-noise ratio?

(c) Plot the loss in output signal-to-noise ratio that results, compared to a
matched filter, for various values of § < W < 5/t. What is the minimum
loss?

) 223. Reconsider the.syslem of Problem 9.1-22 except assume

Hiw) = W (W + jw)

A
[



31
Probability,

Random Variables,

and Random
Signal Principles

9.1-24.

*9.1-25.

*9.1-26.

(&) Find the time ¢, at which output signal-te-noise ratio is largest.

(5) For the ¢, found in (&) determine the output signal-to-noise ratio. Plot this
result versus We for 0 < Wt < 6 and determine what value of W gives the
best performance.

(¢) What minimum loss in signal-to-noise ratio occurs compared to a
matched filter?

A pulsc
x() = A rect{r/20)[1 — (/Y]

where A-and T > 0 are constants, is added to white noise.

()} Find the output signal x,(r) of a filter matched to the puisc.

(b) Sketch x(2) and x,(f).

(¢} What is the matched filter’s output signal-to-noise ratio?

(d) What is the transfer function il K in (9.1-16) is chosen so that
[y (0)] = 17 Is there a value of {, that makes the filter causal?

‘A deterministic waveform ¥(¢) is defined by
¥ = a(,)emf)ﬁn-\:f = u(l)ej“""

where af¢) and ¢(¢) are “slowly” varying amplitude and phase * *modulation”
functions and ey > 0 is a large constant. The white-noise matched filter for
i) is defined by

hopl(") =1, — 1)

if K=1in (9.1-15). Now let ¢¥{(¢) be offset in frequency by an amount wy
before being applied to the “matched filter” so that

Wr(f) = WD exp(—jowal)
is applied with noise to the filter.
(a) Show that the filter’s response to V(1) is
. - .
Koo tw) = | WOt~ 1+ s
-0

The function |x(a, wl? is called the ambiguity function of the waveform
(0.

(b} Show that the volume under the ambiguuy function does not depend on
the form of y(¢) but only on |x{0, 0)[

() Show that

X, — oy = ej""‘u-"’]j’m u(é‘)y'(go —t +$)e"j°’d€ dE

Reconsider the ambngunty funcuan of Problem 9.1-25.
{a) Show that |(z, cud)l < |x(0, 0.
(b} Show that another form for x(r, wy) is
o0 .
x(T.wg) = LJ o)W (w + w)e 7 dw
.

where W{w} is the Fourier transform of y{r).

it

9.1-27.

{¢) Show that
a0 = | wter e+ e
~00
1 f® 3 i
=-—{ () e ™" dew
P& B L
o0 T sk
x(0. w.r)=l (e e dE
—%
1
= EJ_ Y)W (w + wy) dw
() Show that the symmetry of x(t, wy) is given by
Xt ) = & Y (—3, —an)

The deterministic signal

x{t) = rect{t/ Tyexp(wg! +jur*/2)
is a pulsc having a lincarly varying frequency with time during the pulse’s
duration T. The nominal frequency is wy (radfs). The matched filter for white
noise has the impulse response of (9.1-15) which, for 1, =0, is
Broga(£) = K rect(tf T)exp(jew,t — jut42)
(@) Il instantaneous frequency. is to increasc by a total amount Aw (radfs)
during the pulse’s duration T', how is the constant x related to Awand T7

(b} Find the value of K such that |Hy(wy)] = 1 when g is large. [Hint: Note
that '

Cx) = E cos(mt?/2) dE
and
S(x) = J sin(r&®/2) dt .

called Fresnel integrals, appmach tasx—o0]

- (¢) Forthe K found in (), determine fhe output x,(f) of the filter. Sketch the

*0,1-28.

envelopes of the signals x(#) and x,(7) for AwT = 80 using the same time-
voltage axes. What observations can you make aboul what has happened
to x(f) as it passes through the filter?

(@) Find the transfer function Hyy,(w) of the matched filter of Problem 9.1-27.
" (Hint: Put the epxression in terms of Fresnel integrals having arguments

X1 = v BeT/2r{l — 2w —ap)/ Awll/v2
and )
= VAT 271 + 2o — @)/ Acl}/V2

where . = Aw/T.)
(5) Sketch the approximate form of |, ()| that results when AwT is large.
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9.1-29.

9.1-30.

9.1-31.

A signal

1 —1f6
()= 3¢ 0<t<3/2
0 elsewhere in ¢

is added to white noise of power density .4#7/2 and the sum is applied to the
input of a matched filter. The output peak signal-to-noise power rafio is 4.
What is A7 /27 (Hint: Use the results of Problem 9.1-8.) .

White noise, for which #75/2 = 107 /(24x), and a signal

x(t) = Wee™ 0<i<2W

o elsewhere in ¢

are applied to a matched filter. What ratic of output peak signal power to
average noise power can be achieved if W = 5(10%) rad/s? (Hint: Use results of
Problem 9.1-8.) :

In trying to build the matched filter required in Problem $.1-30 an engineer
encounters difficulties and builds, instead, a filter matched to the signal

X 0) = ul W™

* which is the unlimited-time version of the signal x(r). What ratio of output

peak signal power to average noise power can be achieved for the same values

© of W and #"3/2 as assumed in Problem 9.1-307

*0,1-32,

Assume the signal and noise of Problem 9.1-30 are applied to the filter used by
the engincer in Problem 9.1-31. Since the filter is not matched, optimum

" performance is not achieved.

(a} Use convolution to find the output signal x,(f) of the filter at any time ¢.

{6) Find the value of ¢, for which the output signal’s amplitude is maximum

atr=0.
(¢) Find the maximuem peak power in the output signal.

* {d) Find the average noise power and the maximum output sigrai-to-noise

9.1-34,

9.1-35.

power ratio.

. The sum of a signal

: ‘ 0 1< -3
x()=4{6+2t —3<t<S$
0 S5«<t

and white noise, for which .173/2 = 0.1 W/Hz, is applied to a matched filter.

(@) What is the smallest value of r, required for the filter to be causal?

(#) For the value of #; found in (a), sketch the impulse response of the
matched filter, ) ’

{c} Find the maximum output signal-to-noise ratio it provides. (Hinr: Use the
results of Problem 9.1-8.)

Work Problem 9.1-33 except assﬁ?f{é'a"t: signal shown in Figure P9.1-34.

Find the transfer function of the white-noise matched filter correspondfng to
the signal

9.1-36.

9.2-1.

9.2-2.

9.2-3.

9.24.

9.2-5.

x(0

-4 [1} 4 '

FIGURE P9.1-34

() = (4 + Br)[u((! +%) - 'u(: - %)] |

where 4 > 0 and B > 0 are constants.

Work Problem 9.1-22, except assume the input pulse is

-2

x{(t) = — fule) —u(t — 7)]

A random signal X{f) and uncorrelated white noise N{¢) have autocorrelation
functions

Ryxt) = 2L o1
Runtd) = (Ho/2600)

whete B > 0, P > 0, and A"y > 0 are real constants.

(@) Find the transfer function of the optimum Wiener filter.

(5) Find and sketch the impulse response of the filter when 7, < 0, 1, > 0, and
t,=0. .

Find the minimum mean-squared error of the filter in Problem 9.2-1.

Work Problem 9.2-1 for colored noise defined by
Run(z) = Wye™ ¥l

where Wy > 01s a real constant.
Work Problem 9.2-2 for the noise defined in Problem 9.2-3.

A random signal X(f) and additive uncorrelated noise N(r} have respective
power spectrums

3
Faxlw) = and  Fyylw) = P

m +at

(a) Find the transfer function of the Wiener filter for the given signal and
noise.
{b) Find the minimum value of the error in predicting X(f +¢,).
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9.2-6.

9.2-7.

9.2-8.

9.2-9.

*9.2-10.

Work Problem 9.2-5 for signal and uncorrelated white noise defined by

) A
Sl =g

Funlw) = A7p/2

~where 4 > 0, W > 0, and .47 > 0 arc real conslants,

A random signal X(¢) and uncorrelated white noise have respeclive power
spectrums

P yxle)) = 2VIPy (Wyed (W} + o)
and
& pxlw) = A f2
Here Pyy is-the average power in X(¢), while Wy and A7y are positive
constants.
(a) Find the transfer function of the Wiener filter for this signal and noise.
(b} What is the minimum mean-squared filler error?

(¢} Evaluate the resull of () for Pyy =2W, Wy = 15radfs, and #4/2 =
0.1 W/Hz. [Hint: Use the known integral (Thomas, 1969, p. 249)

1 r’ (b, ~ byl )dw _ by — azby

o @ g — 2o’ + Be® | 2maya;

- ILh=—
o LT

" where by, by, ag. a;, and a, are constants and A% + a,A + a, has no réots
in the lower half-plane when X = & + jo.}

Work Problem 9.2-7 for the signal with the power spectrum
' & xx(w) = /(W + o)

Put results in terms of the average power Pyy in X(2).

The respective péwcr spectrums of a random signal X(¢) and uncorrelated
noise N(¢) are

Prxw) = (1/20)/(10° + %)
and
S unlw) = @ /(16" + )

(¢} What is the transfer function of the Wiener filter? :
(b What is the minimum mean-squared prediction error? (Hint: Use results
from Problem 9.2-7.)

Generalize the random signal of Problem 9.2-9 by assuming ils power spec-
trum is

& xx(w) = (Wi /2000)/(W§ + o)

where Wy is the signal’s 3-dB bandwidth. Find the minimum mean-squai‘cd
prediction error and plot the result for Wy > 9.5, What does an increase in

"Wy mean in a physical sense?

9.2-11.

A random signal X(#) plus uncorrelated noise N(r), having respecll\e power

. spectrums

9.2-12.

9.2-13.

9.2-14.

9.31.

932,
9.3.3.

9.34.

-

P yxlw) = 2Py Wy (W3 + ')

and
L axlw) = AP WH /(W + o)

is applied to a Wiener Rlter. Here Py and Pyy are the average signal and

noise powers, respectively, while ;. and Wy are positive constans.

(@) Use (9.2-22) and find the ﬁ]lcr s minimum mean-squared Prcdiction error,

(b) Show thatas Pyy — 0o, E[s (Nlmin = Pxy, and that E[e°((]pin — P_n- il
Pyy — 00.

(¢} From a graphical plot of E[¢* (t)],,,m/P,w versus Wy /Wy, dctermlne if
there is a preferred bandwidth ratio when-Pyy /Pyy = 8. Is there a ratio
that should be avoided? Discuss. (Hint; Use the integral given in Problem
9.2-7)

Work Problem 9.2-7 except assume the signal X{r} has a power spectrum

PyydWyew®

F i) = ————=
XA( ) (W§J T wz)z

Use (9.2-20) and give arguments to justify that the Wiener filter emphasizes

those frequencies where the ratio of signal power, to noise power is largest.

A random signal X(¢) has a power densily spectrum

./’”(cu) - recl(w )

where Ay > 0 and Wy > 0 are consiants.

(«) Find the average power Pyy in X(1).

(/) Find the optimum (Wiener) filier’s transfer function when input noise is
independent of X(¢) and white with power density .47/2.

(c) Find the ratio of the minimum mean-squared error 10 the power Pyy.
Evaluate the result for A7y /A% = 16. :

A deterministic signal x(/) = A cos(wys} and white noise with power density
Ap/2 are applied to a one-section lowpass filter with transfer functicn
Hiw) = W/H(W + jw). Here W > 0, A% > 0, ay, and A are all real constants.
What value of W will cause the ratio of output average signal power to
average noise power to be maximum?

Work Problem 9.3-1 if the network consists of two identical one-section filters
in cascade. ’

Work Problem 9.3-1 if x(#) = A cos{wy! + ©), where © is a random variable
uniformly distributed on the interval (0, 2x).

A random signal X(f) having the autocorrelation function
Ryx (1) = Wye Ha¥

and uncorrelated noise with power density 4#y/2 are applied to a lowpass
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filter with transfer function
w
Hlw) = —rm
(@) W + jo
Here W > 0 and Wy > 0 are real constants. .
(a) What value of ¥ will minimize the mean-squared error if the output is to

be an estimate of X(r)?
{b) Calculate the minimum mean-squared error.

*9.3.5. Work Problem 9.3-4 by finding the real constants G> 0 and ¥ > ofor the
filier defined by

GW
W + jw

Hw) =

i
i
at
(8
£
W
i

CHAPTER 10

Some Practicéil_ Applications of the Theory

16.0
INTRODUCTION

The main purpose of this book has been to introduce the reader to the basic

principles necessary to model random signals and noise. The principles werc

broad enough to include the descriptions of waveforms modified by passage

through linear networks. In this chapter we shall apply the basic principles to

a few practical problems that involve random signals, noise, and networks.

Obviously, the list of practical applications is almost limitless and it is neces-

sary to select only a finite few, Although the applications discussed here may

not necessarily serve the main interests of all readers, they do represent impor-
tant applications and do serve to illustrate the use of the book’s theory.

In the following sections we shall describe two practical communication
systems, two control systems (one with application to one of the.communica-
tion systems), an application involving a computer-type signal, and two appli-
cations that relate to radar. In every case we are primarily interested in how
these applications are affected by the presence of random noise. We begin by
considering the common broadcast AM (amplitude modulation) communica-
tion system.

10.1
NOISE IN AN AMPLITUDE MODULATION COMMUNICATION
SYSTEM

Tﬁe comnunication system most [ amiliar to the general pﬁb]ic is probably the
. AM (amplitude modulation) system. In this system the amplitude of a high-
- frequency “carrier” is made to vary (be modulated) as a linear function of the
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378 ‘message waveform, usually derived from music, speech, or other audio source.

' Probability, The carrier frequency assigned to a broadcast station in the United States is
Random Variables, one of the values from 540 to 1600kHz in 10-kHz steps. Each station must B
and Random contain its radiated power to a 10-kHz band centered on its assigned fre- e
Signal Principles quency. i

s4(t)

In this section we shall give a very brief introduction to the AM broadcast
system and illustrate how the noise principles of the preceding chapters can be
used to analyze the system's performance.

AM System and Waveforms

Envelope
detector

Figure [0.I-1 illustrates the basic funcrions that must be present in an AM
system In this figure we include only those functions necessary to the study of
noise performance. A practical system would include many other devices such
as amplificrs, mixers, oscillators, and antennas that do not directly affect our
" performance calculations.
The transmitted AM signal has the form

Sam(®) = [Ag + x(1)] cos[agt + ) (10.1-1)

where Ay > 0, ay, and 6 are conslants, while x{f) represents a message that we
model as a sample function of a random process X(¢). Note that the amplitude
[4g + x{(1)] of the carrier cos(wy? + 8,) is a linear function of x(¢). Now, in
general, one has no control over &; because the turn-on time of a transmitter
is random and the channel itself may introduce a phase angle that is random
(which we presume is absorbed in the value of 8). Thus, we may properly
model 6, as a value of a random variable @, independent of X(r} and uni-
formly distributed on (0, 2x). These considerations allow s (1) to be modeled
as a sample function of a transmitted random process Sau(f) given by -

. ) Sanelt) = [y + X(0)] cosleayt + Og) (10.1:2) E

The transmitted signal arrives at the receiver afier passing through a
channel with voltage gain Gy,. The channel is assumed to add no signal dis-

EORE (0]
|
RECEIVER

Bandpass
filter

v

White guassian noise
power density = #4/2
?L
)
~
Channel voltage
gain =Gy

Functional biock diagram of a broadeast AM system.

tortion but does add zere-mean white gaussian noise of power density 47/2. i S i
A practical channel typically adds delay but this effect does not modify the b i i
noise performance. A receiver bandpass filter passes the received signal sg(f) = | E g 2 |
Gensan(?) with. negligible distortion but has no wider bandwidth than necés- Eé E s |
sary so as Lo not pass excessive noise.t The noise #(¢} at the filter’s output isa | E = i
bandpass noise so the theory of Section 8.6 applies. i by i )
We model waveforms sz(f) and s(r) as sample functions of processes SR(t) ] ! S
and N(¢), respectively. Thus, we may write . : 1 - g
Sg(l) = GepSam(0) : %’s 3
nl4p + X (D] coslay! + Og) (10.1-3) . " =

N() = N(1) cos{ap! + By} — N{f) sin{awgt + Bg) (10.1-4)

tThe required bandwidth W, must be at least twice the spectral extent ¥y of X(f).
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where N.(f) and N,(f) are lowpass noises with average powers N2(r) = N2(f) =
NZ(7) from Section 8.6.

Noise Performance

A good measure of noise performance is the ratio of the average power in the
output signal s5,4(f) of the system to the average power in the output noise 1;(/).
In the AM receiver an envelope detector is used 1o recover the transmitted
message.

The total waveform applied to the envelope detector becomes

Sr() + N(0) = (G Ao + X ()] + Nc(0)] cos{eopt + Bp) — Ni(1) sinewy + So)

= A(f)coslayt + Oy + ¥(1)] (10.1-5)
wheref '
-1 N(!)
Y = tan { Galdo + X1+ Nf(:)] (10.1-6)
AQ) = {(Gepl g + X (O] + NP + N3(0)
AN() N+ N\
A +X(:)1(1 Gt X0 T A 1 (:)12> (10.1-7)

Now only (10.1-7) is of interest because A(f) is the envelope of Sg{r) + N(1).
The detector output is this envelope.
Since ¥, (!)+N2(I) is the mstamaneous envelope o[' the square of N(¢)

- (related to received noise power), while G2, [4y + X(N® is the instanlancous
- envelope of the detector’s input signal (related to received signal power), we

make the assumptlon that input (recewed) signal-to-noise power ratio is large

" s0 that [N'(l) + N2(N)/ Gl Ay + X(0O) is small most of the time. The assump-
¢_tion allows

A 2 Ge[Ag + X(0)] + V() _ (10.1-8)

from (10.1-7). Only when this condition is true do we obtain quality perfor-
mance anyway, so other situations are not usually of interest.

If we model s,4(¢) and ny(¢} in Figure 10.1-1 as sample functions of pro-
cesses Sy(1) and N(1), respectively, then (10.1-8) clearly gives

Sa(t} = Gepldo + X(1)] (10.1-9)

NN =N (10.1-10)

The useful output signal average power, denoted by §,, is that due to X(r) in

_(10.1—9_’). If output average noise power is denoted by, N, then

FTypically, evermodulaiion where [X (1}, the maxitmum mignitude of X(1), exceeds Ay is undesir-
able in AM, so [4y + V(7] > 0 is assumed in (10.1-7).

S, = GLX(D) {10.1-11)
N, = NI = N1 (10.1-12)
and per[‘orma-nce is measured by
- - 2 YN - )
S (i) = G X0 (10.1-13)
NoJam N .

Next, we model the ,bapdgasé filter in Figure 10.1-1 as an ideal filter with
bandwidth W, (rad/§). Noise power readily follows

- o+ (Wi /2) AW
N2 :)=_2J A of ) der = 21 10.1-14
(=5 %_("’mm( 0/2) Tm (1 )
From {10.1-13)} we have
S,,) G X2
Do) Lt B 10.1-15
(N,, am . oW ( )

Equation {10.1-15) is the principal result of this section. Tt describes the per-
formance of the AM system. It is helpful to demonstrate the use of (10.1-15)
by means of an example.

EXAMPLE 10,1-1. Assume an AM system uses an unmodulated carrier of
peak amplitude 4o = 10+/95V and a message of power X2(1) = 500 W, Ils
channel has a gain G, = +/32/100 with a noise densuy ./‘/0/2 =(107%
W/Hz. The receiver uses a filter with bandwidth W, = 2x{10") rad/s. We
compute various signal powers and system performancc

From Problem 10.1-1 the average power in the transmitted carrier is
A2 = 4750 W;_the transmitted power due to message modulation is
Ryy(@)2=X 2(.f)/Z 250 W. Total average lransmlued power is, there-
fore, SO00W.

From (10.1-15) we compute

S\ 2r(32)107%(500) _
(Na)AM_—?_ 00 = 8000 (or 39.03 dB)

-This signal-to-noise ratio represents fairly good performance.

- At the input to the envelope detector the received average signal
power is 5000 W decreased by the loss incurred in passing over the chan-
nel: SOOO(J_/IOO) = 16W. From (10.1-14) and (10.1-12) the input
average noise power is 107%2m(10%)/7 = 210~ W. Input signal-to-
noise ratio becomes 16/2(107%) = 80,000 (or 49.03 dB). This value is
well above the minimum for performance as required for (10.1-15) 1o
be valid; in fact, if the performance of an AM system is salisfactory
then (10.F-15) will always be valid (the reader should justily this fact
~ by examining the ¢fficiency of an AM system—see Problems l(] 1-4 and
10.1-2. )
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10.2
NOISE IN A FREQUENCY MODULATION COMMUNICATION
SYSTEM '

Another communication system with which the reader is familiar is the broad-
cast FM (frequency modulation) system. Here the instantaneous frequency of
a sinusoidal *‘carricr” waveform is made (o vary as a linear function of the
message waveform. If X(¢) is a process representing the message, the FM
transmitted waveform can be represented by the process

Semlt) = A4 cos[wor + @+ ke JX(!) dt] (10.2-1)
where A, @y, and kpy > 0 are constantst and ®; is a random variable inde-
pendent of X{r) and uniformly distributed on (0, 27). In a practical station
wy/2x is the station’s assigned frequency and is one of 100 possible frequencies
from 88.1 to [07.9 MHz. Each station transmits power in a 200-kHz “chan-
nel” centered on its assigned frequency.

. The constant kg in (10.2-1) is the transmitter’s modulation constant. Its
unit'is rad/second per volt when X(#) is a voltage. Transmitted signal band-
width is difficult to compute in FM because FM is a nonlinear modulation. If
kpy is_large enough, this bandwidth can readlly be much Jarger than the
bandwidth of the message process X(1). If X(2) is presumed to be boundcd
it [X(Dax and have a crest factor defined by (Problem 10.1-3)

X O _ [ XDlar
EXYO T X2

the bandwidth of Spm () for the broadband case is approximated by (Peebles,

K= (10.2-2)

- 1976)
Wenm = 280 = 2kpy X (Ol ax ‘
= 2epp Ko X2(0) (10.2-3)
Hc#c. )
B = keagh X () max (10.24)

is the peak frequency deviation that instantaneous frequency can make l'rom
wy (on either side).
Although difficult to prove, the average transmitied waveform power is

2

Prg = EiShu(0} = 5 (10.2:5

which is independent of the modulation.

1M ke is negative, its sign can be absorbed into the definition of X(f). -

FM System and Waveforms

Figure 10.2-1 illustrates the basic functions present in a typical FM system.
The transmitted waveform passes over the channel modeled as a power gain
G2, without distortion or delay (as also assumed in Section 10.1 above). The
receiver’s bandpass filter {BPF) is wide enough to pass G, Sgn(f) with little
distortion but not so wide as to pass excess noise. Its bandwidth is, therefore,
WF}J = 2Ad.

The purpose of the limiter is 10 remove amplitude fluctuations in the
received waveform. The limiter is necessary so that the receiver responds
only to frequency variations (that contain the message) and not to amplitude
variations that are mainly due to noise. The discriminator is the actual demo-
dulation device; it produces a voltage proportional (constant of proportion-
ality Kjp) to instantaeous deviations of the frequency of its input waveform
from a nominal value wy. Ideally, with no noise, the discriminator’s output
signal is KpkgmX(¢). The lowpass filter must pass this waveform with low
distortion so that its output is proportional to X{#)

S4(t) = Kpkpm X(1) (10.2-6)
It should have a bandwidih no wider than the speclral extent of X ((#), denoted
by Wy, so as to not allow excessive output noise.
_If the receiver’s “1npuL is defined as the input to the l:mlter the input
signal’s average power S; is

A2 '
$i=6Ga (10.2-7)
while the output signal power is
S, = EISH(D) = KpkinX(0) (10.2-8)

By modeling the BPF in Figure 10.2-1 as an idezal filter the input noise

‘power is readily found to be

wyFAw - s
N,-=2l J ’1—2‘!dw=i‘ﬁ:f‘-’ (10.2-9)
wy—Aw
Input signal-to-noise power ratio ié
S; #GHA?
=] = (10.2-10)
(Ni)FM 2N b .

from (10.2-7) and (10.2-9).

Computation of output noise power is less straightforward than the pre-
ceding computanons However, its development forms the most mterestmg
problem in computing system performance. -
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. : ) " cHaPTEr 10:

g _ ’ - Care must be exercised in finding output noise power because FM is a non-  Some Practical *
= -

"

linear operation. For relatively Iargc (Si/N)pw and wideband operation  Applications of the
) . {developed above) signal and noise powers may be mdependemly found. Theory
I 1____"‘_' Dol T _Signal power is found assuming noise zero (above). Noise power is found :

2 .
(GK, A) I [/’NN(m wy) +/‘NN,(w+wg)] lo] < Aw (10.2-18)

' assuming the message is zero but carrier is still transmitted. In this latter
?‘ B i case the waveform at the limiter is
= i
sl B G coslwot + @] + N(1)cos(en? + Oo) — N{)sin(ant -+ B)
i i * = A(f) cos[wot + Op + (1)) (10.2-11)
E 5 where the bandpass noise N,(¢) is modeled as in (10. l—4) (see also Section 8.6)
g " and '
[
T % AW = [[G A + N, (:)]2 + Nl(r)l"’2 - (10.2-12)
= NAD) o
E : 1} =tan™" [ s ] 10.2-13
! 0 e N (10.2-13)
EE ! i. For large input signal-to-noise ratio we have [Gapdl 5> |N (f)l and
g& | |Gen Al 3> [N most of the time, 5o (10.2-13) becomes
“ F
a = -
g 2 -1 .r(t) Ns(r) o .
; ELS =t | e 2-14
CLE] O~ tan; [Gd, A] vl (10.2-14)
b } -t ‘2 Equation (10.2-11) is now approximated by '
3 i
! =
5% I -.g A(n) cos[wyt + G + ()] = A(t) cosl:mot +& + N )] (10.2-15)
.y o L
o 4 =1 .
= % L'§G g Because the limiter removes A(f) and the discriminator responds only to
5% : TL £ instanfaneous frequency deviations from ey, the input to the lowpass filter is
54 Y | 88 g
£& 5
35 = Kp \ dN,(1) 6
o E (6" o (10219
= P .
EI ~ E If &y n () is the power spectrum of N,(#} the power spectrum of (10,2-16) is
o
& Kp . ;
s : (ﬁ) 0L 5 () S (102-17)
23 3
2 = However, we may vse (8.6-17) and (8.6-16) to write this power spectrum as
=
=
=]
3
[=]
=
2

FIGURE 10.2-1

oAl

’wherc & y.n(w) is the power spectrum of N;(¢); it is constant at ./Vg/2 over
R 'bands of width 2Ae centered at wy and —eay.

- . Final output noise power results from the action of the lowpass filter on
(16.2-18). We have
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. i 1 Wy K 2
o= 1= o [ () -0 + S+ el

-, \Gap A
Kp " ofA0, A KpA oWy~ :
20| g = 2D 07X 10.2-19
2xGlhAij 753 % e )
Output performance is dclermmcd by ' :
2 4252 Ry
(&) — 3IIGChA AH;{X (!) (10‘2_20)
. . NoJem - AWy
from (10.2-8) and (10.2-19). An alternative form of (10.2-20) is
iz ) () |
2oy 227 (2 (10.2-21)
(N, v KE\Wx/) \Ni/pm

An important observation derives from (10.2-21). Since FM bandwidth is
2Aw, we see that performance increases as the eube of bandwidth relative td
{5;/ N)em. However, (S;/N)gy decreases as the reciprocal of bandwidth from

(10.2- 10) so the net performance increases as the sguare of bandwidth.. By -

s:mply 1ncrcasmg bandwidth af the transmitter, system performance rapldly
increases. There is a limit to this procedure, unfortunately, that occurs when
conditions under which the performance equations were derived are no longer
valid. The Break point, or threshold, occurs approximately where (Si/ Ny
drops below about 10 (or 10dB). For a more detailed discussion of FM
threshold the reader is refered to Peebles (1976). We shall emphasize FM
system performance through an example. )

EXAMPLE 10.2-1. An FM system uses a message with crest factor 3 and
bandwidth Wy/2m=3kHz. The FM modulator’s bandwidth . is
2Aw/2r = 20kHz and the receiver’s input signal-to-noise ratio is 81.
From (10.2-21) (S,/No)gm = 2000 (or 33.01dB). We determine how
much performance can be increased by raising Aw.

From (10.2-10) (S;/N;)py decreases to 10 from 81 if Aw increases
by a factor of 8.1. Next, we again use (10.2-21) but now with
Awf2r = 8.1{10)kHz and (5;/N)gy = 10:

S, ]
== 10) = 131,220
(NO)IM 9( ) ( )

(or 51.18dB). The bandwidth increase of 8.1 times has 1mproved
(S./N,)pm by 65.61 times.

103
NOISE IN A SIMPLE CONTROL SYSTEM

In this section we shall briefly consider the noise response of a simple control
system modeled by the block diagram shown in Figure 10.3-1. The following
section will then illustrate how a very practical network can be analyzed by
applying the results developed here.

Transfer Function

Typical loop behavior in Figure 10.3-1 is to force the feedback signal F to
approximate the command C so that the error C—F is small. The control
loop’s response ® may be conveniently chosen. For example, if R in the
time domain is to be the derivative of the command then H,(w) = 1/jw, the

- transfer function of an mtegralor If R is to approximate € then Hy(w) = 1

- From Figure 10.3-1 it is clear that

Rlw) = H ()[Clw) — Hy(w)R{w)] (10.3-1)
50
. H 1(‘0)
R(w) = C(cu)[—-m-_-—1 T H ) (W):I {10.3-2}
We define the transfer function of the control loop as
Hwy =2 ) (10.3-3)

Clw) 1+ H(w)H(w)

The transfer function (10.3-3) is not always stable. There are combinations of
H\{(w) and Hy(w) that can cause instability. In general, if H) () and Hy{w) are
stable and |H (w)Ha(w)| falls below unity, as a function of w, before the phase
of H)(w)H1(w) becomes —x, and if the phase of Hy(w)H,(w) equals ~x at only
one frequency, the transfer function H{w) is stable. The product H, () H(w) is
called the open-loop transfer function of the control system. Stability is a deep
subJect in control systems, and we shall not develop it further because it
detracts from the simple points to be made here.

Now suppose the command waveform in Figure 10.3-1 is the sum of a
signal S.(f) and noise N {(¢). Because the system is linear its responses to signal
and noise may be computed separately. If &y y (@) is the power spectrum of
N1) then the power spectrum of the response noise Ng(f) is

2
L) = SOy (1034

whenever the network is stable.

Etror i
Cotnenand + Qo) Res
@) @ Hie) . v
= C)—»| H) > Rw}
Fiay Hyler) Hyw)
Feodback ) = o

signal

FIGURE 10.3-1
Block diagram of a simple control system.
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An example serves to illustrate the use of (10.3-4).

EXAMPLE 10.3-1. Let a signal

540 = Au(ye™"
plus white noise of power density 47/2 be applied to the control network
where .

KW,
e} = Wi +jw

Hz(cﬂ) =1

This choice means that we desire the response to equal the command. We

K»l1

find the output signal and the ocutput noise power.

From (10.3-3)

Hiw) = KWW +jwy KW

T+ W/ +He)l (1 KW, 4 e
From pair 15 of Appendix E the inverse transform of H(w) is
h(t) = Ky Wyu(e RO

The response signal becomes

Sx(t) = j:fa(s)sc(r _pyde

u(@ult —

-0

=K, W,AJ E)eél(H-K;)W:—WlE d&e‘”"

- - !
LT =K WlAu(r)e"'V'J e HRIWIE ge
T 0

AWy expl—l(1 + KW, —

=T WIS

" For K, 3 1 50 that (1 + KW, > W this result becomes

Srl(f) = Sc)

The approximation is more accurate as 1 becomes large.
From (10.3-4) the output noise power spectrum is

A oKy W1)*/2
(1 + KW T + o
Output noise power is found using {C-25):

L ey @) =

1
Pyon, = EJ_‘”??NRNR(@) dw

_ oKW -/VoKlwl e
SW+K) . 4 S Tl

S

We observe in passing that this control loop is stable and its transfer
function is equivalent to a simple lowpass filter of gain Kl Hl+K)=1
and 3-dB bandwidth (I + K,)W#, = K, W,. This unity-gain largc-band-

" “width filter resulted from a narrowband (bandwidth W) high gain ﬁlter
(gain K,) inside the loop.

Error Function

The error 0 = C — F.in Figure 10.3-1 is readily found. From :
O(w) = C(w) — F(w) = Clw) — Hy(@)H(©)}Q(w) (10.3-5)

we have

Cw)

%= T Rl

(10.3-6)

Wiener Filter Application

By comparing (10.3-3) with the transfer function of aVWie_ner filter for uncor-
related signal and noise as given by (9.2-20) we see that the Wiener filter can be
implemented as a loop. From (9.2-20)

o

ool = /7 e (1031
Thus - i .
H(w) = Hopf) (10.3-8)
if
Hy(w) = ™" (10.3-9)
Hy(@) = [ up(@} F xx(w)le " .. (10.3-10)

Of course these functions H){w) and H,(w) may not be realizable even
for realizable signal and noise power spectrums. Other choices for H,{e) and
Hy(w) are also possible (Problem 10.3-2).

10.4
NOISE IN A PHASE-LOCKED LOOP

The phase-locked loop (PLL) is a practical system to which the noise theory of
this book can be applied as a good example. The PLL is also an cxample of the
trol system of the preceding section.

Figure 10.4-1 depicts the block diagram of a PLL Broadly, the action of
. thé loop is to force the phase of the output of the voltage-controlled oscillator
"(VCO) to closely follow the phase of the input signal. This action leads to one
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of the most important uses of the PLL, that of demodulating a frequency-
modulated signal. If there is no input noise N;(f) and the VCO's phase follows
that of the inpuwt FM signal, then the VCO's signal has the same FM as that
transmitted. Since the VCO is just a frequency modulator, its input waveform
(loop’s output waveform) has to be propertional to the original message used
at the transmitter. When input noise is present there is noise on the output
signal. In this scction we shall develop (his output noise power and find the
available output signal-to-noise power ratio. E

Phase Detector

Consider first the phase detector. Although there are many forms of phase
detector [Blanchard (1976) and Klapper et al. {(1972)] they all provide an
output response proportional to the difference between the phases of the
two input-waveforms for smali difference phases. Thus :

e, (8 = K [6,(0) - 6:(1)] (l(j,4-])

if the two input waveform’s phases are defined as 6,(f) and 6,(2). The coristant
K, is the phase detector’s sensitivity constant; its unit is volts per radian for
¢;(1) a voltage. In some phase detectors the response is also proportional to
the amplitudes of the two input waveforms. Others depend only on one input

amplitude because the other is large enough to saturate the device giviiig a -

type of limiting. Another type allows both inputs to limit in the detector and
the output is not a function of either waveform’s level. We shall assume either
this last form of detector or that an actual limiter is in the path of the signal’s
input when a detector is used with limiting in the feedback path’s input. Thus
our phase detector is described by (10.4-1). '

Loop Transfer Function

Since the VCO-in Figure 104-1 acts like a {requency modulator for the
“message” sg(f), its output can be written as

VCO output = Ay coslewy! + 8 -+ (0]

=dy cos[mot + 8y -+ ky JSR(‘) df]

= Ay cosfBa(0)] (10.4-2)
where &y, is the VCO’s modulation constant, BT
85(f) = wot + By + ey JsR(i) dt _(i_g';;;-j)
and | :
0 =ky jsﬂ(r) dr (i0.4-4)

ik

The other phase detector input signal, from Figure 10.4-1, is the input
waveform. If we define its phase as :

81(1) = wot + 65 + 6,(1)

(10.4-5)
then the phase detector’s response (10.4-1) becomes
e() = K;.[cuor + 0 F0.(1) —ewyt — 6y — Ky JSR(E) dr]
=Kp [9.-(:) —ky J sg(1) dr] {10.4-6)
' Nexd, if we define Fourier transforms as follows |
e(l) © Epfw) (104-7)
1) < Oi(w) {10.4-8)
sg{f) & Srlw) (10.4-9)
we may write (10.4-6) as
' kyS '
Ej(w) = Kp[e.-(w) - —”j a’i(‘”)] (10.4-10)
From Figure 10.4-1
hy
Eyfw) = 22 10.4:11)

Hi(w)

On -equating (10.4-10) and {10.4-11) we find the PLL’s transfer function,
denoted by Hr(w), to be B

Srlw) Kp jowH(w) jeo
H T(w) = = - i L L= '!—— Hlw -
| o) ot KekpHy (@) oy ) (10:412)
where we also definef
. Kp -
- ” Eror signal -
Input signal . !
A c0s [worflg:+8,(1)] S Al Filter ~,. Ouiput signal
= A, cos [6,()] detector Hy(es) . B
ki
Feedback signal Voltage
Apcos [wol +85+8,()] Tled
=Apcos(B,{)] oscillater

FIGURE 10.4-1
Block diagram of 2 phase-locked loop (PLL).

1'11} many texts H{w) is called the PLL transfer function but the loop’s output is defined at a different
peint. (Where would it be?) o
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Kpky Hy(w)

H@ = o Kooy Hy (@)

{10.4-13)

" It should be noted that the above definition of transfer functipn relates the
output signaf to the input signal’s phase modilation 8t) according to

Sp(@) = Hr{0)O{w) (1.0.'4-"14)-

or .
o
sa)= [ et 0008 (10.4-15)
where hr(f) denotes the inverse transform of Hy(w)
' h(f) © Hr(@) (10.4-16)

;-The above developments show, in effect, that Figure 10.4-2 is an equiva-
lent form for the loop of Figure 10.4-1.

Loop Noise Performance

‘We shall appiy the preceding results to the case where the input to the PLL is
the sum of an FM signal plus bandpass noise N;{f) modeled as

Ni() = N (1) cos(wpt) — N(£) sinfwyl) {10.4-17)
“Phase modulation N Cutput waveform
of mpu; iv(::;\.ret'cu-m fz‘\ Koty ;: ({ 2}
8,(w) -
Phase modulation kolio
of feedback waveform
Oyir)
Voltage-controlled
- vie) ascillator
{a}
Phase-locked loop
(i
s M) =jolitell, > 0
, p
R

FIGURE 10.4-2 . :

(@) Equivalent block diagram of the linear PLL of Figure 10.4-1, and (b) the trans- .-

fer function equivalent of the loop in (a).

P

.

vaysg, S

o

The representation (10.4-17) follows developments of Section 8.6 where N,(f)
and N,(1) arc lowpass random processes having the properties defined in
(8.6-7) through (8.6-19). The actual input to the PLL is, therefore,

A,-cOs[wot + 8+ kpy JX (6] dr] + N{0) cos(ewyf) — Ns(i) sin{wpf) (10.4-18)

" where kg is the FM modulator’s constant, X(r) is the message process, and
A, wy, and 8y are the input FM signal’s peak amplitude, frequency, and phase,
respectively.

The exact analysis of tle:PLL’s response to the waveform of (104-18) is
very involved. However, it can be shown that the waveform of (10.4-1 8) can be
put in the form (Problem 10.4-1) :

R(7) coslwnt + 6 + Bpm(1) + On(1)] (10.4-19)

where
Orm() = kpy JX (N dr (10.4-20)
and 6y(?) is a phase angle caused by noise. For large-input signal-to-noise
ratio (4%/2)/E[N?(1)] and input noise NAf) broadband relative to the FM
signal, the autocorrelation function of 8y(f) is approximately 1/4? times the
autocorrelation function of N,(1) (Problem 10.4-2). This fact means that
within a reasonable approximation, 8y(¢} can be replaced by the equivalent
angle N (1}/A;. S
With the above noise equivalence used, the input phase modulation to the
PLL from (10.4-19) is .

0{0) = Brpa() + Op(t)
NA)
= Opm(t) +T
The component 8y (¢} is due to the signal. If X{/) is a random process with
power spectrum & yy (), we use (10.4-20) in (10.4-21) and find that the power
spectrum of 6,(1) is -

(10.4-21)

kS xx(w)  Fyn(w)
y@,@,(m): FM w,Z\’X( ) N;{Nz,(

After using the PLL's transfer function (10.4-12), the output waveform’s
power spectrum becomes

L susn (@) = Lo () Hr(w)?

(10.4-22)

k 2 w?
= 7 @) B2) O+ F g IH@F (10423
v Ak,
.The first right-side term in (10.4-23) is due to the desired message while the
nd is due to noise. Loop design in typically chosen so that |H(w)? = 1 for

- all frequencies of interest in % yy(w). In fact, if the message is to be preserved
- “with_very small distortion, the bandwidth of the transfer function Hw) may
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be significantly larger than the frequencies of interest in & yy(w). Thus, if Wy
is the spectral extent of the message X (1) then the power in the output signal
component is :

1§ Fin ) 2, k) 1 [
—_— ¢ oM p e 2R ¥
52| P () i do~ (1) 5[ Faerde
A —
=(ﬂ) X0 o : . {10.4-24)
~ \ky :

In some loops (sec example to follow) |H(w)? does not decrease rapidly
enough to remove high-frequency noise due to the factor o in W |H (@) in

- (10.4-23). In these cases it may be necessary to follow the loop with a separale

filter Lo better remove noise spectral components at frequencies [w] > Wy. As
long as cither the loop or a separate filler removes these components, the
overall output noise power is approximately

1 (W o
Nomoe| | Puno)Fr 1@ do

—Wy
./Iro W 2 V 'Afﬂ Wi’ y
o do = 10:4-25
- 2m A2k3, J_wxw ¢ 3w Ak}, ( o )

Finally, we determine output signal-to-noise power ratio from (10.4-25)
and (10.4-24). As in Section 10.2, we let 4 be the peak amplitude of the
transmitted FM signal and let Gy, be the gain of the channel, so that

A= AGy (10.4—26)
Thus, _ "
2 422 VI T
& _ SJTGchA "'FP;‘[X (1) (]0‘4_27)
NoJem _./VOWX o

On comparing (10.4-27) with (10.2-20) we find that both the discriminator‘rand
PLL forms of FM receiver have the same performance when the received
(input) signal-to-noise ratio is large. -

EXAMPLE 10.4-1. As an example of a practical PLL’s transfer function let
the loop filter be a simple lowpass function with 3-dB bandwidth: Wy,

where
Wy
H =
_ =
The function H{w), from (10.4-13), becomes
1

H(w) =

w 2 . w
- (z;) *ﬁf(w—,,)

&=

(ST
i

—al

20 log |H (w)), 4B

-1z}

.1 4.0

FIGURE 10.4-3
if_l(w)[ for the loop of Example 10.4-1.

where the quantities defined by
o, = (Kpky Wp)'*
1wy

2\ Kpky

are callf:d the natural frequency and damping factor, respectively, of the
loop. Figure 10.4-3 illustrates how |H(w)| behaves with w/w, for ¢ as a
parameter. The curve for £ = 1/+/2 is most flat in the sense that the
largest number of derivatives of |H(w)] are zero at w = 0. )
For ¢ = 1/+/2 and w, = Wy, the signal’s spectral extent, we have
W
Wi+ ot
The more exact power in the noise term of (10.4-23) becomes
N W J°° oido N Wi

° T 2mANG | Wi et 22443

after using (C-38). On comparing this result with (10.4-25) we see the

B noisc in the loop output is 37/2+/2 22 3.33 times that of a broadband
g loap followed by an abrupt-cutoff filter of bandwidth Wy.

[H(w)* =
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" T, according to

10.5
CHARACTERISTICS OF RANDOM COMPUTER-TYPE
WAYEFORM

As another example of the practical application of the theory of this book we
examine a waveform not unlike those encountered in binary computers. The

* waveform is shown in Figure 10.5-1; it consists of a sequence of rcclangular

pulses of durations T}, having amplitudes that randomly may equal Aor 24

Amplitudes A and —A are assumed to occur with equal probability; and ;the
amplitude of any pulse interval is assumed to be statistically independent of
the amphtudes of all other intervals. The random process from which this type
of waveform is modeled as a sample function is called a semirandom binary
process (see also Problem 6.1-4); in the remainder of this section we shall
examine the description, power spectrum, and autocorrelation function of
this process.

Process Descnptwn

The semirandom bmafy proccss X (r) can be described by

X(r)_ Z Ay recl[ ;‘T] 10.5-1)

k=—02

where {4,] is a set of statistically independent random variables and rect (-) is

" defined by (E-2). The A, satisfy

El4;]=0 k=0,£1,%2,... (10.5-2)
2 =
: HAa) =14 =T (10.5-3)
0 k#m

. The truncated version of X (1) is needed in calculating power spectrum. We
“Afuncate to a lime interval 27T centered on = ¢ that is a discrete multiple of

2T =02K+ 1)1, (10.5-4)
(1)

Ty

1 1 ]
—S5Ty/2 o % 32 i T2 ¢
: A e

FIGURE 10.5-1
Typical waveform of a scmlrandom binary random process.

s

Thus, the truncated process X(2) is

; 4
0= 4 rect[’ ”:T”] (10.5-5)

k=—K b

‘Power Spectrum

We compute the power spectrum 57 yy(w) of X(l) by use of (7 1-11). The -

Fourier transform of "X7(1);-denoted by Xo(w), is

Xr(w) =T, Z AkSa(wa/2)e‘ﬂ“"T” :
T

= T3Sa(wT,/2) Z Ax ¢.ff""”"b (10.5-6)
k=—K

from (10.5-5) and pair 5 of Table E-1. Next,

E[IX7r(@)l'] _ TySa’(0T3/2) <&

- ~ill-riarT
27 CE+1) kZK";KE[A*A e

= A2T,Sa%(wT/2). : (10.5-7

Now because (10.5-7) does not depend on K, and therefore not on T through
(10.5-4), we have

yxx(w) = lim

The bandwidth of this power spectrum at its -—3-dB point is
0.4429(25/ T;) = 0.4429¢,. )

E[|X (@) _
m“—;-(?lu = A2T,Sa*(wT,/2) (10.5-8)

Autocorrelation Function ' ' P

It follows from (10.5-1) through (10.5-3) that E[X()X(t + 1)] is zero unicss
Fl-?th fl‘ and ¢+ 7 fall in the same pulse interval, The autocorrelation function is,
erefore,

Ryx(t, t+ 1) = EIX(OX(t + 1))

A2 k- )Tb<(randt+r)<(k+2)Tb
= (10.5-9)
0 elsewhere

Thus, the process X(f) is not even wide-sense stationary since (IO 5 -9) depends
on absqutc time {.

. The time-averaged autocorrelation function is readlly obtamed by inverse

- "-Fourter transforming (10.5-8) according to (7.2-9). After using pair 7 of Table

. B+l we obtain
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I 2 fT
A1) = lim — R . = A" — .5-

 Ryx(D) : }ﬂZTLT yp{t 1+ T)dt=A m(Tb) (10.5-10)
The direct computation of Ryy(z) by lime-averaging Ryy(s. £+ ) is'possiblc,
bul a bit more complicated than the inverse transform procedure used here

(see Thomas, 1969, p. 107).

10.6 '
ENVELOPE AND PHASE OF A SINUSOIDAL SIGNAL PLUS
NOISE A

Many practical problems involve the probability density function of the envel-
ope of the sum of a sinuosidal signal and noise. A radar, or example, may be
interested in determining if a short segment (pulse) of a sinusoidal waveform is
being received at some time or if only noise is being received. This problein is
one of detection based on observing the reccived waveform’s envelope; if the
envelope is large enough (because of the signal’s presence) the radar decides
both the signal and the noise are present. We examine radar detection further
in Section 10.7. .

In this section we discuss probability densities involved in describing the
envelope and phase of the sum of the sirusoidal signal and noise.

Waveforms

Let the signal be

s(7) = Agcos(wyt + 6g) = Ao cos(B) coslent) — Ay sin(8y) sin(wol) (10.6-1)

where Ag, wy, and 6, are constants. We assume the noise n{f) to be added to
5(¢) is a sample function of a zero-mcan, wide-sense stationary gaussian band-
pass process N(f) with power EIN ()] = &*. From (8.6-2), the sum can be
written as :

s(t) + N(t) = [Ag cos(B) + X (D] cos{wyt) — [Ag sin(@o) + Y (1) sineo?)

= R(t) cosfwo! + O)] (10.6-2)

where X(f) and Y(zt) are zero-mean, gaussian, lowpass processes having the
same powers E[X“()] = E[Y* ) = E[NA (1] = g*. Other properties of X(1)
and Y(f) are given in (8.6-7) through (8.6-19). The envelope and phiase of
the sum are R{f) and ©(f), respectively. We may think of R{f) and ©(f) as
transformations of X{(¢) and ¥'(f) as follows: : o

{16.6-3a)

R=Ty(X, Y) = ([Ag cos(@0) + XT* + [osin@o) + YI'}/*
_ 1| Aosingép) + Y i
& =T(X,Y)=tan [———Aocos T X] {10.6-35)

R
el

Inverse transformations are:

X = Ty (R, ©) = Reos(0) — Ay cos(6y) (10.6-4q)
Y = T7 (R, ©) = Rsin(©) — 4p sin(6y) (10.6-48)

The functional dfzpen.dence on ¢ has been suppressed in writing (10.6-3) and
(10.6-4) wul} the implied understanding that the quantities X, ¥, R, and © are
random variables defined from the respective processes at time ¢,

Probability Density of the Envelope

From '(8.6-15), processes X(f) and ¥(¢} are statistically independent (at the
same time t)_ because they are gaussian and uncorrelated. The joint density of
random variables X and Y is, therefore, '

o) :
: frrlxp) = o - (10.6-5)
From (5.4-6) the jacobian of the transformations (10.6-4) is readily found

Eg quRéWe next apply (5.4-8) to obtain the joint density of random variables
an. : : : ’ )

.

u(ryr ape Lot s
cxp[-—rﬁ [? — 2rdq cos(d — 6) + AF)

)=
fR.e(" ) "

The ‘dcnsity of R alone is oblained by integrating over all valués of @ .

2
Srl) = _L Jroln 8)do

1 2 N
— u(r)r e—(r’+,4,§)/za~ i " & cos(B—-8y 1o’ do
0'2 . 2w i}

7(10.6-7)

The integral is known to equal the modified Bessel function of order zero
' T B

I — | fees(®)

| W(B) ML &P g (10.6-8)

Thus, '

u(r) FAQN ity atiog?
R ) e
which is kpown as the Rice probability density, &
Equ'attop _(10.6-9) is our principal result; it is the density of the enﬁelope
R(#} at any time f. Figure 10.6-1 illustrates the behavior of (10.6-9). For
Ao[cf =0, the case of no signal, the density is Rayleigh. For 4,/e large the
density becomes gaussian. To show this last fact we uote that :

(10.6-9)

(B) =~ i

7R Bx»1

(10.6-10)

" (10.6-6) '
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rlo

FIGURE 10.6-1 :
Probability densities of the cnvelope of a sinusoidal signal (amplitude Ap) plus noise
{power o?) for various ratios Ay/o.

so for rdgfc” large

. A")z] (10.6-11)

Sy ue) s exp[ >

This“function peaks for r near 4g, and since Ag > o, the most significant
values of r exist only near A4,. Therefore, with r = 4g (10.6-11) becomes

olr—Aa) 20

frl) (10.6-12)

2mro” .

which is a gaussian function with mean Ay and variance a’.
Although difficult to derive, the mean and variance of R as found from
(10.6-9) are known (Appendix FJ.

Probability Density of Phase

The density of the phase @ of (10 6-2) derives by integrating (10.6-6) over all
values of R. We shall leave the detalled ‘steps for the reader as an exercise
(Problem 10.6-13. The procedure is to first complete the square in r_in the
exponent, and, after a suitable variable change, integrate the sum® “of two
terms. The result becomes (Middleton, 1960, p. 417) .

&
&2 |
1F i - 1
1 Ao =0

— e 7 NN = 1
0 k4 . T

;]

&=0,=3ni4
FIGURE 10.6-2

Probabl[lty density function of the phase ol‘ the sum of a sinusoidal signal and gaus-
sian noise. Curves are plotted for a signal phase of 8, = 3n/4.

Tol®) = (1/2m) exp(—A3/26%)
Agcos(@—8y) - | —Aa sin®(90 — )
A o 0]
F[Ao cos(f — 60)]

o

(10.6-13)

where the function F(-) is given by (B-3). Figure 10.6-2 illusirates the behavior
of fo(6) for various values of 4y/o when 8, = 3n/4.

For noise only, which is the case of 4g/o = 0, Figure 10.6-2 shows that the
density of © is uniform on (0,2n). As 4y/c becomes large the density
approaches an impulse function located at the signal’s phase (at 8 = 6y). Thus,

JJim_ /(0] = 56— 60) (10.6-14)
(Problem 10.6-2). .

10.7 -
RADAR DETECTION USING A SINGLE OBSERVATION

Radar} can be used to detect lhe presence (and distance) of a nearby object
(called the radar rarger). A representative problem might be to detect the

_pregence of an aircraft approaching an airport. Here the airpoit’s radar radi-

= “-:tFor 2 general introduction to radar see Pecbles (1998).
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ates a pulse of radio frequency (RF) energy. The pulse propagates outward
until it strikes the target (aircraft), whereupon some of the encrgy is reflected
back toward the radar. The target’s presence can be detected at the radar
simply by detecting the presence of the reflected RF pulse. Once the received
pulse is detected the dclay between the time of the radiated pulse and the
received pulse is proportional to the target’s distance from the radar. After
a suflficient time interval (called the puise repetition frequency, or PRF, inter-
val, chosen for the most distant detection of interest) the radar transmils
another RF pulse and the entire “detection™ process is repeated. )

A straightforward implementation within the radar receiver to achicve
detection is depicted in Figure 10.7-1. During any PRF interval, noise is
always being received (mainly due to the radar’s own self-generated noise).
A reflected pulse is received with this noise only when a target is present. The
envelope detector produces an output H(f) (hat is some monotonic function
2(-) of the envelope R(f) of the received signal-plus-noise waveform. The first-
order probability density function of R(f) was developed in the preceding
Section 10.6. On the average R(7), and therefore W(f}, with a target prescnt
will be larger than R(f) when only noise is being received. A suitable detection
logic compares W(t) to a threshold Wr; if W(f) > Wr the receiver decides that
a target is present; if W(f) < W it assumes only noise is being received: These
tesis amount to determining when D > 0 in Figure 10.7-1; when D >0 a
target is declared to be present. ‘ e

On the average the detection logic is valid. On any one PRF interval,
however, it is possible for-the receiver to make mistakes. For example, il no
target is truly present it may occur that noise conld become large enough at
some time to make W(f) exceed Wy and cause a false detection; this type of
detection is called a fafse alarm. The probability of a false alarm, denoted by
Pfas is )

[+
P = j Solw) diw (10.7-1)
Wr ) .

where fy(w) is the probability density of W(f) given that there is ro target
present, Generally, a radar wants £, to be small. .
Another type of error occurs when a target is actually present but noise is
such as to cancel its effect during the signal’s duration and force W(f) < Wr.
The radar usually is designed such that the probability of this event, called the

Received RF pulse
plus noise ~ —— Ed':::?npf
{Envclope = R) )
W=g(R)

“Threshold

FIGURE 10.7-1
Simple radar detection network.

probability of a miss, is small; it equals one minus the detection _prob.:.ibilily,
denoted by Py, given by : :

Pd=j fiw)dw _ (10.7-2)
1wy . ;

Here f1(w) is the probability density of W(r) when a target is preserit.

In most radars P; and Py, are parameters of greatest importance. Wy is
usually chosen to give a prescribed value of Pp. P, then depends on the
amplitude of the target’s returned signal. In this section we shall develop
expressions for Py and P; when the radar makes detection decisions based
on a signal observation (uses only one PRF interval). Our results can be
extended to multiple observations, but the details are complicated and we
only_rcfer the reader to the literature (Difranco and Rubin, 1968). -

False Alarm Probability and Threshold

When there is no target only noise is present at the. input to the envelope
detector. From (10.6-9) the density of the envelope of the noise is

fe =" e 073

where ¢ is the power in the input noise. Becanse the detector characteristic

g(R) is assumed monotonic, there is an equivalent threshold Ry on R that is
related to Wy by :

Wy = g(Ry) | 1079
Rr=g"\(Wp o (10.7-5)

where £71¢) is the inverse function of g(-). We may then compute P, from the
envelope as follows:

Py = J ﬁ,(u) dw = Jwﬁa(") dr
Wwr - Ry

ot _
=J L& =B (10.7-6)
R,.a o
Thus, . -
i 12 .
Ry = {202 In (P—) } (10.7-7)
fa -
and

20t in{ L ] R
Wr=g [ ln(—)] 10.7-8
", B o)
where In(-) represents the natural logarithm. " -

l_-b‘qualion (10.7-8) gives the threshold Wy that is to be used to realize a
specified value of Py, when the noise power level is o at the detector’s input.

403

CHAPTER 10:

Some Practical
Applicalions of the
Theory




410
i Probability,

‘Random Variables,

. and Random
* Signal Principles

10.4-3.

10.4-4.

10.5-1.

*10.6-1.

*10.6-2.

10.6-3.

10.7-1.

if X(¢) is a zero-mean, wide-sense stationary gaussian messagc of power
o'} (Hine: Make use of characlcrlsuc Tunctions.)

In Example 10.4-1 let { = mslcad of 1/+/2 and recompute the loop’s output
noise power N,. Comparc the resull with that of (10.4-25). Is there any
improvement over the case where ¢ = 1/+/2? (Hin: Make use of the integral
given in Problem 9.2-7.)

Assume white noise is added 1o an FM signal and the sum is applied to a
phase-locked loop for message recovery, Thus, ¥y, (@) = A7 in (10 4-23)
(@) If

Wy (W, + jw}
Wa(W + jw)(W3 1 je)

where W, W,, and Wy are posilive constants, find an expression for the
power contained in the noisc part of (10.4-23).
{b) Assume the loop is designed so that W5 = 2wy, Wi =ay/5, and W, =
" wa/5K, where K = Kpky and ax is called the loop’s crossover frequency
(rad/s); it is the frequency where |KH(w)/jw| = 1. Evaluate the result
found in part (@) when ay equals the message’s spectral extent Wy,
Il K is very large, to what does the evaluation of part (b) approach? [Hiur:
Use the known integral

Hyfw) =

{c

e

- Lot J°° (bow® — by6l + by)dw
17 2] o gl 4 (@ — 209a7) + (& — 2a,a3)e? + ik
_ by — axby — (mm by fan)
T 2ay(agm — aym)

where ay, 7;, az-,al.bo.b., and b; are constants and aghd + a )t +ah +
a3 has no roots in the lower half-plane when A = @ + jo (Thomas, 1969,
p- 249).]

A sample function of a semirandom binary process is to be passed through a
lowpass filter with transfer function H{w) = W, /(¥ + jo) where W is its 3-
dB bandwidth. If the rise and fall times of the pulses in the output waveform
are not Lo exceed 5% of the pulse duration T}, what minimum value of W, is
required? (Hint: Assume the input wavelform has been at level —A for many
pulse intervals and suddenly makes a transition to level A; determine rise time
as that required for the output 1o rise from —4 to 0.94.)

Carry out the steps suggested in the text and show that (10.6-13) derives from
(10.6-6).

i Agfo — 00 in {10.6-13) show that (10.6-14} is true.

A sinusoidal signal plus gaussian bandpass noise are applicd to an envelope
detector havmg an output R defined by (10.6-9). If the input signal-to-noise
power ratio is Ao/(Zo ) =2, find the ratio ol the mean of R to . Also find the
variance of R relative o 02 (Hinr: Use results from Appendix F.)

A tadar receiver usés a lingar envelope detecior where W = R. Find an expres-
sion for false alarm probability Py, in terms of Wr, the threshold voltage level.

10.7-2.

10.7-3.

10.74.

10.7-5.

*10.7-6.

*10.7-7.

10.7-8.

10.7-9,

10.7-10.

Work Problem 10.7-1 for a square-law detector defined by W = KR, where
K > {is a constant.

A radar uses 2 linear envelope detector defined by W = R/4. The threshold
voltage is W = 0.7 volt. Measurements show that Py, = 4(1077). What is the
noisc power at the envelope detector’s input?

Work Problem 10.7-3 for a square-law detector with characteristic W = R*/4,

Faisc alarm probability is 107% in a radar that must have a detection prob-
ability of 0.9901. When target is present what signal-to-noise power ratio.is
necessary at the envelope detector’s input? {Hins: Assume (10.7-1 1) applies.]

A radar recewer as shown in Figure 10.7-1 uses a square—law delector defined
by W = KR® where X > 0is a constant. Find an expression for the probabil-
ity density of W.

A radar receiver uses a binary detection logic based on observing N PRF
intervals (multiple observations). If the observations in the N intervals are
statistically independent and the delection and false alarm probabilitics on any
one observation are Py and Py, respectively, find P; and Py, that correspond
to an overall detection logic based on obtaining at least n detections in N
intervals.

Ina sirnplc radar that uses a single observation for detection, the threshold

voltage is Wy =0.92V. The rms noise voltage at the detcclors input is

o =0.33V and the detector’s characteristic is defined by W = R%/3. When a

target is present P; = 0.9015.

(z) Find P

(&) What is the target’s signal-to-noise ratio at thc detector's input when
expressed in dB?

A radar’s envelope detector has the characteristic g(R) = 0.4R>. False alarm

probabﬂl '_Y is 107 for a single pulse when the noise power at the detector's

input is o~ = 0.01 W.

{a) What is the threshold voltage W3?

{6) What peak signal amplitude A is needed at the detector’s input if the
detection probability is to be 0.998 on one pulse?

A radar uses a square—law envelope detector for which g{r) =04R%. It is
known that P, = 10~ when the input noise power is o° = 0.03W. When
signal is present, P; = 0.92. '

(@) Find the threshold voltage W

{6) What is Ag, the received signal’s peak amplitude?
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10.2-3.

10.24.

In an FM system the transmitted signal has 10kW of average power and a

bandwidth of approximately 150kHz when a random message with a crest

factor of 4 is used (Problem 10. l-3) Thc signal passes over a channel for

which G, = 107¢ and Hof2= 50107 %y/3.

{a) Find the signal and noise average powers and the signal- to-nonse ratio at
the receiver’s input.

(B) What is the message's spectral extent if the cutput signal-to-noise power
ratio of the receiver is found to be 25,0007

A random message has spectral exient Wy = #(10%) rad[s, a crest fdotor of

4.2, and average power of X2(f) = 0.02W. The message is transmitted over

" an FM system for which kpy = 1.06{(10% rad/s per volt. At the receiver

10.2-5.

S/ Ndew =

In an FM system Aw = 8n(10%) rad/s, (5:/NJpy =
when the message has a crest factor of 3.2 and A7) = =10"'

10. Find: {a) Aw, and (&) (S,/N,)pu-

14 and (S, s ,,//N,,)FM = 4200
W/Hz.

" (@) Find Wy.

10.2-6.

(b) What is the peak voltage of the FM signal at the input to the receiver?
(¢} Isthe system operating above threshold?

An FM SIgnal of peak amplxtude 0. 1V at the input to an FM demodulator

- results in an input signal-to-noise power ratio of 20. If Aw= :r(lO Yradfs in

10.3-1.

1032

10.3-3.

the FM signal and the effective transmitted sxgnal voltage is 4 = 2kV, find: (a)

G, and (b) A7. If the transmitted message is an audio signal for which
X () |max =14V, Wy _rr(104)radfs, and K, =3, find: (&) (S,,/N,)m and
(d) LIoYT :

Lel H\(w) = K, W, f(W, + jo) and Hy(w) == 1 /jw in (10.3-3) where K, > 0 and

W, > 0 are constants.

(a) Are there any values of K, andfor W that will make the loop of Figure
10.3-1 unstable?

&) If W, =200and X; =40 ﬁnd the [oop's output noise power if white noise
_of power densxty .4’0/2 10~ W/Hz is applied at the input. (Hrm' Use
thc integra] given in Problem 9.2-7.)

Show that the transfer function of the control system of Figure 10.3-1 is the
same as the Wiener filter of (9.2-20) if

- 2

“and

Hylw) = e

A signal and white noise of power density A7/2= 1072 are applied to the

_input of a simple linear control system for which

=i oy
(W) +je)(Wy -+ jeo)
Hiw) =1

Hiw)=

Here K, Wy, and ¥, are positive constants.

. +10.4-1.

*10.4-2.

(a) Find an expression for the noise power at the loop’s output. (Hr'nf: Usc
results of Problem 9.2-7.)

{) Evaluate the result found in {a) for K=10, Hf =35, and W5 =23,

Show that the sum of an FM waveform plus noise as given by (10.4-18) can be
written in the form
R(1} cos[wof + 8y + Bppa () + Bnl(0)]

where

V7 B = ke Jx(f)df
and

R(D) = ({NAD + A;cosl8y + O (0IF + N + Ay sinlfy + T (1)

Bu(t) = um-l[ N{() cos[8y -+ Bpu()] — N (1) sinfdy + Gpm ()] ]
LA A; + N(t)cos[By + Bpm (0] + N, () sinffy + B ()]

Assume the bandpass noise N,(¢) in Problem 10.4-1 is wide-sensc stationary
and gaussian and note that if |A;| 3> [N.(9)| and |4} 3> N, (D most of the time,
then

=~ M)
A;

r()

Sm[f?o +0ru(N

(@) Show that the autocorrefation function of the proceﬁs @u(1), for which
x(6) is a sample function, is

5T
Renea'(f’ (+1)= —I—RNN (t)E[COSIkFM J X de ]

1 v
+— RNN(T)E[Slﬂ{kFM J X&)y dE }

AZ
where Ry y (7) and Ry y(r} are the correlation funclions of N () and
N1, and the expectations are with respect to the message process X{¢)
assumed statistically independent of the nmses (Him: Use the results of
Section 8.6.) o
(b) Il noises N(0) and N, (r) are broadband relative to the FM signal, justily
that

I
Ry ot 1+ )= A_RN N,(l’)

Rc—)-. 0,(7)

() If the message process varies slowly enough for values of ¢ that are
important to Ry v (7) such that

©
kem J X(E) dE = kp X (1)t
L .
is valid, show that the expression of parl (a) reduces to -~

| —obkiyt? .
Re,e, (¢ + T) a2 /T exp [“—XZA Ry (1)
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+ A simple control system.

« A phase-locked loop.

+ A computer-type waveform.

* The envelope and phase behavior of the sum of a smLsondal (desired) signal
and {undesired) noise.

* A simple example of delection in a radar system.

PROBLEMS

10.1-1.

10.1-2.

10.1-3.

10.14.

Show that {a) the time-averaged autocorrelation function of S,u(0), as given

by (10.1-2) is

Ram(E@) =3 1[G + Ryy (D)l cosiewy)

il X(r) is a zero-mean process, and (b) the power spectrum is

2
aale) = L0160 — o) + 80+ an)]
+ L pxlw — wo) + Lyl + wy)]

where & yy(w) is the power spectrum of X(/).

Define transmitter efficiency 54y in an amplitude modulation comnunication
system as the ratio of transmitted power due to the message to the total power.
For-a zero-mean stationary random message show that

Rix(0) J @)

A+ Ry (0)

namM =

_ __Xo_
2m5+[ Prrlydo AT XHD)
—o0

where Ryy(7) and Fyy(w) are the autocorrelation function and power spec-
trum, respectively, of the message X(r).

Define crest factor K., for a zero-mean, bounded, random signal by

K2 = X/ X0

Il no evermeodulation is to occur, such that | X{f)|max < Ag in the transmitted

signal of an amplitude modulation system, show that the transmitter efficiency
(Problem 10.1-2) is

1
MMETIRE

What is the maximum efficiency for a message X{f) = A, cos(w, !+ ©,),
where 4,, and @, are constants while ®,, is a randem variable uniform on
(0, 27)?

Use (10.1-3), (10.1-4), and (10.1-14) to show that the inpul signal-to-naiseA

power ratio at the envelope detector of Figure 10.1-1 is

10.1-5.

10.1-6.

. efﬁcxency i Nay =

10.1-7.

10.2-1.

10.2-2.

Ao Wee

NiJ am N_Z(S

Use this result to show that (10.1-15) can be written in the form-

Do)
N, AM_ lan Nl' AM

where nap is defined in Problem 10.1-2.

In an AM broadcast system the 1otal average transmitted power is 1kW. The
channel gam is Gv'c = 3/2(107 3) Average noise power at the envelope defec-
tor’s input is 107> W and the output signal-to-noise power ratio of the receiver
is 180 (or 22.55dB).

{a) What is the average signal power at the input to the envelope detector?
() find (Si/ Ni)am-

(¢) What is the transmitter’s efficiency?

(Hine: Use results of Problem 10.1-4.)

In an AM system the message’s power is Y2(f) = 0.1 W, The modulator’s
0.159. Noise power at the receiver's envelope detector is
N;=10"*W, and the signal-to-noise power ratio at the output is known to be
(So/Nodam = 5000. If | X(Dlmax = Ao, find: (a) K, (defined'in Problem 10.1- 3),
(B) Ao () (Si/ N)am, and (d) G

An AM communication sysiem transmits an average power of 2kW when
using a message having a crest factor (defined in Problem 10.1-3) of /24 and a
peak amplitude equal to An The channel’s voltage gain is 3(107%) and in the
receiver (S;/Nau = 5(10 ).

{a) What is the system’s efficiency as defined in Problem 10.1-2?

(b) What is §7?

{c) Find (S,/N,)am-

When the message in an FM system is a sinusoid, such as x(f) = A,, cos(aw,,)

where A4, > 0 and w,, are constants, moedulation index Ppy is defined by

Bem = Awfo,.

(&) Write an expression for the instantaneous frequency (rad/s) of the FM
waveform in terms of Bpy.

(b} What is the approximate bandwidth of the FM signal in terms of gy if
Aw is large relative 10 w,?

() For the specific waveform x{(¢) = 0.1cos(10%H), what are Pry and the
transmitter's constant kpy if the approximate bandwidth is to be 200 kHz?

Find an expression for the autocorrelation function of Spy(), as given by

(10.2-1}, when X(¢) is a gaussian, zero-mean process. Formulate the expression
in terms of the correlation coefficient and variance of the process

() = kg JX(:) dt

[Hint: Note that the expectation involving X (1) leads to a characteristic func-
tion ]
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EXAMPLE 10.7-1. A radar receiver uses a square-law envelope detector
defined by W =3R%. We find what threshold is reqmrcd when noise
power at the detector’s input is o> =0.025W and Py, = 107% is required.
From (10.7-8)

Wr= 3[2(0 025) ln( L )] 207V

Detection Probability

When a target signal is present the density of the received waveform’s envel-
ope is given by (10.6-9). Again using the idea of an equivalent threshold Ry on
the envelope R we expand (10.7-2) to get

o oo
Py= J Siwydw = J Fr() dr
Wz
J ® : I (er) —Pradadt g
W) a’

o [B o)
fa

Ol B = j Ely(ad)e 2 g

-

II

(10.7-9)

where

(10.7-10)

cu

is called Marcum'’s Q- funchon (Marcum, 1950, 1960). Figure 10.7-2 lllustrates
Py for yvarious values of A3j26% with Pl'a as a parameter. Generally, the
smaller Pp, is required to be, the larger is the necessary signal strength to
achieve a given value of Py.

When P;, is sinall while £, is relatively Jarge so that the threshold Wris
large and signal strength is relatively large, the approximation of (10.6-12} can
be used in (10.7-9) to obtain

Ag 1
=Fl—— 2In]—
Pd [ n(P[a)]

where F(-) is given by (B-3).

(10.7-11)

EXAMPLE 10.7-2. We find the value of P, in. a receiver having Py, = 10710
when the recelved s:gnai -to-noise powur ratio at ‘the detector’s input
is 16.0dB. Here 42/20% = 39.811 (16dB). Thus, (dg/0) — /2In(1/Py) =

"2.137. From Table B-1 and (10.7-11), P; = F(2.137) = 0.9837 or 98 37%,

which is in agreement with Figure 10.7-2.

Py %

10 log (437207), dB

FIGURE 10.7-2 i
Radar detection probabilities for various false alarm probabilities when detection is
based on a single observation. [ddapted from Barton (1964) with permission.)

10.8
SUMMARY

This chapter introduced seven practical applications of the theory presented in
the carlier parts of the book. Although the main thrust of the work was to
show how noise (2 random wavecform) enters into practical systems, one
example of a compuier waveform was to demonstrate direct modeling of
e signal as a random process. The specific examiples developed were:

Amplitude modulation {AM) broadcast radio system.

- - Frequency modulation (FM) broadcast radio system.
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APPENDIX A

Review of the Impulse Function

BASIC REVIEW

There are several ways of defining what is known as the impulse function
(Papoulis, 1962) denoted 3(x). The most mathematically sound approach is
to define &(x) on the basis of its integral property. If ¢(x) is any arbitrary
function of x,} x; < x, are two values of x, and x; is the point of “occur-
rence” of the impulse, then 8(x) satisfies (Korn and Korn, 1961, p. 742)

0 X3 < Xp or Xp < X)

. LD A 1 <x <
.L| (p(x)a(x - xO) dx - %qb(x(-)l-) Xp =X
%ﬂxﬁ-) Xo =X
@D

It can be shown, using (A-1), that §(x) behaves as a function having even
symmetry, an area of unity, a vanishingly small “duration,” and an infinite
“amplitude” (Peebles, 1976, pp. 34-35).

A simpler form of (A-1) is often applicable to many practical situations. If
x| = —00, X3 = 00, and ¢(x) is arbitrary except that it is continuous at x = xg,
then

j°_° )8 — xg) e = $xo) : (A2

tThe function is alse assumed to have bounded variation in the neighberhood of x = x; (see footnote,
page 425).

412

A useful fact that is easily obtained from (A-1) is
X
|| s =utz—x0 a-3)
-0
or, equivalently )
du(x)
v S(x)’ (A-4)
where u(x) is the unit-step function defined by
; 1 O=<x
ulx) = { 0 x<0 (A-3)

The impulse function can be generalized to N-dimensional space (Korn
and Korn, 1961, p. 745). If we assume a cartesiean coordinate system with
axes &1, &, ..., &y, and a function @&, &, ..., §y) that is continuous at the
point (§; = Xy, & = X2, ..., &y = xy), then an N-dimensional impuise function
8(&), &, ..., Ey) is defined by

I J_ P18 BN — X B —xa, . By —xpy)dE - dEy

=¢‘(xl’x2l--'-x1\') (A'ﬁ)

Of special interest is the two-dimensional case; it is known that 8(§;, £) can be
written as (Bracewell, 1965, p. 85)

8(&1. £2) = 8(&1)8(52) (A-T)
50 (A-6) becomes

J j E EDB(E — )86 — x) By dby = $x, %)) (AB)

—ood —c0
By using (A-7) with an appropriate choice of ¢(%,, §;) we readily find that
for N =2, (A-6) can be written as

X
J_m J 8(&) — xq. £2 — yo) dky d;

—00

¥ X
= J_m 3(&; — yo)d&y J_w (&, = xp) di;

= u(x — xp)uly — yo) (A-9)
If w{x — xg)u(y — ¥} is interpreted as a two-dimensional unit-step function
u(x — X, ¥ — o)

we have
Pulx — xg, p —
T ST (A-10)
8(x — X0, ¥ — yo) = 8(x — x0)8(y — o) (A-11)
ulx — Xy, ¥ — ¥o) = ulx — xp)u(y — yo) (A-12)
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OTHER FORMS OF IMPULSES

The preceding discussion concerned the “symmetrical” impulse for which a
more precise statement of its integral of (A-5) is :
1 x>0
w(xy =13 1/2 x=0 (A-13)

0 x <0

However, there are two other forms of impulses, called asymmetrical impuises,
that we consider. In one, the impulse is denoted by 8,(x) and its integral is

* 1 x>0
x) = s.(BrdE= A-14
wor=| s@a={g 1l (A-19)
The other, denoted by _(x), has the integral
x 1 x=0 )
 {x) = S_(E)dE = [ = A-15
ww=| s@dw={, 1o (a-13)

These impulses differ in the way the value at x = 0 is assigned. Strictly, the
impulse &_(x) and unit step u_(x) are the ones to be used in probability
problems because of the way probabilities are assigned for discrete random
variables. However, since the distribution for discrete variables has been jus-
tified through proper definitions in the text, there is no nced there to ‘be
cancerned about any other differences between symmetrical and asymmetrical
impulses.

PROPERTIES OF IMPULSES

Many properties exist that simplify problems involving impulses. Most of
these are proved rigorously only through the theory of distributions (sometimes
referred to as the theory of generalized functions). Pecbles (1998) has reviewed
some of this theory and given historical references o its development. Here we
shall only present some of the most appropriate properties without proofs. In
most cases it is sufficient to consider the functions ${x} and g(x) to follow as
continuous at the value of x where the impulse “accurs.” The properties all
relate to the symmetrical impulse.

Definition

j S0 dx = $(0) (A-16)

—00

Derivatives

The first derivative d5(x)/dx is usually called a umit-doublet:

® d8(x) ., dp)

J —eo dx o) dx=— dx | (A-17)
© A e B)
J_m o B dx = (1 — = . (A-18)

Linearity

For a set of functi . .
nfinte, lot unctions ¢,(x) and constants @, # = 1,2, ..., N, with N possibly

Hx} = ;Zl:%%(x) (A-19)
then
o0 N o0 N
| poode=d o] spin=Dwb©® 4
Fourier Transforms of Impulses
Let (-} < {-) denote a Fourier transform pair. Then
J:a(x)e"f"*" dr=1 so ()1 ' (A-21)
Also
1 o 1 1
ﬂj_mé(w)e’ do = 7 so P 8(w) (A-22)

From these resulfs we have useful mathematical representations for impulses:
5 1 oo
X
A = _—er.[_me] dew (A-23)

Bw) =5 P dx
27 ) (A-24)
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Fourier Transforms of Derivatives of Impulses

© QoY
d"8(w)
de”

O @"Hx) e e d"8(x)
L,QWG'J dx=(of 5o P

j:o &) di(;,) e do =(—jxy'  so

(—)" & 21

Shifting

For a real constant xg

r, B — xo)(x) dx = Hlxg)
J S0)6Cx — xg) dx = (o)
Product of a Function and Impulse

For a function g(x)
g008(x) = g(0)8(x)

Product of a Function and Derivative of Impulse

ds(x) .. d8(x) _ dg(x)

g(x) e =g(0) i e

For g(x) = x (A-30) becomes

8(x)
x=0

= —5(x)

dé(x)
X

Convolution of Two Impulses

Jm 8(x)8(xp — x) el = 8(xp)

—co

(A-25)

{A-26)

(A-2T)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)

. ‘:':5"‘
Cen _M.,,‘_.,,_._T?:-"-:@: o

APPENDIX B

Gaussian Distribution Function

The general gaussian or normal probability density and distribution functions
are:

() = etk (B-1)
2noy :
reo = sds= (%) ®2)

where —oo < ay < oe, 0 < oy are constants and F(-) is the “normalized”
distribution function for ay = 0 and gy = I; that is

Y I S ]
F{x) = J me dg (B-3)

-0

F(x) is listed in Table B-1. When ay 5 0 and oy # 1, Fy(x) can be found from
F(x) by use of (B-2). For negative values of x, use

F(—x)=1-F(x) (B-4)
A function closely related to F(x) is the Q-function defined by
L [¥2n
=—] " d B-

060 =—=[ e (B-5)

For negative values of x, use
Q(—x)=1-0(x) (B-6)

0(x) is related to F(x) by

s FG)=1-0() (B-7)
417
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TABLE B-1
Valites of F(x) for 0 < x < 3.89 in steps of 0.01

x 00 a1 02 03 04 05 A6 07 08 09

0.0 .5000 .5040. .5080 5120 5160 .5199 5230 -%5279 5319 5359
0.1 5398 5438 5478 8517 5557 L5596 5636 (3675 5714 5753
02 5793 .5832 5871 5910 .5948 5087 6026  .6064 6103 6141
03 6179 6217 6255 6293 6331 6368 6406 6443 6480 6517
04 6554 6591 6628 6664 6700 6736 6772 L6808 6844 .6RT9
0.5 6915 6950 L6985 7019 7054 7088 7123 (7157 7190 7224
0.6 7257 7291 7324 7357 (7389 (7422 7454 M86 7517 7548
07 .7580 7681 7642 7673 7704 7734 7764 7194 7823 7852
0.8 7881 7910 7939 7967 .7995 8023 3051 .8078 8106 .8133
09 B8I59 8186 8212 8238 8264 8280 8315 8340 3365 B389
1.0 8413 8438 .8461 8485 8508 8531 8554  B577  .8599 862!
1.1 8643 8665 8686 8708 8729 8749 8770 3790  .8B10 8830
12 8849 8869 .8883  .8907 .8925 8944 8962  .8980 8997 9015
1.3 9032 9049 9066 9082 099  9l15 9131 9147 9162 9177
1.4 9192 9207 9222 9236 9251 9265 9279 9292 9346 9319
1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441
1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545
17 9554 9564 9573 9582 9591 9599 9608 9616 9625 9632
1.8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706
19 9713 9719 9726 9732 978 9744 9750 9756 8761 9767
20 9773 9778 9783 9788 9793 9798 9803  .9808 58I 9817
21 - 0821 9826 9830 9834 9838 9842 9846 985S0  .9B54 9857
22 9861 9864 986§ 9871 9875 9878 988l 0B84 9887 .98%0
23 9893 9896 9898 9901 .9904  .9906 9909 9911 9913 ..9916
24 9918 9920 9922 9925 9927 .992% 993l 9932 9934 9936
25 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
26 9953 9955 9956 9957 9959 9960  .9961 9962 9963 9964
27 9965 9966 9967 9968 9969 9970 5971 9972 9973 9974
28 9974 9975 9976 8977 9977 9978 9979 9979  .6980 9981
29 59851 9982 0082 9983 9984 9984 9985 9985 9986 .9986
30 9987 9987 9987 9988 9988 9989 9989 9989  .9990 9990
3.1 0 9990 9991 9991 9991 9992 9992 9992 5992 9993 9993
3.2 9993 9993 9994 9994 9994 9994 9904 9895  .9%95 9995
33 .. 9995 9995 9996 9996 9996 9996 9996  .9896  .9996 9957
34 0 9997 9997 9997 9997 9997 9997 9997 9997  .9993 9993
35 ©-9998 9998 9998 9998 9998 9998 9998 9938 9998 9998
3.6 9998 9999 9999 9599 9999 9999 0999 9959  .99%9 .9990
37 9999 5999 9999 9999 9999 9999 9999 9999 9999 .6999
3% 9995 9999 9999 9999 9999 9999 9999 1.0000 1.0000 1.0000

Although a closed-form solution for Q(x) is not known, an excellent approx-
imation is

) 1 en o @9
Qx) = x> -
0.661x +0.339v/x? +5.51 | V21
which is due to Borjesson and Sundberg, 1979. The maximum absolute rela-
tive error in the approximation for Q(x) is given as 0.27 percent for any x. > 0.
By using the approximation (B-8) for Q(x) in (B-7), an excellent approxima-
tion for F(x) is realized.

APPENDIX C

Useful Mathematical Quantities

TRIGONOMETRIC IDENTITIES.

cos(x = ) = cos(x) cos(y) F sin(x) sin(y)
sin(x & y) = sin{x) cos(y) & cos(x) sin(y)

cos(x + g) = J=sin{x)

sin (x + g) = £ cos(x)
c0s(2%) = cos?(x) — sinz(x)
sin(2x) = 2 sin(x) cos(x)
2cos(x) = e + &
2jsin(x) = e — e
2 cos(x) cos(¥) = cos{x — y) -+ cos(x + )
2sin(x) sin(y) = cos(x — ) — cos(x + »)
2sin(x) cos(y) = sin{x — ) + sin(x + y)
2cos7(x) = 1 + cos(2x)
2sin?(x) = 1 — cos(2x)
4c053(x) = 3 cos(x) + cos{3x)
4sin*(x} = 3sin(x) —sin{3x) -

Zcos*(x} = 3 + 4 cos(2x) + cos(dx)

(C-1)
(€2

(C-3)
(C-9)
G5
(C-6)
(G-
(C-8)
(C9)
(C-10)
(C-1D)
(C-12)
(C-13)
(C-14)
(C-15)
(C-16)
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8 sin*(x) = 3 — 4cos(2x) + cos(4x)

Acos(x) — Bsin(x) = Rcos{x 4 6)
where
A2+ B
8 = tan~(B/4)
A = Rcos(8)
B = Rsin(6)
INDEFINITE INTEGRALS
Rational Algebraic Functions
o (@b
J(aJ,-bx) ax = Wt 1) O0<n
Ja+b blnia+bx]
J dx -1 1
= 4 <n
(a+ bx) (n— l)b(a + bx)"
I tan (2ax+b) B < dac
bv Yad J4ac b2 dac — B
/0% — Al
_ i |2ax +b—+b Bt > dac
B —4dac 12ax+b-}-'\."b2 dac
= -2 & =4dac
2ax +b
xdx b dx
ctbxtadl 2a 1n|ax2+bx+c| 2aJc+bx+ax2

dx x

1
= 2d@ + ) tos

tan™" (E)

(€17
(C-18)

(C-19)
(C-19h)
(C-19¢)
(C-194)

(C-20)
(C-21)

(C-22)

(C-23)
(C-24)
(C-25)
(C-26)
(C-27)

| (C28)

-1

(a + xz)2

2(a2 +x%)

@+

- 1
Tz j-cxz) 2a B0 (D

x + 3x tan~!
4a2(a2+x2)2 8a* (@ + xB) 8:15 an (1)

&
J&is
@ 3
[
J
&

—X X
@+ H@ 2 SA@ D) 8 5 ()
X dx a'x 5x 3 ;
@ +x2)3 W@ @it Q)
x + 5x n 5x .
+x2)4 62 +x%° * 24aMa® + X2  16a5(a® + %)
3 -1
+16—7 tan (;)
J‘ 2 dx _ —x 4 x + X
@ +x) 6 +x2)3 6@ + 32 16a%@ +27)
16 e =)
J dx _ &x _ Tx x
@+ 6@ +x3 24+ 2P + 16a%(a? + x%)

+T6171§ tan™ (g)

J‘ d “
T 432\

+ tan
—ax/2+a) 2233

1 (x2+ax\/i+az) 1 Hl(ax\/i

a2 —x?

[

+ tan
2 —axSI+at]  2a2

Trigonometric Functions

~fcos(x) dx = sin(x)

Jx cos(x) dx = cos(x) + xsin(x)

s (S
sz cos(x) dx = 2x cos(x) + (x* — 2) sin(x}

1 I (x2 +ax~/§+az) l _l(axﬁ

N " 2 _ 2

(C-29)

(C-30)

(C-31)

(C-32)

(C-33)

(C-34)

(C-35)

(C-36)

37

- (C39)

(C-39)
(C40)

(C-41)
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422 Jsin(x) dx = —cos(x)
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Random Variables, A .

and Random - 1 xsin(x) dx = sin(x) — x cos(x)

Signal Principles
sz sin(x) dx = 2xsin(x) — (x2 — 2)cos(x)

Exponential Functions

ax

e dx= % a real or complex
xe™ dx = e™ E - %] a real or complex

P dx =™ [E; - % + %] a real or complex

X 3P 6x 6
3 ax _gaxtr M =}
d x’é de—e \:a p + i a real or complex
| e sin(x) dx = a:—l—- i [a sin(x) — cos(x)]
- ax :
€ cos(x) dx = a: 1 [e2 cos(x) +- sin{x)}
DEFINITE INTEGRALS

r g gy ﬁebz" @) a>0
—eo a

P 2 g

J X2 dx = J7ld

0

J Sa(x)dx:l EMa’x:E
0 0 X 2

r Sa’(x) dx = /2
0

(C-42)
(C-43)

(C-49)

(C-45)

(C-46)

(C-47)

(C-48)

(C-49)

(C-50)

(C-51)
(C-52)
(C-53)

(C-54)

FINITE SERIES

L _N@+D

=] 2

Z”: 2 N+ DEN+1)
n=1 6
ina — NAN 1)
n=l1 4

N +1
Zx,, _ KN g
n=0 x—1

N

A N .

gmw—nn""” =+

N ' .
3 He) sin[(V + Dé/2] _sorqvar
a=0

sin(972)

Z(N) = iL —oN

=\n iV —n)!

f: W W et Ny >N, and w
s A 1—w real or complex
INFINITE SERIES

. 2 P&y

t =1 —_ —_— p—— —
M TR T —gm

(C-55)
(C-56)
(C-57)
(C-58)
(C-59)
(C-60)
(C-61)

(C-62)

(C-63)
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APPENDIX D

Review of Fourier Transforms

The Fourier transform? or spectrum X (w) of a signal x(¢) is given by
i -
X(w) = J x(e " dt _ (D-1)
-0
The inverse Fourier transform allows the recovery of x(¢) from its spectrum
X(w). Tt is given by
oo 1,
x(f) = lj X(w)e'™ dow (D-2)
20} oo

Together, (D-1) and (DD-2) form a Fourier transform pair. Extensive_ ta_lbles of
transform pairs exist (Campbell and Foster, 1948). A transform pair is often

- symbolized by use of a double-ended arrow:

x() < X(w) (D-3)

The Fourier transform X () is valid for real or complex signals and, in
general, is a complex function of & even for real signals x(z). X1 ,("’) describes
the relative complex voltages (amplitudes and phases) as a f'unctl_on of the}t
are present in a waveform x(#). From (D-1), we see that the unit of X(w) is

- volts per hertz if x(¢) is a voltage-time waveform. Thus, X(w) can be consid-

ered as the density of voltage in x(¢) as a function of angular frequency w.

{Named for the great French mathematician and physicist Baron Jean Baptiste Joseph Fourier
(1763-1830). .

424

e "*‘:""—“Mﬁm

EXISTENCE

Conditions that guarantee the existence of the Fourier transform of a wave-
form x(7) are:

-

1. that x(r) be bounded with at most a finite number of maxima and minima

and a finite number of discontinuities in any finite open time interval,t and
2.

J-oe 1x(H)| dt < o0 (D-4)

—0

These conditions are only sufficient for X(w) to exist; they are not necessary.

. Many signals of practical interest do not satisfy these conditions but do have

transforms. Examples are: the unit-impulse function §(r) that has the trans-
form X(w) = 1; and the unit-step function u(¢), defined by w(f)=1for 0 < ¢
and u(f) = 0 for # < 0, that has the transform X(w} = 78{w) + (1/jw).

PROPERTIES

A number of extremely useful properties of Fourier transforms may be stated.
We give these without proofs since the proofs may readily be found in the
literature (Peebles, 1976, p. 29; Papoulis, 1962, p. 14). In these properties, we
assume the Fourier transform of some signal x(f) is X(w), while the notation
X, (e) implies the transform of a signal x,(7) with n =1,2,.._, N.

Linearity

For constants e, (that may be complex):

N N ‘
KD =) ewxdl) & Y 0, Xofw) = X(w) (D-5)
n=1 n=l

Time and Frequency Shifting

With t; and ey real constants;
x(t — ) & X(w)e ™ (D-6)
()™ o X{w— wg) (D-7)

- T'l‘hcse are known as the Diriehlet conditions, alter the German mathematician Peter Gustov Lejeune

Dirichlet (1805-1859). A signal satisfying them is said to have bounded variation (Thomas, 1969, p-
579).

425

APPENDIX D
Review of Fourier
Transforms




26 Scaling Correlation 427
cali -
— : ’ ArpENDIX D:
Probability, th al tant: : oo Review of Fourier
Ra;(;:md\'aﬁables, With « a real constant: . | x(1) = J x1(@D)x{1 + 0 dt o X (0) Xy{w) = X(w) (D-18)  Transforms
an andom Lh) " -0
Signal Principles x(af) < EX (g) ©-8) . 1 e
0 =500 o 3| XiOBEraE=Xe  ©19)
—co
Duality
: Parseval’st Theorem
X() & 2rx(—w) ®-9
(s} 1 [e=]
B} j X(@x()dr = —J X () X5 () de (D-20)
. -0 P )
Differentiation An alternative form occurs when x;(f) = x,(8) = x(f):
n x(O) dt =— X d D-21
IO, oy D-10) [ bora=g [ wore o
. d"X
(=t x(s) <> w# (D-11)
W MULTIDIMENSIONAL FOURIER TRANSFORMS
The Fourier transform X (@, ;) of a function x{z), #;) of two “time” variables
Integration ¢ and #, is defined as the iterated double transform. Upon Fourier transforni-
ing x(#;, &) first with respect to 7, we have
H 3 X(Cl)) (D—12) % —Jeoy ¢
j x(7) dr < 7X (0)8(w) +_}w_ X(w, ) = J x(ty, ta)e" dny (D-22)
—eo -0
Ax(O)3(0) — x(1) - J‘ ® X de (D-13) X (o0, ) results from Fourier transformation of X{ew,, #;) with respect to 1,:
Jt _oa oo -
X(Cl)l, 0)2) = J X(Lt)], lg)E_Jm‘zrz dtz (D-23)
-0
o or
Conjugation 0o oo _
X(w), @) = J J x(ty, ty)e FAnet gy gy (D-24)
) o X () (D-14) ved=| | (. 1z _ 161
x(—1) © X*(w) (D-15) By use of similar logic, the two-dimensional inverse Fourier transform is
[»=] oo . .
e, ) = %J‘ j X{cwy, w)e’ W oy e, {D-25)
2m)° ) —eod o0 .
Convolution The extension of the above procedures to an N-dimensional function is
direct; we obtain the Fourier transform pair
o0
x(®)= J (Ol - Ddt o K@@ =Xw (D16
—co
1 o
) =x@e o3| HEGE-HE=XE  ©ID R
T —eo FNamed for M. A. Parseval (1755-1836), a French mathematician.
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oo ) i .
X(wl,---,wN)=J J Xty ooy )TNy dty (D-26)

-0 —od

1 = Jw U e
HeooonIN)=—w X(wy, ..., oy’ NN dewy - --doy
x(t, N) (2H)NJ_°° . (e N
(D-27)

PROBLEMS
D-1. Find the Fourier transform of a pulse x(f) defined by
A —1f2<t<1/2
X = [ 0 elsewhere

where 7 > 0 and A are real constants.
D-2. Ifa signal y(¢) is the product of x({#) of Problem D-1 with a cosine wave, thatis,
if
Yt} = x(f) cos{ent -+ 6o)
where wy and &, are real constants, what is the Fourier transform of y(#)?

D-3. Find the Fourier transform of the waveform

1l
x([):[A(l —*‘_r'—) <t
0

It ==

where 7 > 0 and A are real constants.

D-4.- By direct use of (D-1), find the Fourier transform of the waveform
_ | Acos(me/27) <z
x(0) = I 0 {tl>t

where t > 0 and A are¢ real constants.

D-5. The waveform of Problem D-4 can be written in the form
R x(f) = A rect(t/27) cos(zt/21)

where rect (#/2¢) is defined by (E-2). By using {D-19), find the Fourier trans-
form of x(1).

D-6. The complex form of the Fourfer series of an arbitrary periodic signal y(1} of
period T is :

o3
A= ™"
n=—eo -
where the Fourier series coefficients are given by
1

T2 )
C,= —J HWe 2T gy
Tl tp

[y

*D-7.

*D-8.

D-10.

for n=0,+1,%2,... . Show that the Fourier transform of this arbitary
periodic signal is

& 2
Y{(w) = hn;m c,,a( —g)

where 5(-) is the unit-impulse function of Appendix A.

Prove the Fourier transform pair

00

";ma(r —nT) < 2%"205( _g)

where T > 0 is a real constant and 3() is the impulse function of Appendix A.
(Hint: Represent the time function by a complex Fourier series as in Problem
D-6, find the Fourier coefficients of the series, and then Fourier-transform the
series.)

From the expression in Problem D-7, it is readily shown that
i e—J"WT=2_H i 3( _4.'12“_77)
n=—00 T n=—oa T
Use this result to prove that the periodic signal

o0

yB= 3 x(t—nT)

=00

comprised of repetitions in each period T of a basic waveform x{f), has the
Fourier transform ¥(w) given by

ro=7 L (P )

where X(w) is the Fourier transform of x(r). By using the result of Problem
D-6, we see that the coefficient C, of the Fourier series of y(¢) is related to the
Fourier transform of its component waveform x{(r) by

1 w2
Cp==X|—
i T (T)

. Find the Fourier transform of the waveform

x(f) = (e’
where u(-) is the unit-step function of (A-5) and wy is a real constant.
Find the Fourier transform of a sequence of 2N 4+ 1 pulses of the form given
in Problem D-1, where N =0,1,2,... . That is, find the transform of
N )

W)=Y xtt—nT)

n=-N

with T" > 0 a real constant and = < T,
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D-11.

D-12.

D-13.

D-14.

D-15.

D-16.

D-17.

Determine the Fourier transform of the signal
AP [
)=
(1) [ 0 elsewhere

where v > 0 and A are rezl constants.

Show that the inverse Fourier transform of the function
K W zpaW
Hw}= l 0 elsewhere

is

x(f) = (KW /fm)Sa(Wi)
where W > 0 and K are real constants and Sa(-) is the sampling function
defined by (E-3).

The transfer function H{w) of a lowpass filter can be approximated by

N
Hw) = I(O-{~2£__“1K,.cos(mrw/W) —Wxw<W
0 elsewhere

Here W > 0, Ky, K|...., Ky are real constants and ¥ > 0 is an integer. Find
the Inverse Fousier transform /i{r) of H{w) which is the #npulse response of the
network, in terms of sampling functions (see Problem D-12).

Let x(1) have the Fourier transform X{w). Find the transforms of the follow-
ing functions in terms of X (w):

dax(1)

(@) x(t = Dexplond)  (6) —= expljon(t—3)] () x(t —3) - 3x(2)

Here oy is a real constant.

I x(f) <> X (), find the inverse transforms of the following functions in terms

of x():

dX(w)
dew

Here * represents complex conjugation and wy is a real constant.

(@ X@X (@+a) (B X(w—ay) (&) X (-} + X(w)

A voltage x(f) exists across a resistor of resistance R. Show that the real energy
E expended in the resistance is

E= —Lr | X)) dos
T 2aR)_o

where X(w) is the Fourier transform of x(7).
It is known that

(=M o = X(w)

20
o +o?
whete o > 0 is a real constant. Use (D-9) and find the Fourier transform ¥ {w)

AR

- 3

D-18.

D-19.

D-20.

D-2L
*D-22.
D-23.

D-24,

of

) = ——

W=y s
Use the definition (A-2) of an impulse function to prove that the impulse has
the Fourier transform 1. That is, show that

) 1

By u'se of various Fourier transform properties, show that the following are
true:

(@) A< AQ2m)é(w) where a is a constant )
(b) cos{wy?) < m[8lew — wy) T 8w + axy)] where oy is a real constant.

Use the facts that

—at
ultye™ <> atjo

and _
cos{wyt) « 7{3(w — wp) + e + wp)]
where a > 0 and ay are real constants, to prove that
o -+ jo
(@ + @} — &0®) + j(200)

u(2)e ™ cosfewpt) <>

Prove (D-6) and (D-10).
Prove (D-12). [Hins: Use (D-16).]
Prove (D-18).

Find the Fourier transform of the signal

- << and
elsewhere

—Ty <l < Ty

e, ) = [g

where 1) > 0, ©; > 0, and A are real constants.

D-25. By direct transformation, find the Fourier transform of

_ | Ar O<t<zt
(1) = 0 t<Qandt>r

D-26. Show that a frequency-domain impulse can be represented by

D-27

e ™ dy

() =$r

-0
. Stow that a time-domain impulse can be represented by

50 = %j e/ dew
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D-29.

D-30.

D-31.

D-32.

. First find the spectrum of the signal x(f) = 4 expf—W|¢]], where 4 > 0 and

W > Q are constants, and then use the result with the frequency shifting
property of Fourier transforms to determine the spectrum of yp(f) =
Acexpl—W|(1]] cos(wy!), where wp > 0 is a constaat.

A waveform x(f} and its Fourier transform are deﬁﬁ.éd by the pair
6
(e + juo)*
where & > 0 is 2 constant. Use the duality property to develop a dual {fans-
form pair.

w(Pe™™ <

A waveform x(¢) has a derivative y(f) = dx(f)/dt and spectrum ¥(w) defined
by the Fourier transform pair

] 3 +80+D) | ePer g ger
HQ) = [ st -3 -8~ | Y= [ g _ e ]

where 7 is a positive constant. (&) Sketch x(2). {5) Find X (w), the spectrum of
x(7), by use of the integral property of Fourier transforms.

A w-avcform x(r} has a Fourier transform
_ w— o] o[ 7w —an)
X(w)y=4 rcct[ W ]cos [ W ]
-+ ty o e + wy)
+ A rect[ 7 ]cos [ W

where A, W, and ay > W/2 are all positive constants. (a) Find x(#). (#) Find
the energy in x(f) by use of Parseval’s theorem.

Prove that (D-20) is valid.

o

APPENDIX E

Table of Useful Fourier Transforms

In Table E-1 of Fourier transform pairs, we define

1 &>0
0 £&<0
1 Bl<3
0 >4

Sa(z) = 06
:

wo-{)78 8=

x() & X(w)

u(®) = {

rect (&) =.{

and let @, 7, o, wy, and W be real constants.

(E-)

(E-2)

(E-3)

(E-49)

(E-5)
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TABLE E-1
Fourier Transform Pairs
) Pair x(f) X{w) Naotes
1 os(f) L3
2 af2n oblw)
3 u(t) wé{er} + (1 /)
1 1
l% 53{0 - ﬁ ulw) 7
5- vect(r/1) v Sa(wr/2) >0
6 (W /m)Sa(Wr) rect (w/2W} W0
7 e {t/7) rSaz(w_r/Z) =0
8 (W [m)Sa’(Wi) tri (w2 W) W0
9 gl 23w — wp)
10 ir—1) ot
11 cos(unl} ldw — wp) + 82 + o))
12 sin{wyd) —plsw—mp) —Sw+enll
# jo
13 wli)cos(en?) 5 18w — ap) + &leo + o)l + -
LT T <%
14 w(f)sin(ent) 775 (8w — ) — &0+ )] +w5 =
1
15 w(f)e™ o+ jo a0
1
16 (e @+jof @>0
2
17 a(i)Pe™ (o +jw) >0
6
18 u(nrte™ m w>0
20
19 P of 4 a>0
20 Pl a/Ine =0

APPENDIX F

Some Probability Densities and Distributions

For convenience of reference we list below the probability density fy(x) and
distribution function Fy(x) for some well-known distributions. Where appro-
priate, we also give the mean X, variance o%, and characteristic function
L] x({t)). )

A number of constants and functions are used as defined below:}

a, @y, a2, b, by, by, o, and p are real constants (F-1a}
‘ N is a positive integer . (F-1b)

(%) = impulse function of (2.3-2) (F-1¢)

1(£) = unit-step function of (2.2-4) (F-1d)

rect (£) = rectangular function of (E-2) (F-1¢)

T(x) = J?E‘"‘e‘E dE  Re(®)>0

= gamma function (F-1f)
1% s
P(a,ﬁ):@L&“ e*dt  Re(e)=>0
= incomplete gamma function (F-1g)

{Re {2) denotes the real part of z.

435



436

Probability,
Random Variables,
and Random
Signal Principles

. T AN b2
PO = ey £
= chi-square probability function
N x o
= P(E, 5) (F-1h)
1 uajfptl —i;
I(u,p)—mjo ‘g"’e d-‘;"
= Pearson’s form of incomplete gamma function (Pearson, 1934)
=P+ 1lu/p+1) (F-19
I'{a + b) JI -1 51
Labhy=———| (08 d&
“D=1are -
= incomplete beta function (F-17)
F(x) = gaussian distribution of (B-3) (F-1%)
o 2k
(x/2)
L)y =C/2) ) 5
g Kin+ kY

1 il
Y= —J &0 cos(n0) do

T iy
='modified Bessel function of first kind of ordern=0,1,2,... (F-1)

0= :sfo(as) exp [@] s Fim)

The functions of (F-1f) through (F-1) and that of (F-1/) are discussed in
detail in Abramowitz and Stegun, editors (1964). Q(w, £) is Marcum’s Q-
function; it is tabulated in Marcum (1950).

DISCRETE FUNCTIONS
Bernoulli
For0<p<l
Sx() = (1 — p¥(x) + pd(x — 1) (F-2)
Fy(x}y = (1 - pyu(x) + pulx — 1) (F-3)
X=p (F-4)
ok =pl—p) : (F-5)

Gy(w)=1—p+pe (F-6)

Binomial

For0<p<land N=1,2,...

(N & N_k
3= 3"kt - Vs — )
S 2 (k)p P x

CRNN kg Nk
Fy( =3 [ )P =" - k)
k=0 .

X=Np
o% = Np(L —p)
Dy(w) =11 — p+pe™”

Pascalf

ForO<p<land N=1,2,...

) = Z(f,‘_ - o a1y

Fy(x)= Z(:;—_ II)PNU - Mu(x ~ k)

Dplw) = p ™1 — (1 — pyer™¥

Poisson

Forb=>0

o pk
109 = k)

o0 pk
Fy(x)=¢" Z%u(x — k)
g

b
b
= explb(e™ — 1)]

N
I

‘bx(w

—

{Blaise Pascal {1623-1662) was a French mathematician.

(F-7

(F-8)

(F-9)
(F-10)
(F-11)

(F-12)
(F-13)

(F-14)

(F-15)
(F-16)

(F-17)

(F-18)

(F-19)
(F-20)
(F-21)
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CONTINUOUS FUNCTIONS
Arcsine
Fora=0
_rect (x/2a)
= jE =
0 —0 <X < —d
1 1,
Fy(x)= ~2-+;sm (Z) —asx<a
i <X <00
X=0
2
a
O'lzy = ?
Beta
Fora>0and b= 0
_Ta+¥) e —Lry _ bl
S0 = sy ) = DN
[ Ida Bu(x) x<l
Fy() = [ 1 o
- a
X=z +b
o ab

Cauchy
For b > 0and —co <a< oo

Fel) = )

B+ —a)
1 1 _1{x—
P =g+ e ()
X = is undefined
o% = is undefined

q)X((z)) = ejam—blml

(F-22)

(F-23)

(F-24)
{F-25)

(F-26)
(F-27)

(F-28)

(F-29)

(F-30)

(F-31)
(F-32)
(F-33)
(F-34)

Chi-Square with /V Degrees of Freedom

ForN=1,2,...
(Ni2-1
. F —xf2
Jx(x) = WATN2)" u(x)
N x
Fy(x) = P(:iN) = P(E-i)
X=N
o% =2N

Dyle) = (1 — 20) 7

Erlang

For N=1,2,...and a> 0

aN xN—l —ax
fx) = (N—_f),u(x)

N-l it
Fy(x) = [1 —e nz__; (%'?—} u(x)
7=
a
2=
x = ag

o
St
o~
)

Il

]
%a
e

=

Exponential

Fora=0

() = ae™u(x)
Fy() =11 — & u()

7=l

(F-35)

(F-36)

F-37
(F-38)
(F-39)

(F-40)
(F-41)
(F-42)
(F-43)

(F-44)

(F-45)
(F-46)

(F-47)
(F-48)
(F-49)
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Gamma

Fora>0and b >0

mo=0 " (F-50)
Fy(d) = 1(%, b— l)u(x) (F~51)
¥ =§ '(F 52)
F = (F-53)
() = (= jw)b (F-54)

Note that if b is a positive integer the gamma density becomes the Erlang
density. Also if b=N/2, for N=1,2,..., and a=% the gamma density
becomes the chi-square density.

Gaussian-Univariate

Forb>0and —c0o <a <00

i) = (by et (F-55)
Fy(x) = F("T_/;') (F-56)
X=a (F-57)
ot = g (F-58)
By(or) = D (F-59)

Gaussian-Bivariate

For —co <a; <00, ~00 < @3 <00, 5, >0,b,>0and ~l<p=<1l

FroxCen xg) = [Phby(1 — o))

—1_[n-a)
""‘P{(I—pz) [T ,
_ 2 —a)Co — @) | (= az)z]

1."5152 b2

(F-60)

X —& Xy —
Fy, x, (1. x)=L[ - .= P (F-61)
R N F AR E Y
where L(x;, X;, p) is 2 probability function discussed extensively and graphed
in Abramowitz and Stegun, editors (1964), p. 936. Also

Xl =a (F-62)
iz =y (F-63)
ak, =bi/2 (F-64)
o§,2 =by/2 (F-65)
Oy, x, (@1, 02) = expliea, +jeoa — §laby + 2panny/Bibz + &3bl)
(F-66)
Laplace
Forb>0and —~co<a<oco
fr(x) = Ee“""“‘“' (F-67)
ght=a —o<x<a
Fy(x)= { 1 ) 4 <x <00 (F-68)
X=a (F-69)
2
o =13 (F-70)
F-71
Cy@)=b 5 — Piat (F-7)

Log-Normal

For —co<a<oe, —c0 < b <oo,and o >0

ulx — tr,)e“[ll'l(x—i'ﬂ—tr]zﬁ!a'2

fX(x) = J2_Jr(x — b)ﬂ' (F-72)

Fy(x) = u(x — B)F{a"" [In(x — b) — a]} (F-73)

. b+exp(a+§) (E-74)

- o2 = [exp(c?) — 1]exp(2a + o7) (F-75)
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Rayleigh

For —co<a<ooand 6> 0

Selx)= %(x - a)e”(x"’)z"'bu(x —d) .

Fy(xy=[1- el *lulx — a)

= b

X—d-l- '—4“

_bd—n)
=2

Rice [Thomas (1969), Middleton {1960}]
Fora>0and b>0

X a
Sl = 5@y, (b—’{) ()

Fe =[1-0(5.3) |u0

b\/ge"‘z ’4[(1 + %2) Iy (g) + %I.

X
of =R +E)— ()
@

2

e
Il
o

Uniform

For —co <a<bh<oo

ux —a)—ulx—b)

fely =222
Fy(x) = %f—a‘) x<b
1 x=h
fza;bz
=" ;20)
By(w) = %

(5]

(F-76)
(F-717)
(F-78)

(F-79)

(F-80)
(F-81)
(F-82)

(F-83)

{F-84)

(F-85)
(F-86)
(E-87)
(F-éf;)

(F-89)

Weibull

Fora=>0and b>0
£ = abxt~le ™ u(x)
Fy(x) ={1 - Ju(x)

ra+5"h
al/b

b'g
2 _ra+ 26— [rQ+ 5
X Pl

Note that if & = 2 the Weibull density becomes a Rayleigh density.

(F-90)
(F-91)

(F-92)

(F-93)
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APPENDIX G !

Some Mathematical Topics of Interest

In this appendix we list several useful mathematical theorems. No formal
proofs are presented. Rather, the reader is referred to the literature for proofs.

Leibniz’s Rulet

Let G(#) represent the integral

B(u)
G(u)y = J “ Hx, u)dx (G-1)

where it is assumed that o(u), and B(u) are real differentiable functions of a
real parameter «, and H(x, u} and its derivative dH(x, ©)/du are both contin-
uous functions in x and «. Then the derivative of the integral with respect to
parameter « is given by

dG(u)_ HIB), ]dﬁ(u) Hio(). ]doc(u)
du
B AF (x, 1)
+ L(u) o dx (G-2)

Equation (G-2) is called Leibniz'’s rule. A proof is given by Wylie (1951},
p. 591.

TAfter the great German mathematician Gottfried Wilhelm von Leibniz (1646-1716).

444

Interchange of Derivative and Integral

A special case of Leibniz’s rule occurs when the integral’s limits are constants

relative to the parameter 4. Equations {(G-1) and (G-2) become
)
Glu) = J H(x, 1) dx (G-3)
dGG) _d [* _ J” 3H(x, 1)
WL J Hexnde= | e (G-4)

for constant limits 2 and b. This last result indicates the derivative and integral
operations may be interchanged.

Interchange of Infegrals

Fubini’s theorem states that if any one of the conditions

r_omjlu(:, )| dudt < 60 (G-5a)
J:o U:[x(z, )| du] dt < o0 (G-5b)
r_om U:olx(t, u)| dt] du < oo (G-5¢)
is truc, then [Sakrison (1968), p. 45]
J:, ” iox(t, ) dz] du= J:o U:ox(z, ) du] dt
- J :j':x(z, W) dit du (G-6)

The proof is involved but is in Burkhill (1963), Chapter 5. More general
versions of Fubini’s theorem exist, and it has versions for integral multIplcs
above 2 also [Korn and Korn (1961), p. 1051

Continuity of Random Processes

A real random process X{z) defined on —oo < ¢ < 0o is said to be mean-square
continuous at any point ¢ if
fim E{X(¢+¢) — X(OF'} =0 (G-7)
e ‘

X () will be mean-square continuous at any value of ¢ if its autocorrelation
function Ryy(t, £y} is continuous at any point {¢, £). For a proof see Viniotis

. ~(1998) p. 410, Prabhu (1965), p. 25, gives a result similar to the abovc but

requires X (2} to be a regular process, that is, one for which E[|X7 (t)l ] < 00,
all ¢
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Differentiation of Random Processes

A real, regular, random process X(¢) is said to be differentiable in a mean-
square sense if there exists a process X () such that

lim EQX0) - X0 =0 (G-8)
where

=

X+ - X .
B — G-

The process X{#) will be mean-square differentiable at any time ¢ if the auto-
correlation function has the second-order derivative

¥ Ryy(t1, 12)

B0ty <0 (G-10)

f=ty=t

For proofs see Viniotis (1998), p. 411, or Helstrom (1991}, pp. 410-411.
Parzen (1962), p. 83, gives (G-10) without the condition #; = £, = 7 and states
that if (G-10) is true, then also true are:

dx()] _d
E[T] =~ [Ex Q) (G-11)
P
Cyry(ty, 85) = m Cxx(t1. 12) (G-12)
Cyoxltn, 1) = %Cxx(h, ) (G-13)

Here a prime indicates time differentiation. We note that these results allow
operations of expectation and differentiation to be interchanged with pro-
cesses for which (G-10) is true.

Integration of Random Processes

Let X(¢) be a real, regular, random process and define 7 as the integral of X (¢)
on interval fa, b] according to

b
I= J X()dr (G-14)

If the interval [q, &} is subdivided into N contiguous subintervals with bound-
ary times #, such that a=4#;, < 1y < --- < ¢ty = b and widths Aty =1, — 1,

k=12, ..., N, then, for | < & < 1, if the Riemann sum
N
Iv=Y X&) Ag (G-15)
k=1

converges in the mean-square sense to a limit as N — oo in a way that the
largest subinterval Af, — 0, we say that this limit is equal to 7. In other
words, if

Jim {EI(7 — =0 : (G-16)

then X (7} is mean-square Riemannt integrable on [a, b).
If, and only if,

bob
j J Ryx(t1, to)dty dty < 00 (G-17)

ad a

will X(7) be Riemann integrable. If (G-17) is true then
b b
EU X(0) d:] =J E[X()] dr (G-18)
a a

b b bb
EU J X(r)X(ty) dr,drz] =J J E[X(5))X (12)) dtydty (G-19)
aJ a aJ a
which say that the expectation and either single or double integral operations
may be interchanged.

For proofs of the above see Viniotis (1998), pp. 412413, or Prabhu
(1965), pp. 27-28. It is also known that if X(f) is a mean-square continuous
process [see (G-T)], then its integral exists (Viniotis, 1998, p. 413). .

Interchange of Expectation aid Integration

Let X(#) represent a random process bounded on (g, by where g and b may be
finite or infinite. Also let A{r) be a real or complex function of ¢. The integral of
X (Hh(?) forms a random variable 1

b
I= J X(Oh(D) dt (G-20)

Under an appropriate measurability condition, this integral exists with prob-
ability 1 [for all sample functions of X{(¢) except possibly some with probabil-
ity zero] if

b b
J ENX@HOdt = j EIX()iH()) di < o (G-21)

fMNamed for Georg Bernhard Riemann (1826-1866), a German mathematician. Oag of the greatest of
all time,

{See Davenport and Root (1958), pp. 65-66, who refer to Theorem 2.7 of Doob (1953) for
details on measurability constraints, See also Integration of Randem Processes 2bove. Cooper
and McGillem (1986), p. 288, also give ((G-22) and state that, more generally, X(¢) may be
replaced by some function, such as the square, of a process X{f) which is not restricted to be
a stationary process.

447

AppENDIX G
Some
Mathematical
Topics of Interest



448
Probability,

Random Variables,

and Random
Signal Principles

As a consequence of (G-21)

& &
EU X(Oh(E) dr] =I E[X(O)(0) dt (G-22)

Héolder’s Inequality

Let x,(f) and x,(¢) be continuous time functions of the real variable ¢, and be
nonvanishing such that x;(#)x;(f) # 0 and integrable on (a, ) according to

Jblxl(t)l" dt < oo (G-23)

a

b
J [x2{0)|7 dt < 00 (G-24)

a

where p > 1 and (1/p)+ (1/¢) = 1. Then a tight form of Holder’s inequality
states that

5 b ppE b /g
[ momia< || mora] [[ora] <o @20

where
/p+l/g) =1 (G-255)
For a proof of (G-25) see Thomas {1969), p. 615. The proof also verifies the
fact that
b
J ¢, (Do) dt < co (G-26)

when (G-23) and {G-24) are true.
A weaker form of Hélder’s inequality may be more convenient for some

purposes. It is
b Ver cp Lig
<| | mora] | [ o dr]

A/p+1/p=1 (G-276)

Hélder’s inequality can be applied to discrete-time sequences x,;[#] and
x3[n]. The tight form is [Thomas (1969), p. 617]

J-bx{ (Oxa () dt (G-27a)

where

1/p /g
Z|x1["]x1["]| = (Z |x1["]|p) (z |xz[_ﬂ][q) (G-280)
where the sums are over all values of # and
(/p)+(1l/g) =1 (G-28h)

7

The weak form is .
ry /g
3 xllnl| < (Z il |*') (Z peglr] I") (G-29)

where

d/p+1/p=1 (G-298)
In both {(G-284) and (G-29a) we assume

o lxlAP < oo (G-30)

Z |x2]I7 < o0 (G-31)

Schwarz’s Inequality

This inequality derives from Hélder’s inequality with p = ¢ = 2. For contin-
uous waveforms -

b b Y2 p 12
[ momwa < U [xl(t)lzdf] U Ixz(f)lzdt] (G-12)
For discrete-time sequences
' ' 172 172
> xlln)| < (Z m[nuz) (Z lxz[’i]lz) (G-33)

By squaring on both sides of (G-32) and (G-33), the more frequently seen
forms of Schwartz’s inequality are obtained.
Minkowski’s Inequality

For x,(?) and x,(#) each satisfying (G-23) with p > 1, this inéquality states that
[Thomas {1969), p. 618) ’

Ujm(r) £ 0P d:]ws U:[x.(i)wdr]W+U:|xz(zw’ d:]w .(G-34)

for continuous signals, or

e lfp 1
(Z|xl[n]¢xz[n1|") < (Zixltn]v’) +(lez[n1|P)

-
(G-35)

for discrete-time sequences.
R

L A
Eitd
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AfD (see analog-to-digital conversion)
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Ambiguity function, 370
Amplitude modulation (AM), 252, 377
Amplitude overload, 306
Analop-to-digital conversion (A/D), 306
Antenna temperature, 318-319
Arcsine density, 97, 438
ABRMA (see autoregressive moving average
process)
Associative law of sets, 7
Autocorrelation function:
bound on, 194
of complex process, 206, 254
defined, 187, 194, 199, 206
of derivative of a process, 338
derivatives of, 338
Fourier transform of, 225, 228
Fourier transform of time average of, 228
of linear system response, 278, 313
measurement of, 200-201
at product device output, 252
properties of, 194-195
relationship to power spectrum, 227-230
of stationary process, 187
time, 189, 337
time average of, 228
of wide-sense stationary process, 187188
Auigcovariance function, 191
“of complex process, 207
defined, 198, 199, 207
Fourier transform of, 261

of wide-sense stationary processes, 198,
207

Anwntoregressive moving average process, 308
Available power gain, 319, 320
Average effective noise temperature, 325
Average effective source temperature, 325
Average operating noise figure, 324
Average standard noise figure, 324-325
Axioms of probability, 11

Band-limited random process, 288
properties of, 200-295

Band-limited white noise, 249

Bandpass random process, 287

Bandwidth:
noise, 274, 283, 286-287, 326
of a power spectrum, 225-226
rms, 225-226

Baseband defined, 225

Bayes, Thomas, 13n

Bayes' theorem, 18

Bernoulli density, 436

Bernoulli, Jacok, 28n

Bernoulli trials, 28

Bessel function, 399, 436

Beta density, 438

Binary communication system, 18

Binary process, semirandom, 209

Binary symmetric channel, 19

Binomial coefficient, 28

Binomial density function, 54, 437
characteristic function of, 102, 437
mean of, 99, 437
variance of, 99, 437
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Binomial distribution function, 55, 437
Bit, 80
Bivariate gaussian density, 136, 149,
440-441
Boltzmann, Ludwig, 314n
Boltzmann’s constant, 314
Bound(s):
on autecorrelation function, 194
on crasscorrelation function, 197
on linear system response, 275
Bounded variation, 412n, 425n
Butterworth filter, 332

Cartesian product space, 24n
Cauchy, Augustin Louis, 74n
Cauchy density function, 74
Cauchy distribution function, 74, 438
Cauchy random variable, 74, 105
Causal system, 274-275, 308
Central limit theorem, 125-128
Central moments, 81, 100, 143-144
related to moments about origin, 101
Certain gvent, 1]
Channel, 18
binary symmetric, 19
Characteristic function:
of binomial density, 102, 437
of chi-square density, 103, 439
defined, 84, 146-148, 148
of Erlang random variable, 102, 439
of exponential random variable, 83, 439
of gaussian random variable(s), 103, 174,
440
joint, 146-148, 174
of Laplace density, 103, 441
marginal, 147
moment generaling property of, 85, 149
of Poisson random variable, 102, 437
for several random variables, 147, 148
for two random variables, 146-147
Chebychev, Pafouty L., 83n
Chebychev's inequality, 83
Chernoff's bound, 87, 103
ChernofT’s inequality, 84, 87
Chi-square density, 101, 439
Cholesky method, 162
Class of sets, 3
Classification of process, 181185
Coefficient of skewness, 32
Colored noise, 251
Combinations, 27
Combined experiment, 24
Combined sample space, 24
Communication system(s):
amplitude mouulation (AM), 377-381
binary, 17
frequency allocations, 378, 382
frequency modulation, 3§2-386
three-symbol, 37

Commutative law of sels, 7
Complement of set, 6
Complex random process, 206-208,
254-255 (See also Random process)
Complex random variable, 168
Conditional density function, 61, 116-119
with interval conditioning, 119, 135
with point conditioning, 116-119
properties of, 61 ’
Conditional distribution function, 60;
116-119
with interval conditioning, 119, 135
with point conditioning, 116-119
properties of, 60
Conditional expected value, 80, 173
Conditional probability, 15
Conditioning event, 6365
interval, 119-120, 135
point, 116-119
Continuous random process, 181
Continuous random sequence, 81
Continuous random variable, 44
Convoelution integral, 123, 272
Convolution of density functions, 123, 125
Convolution sum, 310
Correlation:
of independent random variables, 143,
68
of orthogonal random variables, 143,
169
of random variables, 143, 168-169
of uncorrelated random variables, 143,
168
Correlation coefficient, 145, 171
Correlation-ergodic process, 193
autocorrelation, 193
cross-correlation, 193
Correlation functions (Sce alse listings by
specific types)
autocorrelation, 189, 194, 196, 199
autocovariance, 191, 198, 199
cross-correlation, 188, 199
cross-covariance, 198, 199
of derivative ol a process, 338
time autocorrelation, 189
time cross-correlation, 190
Correlation integral, 368, 427
Carrelation receiver, 368
Countable set, 3
Countably infinite set, 3
Covariance:
of independent random variables, 145
of orthogonal random variables, 145
of random variables, 144, 168
of uncorrelated random variables, 145,
168
Covariance functions {See Correlation
functions)
Covariance matrix, 152
after linear transformation, 159

Crest-factor, 307, 406
Cross-correlation function(s):
bounds on, 197
of complex process, 207, 254
defined, 196, 199, 207
of derivative of process, 264-265, 338
Fourer transform of, 230, 233, 234
of independent processes, 196
of jointly wide-sense stationary processes,
197-198
measurement of, 200-201
of orthogonal processes, 196
properties of, 197
relationship to cross-power spectrum,
234-237
of response of linear system, 278279
time, 190
time average of, 233, 236
Cross-covariance function;
of complex processes, 207
defined, 198, 199
of independent processes, [98
of uncorrelated processes, 198
of wide-sense stationary processes, 198
Crossover frequency, 410
Cross power, 232
Cross-power density spectrum: 230-234
of complex processes, 254
defined, 231, 232
of linear system, 282
measurement of, 282-286
propeities of, 233
real and imaginary parts of, 233
relationship to cross-correlation function,
234-237
Cross-power formula, 232
Cross-power spectrum (See Cross-power
density spectrum)
Curnulative probability distribution funciion
(see Probability distribution function)

DA (see digital-to-analog conversion)

D/D (see digital-to-digital processing)

Damping factor, 395

Dectbels, 328n

Delta function (see Impulse function)

De Moivre, Abraham, 31n

De Moivre-Laplace approximation, 31

De Morgan, Augustus, 8n

De Morgan's laws, 8, 34

Density function (see Probability density
Function)

Derivative of random process, 215, 264-265,
338 :

power speciram of, 224-225

Detection probability, 403

Deterministic random process, 184

Deterministic signal, 220, 221

DFT (see discrete Fourier transform)

Difference equation, 308 455
Difference of sets, 6
Digital process, 183 INDEX

Digital signal processing (DSP), 182
Digital-to-analog conversion (DfA), 306, 307
Digital-to-digital processing (D/D), 306
Dirichlet, Peter Gustav Lejeune, 425n
Dirichlet conditions, 4250
Discrete Fourier teansform (DEFT), 245
Discrete frequency, 239
Discrete random process, 181
Discrete random sequence, 183
Discrete randoem variable, 43
Discrete-time Fourier transform (DTFT),
239
Discrete-time random process, 181, 199
power spectrum of, 237-239
Discrete-time random signal, 181
Discrete-lime sequence, 182, 199
power spectrum of, 235246
Discrete-time systems, 305-314
A/D conversion in, 306
BIBO stability of, 311
canonic form, 308-3G9
causal, 308
difference equation for, 308
dimension of, 308
direct form I, 308
direct form II, 309
finite-dimensional, 308
finite impnilse response (FIR), 311
[requency response function, 312
Impulse fesponse of, 310
infinite dimensional, 308
infinite impulse response (IIR), 311
tinear, 308
order of, 308
recursive, 311
shift-invariant, 308n
iransfer function of, 312
Disjoint sets, 4
Distribution function {see Probability
distribution function)
Distributive law of sets, 7
Domain, 66
DSP (see Digital signal processing)
DTFT (see Discrete-time Fourier transform)
Duality principle, 8

Effective noise temperature, 316, 320,
325-326

Efficiency, 381, 406

Elementary event, 12

Elements of a set, 3

Empty set, 3

Ensemble, 180

Ensemble average, 180

Ensemble member, 180

Entropy, 80
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Envelope detector, 380, 402
Equal sets, 5
Ergodic random process, 189193
in avtocorrefation, 193
correlation-ergodic, 193
jointly, 190
mean-ergodic, 190
Ergodic theorem, 189
Erlang, A. K, 102n
Erlang density, 439
Erlang random variable, 102
Estimate, 164
consistent, 165
of mean, 165
of power, 166
of variance, 166
unbiased, 165
Estimator, 165
Event(s), 9
certain, 11
on cotnbined sample space, 25-26
defined, 10
elementary, 12
impossible, 11
joint, 14, 109
mutually exclusive, 10
pairwise independence of, 21
probability of, 10
statistically independent, 20, 21-23
Excess available noise power, 320
Expeciation (see Expected valus)
Expected value (expectation), 77
conditional, 80, 173
of a function of a random variable, 79,
&0
ol a function of several random
variables, 141, 142
of random process, 180, 186, 199, 202,
206
of a random variable, 78, 168
of a sum of random variables, 142
Experiment(s), 9
combined, 24-27
independent, 26
mathematical definition of, 9, 12
Exponential density function, 57
Exponential distribution function, 57

False alarm, 402, 403
Fast Fourier transform (FFT), 224
FFT (see Fast Fourier transform)

_ Filter (system):

Butterworth, 332
gaussian, 330
idealized, 274
matched, 357361
prediction, 362
smoothing, 362
Wiener, 361-155

Finite set, 3
FIR (see Discreie-time systems)
First-order stationary random process, 186
Fourier, Baron Jean Baptiste Joseph, 424n
Fourier series, 428
coefficients, 428, 429
defined, 428
Fourier transform of, 429
Fourier transform(s), 84, 220-221, 424-
of autocorrelation function, 225, 228
of cross-correlation function, 230 _%33,;_
234 s
defined, 84, 221, 424
discrete, 245
discrete time, 239, 240
existence, 425
inverse, 84, 221, 424
inverse discrete, 245
inverse discrete time, 240
multidimensional, 427
properties of, 425-427
table of pairs of, 434
of time-averaged autocorrelation
function, 225, 228
of time-averaged cross-correlation
function, 233, 234
Frequency-domain analysis, 220
Frequency modulation (FM), 382-386
Frequency response function, 312
Fresnel integrals, 371
Fubini’s theorem, 445

Gawmma density, 440
Gamma function, 435
Gauss, Johann Friedrich Carl, 5ln
Gaussian density function, 51, 136
conditional, 136, 152
marginal, 136, 149, 152
mean value of, 99, 149
N-dimensional (N-variate), 151
of one random variable, 51, 440
two-dimensional {bivariate), 134, 149,
440-441
variance of, 99, 149, 440, 441
Gaussian distribution Munction:
of one random varable, 51, 440
table of, 418
Gaussian filter, 330
Gaussian random process, 201-203
Gaussian random variable(s), 143-152
characteristic function of, 103, 440, 441
conditional density function of, 136, 152
defined, 51, 149, 151
linsar transformation of, 89, 157-159
marginal deasity function of, 136, 149,
152
mean value of, 99, 440, 441
moments, 262, 264
moment generating function, 103

Gaussian random variable(s):
properties of, 152
variance of, 99, 440, 441

Histogram, 94
Halder’s inequality, 445-449

I and Q sampling, 302
Ideal sampling, 297
Idealized system, 274
IDFT (see Inverse discrete Fourier
transform)
IDTFT (see [nverse discrete-time Fourier
transform)
IIR (see Discrete-time systems)
Impossible event, 11
Impulse function:
defined, 48, 310, 412, 414
limiting forms of, 224, 256
N-dimensional, 4£3
properties of, 414416
relationship to unit-step function, 48, 413,
414
two-dimensional, £17, 413
Impulse response:
of discrete-time system, 310
of linear system, 271-272
Incomplete beta function, 436
Incomplete gamma function, 435, 436
Incremental available power, 316
Incremental noise power, 315
Independent events, 20-23
Independent experiments, 26
Independent random processes, 186
Independent random variables, 121--122, 168
joint characteristic function of, 174
Inequalities:
Chebychev's, 83
Chernofl's, 84, 87
cosine, [74
Halder's, 448-449
Markov's, 84
Minkowski's, 449
Schwarz's, 174, 358, 449
triangle, 174
Infinite set, 3
Information defined, 80
Integrals:
Fresnel, 371
table of definite, 422
table of indefinite, 420-422
Integrator, 200, 361n
Interpolating function, 299
Intersection of sets, &
Interval conditioning, 119, 135
Inverse discrete Fourier transform (IDFT),
. 245
Inverse discrete-time Fourier transform
(IDTFT), 240

Inverse Fourier transform (see Fourier
translorin)

J» Ton, 168
Jacobi, Karl Gustav Jakob, 1561
Jacobian, [56
Joint central moments, 144-146
of two discrele random variables, 171
Joint characteristic function, 146-148, 174
of independent random variables, 174

of two gaussian random variables, 174, 441

Joint event, 109
Joint moments, 143146
of two discrete random variables, 171

Joint probability, 15

Joint probability density function (see
Probability density function}

Joint probability distribution function (sez
Probability distribution function)

Joint sample space, 103

Jointly ergodic random processes, 190

Jointly gaussian random processes, 198, 202

Jointly wide-sense stationary random
processes, 188, 206, 207, 278-279

Khintchine, A. L, 228
Kronecker delta function, 310

Laplace, Marquis Pierre Simon de, 31a
Laplace density function, 69
Laplace transform, 221
Leibniz, Gottlried Wiihelm von, 444n
Leibniz's rule, 83, 444 .
Likelihoad, 9
Linear system:
causal, 274
cross-correlation function, 278-279
Cross-power spectrums, 282
defined, 271
idealized, 274
impulse response, 271272
noise temperature, 327
optimum, 356
output zutocerrelation function, 278
output mean-squared value, 277
output mean value, 276-277
ouiput power, 277

output power spectrum, 280-282, 313-314

physically realizable, 275

response to deterministic signal, 271-272

response to random signal, 276

stable, 275, 311

time-invariant, 272, 308

transfer function, 272, 281, 312

white noise evaluation of, 279-300
Liquid helium, 267
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Log-normal density function, 74, 104
Log-normal distribution function, 74, 104

Mapping, 42
Marcum'’s O-function, 404, 436
Margina! characteristic function, 147 .
Marginal density function {see Probability .
density [unction}
Marginal distribution function (see
Probability distribution function)
Markov's inequality, 84
Maser, 267
Matched filter, 357
for colored noise, 358
impulse response, 359-360
maximum signal-to-noise ratio of, 359
outyput signal from, 368
for rectangular pulse, 360-361
transfer function, 35%
for white noise, 359
Matrix, covariance, 152
Mean-ergodic process, 192
Mean frequency, 226
Mean (expected) value, 77
from autocorrelation function, 194
conditional, 80, 173
estimate of, 165
of function of a random variable, 79, 80
of function of several random variables,
141, 142
of process sample function, 180
of random process(es), 180, 186, 199,
202, 16 .
of random process derivative, 215
* of random variable, 78, 168
of sum of random varables, 142
of system response, 276-277
Mean-squared error, 290n, 362
Mean-time between failure (MTBF), 74
Measurement of correlation functions,
200-201
Measurement of power spectrums, 282-286
Median of random variable, 60
Minkowski’s inequality, 449
Mixed random variable, 44
Mode of random variable, 73
Modulation index, 407
Moment generating function, 85
of gaussian random variable, 103
Moments:
central, 81, 100, 143-144
from characteristic function, 85, 146-148
interrelationships, 101 .
joint, 143146
from rmoment generating function, 86
about origin, &1, 143-144
of two discrete random variables, 171
Monotonic {ransformations:
decreasing, 87, 89

increasing, 87, 88-89
Mutualiv exclusive events, 10
Mutually exclusive sets, 4

N-order stalionary random process, 188
Narrowband gaussian process, 289
Narrowband random process, 288-239
Natural frequency, 395
Natural nuimbers, 97
Noise, 1, 314
arbitrary source of, 316
colored, 251
in control system, 386-389
in phaselocked loop, 389-393
resistive source of, 314
thermal, 247, 314 ’
tvpes of, 314n
white, 246 -
Noise bandwidth, 274, 283, 286-287, 326
Noise figure:
of attenuator, 326-327
average, 324-325
average operating, 324
average standard, 324-325
average system operating, 327-328
incremental, 322
operating spot, 323, 350
spot, 322
standard spot, 323, 350
Noise performance:
of amplitude modulation system,
380-381
of frequency modalation system,
385-386 .
of phase-locked loop, 392-393
of radar, 401405
Noise temperature:
- of antenna, 319-310
of attenuator, 326
average, 325-326
average effective input, 325
average effective source, 325
effective, 316
effective input, 320
standard, 323
system, 327
Nondeterministic random process, 134
:Nonstationary random process, 185 )
Normal, distribution function (see Gaussian
density function}
Normal distribution (see Gaussian
distribution function)
Normalized second-order moment, 145
Null set, 3 ’
Nyquist rate, 296

.

a

Open-loop transfer function, 389
Operating spot noise figure, 323, 350

Operator, 271

Order of moment, 143-144
Orthogonal random process, 196, 207
Orthogonal random variables, 143, 169
Outcome of experiment, 9
Overmodulation, 380n, 406

Parseval, M. A, 427n
Parseval’s theorem, 427
Pascal, Blaise, 437n
Pascal density, 437
Permutations, 27
Phase detector, 390
Point conditioning, 116-119
Poisson, Siméon Denis, 3in
Poisson approximation, 31
Poisson counting process, 203
Poisson density function, 55, 437
mean of, 100, 437
variance of, 100, 437
Poisson random process, 203-206
autocerrelation function, 218
joint density, 205-206
Poisson random variable, 55, 100, 102, 175
Power:
from autocorrelation function, 194
incremental avaikable, 316
from power density spectrum, 223
in a random process, 194, 221
in response of linear system, 277, 281
from second moment of process, 194
Power density (see Power density spectrum)
Power density spectrum, 195, 221
bandwidth of, 225-226
of complex process, 254
defined, 223
of derivative of process, 224-225
of discrete-time processes and sequences,
237-246, 303-305
- inverse Fourier transform of, 225, 228, 240
measurement of 282-286
of output of linear system, 280-282,
313-314 .
of product device ountput, 252
properties of, 224-225
relationship to autocorrelation function,
227-230 ’
relationship 1o autocovariance function,
261
Power formula, 223
Power gain, available, 320
Power spectral density, 221n
Power spectrum (see Power density
spectrum)
Power transfer function, 281
Prediction filter, 362
Probability, ¢
a posteriori, 20
a priori, 20

axioms of, 11 459
on combined space, 26

conditional, 15 INDEX
defined, 10

of detection, 403, 404
of [alse alarm, 402, 403
joint, 15 '
of miss, 403
as relative frequency, 13
relative frequency definition, 9
total, 17 '
transition, 20

Probability density function:
arcsine, 97
Bernoulli, 436
beta, 438
binomial, 54, 99, 437
Cauchy, 74, 438
chi-square, 101,439
conditional, 61, 116-230
defined, 47, 113, 114, 168
of discrete random variable(s), 48, 114
Erlang, 439
existence, 48
exponential, 57, 439
gamma, 440
gaussian, 51, 136, 149-152, 440441
joint, 113, 114, 168
Laplace, 69, 441
log-normal, 74, 441 .
marginal, 115 |
of ¥ random variables, 114

Probability density function:

normal, 5ln

Pascal, 437

Poisson, 55, 437

propetties of, 49, 114

of random process(es), 186, 186n

Rayleigh, 59, 442

Rice, 399, 442

of sum of random variables, 112--123
" transformation of, 87-92

triangular, 49-50

of two random vasiables, 113

uniform, 56, 442

Weibull, 102, 443

Probability disidbution function:

arcsine, 438

Bernoulli, 436

beta, 438

binomial, 54, 437

Cauchy, 74, 438

chi-square, 439

conditional, 60, 116

of continuous random variable, 46
defined, 44, 109, 111, 185, 186

of discrete random variable(s), 45, 111
Erlang, 439

expenential, 57, 430

gamma, 440
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