Chapter 2 solutions

2.1

(a)
(i)

(ii)

(iii)

(iv)

$$
x(-t / 3)
$$

(b)
(i)

(ii)

(iii)

(iv)

(c) (i)

This material is is protected by Copyright and written permission should be obtained from the publisher prior to any

(iii)

(iv)

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is is protected by Copyright and written permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2.2

This material is is protected by Copyright and written permission should be obtained from the publisher prior to any
2.3

(a)
$y(t)=-2(x(-2 t+2))+2$
(b)

t	$y(t)$	$-2 t+2$	$-2(x(-2 t-1))+2$
-0.5	4	3	4
-1	2	4	2
1	0.4	0	0.4

2.4

(a) $y(t)=-0.5(x(2 t-4))+1.5$
(b)

t	$\mathrm{y}(\mathrm{t})$	$2 \mathrm{t}-4$	$-0.5(\mathrm{x}(2 \mathrm{t}-4))+1.5$
2	1.5	0	1.5
3	-1	2	-1
4.5	1.5	5	1.5

(c) $x(t)=-2 y\left(\frac{t+4}{2}\right)+3$
(d)

t	$\mathrm{x}(\mathrm{t})$	$\frac{t+4}{2}$	$-2 y\left(\frac{t+4}{2}\right)+3$
0	0	2	0
4	-3	4	-3
5	0	4.5	0

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is is protected by Copyright and written permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2.5

$$
\begin{aligned}
& x(2 t-4)=4[(2 t-2) u(2 t-2)-(2 t-4) u(2 t-4)-u(2 t-6)-(2 t-8) u(2 t-8)-(2 t-9) u(2 t-9)] \\
& =4[(2 t-2) u(t-1)-(2 t-4) u(t-2)-u(t-3)-(2 t-8) u(t-4)-(2 t-9) u(t-4.5)]
\end{aligned}
$$

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is is protected by Copyright and written permission should be obtained from the publisher prior to any


```
\(x(t)=5 u(-2 t-2)-u(-2 t-4)+3 u(-2 t-6)-7 u(-2 t-8)\)
\(=5 u(-(t+1))-u(-(t+2))+3 u(-(t+3))-7 u(-(t+4))\)
Or \(x(t)=7 u(t+4)-3 u(t+3)+u(t+2)-5 u(t+1)\)
```


2.7

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is is protected by Copyright and written permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
c) even

verify: even +odd:

even+ odd:

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to:
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2.8

a) $-4 t=-(-4(-t))$ so it is odd.
$x(t)$ (blue) and $x(-t)$ (green)

b) $e^{-|t|}=e^{-|-t|}$ so it is even $(|t|=|-t|)$.

c) Since $\cos (t)$ is even, $5 \cos (3 t)$ is also even.

d) $\sin \left(3 t-\frac{\pi}{2}\right)=-\cos (3 t)$ which is even:

e) $u(t)$ is neither even nor odd; for example $u(3)=1$ but $u(-3)=0 \neq-u(3), \neq u(3)$.

$2.9(a) \int_{-T}^{T} x_{\Delta}(t)=\int_{-T}^{0} x_{0}(t) d t \int_{D}^{T} x_{0}(t) d t ; x_{0}(t)=-x_{0}(-t)$

$$
\therefore \int_{T}^{0} x_{0}(t) d t=-\left.\int_{-T}^{0} x_{0}(-t) d t\right|_{t=-T}=\int_{-T}^{0} x_{0}(\tau) d T=-\int_{0}^{T} x_{\Delta}(\tau) d \tau
$$

$\therefore \int_{-T}^{T} x_{0}(t) d t=0$
(b)
$\int_{T}^{T} x(t) d t=\int_{-T}^{T}\left[x_{e}(t)+x_{\Delta}(t)\right] d t=\int_{-T}^{T} x_{e}^{T}(t) d t$
and $A_{x}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{e}(t) d \tau$
(c) $x_{0}(0)=-x_{0}(-0)=-x_{0}(0)$. The only number with $a=-a$ is $a=0$ so this implies $x_{0}(0)=0$. $x(0)=x_{e}(0)+x_{0}(0)=x_{e}(0)$.

2.10

(a) Let $z(t)$ be the sum of two even functions $x_{1}(t)$ and $x_{2}(t)$. To show that $z(t)$ is even, we need to show that $z(t)=z(-t)$ for all t. This is easy to show, since $z(t)=x_{1}(t)+x_{2}(t)$ and $z(-t)=x_{1}(-t)+x_{2}(-t)$ (since to get $z(-t)$ we just plug in $-t$ everywhere for t, which amounts to just plugging in $-t$ in $x_{1}(t)$ and $x_{2}(t)$). Now since $x_{1}(t)$ and $x_{2}(t)$ are even, by definition $x_{1}(t)=x_{1}(-t)$ and $x_{2}(t)=x_{2}(-t)$ so $x_{1}(t)+x_{2}(t)=x_{1}(-t)+x_{2}(-t)$ so $z(t)=z(-t)$.
(b) Let $x_{1}(t)$ and $x_{2}(t)$ be two odd functions. Then $x_{1}(-t)+x_{2}(-t)=-x_{1}(t)+\left(-x_{2}(t)\right)=-\left(x_{1}(t)+\right.$ $\left.x_{2}(t)\right)$ which shows that $x_{1}(t)+x_{2}(t)$ is odd.
(c) Let $z(t)=x_{1}(t)+x_{2}(t)$ as in part a, where now $x_{1}(-t)=x_{1}(t)$ and $x_{2}(-t)=-x_{2}(t)$. We need to show that $z(t) \neq z(-t), z(t) \neq-z(-t)$. Consider that $z(-t)=x_{1}(-t)+x_{2}(-t)=x_{1}(t)-x_{2}(t)$. In order to have $z(t)$ be even, we would therefore need to have $x_{1}(t)+x_{2}(t)=x_{1}(t)-x_{2}(t)$ for all t, which is equivalent to having $x_{2}(t)=-x_{2}(t)$ for all t, which is not possible for nonzero $x_{2}(t)$. Similarly, in order to have $z(t)$ be odd, we would need to have $z(t)=-z(t) \Longrightarrow x_{1}(t)+x_{2}(t)=x_{2}(t)-x_{1}(t)$, which is not possible for nonzero $x_{1}(t)$. So the sum of an even and odd function must be neither even nor odd.
(d) Let $z(t)=x_{1}(t) x_{2}(t)$ where $x_{1}(t)=x_{1}(-t)$ and $x_{2}(t)=x_{2}(-t)$. Then $z(-t)=x_{1}(-t) x_{2}(-t)=$ $x_{1}(t) x_{2}(t)=z(t)$ which shows that $z(t)$ is even.
(e) Let $z(t)=x_{1}(t) x_{2}(t)$, where $x_{1}(t)=-x_{1}(-t)$ and $x_{2}(t)=-x_{2}(-t)$. Clearly $z(t)$ is even because $z(-t)=x_{1}(-t) x_{2}(-t)=\left(-x_{1}(t)\right)\left(-x_{2}(t)\right)=x_{1}(t) x_{2}(t)=z(t)$, which is the definition of evenness.
(f) Let $z(t)=x_{1}(t) x_{2}(t)$, where $x_{1}(t)=-x_{1}(-t)$ and $x_{2}(t)=x_{2}(-t)$. Clearly $z(t)$ is odd because $z(-t)=x_{1}(-t) x_{2}(-t)=\left(-x_{1}(t)\right) x_{2}(t)=-x_{1}(t) x_{2}(t)=-z(t)$, which is the definition of oddness.

2.11

The plot of $x_{o}(t)$ is determined by $x_{o}(-t)=-x_{o}(t)$, the plot of $x_{e}(t)$ is determined by $x_{e}(t)=x(t)-x_{o}(t)$, and the plot of $x(t)$ is determined by $x(t)=x_{e}(t)+x_{o}(t)$.

2.12

(a) $\sin (t)=\sin (t+n 2 \pi)$ for any integer n, so $7 \sin (3 t)=7 \sin (3 t+n 2 \pi)=7 \sin \left(3\left(t+n \frac{2 \pi}{3}\right)\right)$; therefore $x(t)$ is periodic with fundamental period $T_{0}=\frac{2 \pi}{3}$ and fundamental frequency $\omega_{0}=\frac{2 \pi}{T_{0}}=3$.
(b) $\sin \left(8\left(t+\frac{2 \pi}{8}\right)+30\right)=\sin (8 t+2 \pi+30)=\sin (8 t+30)$. $\omega_{0}=8$ and $T_{0}=\frac{2 \pi}{8}=\frac{\pi}{4}$.
(c) $e^{j t}=\cos (t)+j \sin (t)$ is periodic with fundamental period 2π, so $e^{j 2 t}$ is periodic with fundamental period $\frac{2 \pi}{2}=\pi$, and fundamental frequency $\omega_{0}=2$.
(d) $\cos (t)=\cos (t+n 2 \pi)$ for any integer n, and $\sin (2 t)=\sin (2(t+m \pi))$ for any integer m, so $\cos (t)+\sin (2 t)$ will be periodic with period T_{0} if $\cos (t)+\sin (2 t)=\cos \left(t+T_{0}\right)+\sin \left(2\left(t+T_{0}\right)\right)$. This will hold as long as $T_{0}=n 2 \pi$ and $T_{0}=m \pi$ for some integers n and m, and the fundamental period is the smallest value for which this holds, which is $T_{0}=2 \pi$, with fundamental frequency $\omega_{0}=1$.
(e) $e^{j(5 t+\pi)}=e^{j \pi} e^{j 5 t}$. So the phase shift of π just means a complex constant (constant with respect to time) out front and does not effect periodicity of the signal $e^{j 5 t}$, which has fundamental period $T_{0}=\frac{2 \pi}{5}$ and $\omega_{0}=5$.
(f) $e^{-j 10 t}$ and $e^{j 15 t}$ are both periodic with periods $\frac{\pi}{5}, \frac{2 \pi}{15}$ and their sum is periodic with period $T_{0}=$ $\operatorname{LCM}\left(\frac{\pi}{5}, \frac{2 \pi}{15}\right)=\frac{2 \pi}{5}$ and $\omega_{0}=5$:
$e^{-j 10\left(t+\frac{2 \pi}{3}\right)}+e^{j 15\left(t+\frac{2 \pi}{3}\right)}=e^{-j 10 t} e^{-j 4 \pi}+e^{j 15 t} e^{j 6 \pi}$ and since $e^{-j 4 \pi}=1$ and $e^{j 6 \pi}=1$ this $=e^{-j 10 t}+e^{j 15 t}$.

2.13

(a) periodic, $T_{0}=2 \pi, \omega_{0}=1$
(b) periodic, $T_{0}=\pi, \omega_{0}=2$
(c) not periodic since 1 and π do not have any common factors (the only factor of 1 is 1 , but since π is irrational, it cannot be an integer times 1)
(d) periodic, $T_{0}=12, \omega_{0}=\frac{\pi}{6}$

2.14

(a) periodic, $T_{0}=\frac{\pi}{2}, \omega_{0}=4$
(b) periodic, $T_{0}=\frac{\pi}{2}, \omega_{0}=4$
(c) not periodic, since 2π and 6 do not have a common factor
(d) periodic; $x_{1}(t)$ has period $2, x_{2}(t)$ has period 1 , and $x_{3}(t)$ has period $\frac{12}{5}$ so the sum has period $T_{0}=\operatorname{LCM}\left(2,1, \frac{12}{5}\right)=12$ and fundamental frequency $\omega_{0}=\frac{\pi}{6}$.

2.15

(a) For $x_{1}(t)+x_{2}(t)$ to be periodic we need some number T such that $x_{1}(t+T)+x_{2}(t+T)=x_{1}(t)+x_{2}(t)$ for all t. This can only be true if $x_{1}(t+T)=x_{1}(t)$ and $x_{2}(t+T)=x_{2}(t)$, which can only be true if $T=k_{1} T_{1}$ and $T=k_{2} T_{2}$ (T is an integer multiple of both the periods). So we need there to be some integers k_{1} and k_{2} such that $k_{1} T_{1}=k_{2} T_{2} \Longrightarrow \frac{T_{1}}{T_{2}}=\frac{k_{2}}{k_{1}}$.
(b) Put $\frac{k_{2}}{k_{1}}$ in its most reduced form $\frac{n}{m}$ by canceling any common terms in the numerator and denominator; then $T_{0}=n T_{2}=m T_{1}$.

2.16

Let $u=a t$ so performing u substitution gives:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \delta(a t-b) \sin ^{2}(t-4) d t & =\int_{-\infty}^{\infty} \delta(u-b) \sin ^{2}\left(\frac{u}{a}-4\right) \frac{d u}{a} \\
& =\sin ^{2}\left(\frac{b}{a}-4\right) \frac{1}{a}
\end{aligned}
$$

2.17 By sifting property, $\mathrm{y}(\mathrm{t})=1 / 2 \mathrm{x}(2)+1 / 2 \mathrm{x}(-2)$
2.18

(a) $x_{1}(t)=2 t u(t)-4(t-1) u(t-1)+2(t-2) u(t-2)$

(b) $t<0, x,(t)=0^{2}$
$0<t<1, \quad x,(t)=2 t^{2}$
$1<t<2, \quad x_{1}(t)=2 t-4 t+4=4-2 t^{2}$
$2<t, x,(t)=4-2 t+2 t-4=0^{-}$
(c) $x(t)=\sum_{k=-\infty}^{\infty} x_{1}\left(t-k T_{0}\right)=\sum_{k=-\infty}^{\infty} x_{1}(t-2 k)$
2.19
(a) $x_{1}(t)=5 t u(t)-5 t u(t-1)+5 u(t-1)-5 u(t-3)$
(b)

$$
\begin{array}{rc}
t< & 0, f(t)=0-0+0-0=0 \\
0<t & <1, f(t)=5 t-0+0=0=5 t \\
1<t & <3, f(t)=5 t-5 t+5-0=5 \\
3 & <t, f(t)=5 t-5 t+5-5=0
\end{array}
$$

(c) $x_{2}(t)=\sum_{k=-\infty}^{\infty} x_{1}(t-k 4)$
2.20. (a) Lt $a t=7, \therefore \int_{-\infty}^{\infty} \delta(a t) d t=\int_{-\infty}^{\infty} S(\tau) \frac{d \tau}{a}$

$$
=\frac{1}{a} \int_{-\infty}^{\infty} S(\tau) d \tau \Rightarrow \delta(a t)=\frac{1}{a} \delta(t), a>0
$$

For $a<0, a t=\tau \Rightarrow-|a| t=\tau, \quad d t=\frac{-d T}{|a|}$

$$
\begin{aligned}
& \therefore \int_{-\infty}^{\infty} \delta(a t) d t=\int_{\infty}^{\infty} \delta(\tau) \frac{-d \tau}{|a|}=\frac{1}{|a|} \int_{-\infty}^{\infty} \delta(\tau) d \tau \\
& \therefore S(a t)=\frac{1}{|a|}
\end{aligned}
$$

$\therefore \frac{\delta(a t)=\frac{1}{|a|} \delta(t)}{t}$ for the general case.
(b) $\int_{-\infty}^{t} \delta(\sigma) d \sigma=u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}$

$$
\therefore \int_{-\infty}^{t} \delta\left(\tau-t_{0}\right) d \tau=u\left(t-t_{0}\right)
$$

(c) $\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)$
 (continued)...

2.20 (c)

Recall the rules about integrating delta functions: $\delta(t)$ is nonzero only at $t=0$, so $x(t) \delta(t)=x(0) \delta(t)$, and $\int_{-\infty}^{\infty} \delta(t) d t=1$, so $\int_{-\infty}^{\infty} x(t) \delta(t) d t=\int_{-\infty}^{\infty} x(0) \delta(t) d t=x(0) \int_{-\infty}^{\infty} \delta(t) d t=x(0)$. We can time-shift the delta function: $\delta\left(t-t_{0}\right)$ is nonzero only at $t=t_{0}$, so $x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right)$ and $\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)$.
i) $\int_{-\infty}^{\infty} \cos (2 t) \delta(t) d t=\cos (2 \cdot 0) \int_{-\infty}^{\infty} \delta(t) d t=1$.
ii) $\delta\left(t-\frac{\pi}{4}\right)$ is a time-shifted version of $\delta(t)$, and is nonzero only at $t=\frac{\pi}{4}$. So:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \sin (2 t) \delta\left(t-\frac{\pi}{4}\right) d t & =\quad \int_{-\infty}^{\infty} \sin \left(2 \cdot \frac{\pi}{4}\right) \delta\left(t-\frac{\pi}{4}\right) d t \\
& =\sin \left(\frac{\pi}{2}\right) \int_{-\infty}^{\infty} \delta\left(t-\frac{\pi}{4}\right) d t=\sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

iii) $\cos \left(2\left(t-\frac{\pi}{4}\right)\right) \delta\left(t-\frac{\pi}{4}\right)=\cos \left(2\left(\frac{\pi}{4}-\frac{\pi}{4}\right)\right) \delta\left(t-\frac{\pi}{4}\right)=1 \cdot \delta\left(t-\frac{\pi}{4}\right)$, so the integral of this is 1 .
iv) $\delta(t-2)$ is nonzero only at $t=2$. Therefore $\int_{-\infty}^{\infty} \sin ((t-1)) \delta(t-2) d t=\sin (2-1)=\sin (1)=0.8414 \ldots$
v) $\delta(2 t-4)$ is nonzero at $2 t-4=0 \Longrightarrow t=2$. So:

$$
\int_{-\infty}^{\infty} \sin (t-1) \delta(2 t-4) d t=\sin (2-1) \int_{-\infty}^{\infty} \delta(2 t-4) d t
$$

To figure out the integral, we can change variables-let $u=2 t$, so $d t=\frac{d u}{2}$ and the $-\infty, \infty$ limits stay the same. This gives: $\int_{-\infty}^{\infty} \delta(2 t-4) d t=\int_{-\infty}^{\infty} \delta(u-4) \frac{d u}{2}=\frac{1}{2}$, so we get:

$$
\int_{-\infty}^{\infty} \sin (t-1) \delta(2 t-4) d t=0.5 \sin (1)=0.4207 \ldots
$$

2.21

(a) $u(2 t+6)=u(t+3) \quad$ (b) $u(-2 t+6)=u(-t+3)$

(c) $u\left(\frac{t}{4}+2\right)=u(t+8)$

(d) $u\left(\frac{t}{4}-2\right)=u(t-8)$

2.22
(a)

$$
\begin{aligned}
& u(-t)=1-u(t) \\
& u(3-t)=1-u(t-3)
\end{aligned}
$$

(b) $\xrightarrow[3]{14^{4 .(3-t)}} t$
(c)
(d)

$$
\begin{aligned}
& t u(-t)= \pm[1-u(t)] \\
& (t-3) u(-t)=(t-3)[1-u(t-3)]
\end{aligned}
$$

$$
\begin{aligned}
2.23(a) y_{2}(t) & =T_{2}\left[T_{1}[x(t)]\right], y_{3}(t)=T_{3}\left[T_{1}[x(t)]\right] \\
y(t) & =T_{2}\left[T_{1}[x(t)]\right]+T_{4}\left\{T_{3}\left[T_{1}[x(t)]\right]+T_{5}[x(t)]\right.
\end{aligned}
$$

(b) $y(t)=T_{3}\left\{T_{2}\left[T_{1}[x(t)]\right]\right\}+Y_{3}\left\{T_{2}\left[T_{1}[x(t)]\right]\right\}+T_{5}\left[T_{1}[x(t)]\right]$
(c) $y(t)=T_{2}\left[T_{j}[x(t)]+T_{4}\left\{T_{3}\left[T_{1}[x(t)]\right] \times T_{5}[x(t)]\right\}\right.$
(d) $y(t)=T_{3}\left\{T_{2}\left[T_{1}[x(t)]\right]\right\} \times T_{4}\left\{T_{2}\left[T_{1}[x(t)]\right]\right\} \times T_{5}\left[T_{1}[x(t)]\right]$
2.24

$$
\begin{aligned}
y(t) & =T_{3}\left[m(t)+T_{1}[x(t)]\right] \\
m(t) & =T_{2}\left[x(t)-T_{1}[y(t)]\right] \\
\therefore y(t) & =T_{3}\left\{T_{2}\left[x(t)-T_{4}[y(t)]+T_{1}[x(t)]\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
2.25 m(t) & =T_{1}\left\{x(t)-T_{4}[y(t)]\right\}-T_{3}[y(t)] \\
y(t) & =T_{2}[m(t)]=T_{2}\left[T_{1}\left\{y(t)-T_{4}[y(t)]\right\}-T_{3}[y(t)]\right]
\end{aligned}
$$

2.27

2.27 (a) system is: $y(t)=\cos (x(t-1))$
i) Not memoryless: $y(t)$ depends on $x(t-1)$.
ii) Not invertible: for a counterexample of two input signals that give the same output signal at all points, take any $x(t)$ and $x(t)+2 \pi$.
iii) Causal; output at time t does not depend on input at times greater than t.
iv) Stable: clearly $|y(t)| \leq 1$ for any values of the input.
v) Time invariant: $y_{d}(t)=\cos \left(x\left(t-1-t_{0}\right)\right)$ and $y\left(t-t_{0}\right)=\cos \left(x\left(t-t_{0}-1\right)\right)$.
vi) Not linear: for example, violates the scaling property because $a y(t) \neq \cos (a x(t-1))$ (if we input a scaled version of the input $a x(t)$ we don't get the output scaled by the same amount $a y(t)$). This system also violates additivity, the other necessary property for a system to be linear.
2.27 (b)
i) not memoryless (at time t_{0} output depends on input at time $3 t_{0}$)
ii) invertible $\left(x(t)=\frac{1}{3} y\left(\frac{t-3}{3}\right)\right)$
iii) not causal ($3 t_{0}>t_{0}$ for $t_{0}>0$)
iv) stable
v) not time invariant $\left(x\left(t-t_{0}\right) \rightarrow 3 x\left(3 t-t_{0}+3\right)\right.$ but $y\left(t-t_{0}\right)=3 x\left(3\left(t-t_{0}\right)+3\right)=3 x\left(3 t-3 t_{0}+3\right)$
vi) linear
2.27 (c) system is: $y(t)=\ln (x(t))$
i) Memoryless;
ii) Invertible: $x(t)=e^{(y(t))}$
iii) Causal;
iv) Not stable: for example, $y(t)=-\infty$ whenever $x(t)=0$
v) Time invariant;
vi) Not linear: for example, violates additivity: $\ln \left(x_{1}(t)+x_{2}(t)\right) \neq \ln \left(x_{1}(t)\right)+\ln \left(x_{2}(t)\right)$ in general. Scaling doesn't work either.
2.27 (d) System is: $y(t)=e^{t x(t)}$
i) Memoryless;
ii) $x(t)=\frac{\ln (y(t))}{t}$ except when $t=0$ (we can't get back the value of $x(0)$.) This system would therefore be considered noninvertible but it is mostly invertible.
iii) Causal;
iv) Not stable: for example, if $x(t)=c$ (some constant $c>0$) then $y(t)=e^{t c}$ which goes to ∞ as $t \rightarrow \infty$ (we can't find any number K such that $e^{t c}<K$ for all t). not memoryless, invertible, not causal, stable, not time invariant, linear
v) Not time invariant: if the input is $x\left(t-t_{0}\right)$ we get $y_{d}(t)=e^{\left(t x\left(t-t_{0}\right)\right)} \neq y\left(t-t_{0}\right)=e^{\left(\left(t-t_{0}\right) x\left(t-t_{0}\right)\right)}$
vi) Not linear: doesn't satisfy either necessary property.
$2.27(\mathrm{e})$ System is: $y(t)=7 x(t)+6$
This system is memoryless, invertible, causal, stable, time invariant, but NOT linear: if we input $x_{1}(t)+x_{2}(t)$ we get out $7\left(x_{1}(t)+x_{2}(t)\right)+6$, while if we input $x_{1}(t)$ and $x_{2}(t)$ separately and add them, we get $y_{1}(t)+y_{2}(t)=7\left(x_{1}(t)\right)+6+7\left(x_{2}(t)\right)+6$, so the system violates additivity. Also violates scaling. Note that to show a system is linear you need to show it satisfies both properties (which you can do by showing that $\left.a x_{1}(t)+b x_{2}(t) \rightarrow a y_{1}(t)+b y_{2}(t)\right)$, but to show that a system is NOT linear, you only need to show that it violates at least one of these properties.
$2.27(f)$ System is: $y(t)=\int_{-\infty}^{t} x(5 \tau) d \tau$
i), iii) Not memoryless, not causal: output at time t depends on both past values of $x(t)$ (because integrating from $-\infty$) and future values of t (because depends on $x(5 t)$ and $5 t>t$ for $t>0$).
ii) invertible: $\frac{d}{d t} y(t)=x(5 t) \Longrightarrow x(t)=\left.\frac{d}{d t} y(t)\right|_{t / 5}$ (the function $y^{\prime}(t)$ evaluated at $t / 5$).
iv) Not stable: for instance, $x(t)=c$ (some constant) is a bounded input but the output is $y(t)=c t$, which goes to ∞ as t goes to ∞.
v) Not time-invariant: if the input is $x\left(t-t_{0}\right)$ we get $y_{d}(t)=\int_{-\infty}^{t} x\left(5 \tau-t_{0}\right) d \tau$, but $y\left(t-t_{0}\right)=$ $\int_{-\infty}^{t-t_{0}} x(5 \tau) d \tau=\int_{-\infty}^{t} x\left(5\left(\tau-t_{0}\right)\right) d \tau$.
vi) linear: if $x_{1}(t) \rightarrow y_{1}(t)=\int_{-\infty}^{t} x_{1}(5 \tau) d \tau$ and $x_{2}(t) \rightarrow y_{2}(t)=\int_{-\infty}^{t} x_{2}(5 \tau) d \tau$ then:

$$
\begin{array}{rlrl}
a x_{1}(t)+b x_{2}(t) \rightarrow \int_{-\infty}^{t} a x_{1}(5 \tau)+b x_{2}(5 \tau) d \tau & =a \int_{-\infty}^{t} x_{1}(5 \tau) d \tau+b \int_{-\infty}^{t} x_{2}(5 \tau) d \tau \\
& = & a y_{1}(t)+b y_{2}(t)
\end{array}
$$

$2.27(\mathrm{~g})$ System is: $y(t)=e^{-j \omega t} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau$.
i), iii) Not memoryless, not causal: depends on $x(t)$ values at all t from $-\infty$ to ∞.
ii) Not invertible
iv) Not stable: say $\omega=0$ and the input is a constant c; the output is infinite.
v) NOT time-invariant:

$$
\begin{aligned}
x\left(t-t_{0}\right) \rightarrow y_{d}(t) & = \\
& =e^{-j \omega t} \int_{-\infty}^{\infty} x\left(\tau-t_{0}\right) e^{-j \omega \tau} d \tau \\
& =\int_{-\infty}^{\infty} x(u) e^{-j \omega\left(u+t_{0}\right)} d u=e^{-j \omega\left(t+t_{0}\right)} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau
\end{aligned}
$$

which comes from u-substitution, letting $u=t-t_{0}$. But $y\left(t-t_{0}\right)=e^{-j \omega\left(t-t_{0}\right)} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau$ which is not equal to the above.
vi) Linear; the integral and multiplication by $e^{-j \omega t}$ are both linear operations.

2.27 (h)

i) Not memoryless $(y(t)$ depends on input over last second)
ii) not invertible (for example, $x(t)=0$ and $x(t)=\cos (2 \pi t)$ have the same output signal
iii) causal
iv) stable
v) time invariant (since $x\left(t-t_{0}\right) \rightarrow \int_{t-1}^{t} x\left(\tau-t_{0}\right) d \tau=\int_{t-t_{0}-1}^{t-t_{0}} x(\tau) d \tau=y\left(t-t_{0}\right)$)
vi) linear

2.28

(a) $x_{2}(t)=2 u(t+1)-u(t)-u(t-1)=x_{1}(t)+2 x_{1}(t+1)$
so $y_{2}(t)=y_{1}(t)+2 y_{1}(t+1)$
(b) $x_{1}(t)=2 u(t-1)-u(t-2)-u(t-3)$ so $x_{2}(t)=x_{1}(t+2)$ and $y_{2}(t)=y_{1}(t+2)$
i) not memoryless unless $t_{0}=0$
ii) invertible: $\mathrm{x}(\mathrm{t})=\mathrm{y}\left(\mathrm{t}+\mathrm{t}_{0}\right)$
iii) If $t_{0} \geq 0$ it is causal; otherwise not.
iv) stable; the output only takes value of the input so if the input is bounded the output will be too.
v) time invariant: let $y_{d}(t)$ be the output when $x\left(t-t_{1}\right)$ is the input. $x\left(t-t_{1}\right) \rightarrow y_{d}(t)=x\left(t-t_{1}-t_{0}\right)$ and $y\left(t-t_{1}\right)=x\left(t-t_{1}-t_{0}\right)$, so $y_{d}(t)=y\left(t-t_{1}\right)$.
vi) linear: scaling and adding two inputs $a x_{1}(t)+b x_{2}(t)$ gives output $a x_{1}\left(t-t_{0}\right)+b x_{2}\left(t-t_{0}\right)$, which is the same output we would get by putting $x_{1}(t)$ and $x_{2}(t)$ into the system separately and then scaling and adding the outputs.
2.30

(a) (i)memougless
(ii) $y=1$ for $x= \pm 1$, net inedible

(iii) causal
(iv) stable
(vi) $\left|x_{1}+x_{2}\right| \neq\left|x_{1}\right|+\left|x_{2}\right|$ not linear
ib) (i) memosyliss
(ii) $y=0$ fa x
(iii) causal
(iv) stable
(v) time invariant
(vi) $\left.y\right|_{x_{2}=1} ^{x_{2}=-1}|y|_{x_{1}+x_{2}}$, not linear
(parts cad on next page)
(c)

The system is i) memoryless, ii) not invertible (output $=10$ for all input values >10, iii) causal, iv) stable $(|y(t)| \leq 10$ for any input), v) time invariant, vi) not linear (suppose $x(t)=3$ then $y(t)=3$ but $4 x(t)$ has output $10 \neq 3(4)=12$.
(d)

The system is i) memoryless, ii) not invertible (any input greater than 2 goes to the same output (2)), iii) causal, iv) stable, v) time invariant, vi) not linear $\left(x_{1}(t)=2 \rightarrow 1\right.$ and $x_{2}(t)=1 \rightarrow 0$ but $x_{1}(t)+x_{2}(t) \rightarrow$ $2 \neq 1+0$.

Chapter 3 Solutions
3.1
a) i

$$
\begin{aligned}
& x(t)=u(t-2) \\
& y(t)=u(t) * u(t-2)=\int_{2}^{t} d \tau=t-2, \\
& y(t)=0, t<2 \\
& \therefore y(t)=(t-2) u(t-2) \\
& i i \quad x(t)=e^{5 t} u(t) \\
& \text { 告 } \quad t<0, y(t)=0
\end{aligned}
$$

iii $\quad x(t)=u(t)$

$$
\begin{aligned}
& t<0, y(t)=0 \quad t \\
& t \geqslant 0, y(t)=\int_{0}^{t} d \tau=t \\
& \therefore y(t)=t u(t)^{0}
\end{aligned}
$$

iv

$$
\begin{aligned}
& x(t)=(t+1) u(t+1) \\
& \quad t<-1, y(t)=0 \\
& t \geqslant-1, y(t)=\int_{-1}^{t}(\tau+1) d \tau=t^{2} / 2+t+1 / 2 \\
& \therefore y(t)=\left(t^{2} / 2+t+1 / 2\right) u(t+1)
\end{aligned}
$$

$3.1 \mathrm{~b})$
i)

$$
\begin{array}{rlc}
y(t)= & -\int_{0}^{t}(t-\tau) d \tau=-\left(t^{2}-\frac{t^{2}}{2}\right)=-\frac{t^{2}}{2}, t \geq 0 \\
= & 0, t<0 \\
= & -\frac{t^{2}}{2} u(t)
\end{array}
$$

ii)

$$
\begin{array}{rlc}
y(t) & = & \int_{0}^{t} e^{-5 \tau} d \tau=\frac{1}{5}\left(1-e^{-5 t}\right), t \geq 0 \\
& = & 0, t<0 \\
& = & \frac{1}{5}\left(1-e^{-5 t}\right) u(t)
\end{array}
$$

iii)

$$
\begin{array}{rcc}
y(t) & = & \int_{1}^{t}(\tau-1) d \tau=\frac{t^{2}}{2}-t+\frac{1}{2}, t \geq 0 \\
& = & 0, t<0 \\
& = & \left(\frac{t^{2}}{2}-t+\frac{1}{2}\right) u(t)
\end{array}
$$

iv)

$$
\begin{array}{rlc}
y(t)=u(t) * u(t)-u(t) * u(t-2) & = & \int_{0}^{t} 1 d \tau-\int_{2}^{t} 1 d \tau=t-(t-2)=2, t \geq 2 \\
& = & \int_{0}^{t} 1 d \tau=t, 0 \leq t<2 \\
& = & 0, t<0 \\
& = &
\end{array}
$$

$3.1 \mathrm{c})$

a-i

$$
\begin{array}{rlc}
\int_{-\infty}^{t} u(\tau-2) d \tau & = & \int_{2}^{t} 1 d \tau=t-2, t \geq 2 \\
& = & 0, t<0 \\
& = & (t-2) u(t-2)
\end{array}
$$

a-ii

$$
\begin{array}{rlc}
\int_{-\infty}^{t} e^{5 \tau} u(\tau) d \tau & = & \int_{0}^{t} e^{5 \tau} d \tau=\frac{1}{5}\left(e^{5 t}-1\right), t \geq 0 \\
& = & 0, t<0 \\
& = & \frac{1}{5}\left(e^{5 t}-1\right) u(t)
\end{array}
$$

a-iii

$$
\begin{array}{rlc}
\int_{-\infty}^{t} u(\tau) d \tau & = & \int_{0}^{t} 1 d \tau=t, t \geq 0 \\
& = & 0, t<0 \\
& = & t u(t)
\end{array}
$$

a-iv

$$
\begin{array}{rlc}
\int_{-\infty}^{t}(\tau+1) u(\tau+1) d \tau & = & \int_{-1}^{t}(\tau+1) d \tau=\frac{t^{2}}{2}+t+\frac{1}{2}, t \geq-1 \\
& = & 0, t<-1 \\
& = & \left(\frac{t^{2}}{2}+t+\frac{1}{2}\right) u(t)
\end{array}
$$

b-i

$$
\begin{array}{rlc}
\int_{-\infty}^{t}(-\tau) u(\tau) d \tau & = & \int_{0}^{t}-\tau d \tau=-\frac{t^{2}}{2}, t \geq 0 \\
& = & 0, t<0 \\
& = & -\frac{t^{2}}{2} u(t)
\end{array}
$$

b-ii

$$
\begin{array}{rlc}
\int_{-\infty}^{t} e^{-5 \tau} u(\tau) d \tau & = & \int_{0}^{t} e^{-5 \tau} d \tau=\frac{1}{5}\left(1-e^{-5 t}\right), t \geq 0 \\
& = & 0, t<0 \\
& = & \frac{1}{5}\left(1-e^{-5 t}\right) u(t)
\end{array}
$$

b-iii

$$
\begin{array}{rlc}
\int_{-\infty}^{t}(\tau-1) u(\tau-1) d \tau & = & \int_{1}^{t}(\tau-1) d \tau=\frac{t^{2}}{2}-t+\frac{1}{2}, t \geq 1 \\
& = & 0, t<1 \\
& = & \left(\frac{t^{2}}{2}-t+\frac{1}{2}\right) u(t)
\end{array}
$$

b-iv

$$
\begin{array}{rlc}
\int_{-\infty}^{t}(u(\tau)-u(\tau-2)) d \tau & & \int_{0}^{2} 1 d \tau=2, t \geq 2 \\
& =\quad \int_{0}^{t} 1 d \tau=t, 0 \leq t<2 \\
& = & 0, t<0 \\
& =t u(t)+(2-t) u(t-2)
\end{array}
$$

3.2

$$
\begin{array}{rlc}
y(t)=\int_{-\infty}^{t} x(\tau) d \tau & = & 0, t<0 \\
& = & 2 t, 0 \leq t<1 \\
& = & 2-(t-1), 1 \leq t<2 \\
& = & 2-1=1, t \geq 2 \\
& = & 2 t[u(t)-u(t-1)]+(3-t)[u(t-1)-u(t-2)]+u(t-2)
\end{array}
$$

$$
\begin{aligned}
& 3.3 \quad x(t)=u\left(t-t_{0}\right) \\
& \left.x(t) \quad u(t)=u\left(t-t_{1}\right) \quad t\right) t_{0} \\
& \\
& \\
& \\
& \\
& t_{0}
\end{aligned}
$$

$$
\begin{aligned}
& y(t)=0, \quad t-t_{0}\left\langle t_{1}\right. \\
& \left.\tilde{y}(t)=\int_{t_{1}}^{t_{0}-t_{0}} d \tau=t-t_{0}-t_{1}, t_{-}-t_{0}\right\rangle t_{1} \\
& \therefore \quad y(t)=\left(t-t_{0}-t_{1}\right)\left(u\left(t_{1}-t_{0}-t_{1}\right)\right.
\end{aligned}
$$

$$
h(\tau) \text { (blue) and } x(0-\tau) \text { (green) }
$$

(a)

$$
\begin{array}{rlrl}
y(t) & = & 0, t<1 \\
& = & \int_{0}^{t-1} 2(2) d \tau=4(t-1), 1 \leq t<2 \\
& = & & \int_{0}^{1} 2(2) d \tau=4,2 \leq t<3 \\
& = & \int_{t-3}^{1} 2(2) d \tau=4(1-(t-3))=4(4-t), 3 \leq t<4 \\
& = & \int_{3}^{t-1} 2(-\tau+5) d \tau=-t^{2}+12 t-32,4 \leq t<6 \\
& = & \int_{t-3}^{5} 2(-\tau+5) d \tau=t^{2}-16 t+64,6 \leq t<8 \\
& = & 0, t>8
\end{array}
$$

(b)

$$
\begin{array}{rlc}
y(t) & = & 0, t<1 \\
& = & \int_{0}^{t-1}-2(2) d \tau=-4(t-1), 1 \leq t<2 \\
& = & -4+\int_{1}^{t-1} 2(2) d \tau=-4+4(t-2)=4 t-12,2 \leq t<3 \\
& = & 4+\int_{t-3}^{1}-2(2) d \tau=4-4(4-t)=4 t-12,3<t \leq 4 \\
& = & \int_{t-3}^{2} 2(2) d \tau=4(2-(t-3))=-4 t+20,4 \leq t<5 \\
& = & 0, t \geq 5
\end{array}
$$

(c)

$$
\begin{array}{rlc}
y(t) & = & \\
& =0, t<1 \\
& & \\
& & 1+\int_{1}^{t-1}(-2 \tau+4) d \tau=-t^{2}+6 t-7,2 \leq t<3 \\
& = & 2-2 \int_{0}^{t-2} 2 \tau d \tau=-2 t^{2}+12 t-16,3 \leq t<4 \\
& = & -2 \int_{1}^{t-3}(-2 \tau+4) d \tau=2 t^{2}-20 t+48,4 \leq t<5 \\
& = & -1+\int_{t-3}^{3}(-2 \tau+4) d \tau=t^{2}-10 t+23,5 \leq t<6 \\
& = & \int_{t-3}^{4}(2 \tau-8) d \tau=-t^{2}+14 t-49,6 \leq t<7 \\
& = &
\end{array}
$$

(d)

3.5

(a)
$t=0$:
$h(\tau) x(-\tau)=0$ for all τ, so $y(0)=\int_{-\infty}^{\infty} h(\tau) x(-\tau) d \tau=0$.
$t=1:$
$h(\tau) x(1-\tau)=-2(-2)=4$ for $0 \leq \tau<1$
and $=0$ elsewhere,
so $y(1)=\int_{-\infty}^{\infty} h(\tau) x(1-\tau) d \tau=\int_{0}^{1} 4 d \tau=4$.
$t=2$:
$h(\tau) x(2-\tau)=-2(2)=-4$ for $0 \leq \tau<2$
and $=0$ elsewhere,
so $y(2)=\int_{0}^{2}-4 d \tau=-8$.
$t=2.667:$
$h(\tau) x(2.667-\tau)=-2(2)=-4$ for $0.667 \leq \tau<1$,
$=2(2)=4$ for $1 \leq \tau<1.667$,
$=-4$ for $1.667 \leq \tau<2$,
and $=0$ elsewhere.
Therefore $y(2.667)=(-4)(1-0.667)+4(1.667-1)-4(2-1.667)=-8(0.333)+4(0.666)=0$.

$$
h(\tau) \text { (blue) and } x(1-\tau) \text { (green) }
$$

$h(\tau)$ (blue) and $x(2.667-\tau)$ (green)

(b)

$$
\begin{aligned}
y(t) & = & 0, t<0 \\
& = & \int_{0}^{t}-2(-2) d \tau=4 t, 0 \leq t<1 \\
& = & \int_{0}^{t-1} 2(-2) d \tau+\int_{t-1}^{1}-2(-2) d \tau+\int_{1}^{t}-2(2)=-8(t-1)+4(2-t)=-12 t+16,1 \leq t<2 \\
& = & \int_{t-2}^{1} 2(-2) d \tau+\int_{1}^{t-1} 2(2) d \tau+\int_{t-1}^{2}-2(2) d \tau=12 t-32,2 \leq t<3 \\
& = & \int_{t-2}^{2} 2(2) d \tau=4(4-t)=16-4 t, 3 \leq t<4 \\
& = & 0, t \geq 4
\end{aligned}
$$

$$
x(\tau) \text { (blue) and } h(t-\tau) \text { (green), } 4<t<5
$$

(a)

$$
y(t)=\int_{t-4}^{1} 1(2) d \tau=-2 t-10,4 \leq t \leq 5
$$

(b) $y(t)$ is maximum when $t=8$ (then $y(t)=(7-4) 2=6)$.
(c) $y(t)=0$ when $t \leq 1, t=5, t \geq 11$.
(d)

$$
\begin{aligned}
y(t) & = & 0, t<1 \\
& = & \int_{0}^{t-1} 2(1) d \tau=2 t-2,1 \leq t<2 \\
& = & \int_{0}^{1} 2(1) d \tau=2,2 \leq t<4 \\
& = & \int_{t-4}^{1} 2(1) d \tau=-2 t+10,4 \leq t<5 \\
& = & \int_{4}^{t-1} 2(1) d \tau=2 t-10,5 \leq t<8 \\
& = & \int_{t-4}^{7} 2(1) d \tau=-2 t+22,8 \leq t<11 \\
& = & 0, t \geq 11
\end{aligned}
$$

3.7
a) $x(t)=e^{t} u(-t)$

(1) $t>2$ no overlup $\therefore y(t)=0$
(2) $1 \leqslant t \leqslant 2$

$$
y(t)=\int_{t}^{2} e^{t-\tau} d r=e^{t} \int_{t}^{2} e^{-\tau} d \tau
$$

$$
y(t)=e^{t}\left[e^{-t}-e^{-2}\right]=1-e^{t-2}
$$

(3)

$$
\begin{aligned}
0 \leqslant t \leqslant 1, y(t) & =2 \int_{t}^{1} e^{t-\tau} d \tau+\int_{1}^{2} e^{t-\tau} d \tau=2\left(1-e^{t-1}\right) \\
& +e^{t}\left(e^{-1}-e^{-2}\right)=2-e^{t-1}-e^{t-2}
\end{aligned}
$$

(4)
(b)

$$
\begin{array}{rlc}
y(t) & = & e^{-t} u(t) *[u(t-2)-u(t-4)] \\
& = & 0, t<2 \\
& = & \int_{0}^{t-2} e^{-\tau} d \tau=1-e^{-(t-2)}, 2 \leq t<4 \\
& = & \int_{t-4}^{t-2} e^{-\tau} d \tau=e^{-(t-4)}-e^{-(t-2)}, t \geq 4
\end{array}
$$

c)

(1) $t-1<1$ or $t<2, y(t)=\int_{\infty}^{\infty} e^{-\tau} d \tau=e^{-1}$
(2) $t-1>1$ or $t>2 y(t)=\int_{t-1}^{\infty} e^{-z} d \tau=-\left.e^{-c}\right|_{t-1} ^{\infty}=e^{-(t-1)}$

$$
\therefore y(t)=e^{-1} u(2-t)+e^{-(t-1)} u(t-2)
$$

(d)

$$
\begin{aligned}
y(t) & = & e^{-a t}[u(t)-u(t-2)] * u(t-2) \\
& = & 0, t<2 \\
& = & \int_{0}^{t-2} e^{-a \tau} d \tau=\frac{1}{a}\left(1-e^{-a(t-2)}\right), 2 \leq t<4 \\
& = & \int_{0}^{2} e^{-a \tau} d \tau=\frac{1}{a}\left(1-e^{-a 2}\right), t \geq 4 \\
& = & \frac{1}{a}\left(1-e^{-a(t-2)}\right)[u(t-2)-u(t-4)]+\frac{1}{a}\left(1-e^{-a 2}\right) u(t-4)
\end{aligned}
$$

e) fip $x(t)$

	$x(t-z)$

(1) $t<0, y(t)=\int^{400} e^{-\tau} d \tau=-\left.e^{-\tau}\right|^{400}=1-e^{-400}$
(2) $t>0, y(t)^{0}=\int_{t}^{400} e^{-\tau} d \tau=e^{0} t-e^{-400}$
(3) $t>400, y(t)=0$

(f)

$$
\begin{array}{rlc}
y(t) & = & e^{-t} u(t-1) * 2 u(t-1) \\
& = & 0, t<2 \\
& = & \int_{1}^{t-1} 2 e^{-\tau} d \tau=2\left(e^{-1}-e^{-(t-1)}\right), t \geq 2 \\
& = & 2\left(e^{-1}-e^{-(t-1)}\right) u(t-2)
\end{array}
$$

3.8

$$
\begin{aligned}
& {[f(t) * g(t)] * h(t)=\int_{-\infty}^{\infty} h(t-s)\left[\int_{-\infty}^{\infty} f(s-\tau) g(\tau) d \tau\right] d s} \\
& =\int_{-\infty}^{\infty} g(\tau)\left[\int_{-\infty}^{\infty} h(t-s) f(s-\tau) d s\right] d \tau, \text { let } s-\tau=6 \\
& =\int_{-\infty}^{\infty} g(\tau)\left[\int_{-\infty}^{\infty} h(t-\tau-6) f(6) d 6\right] d \tau, \text { lets=t-6} d s=-d 6 \\
& =\int_{-\infty}^{\infty} g(\tau)\left[\int_{-\infty}^{\infty} h(s-\tau) f(t-s)[-d s)\right] d \tau \\
& =\int_{-\infty}^{\infty} f(t-s)\left[\int_{-\infty}^{\infty} h(s-\tau) g(\tau) d \tau\right] d s \\
& =f(t) *[g(t) * h(t)]
\end{aligned}
$$

$3.9 x_{1}(t)=2 u(t+2)-2 u(t-2)$

(1) $t+2\langle-4, t<-6, y(t)=0$
(2) $-4 \leqslant t+2 \leqslant 0,-6 \leqslant t \leqslant-2$

$$
y(t)=\int_{-4}^{t+2} 2 e^{\tau} d \tau=2\left[e^{t+2}-e^{-4}\right]
$$

(3)

$$
\begin{aligned}
& 0 \leqslant t+2 \leqslant 4,-2 \leqslant t \leqslant 2 \\
& y(t)=2 \int_{t-2}^{0} e^{\tau} d \tau+2 \int_{0}^{t+2} e^{-\tau} d \tau=2\left[1-e^{t-2}\right] \\
& \\
& +2\left[1-e^{-(t+2)}\right]
\end{aligned}
$$

(4)

$$
\begin{aligned}
& 0 \leqslant t-2 \leqslant 4,2 \leqslant t \leqslant 6 \\
& y(t)=\int_{t-2}^{4} e^{-\tau} d \tau=2\left[e^{-(t-2)}-e^{-4}\right]
\end{aligned}
$$

(5) $t \geqslant 6, \quad y(t)=0$
3.10

$t<5, \quad y(t)=0$

$$
t \geqslant 5, \quad y(t)=\int_{5} d \tau=(t-5) y(t)
$$

$$
\therefore \quad y(t)=(t-5)^{5} u(t-5)
$$

3.11

$$
x(t)=u(t+3)-u(t+2)+u(t-1)-u(t-2)
$$

use superposition

$$
\begin{array}{r}
\frac{u(t-\tau)}{\left.\right|_{t} \tau} \quad t(t)=u(t) * h(t) \quad y(t)=\int^{t} e^{\tau} d \tau=e^{t} \\
t \geqslant 0, \quad y(t)^{-\infty}=\int^{0} e^{\tau} d \tau=1 \\
\therefore y(t)=S(t+3)-S(t+2)+S(t-1)^{-\infty}-S(t-2)
\end{array}
$$

3.12

$$
\begin{aligned}
& \text { a) } h(t)=h_{1}(t) * h_{2}(t)=\int^{-\tau} u(\tau)^{-(t-\tau)} e^{-\tau}(t-\tau) d \tau \\
& =e^{-t} \int_{0}^{t} d \tau=t e^{-t} u(t)=-\infty \\
& \text { b) } \dot{h}(t)=\delta(t) * \delta(t)=\int_{-\infty}^{\infty} \delta(\tau) \delta(t-\tau) d \tau=\delta(t)
\end{aligned}
$$

Parts ce on next page \rightarrow
3.12, continued
(c) $h(t)=\delta(t-2) * \delta(t-2)=\delta(t-2-2)=\delta(t-4)$
(d)

$$
\begin{array}{rlc}
(u(t-1)-u(t-5)) *(u(t-1)-u(t-5)) & = & 0, t<2 \\
& = & \int_{1}^{t-1} 1(1) d \tau=t-2,2 \leq t<6 \\
& = & \int_{t-5}^{5} 1(1) d \tau=10-t, 6 \leq t<10 \\
& = & 0, t \geq 10 \\
& = & (t-2)[u(t-2)-u(t-6)]+(10-t)[u(t-6)-u(t-10)]
\end{array}
$$

3.13
(a) Using a change of variables, let $u=t+\tau$, then:

$$
z(t)=\int_{-\infty}^{\infty} x(-\tau+a) h(t+\tau) d \tau=\int_{-\infty}^{\infty} x(-u+t+a) h(t+u-t) d u=\int_{-\infty}^{\infty} x(t+a-u) h(u) d u=y(a+t)
$$

(b) Using a change of variables, let $u=t+\tau$, and we see that:

$$
w(t)=\int_{-\infty}^{\infty} x(t+\tau) h(b-\tau) d \tau=\int_{-\infty}^{\infty} x(u) h(b+t-u) d u=y(b+t)
$$

3.14
a) $x(t)=\delta(t) \rightarrow y(t)=h(t)$

$$
\begin{aligned}
& y(t)=x(t-7) \\
& h(t)=\delta(t-7)
\end{aligned}
$$

b) $y(t)=\int_{-\infty}^{t} x(\tau-7) d \tau$

$$
\begin{aligned}
& h(t)^{-\infty}=\int_{-\infty}^{t} \delta(\tau-7) d \tau \quad 1 \left\lvert\, \frac{1}{7}\right. \\
& t<7, h(t)=0 \\
& t>7, h(t)=1 \quad \therefore h(t)=u(t-7)
\end{aligned}
$$

c) $y(t)=\int_{-\infty}^{t}\left[\int_{-\infty}^{6} x(\tau-7) d \tau\right] d 6$ let $x(t)=\delta(t)$

$$
\therefore h(t)=(t-7) u(t-7)
$$

3. 15 let $x(t-\tau)=\left\{\begin{array}{cc}1 & h(\tau)>0 \\ -1 & h(\tau)<0\end{array} \therefore x\right.$ is bounded

$$
\begin{gathered}
y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
h(\tau) x(t-\tau)=\left\{\begin{array}{l}
-\infty(\tau), h(\tau)>0 \\
-h(\tau), h(\tau)<0
\end{array}\right. \\
\therefore h(\tau) x(t-\tau)=|h(\tau)|
\end{gathered}
$$

$$
\therefore y(t)=\int_{-\infty}^{\infty}|h(\tau)| d \tau \quad \begin{gathered}
\text { which is assumed } \\
\text { unbounded }
\end{gathered}
$$

\therefore system is not BiBS stable
$3.16 \mathrm{a}) y_{i}(t)$ is the output of the itch

$$
\begin{aligned}
& y_{1}(t)=h_{1}(t) * x(t) \\
& y_{2}(t)=h_{2}(t) * y_{1}(t)=h_{1}(t) * h_{2}(t) * x(t) \\
& y_{3}(t)=h_{1}(t) * h_{3}(t) * x(t) \\
& y_{5}(t)=h_{5}(t) * x(t) \\
& y_{1}(t)=y_{2}(t)+y_{4}(t) \\
& x(t) *\left[h_{1}(t) * h_{2}(t)+h_{1}(t) * h_{3}(t) * h_{4}(t)+h_{4}(t) * h_{5}(t)\right]
\end{aligned}
$$

b)

$$
\begin{aligned}
& h(t)=u(t) * 5 \delta(t) \\
&+u(t) * 5 \delta(t) * u(t) \\
&+u(t) * e^{-2 t u} u(t) \\
&-2 t
\end{aligned}
$$

now $u(t) * e^{-2 t} u(t)=\int_{t}^{\infty} u(\tau) e^{-2(t-z)} u(t-\tau) d \tau$

$$
\begin{aligned}
& \quad=\int_{0}^{t} e^{-2(t-\tau)} d t=e^{-2 t} \int_{0}^{t} e^{2 \tau} d \tau=1 / 2\left[1-e^{-2 t}\right] u(t) \\
& \therefore h(t)=5 u(t)+5 t u(t)+1 / 2\left(1-e^{-2 t}\right] u(t)
\end{aligned}
$$

$3.17 y_{i}(t)$ is the output of the i th System
a)

$$
\begin{aligned}
& y_{2}(t)=h_{2}(t) *\left[h_{1}(t) * x(t)\right]=h_{1}(t) * h_{2}(t) * x(t) \\
& y_{3}(t)=h_{3}(t) * y_{2}(t)=h_{1}(t) * h_{2}(t) * h_{3}(t) * x(t)
\end{aligned}
$$

in a like manner: $y_{4}(t)=h_{1}(t) * h_{2}(t) * h_{4}(t) * x(t)$

$$
\begin{array}{r}
y_{5}(t)=h_{1}(t) * h_{5}(t) * x(t) \\
\therefore y(t)=\left[h_{1}(t) * h_{2}(t) * h_{3}(t) \quad h_{1}(t) * h_{2}(t) * h_{4}(t)+h_{1}(t) * h_{5}(t)\right] \\
* x(t)
\end{array}
$$

b)

$$
\begin{aligned}
h(t) & =5 \delta(t) * 5 \delta(t) * u(t)+5 \delta(t) * 5 \delta(t) * u(t) \\
& +5 \delta(t) * u(t)=25 u(t)+25 u(t)+5 u(t)=55 u(t)
\end{aligned}
$$

c) bloke 1 and $2 \rightarrow$ gains of 5
blocks 3,4,5 \longrightarrow integrators
d) block, - $5 \delta(t)$
block 4-25u(t)
block $2-25 \delta(t)$
block 5-5u(t)
block 3-25u(t)

$$
\therefore y(t)=55 u(t)
$$

e) $\delta(t) * 55 u(t)=55 u(t)$
3.18

$$
\begin{aligned}
8(t)= & h_{1}(t) *\left[x(t)-h_{2}(t) * y(t)\right]=h_{1}(t) * x(t) \\
& -h_{1}(t) * h_{2}(t) * y(t) \\
y(t)= & u(t) * x(t)-u(t) * \delta(t) * y(t)=u(t) * x(t) \\
= & \int_{-\infty}^{\infty} x(\tau) u(t-\tau) d \tau-\int_{-\infty}^{\infty} y(\tau) u(t-\tau) d \tau \\
= & \int_{-\infty}^{t} x(\tau) d \tau-\int_{-\infty}^{t} y(\tau) d \tau
\end{aligned}
$$

by differentiating

$$
d y / d t=x(t)-y(t) \Rightarrow \frac{d y(t)}{d t}+y(t)=x(t)
$$

3.19
 impose response fo for ta \therefore non causal
b) $\int_{-\infty}^{\infty}|h(t)| d t=\int_{-\infty}^{0} e^{t} d t=\left.e^{t}\right|_{-\infty} ^{0}=1 \quad \therefore$ stable

$$
\text { c) } y(t)=\int_{-\infty}^{\infty} e^{\tau} u(-\tau) u(t-\tau) d \tau=\int_{-\infty}^{0} e^{\tau} u(t-\tau) c
$$

$$
\therefore y(t)=\left\{\begin{array}{l}
\int_{-\infty}^{t} e^{\tau} d \tau=\left.e^{\tau}\right|_{-\infty} ^{t}=e^{t}, t<0 \\
\int_{-\infty}^{0} e^{\tau} d \tau=\left.e^{\tau}\right|_{-\infty} ^{0}=1, t>0
\end{array}\right.
$$

d) a) causal
b) $\int_{-\infty}^{\infty} h(t) d t=\int_{0}^{\infty} e^{t} d t=\left.e^{t}\right|_{0} ^{\infty}=$ unstable
c) $\int_{-\infty}^{\infty} e^{t} u(\tau) u(t-\tau) d \tau=\int^{t} e^{\tau} d \tau=\left(e^{t}-1\right) u(t)$
3.20
(a) Yes linear: $\cos (t)\left(a x_{1}(t)+b x_{2}(t)\right)=a \cos (t) x_{1}(t)+b \cos (t) x_{2}(t)$
(b) Not time invariant: $x\left(t-t_{0}\right) \rightarrow \cos (t) x\left(t-t_{0}\right)$, but $y\left(t-t_{0}\right)=\cos \left(t-t_{0}\right) x\left(t-t_{0}\right) \neq \cos (t) x\left(t-t_{0}\right)$
(c) $\delta(t) \rightarrow \cos (t) \delta(t)=1 \delta(t)=\delta(t)$
(d) $\delta(t-\pi / 2) \rightarrow \cos (t) \delta(t-\pi / 2)=\cos (\pi / 2) \delta(t-\pi / 2)=0 \delta(t)=0$. If the system were time-invariant than the response in part (d) would be part (c) delayed by $\pi / 2$, but it is not.
3.21
(a) $h(t)=e^{-t} u(t-1)$: stable since $\int_{-\infty}^{\infty}|h(t)| d t$ is finite, causal since $h(t)=0$ for all $t<0$.
(b) $h(t)=e^{t-1} u(t-1)$: not stable; causal.
(c) $h(t)=e^{t} u(1-t)$: stable; not causal.
(d) $h(t)=e^{1-t} u(1-t)$: not stable; not causal.
(e) $h(t)=e^{t} \sin (-5 t) u(-t)$: stable; not causal.
(f) $h(t)=e^{-t} \sin (5 t) u(t)$: stable; causal.
$3.22 y(t)=\int_{0}^{t} e^{-\tau} x_{1}(t-\tau) d \tau=\int_{-\infty}^{t} e^{-\tau} u(\tau) x_{1}(t-\tau) d \tau$

$$
=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) x_{1}(t-\tau) u(t-\tau) d \tau
$$

a) $\quad h(t)=e^{-t} u(t) \quad x(t)=x_{1}(t) u(t)$
b) yes, $h(t)=0$ for $t<0$ t+1 $u(t+1-z)$
c) $y(t)=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) u(t+1-\tau) d \tau=\int_{0}^{t+1} e^{-\tau} d \tau$

$$
=-\left.e^{-\tau}\right|_{0} ^{t+1}=\underline{\left[1-e^{-(t+1)}\right] u(t+1)}
$$

parts dee next page \rightarrow
3.22, continued
d)

$$
\begin{aligned}
& h_{t}(t)=h(t) * \delta(t)-h(t) * \delta(t-1) * \delta(t) \\
& =[h(t)-h(t-1)] * \delta(t)=h(t)-h(t-1) \\
& y(t)=e^{-t} u(t)-e^{-(t-1)} u(t-1)
\end{aligned}
$$

e)
(i)

$$
\begin{aligned}
& y(t)=y_{c}(t)-\left.y_{c}(t)\right|_{t=t+1} \\
= & {\left[1-e^{-(t+1)}\right] u(t+1)-\left[1-e^{-t}\right] u(t) }
\end{aligned}
$$

(ii) $y(t)=h(t) * u(t+1)=\int_{-\infty}^{\infty} u(t-\tau+1)\left[\frac{-\tau}{e} u(\tau)-e^{-(\tau-1)} u(\tau-1)\right) d \tau$

$$
\begin{aligned}
& =\int_{0}^{\infty} e^{-\tau} u(t+1-\tau) d \tau-e \int_{1}^{1} e^{-\tau} u(t+1-\tau) d \tau=I_{1}-I_{2} \\
& I_{1}=\int_{0}^{t+1} e^{-\tau} d \tau=-\left.e^{-\tau}\right|_{0} ^{t+1}=\left[1-e^{-(t+1)}\right] u(t+1) \\
& I_{2}=e^{1} \int_{1}^{t+1} e^{-\tau} d \tau=\left.e^{1}\left(-e^{-\tau}\right)\right|_{1} ^{t+1}=e^{1}\left(e^{-1}-e^{-(t+1)}\right) u(t) \\
& =\left(1-e^{-t}\right) u(t) \\
& \therefore y(t)=\left[1-e^{-(t+1)}\right] u(t+1)-\left[1-e^{-t}\right] u(t)
\end{aligned}
$$

3.23 a) $y(t)=\int_{-\infty}^{x} e^{-2(t-\tau)} x(\tau-1) d \tau$
(i) $h(t)=\int_{-\infty}^{t} e^{-2(t-\tau)} \delta(\tau-1) d \tau=e^{-2(t-1)} u(t-1)$
(ii) $h(t)^{-\infty}=0$ for $t<0 \therefore$ Causal
(iii) $\int_{-\infty}^{\infty}\left|e^{-2(t-1)} u(t-1)\right| d t=\int_{1}^{\infty} e^{-2(t-1)} d t=\left.e^{2}\left(e^{-2 t}\right)\right|_{1} ^{\infty}$

$$
=e^{2}\left(e^{-2} / 2\right)=1 / 2 \quad \therefore \text { Stable }
$$

b) $y(t)=\int_{-\infty}^{\infty} e^{-2(t-\tau)} x(\tau-1) d \tau$
(i) $h(t)=\int_{-\infty}^{\infty} e^{-2(t-\tau)} \delta(\tau-1) d \tau=e^{-2(t-1)}$
(ii) $u(t)^{-\infty} \neq 0, t<0 \therefore$ non causal
(iii) $\int_{-\infty}^{\infty}\left|e^{-2(t-1)}\right| d t=\int_{-\infty}^{\infty} e^{-2 t} e^{2} d t=\left.e^{2}\left(\frac{e^{-2 t}}{-2}\right)\right|_{-\infty} ^{\infty}$
unbounded \therefore unstable
3.24

a) system is not causal
b) yes BIBO, Stable. Integrates over a window of length.
c) $x(t)=\delta(t-1)-2 \delta(t+1)$

$$
y(t)=h(t) * x(t)=h(t-1)-2 h(t+1)
$$

(a) Causal $(h(t)=0$ for all $t<0)$.
(b) Stable $\left(\int_{-\infty}^{\infty}|h(t)| d t=1(1)-1(1)=0\right)$.
(c)

$$
\begin{array}{rlc}
y(t) & = & h(t) * \delta(t-1)-2 h(t) * \delta(t-2) \\
& = & h(t-1)-2 h(t-2) \\
& = & (u(t-1)-2 u(t-2)+u(t-3))-2(u(t-2)-2 u(t-3)+u(t-4)) \\
& = & u(t-1)-4 u(t-2)+5 u(t-3)-2 u(t-4)
\end{array}
$$

3.26

a) clearly system is causal' since ${ }^{E} h(t)=0, t<0$
b) $\int_{-\infty}^{\infty}|h(t)| d t=\int_{1}^{\infty} e^{-a t} d t=1 / a e^{-a}$, a) \therefore stable
c) $h(t)=e^{-a t} u(t+1), a<0$ not causal since $h(t) \neq 0$,

$$
\int_{-\infty}^{\infty}|h(t)| d t=\int_{-1}^{\infty} e^{-a t} d t=-1 /\left.a e^{-a t}\right|_{-1} ^{\infty}=\infty \text { since } a<0
$$

$$
\therefore \text { not stable }
$$

3.27

(i) Characteristic equation: $s+3=0$, solution $s=-3$
$\Longrightarrow y_{c}(t)=C e^{-3 t} u(t)$
Forced response of the form: $y_{p}(t)=P u(t)$ where $\frac{d y_{p}(t)}{d t}+3 y_{p}(t)=3 u(t) \Longrightarrow 0+3 P u(t)=3 u(t) \Longrightarrow P=1$
$y(t)=y_{c}(t)+y_{p}(t)=\left(C e^{-3 t}+1\right) u(t)$
Need $y(0)=C+1=-1 \Longrightarrow C=-2$
$\Longrightarrow y(t)=\left(-2 e^{-3 t}+1\right) u(t)$
This clearly satisfies the differential equation and initial conditions because
$\frac{d y(t)}{d t}+3 y(t)=6 e^{-3 t}+3\left(-2 e^{-3 t}+1\right)=3, t>0$
$y(0)=-2 e^{-3.0}+1=-1$
(ii) Characteristic equation: $s+3=0$, solution $s=-3$
$\Longrightarrow y_{c}(t)=C e^{-3 t} u(t)$
Forced response of the form $y_{p}(t)=P e^{-2 t} u(t)$ where $\frac{d y_{p}(t)}{d t}+3 y_{p}(t)=3 e^{-2 t} u(t) \Longrightarrow(-2 P+3 P) e^{-2 t} u(t)=$ $3 e^{-2 t} u(t) \Longrightarrow P=3$
$y(t)=y_{c}(t)+y_{p}(t)=\left(C e^{-3 t}+3 e^{-2 t}\right) u(t)$
Need $y(0)=C+3=2 \Longrightarrow C=-1$
$\Longrightarrow y(t)=\left(3 e^{-2 t}-e^{-3 t}\right) u(t)$
This clearly satisfies the differential equation and initial conditions since

$$
\begin{aligned}
& \frac{d y(t)}{d t}+3 y(t)=\left(-6 e^{-2 t}+3 e^{-3 t}\right)+3\left(3 e^{-2 t}-e^{-3 t}\right)=3 e^{-2 t}, t>0 \\
& y(0)=3 e^{-2 \cdot 0}-e^{-3.0}=2
\end{aligned}
$$

Continued \rightarrow

(iii) Characteristic equation: $s+3=0$, solution $s=-3$
$\Longrightarrow y_{c}(t)=C e^{-3 t} u(t)$
Forced response of the form $y_{p}(t)=P e^{2 t} u(t)$ where $\frac{d y_{p}(t)}{d t}+3 y_{p}(t)=3 e^{2 t} u(t) \Longrightarrow(2 P+3 P) e^{2 t} u(t)=$ $3 e^{2 t} u(t) \Longrightarrow P=\frac{3}{5}$
$y(t)=y_{c}(t)+y_{p}(t)=\left(C e^{-3 t}+\frac{3}{5} e^{2 t}\right) u(t)$
Need $y(0)=C+\frac{3}{5}=0 \Longrightarrow C=-\frac{3}{5}$
$\Longrightarrow y(t)=\left(-\frac{3}{5} e^{-3 t}+\frac{3}{5} e^{2 t}\right) u(t)$
This clearly satisfies the differential equation and initial conditions since
$\frac{d y(t)}{d t}+3 y(t)=\left(\frac{9}{5} e^{-3 t}+\frac{6}{5} e^{2 t}\right)+\left(-\frac{9}{5} e^{-3 t}+\frac{9}{5} e^{2 t}\right)=3 e^{2 t}, t>0$
$y(0)=-\frac{3}{5} e^{-3 \cdot 0}+\frac{3}{5} e^{-2 \cdot 0}=0$
(iv) Characteristic equation: $s+3=0$, solution $s=-3$
$\Longrightarrow y_{c}(t)=C e^{-3 t} u(t)$
Forced response of the form $y_{p}(t)=\left(P_{1} \sin (3 t)+P_{2} \cos (3 t)\right) u(t)$ where $\frac{d y_{p}(t)}{d t}+3 y_{p}(t)=\sin (3 t) u(t) \Longrightarrow$ $3 P_{1} \cos (3 t) u(t)-3 P_{2} \sin (3 t) u(t)+3\left(P_{1} \sin (3 t)+P_{2} \cos (3 t)\right) u(t)=\sin (3 t) u(t)$
$\Longrightarrow P_{1} \cos (3 t)+P_{2} \cos (3 t)=0 \Longrightarrow P_{1}=-P_{2}$
and $\Longrightarrow-3 P_{2} \sin (3 t)+3 P_{1} \sin (3 t)=\sin (3 t) \Longrightarrow 6 P_{1}=1 \Longrightarrow P_{1}=\frac{1}{6}, P_{2}=-\frac{1}{6}$
$y(t)=y_{c}(t)+y_{p}(t)=\left(C e^{-3 t}+\frac{1}{6} \sin (3 t)-\frac{1}{6} \cos (3 t)\right) u(t)$
Need $y(0)=C-\frac{1}{6}=-1 \Longrightarrow C=-\frac{5}{6}$
$\Longrightarrow y(t)=\left(-\frac{5}{6} e^{-3 t}+\frac{1}{6} \sin (3 t)-\frac{1}{6} \cos (3 t)\right) u(t)$
This clearly satisfies the differential equation and initial conditions since
$\frac{d y(t)}{d t}+3 y(t)=\left(\frac{5}{2} e^{-3 t}+\frac{1}{2} \cos (3 t)+\frac{1}{2} \sin (3 t)\right)+3\left(-\frac{5}{6} e^{-3 t}+\frac{1}{6} \sin (3 t)-\frac{1}{6} \cos (3 t)\right)=\sin (3 t), t>0$
$y(0)=-\frac{5}{6} e^{-3 \cdot 0}+\frac{1}{6} \sin (0)-\frac{1}{6} \cos (0)=-1$
(v) Characteristic equation: $-0.7 s+1=0 \Longrightarrow s-\frac{1}{0.7}=0$, solution $s=\frac{1}{0.7}=10 / 7$
$\Longrightarrow y_{c}(t)=C e^{t / 0.7} u(t)$
Forced response of the form $y_{p}(t)=P e^{3 t} u(t)$ where $\frac{d y_{p}(t)}{d t}-\frac{10}{7} y_{p}(t)=\frac{-30}{7} e^{3 t} u(t) \Longrightarrow 3 P-\frac{10}{7} P=\frac{-30}{7}$ Solving for P gives $P=-\frac{30}{11}$
$y(t)=y_{c}(t)+y_{p}(t)=\left(C e^{t / 0.7}-\left(\frac{30}{11}\right) e^{3 t}\right) u(t)$
Need $y(0)=C-\frac{30}{11}=-1 \Longrightarrow C=\frac{19}{11}$
$\Longrightarrow y(t)=\left(\frac{19}{11} e^{t / 0.7}-\frac{30}{11} e^{3 t}\right) u(t)$
This clearly satisfies the differential equation and initial conditions since
$\frac{d y(t)}{d t}-\frac{1}{0.7} y(t)=2.47 e^{t / 0.7}-3\left(\frac{30}{11}\right) e^{3 t}-2.47 e^{t / 0.7}+\frac{300}{77} e^{3 t}=\frac{-30}{7} e^{3 t}$
$y(0)=\frac{19}{11}-\frac{30}{11}=-1$
(a) stable: roots are $s=-1,-2,-4$, and all are <0 (on left side of s-plane).
(b) unstable: $s^{2}+1.5 s-1=(s+2)(s-0.5)$, roots are $s=-2,0.5$, and $0.5>0$ (on right side of s-plane). (c) unstable: $s^{2}+10 s=s(s+10)$, roots are $s=0,-10$, and $s=0$ is on imaginary axis (not on left side).
(d) unstable: $s^{3}+s^{2}+4 s+30=(s-1-3 j)(s-1+3 j)(s+3)$, roots are $1+3 j, 1-3 j,-3$ (roots can be found using roots ($\left[\begin{array}{llll}1 & 1 & 4 & 30\end{array}\right]$) in MATLAB), and real part of $|1+3 j|,|1-3 j|$ is $1>0$ (so these roots are on right side of s-plane.)

3.29

(a) characteristic equation is $s^{2}-2.5 s+1=(s-2)(s-0.5)=0$; roots are $s=2,0.5$; modes are $e^{2 t}, e^{0.5 t}$. Unstable since roots >0.
(b) characteristic equation $s^{2}+1.5 s-1=(s+2)(s-0.5) 0$, roots $s=-2,0.5$; modes $e^{-2 t}, e^{0.5 t}$. Unstable since $0.5>0$.
(c) characteristic equation $s^{2}+9=(s-3 j)(s+3 j)=0$, roots $s=3 j,-3 j$; modes $e^{3 j t}, e^{-3 j t}$. Unstable since real part of roots is 0 (roots lie on imaginary axis).
(d) characteristic equation $s^{3}+s^{2}+4 s+3=0$, roots $s=-0.1+1.95 j,-0.1-1.95 j,-0.78$ found using $\operatorname{roots}\left(\left[\begin{array}{lll}1 & 1 & 4\end{array} 3\right]\right)$ in MATLAB. Modes are $e^{(-0.1+1.95 j) t}, e^{(-0.1-1.95 j) t}, e^{-0.78 t}$. Stable since roots have real part <0 (are all to the left of imaginary axis.)

3.30

(a) Systems in 3.27 (i), (ii), (iii), (iv) have system mode $e^{-3 t}$.
$3.27(\mathrm{v})$ has system mode $e^{t / 0.7}$.
(b) For 3.27 (i), (ii), (iii), (iv), time constant is $\tau=\frac{1}{3}$ sec. For (v), the system is unstable and the response doesn't decay (it grows).
(c) For $3.27(\mathrm{i})$, (ii), (iii), (iv), in approx. $\frac{4}{3}=4 \tau$ sec. For (v), the response grows to ∞.
(d) $H(s)=\frac{1}{s^{2}+1.5 s-1}$, system modes are $e^{-2 t}, e^{0.5 t}$. For $e^{-2 t}$, time constant is $\tau=\frac{1}{2} \sec$. For $e^{0.5 t}$, grows to ∞ so no time constant. No constant output because of growing mode (output goes to ∞).

3.31

(a) Characteristic eqn. is
$0.04 s^{2}+1=0$ or
$s^{2}+25=0$.
Roots are $s=5 j,-5 j$.
Modes are $e^{5 j t}, e^{-5 j t}$.
(b) $y_{c}(t)=\frac{C}{2} e^{j \theta} e^{5 j t}+\frac{C}{2} e^{-j \theta} e^{-5 j t}=C \cos (5 t+\theta)$ (where C is a real postive constant).
(c) The differential eqn. is: $\frac{d^{2} y}{d t^{2}}+25 y(t)=25$
$y_{p}(t)=P e^{-t} u(t)$, need $P e^{-t}+25 P e^{-t}=25 e^{-t} \Longrightarrow P=\frac{25}{26}$.
So $y(t)=\left(C \cos (5 t+\theta)+\frac{25}{26} e^{-t}\right) u(t)$
with $y(0)=C \cos (\theta)+\frac{25}{26}=0$
and $y^{\prime}(0)=-5 C \sin (\theta)-\frac{25}{26}=0$.
$\Longrightarrow \tan (\theta)=\frac{1}{5}$.
$\Longrightarrow \theta=\tan ^{-1}(1 / 5)=0.1974 \ldots r a d$,
$C=\frac{-5}{26 \sin (\theta)}=-0.98 \ldots$
$y(t)=-0.98 \cos (5 t+0.197)+\frac{25}{26} e^{-t}$.
(d) $\frac{d^{2} y}{d t^{2}}+25 y(t)=25 C \cos (5 t+\theta)+\frac{25}{26} e^{-t}+25\left(C \cos (5 t+\theta)+\frac{25}{26} e^{-t}\right)=25 e^{-t}$
$y(0)=\frac{-5}{26 \sin (\theta)} \cos (\theta)+\frac{25}{26}=\frac{-5}{26 \tan (\theta)}+\frac{25}{26}=\frac{-5}{26(1 / 5)}+\frac{25}{26}=0$
$y^{\prime}(0)=-5\left(\frac{-5}{26 \sin (\theta)}\right) \sin (\theta)-\frac{25}{26}=0$.
3.32

$$
\begin{gathered}
.(a)(i) x(t)=4 e^{(0) t} \Rightarrow \therefore s=0, H(0)=5 / 4=1.25 \\
y_{s s}(t)=H(a x(t)=(1.25)(4)=5
\end{gathered}
$$

(ii) $H(0)=10 / 10=1, \therefore y_{s}(t)=H(0) x(t)=(1)(4)=4$
(b) $(i) S=3, H(3)=5 / 7, y_{5 S}(t)=H(3) x(t)=\frac{20}{7} e^{3 t}=2.857 e^{3 t}$

$$
\text { (ii) } H(3)=\frac{6+10}{9+6+10}=\frac{16}{25}, y_{s s}(t)=\left(\frac{16}{25}\right)\left(4 e^{3 t}\right)=\frac{64}{25} e^{3 t}=2.56 e^{3 t}
$$

(c) (i)

$$
\begin{aligned}
& \text { i) } S=j 3, H(j 3)=\frac{5}{4+j 3}=1 /-36.87^{\circ} \\
& y_{5 s}(t)=1 H\left(j 3 \mid 4 \cos \left(3 t+1 H(3)=4 \cos \left(3 t-36.8^{8}\right)\right.\right.
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { i) } H(j 3)=\frac{10+j 6}{-9+j 6+10}=1.917\left(-49.58^{0}\right. \\
& \left.\therefore y_{s s}(t)=(1.917)(4)\right) \cos \left(3 t-49.58^{\circ}\right)=7.668 \cos \left(3 t-49.56^{\circ}\right)
\end{aligned}
$$

$\left.\begin{array}{lll}\mathrm{n}=\left[\begin{array}{lll}0 & 2 & 10\end{array}\right] ; \\ \mathrm{d}=\left[\begin{array}{ll}1 & 2\end{array}\right. & 10\end{array}\right]$;
$\mathrm{d}=\left[\begin{array}{lll}1 & 2 & 10\end{array}\right] ;$
$\mathrm{h}=\mathrm{polyval}\left(\mathrm{n}, 3^{*} \mathrm{j}\right) /$ polyval ($\mathrm{d}, 3^{*} \mathrm{j}$);
ymag=abs (h)
yphase $=$ angle $(\mathrm{h}) * 180 / \mathrm{pi}$
(d) $S=j 3$ - use part (c)
(i) $y_{s s}(t)=4 \mathrm{e}^{j^{3 t}} \quad$ (ii) $y_{s s}(t)=9.668 \mathrm{e}^{j\left(3 t-49.56^{\circ}\right)}$
(e) from $(c):(i) y_{s s}(t)=4 \sin \left(3 t-36.8^{\circ}\right)$
(ii) $y_{5 s}(t)=7.668 \sin \left(3 t-49.56^{\circ}\right)$
(f) $\sin 3 t=\cos \left(3 t-90^{\circ}\right)$
$\therefore y_{s s}(t)$ in (e) is that of (c) dilayed by 90°.
(g)

$$
\begin{aligned}
& \text { (i) }(s+4)=\left(s+\frac{1}{7}\right) \Rightarrow r=\frac{1}{4} s=0.25 s \\
& s^{2}+2 s+10=(s+1)^{2}+3^{2} \Rightarrow s=-1 \pm j 3, \therefore 7=\frac{1}{1} s=1 s
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
\tau=0.25 \mathrm{~s}, & t>4 \tau=15 . \\
T & =1 \mathrm{~s},
\end{aligned}, t>4 \tau=4 \mathrm{~s} .
$$

3.33
(a) $H(j \omega)=\frac{5}{2} L-45^{\circ}=\frac{K}{a+j \omega}=\frac{K}{a+j^{4}}$, since $\omega=4$

$$
\therefore a=4 \text { to yield }-45^{\circ}, \therefore|H(g 4)|=2.5=\frac{K}{\left|4+j^{4}\right| \mid}=\frac{K}{4 \sqrt{2}}, \therefore K=14.14
$$

(b) $H(s)=\frac{14.14}{s+4}$;
yphase=angle (h)*180/pi
3.34

(b) $\frac{d}{d t}[\quad] \Rightarrow \frac{d^{2} y}{d t^{2}}=2 \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+3 v$

Forms I and II are same,

3.35

(b) \therefore Form II: $(a) \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+3 y=8 \frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+4 x$
3.36
(a)

$$
\begin{aligned}
& y_{1}(t)=x(t) H_{1}(s) \\
& y_{2}(t)=y_{1}(t) H_{2}(s)=x(t) H_{1}(s) H_{2}(s)=x(t) H(s) \\
& \therefore H(s)=H_{1}(s) H_{2}(s)
\end{aligned}
$$

b) $y(t)=x(t) H_{1}(s)+x(t) H_{2}(s)=x(t)\left[H_{1}(s)+H_{2}(s)\right]=x(t) H(s)$

$$
\therefore H(s)=H_{1}(s)+H_{2}(s)
$$

3.37

$$
\begin{aligned}
x(a) y(t) & =H_{2}(s)\left[H_{1}(s) x(t)\right]+H_{4}(s)\left[H_{3}(s) H_{1}(s) x(t)+H_{5}(s) x(t)\right] \\
& =H(s) x(t) \\
\therefore H(s) & =H_{1}(s) H_{2}(s)+H_{2}(s) H_{3}(s) H_{4}(s)+H_{4}(s) H_{5}(s) \\
(b) y(t) & =H_{3}(s)\left[H_{2}(s)\left\{H_{1}(s) x(t)\right\}\right]+H_{4}(s)\left[H_{2}(s)\left\{H_{1}(s) x(t)\right\}\right] \\
& +H_{5}(s)\left[x(t) H_{1}(s)=H(s) x(t)\right. \\
\therefore H(s) & =H_{1}(s) H_{2}(s) H_{3}(s)+H_{1}(s) H_{2}(s) H_{4}(s)+H_{1}(s) H_{5}(s)
\end{aligned}
$$

(c) $y(t)=H_{1}(s)\left[x(t)-H_{2}(s) y(t)\right]=H_{1}(s) x(t)-H_{1}(s) H_{2}(s) y(t)$

$$
\begin{aligned}
& {\left[1+H_{1}(s) H_{2}(s)\right] y(t)=H_{1}(s) x(t) } \\
\therefore y(t) & =\frac{H,(s)}{1+H_{1}(s) H_{2}(s)} x(t)=H(s) x(t) ; \quad H(s)=\frac{H_{1}(s)}{1+H_{1}(s) H_{2}(s)}
\end{aligned}
$$

3.38
(a)

$$
\text { () } \begin{aligned}
y(t) & =H_{3}(s)\left[H_{1}(s) x(t)+H_{2}(s)\left\{x(t)-H_{4}(s) y(t)\right\}\right] \\
& =\left[H_{1}(s) H_{3}(s)+H_{2}(s) H_{3}(s)\right] x(t)-H_{2}(s) H_{3}(s) H_{4}(s) y(t) \\
\therefore y(t) & =\frac{H_{1}(s) H_{3}(s)+H_{2}(s) H_{3}(s)}{1+H_{2}(s) H_{3}(s) H_{4}(s)} x(t)=H(s) x(t)
\end{aligned}
$$

(b)

$$
\begin{aligned}
y(t) & =H_{2}(s)\left[H_{1}(s) \xi x(t)-H_{4} y(t) \xi-H_{3}(s) y(t)\right] \\
& =H_{1}(s) H_{2}(s) x(t)-\left[H_{1}(s) H_{2}(s) H_{4}(s)+H_{2}(s) H_{3}(s)\right] y(t) \\
\therefore y(t) & =\frac{H_{1}(s) H_{2}(s)}{1+H_{1}(s) H_{2}(s) H_{4}(s)+H_{2}(s) H_{3}(s)} x(t)=H(s) x(t)
\end{aligned}
$$

Chapter 4 solutions
4.1 $\omega_{0}=2, T_{0}=2 \pi / \omega_{0}=\pi$

$$
\begin{aligned}
& \text { a) } c_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} f(t) d t=\frac{1}{\pi} \int_{0}^{\pi}(\cos 2 t+3 \cos 4 t) d t \\
& =\frac{1}{\pi}\left[\frac{\sin 2 t}{2}+3 / 4 \sin 4 t\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[\frac{1}{2} \sin 2 \pi+3 / 4 \sin 4 \pi-1 / 2 \sin 0-3 / 4 \sin 0\right]=0 \\
& c_{k}=\frac{1}{\pi} \int_{0}^{\pi} e^{-j 2 k t}\left[\frac{e^{j 2 t}+e^{-j 2 t}}{2}+\frac{3\left(e^{j 4 t}+e^{-j 4 t}\right)}{2}\right] d t \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}\left[e^{j 2(1-k) t}+e^{2}+j 2(1+k) t-3 e^{j 2(2-k) t}+3 e^{-j 2(2+k) t}\right]_{0}^{\pi} \\
& =\left\{\begin{array}{l}
\frac{1}{2 \pi}\left[\frac{e^{j(1-k) \pi}}{j 2(1-k)}\right], k=1 \\
\frac{1}{2 \pi}\left[\frac{3 e^{j 2(2-k) \pi}}{j 2(2-k)}\right], k=2
\end{array}\right. \\
& \therefore C_{1}=\lim _{k \rightarrow 1} \frac{1}{2 \pi}\left[\frac{e^{j(1-k) R}-1}{j 2(1-k)}\right]=1 / 2 \pi\left[\frac{e^{j 2 \pi}-\left(j 2 \pi e^{-j 2 \pi k}\right)}{j 2(-1)}\right]=1 / 2 \\
& \therefore c_{2}=\operatorname{li}_{k \rightarrow 2} \frac{1}{2 n}\left[\frac{3 e^{j 2(2-k)}-3}{j 2(2-k)}\right]=\frac{1}{2 \pi}\left[\frac{3 e^{j 4 \pi}\left(-j 2 \pi e^{-j 2 k \pi}\right)}{j 2(-i)}\right]=3 / 2
\end{aligned}
$$

Alternatively, using Euler's formula:

$$
\begin{aligned}
f(t)=\cos (2 t)+3 \cos (4 t) & =\frac{1}{2}\left(e^{j 2 t}+e^{-j 2 t}\right)+\frac{3}{2}\left(e^{j 4 t}+e^{-j 4 t}\right) \\
& =\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}+\frac{3}{2} e^{j 2 \omega_{0} t}+\frac{3}{2} e^{-j 2 \omega_{0} t} \\
& \Longrightarrow \\
C_{0} & =0 \\
C_{1} & =\frac{1}{2} \\
C_{2} & =\frac{3}{2} \\
C_{k} & =0, k \geq 3
\end{aligned}
$$

4.2

(i) $x(t)=\sin (4 t)+\cos (8 t)+7+\cos (16 t)$
(a) Exponential form: $\omega_{0}=4$

$$
\begin{aligned}
& x(t)=\quad \frac{1}{2 j} e^{j 4 t}-\frac{1}{2 j} e^{-j 4 t}+\frac{1}{2} e^{j 8 t}+\frac{1}{2} e^{-j 8 t}+7 e^{j \cdot 0}+\frac{1}{2} e^{j 16 t}+\frac{1}{2} e^{-j 16 t} \\
& =7+(-0.5 j) e^{j \omega_{0} t}+(0.5 j) e^{-j \omega_{0} t}+(0.5) e^{j 2 \omega_{0} t}+(0.5) e^{-j 2 \omega_{0} t}+(0.5) e^{j 4 \omega_{0} t}+(0.5) e^{-j 4 \omega_{0} t} \\
& C_{0}=7 \\
& C_{1}=-0.5 j, C_{-1}=0.5 j \\
& C_{2}=0.5, C_{-2}=0.5 \\
& C_{4}=0.5, C_{-4}=0.5 \\
& C_{k}=0, k \neq 0,1,-1,2,-2,4,-4
\end{aligned}
$$

(b) Combined trigonometric form: $D_{k}=2\left|C_{k}\right|, k>0$

Since $\sin (4 t)=\cos (4 t-\pi / 2)$

$$
\begin{gathered}
x(t)=7+\cos \left(\omega_{0} t-\pi / 2\right)+\cos \left(2 \omega_{0} t\right)+\cos \left(4 \omega_{0} t\right) \\
D_{0}=C_{0}=7 \\
D_{1}=1, \theta_{1}=-\pi / 2 \\
D_{2}=1, \theta_{2}=0 \\
D_{4}=1, \theta_{4}=0 \\
D_{k}=0, k \neq 0,1,2,4
\end{gathered}
$$

(ii) $x(t)=\cos ^{2}(t)=\frac{1}{2}[1+\cos (2 t)]$
(a) Exponential form: $\omega_{0}=2$

$$
\begin{gathered}
\frac{1}{2}[1+\cos (2 t)]=\quad \frac{1}{2}+\frac{1}{4} e^{j 2 t}+\frac{1}{4} e^{-j 2 t} \\
C_{0}=\frac{1}{2} \\
C_{1}=\frac{1}{4}, C_{-1}=\frac{1}{4} \\
C_{k}=0, k \neq 0,1,-1
\end{gathered}
$$

Continued \rightarrow
(b) Combined trigonometric: $D_{k}=2\left|C_{k}\right|, k>0$

$$
\begin{gathered}
D_{0}=C_{0}=\frac{1}{2} \\
D_{1}=\frac{1}{2}, \theta_{1}=0 \\
D_{k}=0, k \neq 0,1
\end{gathered}
$$

(iii) $x(t)=\cos (t)+\sin (2 t)+\cos (3 t-\pi / 3), \omega_{0}=1$
(a) Exponential form:

$$
\begin{gathered}
x(t)=\frac{1}{2} e^{j t}+\frac{1}{2} e^{-j t}+\frac{1}{2 j} e^{j 2 t}-\frac{1}{2 j} e^{-j 2 t}+\frac{1}{2} e^{j 3 t}+\frac{1}{2} e^{-j 3 t} \\
C_{1}=\frac{1}{2}, C_{-1}=\frac{1}{2} \\
C_{2}=\frac{-j}{2}, C_{-2}=\frac{j}{2} \\
C_{3}=\frac{1}{2}, C_{-3}=\frac{1}{2} \\
C_{k}=0, k \neq 1,-1,2,-2,3,-3
\end{gathered}
$$

(b) Trigonometric

$$
\begin{gathered}
x(t)=\cos (t)+\cos (2 t-\pi / 2)+\cos (3 t-\pi / 3), D_{k}=2\left|C_{k}\right|, k>0 \\
D_{0}=C_{0}=0 \\
D_{1}=1, \theta_{1}=0 \\
D_{2}=1, \theta_{2}=-\pi / 2 \\
D_{3}=1, \theta_{3}=-\pi / 3 \\
D_{k}=0, k>3
\end{gathered}
$$

(iv) $x(t)=2 \sin ^{2}(2 t)+\cos (4 t)=(1-\cos (4 t))+\cos (4 t)=1$
(a) Exponential: $C_{0}=1, C_{k}=0, k \neq 1$
(b) Trigonometric: $D_{0}=C_{0}=1, D_{k}=0, k \neq 0$
(v) $x(t)=\cos (7 t), \omega_{0}=7$
(a) Exponential: $C_{1}=\frac{1}{2}, C_{-1}=\frac{1}{2}, C_{k}=0, k \neq 1$
(b) Trigonometric: $D_{1}=1, \theta_{1}=0$,

$$
D_{k}=0, k \neq 1
$$

(vi) $x(t)=4 \cos (t) \sin (4 t)=2 \sin (5 t)+2 \sin (3 t), \omega_{0}=1$
(a) Exponential:

$$
\begin{gathered}
x(t)=-j e^{j 5 t}+j e^{-j 5 t}-j e^{j 3 t}+j e^{-j 3 t} \\
C_{3}=-j, C_{-3}=j \\
C_{5}=-j, C_{-5}=j \\
C_{k}=0, k \neq 3,-3,5,-5
\end{gathered}
$$

(b) Trigonometric:

$$
\begin{gathered}
x(t)=2 \cos (5 t-\pi / 2)+2 \cos (3 t-\pi / 2) \\
D_{3}=2, \theta_{3}=-\pi / 2 \\
D_{5}=2, \theta_{5}=-\pi / 2 \\
D_{k}=0, k \neq 3,5
\end{gathered}
$$

4.3
(a)
(i)
(ii)

$$
\begin{aligned}
& x(t)=\cos (3 t)+\sin (5 t) \\
& \omega_{0}=3 \quad T_{0}=\frac{2 \pi}{3} \quad \omega=5, T_{1}=\frac{2 \pi}{5} \rightarrow T=2 \pi \\
& x(t)=\cos (6 t)+\sin (8 t)+e^{j 2 t} \quad \omega=1 \quad \text { yes } . \\
& T_{1}=\pi / 3 \quad T_{2}=\pi / 4 \quad T_{3}=\pi \rightarrow T=\pi \quad \omega=2 \text { y yes }
\end{aligned}
$$

(iii)
aperiodic, No
(iv)

$$
\begin{aligned}
& x(t)=\sin \left(\frac{\pi t}{6}\right)+\sin \left(\frac{\pi t}{3}\right) \\
& T_{1}=\frac{2 \pi}{\pi / 6}=12 \quad T_{2}=\frac{2 \pi}{\pi / 3}=6 \\
& T=12, \omega=\pi / 6 \text { res }
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& \omega_{0}=1, x(t)=0.5 e^{j 3 t}+0.5 e^{-j 3 t}+\frac{1}{2 j} e^{j 5 t}-\frac{1}{2 j} e^{-j 5 t} \\
& C_{0}=0, C_{3}=C_{-3}=0.5, C_{5}=-0.5 j, C_{-5}=0.5 j
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \omega_{0}=2, x(t)=e^{j 2 t}+\frac{1}{2} e^{j 6 t}+\frac{1}{2} e^{-j 6 t}+\frac{1}{2 j} e^{j 8 t}-\frac{1}{2 j} e^{-j 8 t} \\
& C_{0}=0, C_{1}=1, C_{-1}=0, C_{3}=C_{-3}=\frac{1}{2}, C_{4}=\frac{-j}{2}, C_{-4}=\frac{j}{2}, C_{k}=C_{-k}=0, k>4
\end{aligned}
$$

(iii) No Fourier Series
(iv)

$$
\begin{aligned}
& x_{3}(t)=\sin \left(\frac{\pi}{6} t\right)+\sin \left(\frac{\pi}{3} t\right), \omega_{0}=\frac{\pi}{6} \\
& x_{3}(t)=\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t}+\frac{1}{2 j} e^{j 2 \omega_{0} t}-\frac{1}{2 j} e^{-j 2 \omega_{0} t} \\
& C_{0}=0, C_{1}=\frac{-j}{2}, C_{-1}=\frac{j}{2}, C_{2}=\frac{-j}{2}, C_{-2}=\frac{j}{2}, C_{k}=C_{-k}=0, k>2
\end{aligned}
$$

4.4 let $x(t)$ have a Farrier Series expansion:

$$
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

Then,
$4 \cdot 5$

$$
\begin{aligned}
& x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t\right)+B_{k} \sin \left(k \omega_{0} t\right) \\
& =A_{0}+\sum_{k=1}^{\infty} A_{k}\left[\frac{e^{j k \omega_{0} t}+e^{-j k \omega_{0} t}}{2}\right]+B_{k}\left[\frac{e^{j k \omega_{0} t}-e^{-j k \omega_{0} t}}{2 j}\right] \\
& =A_{0}+\sum_{k=1}^{\infty}\left[\frac{A k}{2}+\frac{B_{k}}{2 j}\right] e^{j k \omega_{0} t}+\left[\frac{A k}{2}-\frac{B_{k}}{2 j}\right] e^{-j k \omega_{0} t}
\end{aligned}
$$

Compare to $x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j k \omega_{0} t} C_{k}=\left\{\begin{array}{rr}A_{0} & k=0 \\ 1 / 2\left[A_{k}-j B_{k}\right] \\ 1 / 2\left[A_{k}+j B_{k}\right], \\ k \leqslant-1\end{array}\right.$,

$$
k \leqslant-1
$$

a) $\int_{0}^{2 \pi} \sin ^{2}(t) d t=\int_{0}^{2 \pi} \frac{1}{2}[1-\cos 2 t] d t$

$$
=\frac{1}{2}\left(t-\frac{1}{2} \sin 2 t\right)_{0}^{2 \pi}=\pi
$$

b) $\begin{aligned} \int_{0}^{2 \pi} \sin ^{2}(2 t) d t & =\int_{0}^{2 \pi} \frac{1}{2}[1-\cos 4 t] d t \\ & =\frac{1}{2}\left(t-\frac{1}{4} \sin 4 t\right)_{0}^{2 \pi}=\pi\end{aligned}$
c) $\int^{2 \pi} \sin (t) \sin (2 t) d t$
\circ

$$
\begin{aligned}
& =1 / 2 \int_{0}^{2 \pi}[\cos t-\cos 3 t] d t \\
& =1 / 2(\sin t-1 / 3 \sin 3 t)_{0}^{2 \pi} \\
& =0
\end{aligned}
$$

(d) It illustrates the orthogonality of sinusoids, since it shows cases where if $f(t)$ and $g(t)$ are two sinusoids with $f(t) \neq g(t)$ then they are orthogonal over $[0,2 \pi]$ according to the definition of orthogonality in section 4.2. Complex exponentials are orthogonal over $[0,2 \pi]$ because $e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)$ and so

$$
\begin{array}{rlrl}
\int_{0}^{2 \pi} e^{j \omega_{1} t} e^{-j \omega_{0} t} d t & = & \int_{0}^{2 \pi}\left(\cos \left(\omega_{1} t\right)+j \sin \left(\omega_{1} t\right)\right)\left(\cos \left(\omega_{0} t\right)-j \sin \left(\omega_{0} t\right)\right) d t \\
& =\int_{0}^{2 \pi}\left(\cos \left(\omega_{1} t\right) \cos \left(\omega_{0} t\right)+j \sin \left(\omega_{1} t\right) \cos \left(\omega_{0} t\right)-j \sin \left(\omega_{0} t\right) \cos \left(\omega_{1} t\right)+\sin \left(\omega_{1} t\right) \sin \left(\omega_{0} t\right)\right) d t \\
& = & 0 \text { if } \omega_{0} \neq \omega_{1}
\end{array}
$$

4.7. The integral of a sinusoid over an integer number of periods is zero. Onthogonal: $\int_{a}^{b}(t) h(t) d t=0$
(a) Cos $m \omega_{0} t \cos n w_{0} t$

$$
\begin{aligned}
& \quad=\frac{1}{2} \cos (m+n) \omega_{0} t+\frac{1}{2} \cos (m-n) \omega_{0} t \\
& \therefore \frac{1}{2} \int_{0}^{T_{0}}\left[\cos (m+n) \omega_{0} t+\cos (n-m) \omega_{0} t\right] d t=0, m \neq n \\
& \left.\quad=\frac{1}{2} \int_{0}^{T_{0}} d t=\frac{1}{2} t\right]_{0}^{T_{0}}, m=n \quad \therefore m \neq n
\end{aligned}
$$

(b) cos $m \omega_{0} t \sin n \omega_{0} t=\frac{1}{2}\left[\Delta i n(m+n) \omega_{0} t+\sin (n-m) \omega_{0} t\right]$

$$
\therefore \frac{1}{2} \int_{0}^{T_{0}}\left[d i n(m+n) \omega_{0} t+\Delta \dot{m}(n-m) w_{0} t\right] d t=0 \text {, all } m \phi n
$$

(c) $\sin m \omega_{0} t \sin n \omega_{0} t=\frac{1}{2}\left[\cos (m-n) \omega_{0} t-\cos (m+n) \omega_{0} t\right]$

$$
\begin{array}{r}
\therefore \frac{1}{2} \int_{\Delta}^{T_{0}}\left[C \theta \alpha(m-n) w_{0} t-\cos (m+n) w_{0} t\right] d t=\left\{\begin{array}{l}
0, m \neq n \\
\text { from }(a) \rightarrow
\end{array} \frac{T_{0}}{2}, j m=n\right.
\end{array}
$$

4.8. (a) $\quad C_{6}=-j \frac{2 X_{0}}{\pi k}, \underline{k-d d} \quad 2\left|C_{k}\right|=\frac{4 x_{0}}{\pi k} ; \theta_{6}=-90^{\circ}$

$$
\therefore x(t)=\sum_{k=1}^{\infty} \frac{4 x_{0}}{\pi k} \cos \left(k u_{b} t-90^{\circ}\right)
$$

(b)

$$
\begin{aligned}
& C_{k}=j \frac{x_{0}}{2 \pi_{k}}, 2\left|c_{k}\right|=\frac{x_{0}}{\pi k}, \theta_{b}=90^{\circ} \\
& \therefore x(t)=\frac{x_{0}}{2}+\sum_{k=1}^{\infty} \frac{x_{0}}{\pi k} \cos \left(k \omega_{0} t+90^{\circ}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& C_{k}=-\frac{2 X_{0}}{(\pi k)^{2}}, k \theta d d, 2\left|C_{k}\right|=\frac{4 x_{0}}{(\pi k)^{2}} ; \theta_{k}=180^{\circ} \\
& \therefore x(t)=\frac{x_{0}}{2}+\sum_{k=1}^{\infty} \frac{4 x_{0}}{(\pi k)^{2}} \cos \left(k w_{0} t,+188^{\circ}\right)
\end{aligned}
$$

(d) $C_{b}=\frac{w X_{0}}{T_{0}} \sin c \frac{w k \omega_{0}}{2}$;

$$
x(t)=\sum_{b=0}^{\infty} \frac{2 \omega x_{0}}{T_{0}} \operatorname{sinc}\left(\frac{w h \omega_{0}}{2}\right) \cos k \omega_{0} t
$$

(e) $x(t)=\frac{2 X_{0}}{\pi}+\sum_{k=1}^{\infty} \frac{4 x_{0}}{\pi\left(4 k^{2}-1\right)} \cos \left(h \omega_{0} t+180^{\circ}\right)$
(f) $x(t)=\frac{x_{0}}{2} \cos \left(\omega_{0} t-90^{\circ}\right)+\sum_{\theta=0}^{\infty} \frac{2 x_{0}}{\pi\left(b^{2}-1\right)} \cos \left(k \omega_{0} t+180^{\circ}\right)$
(g) $x(t)=\sum_{a=0}^{\infty} \frac{\Sigma X_{0}}{T_{0}} \cos k \omega_{0} t$
4.9. AppA used, with $e^{-j k \omega_{0} T_{0}}=e^{-j k z \pi}$
(a)

$$
\begin{aligned}
& \text { PRA used, } C_{b}=\frac{1}{T_{0}} \int_{0}^{T_{0} / 2} x_{0} e^{-j k \omega_{0} t} d t-\frac{1}{T_{0}} \int_{T_{0} / 2}^{T_{0}} X_{\Delta} e^{-j k \omega_{0} t} \\
& =\frac{x_{0}}{j T_{0} \omega_{0} T_{0}}\left[\left.e^{-j k \omega_{0} t}\right|_{0} ^{T_{0} / 2}-\left.e^{-j k \omega_{0} t}\right|_{T_{0} / 2} ^{T_{0}}\right] \\
& =\frac{j X_{0}}{2 \pi k}\left[e^{-j \pi}-1-e^{-j k 2 \pi}+e^{-j k \pi}\right]=\left\{\begin{array}{c}
0 ; k e \omega^{-j \pi} \\
-j \frac{2 x_{0}}{\pi k} ; k \text { odd }
\end{array}\right.
\end{aligned}
$$

(b)

$$
\text { (b) } \begin{aligned}
& C_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} \frac{X_{0}}{T_{0}} t e^{-j k \omega_{0} t} d t=\frac{X_{0}}{T_{0}^{2}}\left[\frac{1}{\left(-j k \omega_{0}\right)^{2}} e^{-j k \omega_{0} t}(-j k \omega, t-1)\right]_{0}^{T_{0}} \\
&=\frac{X_{0}}{-[k 2 \pi]^{2}}\left[e^{-j k z \pi}(-j k 2 \pi-1)-(-1)\right]=\frac{-x_{0}}{(2 \pi k)^{2}}(-j k 2 \pi)=\frac{j X_{0}}{2 \pi k} \\
& \text { (c) } C_{b}=\frac{1}{b} \int_{T_{0} / 2}^{0}-\frac{2 X_{0}}{T_{0}} t e^{-j k \omega_{0} t} d t+\frac{1}{T_{0}} \int_{0}^{T / 2} \frac{2 X_{0} t}{T_{0}} t e^{-j k \omega_{0} t} d t \\
&=\frac{2 X_{0}}{T_{0}^{2}} \frac{1}{\left(-j k \omega_{0}\right)^{2}}\left[-\left.e^{-j k \omega_{0} t}\left(-j k \omega_{0} t-1\right)\right|_{T_{0} / 2} ^{0}+\left.e^{-j k \omega_{0} t}\left(-j k \omega_{0} t-1\right)\right|_{0} ^{T_{0} / 2}\right] \\
&=\frac{2 X_{0}}{-(k 2 \pi)^{2}}\left[1+e^{j k \pi}(j k \pi-1)+e^{-j k \pi}(-j k \pi-1)-(-1)\right]
\end{aligned}
$$

Now, $e^{j k \pi}=e^{-j k \pi}$

$$
\begin{aligned}
& \text { Now, } e^{j k \pi}=e^{-j k \pi} \\
& \therefore C_{k}=\frac{2 X_{0}}{-(k 2 \pi)^{2}}\left[-2 e^{j k \pi}+2\right]
\end{aligned}= \begin{cases}-\frac{2 X_{0}}{(\pi k)^{2}} ; & k \text { odd } \\
0 ; & ; \text { even }\end{cases}
$$

(d)

$$
\begin{aligned}
& c_{k}=\frac{1}{T_{\Delta}} \int_{-w / 2}^{w / 2} x_{0} e^{-j k \omega_{0} t} \frac{1}{d t=\left.\frac{X_{0}}{-j k 2 \pi} e^{-j k \omega_{0} t}\right|_{w / 2} ^{w / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{X_{0}}{\pi t_{2}} \frac{k w \omega_{0}}{2} \frac{\sin \left(k w \omega_{0} / 2\right)}{k w \omega_{0} / 2}=\frac{w X_{0}}{T_{0}} \sin c\left(k w \omega_{0} / 2\right)
\end{aligned}
$$

(e) $c_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} X_{0} \sin \left(\frac{\omega_{0}}{2} t\right) e^{-j k \omega_{0}} d t$

$$
\begin{aligned}
& =\frac{x_{0}}{T_{0}}\left[\frac{e^{-j k \omega_{0} t}\left(-j k \omega_{0} t \sin \left(\frac{\omega_{0} t}{2}\right)-\frac{\omega_{0}}{2} \cos \left(\frac{\omega_{0} t}{2}\right)\right.}{-k^{2} \omega_{0}^{2}+\omega_{0}^{2} / 4}\right]_{0}^{T_{0}} \\
& =\frac{x_{0}}{T_{0}}\left[\frac{e^{-j k 2 \pi}\left(-j k 2 \pi \sin \pi-\left(\pi / T_{0}\right) \cos \pi\right)-(1)\left(-\frac{\pi}{T_{0}} \cos 0\right)}{-k^{2} \omega_{0}^{2}+\omega_{0}^{2} / 4}\right]
\end{aligned}
$$

$\begin{array}{ll}4.9 \\ (\text { cont }) & =\frac{4 x_{0}}{T_{0}}\left[\frac{(1)\left(\frac{\pi}{T_{0}}\right)+\frac{\pi}{T_{0}}}{\omega_{0}^{2}\left(1-4 k^{2}\right)}\right]=\frac{8 x_{0}}{4 \pi\left(1-4 b^{2}\right)}=\frac{-2 x_{0}}{\pi\left(4 l^{2}-1\right)}\end{array}$
(f)

$$
\begin{aligned}
C_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0} / 2} X_{0} \sin \left(\omega_{0} t\right) e^{-j k \omega_{0} t} d t \\
& =\frac{X_{0}}{T_{0}}\left[\frac{e^{-j k \omega_{0} t}\left(-j k \omega_{0} t \sin \left(\omega_{0} t\right)-\omega_{0} \cos \left(\omega_{0} t\right)\right)}{-k^{2} \omega_{0}^{2}+\omega_{0}^{2}}\right]_{0}^{T_{0} / 2} \\
& \left.=\frac{X_{0}}{T_{0}}\left[\frac{e^{-j \pi k}\left(0-\omega_{0} \cos \pi\right)-\left(-\omega_{0}\right)}{\omega_{0}^{2}\left(1-k^{2}\right)}\right]=\frac{X_{0}}{2 \pi} \frac{[-j k \pi}{\left(1-k^{2}\right)}\right] \\
& =\frac{-X_{0}}{\pi\left(k^{2}-1\right)}, k \text { even } \\
C_{1} & =\lim _{k \rightarrow 1} \frac{X_{0}}{2 \pi}\left[\frac{e^{-j k \pi}+1}{\left(1-k^{2}\right)}\right]=\frac{X_{0}}{2 \pi}\left[\frac{-j \pi e^{-j k \pi}}{-2 k}\right]_{b=1}=\frac{-j X_{0}}{4}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& T_{0}= 4, \omega_{0}=\frac{\pi}{2} \\
& \begin{aligned}
C_{k} & =\frac{1}{4} \int_{-2}^{2} x_{a}(t) e^{-j k \omega_{0} t} d t \\
& =\frac{1}{4} \int_{-1}^{0} 3 e^{-j k \omega_{0} t} d t+\frac{1}{4} \int_{0}^{1}-3 e^{-j k \omega_{0} t} d t \\
& =\frac{3}{4}\left(\frac{1}{j k \omega_{0}}\right)\left(e^{j k \omega_{0}}-1\right)-\frac{3}{4}\left(\frac{1}{j k \omega_{0}}\right)\left(1-e^{-j k \omega_{0}}\right) \\
& =\frac{3}{4}\left(\frac{1}{j k \omega_{0}}\right)\left(e^{j k \omega_{0}}+e^{-j k \omega_{0}}-2\right) \\
& =\frac{3}{4} \frac{2 \cos \left(k \omega_{0}\right)-2}{j k \omega_{0}} \\
& =\frac{-3 j}{k \pi}\left(\cos \left(k \frac{\pi}{2}\right)-1\right) \\
C_{0} & =\lim _{k \rightarrow 0} C_{k}=\lim _{k \rightarrow 0} \frac{-3 j \pi / 2 \sin \left(k \frac{\pi}{2}\right)}{\pi}=0 \\
C_{0} & =\frac{1}{4}\left(\int_{-1}^{0} 3 d t-\int_{0}^{1} 3 d t\right)=0
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{gathered}
T_{0}=3, \omega_{0}=\frac{2 \pi}{3} \\
C_{k}= \\
=\frac{1}{3} \int_{-1}^{2} x_{b}(t) e^{-j k \omega_{0} t} d t \\
=\frac{1}{3} \int_{-1}^{0} 2 e^{-j k \omega_{0} t} d t+\frac{1}{3} \int_{0}^{1} 1 e^{-j k \omega_{0} t} d t \\
= \\
=\frac{1}{3}\left(\frac{1}{j k \omega_{0}}\right)\left(2 e^{j k \omega_{0}}-2+1-e^{-j k \omega_{0}}\right) \\
= \\
C_{0}=\lim _{k \rightarrow 0} C_{k}=\lim _{k \rightarrow 0}\left(\frac{1}{j k}\right)\left(2 e^{j k \frac{2 \pi}{3}}-1-e^{-j k \frac{2 \pi}{3}}\right) \\
C_{0}=\frac{1}{3}\left(\int_{-1}^{0} 2 d t+\int_{0}^{1} 1 d t\right)=\frac{1}{3}(2+1)=1
\end{gathered}
$$

(c)

$$
\begin{aligned}
& T_{0}= \\
& \begin{aligned}
C_{k} & =\frac{1}{2} \int_{0}^{1} 2 t e^{-j k \omega_{0} t} d t \\
& =\frac{1}{(-j k \pi)^{2}}\left[e^{-j k \pi t}(-j k \pi t-1)\right]_{0}^{1} \\
& =\frac{-1}{k^{2} \pi^{2}}\left[e^{-j k \pi}(-j k \pi-1)+1\right] \\
& =\frac{1}{k^{2} \pi^{2}}\left[e^{-j k \pi}(j k \pi+1)-1\right] \\
& =\frac{1}{k^{2} \pi^{2}}\left[(-1)^{k} j k \pi+(-1)^{k}-1\right]=\frac{j(-1)^{k}}{k \pi}+\frac{(-1)^{k}-1}{k^{2} \pi^{2}}
\end{aligned}
\end{aligned}
$$

$$
C_{0}=\lim _{k \rightarrow 0} C_{k}=\lim _{k \rightarrow 0} \frac{1}{2 k \pi^{2}}\left[-j \pi e^{-j k \pi}(j k \pi+1)+j \pi e^{-j k \pi}\right]=\frac{1}{2}
$$

$$
C_{0}=\frac{1}{2} \int_{0}^{1} 2 t d t=\frac{1}{2}
$$

(d) Note that over the nonzero part of the cycle, $x_{d}(t)=x_{c}(t)-2$, so $C_{k}=C_{k}\left(\right.$ from part c) $-\frac{1}{2} \int_{0}^{1} 2 e^{-j k \pi} d t$

$$
\begin{aligned}
C_{k} & =\frac{1}{k^{2} \pi^{2}}\left[e^{-j k \pi}(j k \pi+1)-1\right]-\int_{0}^{1} e^{-j k \pi} d t \\
& =\frac{1}{k^{2} \pi^{2}}\left[e^{-j k \pi}(j k \pi+1)-1\right]+\frac{j}{k \pi}\left(1-e^{-j k \pi}\right) \\
& =\frac{1}{k^{2} \pi^{2}}\left[(-1)^{k}(j k \pi+1)-1\right]+\frac{j}{k \pi}-\frac{j(-1)^{k}}{k \pi} \\
& =\frac{(-1)^{k}}{k^{2} \pi^{2}}+\frac{-1}{k^{2} \pi^{2}}+\frac{j}{k \pi} \\
C_{0} & =C_{0}(\text { from part c })+\lim _{k \rightarrow 0} \frac{j}{\pi}\left(j \pi e^{-j k \pi}\right) \\
& =\frac{1}{2}-1=-\frac{1}{2} \\
C_{0} & =\frac{1}{2} \int_{0}^{1}(2 t-2) d t=-\frac{1}{2}
\end{aligned}
$$

(e)

$$
\begin{aligned}
T_{0}= & 4, \omega_{0}=\frac{\pi}{2} \\
C_{k} & =\frac{1}{4} \int_{-1}^{0} 2 \cos \left(\frac{\pi}{2} t\right) e^{-j k \frac{\pi}{2} t} d t \\
& =\frac{1}{2} \frac{1}{-\left(k \frac{\pi}{2}\right)^{2}+\left(\frac{\pi}{2}\right)^{2}}\left[e^{-j k \frac{\pi}{2} t}\left(-j k \frac{\pi}{2} \cos \left(\frac{\pi}{2} t\right)+\frac{\pi}{2} \sin \left(\frac{\pi}{2} t\right)\right)\right]_{-1}^{0} \\
& =\frac{2}{\pi^{2}\left(1-k^{2}\right)}\left[-j k \frac{\pi}{2}-e^{j \frac{\pi}{2} t}\left(-j \frac{\pi}{2} k\left(0-\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)\right)\right)\right] \\
& =\frac{1}{\pi\left(1-k^{2}\right)}\left[e^{j \frac{\pi}{2} k}-j k\right] \\
& =\frac{1}{\pi\left(1-k^{2}\right)}\left[j^{k}-j k\right] \\
C_{1} & =\frac{1}{4}+\frac{j}{2 \pi} \\
C_{-1} & =\frac{1}{4}-\frac{j}{2 \pi} \\
C_{0} & =\frac{1}{\pi}
\end{aligned}
$$

(f)

$$
\begin{aligned}
T_{0} & =2, \omega_{0}=\pi \\
C_{k} & =\frac{1}{2} \int_{1}^{2} \sin \left(\frac{\pi}{2} t\right) e^{-j k \pi t} d t \\
& =\frac{1}{2}\left[\frac{e^{-j k \pi t}}{(-j k \pi)^{2}+\left(\frac{\pi}{2}\right)^{2}}\left(-j k \pi \sin \left(\frac{\pi}{2} t\right)-\frac{\pi}{2} \cos \left(\frac{\pi}{2} t\right)\right)\right]_{1}^{2} \\
& =\frac{1}{2}\left(\frac{1}{-(k \pi)^{2}+\left(\frac{\pi}{2}\right)^{2}}\right)\left[e^{-j k 2 \pi}\left(-j k \pi(0)-\frac{\pi}{2}(-1)\right)-e^{-j k \pi}\left(-j k \pi(1)-\frac{\pi}{2}(0)\right)\right] \\
& =\frac{1}{2}\left(\frac{1}{-(k \pi)^{2}+\left(\frac{\pi}{2}\right)^{2}}\right)\left[\frac{\pi}{2}+j k \pi(-1)^{k}\right] \\
C_{0} & =\frac{1}{\pi}
\end{aligned}
$$

4.11

(a) entry 3 in table, with $X_{0}=4, \omega_{0}=\frac{2 \pi}{0.4 \pi}=5$, with

$$
\begin{aligned}
& C_{0}=0, \\
& C_{k}=\frac{-2(4)}{(\pi k)^{2}}, k \text { odd } \\
& C_{k}=0, k \text { even }
\end{aligned}
$$

(b) entry 6 in table (rectangular wave), with a time delay (\Longrightarrow phase shift in C_{k} 's) and a change in average value $\left(\Longrightarrow\right.$ change in $\left.C_{0}\right)$.

$$
\begin{aligned}
& \frac{T}{2}=1, T_{0}=3, \omega_{0}=\frac{2 \pi}{3}, X_{0}=15 \\
& t_{0}(\text { time delay })=2 \Longrightarrow C_{k}=\hat{C}_{k} e^{-j 2 k \omega_{0}} \text { where } \hat{C}_{k}=\frac{T X_{0}}{T_{0}} \operatorname{sinc}\left(\frac{T k \omega_{0}}{2}\right) \\
& C_{0}=2(10)-5=15 \\
& C_{k}=10 \operatorname{sinc}\left(\frac{2 \pi k}{3}\right) e^{-j 2 k \frac{2 \pi}{3}}, k \neq 0
\end{aligned}
$$

(c) entry 2 in table with $X_{0}=8$ and $T_{0}=0.2$.

$$
\begin{aligned}
& C_{0}=0 \\
& C_{k}=\frac{j 8}{2 \pi k}=\frac{j 4}{\pi k}, k \neq 0
\end{aligned}
$$

(d) entry 3 advanced by 1 second, with $X_{0}=3$ and $T_{0}=4, \omega_{0}=\frac{\pi}{2}$:

$$
\begin{aligned}
C_{0} & =\frac{3}{2} \\
C_{k} & =\hat{C}_{k} e^{j k \omega_{0}}, \text { where } \hat{C}_{k}=\frac{-2(3)}{(\pi k)^{2}} \\
& =\frac{-6}{(\pi k)^{2}} e^{j k \frac{\pi}{2}}, k \text { odd } \\
& =0, k \text { even }
\end{aligned}
$$

(e) entry 4 with $T_{0}=2$ and $X_{0}=6$

$$
\begin{aligned}
& C_{0}=\frac{12}{\pi} \\
& C_{k}=-\frac{12}{\pi\left(4 k^{2}-1\right)}, k \neq 0
\end{aligned}
$$

(f) entry 5 delayed by 1 second, with $X_{0}=8, T_{0}=4$.

$$
\begin{aligned}
& C_{0}=\frac{8}{\pi} \\
& \begin{aligned}
C_{k} & =\hat{C}_{k} e^{-j k \omega_{0}} \text { where } \hat{C}_{k}=\frac{-8}{\pi\left(k^{2}-1\right)}, k \text { even } ;=-j 2, k=1 ;=j 2, k=-1 \\
& =\frac{-8}{\pi\left(k^{2}-1\right)} e^{-j k \frac{\pi}{2}}, k \text { even } \\
& =-j 2 e^{-j k \frac{\pi}{2}}=-2, k=1 \\
& =j 2 e^{-j k \frac{\pi}{2}}=-2, k=-1 \\
& =0, k \text { odd }, k \neq-1,1
\end{aligned}
\end{aligned}
$$

4.12 (a) Only the value of ω_{0} changes, the C_{k} 's stay the same. Therefore:
$\omega_{0}=\frac{2 \pi}{4}=\frac{\pi}{2}$, and from 4.11(a) $C_{k}=\frac{-8}{(\pi k)^{2}}, k$ odd, and $C_{k}=0, k$ even .
(b) From 4.11(d)

$$
\begin{aligned}
C_{0} & =\frac{3}{2} \\
C_{k} & =\frac{-6}{(\pi k)^{2}} e^{-j k \frac{\pi}{2}}, k \text { odd } \\
& =0, k \text { even }
\end{aligned}
$$

Continued \rightarrow

4.12, continued

$$
\begin{aligned}
& \text { (c) } \tau=-1, a_{1}=1, b_{1}=\frac{4}{3} \\
& x(t)=x_{a}(t)+\frac{4}{3} x_{d}(t+1)=2=A
\end{aligned}
$$

(d) $C_{k}=C_{k a}+C_{k b} e^{j k \omega_{0}(1)}$, where $C_{k a}$ is the FS coeff for $x_{a}(t)$ and $C_{k b}$ is the FS coeff for $x_{b}(t)$.

The coefficients for both $x_{a}(t)$ and $x_{d}(t+1)$ are 0 when k even. For k odd:

$$
\begin{aligned}
C_{k} & =\frac{-8}{(\pi k)^{2}}+(4 / 3) \frac{-6}{(\pi k)^{2}} e^{j k \frac{\pi}{2}} e^{j k \frac{\pi}{2}} \\
& =\frac{-8}{(\pi k)^{2}}+\frac{-8}{(\pi k)^{2}} e^{j k \pi} \\
& =\frac{-8}{(\pi k)^{2}}+\frac{8}{(\pi k)^{2}}=0
\end{aligned}
$$

since $e^{j k \pi}=-1$ if k is odd.
4.13. (a)

$$
\begin{aligned}
& x_{b}(t)=\left.x_{a}(\gamma)\right|_{T=k-\frac{T_{0}}{2}} \sum_{k=-\infty}^{\infty} C_{k} e^{j b \omega_{b}\left(t-\frac{T_{2}}{2}\right)}=\sum_{k=-\infty}^{\infty} C_{b_{k}} e^{-j \omega_{0} t} e^{-j k \omega_{0} \frac{T_{0}}{2}} \\
& k \omega_{0} \frac{T_{0}}{2}=k \frac{2 \pi}{T_{0}} \frac{T_{0}}{2}=k \pi ; i, e^{-j b i}\left\{\begin{array}{r}
1, b_{\text {even }} \\
-1, \\
\text { b odd }
\end{array}\right. \\
& \therefore C_{b b}=\frac{-X_{0}}{\pi\left(6^{2}-1\right)}, C_{16}=j \frac{x_{0}}{4}
\end{aligned}
$$

(b) For $x_{1}=x_{a}+x_{b}$, from (a : :

$$
C_{b_{1}}=\frac{-2 X_{0}}{\pi\left(k_{1}^{2}-1\right)} ; C_{b_{1}=1}=-j \frac{X_{0}}{4}+j \frac{X_{0}}{4}=0, C_{0}=\frac{2 X_{0}}{\pi}
$$

Since k_{1} is even, Affine $k=\frac{k_{1}}{2}$; then $k=1,2,3, \ldots$

$$
\therefore C_{b}=\frac{-2 X_{0}}{\pi\left(\left(2 b_{0}\right)^{2}-1\right)}=\frac{-2 X_{0}}{\pi\left(4 b^{2}-1\right)} ; C_{0}=\frac{2 X_{0}^{2}}{\pi}
$$

4.14. (a) $\quad x(t)=x_{1}(t)+x_{2}(t), \omega_{0}=\frac{2 \pi}{0.2}=10 \pi$
 $x_{2}(t)=-x_{1}(t-0.1)=-\sum_{k=-\infty}^{\infty} 5 e^{j k 1 \Delta \pi(t-0.1)}$ $=-\sum_{k=-\infty}^{\infty} 5 e^{-j k \pi} e^{j k 1 \Delta \pi t}$

$$
\therefore x(t)=5 \sum_{k=-\infty}^{\infty}\left(1-e^{-j k \pi}\right) e^{j k 1 \Delta \pi t}
$$

$\begin{aligned} & 4.14(a) \\ & \text { Cont }\end{aligned} \quad \therefore c_{k}=\frac{5\left(1-e^{-j k \pi}\right)}{3 T_{0} / 4}= \begin{cases}10, & k= \pm 1, \pm 3, \ldots \\ 0, & k=0, \pm 2, \pm 4, \ldots\end{cases}$
(b)

$$
\begin{aligned}
C_{k} & =\frac{1}{T_{0}} \int_{-T_{0} / 4}^{3 T_{0} / 4}[\delta(t)-\delta(t-0.1)] e^{-j k \omega_{0} t} d t \\
& =5\left[1-e^{-j k 10 \pi(0 . D)}\right]=5\left[1-e^{-j k \pi}\right]
\end{aligned}
$$

4.15

$$
\begin{aligned}
T_{0} & =2, \omega_{0}=\pi \\
C_{k} & =\frac{1}{2} \int_{0}^{1} 2 e^{-j k \pi t} d t \\
& =\frac{1}{j k \pi}\left(1-e^{-j k \pi}\right)=\frac{j}{k \pi}\left((-1)^{k}-1\right) \\
& =-\frac{2 j}{k \pi}, k \text { odd } \\
& =0, k \text { even }, k \neq 0 \\
C_{0} & =\frac{1}{2}(2)=1
\end{aligned}
$$

Hence, for $k \neq 0$, the C_{k} 's are the same as Example 4.2 with $V=1$ (the signal is the same with $V=1$, except for the offset of 1).

$$
\begin{aligned}
& \text { 4.1b. } c_{b}=\int_{0}^{T_{0}} x(t) e^{-j k \omega_{0} t} d t=\int_{0}^{T_{0} / 2} x(t) e^{-j b \omega_{0} t} d t+\int_{T_{2}}^{T_{0}} x(t) e^{-j h \omega_{g} t} d t \\
& =I_{1}+I_{2} \\
& I_{2}=\int_{\frac{T_{0}}{2}}^{T_{0}} x(\tau) e^{-j b \omega_{0} \tau} d \tau ; d t \tau=t_{0}-T_{0} / 2 \\
& \therefore I_{2}=\int_{0}^{T_{0} / 2} x\left(t-\frac{T_{0}}{2}\right) e^{-j k \omega_{0}\left(t-T_{0} / 2\right)} d t \text { now } \frac{b \omega_{0} T_{0}}{2}=\frac{b_{2}}{2}\left(\frac{2 \pi}{T_{0}}\right) T_{0} d \pi \\
& \therefore I_{2}=-e^{j k \pi} \int_{0}^{\frac{T}{2}} x(t) e^{-j k \omega_{0} t} d t=-(-1)^{k} I_{1} \\
& \therefore C_{k}=I_{1}-(-1)^{k} I_{1}=\left[1-(-1)^{k}\right]=\left\{\begin{array}{cc}
2 I_{1}, & k \text { ord } \\
0, & \text { b wed }
\end{array}\right.
\end{aligned}
$$

4.17 Using property $6, m-1$ is the order of the first derivative that has a discontinuity:
(a): $\frac{d x_{a}}{d t}$ discontinuous $\Longrightarrow m-1=1, m=2$

$$
\left|C_{k}\right|=\frac{8}{\pi^{2}} \frac{1}{k^{2}}(k \text { odd })(\text { check })
$$

(b): $x_{b}(t)$ discontinuous $\Longrightarrow m-1=0, m=1$

$$
\left|C_{k}\right|=10\left|\operatorname{sinc}\left(\frac{2 \pi k}{3}\right)\right|=\frac{30\left|\sin \left(\frac{2 \pi k}{3}\right)\right|}{2 \pi k},(k>0) \text { (check) }
$$

(c): $x_{c}(t)$ discontinuous $\Longrightarrow m-1=0, m=1$
$\left|C_{k}\right|=\frac{4}{\pi k}(k>0)$ (check)
(d): $\frac{d x_{d}(t)}{d t}$ discontinuous $\Longrightarrow m-1=1, m=2$
$\left|C_{k}\right|=\frac{6}{\pi^{2} k^{2}}$ (k odd) (check)
(e): $\frac{d x_{e}(t)}{d t}$ discontinuous $\Longrightarrow m-1=1, m=2$
$\left|C_{k}\right|=\frac{12}{\pi\left(4 k^{2}-1\right)}($ check $)$
(f): $\frac{d x_{f}(t)}{d t}$ discontinuous $\Longrightarrow m-1=1, m=2$
$\left|C_{k}\right|=\frac{8}{\pi\left(k^{2}-1\right)},(k$ even $)$ (check)
$4 \cdot 18$
will use combined trig form with $x_{0}=10$
a) $2 C_{k}=\frac{40}{\pi k}<-90^{\circ}, k$ odd

b)

c)

d)

$$
\begin{aligned}
& 2 C_{n}=\frac{-40}{\pi\left(4 k^{2}-i\right)}
\end{aligned}
$$

Continued \rightarrow

$$
\text { (f) See Figure } 4.13 \text { with } \frac{2 w_{0} X_{0}}{T_{0}}=\frac{20 w}{T_{0}}
$$

$$
(g) 2 C_{b}=\frac{20}{T_{0}}
$$

4.19

The C_{k} 's were found in problem 4.10.
(a)

$$
\begin{aligned}
C_{0} & =0 \\
C_{k} & =\frac{-3 j}{k \pi}\left(\cos \left(k \frac{\pi}{2}\right)-1\right), k \neq 0 \\
2\left|C_{k}\right| & \left.=\frac{6}{k \pi} \left\lvert\, \cos \left(k \frac{\pi}{2}\right)-1\right.\right) \mid, k>0 \\
\theta_{k} & =\frac{\pi}{2}
\end{aligned}
$$

So the values of C_{0} the first 4 harmonics in trigonometric form are given by:

$$
\begin{aligned}
C_{0} & =0 \\
2\left|C_{1}\right| & =\frac{6}{k \pi}=\frac{6}{\pi} \\
2\left|C_{2}\right| & =\frac{12}{k \pi}=\frac{6}{\pi} \\
2\left|C_{3}\right| & =\frac{6}{k \pi}=\frac{2}{\pi} \\
2\left|C_{4}\right| & =0
\end{aligned}
$$

and $\theta_{k}=\frac{\pi}{2}$ for $k=1,2,3$.

4.19, continued

(b): $\left|C_{0}\right|, 2\left|C_{k}\right|(k>0)$

(c): $\left|C_{0}\right|, 2\left|C_{k}\right|(k>0)$

(a): θ_{k}

(b): θ_{k}

(c): θ_{k}

Figure 1: Fourier spectra for parts (a)-(c)

Continued \rightarrow

4.19, continued
(b)

$$
\begin{aligned}
C_{0} & =1 \\
C_{k} & =\frac{1}{2 \pi}\left(\frac{1}{j k}\right)\left(2 e^{j k \frac{2 \pi}{3}}-1-e^{-j k \frac{2 \pi}{3}}\right) \\
C_{1} & =\frac{1}{2 \pi j}(-1.5+j 1.5 \sqrt{3}) \\
2\left|C_{1}\right| & =2 \frac{3}{2 \pi}, \theta_{1}=\frac{4 \pi}{6} \\
C_{2} & =\frac{1}{4 \pi j}(-1.5-j 1.5 \sqrt{3}) \\
2\left|C_{2}\right| & =2 \frac{3}{4 \pi}, \theta_{2}=\frac{-4 \pi}{6} \\
C_{3} & =\frac{1}{6 \pi j}(0)=0 \\
2\left|C_{3}\right| & =0 \\
C_{4} & =\frac{1}{8 \pi j}(-1.5+j 1.5 \sqrt{3}) \\
2\left|C_{4}\right| & =2 \frac{3}{8 \pi}, \theta_{4}=\frac{4 \pi}{6}
\end{aligned}
$$

(c)

$$
\begin{aligned}
C_{0} & =\frac{1}{2} \\
C_{k} & =\frac{1}{k^{2} \pi^{2}}\left[e^{-j k \pi}(j k \pi+1)-1\right] \\
C_{1} & =\frac{1}{\pi^{2}}[-2-j \pi] \\
2\left|C_{1}\right| & =0.7547, \theta_{1}=-0.68 \pi \\
C_{2} & =\frac{j 2 \pi}{4 \pi^{2}}=\frac{j}{2 \pi} \\
2\left|C_{2}\right| & =0.3183, \theta_{2}=0.5 \pi \\
C_{3} & =\frac{1}{9 \pi^{2}}[-2-3 j \pi] \\
2\left|C_{3}\right| & =0.2169, \theta_{3}=-0.5666 \pi \\
C_{4} & =\frac{j 4 \pi}{16 \pi^{2}}=\frac{j}{4 \pi} \\
2\left|C_{4}\right| & =0.1592, \theta_{4}=0.5 \pi
\end{aligned}
$$

(d) $C_{0}=-\frac{1}{2}$
C_{k} same as in part (c) for $k \neq 0$

Continued \rightarrow

4.19, continued

Figure 2: Fourier spectra for parts (d)-(f)

Continued \rightarrow

4.19 continued

(e)

$$
\begin{aligned}
C_{0} & =\frac{1}{\pi} \\
C_{1} & =\frac{1}{4}+\frac{j}{2 \pi} \\
2\left|C_{1}\right| & =0.5927, \theta_{1}=0.1805 \pi \\
C_{k} & =\frac{1}{\pi\left(1-k^{2}\right)}\left[e^{j \frac{\pi}{2} k}-j k\right], k=2,3,4 \\
C_{2} & =\frac{1}{3 \pi}(1+2 j) \\
2\left|C_{2}\right| & =0.4745, \theta_{2}=0.3524 \pi \\
C_{3} & =\frac{1}{8 \pi}(4 j) \\
2\left|C_{3}\right| & =0.3183, \theta_{3}=0.5 \pi \\
C_{4} & =\frac{1}{15 \pi}(-1+4 j) \\
2\left|C_{4}\right| & =0.1750 . \theta_{4}=0.5780 \pi
\end{aligned}
$$

(f)

$$
\begin{aligned}
C_{0} & =\frac{1}{\pi} \\
C_{k} & =\frac{1}{2}\left(\frac{1}{-k^{2} \pi+\frac{1}{4} \pi}\right)\left[0.5 e^{-j k 2 \pi}+j k e^{-j k \pi}\right] \\
C_{1} & =-\frac{2}{3 \pi}\left(\frac{1}{2}-j\right) \\
2\left|C_{1}\right| & =0.4745, \theta_{1}=0.6476 \pi \\
C_{2} & =-\frac{1}{7.5 \pi}\left(\frac{1}{2}+2 j\right) \\
2\left|C_{2}\right| & =0.1750, \theta_{2}=-0.5780 \pi \\
C_{3} & =-\frac{1}{17.5 \pi}\left(\frac{1}{2}-3 j\right) \\
2\left|C_{3}\right| & =0.1106, \theta_{3}=-0.5526 \pi \\
C_{4} & =-\frac{1}{31.5 \pi}\left(\frac{1}{2}+4 j\right) \\
2\left|C_{4}\right| & =0.0815, \theta_{4}=-0.5396 \pi
\end{aligned}
$$

The C_{k} 's were found in problem 4.11.
(a)

$$
\begin{aligned}
C_{0} & =0 \\
C_{k} & =\frac{-8}{(\pi k)^{2}} \\
2\left|C_{k}\right| & =\frac{16}{(\pi k)^{2}}, \theta_{k}=0 \\
2\left|C_{1}\right| & =0.8106 \\
2\left|C_{2}\right| & =0.2026 \\
2\left|C_{3}\right| & =0.0901 \\
2\left|C_{4}\right| & =0.0507
\end{aligned}
$$

(b)

$$
\begin{aligned}
C_{0} & =15 \\
C_{k} & =10 \operatorname{sinc}\left(\frac{2 \pi k}{3}\right) e^{-j 2 k \frac{2 \pi}{3}} \\
2\left|C_{k}\right| & =20\left|\operatorname{sinc}\left(\frac{2 \pi k}{3}\right)\right| \\
\theta_{k} & =-\frac{4 \pi}{3}+\pi, k=2,5,8,11 \ldots \\
\theta_{k} & =-\frac{4 \pi}{3}, k=0,1,3,4,6,7,9, \ldots \\
2\left|C_{1}\right| & =8.2699, \theta_{1}=2.0944 \mathrm{rad} \\
2\left|C_{2}\right| & =4.1350, \theta_{2}=-1.0472 \mathrm{rad} \\
2\left|C_{3}\right| & =0 \\
2\left|C_{4}\right| & =2.0675, \theta_{4}=2.0944 \mathrm{rad}
\end{aligned}
$$

Continued \rightarrow

4.20, continued

(c)

$$
\begin{aligned}
C_{0} & =0 \\
C_{k} & =\frac{4 j}{\pi k} \\
2\left|C_{k}\right| & =\frac{8}{\pi k}, \theta_{k}=\frac{\pi}{2} \\
2\left|C_{1}\right| & =2.5465 \\
2\left|C_{2}\right| & =1.2732 \\
2\left|C_{3}\right| & =0.8488 \\
2\left|C_{4}\right| & =0.6366
\end{aligned}
$$

Figure 3: Fourier spectra for 4.20 (a)-(c)
4.21

$$
\begin{aligned}
& \omega_{0}=\pi, c_{0}=2, \quad c_{1}=1, c_{3}=1 / 2 e^{j \pi / 4}, c_{3}= \\
& j \pi t, e^{j \pi t}+1 / 2 e^{j \pi / 4} e^{j 3 \pi t}+1 / 2 e^{-j \pi / 4} e^{-j 3 \pi t} \\
& 2 \pi t
\end{aligned}
$$

$$
=2+e^{j \pi t}+\cos (3 \pi t+\pi / 4)
$$

$4 \cdot 22$

$$
\begin{aligned}
& C k=1 / 2 \int_{0}^{1} e^{-j k \omega_{0} t} d t=1 /\left.2 \frac{1}{-j k \omega_{0}} e^{-j k \omega_{0} t}\right|_{0} ^{1} \\
& \quad=\frac{1}{2 j k \omega_{0}}\left[1-e^{-j k \omega_{0}}\right], k \neq 0 \\
& C_{0}=1 / 2 \int_{0}^{1} d t=1 / 2, \frac{\square}{-2} \left\lvert\, \frac{\square}{1} \frac{\square}{2} \frac{\square}{4} \frac{\square}{5} t\right.
\end{aligned}
$$

$4 \cdot 23$

a) $T=6 \quad f=1 / 6 \quad \& \quad \omega_{0}=\frac{2 \pi}{T}=\pi / 3$

$$
\text { b) } \begin{aligned}
c_{0} & =\frac{1}{T} \int_{T} x(t) d t=1 / 6 \\
C_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t=1 / 6 \int_{0}^{1} e^{-j k \omega_{0} t} d t \\
& =\frac{1}{j k \omega_{0} T}\left(1-e^{-j k \omega_{0}}\right), k \neq 0
\end{aligned}
$$

This $=0$ when $k \neq 0, k$ a multiple of 6
$4 \cdot 24$

$$
\begin{aligned}
& H(S)=\frac{10}{S+5}, \omega_{0}=\frac{2 \pi}{3}, T_{0}=3 \\
& H(0)=10 / 5=2, H\left(j \omega_{0}\right)=\frac{10}{5+j 2 \pi / 3}=1.84 \angle-22.7^{\circ} \\
& H\left(j 2 \omega_{0}\right)=\frac{10}{5+j 4 \pi / 3}=1.533 \angle-40^{\circ} \\
& H\left(j 3 \omega_{0}\right)=\frac{10}{5+j 2 \pi}=1.245 \angle 51.5^{\circ}
\end{aligned}
$$

$$
c y_{k}=H\left(j k \omega_{0}\right) c_{x k}
$$

a) $x(t)=c_{x_{0}}=0, c_{x_{k}}=-j \frac{2(20)}{\pi k}=\frac{40}{7 k} \frac{1-90^{\circ}}{\text { kodd }}$

$$
\begin{aligned}
&\left(y_{0}\right.=0 \\
&\left(y_{1}\right.=(1.84 \angle-22.7)\left(12.72 \angle-90^{\circ}\right)=23.4 \angle-112.7 \\
&\left(y_{2}\right.=0 \\
& c y_{3}=\left(1.245 \angle-51.5^{\circ}\right)\left(4.24 \angle-90^{\circ}\right)=5.28 \angle-14.5^{\circ} \\
& y(t)=46.8 \cos \left(2 / 3 \pi t-112.7^{\circ}\right)+10.56 \cos \left(2 \pi t-141.5^{\circ}\right)
\end{aligned}
$$

b)
[himag' hphase']

$$
\begin{aligned}
& w=[.66667 * p i \quad 2 * p i] ; n=\left[\begin{array}{ll}
0 & 10
\end{array}\right] ; d=\left[\begin{array}{ll}
1 & 5
\end{array}\right] ; \\
& h=\operatorname{Rreq}(n, d, w) ; \\
& \text { hmag }=\operatorname{abs}(h) \text {; hphase }=\text { angle }(h) * 180 / \mathrm{pi} ;
\end{aligned}
$$

c) (a) $C_{x_{0}}=\frac{x_{0}}{2}=10 ; C_{x_{k}}=j \frac{20}{2 \pi k}$

$$
\begin{aligned}
& C_{y 0}=(20)(10)=20 \\
& C_{y 1}=\left(1.84 \angle-22.7^{\circ}\right)\left(3.18 \angle 90^{\circ}\right)=5.86 / 67.3^{\circ} \\
& C_{y 2}=\left(1.53 \angle-40^{\circ}\right)\left(1.54 \angle 90^{\circ}\right)=2.44 \angle 50^{\circ} \\
& C_{y 3}=\left(1.245\left(-51.5^{\circ}\right)\left(1.06 / 190^{\circ}\right)=1.32 \angle 38.5^{\circ}\right. \\
& y(t)=\frac{20+11.72 \cos \left(\frac{2}{3} \pi t+67.3^{\circ}\right)+4.88 \cos \left(\frac{4}{3} \pi t+50^{\circ}\right)}{}+2.64 \cos \left(2 \pi t+38.5^{\circ}\right)+\cdots
\end{aligned}
$$

(d) (a) $C_{x 0}=10 ; C_{x k}=\frac{-40}{\pi^{2} k^{2}}, k$ odd

$$
\begin{aligned}
& C_{y_{0}}=2(10)=20 \\
& C_{y_{1}}=\left(1.841-22 . .^{\circ}\right)\left(4.051180^{\circ}\right)=2.46\left(152.3^{\circ} ; C_{y z}=0\right. \\
& C_{y 3}=\left(1.2451-515^{\circ}\right)\left(0.4501180^{\circ}\right)=0.561\left(128.5^{\circ}\right. \\
& y(t)=20+14.92 \cos \left(\frac{2}{3} \pi t+152.3^{\circ}\right)+1.122 \cos \left(2 \pi t+128.5^{\circ}\right)
\end{aligned}
$$

(e)

$$
\begin{aligned}
& C_{x 0}=\frac{2(20)}{\pi}=12.73, \quad C_{x k}=\frac{-2 x_{0}}{\pi\left(4 k^{2}-1\right)}=-\frac{40}{\pi\left(4 k^{2}-1\right)} \\
& C_{\text {yo }}=(2)(12.73)=25.46 \\
& C_{y 1}=(1.841-22.70)\left(4.244\left(180^{\circ}\right)=2.81 \angle 152.3^{\circ}\right. \\
& c_{y z}=\left(1.53-40^{\circ}\right)\left(0.8491180^{\circ}\right)=1.30 \angle 140^{\circ} \\
& c_{y 3}=\left(1.245 /-51.5^{\circ}\right)\left(0.364 \angle 180^{\circ}\right)=0.453 / 128.5^{\circ} \\
& y(t)=25.46+15.62 \cos \left(\frac{2}{3} \pi t+152.3^{\circ}\right)+2.60 \cos \left(43 t+140^{\circ}\right) \\
& +0.906 \cos \left(2 \pi t+128.5^{\circ}\right)+\cdots
\end{aligned}
$$

(f)

$$
\begin{aligned}
& C_{20}=20 / 47=6.367 ; c_{x 1}=-j \frac{x_{0}}{4}, c_{22}=-\frac{x_{0}}{3 \pi}, C_{3}=\Delta \\
& C_{y 0}=(2)(6.367)=12.73 \\
& c_{y 1}=(1.84-22.20)\left(51-90^{\circ}\right)=9.201-112.2^{\circ} \\
& c_{y 2}=\left(1.53--40^{\circ}\right)\left(2.122\left(1180^{\circ}\right)=3.25 \angle 140^{\circ}\right. \\
& y(t)=12.73+18.4 \cos \left(\frac{2}{3} t-112.2^{\circ}\right)+3.25 \cos \left(\frac{4}{3} t+43^{\circ}\right)+\cdots
\end{aligned}
$$

(g)

$$
\begin{aligned}
& C_{x \Delta}=\frac{w X_{0}}{T_{0}}=\frac{(1)(2 \Delta)}{3}=6.67 ; C_{B}=\frac{w X_{0}}{T_{0}} \frac{\left.\sin / \pi w k / T_{0}\right)}{\pi w h / T_{0}}=\frac{2 \Delta}{\pi k} \sin k y / 3 \\
& c_{y o}=(2)(6.67)=13.33 \\
& c_{y 1}=\left(1.84 /-22.7^{\circ}\right)(5.51)=10.14 /-22.7^{\circ} \\
& c_{y 2}=\left(1.53 /-40^{\circ}\right)(2.757)=4.22 \angle-40^{\circ} ; c_{y 3}=0
\end{aligned}
$$

4. $24 \cdot \mathrm{j}(t)=13.3+20.28 \cos \left(\frac{2}{3} \pi t-22.7^{\circ}\right)+8.44 \cos \left(\frac{4}{3} \pi t-40^{\circ}\right)$ (h) $C_{4}=\frac{20}{3}=6.67$
$c_{y 0}=(2)(6.67)=13.33$
$c_{y 1}=\left(1.84\left(-22.7^{\circ}\right)(6.67)=12.31-22.2^{\circ}\right.$
$c_{y^{2}}=\left(1.531-40^{\circ}\right)(6.67)=10.2 \angle-40^{\circ}$
$c_{y 3}=\left(1.2451 .51 .5^{\circ}\right)(6.67)=8.30 \angle-51.5^{\circ}$
$\therefore y(t)=13.33+24.6 \cos \left(\frac{2}{3} \pi t-22.20\right)+20.4 \cos \left(\frac{4}{3} \pi t-40^{\circ}\right)$
$+16.6 \cos \left(2 \pi t-51.5^{\circ}\right)$
(a) $T_{0}=1, \omega_{0}=2 \pi$
$\frac{C_{C_{y}}}{C_{1 x}}=H\left(j 1 \omega_{0}\right)=H(j 2 \pi)=\frac{20}{j 2 \pi+4}$
$\left|\frac{C_{1 y}}{C_{1 x}}\right|=\frac{20}{\sqrt{4 \pi^{2}+16}}=2.6851$
(b)

$$
\begin{aligned}
& C_{1 y}=H(j 2 \pi) C_{1 x}=\frac{20}{4 \pi+16} C_{1 x} \\
& C_{3 y}=H(j 6 \pi) C_{3 x}=\frac{20}{6 \pi+16} C_{3 x} \\
& \left|\frac{C_{12} \mid}{\left|C_{3 y}\right|}=\frac{\sqrt{36 \pi^{2}+16}}{\sqrt{4 \pi^{2}+16}}\right| \frac{\left|C_{1 x}\right|}{C_{3 x} \mid}
\end{aligned}
$$

Note that from Table 4.3, $\frac{\left|C_{1 x}\right|}{\left|C_{3 x}\right|}=\frac{2 X_{0}}{\pi} \frac{\pi 3}{2 X_{0}}=3$, so:

$$
\frac{\left|C_{1 y}\right|}{\left|C_{3 y}\right|}=3 \sqrt{\frac{36 \pi^{2}+16}{4 \pi^{2}+16}}=7.7611
$$

(c)
>>omega_0=2*pi;
>>w=[omega_0*1, omega_0*3];
$\gg n=[0,20]$;
$\gg d=[1,4]$;
$\gg h=f r e q s(n, d, w) ; \gg h m a g=a b s(h)$
hmag=
$2.6851 \quad 1.0379$
$\gg 3 * \mathrm{hmag}(1) / \mathrm{hmag}(2)$
ans=
7.7611

Continued \rightarrow

4.25, continued

(d)
$\omega_{0}=20 \pi, H\left(j \omega_{0}\right)=\frac{20}{4+j 20 \pi}$
$\frac{\left|C_{1 y}\right|}{\left|C_{1 x}\right|}=\left|H\left(j \omega_{0}\right)\right|=\frac{20}{\sqrt{16+400 \pi^{2}}}=0.318$
Same MATLAB as part (c) with omega_0=20*
(e)
$H\left(j 3 \omega_{0}\right)=\frac{20}{4+j 60 \pi}$
$3 \frac{\left|C_{1 y}\right|}{\left|C_{3 y}\right|}=3 \sqrt{\frac{16+(60 \pi)^{2}}{16+(20 \pi)^{2}}}=8.98$
(f)
$\omega_{0}=0.2 \pi$
$H\left(j \omega_{0}\right)=\frac{20}{4+j 0.2 \pi}$
$\frac{\left|C_{1 y}\right|}{\left|C_{1 x}\right|}=\left|H\left(j \omega_{0}\right)\right|=\frac{20}{\sqrt{16+0.04 \pi^{2}}}=4.94$
(g)
$H\left(j 3 \omega_{0}\right)=\frac{20}{4+j 0.6 \pi}$
$\frac{\left|C_{1 y}\right|}{\left|C_{3 y}\right|}=3 \sqrt{\frac{16+(0.6 \pi)^{2}}{16+(0.2 \pi)^{2}}}=3.28$
(h)
$\omega_{0}=0.2 \pi$, ratio $=4.94$
$\omega_{0}=2 \pi$, ratio $=2.69$
$\omega_{0}=20 \pi$, ratio $=0.318$

The system is a low pass filter with a DC gain of $20 / 4=5$. Most of the input at $\omega_{0}=0.2 \pi$ gets through but most of the input at $\omega_{0}=20 \pi$ gets filtered out.
(i)
$\omega_{0}=0.2 \pi$, ratio $=3.28$
$\omega_{0}=2 \pi$, ratio $=7.76$
$\omega_{0}=20 \pi$, ratio $=8.98$
The ratio of harmonics of the input is 3 , so this shows there is little effect at $\omega_{0}=2 \pi$ but large effect at $\omega_{0}=20 \pi$: most of the input in this case is filtered out.
$4.26 \mathrm{H}(\mathrm{s})=\frac{1}{R C_{s+1}}=\frac{1}{0.5 s+1}=\frac{2}{s+2}$

$$
\begin{aligned}
& \text { (a) } \\
& \text { (a) } \omega_{0}=1, H\left(j w_{0}\right)=\frac{2}{2+j 1}=\frac{2}{2.236\left[26.60^{\circ}\right.}=0.89441-26.6^{\circ} \\
& H\left(j 3 w_{0}\right)=\frac{2}{2+j 3}=\frac{2}{3.606156 .3^{\circ}}=0.5547156 .3^{\circ} \\
& \left.H L_{j} 5 w_{0}\right)=\frac{2}{2+j 5}=\frac{2}{5.385 / 68.2^{2}}=0.3714 /-68.2^{\circ} \\
& C_{6 x}=-j \frac{20}{k \pi} \\
& \therefore C_{1 x}=-j \frac{20}{\pi} ; C_{y_{1}}=\left(0.8944+266^{\circ}\right)\left(6.3662 /-90^{\circ}\right)=5.6939 /-116.6^{\circ} \\
& C_{3 x}=-j \frac{20}{3 \pi} ; C_{3 y}=\left(0.5547\left(-563^{\circ}\right)\left(2.1221-90^{\circ}\right)=1.17711-146.3^{\circ}\right. \\
& \left.C_{x 5}=-j \frac{20}{5 \pi} ; c_{5 y}=10.3714 \angle-8.22^{\circ}\right)\left(1.2332 L-90^{\circ}\right)=0.4729 ~\left(1.158 .2^{\circ}\right. \\
& \therefore y_{a}(t)=11.38 \cos \left(t-116.6^{\circ}\right)+2.35 \cos \left(3 t-146.3^{\circ}\right)+0.95 \cos \left(5 t-158^{\circ}\right)
\end{aligned}
$$

(b) $w=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right] ; n=\left[\begin{array}{ll}0 & 2\end{array}\right] ; d=\left[\begin{array}{ll}1 & 2\end{array}\right]$;
$\mathrm{h}=$ freq ($\mathrm{n}, \mathrm{d}, \mathrm{w}$);
hmag=abs (h) ; hphase=angle (h)*180/pi;
Ihmag' hphase']
(c) $H(0)=1 \therefore C_{y 0}=H(0) C_{x_{0}}=(1)(20)=20$
$y_{b}(t)=20+y_{a}(t), y_{a}(t)$ from (a)
(d) Yes, $\left|H\left(j k \omega_{0}\right)\right|$ decreases as k increases.
(e) $T_{0}=\pi, \omega_{0}=\frac{2 \pi}{T_{0}}=2$
(a) Since wo is larger, the gain of the circuit is smaller. Hence the amplitude of the harmonics are smaller.
(C) The de guin is unaffected. Hence the $d c$ component in thee output is unchanged.
$H(s)=\frac{L s}{R+L s}=\frac{s}{8+s}$
(a)

$$
\begin{aligned}
C_{k y} & =H\left(j k \omega_{0}\right) C_{k x}=\frac{j k \omega_{0}}{8+j k \omega_{0}} \\
\omega_{0} & =\frac{2 \pi}{\pi}=2 \\
C_{k x} & =\frac{-j 2(10)}{\pi k} \\
C_{k y} & =\frac{-j 20}{\pi k} \frac{j 2 k}{8+j 2 k}=\frac{20}{4 \pi+j \pi k} \\
\left|C_{k y}\right| & =\frac{20}{\sqrt{16 \pi^{2}+k^{2} \pi^{2}}} \\
\theta_{k y} & =-\tan ^{-1}\left(\frac{k}{4}\right) \\
\left|C_{0}\right| & =0 \\
\left|C_{1}\right| & =1.5440, \theta_{1}=-0.2450 \mathrm{rad} \\
\left|C_{2}\right| & =1.4235, \theta_{2}=-0.4636 \mathrm{rad} \\
\left|C_{3}\right| & =1.2732, \theta_{3}=-0.6435 \mathrm{rad}
\end{aligned}
$$

(b)
$\gg_{W}=[0,2,4,6]$;
$\gg n=[1,0]$;
$\gg d=[1,8]$;
>>h=freqs (n,d,w);
>>k=1:3;
>>Ckx=-j*20./(pi * k);
>>Ckx=[0,Ckx];
>>Cky=Ckx.*h;
>>magCky=abs(Cky)
$\begin{array}{llll}m a g C k y=0 & 1.5440 & 1.4235 & 1.2732\end{array}$
>>phCky=angle(Cky)
$\begin{array}{llll}\mathrm{phCky}=0 & -0.2450 & -0.4636 & -0.6435\end{array}$

Continued \rightarrow

4.27, continued
(c) This changes only the value of $C_{0 x}$ and therefore only the DC value $C_{0 y}$ of the output might changehowever, since $H(0)=0$ in this case, the DC value of the output does not actually change.

$$
C_{0 x}=20 \Longrightarrow C_{0 y}=20 H(0)=0
$$

(d)No. The low frequencies get decreased in amplitude-in fact the DC component does not get through at all.
(e) This is a lower frequency square wave and so more of its energy will be attenuated by the filter. It will not change part c- the DC output is still 0 .
4.28

$$
\begin{gathered}
y(t)=\left.x(\tau)\right|_{\tau=a t+b}=x(a t+b) \\
\left.\therefore C_{k x} e^{j k \omega_{0} \tau}\right|_{\tau=a t+b}=c_{k x} e^{j k \omega_{0}(a t+b)}=\left[c_{k x}^{j k e^{j} \omega_{0}}\right]_{e}^{j k \omega_{0} a t} \\
\therefore \omega_{\Delta y}=\frac{2 \pi}{T_{\Delta y}}=|a| \omega_{\Delta x}=|a| \frac{2 \pi}{T_{\Delta x}} \\
\therefore T_{\Delta y}=\frac{T_{\Delta x}}{|a|} \quad[a \text { can be negative }]
\end{gathered}
$$

for a negative,

$$
\therefore c_{k v} e^{k b \omega_{0} T} \Rightarrow\left[c_{b x} e^{j k \omega_{d} b}\right] e^{-j k / a \mid \mu_{0} t}
$$

since $C_{-k}=C_{k}^{*}$

$$
\begin{aligned}
& c_{k y}=\left[c_{k x} e^{j k \omega_{0} b}\right]^{*}, a<0 \\
\therefore & c_{k y}=\left\{\begin{array}{l}
c_{k x} e^{j k \omega_{o} b}, \\
{\left[c_{k x} e^{j k \omega_{b} b}\right]^{*},} \\
, a<0
\end{array}\right.
\end{aligned}
$$

4. 29.(a)

$$
\begin{aligned}
& \text { 2) } C_{k}=\frac{-2 x_{0}}{\pi\left(4 b^{2}-1\right)}=c_{k} \\
& \therefore\left[c_{k} e^{j b \omega_{0} t}+C_{k} e^{-j b \omega_{0} t}\right]_{t=-t}=c_{k} e^{-j k \omega_{0} t}+c_{k} e^{j k \omega_{0} t}
\end{aligned}
$$

\therefore no change

$$
\begin{aligned}
& \text { (b) } y(t)=x\left(t-\frac{T_{0}}{2}\right): x(t)=\sum_{k} C_{k x} e^{j k \omega_{0} t} \\
& y(t)=\sum_{k} C_{k x} e^{j k \omega_{0}\left(t-\frac{T_{0}}{2}\right)}=\sum_{k} C_{k x} e^{-j k \omega_{0} \frac{T_{0}}{2}} e^{j k \omega_{0} t}
\end{aligned}
$$

Note $\omega_{0} T_{0}=2 \pi \Longrightarrow$

$$
C_{y k}=C_{x k} e^{-j k \omega_{0} \frac{T_{0}}{2}}=C_{x k} e^{-j k \pi}
$$

$4.30 \quad n(t)=e^{-\alpha t} u(t)$
a) $\alpha>0$

$$
\begin{aligned}
& \text { b) } x(t)=\sin \left(\omega_{0} t\right)+\cos \left(3 \omega_{0} t\right)= \\
& 1 / 2 j\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right)+1 / 2\left(e^{j 3 \omega_{0} t}+e^{-j 3 \omega_{0} t}\right) \\
& H\left(S_{k}\right)=\int_{-\infty}^{\infty} h(\tau) e^{-S_{k} \tau} d \tau=\int_{-\infty}^{\infty} e^{-\alpha \tau} u(\tau) e^{-S_{k} \tau} d \tau \\
& =\int_{0}^{\infty} e^{-\left(\alpha+S_{k}\right) \tau} d \tau=\frac{1}{\alpha+S k} \\
& \phi_{k}(t)=e^{j k \omega_{0} t}\left(\psi_{k}(t)=\phi_{k}(t) * h(t)\right) \\
& y(t)=\sum_{k} a_{k} H\left(S_{k}\right) e^{S_{k} t} \\
& x(t)=\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t}+\frac{1}{2} e^{j 3 \omega_{0} t}+\frac{1}{2} e^{-j 3 \omega_{0} t} \\
& k=1 \quad k=-3 \\
& \therefore y(t)=\frac{1}{2 j} \frac{1}{\alpha+j \omega_{0}} e^{j \omega_{0} t}-\frac{1}{2 j} \frac{1}{\alpha-j \omega_{0}} e^{-j \omega_{0} t} \\
& +1 / 2 e^{j 3 \omega_{0} t} \frac{1}{\alpha+3 j \omega_{0}}+\frac{1}{2} e^{-j 3 \omega_{0} t} \frac{1}{\alpha-3 j \omega_{0}}
\end{aligned}
$$

4.31 $\quad h(t)=\alpha e^{-\alpha t} u(t), \alpha>0$

$$
\therefore \quad \begin{aligned}
& k=0 \quad k=1 \quad k(t) \\
& \therefore=\frac{1}{2} \quad-\frac{1}{4} \frac{\alpha}{\alpha+j \omega_{0}} e^{j 4 t}-\frac{1}{4} \frac{\alpha}{\alpha-j \omega_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } x(t)=1+\cos t+\cos 8 t \\
&=1+1 / 2\left(e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right)+1 / 2\left(e^{j 8 \omega_{0} t}+e^{-j 8 \omega_{0} t}\right) \\
& y(t)=1+1 / 2 \frac{\alpha}{\alpha+j \omega_{0}} e^{j t}+1 / 2 \frac{\alpha}{\alpha-j \omega_{0}} e^{-j t}+ \\
& 1 / 2 \frac{\alpha}{\alpha+j 8 \omega_{0}} e^{j 8 t}+1 / 2 \frac{\alpha}{\alpha-j 8 \omega_{0}} e^{-j 8 t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } x(t)=\sin ^{2} 2 t=1 / 2\left(1-\cos \left(4 \omega_{0} t\right)\right) \\
& =\frac{1}{2}\left(1-\frac{1}{2}\left(e^{j 4 \omega_{0} t}+e^{-j 4 \omega_{0} t}\right)\right) \\
& H\left(s_{k}\right)=\int_{-\infty}^{\infty} h(\tau) e^{-s_{k} \tau} d \tau=\int_{-\infty}^{\infty} \alpha e^{-\alpha \tau} u(\tau) e^{-s k \tau} d \tau \\
& =\int_{0}^{\infty} \alpha e^{-\left(\alpha+s_{k}\right) \tau} d \tau=\frac{\alpha}{\alpha+s_{k}} \\
& y(t)=\sum_{k} a_{k} H\left(s_{k}\right) e^{s_{k} t} \\
& x(t)=\frac{1}{2}-\frac{1}{4} e^{j 4 \omega_{0} t}-\frac{1}{4} e^{-j 4 \omega_{0} t} \\
& k=0 \quad k=1 \quad k=-1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \cdot 32 \\
& x(t)=\sum_{k=1}^{\infty} \cos (k t)=1 / 2 \sum_{k=-\infty}^{\infty} e^{j k t}-1 / 2 \\
& H(j k)=\int_{0}^{\infty} e^{-a t} e^{-j k t} d t=\frac{1}{a+j k} \\
& y(t)=\sum_{k=-\infty}^{\infty} c_{k} H(j k) e^{j k t} \\
& =\sum_{k=-\infty}^{\infty} 1 / 2 \frac{1}{a+j k} e^{j k t}-\frac{1}{(2 a)}
\end{aligned}
$$

Chapter 5 solutions

5.1
(a)

$$
\begin{aligned}
X(\omega) & =\int_{0}^{6} e^{-j \omega t} d t=\frac{1}{-j \omega}\left(e^{-j \omega 6}-1\right) \\
& =\frac{e^{-j \omega 3}}{j \omega}\left(e^{j \omega 3}-e^{-j \omega 3}\right) \\
& =\frac{e^{-j \omega 3}}{\omega} 2 \sin (3 \omega) \\
& =6 e^{-j \omega 3} \operatorname{sinc}(3 \omega)
\end{aligned}
$$

(b)

$$
X(\omega)=\int_{0}^{6} e^{-2 t} e^{-j \omega t} d t=\frac{1}{2+j \omega}\left(1-e^{-(2+j \omega) 6}\right)
$$

(c)

$$
\begin{aligned}
X(\omega) & =\int_{0}^{6} t e^{-j \omega t} d t=\left[\frac{e^{-j \omega t}}{(-j \omega)^{2}}(-j \omega t-1)\right]_{0}^{6} \\
& =\frac{e^{-j \omega 6}}{-\omega^{2}}(-j \omega 6-1)+\frac{1}{\omega^{2}}(-1) \\
& =\frac{j 6 e^{-j \omega 6}}{\omega}+\frac{e^{-j \omega 6}-1}{\omega^{2}} \\
& =\frac{j 6 e^{-j \omega 6}}{\omega}-\frac{2 j e^{-j \omega 3}}{\omega^{2}} \sin (\omega 3)
\end{aligned}
$$

(d)

$$
\begin{aligned}
X(\omega) & =\int_{-3}^{3} 2 \cos (9 \pi t) e^{-j \omega t} d t=\left[2 \frac{e^{-j \omega t}}{(-j \omega)^{2}+(9 \pi)^{2}}(-j \omega \cos (9 \pi t)+9 \pi \sin (9 \pi t))\right]_{-3}^{3} \\
& =2\left(\frac{e^{-j \omega 3}}{-\omega^{2}+(9 \pi)^{2}} j \omega-\frac{e^{j \omega 3}}{-\omega^{2}+(9 \pi)^{2}} j \omega\right) \\
& =\frac{2 j \omega}{(9 \pi)^{2}-\omega^{2}}\left(e^{-j \omega 3}-e^{j \omega 3}\right) \\
& =\frac{4 \omega}{(9 \pi)^{2}-\omega^{2}} \sin (3 \omega)
\end{aligned}
$$

Note this is also equal to $3[\operatorname{sinc}(3(\omega-9 \pi))+\operatorname{sinc}(3(\omega+9 \pi))]$ (see 5.3 (d)).
(a)

$$
\begin{aligned}
F(\omega)= & \int_{0}^{t_{0}} k e^{-b t} e^{-j \omega t} d t \\
& k\left(\frac{1-e^{-(b+j \omega) t_{0}}}{b+j \omega}\right)
\end{aligned}
$$

b) $f(t)=A \cos \left(\omega_{0} t+\phi\right)=\frac{A}{2} e^{j \omega_{0} t} e^{j \phi}+\frac{A}{2} e^{-j \omega_{0} t} e^{-\lambda \phi}$

$$
F(\omega)=\frac{A e^{j \phi}}{2} \int_{-\infty}^{\infty} e^{-j\left(\omega-\omega_{0}\right) t} d t+\frac{A e^{-j \phi}}{2} \int_{-\infty}^{\infty} e^{-j\left(\omega+\omega_{0}\right) t} d t
$$

aside : $\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta\left(\omega-\omega_{0}\right) e^{j \omega t} d t v=\frac{1}{2 \pi} e^{j \omega_{0} t}$

$$
\Longrightarrow \nVdash\left\{e^{\omega_{0} t}\right\}=2 \pi \delta\left(\omega-\omega_{0}\right)
$$

Smikuly, $f\left\{e^{-j \omega_{0} t}\right\}=2 \pi \delta\left(\omega+\omega_{0}\right)$
Binal answer:

$$
F(\omega)=A_{7 c} e^{j \phi} \delta\left(\omega-\omega_{0}\right)+A_{n t}^{-j \phi} \delta\left(\omega+\omega_{0}\right)
$$

Continued \rightarrow

5.2, continued

(c)

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} e^{a t} u(-t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{0} e^{a-j \omega} t d t \\
& =\frac{1}{a-j \omega}
\end{aligned}
$$

d) $F(\omega)=\int_{-\infty}^{\infty} c \delta\left(t+t_{0}\right) e^{-j \omega t} d t=c e^{-j \omega\left(-t_{0}\right)}=c e^{j \omega t_{0}}$
5.3
(a)

$$
\begin{aligned}
X(\omega) & =\mathcal{F}(u(t))-\mathcal{F}(u(t-6)) \\
& =\pi \delta(\omega)+\frac{1}{j \omega}-\left(\pi \delta(\omega)+\frac{1}{j \omega}\right) e^{-j 6 \omega}
\end{aligned}
$$

using Table 5.2 for $\mathcal{F}(u(t))$ and Table 5.1 (Time shift) to derive $\mathcal{F}(u(t-6))$. Noting that $\delta(\omega) e^{-j 6 \omega}=\delta(\omega)$ results in:

$$
\begin{aligned}
X(\omega) & =\frac{1}{j \omega}\left(1-e^{-j 6 \omega}\right) \\
& =\frac{e^{-j \omega 3}}{j \omega}\left(e^{j \omega 3}-e^{-j \omega 3}\right) \\
& =\frac{e^{-j \omega 3}}{\omega} 2 \sin (3 \omega)=6 e^{-j \omega 3} \operatorname{sinc}(3 \omega)
\end{aligned}
$$

(b) Using the fact that:

$$
e^{-2 t} u(t)-e^{-2 t} u(t-6)=e^{-2 t} u(t)-e^{-12} e^{-2(t-6)} u(t-6)
$$

and Table 5.2 for $\mathcal{F}\left(e^{-2 t} u(t)\right)$ and Table 5.2 for linearity and time shifting property results in:

$$
\begin{aligned}
\mathcal{F}\left(e^{-2(t-6)} u(t-6)\right) & =\frac{1}{2+j \omega} e^{-j 6 \omega} \\
X(\omega) & =\frac{1}{2+j \omega}-e^{-12} \frac{1}{2+j \omega} e^{-6 j \omega} \\
& =\frac{1}{2+j \omega}\left(1-e^{-6(2+j \omega)}\right)
\end{aligned}
$$

Continued \rightarrow

5.3, continued

(c) From part (a), $u(t)-u(t-6) \leftrightarrow 6 e^{-j \omega 3} \operatorname{sinc}(3 \omega)$.

Using the integration property in Table 5.1:

$$
\begin{aligned}
t[u(t)-u(t-6)] & =\int_{-\infty}^{t}[u(\tau)-u(\tau-6)] d \tau-6 u(t-6) \\
& \leftrightarrow \frac{1}{j \omega} 6 e^{-j \omega 3} \operatorname{sinc}(3 \omega)+\pi 6 \delta(\omega)-6\left(\pi \delta(\omega)+\frac{1}{j \omega}\right) e^{-j \omega 6} \\
& =\frac{6}{j \omega}\left(e^{-j \omega 3} \operatorname{sinc}(3 \omega)-e^{-j \omega 6}\right) \\
& =\frac{j 6 e^{-j \omega 6}}{\omega}-\frac{2 j e^{-j \omega 3}}{\omega^{2}} \sin (\omega 3)
\end{aligned}
$$

(d)

$$
\begin{aligned}
\cos (9 \pi t) & \leftrightarrow \pi(\delta(\omega-9 \pi)+\delta(\omega+9 \pi)) \\
u(t+3)-u(t-3) & \leftrightarrow 6 \operatorname{sinc}(3 \omega)
\end{aligned}
$$

Using multiplication/convolution property:

$$
\left.\left.\begin{array}{l}
2 \cos (9 \pi t)[u(t+3)
\end{array}\right)-u(t-3)\right] \leftrightarrow 2[\delta(\omega-9 \pi)+\delta(\omega+9 \pi)] * 3 \operatorname{sinc}(3 \omega)
$$

5.4

$$
\begin{aligned}
& \text { a) } f\left[a f_{1}(t)+b f_{2}(t)\right]=\int_{-\infty}^{\infty}\left[a f_{1}(t)+b f_{2}(t)\right] e^{-j \omega t} d t= \\
& a \int_{-\infty}^{\infty} f_{1}(t) e^{-j \omega t}+b \int_{-\infty}^{\infty} f_{2}(t) e^{-j \omega t} d t=a F_{1}(\omega)+b F_{2}(\omega)
\end{aligned}
$$

b) time shift

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f\left(t-t_{0}\right) e^{-j \omega t} d t \text { let } u=t_{-t_{0}} \\
& =\int_{-\infty}^{\infty} f(u) e^{-j \omega\left(v+t_{0}\right)} d u=e^{-j v t_{0}} \int_{-\infty}^{\infty} f(u) e^{-j \omega u} d u
\end{aligned}
$$

c) Duality

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{+j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(a) e^{j a t} d a
$$

$$
\begin{aligned}
& f(t)=\frac{1}{2 \pi} \int_{-\infty} F(\omega) e=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(a) e^{-j a \omega} d a, 2 \pi f(-\omega)=\int_{-\infty}^{\infty} F(a) e^{-j a \omega}
\end{aligned}
$$

d) Frequency Shifting

$$
\int_{-\infty}^{\infty} f(t) e^{j \omega_{0} t} e^{-j j_{0} t} d t=\int_{-\infty}^{\infty} f(t) e^{-j\left(\omega_{0}-\omega_{0}\right) t} d t=F\left(\omega-\omega_{0}\right)
$$

e) Time Differentiation

$$
\begin{aligned}
& f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \\
& \frac{d}{d t} f(t)=\frac{d}{d t}\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) j \omega e d \omega \\
& \therefore \frac{d}{d t} f(t) \longleftrightarrow j \omega F(\omega)
\end{aligned}
$$

Continued \rightarrow
5.4, continued
f) time Convolution

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x(t) * h(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} x(\tau) \int_{-\infty}^{\infty} h(t-\tau) e^{-j \omega t} d t d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) \int_{-\infty}^{\infty} h(u) e^{-j \omega(u+\tau)} d u d \tau= \\
& \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \int_{-\infty}^{\infty} h(u) e^{-j \omega u} d u \\
& =x(\omega) H(\omega)
\end{aligned}
$$

g) prove the time Scale property

$$
\begin{aligned}
& F[x(a t)]=\frac{1}{|a|} X\left(\frac{\omega}{a}\right) \\
& \begin{aligned}
& F[x(a t)]=\int_{-\infty}^{\infty} x(a t) e^{-j \omega t} d t \text { let } u=a t \\
&=\int_{-\infty}^{\infty} x(u) e^{-j \omega \frac{u}{a}} \frac{d u}{a}, \text { if } a>0 \\
&=\frac{1}{a} \times(\omega / a)
\end{aligned}
\end{aligned}
$$

if $a<0$, then

$$
\begin{aligned}
& =\int_{+\infty}^{-\infty} x(u) e^{-j \omega \frac{u}{a}} \frac{d u}{a}=-\int_{-\infty}^{\infty} x(u) e^{-j w u} \frac{d u}{a} \\
& =\frac{-1}{a} \times(\omega / a) \\
& \therefore f[x(a t)]=\frac{1}{|a|} \times(\omega / a)
\end{aligned}
$$

Continued \rightarrow
5.4, continued
(h) Time-multiplication property: want to show $f(t) g(t) \leftrightarrow \frac{1}{2 \pi} F(\omega) * G(\omega)$.

$$
\begin{aligned}
F(\omega) * G(\omega) & =\int_{-\infty}^{\infty} F(u) G(\omega-u) d u \\
\mathcal{F}^{-1}[F(\omega) * G(\omega)] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega t}\left[\int_{-\infty}^{\infty} F(u) G(\omega-u) d u\right] d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u)\left[\int_{-\infty}^{\infty} e^{-j \omega t} G(\omega-u) d \omega\right] d u \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u)\left[\int_{-\infty}^{\infty} e^{-j(\omega+u)} G(\omega) d \omega\right] d u \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u) e^{-j u t} d u \int_{-\infty}^{\infty} G(\omega) e^{-j \omega t} d \omega \\
& =2 \pi \mathcal{F}^{-1}[F(\omega)] \cdot \mathcal{F}^{-1}[G(\omega)] \\
& =2 \pi f(t) g(t)
\end{aligned}
$$

5.5 $J\left[\sin \omega_{0} t\right]=\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$
(a) Differentiation Property

$$
\frac{d}{d t} f(t) \longleftrightarrow j \omega F(\omega)
$$

$d / d t\left[\sin \omega_{0} t\right]=w_{0} \cos \omega_{0} t$

$$
\omega_{0} \cos \omega_{0} t \longleftrightarrow \omega_{0} \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
$$

Show this is equal to $j \omega f\left[\sin \omega_{0} t\right]=\frac{j \omega n}{j}\left(\delta\left(\omega-\omega_{0}\right)\right.$

$$
=\pi \omega\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]
$$

$=\pi \omega\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$, by shifting property

Continued \rightarrow
5.5, continued
(b) time Shift property

$$
\begin{aligned}
& \sin \omega_{0} t=\cos \left(\omega_{0} t-\pi / 2\right)=\cos \omega_{0}\left(t-\pi / 2 \omega_{0}\right) \\
& f\left(t-t_{0}\right) \longleftrightarrow F(\omega) e^{-j \omega t_{0}} \\
& \operatorname{css} \omega_{0}\left(t-\frac{\pi}{2 \omega_{0}}\right) \longleftrightarrow \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega_{-}-\omega_{0}\right)\right] e^{\frac{j \omega \pi}{2 \omega_{0}}} \\
& =\pi \delta\left(\omega+\omega_{0}\right) e^{\frac{j \omega_{0} \pi}{2 \omega_{0}}}+\pi \delta\left(\omega-\omega_{0}\right) e^{-j \omega_{0} \pi} \frac{2 \omega_{0}}{} \\
& =\pi \delta\left(\omega+\omega_{0}\right) e^{j / 2}+\pi \delta\left(\omega-\omega_{0}\right) e^{-j \pi / 2} \\
& =\pi j \delta\left(\omega+\omega_{0}\right)-j \pi \delta\left(\omega-\omega_{0}\right)=\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
\end{aligned}
$$

5.6 on next page
5.6 (a)

$$
\begin{array}{ll}
f(t)=A e^{-\beta t} \cos \left(\omega_{0} t\right) u(t)=f_{1}(t) f_{2}(t) \\
f_{1}(t)=A e^{-\beta t} u(t), & f_{2}(t)=\cos \omega_{2} t \\
F_{1}(\omega)=\frac{A}{\beta+j \omega}, & F_{2}(\omega)=\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
\end{array}
$$

use frequency convolution

$$
\text { use frequency convoluTion } \begin{aligned}
F(\omega) & =\frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega)=\frac{1}{2}\left(\frac{A}{\beta+j \omega}\right) *\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] \\
& =\frac{A / 2}{\beta+j\left(\omega-\omega_{\Delta}\right)}+\frac{A / 2}{\beta-f\left(\omega+\omega_{0}\right)}
\end{aligned}
$$

(b) $f(t)=A \sin \left(\omega_{1} t\right)+B \cos \left(\omega_{z} t\right) \Rightarrow$ use the linearity

Property: $F(\omega)=A$ $\mathcal{F}\{\sin (\omega, t)\}+B$ 付 $\left\{\cos \left(\omega_{2} t\right)\right\}$

$$
F(\omega)=\frac{A \pi}{J^{J}}\left[\delta(\omega-\omega)-\delta\left(\omega+\omega_{1}\right)\right]+8 \pi\left[\delta\left(\omega-\omega_{2}\right)+\delta\left(\omega+\omega_{2}\right)\right]
$$

(c) $f(t)=6 \operatorname{sinc}(0.5 t)$, from Table $5.2 \quad \frac{\beta}{7} \operatorname{sinc}(\beta t) \leftrightarrow \operatorname{fect}\left(\frac{\omega}{2 \beta}\right)$
$\beta=0.5 \therefore 6=12 \beta$

$$
\begin{aligned}
\beta & =0.5 \therefore 6=12 \beta \\
F(\omega) & =12 \pi \operatorname{rect}(\omega)
\end{aligned}
$$

d) $f(t)=6 \operatorname{rect}\left[\frac{(t-4)}{3}\right] \stackrel{\mathcal{F}}{\longleftrightarrow} 18 \operatorname{sinc}\left(\frac{3 \omega}{2}\right)^{-j 4 \omega}$

(e) From Table $5.2, \operatorname{tri}(t / T) \leftrightarrow T \operatorname{sinc}^{2}(T \omega / 2)$, so using linearity and time shift properties:

$$
4 \operatorname{tri}\left(\frac{t-4}{4}\right) \leftrightarrow 16 \operatorname{sinc} c^{2}(2 \omega) e^{-j 4 \omega}
$$

See figure below for spectra plots.
(f) From Table $5.3, \operatorname{sinc}^{2}(T t / 2) \leftrightarrow \frac{2 \pi}{T} \operatorname{tri}(\omega / T)$, where here $T=1 / 2$:

$$
4 \sin c^{2}(t / 4) \leftrightarrow 16 \pi \operatorname{tri}(2 \omega)
$$

See figure below for spectra plots.
(g)

$$
\begin{aligned}
10 \cos (100 t) & \leftrightarrow 10 \pi[\delta(\omega-100)+\delta(\omega+100)] \\
u(t)-u(t-1) & \leftrightarrow \operatorname{sinc}(\omega / 2) e^{-j \omega / 2} \\
10 \cos (100 t)[u(t)-u(t-1)] & \leftrightarrow \frac{1}{2 \pi} 10 \pi[\delta(\omega-100)+\delta(\omega+100)] * \operatorname{sinc}(\omega / 2) e^{-j \omega / 2} \equiv F(\omega) \\
F(\omega) & =5 \operatorname{sinc}\left(\frac{\omega-100}{2}\right) e^{-j(\omega-100) / 2}+5 \operatorname{sinc}\left(\frac{\omega+100}{2}\right) e^{-j(\omega+100) / 2}
\end{aligned}
$$

See figure below for spectra plots.

Figure 1: Spectra for 5.6(e),(f),(g)

Note the time axis is in units of ms.

$$
\begin{aligned}
g_{4}(t) & =\operatorname{rect}\left(\frac{t}{0.01}\right)+\operatorname{rect}\left(\frac{t}{0.02}\right) \\
G_{4}(\omega) & =0.01 \operatorname{sinc}(0.005 \omega)+0.02 \operatorname{sinc}(0.01 \omega) \\
g_{5}(t) & =2.5 \operatorname{rect}\left(\frac{t}{0.01}\right)-0.5 \operatorname{rect}\left(\frac{t}{0.02}\right) \\
G_{5}(\omega) & =0.025 \operatorname{sinc}(0.005 \omega)-0.01 \operatorname{sinc}(0.01 \omega) \\
g_{6}(t) & =5 g_{4}(t / 10) \\
G_{6}(\omega) & =50 G_{4}(10 \omega)=0.5 \operatorname{sinc}(0.05 \omega)+1 \operatorname{sinc}(0.1 \omega) \\
g_{7}(t) & =10 g_{5}\left(\frac{t-50}{5}\right) \\
G_{7}(\omega) & =50 G_{5}(5 \omega) e^{-j 50 \omega}=1.25 \operatorname{sinc}(0.025 \omega) e^{-j 50 \omega}-0.5 \operatorname{sinc}(0.05 \omega) e^{-j 50 \omega}
\end{aligned}
$$

5. 8 (a) use the derivate property

$$
\frac{d}{d t}\left(e^{-|t|}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} j \omega\left(\frac{2}{\omega^{2}+1}\right)=\frac{f 2 \omega}{\omega^{2}+1}
$$

(b) $\frac{1}{2 \pi\left(t^{2}+1\right)}$, from Table 5.1 $\quad F(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2 \pi f(-\omega)$

$$
\frac{1}{4 \pi}\left(\frac{2}{t^{2}+1}\right) \stackrel{\mathcal{F}}{\longleftrightarrow}\left(\frac{1}{4 \pi}\right) 2 \pi e^{-|-\omega|}=\frac{1}{2} e^{-|\omega|}
$$

(c) $\frac{4 \cos (2 t)}{t^{2}+1}=\frac{2\left[e^{j 2 t}+e^{-j 2 t}\right]}{t^{2}+1}=\frac{2 e^{j 2 t}}{t^{2}+1}+\frac{2 e^{-j 2 t}}{t^{2}+1}$
use frequency-Shift and duality properties $F(\omega)=2 \pi\left[e^{-|\omega-z|}+e^{-|\omega+z|}\right]$
5.9
(a) As in 5.7,

$$
\begin{aligned}
g_{4}(t) & =\operatorname{rect}\left(\frac{t}{0.01}\right)+\operatorname{rect}\left(\frac{t}{0.02}\right) \\
G_{4}(\omega) & =0.01 \operatorname{sinc}(0.005 \omega)+0.02 \operatorname{sinc}(0.01 \omega) \\
g_{6}(t) & =5 g_{4}(t / 10) \\
G_{6}(\omega) & =50 G_{4}(10 \omega)=0.5 \operatorname{sinc}(0.05 \omega)+1 \operatorname{sinc}(0.1 \omega)
\end{aligned}
$$

Continued \rightarrow

5.9, continued
(b) $f(t)$ is the result of convolving two rectangular pulses, so its Fourier transform is the product of the transforms of the two pulses:

$$
\begin{aligned}
f(t) & =2 \operatorname{rect}\left(\frac{t-0.5}{1}\right) * \operatorname{rect}\left(\frac{t-1.5}{3}\right) \\
F(\omega) & =2 \operatorname{sinc}(0.5 \omega) e^{-j 0.5 \omega} \cdot 3 \operatorname{sinc}(1.5 \omega) e^{-j 1.5 \omega} \\
g(t) & =f(2 t) \\
G(\omega) & =0.5 F(0.5 \omega)=1 \operatorname{sinc}(0.25 \omega) e^{-j 0.25 \omega} \cdot 1.5 \operatorname{sinc}(0.75 \omega) e^{-j 0.75 \omega}
\end{aligned}
$$

5.10
(a)

$$
\begin{aligned}
& \text { let } g(t)=\frac{d f(t)}{d t} \quad-a \\
& g(t)=\frac{A}{a}\left[\operatorname{rect}\left(\frac{t+a / 2}{a}\right)-\operatorname{rect}\left(\frac{(t-a / 2)}{a}\right)\right]
\end{aligned}
$$

use the linearity property and the time Shift

$$
G(\omega)=A \operatorname{sinc}(a \omega / 2)\left[e^{j a \omega / 2}-e^{-j a \omega / 2}\right]
$$

To find $F(\omega)$ use time integration property

$$
\begin{aligned}
& F(\omega)=\frac{1}{j \omega} G(\omega)+\pi(10) \delta(\omega) \\
& G(0)=0 \\
& \therefore F(\omega)=a A \operatorname{sinc}\left(\frac{a \omega}{2}\right)\left[\frac{e^{\frac{j \omega a}{2}}-e^{-j \omega a}}{2 f\left(\frac{a \omega}{2}\right)}\right] \\
& F(\omega)=a A \sin ^{2}\left(\frac{a \omega}{2}\right)
\end{aligned}
$$

Continued \rightarrow

5.10, continued

(b) Let $g(t)=\frac{d}{d t} f(t)=2 \operatorname{rect}\left(\frac{t-0.5}{1}\right)-2 \operatorname{rect}\left(\frac{t-3.5}{1}\right)$

$$
\begin{aligned}
G(\omega) & =2 \operatorname{sinc}(0.5 \omega) e^{-j 0.5 \omega}-2 \operatorname{sinc}(0.5 \omega) e^{-j 3.5 \omega} \\
& =2 \operatorname{sinc}(0.5 \omega) e^{-j 2 \omega}\left[e^{j 1.5 \omega}-e^{-j 1.5 \omega}\right] \\
& =4 j \operatorname{sinc}(0.5 \omega) e^{-j 2 \omega} \sin (1.5 \omega) \\
F(\omega) & =\frac{1}{j \omega} G(\omega)+\pi G(0) \delta(\omega) \\
G(0) & =0 \\
F(\omega) & =4(1.5) \operatorname{sinc}(0.5 \omega) e^{-j 2 \omega} \operatorname{sinc}(1.5 \omega) \\
& =6 \sin c(0.5 \omega) \operatorname{sinc}(1.5 \omega) e^{-j 2 \omega}
\end{aligned}
$$

5.11

(a)
$x(t)=\cos (t)+\sin (3 t)$
$h(t)=\frac{\cdot 5 \sin (2 t)}{t}=\operatorname{sinc}(2 t) \leftrightarrow \pi / 2 \operatorname{nect}(\omega / 4)$
$x(\omega)=\pi\left[\delta(\omega-1)+\delta\left(\omega^{t}+1\right)\right]+\pi / g[\delta(\omega-3)-\delta(\omega+3)]$
$y(\omega)=H(\omega) x(\omega)$
$y(\omega)=\pi^{2} / 2[\delta(\omega-1)+\delta(\omega+1)] \quad \begin{aligned} & \text { impolsed F3 will } \\ & \text { pass the filter }\end{aligned}$

$$
y(t)=\pi / 2 \cos (t)
$$

(b)

$$
\begin{aligned}
\operatorname{sinc}(2 \pi t) & \leftrightarrow 2 \pi \frac{1}{4 \pi} \operatorname{rect}\left(\frac{\omega}{4 \pi}\right) \\
H(\omega) & =2 \pi \frac{1}{4} \operatorname{rect}(\omega / 4) \\
Y(\omega) & =2 \pi \frac{1}{4} \operatorname{rect}\left(\frac{\omega}{4}\right) \cdot \frac{1}{2} \operatorname{rect}\left(\frac{\omega}{4 \pi}\right) \\
& =\frac{\pi}{4} \operatorname{rect}\left(\frac{\omega}{4}\right) \\
y(t) & =\frac{1}{2 \pi}\left(\frac{\pi}{4}\right) 4 \operatorname{sinc}(2 \omega)=\frac{1}{2} \operatorname{sinc}(2 \omega)
\end{aligned}
$$

5.12

(a)
(i) $H(\omega)=\frac{R / L}{j \omega+R / L}=\frac{10}{j \omega+10}$
(ii) $|H(\omega)|=\frac{10}{\sqrt{\omega^{2}+100}}$
$\angle H(\omega)=-\tan ^{-1}\left(\frac{\omega}{10}\right)$. See figure (below) for magnitude and phase plots.
(iii) $h(t)=10 e^{-10 t} u(t)$
(b)
(i) $H(\omega)=\frac{1}{j \omega+R C}=\frac{1}{j \omega+1}$
(ii) $|H(\omega)|=\frac{1}{\sqrt{1+\omega^{2}}}$
$\angle H(\omega)=-\tan ^{-1}(\omega)$
(iii) $h(t)=e^{-t} u(t)$

Figure 2: Magnitude and phase of frequency response for 5.12 .
$5 \cdot 13$

$$
\begin{aligned}
& F(\omega)=f\{f(t)\}=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& \begin{aligned}
f\{f(a t\} & =\int_{-\infty}^{\infty} f(a t) e^{-j \omega t} d t, \quad l e t \tau=a t \\
f\{f(a t)\} & =f\{f(\tau)\}=\int_{-\infty}^{\infty} f(\tau) e^{-j \omega \tau / a} \frac{1}{a} d \tau \\
& =\frac{1}{a} \int_{-\infty}^{\infty} f(\tau) e^{-j \omega / a} \tau d \tau \\
f\{f(a t)\} & \left.=\frac{1}{a} F(\omega / a), a\right) 0
\end{aligned}
\end{aligned}
$$

5.14 a) $g_{1}(t)=4 \cos (100 \mathrm{nt})$ nect $\left(t / 10^{-2}\right)=2\left[e^{\text {j1000nt }}+e^{\text {j1000nt }}\right]$

$$
\begin{equation*}
g_{1}^{\prime}(t)=2 e^{\text {j100nt }} \operatorname{rect}\left(t / 10^{-2}\right)+2 e^{-j 10001 t} \operatorname{rect}\left(t / 10^{-2}\right) \tag{rect}
\end{equation*}
$$

Wie the Requency-sinft property if inearity

$$
G(\omega)=2 \times 10^{-2}\left[\operatorname{sinc}\left(5 \times 10^{-3}(\omega+100 \pi)\right)+\operatorname{sinc}\left(5 \times 10^{-3}(\omega-100 \pi)\right)\right]
$$

b) $g_{2}(t)=-1 \theta_{1}\left(t-5 \times 10^{-3}\right)$, use the time-shift proputy $G_{2}(\omega)=-.02 e^{-10.005 \omega}\left(\operatorname{sinc}\left(5 \times 10^{-3}(\omega+1000)\right)+\right.$

$$
\left.\operatorname{sinc}\left(5 \times 10^{-3}(\omega-100 \mathrm{R})\right)\right]
$$

c) $g_{3}(t)=g_{1}\left(10 t+5 \times 10^{-4}\right)$, use the time transform

$$
\begin{aligned}
& G_{3}(\omega)=\frac{1}{10} G(\omega / 10) e^{j 5 \times 10^{-5} \omega} \\
& G_{3}(\omega)=2 \times 10^{-3}\left[\operatorname{sinc}\left(5 \times 10^{-4}(\omega+100 \pi)\right)+\right. \\
& \left.\left.\quad \operatorname{sinc}\left(5 \times 10^{-4}(\omega-100 \pi)\right)\right)\right] e^{j 5 \times 10^{-5} \omega}
\end{aligned}
$$

Continued \rightarrow
5.14, continued
(d) Using the entry in Table 5.2 for $\operatorname{rect}(t / T) \cos \left(\omega_{0} t\right)$ with $T=0.002$ and $\omega=500 \pi$:

$$
\begin{aligned}
-4 \operatorname{rect}(t / 0.002) \cos (500 \pi t) & \leftrightarrow-4 \frac{0.002}{2}[\operatorname{sinc}((\omega-500 \pi) 0.001)+\operatorname{sinc}((\omega+500 \pi) 0.001)] \\
& =-0.004[\operatorname{sinc}(0.001 \omega-0.5 \pi)+\operatorname{sinc}(0.001 \omega+0.5 \pi)]
\end{aligned}
$$

5.15
a) $G(\omega)=5 \operatorname{rect}(\omega / 20)$
$\beta / \pi \operatorname{sinc}(\beta t) \stackrel{F}{\leftrightarrows} \operatorname{rect}(\omega / 2 \beta), \beta=10$

$$
g(t)=\frac{50}{12} \operatorname{sinc}(10 t)
$$

b)

$$
\begin{aligned}
& G(\omega)=5 \cos \left(\frac{n \omega}{20}\right) \operatorname{rect}(\omega / 20) \\
& =2.5\left[e^{\frac{j \omega \pi}{20}}+e^{-\frac{j \omega \pi}{20}}\right] \operatorname{nect}(\omega / 20) \\
& =2.5 \text { nect }(\omega / 20) e^{7 \pi \omega / 20}+2.5 \text { nect }(\omega / 20)^{-j \omega \pi / 20}
\end{aligned}
$$

Use the timeslupt \& Linearity propertics on the regult of (a)

$$
g(t)=\frac{25}{\pi}[\operatorname{sinc}(10 t+5 \pi)+\operatorname{sinc}(10 t-5 \pi)]
$$

5.16

(a) $g(2 t) \leftrightarrow 0.5 G(0.5 \omega)=\frac{j 0.25 \omega}{-0.25 \omega^{2}+2.5 j \omega+6}$
(b) $g(3 t-6)=g(3(t-2)) \leftrightarrow \frac{1}{3} G\left(\frac{\omega}{3}\right) e^{-j 2 \omega}=\frac{j \frac{1}{9} \omega}{-\frac{1}{9} \omega^{2}+\frac{5}{3} j \omega+6} e^{-j 2 \omega}$
(c) $\frac{d g(t)}{d t} \leftrightarrow j \omega G(\omega)=\frac{-\omega^{2}}{-\omega^{2}+5 j \omega+6}$
(d) $g(-t) \leftrightarrow G(-\omega)=\frac{-j \omega}{-\omega^{2}-5 j \omega+6}$
(e) $e^{-j 100 t} g(t) \leftrightarrow G(\omega+100)=\frac{j \omega+j 100}{-\omega^{2}+\omega(5 j-200)+500 j+6-10000}$
(f) $\int_{-\infty}^{t} g(\tau) d \tau \leftrightarrow \frac{1}{j \omega} G(\omega)+\pi G(0) \delta(\omega)=\frac{1}{-\omega^{2}+5 j \omega+6}$

5.17

(a)

$$
\begin{aligned}
f_{1}(t) & =g(t) * \sum_{n=-\infty}^{\infty} \delta(t-n 0.004) \\
g(t) & \equiv 8 \cos (500 \pi t) \operatorname{rect}(t / 0.002) \\
F_{1}(\omega) & =G(\omega) 500 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-k 500 \pi)=500 \pi \sum_{k=-\infty}^{\infty} G(k 500 \pi) \delta(\omega-k 500 \pi) \\
G(\omega) & =8(0.001)[\operatorname{sinc}((\omega-500 \pi) 0.001)+\operatorname{sinc}((\omega+500 \pi) 0.001)] \\
F_{1}(\omega) & =4 \pi \sum_{k=-\infty}^{\infty}[\operatorname{sinc}(0.5 \pi(k-1))+\operatorname{sinc}(0.5 \pi(k+1)] \delta(\omega-k 500 \pi)
\end{aligned}
$$

Noting that $\operatorname{sinc}(0.5 \pi(k-1))=\operatorname{sinc}(0.5 \pi(k+1))=0$ when k is odd and $\neq \pm 1$:
$F_{1}(\omega)=4 \pi \delta(\omega-1)+4 \pi \delta(\omega+1)+4 \pi \sum_{k=-\infty}^{\infty}[\operatorname{sinc}(0.5 \pi(2 k-1))+\operatorname{sinc}(0.5 \pi(2 k+1)] \delta(\omega-k 500 \pi)$

$$
\begin{aligned}
F_{1}(0) & =4(4) \\
F_{1}(500 \pi) & =4 \pi \\
F_{1}(1000 \pi) & =4(-2 / 3+2) \\
F_{1}(1500 \pi) & =F_{1}(2500 \pi)=F_{1}(500 \pi k)=0, k \neq \pm 1, k \text { odd } \\
F_{1}(2000 \pi) & =4(-2 / 3+2 / 5) \\
F_{1}(3000 \pi) & =4(2 / 5-2 / 7)
\end{aligned}
$$

Continued \rightarrow

note the time axis is $\mathrm{w} /(500 \mathrm{pi})$
(b)

$$
\begin{aligned}
f_{2}(t) & =g(t) * \sum_{k=-\infty}^{\infty} \delta(t-n 0.002) \\
F_{2}(\omega) & =G(\omega) 1000 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-k 1000 \pi)=1000 \pi \sum_{k=-\infty}^{\infty} G(k 1000 \pi) \delta(\omega-k 1000 \pi) \\
& =8 \pi \sum_{k=-\infty}^{\infty}[\operatorname{sinc}(0.5 \pi(2 k-1))+\operatorname{sinc}(0.5 \pi(2 k+1))] \delta(\omega-k 1000 \pi)
\end{aligned}
$$

The plot is identical to that in (a) except there are no impulses at $\omega= \pm 500 \pi$ and all values are scaled by 2 .
(c) The plots happen to be identical except for the impulses at $\omega= \pm 500 \pi$ and the scaling by a factor of 2 . However, note that in the frequency domain the impulses in (b) are twice as far apart as in (a), since T_{0}, the distance between impulses in the time domain, is half that in (a). However, every other impulse turns out to be zero in (a), except the $\pm k$ ones.
(d) If the period was halved the frequency spectra would have the same shape but would be expanded by a factor of 2 (the distance between impulses, in frequency, would double). (Also their amplitudes would be scaled by 2).
(a)

$$
\begin{aligned}
& g(t)=10 \operatorname{rect}(t / 2) \\
& g_{p}(t)=10 \operatorname{rect}(t / 2) * \sum_{n=-\infty}^{\infty} \delta(t-n 4) \\
& G_{p}(\omega)=20 \operatorname{sinc}(\omega) \cdot \frac{\pi}{2} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{\pi}{2}\right) \\
&=10 \pi \sum_{n=-\infty}^{\infty} \operatorname{sinc}\left(n \frac{\pi}{2}\right) \delta\left(\omega-n \frac{\pi}{2}\right) \\
& G_{p}(0)=10 \pi \\
& G_{p}\left(n \frac{\pi}{2}\right)=0, n \text { even } \\
& G_{p}\left(\frac{\pi}{2}\right)=20 \\
& G_{p}\left(\frac{3 \pi}{2}\right)=-20 / 3 \\
& G_{p}\left(\frac{5 \pi}{2}\right)=4 \\
& G_{p}\left(\frac{7 \pi}{2}\right)=-20 / 7 \\
& \text { etc }
\end{aligned}
$$

See plot below.
(b) If the period was doubled the distance between impulses in the frequency domain would be halved. The spectrum would be compressed in frequency. It would also have slightly different values: $G(\omega)=$ $5 \pi \sum_{n=-\infty}^{\infty} \operatorname{sinc}\left(n \frac{\pi}{4}\right) \delta\left(\omega-n \frac{\pi}{4}\right)$. See plot below.

Figure 3: Plots for $5.18 \mathrm{a}-\mathrm{b}$
5.19 a) Duality

$$
x(t)=\frac{1}{2 \pi} \frac{1}{(a-j t)^{2}}
$$

we know $t e^{-a t} u(t) \longleftrightarrow \frac{1}{(a+j \omega)^{2}}$ $a>0$
So $\frac{1}{2 \pi} \frac{1}{(a-j t)^{2}} \longleftrightarrow \omega e^{-a \omega} u(\omega)$
b)

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{0} e^{a t} e^{-j \omega t} d t+\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t \\
& =\frac{1}{a-j \omega}+\frac{1}{a+j \omega}=\frac{2 a}{a^{2}+\omega^{2}}
\end{aligned}
$$

c) $\beta / r \sin c(\beta t)$

By time scale, $f(a t) \longleftrightarrow \frac{1}{|a|} F(\omega / a)$

$$
\therefore \beta \sin (\beta t / 2) \longleftrightarrow \pi \frac{1}{1 / 2} \text { rect }\left(\frac{\omega}{1 / 2}\right)
$$

d) $f\left[\operatorname{sinc}^{2} t\right]$
$\mathcal{f}[\sin c t]=$

$于\left[\sin ^{2} t\right]=\frac{1}{2 \pi}(\pi$ rect $(\omega / 2) * \pi \operatorname{rrect}(\omega / 2))$ by

$=\pi \operatorname{tri}(\omega / 2)$
5.20
a) $\sin c t$

Since $* \sin c t$

b) $\sin ^{2} t * \operatorname{sine} t$
$\operatorname{Sin}^{2} t \longleftrightarrow \pi \operatorname{tri}(\omega / 2)$
Sine $\tau \longleftrightarrow \pi$ rect $(\omega / 2)$

$$
\operatorname{Sin}^{2} t * \operatorname{Sinc} t \longleftrightarrow \text { Rtri }(\omega / 2) \cdot \pi r e c t ~(\omega / 2)=x(\omega)
$$

Now take the inverse Fourier transform of X/a

$$
\therefore x(t)=\pi / 2 \sin t+f^{-1}\left[\pi^{2} / 2 \sin (\omega)\right]
$$

since $\operatorname{tinc}^{2} t \longleftrightarrow \pi \operatorname{tr}(\omega / 2)$

$$
\operatorname{sinc}^{2} t / 2 \longleftrightarrow 2 \pi \operatorname{tri}(\omega)
$$

And $\pi / 4 \sin ^{2}(t / 2) \longleftrightarrow \pi / 2 t r i(\omega)$

$$
\therefore \quad x(t)=\pi / 2 \operatorname{sinc} t+\pi / 4 \sin ^{2}(t / 2)
$$

c) Ares $* e^{j 2 t}$ since

$$
x(t)=\text { sine } t
$$

$e^{j 2 t} \sin c t \longleftrightarrow x(\omega-2)$

by modulation property
Multiply in Requency to get 0
$\therefore \sin c t * e^{j 2 t}$ sinct $=0$
$5.21 \quad x / \omega)=\operatorname{\pi tr}(\omega / 2)$
$x_{2}(\omega)=x_{1}(\omega-A)$
$X_{1}(\omega) * X_{2}(\omega) \longleftrightarrow X_{1}(\omega) X_{1}(\omega-A)$
$x_{1}(t) * x_{2}(t)$ are nonzero for

$$
A-2<2 \& A+2\rangle-2
$$

\therefore the range is $-4<A<4$

5.22

(a)

$$
\begin{aligned}
v_{1}(t) & =\sin (50 t) \\
V_{1}(\omega) & =\frac{\pi}{j}[\delta(\omega-50)-\delta(\omega+50)] \\
H(\omega) & =\frac{10}{10+j \omega} \\
V_{2}(\omega) & =V_{1}(\omega) H(\omega)=\frac{\pi}{j}\left[\frac{10}{10+j 50} \delta(\omega-50)-\frac{10}{10-j 50} \delta(\omega+50)\right] \\
v_{2}(t) & =\frac{\pi 10}{j(10+j 50)} \frac{e^{j 50 t}}{2 \pi}-\frac{\pi 10}{j(10-j 50)} \frac{e^{-j 50 t}}{2 \pi} \\
& =\frac{5}{j}\left[\frac{1}{10+j 50} e^{j 50 t}-\frac{1}{10-j 50} e^{-j 50 t}\right] \\
& =\frac{5}{j} \frac{1}{\sqrt{50^{2}+10^{2}}}\left(e^{j \theta} e^{j 50 t}-e^{-j \theta} e^{-j 50 t}\right), \quad \text { where } \theta=-\tan ^{-1}(5 / 1)=-1.3734 \mathrm{rad} \\
& =0.1961 \sin (50 t-1.3734 \mathrm{rad})
\end{aligned}
$$

(b)

$$
\begin{aligned}
H(\omega) & =\frac{1}{1+j \omega} \\
v_{1}(t) & =\sin (50 t) \\
V_{1}(\omega) & =\frac{\pi}{j}[\delta(\omega-50)-\delta(\omega+50)] \\
V_{2}(\omega) & =V_{1}(\omega) H(\omega)=\frac{\pi}{j}\left[\frac{1}{1+j 50} \delta(\omega-50)-\frac{1}{1-j 50} \delta(\omega+50)\right] \\
v_{2}(t) & =\frac{1}{2 j} \frac{1}{\sqrt{1+50^{2}}}\left[e^{j \theta} e^{j 50 t}-e^{-j \theta} e^{-j 50 t}\right], \quad \text { where } \theta=-\tan ^{-1}(50 / 1)=-1.55 \mathrm{rad} \\
& =0.02 \sin (50 t-1.55 \mathrm{rad})
\end{aligned}
$$

$$
\begin{aligned}
& 5.23 f(t)=\sum_{n=-\infty} g\left(t \cdot n T_{0}\right), T_{0}=20(\mathrm{~ms}), \omega_{0}=100 \pi(\pi 0 d / s) \\
& g(t)=1 \cos (2000 \pi t) \operatorname{rect}\left(t / 2 \times 10^{-3}\right) \\
& G(\omega)=1 \times 10^{-3}\left[\operatorname{sinc}\left(10^{-3}(\omega-2000 \pi)\right)+\operatorname{sinc}\left(10^{-3}(\omega+2000 \pi)\right)\right] \\
& F(\omega)=\sum_{n=-\infty}^{\infty} \omega_{0} G\left(n \omega_{0}\right) \delta\left(\omega-n \omega_{0}\right) \\
& F(\omega)=\sum_{n=-\infty}^{\infty} \frac{\pi}{10}\left[\operatorname{sinc}\left(\frac{2 \pi}{10}(n-20)\right)+\operatorname{sinc}\left(\frac{2 \pi}{10}(n+20)\right)\right] \delta(\omega-n 100 \pi)
\end{aligned}
$$

(b) If the frequency of the cosine was doubled, $g(t)=\cos (4000 \pi t) \operatorname{rect}\left(t /\left(2 \times 10^{-3}\right)\right)$ so $G(\omega)$ is now the Fourier transform of $\operatorname{rect}\left(t /\left(2 \times 10^{-3}\right)\right)$ convolved with two deltas that are at $\pm 4000 \pi$ instead of $\pm 2000 \pi$. Therefore $G(\omega)=1 \times 10^{-3}\left[\operatorname{sinc}\left(10^{-3}(\omega-4000 \pi)\right)+\operatorname{sinc}\left(10^{-3}(\omega+4000 \pi)\right]\right.$.
(c) If the "off" time was halved, $g(t)=\cos (2000 \pi t) \operatorname{rect}(t / 0.004)$ so $G(\omega)$ is now a narrower sine convolved with two deltas at the same locations in frequency.
Therefore $G(\omega)=2 \times 10^{-3}\left[\operatorname{sinc}\left(2 \times 10^{-3}(\omega-2000 \pi)\right)+\operatorname{sinc}\left(2 \times 10^{-3}(\omega+2000 \pi)\right)\right]$.
5.24

$$
\begin{aligned}
x(\omega) & =\sum_{-\infty}^{\infty} 2 \pi c_{k} \delta\left(\omega-k \omega_{0}\right) \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} 2 \pi c_{k} \delta\left(\omega-k \omega_{0}\right) e^{j \omega t} d \omega \\
& =\sum_{k=-\infty}^{\infty} c_{k} \int_{-\infty}^{\infty} \delta\left(\omega-k \omega_{0}\right) e^{j \omega t} d \omega \\
& =\sum_{k=-\infty}^{\infty} c_{k} e^{j u \omega_{0} t} \text { by sifting property }
\end{aligned}
$$

5.25.(a) The sampled signal can be written as

$$
\begin{aligned}
f_{s_{1}}(t) & =f_{1}(t) \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right), T_{s}=\frac{2 \pi}{\omega_{s}}=\frac{2 \pi}{200}=\pi / 100 \\
F_{s 1}(\omega) & =\frac{1}{2 \pi} F_{1}(\omega) * \sum_{n=-\infty}^{\infty} \omega_{s} \delta\left(\omega-n \omega_{s}\right) \\
& =\frac{\omega_{s}}{2 \pi} \sum_{n=-\infty}^{\infty} F_{1}(\omega) * \delta\left(\omega-n \omega_{s}\right) \\
& =\frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} F_{1}\left(\omega-n \omega_{s}\right)=\frac{100}{\pi} \sum_{n=-\infty}^{\infty} F_{1}(\omega-n 200)
\end{aligned}
$$

$$
F_{s_{2}}(\omega)=\frac{100}{\pi} \sum_{-\infty}^{\infty} F_{2}(\omega-n 200)
$$

b) $\omega_{s}=200(\mathrm{rad} / \mathrm{s})$ is the Myquist hequency for $f_{1}(t) \omega_{s} \geqslant 300(\mathrm{rad} / \mathrm{s})$ is necessary for proper Sampling of $f_{2}(t)$.
5.26

$$
\begin{aligned}
& 26 \quad V_{2}(\omega)=H(\omega) V_{1}(\omega) \\
& H(\omega)=\operatorname{rect}(\omega / 4 \pi) \\
& V_{1}(\omega)=f\{10 \operatorname{rect}(t)\}=10 \operatorname{sinc}(\omega / 2) \\
& V_{2}(\omega)= \begin{cases}10 \operatorname{sinc}(\omega / 2), & |\omega| \leqslant 2 \pi \\
0, & |\omega|>2 \pi\end{cases} \\
& V_{2}(\omega) \\
& 10+2 \pi
\end{aligned}
$$

5.27

$$
\begin{aligned}
& f(t)=e^{-t} u(t) \\
& F(\omega)=\frac{1}{1+j \omega} \\
& E_{T}=\int_{-\infty}^{\infty}\left|e^{-t}\right|^{2} d t=\frac{1}{2} J
\end{aligned}
$$

Parseval's Theorem: $E_{T}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega=\frac{1}{2 \pi} 2 \int_{0}^{\infty} \frac{1}{1+\omega^{2}} d \omega$

$$
E_{T}=\left.\frac{1}{\pi} \tan ^{-1}(\omega)\right|_{0} ^{\infty}=\frac{1}{\pi} \tan ^{-1}(\infty)=\frac{1}{\pi} \frac{\pi}{2}=\frac{1}{2} J
$$

(a)
in the hequency band $-7 \leqslant \omega \leqslant 7$ (rads)

$$
\begin{aligned}
& E_{7}=\left.\frac{1}{\pi} \tan ^{-1}(\omega)\right|_{0} ^{7}=\frac{1}{\pi}\left(\tan ^{-1}(7)\right)=.455 \mathrm{f} \\
& E_{7} / E_{T} \times 100 \%=\frac{455}{.5} \times 100 \%=91 \%
\end{aligned}
$$

(b) in the frequency band $-1 \leq \omega \leq 1(\mathrm{rad} / \mathrm{s})$

$$
\begin{aligned}
E_{1} & =\left.\frac{1}{\pi} \tan ^{-1}(\omega)\right|_{0} ^{1}=0.25 J \\
E_{1} / E_{T} \times 100 \% & =50 \%
\end{aligned}
$$

(a) $P_{y}(\omega)=P_{f}(\omega)|H(\omega)|^{2}$
$H(150)=8 / 200(150-100)+16=18$
$H(200)=8 / 200(200-100)+16=20$
$P_{y}(\omega)=\left(20^{2}\right) 0.5 \delta(\omega+200)+\left(18^{2}\right) 2 \delta(\omega+150)+\left(18^{2}\right) 2 \delta(\omega-150)+\left(20^{2}\right) 0.5 \delta(\omega-200)$
$P_{y}(\omega)=200 \delta(\omega+200)+648 \delta(\omega+150)+648 \delta(\omega-150)+200 \delta(\omega-200)$

(b) $P_{y}(\omega)=P_{f}(\omega)|H(\omega)|^{2}$
$H(-240)=H(240)=21.6, H(-180)=H(180)=19.2, H(-120)=H(120)=16.8, H(-60)=H(60)=0$
$P_{y}(\omega)=\left(21.6^{2}\right)[\delta(\omega+240)+\delta(\omega-240)]+\left(19.2^{2}\right)[2 \delta(\omega+180)+2 \delta(\omega-180)]+\left(16.8^{2}\right)[3 \delta(\omega+120)+3 \delta(\omega-120)]$
$P_{y}(\omega)=466.56[\delta(\omega+240)+\delta(\omega-240)]+737.28[\delta(\omega+180)+\delta(\omega-180)]+846.72[\delta(\omega+120)+\delta(\omega-120)]$

Chapter 6 solutions

6.1 $H(\omega)=1-\operatorname{rect}\left(\omega / 2 \omega_{c}\right) \stackrel{7}{\not} \delta(t)-\frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\omega_{c} t\right)=h(t)$ $h(t)$ is non-causat \therefore not physically realizable.

6.3 For general $T, X(\omega)=2 \pi \sum_{k=-\infty}^{\infty} C_{k} \delta\left(\omega-k \frac{2 \pi}{T}\right)$ where
$C_{k}=\frac{X_{0}}{2} \operatorname{sinc} \frac{T k \omega_{0}}{4}=\frac{1}{2} \operatorname{sinc}\left(\frac{\pi k}{2}\right)$.
Therefore $Y(\omega)=X(\omega) H(\omega)=2 \pi \sum_{k=-m}^{m} C_{k} \delta\left(\omega-k \frac{2 \pi}{T}\right)$ where
m is such that $m \frac{2 \pi}{T} \leq 180 \pi$ but $(m+1) \frac{2 \pi}{T}>180 \pi$. Using the fact that $\cos \left(\omega_{0} t\right) \leftrightarrow \frac{1}{\pi}\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)$ and that $C_{k}=C_{-k}$ for this even signal, we'll have $y(t)=C_{0}+\sum_{k=1}^{m} 2 C_{k} \cos \left(k \frac{2 \pi}{T}\right)$
Note that $C_{0}=\frac{1}{2}, C_{1}=C_{-1}=\frac{1}{\pi}, C_{2}=C_{-2}=0, C_{3}=C_{-3}=-\frac{1}{3 \pi}, C_{4}=C_{-4}=0$.
(a) $T=0.040, \frac{2 \pi}{T}=50 \pi, m=3$, so $y(t)=\frac{1}{2}+\frac{2}{\pi} \cos (50 \pi t)+\frac{2}{3 \pi} \cos (150 \pi t-\pi)$.
(b) $T=0.025, \frac{2 \pi}{T}=80 \pi, m=2$, so $y(t)=\frac{1}{2}+\frac{2}{\pi} \cos (80 \pi t)$
(c) $T=0.020, \frac{2 \pi}{T}=100 \pi, m=2$, so $y(t)=\frac{1}{2}+\frac{2}{\pi} \cos (100 \pi t)$
(d) $T=0.0125, \frac{2 \pi}{T}=160 \pi, m=1$ so $y(t)=\frac{1}{2}+\frac{2}{\pi} \cos (160 \pi t)$
(e) $T=0.010, \frac{2 \pi}{T}=200 \pi, m=0$, so $y(t)=\frac{1}{2}$
(f) $T=0.00625, \frac{2 \pi}{T}=320 \pi, m=0$, so $y(t)=\frac{1}{2}$

See figures of output signals, next page \rightarrow
6.3 , continued

6.4 The SIMULINK model was set up using a Pulse Generator block, a Transfer Function block, and two scopes, following Example 6.6.
The parameters for the Pulse Generator were set at: Amplitude: 1; Period: 0.04 (for part (a)), Pulse Width: 50, and Phase Delay: -0.01 (one fourth of period).
The parameters for the Transfer Function were found using [B, A] = butter (1, 200*pi, 's'), which gave $B=\left[\begin{array}{ll}0 & 628.3185\end{array}\right]$ and $A=[1.0000629 .3185]$. This transfer function is equivalent to $B=[0$ 1] and [0.0016 1], which were the coefficients entered into the Transfer Function numerator and denominator coefficient fields.

For parts (b)-(f), the period in the Pulse Generator was changed, and the Phase Delay was set to $1 / 4$ the period.

Part (a)

-

Part（b）

Part（c）

㡺臽 Ω の

Part (d)

Part (e)

Part（f）

－Scope1

－回
鲁氰

$$
\begin{aligned}
& 6.5 v_{i}(t)=R i(t)+\frac{L}{d i(t)} \frac{d t}{d t} \int_{-\infty}^{t} i(\tau) d \tau \quad, v_{0}(t)=R_{i}(t) \\
& \begin{array}{l}
V_{i}(\omega)=R I(\omega)+j \omega L I(\omega)+\frac{1}{j \omega c} I(\omega)+\frac{\pi}{c} I(0) \delta(\omega) \\
V_{0}(\omega)=R I(\omega)
\end{array} \\
& H(\omega)=\frac{V_{0}(\omega)}{V_{i}(\omega)}=\frac{R}{R+\partial \omega L+\frac{1}{j \omega c}}=\frac{1}{1+j\left(\frac{\omega L}{\sqrt{2}}-\frac{1}{\omega R C}\right)} \\
& H\left(\omega_{m}\right)=1 \Rightarrow \frac{\omega_{m} L}{R}=\frac{1}{\omega_{m} C} \Rightarrow \omega_{m}= \pm \frac{1}{\sqrt{L C}} \\
& H\left(\omega_{c}\right)=\frac{1}{1 \pm j 1} \Rightarrow \frac{\omega_{c} L}{R}-\frac{1}{\alpha_{c} R C}= \pm 1 \\
& \omega_{C, 2}=\frac{R}{2 L} \pm \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^{2}+\frac{4}{L C}} \\
& \omega_{C 3,4}=-\frac{R}{2 L} \pm \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^{2}+\frac{4}{L C}} \\
& \text { THIS aSA BANDPASS FILTER. } \\
& \text { The figure shows A plot } \\
& \text { OF }|H(\omega)| \text { WHEN } R=1 \Omega \\
& L=0.1 \mathrm{H} \\
& C=4 \times 10^{-3} \mathrm{~F}
\end{aligned}
$$

6.6

$$
V_{i}(\omega)=R I(\omega)+j \omega L I(\omega)+\frac{1}{j \omega c} I(\omega)+\frac{\pi}{c} \Phi(0) \delta(\omega)
$$

$$
v_{0}(\omega)=j \omega L+\frac{1}{\partial \omega c}+\frac{\pi}{c} I(0) \delta(\omega)
$$

This is A banditry ar "Notch" Filter FREQUENCY RESPONSE
6.7
6.8 (a) $\omega_{c}=2 \pi \cdot 10 \mathrm{kHz}$, Assume $R=1 \mathrm{k} \Omega$, then

$$
L=\frac{10^{3}}{(2 \pi)(10,000) \sqrt{2}}=0.0113 \mathrm{H}=11.3 \mathrm{mH}, C=\frac{\sqrt{2}}{\omega_{c} 1000}=22.5 \mathrm{nF}
$$

(b) $\omega_{c}=2 \pi \cdot 20 \mathrm{kHz}$, assuming $R=1 \mathrm{k} \Omega$, then

$$
L=\frac{10^{3}}{(2 \pi)(20,000) \sqrt{2}}=5.6 \mathrm{mH}, C=\frac{\sqrt{2}}{\omega_{c} 1000}=11.25 \mathrm{nF}
$$

$$
\begin{aligned}
& H(\omega)=\frac{V_{0}(\omega)}{V_{i}(\omega)}=\frac{1}{\frac{j\left(\frac{\sqrt{2}}{R_{0} \omega_{c}}\right) \omega}{R_{0}+\partial \frac{R_{o} \omega}{\sqrt{2} \omega_{c}}+\frac{1}{j \frac{R_{2} \omega}{R_{0} \omega c}}}}=\frac{1}{1-\frac{\omega^{2}}{\omega_{c}^{2}}+j \frac{\sqrt{2} \omega}{\omega_{c}}} \\
& |H(\omega)|=\frac{1}{\sqrt{\left(1-\frac{\omega^{2}}{\omega_{c}^{2}}\right)^{2}+\frac{2 \omega^{2}}{\omega_{c}^{2}}}}=\frac{1}{\sqrt{1-\frac{2 \omega^{2}}{\omega_{c}^{2}}+\frac{\omega^{4}}{\omega_{c}^{4}}+\frac{2 \omega^{2}}{\omega_{c}^{2}}}}
\end{aligned}
$$

a)

$$
\left[\begin{array}{cc}
2 / R+j \omega 2 c & -1 / R-j \omega_{2} c \\
-1 / R & 1 / R+j \omega c
\end{array}\right]\left[\begin{array}{c}
v_{a}(\omega) \\
v_{0}(\omega)
\end{array}\right]=\left[\begin{array}{c}
v_{i}(\omega) / R \\
0
\end{array}\right]
$$

from Rel:

$$
\begin{aligned}
& K_{C L}= \\
& 1 / R\left(V_{i}(t)-V_{a}(t)\right)+2 c \frac{d}{d t}\left(V_{0}(t)-v_{a}(t)\right)+ \\
& 1 / R\left(V_{0}(t)-v_{a}(t)\right)=0 \\
& 1 / R\left(V_{0}(t)-V_{a}(t)\right)+c \frac{d v_{0}(t)}{d t}=0
\end{aligned}
$$

Find Fourier Transform

$$
\begin{aligned}
& \text { Find Fourier Transform } \\
& 1 / R\left[V_{i}(\omega)-V_{a}(\omega)\right]+2 c j \omega\left[V_{0}(\omega)-V_{a}(\omega)\right]+1 / R\left[V_{0}(\omega)-V_{a}(\omega)\right. \\
& 1 / R\left[V_{0}(\omega)-V_{a}(\omega)\right]+C j \omega v_{0}(\omega)=0
\end{aligned}
$$

Continued \rightarrow
6.9(a), continued

$$
\begin{aligned}
& V_{0}(\omega)=\frac{\left|\begin{array}{cc}
\frac{2}{R}+j \omega 2 C & \frac{V_{i}(\omega)}{R} \\
-\frac{1}{R} & 0
\end{array}\right|}{\left|\begin{array}{ll}
\frac{2}{R}+j \omega \lambda C & -\frac{1}{R}-j \omega 2 C \\
-\frac{1}{R} & \frac{1}{R}+j \omega C
\end{array}\right|}=\frac{V_{i}(\omega)}{R^{2}\left(\frac{1}{R^{2}}+j \frac{j 2 C}{R}-\omega^{2} 2 C^{2}\right)} \\
& H(\omega)=\frac{V_{0}(\omega)}{V_{i}(\omega)}=\frac{1}{1-\omega^{2} 2 R^{2} C^{2}+j \omega 2 R C} \\
& |H(\omega)|=\frac{1}{\sqrt{1+4 \omega^{4} R^{4} C^{4}}}=\frac{1}{\sqrt{1+\left(\frac{\omega}{\left.\omega_{c}\right)^{4}}\right.}}<\sum_{\substack{\text { BUTTENDRRH } \\
\text { FILTER }}}^{2^{\text {Bd }} \text { ORDER }}
\end{aligned}
$$

(b)

$$
\omega_{c}=\frac{1}{\sqrt{2} R C}=\frac{1}{\sqrt{2} R C}=\frac{1}{\sqrt{2 r(1000)\left(35 \times 10^{-9}\right)}=20,203}(\mathrm{rad} / \mathrm{a})
$$

(c)
$20 \mathrm{kHz}=40,000 \pi \mathrm{rad} / \mathrm{sec}$. Want $\omega_{c}=\frac{1}{\sqrt{2} R C}=40,000 \pi$; letting $R=1000$ gives $C=\frac{1}{\sqrt{2}(1000)(40,000 \pi)}=$ 5.63 nF . Therefore we can just replace the 35 nF capacitor with a 5.63 nF one.
$6.10 \omega_{c}=2 \pi \cdot 10,000 \mathrm{rad} / \mathrm{sec}$, and let $R_{0}=1000 \Omega$.
The Butterworth lowpass filter is in $6.12(\mathrm{a})$, with $L=\frac{1000}{2 \pi(10,000)(\sqrt{2})}=11.25 \mathrm{mH}$ and $C=\frac{\sqrt{2}}{2 \pi(10,000)(1000)}=22.5 \mathrm{nF}$. The high-pass filter is constructed by interchanging the inductor and capacitor in the lowpass filter circuit in 6.12(a). The frequency response is then

$$
H(\omega)=\frac{j \omega}{\sqrt{2}(2 \pi)(10,000)+j\left(\omega-\frac{(2 \pi \cdot 10,000)^{2}}{\omega}\right)}
$$

6.11

(a) (Note that you don't need the "Analog Butterworth LP Filter" block; just use a Transfer Function block with the coefficients derived from the 'butter ($\mathrm{N}, \mathrm{Wn}, ~ ' \mathrm{~s}$ ')' command.)

We should select a cutoff frequency for the low-pass filter so that the oscillations in the signal are eliminated as much as possible. This doesn't specify a precise criterion, however. Here is the signal before and after filtering with a $2^{\text {nd }}$ order Butterworth low-pass filter with $\omega_{c}=100 \pi$:

The next output plot uses $\omega_{\mathrm{c}}=20 \pi$, giving a smoother result, although it takes longer to get there:

(b)

Here is the signal after filtering with a $4^{\text {th }}$ order Butterworth filter with $\omega_{c}=20 \pi$:

6.11, (c)
[b, a] = butter(2, 20*pi, 's'); freqs(b, a);

[b, a] = butter(4, 20*pi, 's'); freqs(b, a);

6.11 , (d) For the $2^{\text {nd }}$ order filter:
[b, a]=butter(2, 20*pi, 's');
h = freqs(b, a, [377:378]);
abs (h(1));
angle(h(1));
Gives: $|\mathrm{H}(377)|=0.0278, \theta(377)=-2.9$.
For the $4^{\text {th }}$ order filter: $|\mathrm{H}(377)|=7.715 \mathrm{e}-4, \quad \theta(377)=0.44$
6. $12(2) \quad f_{1}(t)=\operatorname{tin}(t / \tau) \stackrel{F}{\rightrightarrows} \tau \operatorname{sinc}^{2}(\tau \omega / 2)=F_{1}(\omega)$

(b) Shorter time deration results in wider bandwidth.
6.13
(a) Filter A is a high-pass filter since the DC component of the signal was removed and the highfrequency components remain
(b) Filter B is a low-pass filter since the signal was smoothed
6.14
(a) $V(\omega)=\frac{\pi}{f}[\delta(\omega-200)-\delta(\omega+200)$

THE HIGHEST FREQUENCY COMPONENT is $|\omega|=200 \mathrm{ned} / 2$ $\therefore \omega_{s}>2 \omega_{m} \Rightarrow \omega_{s}>400 \mathrm{rad} / \mathrm{s}$
(b) $W(\omega)=\frac{\pi}{\delta}[\delta(\omega-100)-\delta(\omega+10)]-4 \pi[\delta(\omega-100 \pi)+\delta(\omega+100 \pi)]$

$$
+30 \pi[f(\omega-200)+f(\omega+2 \infty)]
$$

$\Rightarrow \omega_{s} \geq 200 \pi \mathrm{rad} / \mathrm{\omega}$

$$
\text { (c) } X(\omega)=\frac{\pi}{2 \omega 0} \operatorname{rect}\left(\frac{\omega}{4 \infty}\right)
$$

$$
\omega_{s}>2(200)=400 \mathrm{rad} / 2
$$

(d) $Y(\omega)=\operatorname{tri}(\omega / 100 \pi)$

$$
\omega_{5}>200 \pi
$$

(e) the signal is not bandlimited; hence aliasing will occur at any sampling frequency. At higher frequencies, less aliasing will occur.
(f) same as (e): the signal is a sine in the frequency domain, which is not bandlimited, so aliasing will occur at any sampling frequency. However, the width of the main lobe of the sine is $\pm \frac{\pi}{10^{-3}}$, so sampling at least twice this ($\omega_{s} \geq 2000 \pi$) will prevent aliasing of the main lobe (there will still be some aliasing of the smaller sidelobes).

6.15 (a) Frequency spectra:

(a) For $f_{s}=50 \mathrm{~Hz}$:

For $f_{s}=100 \mathrm{~Hz}$:

Continued \rightarrow

6.15(a), continued

For $f_{s}=200 \mathrm{~Hz}$:

(b) The sampling frequency for this signal must be greater than 100 Hz . Therefore 50 Hz and 100 Hz are too low; the 200 Hz sampling frequency is suitable to avoid aliasing.

Continued \rightarrow

6.15, continued
(c) (a)

(b) $f_{s}=50 \mathrm{~Hz}$ is not a suitable sampling frequency for this signal. $i_{s}=50 H_{3}$ is one-half the Nyquist rate for the signal. Aliasing is seen in the frequency spectrum. $f_{s}=100 \mathrm{tg}$ is a Satisfactory Sampling frequency. This is the Nyguist rate for the signal.

(b) Sampling frequencies of 50π and $40 \pi \mathrm{rad} / \mathrm{sec}$ (sampling periods of 40 ms and 50 ms) are acceptable; sampling frequency of $20 \pi \mathrm{rad} / \mathrm{sec}$ (sampling period of 100 ms) is not, since it causes aliasing.

$$
f(t)=\cos \omega_{c} t
$$

$$
T=4 / 3 \frac{\pi}{\omega_{c}}, \omega_{S}=\frac{2 \pi}{T}=\frac{2 \pi}{4 / 3 \pi / \omega x}=3 / 2 \omega c
$$

6.18

$T_{3}=\frac{2 \pi}{\omega_{C}} \quad \omega_{3}=\frac{2 \pi}{T_{3}}=\omega_{C}$

Aliasing example

6.19

$x(t)=\frac{\omega_{c}}{2 \pi} \operatorname{sinc}^{2}\left(\frac{\omega_{c} t}{2}\right)$

\qquad

Draw the sampled signals using the sampling trains of the previous example

$$
\left(T_{1}=\frac{\pi}{\omega_{c}}, T_{2}=\frac{\pi}{2 \omega_{c}}, \text { and } T_{3}=\frac{2 \pi}{\omega_{c}}\right)
$$

Notice how aliasing looks in the time domain.

6.20

$$
\hat{x}(t)=x(t) p(t) \longleftrightarrow \hat{x}(\omega)=\frac{1}{2 \pi} x(\omega) * p(\omega)
$$

6.21
$\omega_{0}=\frac{3 \pi}{4}$ or $\omega \geqslant \frac{6 \pi}{4}=3 / 2 \pi$
require $\omega_{s} \geqslant 2 \omega_{0}$
The given $r(t)$ has $T=2$
a) $\cos \geqslant 3 / 2 \pi \rightarrow 2 \pi / T \geqslant 3 / 2 \pi$ or $T \leqslant 4 / 3$
\therefore Sampling Theorem is vibrated
b)

$$
\hat{Y}(\omega)^{\prime}=y(\omega) A(\omega)
$$

$$
\begin{aligned}
& \xrightarrow[-3 / 4^{\pi}]{\left.\uparrow^{2} \uparrow_{3 / 4}^{-2 \pi} \uparrow^{-\pi} \omega\right)} \omega \\
& Y(\omega)=\frac{1}{2 \pi} X(\omega) * p(\omega)
\end{aligned}
$$

only 4 impulses puss through $A(0)$

$$
\therefore \hat{y}(t)=\frac{\frac{1}{2 \pi} \cos \pi / 4 t}{\text { aliasing }}+1 / 2 \pi \cos \frac{3 \pi}{4} t
$$

6.22

$$
x(t)=\cos \frac{2 \pi}{4} t \quad \omega_{0}=\pi / 2
$$

a) require: $\omega_{S} \geqslant 2 \omega_{0}^{\top}=\pi$

$$
T_{S}=\frac{2 \pi}{\omega_{S}} \quad \therefore \quad T_{S} \leqslant 2
$$

b) $P^{\prime}(t)=\frac{1}{\pi} \sum_{k=-\infty}^{\infty} \delta(t-k)$

This Satisfies sampling cirterion of part a) so no aliasing occurs

$$
Z(\omega)_{x(\omega)_{\lambda}}=\frac{1}{2 \pi} \times(\omega) * p^{\prime}(\omega)
$$

$6.23 \quad \omega_{S}=3 / 2 \omega_{c} \xrightarrow[-\omega c]{\hat{\sigma}_{-\omega}^{n} \overbrace{\omega c}^{x(\omega)}} \omega \omega$
a)

(b)
$y(t)=\cos \omega c / 2 t$ and aliasing has occoned
a) 40 Hz Sampled (e 60 Hz
looks like 20 Hz due to aliasing
b) 40 Hz Sampled © 120 Hz

No aliasing So looks like 40 Hz
c) 149 HE sampled @ 150 HE looks like 1 Hz doe to aliasing

One second of $\sin (2$ pi 40 t$)$ sampled at 60 Hz .

6.25
(a) $x(t)$ is bandlimited signal, so that its frequency components above some finite frequency, ω_{m}, are negligible. Then $\omega_{s}>2 \omega_{m} \Rightarrow T_{s}<\frac{\pi}{\omega_{m}}$
(b) To recover the original signal from $x_{p}(t)$, Pass the signal through a low pass filter so that all frequency components $|\omega|>\frac{\omega_{s}}{2}$ are eliminated,
(c) $x(t)=\cos (200 \pi t), T_{5}=0.004 .4 \Rightarrow \omega_{5}=\frac{2 \pi}{4 \times 10^{-3}}=500 \pi$

frequency Components less than 700 Hz ($1400 \pi \mathrm{had} / \mathrm{R}$) in $x_{p}(t)$ are $: \pm 200 \pi, \pm 300 \pi, \pm 700 \pi, \pm 800 \pi, \pm 1200 \pi, \pm 1300 \pi$
(d) $f_{x}=100 H_{z} \Rightarrow \omega_{x}=300 \pi \therefore x(t)=\cos (300 \pi t)$

$$
T_{s}=1 \mathrm{~ms}
$$

6.26

T
(a)

$$
T_{s}=0.5 \mathrm{~ms}
$$

(b)

(c) The Nyquist rate for the signal is $1800 \pi \mathrm{rad} / \mathrm{sec}=900 \mathrm{~Hz}$, so the sampling rate must be greater than this, or equivalently, the sampling period must be less than 1.11 ms .
6.27

$$
\begin{aligned}
& a(t)=x(t) \cos 50 t \stackrel{y}{\longleftrightarrow} x(\omega) * \pi[\delta(\omega-50)+\delta(\omega+50)] \\
& A(\omega)=\frac{1}{2} x(\omega-50)+\frac{1}{2} x(\omega+50) \\
& B(\omega)=A(\omega) H_{1}(\omega) \quad \uparrow A(\omega)
\end{aligned}
$$

$$
c(t)=b(t) \cos (100 t) \stackrel{\mathcal{F}}{\leftrightarrows} \frac{1}{2} B(\omega-100)+\frac{1}{2} B(\omega+100)
$$

6.28

$$
\begin{aligned}
& x(t)=m(t) c_{1}(t)=m(t) \cos \left(\omega_{c} t\right) \stackrel{\Im}{\rightrightarrows} \frac{1}{2}\left[m\left(\omega-\omega_{c}\right)+m\left(\omega_{0}+\omega_{2}\right)\right] \\
& y(t)=x(t) c_{2}(t)=x(t) \cos \left(\omega_{c} t\right) \stackrel{Э}{\longleftrightarrow} \frac{1}{2}\left[x\left(\omega-\omega_{c}\right)+x\left(\omega+\omega_{c}\right)\right]^{\mu} \\
& X\left(\omega+\omega_{c}\right)=\frac{1}{2}\left[M\left(\omega+2 \omega_{c}\right)+M(\omega)\right] \\
& x\left(\omega-\omega_{c}\right)=\frac{1}{2}\left[m\left(\omega-2 \omega_{c}\right)+m(\omega)\right] \\
& \therefore Y(\omega)=1 / 4\left[2 M(\omega)+M\left(\omega-2 \omega_{c}\right)+M\left(\omega+2 \omega_{c}\right)\right] \\
& z(\omega)=Y(\omega) H(\omega)=\left\{\begin{array}{cl}
Y(\omega) & ,|\omega| \leqslant \omega_{m} \\
0, & |\omega|>\omega_{m}
\end{array}\right. \\
& \therefore Z(\omega)=\frac{1}{2} M(\omega)
\end{aligned}
$$

6.29
from 6.17, $x(\omega)=\frac{1}{2}\left[m\left(\omega-\omega_{c}\right)+M\left(\omega+\omega_{c}\right)\right]$

$$
\begin{aligned}
& y(t)=x(t) \sin \left(\omega_{c} t\right) \leftrightarrow y(\omega)=\frac{1}{2 j}\left[x\left(\omega-\omega_{c}\right)-x\left(\omega+\omega_{c}\right)\right] \\
& y(\omega)=\frac{1}{4 j}\left[n\left(\omega-2 \omega_{c}\right)+M\left(\omega+2 \omega_{c}\right)\right] \\
& Z(\omega)=y(\omega) H(\omega)=\left\{\begin{array}{cc}
y(\omega), & |\omega| \leq \omega_{m} \\
0, & |\omega|>\omega_{m}
\end{array}\right. \\
& \therefore Z(\omega)=0
\end{aligned}
$$

$6.30 \quad$ (a) $g_{1}(t)=\frac{1}{2} f_{1}(t)+\frac{1}{2} f_{1}(t) \cos \left(2 \omega_{c} t\right)+\frac{1}{2} f_{2}(t) \sin \left(2 \omega_{c} t\right)$
(b) $g_{2}(t)=\frac{1}{2} f_{2}(t)+\frac{1}{2} f_{1}(t) \sin \left(2 \omega_{c} t\right)-\frac{1}{2} f_{2}(t) \cos \left(2 \omega_{c} t\right)$
(c) $e_{1}(t)=\frac{1}{2} f_{1}(t)$ and $e_{2}(t)=\frac{1}{2} f_{2}(t)$
(a)

(b)

$$
\begin{aligned}
m(t)= & -5+\sum_{n=-\infty}^{\infty} 10 \operatorname{tri}\left(\frac{t-n 40 \times 10^{-6}}{40 \times 10^{-6}}\right)=-5+\sum_{n=-\infty}^{\infty} g\left(t-n T_{0}\right) \\
g(t)= & 10 t r i\left(\frac{t}{40 \times 10^{-6}}\right) \stackrel{7}{\longleftrightarrow} 4 \times 10^{-4} \operatorname{sinc}^{2}\left(10^{-5} \omega\right) \\
M(\omega)= & -10 \pi \delta(\omega)+\frac{2 \pi}{40 \times 10^{-6}} \sum_{n=-\infty}^{\infty} 4 \times 10^{-4} \operatorname{sinc}^{2}\left(\frac{10^{-5} n \pi}{20 \times 10^{-6}}\right) \delta\left(\omega-\frac{n \pi}{20 \times 10^{-6}}\right) \\
= & -10 \pi \delta(\omega)+20 \pi \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n \pi}{2}\right) \delta\left(\omega-\frac{n \pi}{2 \times 10^{-5}}\right) \\
s(t)= & m(t) \cos \left(10^{6} \pi t\right) \longleftrightarrow \frac{1}{2} 1 M(\omega) * \pi\left[\delta\left(\omega-10^{6} \pi\right)+\delta\left(\omega-10^{6} \pi\right)\right] \\
S(\omega)= & \frac{1}{2} M\left(\omega-10^{6} \pi\right)+\frac{1}{2} M\left(\omega+10^{6} \pi\right) \\
= & 5 \pi \delta\left(\omega-10^{6} \pi\right)+10 \pi \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n \pi}{2}\right) \delta\left(\omega-\left(1+\frac{n}{20}\right) 10^{6} \pi\right) \\
& -5 \pi \delta\left(\omega+10^{6} \pi\right)+10 \pi \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n \pi}{2}\right) \delta\left(\omega+\left(1-\frac{n}{20}\right) 10^{6} \pi\right)
\end{aligned}
$$

(2)

(b)

$$
m(t)=-5+\sum_{n=-\infty}^{\infty} 10 \operatorname{tr}_{i}\left(\frac{t-n 40 \times 10^{-6}}{20 \times 10^{-6}}\right)
$$

$$
m_{2}(t)=1+k_{a} m(t)=1-5 k_{a}+10 k_{a} \sum_{n=-\infty}^{\infty} t_{i}\left(\frac{t-n 40 \times 10^{-6}}{20 \times 10^{-6}}\right)
$$

$$
M_{2}(\omega)=\left(1-5 k_{a}\right) 2 \pi \delta(\omega)+10 \pi k_{a} \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n \pi}{2}\right) \delta\left(\omega-\frac{n \pi}{20 \times 10^{-6}}\right)
$$

$$
\left.A(t)=m_{2}(t) \cos 10^{6} \pi t\right) \stackrel{\text { 䨗 }}{\longleftrightarrow} \frac{1}{2} M_{2}\left(\omega-10^{6} \pi\right)+\frac{1}{2} M_{2}\left(\omega+10^{6} \pi\right)
$$

$$
S(\omega)=0.75 \pi\left[\delta\left(\omega-10^{6} \pi\right)+\delta\left(\omega+10^{0} \pi\right)\right.
$$

$$
+0.25 \pi \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n \pi}{2}\right)\left[\delta\left(\omega-(1+0.05 n) 10^{6} \pi\right)\right]
$$

6.33

$$
\begin{align*}
& p(t)=m(t) p(t) \longleftrightarrow \frac{7}{2 \pi} M(\omega) * P(\omega)=S(\omega) \\
& P(\omega)=\sum_{k=-\infty}^{\infty} 2 \pi c_{k} \delta\left(\omega-k \omega_{c}\right), c_{k}=\frac{\Delta}{10} \operatorname{sinc}\left(k \omega_{c} \Delta / 2\right) \tag{6.19}\\
& C_{k}=\frac{1 \times 10^{-4}}{1 \times 10^{-3}} \sin c\left(k\left(\frac{2 \pi}{10^{-3}}\right) \times \frac{10^{-4}}{2}\right)=\frac{1}{10} \operatorname{sinc}(k \pi / 10) \\
& P(\omega)=\frac{2 \pi}{10} \sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k \pi}{10}\right) \delta(\omega-k 2000 \pi) \\
& S(\omega)=\frac{1}{10} M(\omega) * \sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k \pi}{10}\right) \delta(\omega-k 2000 \pi) \\
& S(\omega)=\frac{1}{10} \sum_{k=-\infty}^{\infty} \operatorname{sincc}\left(\frac{k \pi}{10}\right) M(\omega-k 2000 \pi)
\end{align*}
$$

6.34

$$
f_{S}=2.4 \mathrm{MH}_{z} \Rightarrow 2.4 \times 10^{6} \text { PuLSES } / \mathrm{s} .
$$

(a)

$$
\begin{aligned}
& \text { a) } \tau=8 \times 10^{-6}(\mathrm{~s} . / \mathrm{Pulse}) \Rightarrow R_{\text {max }}=\frac{1}{\tau}=0.125 \times 10^{6} \\
& \begin{array}{l}
\text { (pulses } / \mathrm{s} . / \mathrm{SIGNAL})
\end{array} \\
& \frac{2.4 \times 10^{6}(\mathrm{PULSES} / \mathrm{s} .)}{0.125 \times 10^{6}(\text { PULSES } / \mathrm{s} / \mathrm{SIGNAL})}=19.2 \Rightarrow \begin{array}{c}
\text { SIGNALS } \\
\text { CAN BE MULTIPLEXED }
\end{array}
\end{aligned}
$$

(b) Int Null bandwidth of a rectangular pulse $=\frac{2 \pi}{2}$

$$
\omega_{c}=\frac{\lambda \pi}{8 \times 10^{-6}}=785.4(\mathrm{k}-\mathrm{rad} / \mathrm{s})
$$

$6.35 \xrightarrow[\tau]{\uparrow_{\tau} \prod_{\text {To Tort }}} t$

$$
S(\omega)=\frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)\left[\sum_{-\infty}^{\infty} M\left(\omega-n \omega_{s}\right)\right] e^{-\frac{\omega t}{2}}
$$

$T_{0}=1.0 \mathrm{~ms}, \operatorname{COS}=\frac{2 \pi}{70}=2000 \pi \mathrm{rad} / \mathrm{sec}, \tau=.1 \mathrm{~ms}$

$$
8(\omega)=1 / 10 \sin \left(\frac{\omega^{70}}{2 \times 10^{4}}\right)\left[\sum_{n}^{\infty} M(\omega-2000 \pi n)\right] e^{-j \omega / 2 \times 10^{4}}
$$

6. $36 m(t)=4 \operatorname{sinc}(40 \pi t) \stackrel{y}{\longrightarrow} M(\omega)=\frac{1}{10} \operatorname{nect}\left(\frac{\omega}{80 \pi}\right)$

$$
\begin{aligned}
S(\omega) & =\frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)\left[\sum_{n=-\infty}^{\infty} m\left(\omega-n \omega_{s}\right)\right] e^{-j \omega \tau / 2} \\
& =\frac{1}{10} \operatorname{sinc}\left(\frac{\omega}{2 \times 10^{4}}\right)\left[\sum_{n=-\infty}^{\infty} m(\omega-n 2000 \pi)\right] e^{-j \frac{\omega}{2 \times 10^{4}}}
\end{aligned}
$$

6.37
a)
b) $S_{1}(t)=A \phi_{1}(t)$ means a
0 bit was - bit was
sent

$$
\left.\begin{array}{l}
r_{0}=\int_{0}^{T} s_{1}(t) \phi_{0}(t) d t=A \int_{0}^{T} \phi_{1}(t) \phi_{0}(t) d t=0 \\
r_{1}=\int_{0}^{T} s_{1}(t) \phi_{1}(t) d t=A \int_{0}^{T} \phi_{1}(t)^{2} d t=A
\end{array}\right\}
$$

means a 1 bit was sent
6.38
a) Digital o: $s(t)=-\phi(t)$

$$
r=\int_{0}^{T} s(t) \phi(t) d t=-\int_{0}^{T} \phi^{2}(t) d t=-1
$$

a digital anas sent
b) Digital 1: $S(t)=\phi(t)$

$$
r=\int_{0}^{T} s(t) \phi(t) d t=\int_{0}^{T} \phi^{2}(t) d t=1
$$

a digital I was sent

CHAPTER 7

7.1 (a)

$$
\begin{aligned}
& \mathcal{L}[5 u(t-2)]=\int_{2}^{\infty} 5 e^{-s t} d t=\frac{5 e^{-2 s}}{s}
\end{aligned}
$$

(b) $3[u(t-2)-u(t-3)]$

$$
\mathcal{L}\left[3[u(t-2)-u(t-3)]=\int_{2}^{3} 3 e^{-s t} d t=\frac{3}{s}\left(e^{-2 s}-e^{-3 s}\right)\right.
$$

(c)

$$
\begin{aligned}
& -5 u(t-2) u(3-t) \\
& -2+\underbrace{-4} t \\
& -4 \\
& -4
\end{aligned}
$$

$\mathcal{L}[-5 u(t-2) u(3-t)]=\int_{2}^{3}-5 e^{-s t} d t=\frac{-5}{s}\left(e^{-2 s}-e^{-3 s}\right)$
Continued \rightarrow
7.1, continued
(d)

$$
-5 u(t-a) u(b-t)
$$

$$
\mathcal{L}[-5 u(t-a) u(b-t)]=\int_{a}^{b}-5 e^{-s t} d t=\frac{-5}{s}\left(e^{-a s}-e^{-b s}\right)
$$

7.2

$$
\text { a) } \begin{aligned}
& \alpha[t \sin b t]=\int t \sin b t e \\
= & \frac{+1}{2 j} \int_{0}^{\infty} t e^{-(s-j b) t} d t-\frac{1}{2 j} \int_{0}^{\infty} t e^{-(s+j b) t} d t \\
= & \left.\frac{1}{2 j} \frac{e^{-(s-j b) t}}{(s-j b)^{2}}((s-j b) t-1)\right|_{0} ^{\infty}-\left.\frac{1}{2 j} \frac{e^{-(s+j b) t}\left((s+j b)^{2}\right.}{(s+j b) t-1)}\right|_{0} ^{\infty} \\
= & \frac{-1}{2 j} \frac{(-1)}{(s-j b)^{2}}+\frac{1}{2 j} \frac{(-1)}{(s+j b)^{2}}=\frac{1}{2 j}\left[\frac{1}{(s-j b)^{2}}-\frac{1}{(s+j b)^{2}}\right] \\
= & \left.\frac{1}{2 j} \frac{(s+j b)^{2}-(s-j b)^{2}}{(s-j b)^{2}(s+j b)^{2}}=\frac{2 s b}{\left(s^{2}+b^{2}\right)^{2}}\right]
\end{aligned}
$$

Continued \rightarrow
7.2, continued
b)

$$
\begin{aligned}
& \text { b) } \begin{array}{l}
\mathcal{L}[\cos b t]=\int_{0}^{\infty} c a s t e^{-s t} d t=\frac{1}{2} \int_{0}^{\infty} e^{j b t} e^{-s t} d t+ \\
1 / 2 \int_{0}^{\infty} e^{-j b t} e^{-s t} d t=\frac{1}{2} \int_{0}^{\infty} e^{-(s-j b) t} d t+ \\
1 / 2 \int_{0}^{\infty} e^{-(s+j b) t} d t=\frac{\frac{1}{2} \frac{1}{s-j b}}{}+\frac{1}{2} \frac{1}{s+j b}=\frac{2 s}{2\left(s^{2}+b^{2}\right)} \\
\text { c) } F(s)=\int_{0}^{\infty} e^{a t} e^{-s t} d t=\left.\int_{0}^{(a-s t)} e^{\frac{s^{2}+b^{2}}{d t}} \frac{1}{a-s} e^{(a-s) t}\right|_{0} ^{\infty}=\frac{1}{s-a}
\end{array}
\end{aligned}
$$

d) $F(s)=\int_{0}^{\infty} t e^{a t} e^{-s t} d t=\int_{0}^{\infty} t e^{(a-s) t} d t=$

$$
\frac{1}{(a-s)^{2}}\left[e^{(a-s) t}[a t-s t-1]\right]_{0}^{\infty}=\frac{1}{(a-s)^{2}}[0-(-1)]=\frac{1}{(s-a)^{2}}
$$

e) $\int u e^{u} d u=e^{u}(u-1)+c ; \quad u=-s t$

$$
\begin{array}{ll}
& \int_{0}^{\infty} t e^{-s t} d t=\int_{0}^{\infty} \frac{-s t}{-s} e^{-s t} \frac{d(-s t)}{-s}=\left.\frac{1}{s^{2}} e^{-s t}(s t-1)\right|_{0} ^{\infty} \\
\therefore F(s)=0-\frac{1}{s^{2}}(-1)=\frac{1}{s^{2}}, \operatorname{Re}(s)>0
\end{array}
$$

f) $\int_{0}^{\infty} t e^{-(s+a) t} d t=\int_{0}^{\infty} \frac{-(s+a) t}{(-s+a)} e^{-(s+a) t} \frac{d[-(s+a) t]}{-(s+a)}$

$$
\begin{aligned}
& \quad=\left.\frac{1}{s+a} e^{-(s+a) t}[-(s+a) t-1]\right|_{0} ^{\infty} \\
& \therefore F(s)=0-\frac{1}{(s+a)^{2}}(-1)=\frac{1}{(s+a)^{2}}, \operatorname{Re}(s)>-a
\end{aligned}
$$

Continued \rightarrow
7.2, continued
(g)

$$
\begin{aligned}
\mathcal{L}[\sin (b t) u(t)]=\int_{0}^{\infty} \sin (b t) e^{-s t} d t & =\left.\frac{e^{-s t}(-s \sin (b t)-b \cos (b t))}{s^{2}+b^{2}}\right|_{t=0} ^{\infty} \\
& =0-\frac{-b}{s^{2}+b^{2}}=\frac{b}{s^{2}+b^{2}}
\end{aligned}
$$

(h)

$$
\begin{aligned}
\mathcal{L}\left[e^{-a t} \cos (b t) u(t)\right]=\int_{0}^{\infty} e^{-(a+s) t} \cos (b t) d t & =\left.\frac{e^{-(a+s) t}(-(a+s) \cos (b t)+b \sin (b t))}{(a+s)^{2}+b^{2}}\right|_{t=0} ^{\infty} \\
& =0-\frac{-(a+s)}{(a+s)^{2}+b^{2}}=\frac{s+a}{(s+a)^{2}+b^{2}}
\end{aligned}
$$

7.3 a) $f(t)=5 t u(t)-5(t-2) u(t-2)-15 u(t-2)+$
b) $F(s)=\frac{5}{s^{2}}-\frac{5}{s^{2}} e^{-2 s}-\frac{15}{s} e^{-2 s}+\frac{5}{5} e^{-4 s}$
7.4 a) $\omega_{\pi}=\frac{2 \pi}{\pi}=2, \therefore f(t)=10 \sin (2 t)[u(t)-u(t-\pi)]$
b) $F(s)=\int_{0}^{\pi} 10 \operatorname{tin} 2 t e^{-s t} d t=\frac{10 e^{-s t}}{s^{2}+(2)^{2}}(-s \sin 2 t-2 \cos 2 t)_{0}^{\pi}$

$$
=\frac{10}{S^{2}+4}\left[e^{-\pi s}(-2)-(-2)\right]=\frac{20\left(1-e^{-\pi s}\right)}{S^{2}+4}
$$

$f(t)=10 \sin 2 t u(t)-10 \frac{s+4}{\sin [2(t-\pi)]} u(t-\pi)$
$\therefore F(s)=\frac{20}{s^{2}+4}-\frac{20 e^{-\pi s}}{s^{2}+4}=\frac{20\left(1-e^{-\pi s}\right)}{s^{2}+4}$
(a)

$$
\begin{aligned}
& f(t)=\text { Cushat }=1 / 2\left(e^{a t}+e^{-a t}\right) \\
& \therefore F(s)=\frac{1}{2}\left[\frac{1}{s-a}+\frac{1}{s+a}\right]=\frac{s}{s^{2}-a^{2}}
\end{aligned}
$$

(b) $\left.\cos (b t)\right|_{b=a j}=\left.\frac{e^{j b t}+e^{-j b t}}{2}\right|_{b=a j}=\frac{e^{-a t}+e^{a t}}{2}=\cosh (a t)$
$\left.\mathcal{L}[\cos (b t)]\right|_{b=a j}=\left.\frac{s}{s^{2}+b^{2}}\right|_{b=a j}=\frac{s}{s^{2}-a^{2}}$
(c) $F(s)=\frac{a}{s^{2}-a^{2}}$
$\left.\sin (b t)\right|_{b=a j}=j \sinh (a t)$
$j \mathcal{L}[\sin (b t)]_{b=a j}=\left.\frac{-j b}{s^{2}+b^{2}}\right|_{b=a j}=\frac{a}{s^{2}-a^{2}}$
7.6
(i)

$$
3 e^{-5 t} u(t-2)
$$

(ii)

Continued \rightarrow

7.6(a), continued

(iii)
$-5 e^{-a t} u(t-b)$
$-5 e^{-a b}+$$t$
(iv)

$$
-5 e^{-a(t-b)} u(t-c)
$$

(b) (i)

$$
\mathcal{L}\left[3 e^{-5 t} u(t-2)\right]=\int_{2}^{\infty} 3 e^{-5 t} e^{-s t} d t=\left.\frac{-3}{s+5} e^{-t(s+5)}\right|_{2} ^{\infty}=\frac{3}{s+5} e^{-2(s+5)}
$$

(ii)

$$
\mathcal{L}\left[-3 e^{-5 t} u(t-1)\right]=\int_{1}^{\infty}-3 e^{-5 t} e^{-s t} d t=\left.\frac{3}{s+5} e^{-t(s+5)}\right|_{1} ^{\infty}=\frac{-3}{s+5} e^{-1(s+5)}
$$

(iii)

$$
\mathcal{L}\left[-5 e^{-a t} u(t-b)\right]=\int_{b}^{\infty}-5 e^{-a t} e^{-s t} d t=\left.\frac{-5}{s+a} e^{-t(s+a)}\right|_{b} ^{\infty}=\frac{-5}{s+a} e^{-b(s+a)}
$$

(iv)

$$
\mathcal{L}\left[-5 e^{-a(t-b)} u(t-c)\right]=\int_{c}^{\infty}-5 e^{-a(t-b)} e^{-s t} d t=\left.\frac{-5}{s+a} e^{-t(a+s)+a b}\right|_{c} ^{\infty}=\frac{-5 e^{a b}}{s+a} e^{-c(s+a)}
$$

Continued \rightarrow

7.6, continued

(c)

$$
\begin{equation*}
\mathcal{L}\left[3 e^{-5 t} u(t-2)\right]=\mathcal{L}\left[3 e^{-5(t-2)} e^{-10} u(t-2)\right]=\frac{3}{s+5} e^{-2 s} e^{-10} \tag{i}
\end{equation*}
$$

(ii)

$$
\mathcal{L}\left[-3 e^{-5 t} u(t-1)\right]=\mathcal{L}\left[-3 e^{-5(t-1)} e^{-5} u(t-1)\right]=\frac{-3}{s+5} e^{-s} e^{-5}
$$

(iii)

$$
\mathcal{L}\left[-5 e^{-a t} u(t-b)\right]=\mathcal{L}\left[-5 e^{-a(t-b)} e^{-a b} u(t-b)\right]=\frac{-5}{s+a} e^{-b s} e^{-a b}
$$

(iv)

$$
\mathcal{L}\left[-5 e^{-a(t-b)} u(t-c)\right]=\mathcal{L}\left[-5 e^{-a(t-c-b)} e^{-a c} u(t-c)\right]=\frac{-5}{s+a} e^{-c s} e^{-a c} e^{a b}
$$

(d) Results of (b) and (c) are equal.
$7.7 \quad$ (a)

$$
\mathcal{L}[5 u(t-2) u(3-t)]=\mathcal{L}[5[u(t-2)-u(t-3)]]=5 \frac{e^{-2 s}}{s}-5 \frac{e^{-3 s}}{s}
$$

(b)

$$
\mathcal{L}[3 t u(t-2)]=\mathcal{L}[3(t-2) u(t-2)+6 u(t-2)]=3 \frac{e^{-2 s}}{s^{2}}+6 \frac{e^{-2 s}}{s}
$$

(c)

$$
\mathcal{L}[3 u(t-3) u(t-2)]=\mathcal{L}[3 u(t-3)]=3 \frac{e^{-3 s}}{s}
$$

(d)

$$
\begin{aligned}
& \mathcal{L}[3 t u(t-1)-3 t u(t-3)]=\quad \mathcal{L}[3(t-1) u(t-1)-3(t-3) u(t-3)+3 u(t-1)-9 u(t-3)] \\
&= \\
& 3 \frac{e^{-s}}{s^{2}}-3 \frac{e^{-3 s}}{s^{2}}+3 \frac{e^{-s}}{s}-9 \frac{e^{-3 s}}{s}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \mathcal{L}[3 t u(t-a)-3 t u(t-b)]=\mathcal{L}[3(t-a) u(t-a)-3(t-b) u(t-b)+3 a u(t-a)-3 b u(t-b)] \\
&= \\
& 3 \frac{e^{-a s}}{s^{2}}-3 \frac{e^{-b s}}{s^{2}}+3 a \frac{e^{-a s}}{s}-3 b \frac{e^{-b s}}{s}
\end{aligned}
$$

Continued \rightarrow
7.7, continued
(f)

$$
\mathcal{L}\left[2 e^{-3 t} u(t-5)\right]=\mathcal{L}\left[2 e^{-15} e^{-3(t-5)} u(t-5)\right]=2 e^{-15} \frac{e^{-5 s}}{s+3}
$$

(g)

$$
\mathcal{L}\left[2 e^{-a t} u(t-b)\right]=\mathcal{L}\left[2 e^{-a b} e^{-a(t-b)} u(t-b)\right]=2 e^{-a b} \frac{e^{-b s}}{s+a}
$$

7.8 a) $v(t)=\frac{5}{2} t u(t)-5(t-2) u(t-2)+5 / 2(t-4) u(t-4)$
b) $V(s)=\frac{5 / 2}{s^{2}}-\frac{5 e^{-2 s}}{s^{2}}+\frac{5 / 2 e^{-4 s}}{s^{2}}$
$c)$

$$
\prod_{2}^{v}(t)=v(t)=5 / 2 u(t)-5 u(t-2)+5 / 2 u(t-4)
$$

d) $v_{c}(s)=1 / 5\left(5 / 2-5 e^{-2 s}+5 / 2 e^{-4 s}\right)$
e)

$$
\begin{aligned}
& \int_{0}^{t} V_{c}(\tau) d \tau=v(t) \therefore v(s)=1 / s V_{c}(s) \\
& \therefore v(s)=\frac{1}{s^{2}}\left(5 / 2-s e^{-2 s}+5 / 2 e^{-4 s}\right) v
\end{aligned}
$$

f)

$$
\begin{aligned}
& \text { 2) } V_{c}(t)=\frac{d v(t)}{d t}, \quad V_{c}(s)=S v_{(s)}-v\left(0^{+}\right) \\
& \therefore V_{c}(s)=S\left[\frac{1}{s^{2}}\left(5 / 2-5 e^{-2 S}+5 / 2 e^{-4 s}\right)\right]-0= \\
& \quad \frac{1}{S}\left(5 / 2-5 e^{-2 S}+5 / 2 e^{-4 s}\right)
\end{aligned}
$$

$7.9 \quad$ (a) (i)

$$
v\left(0^{+}\right)=\lim _{s \rightarrow \infty} \frac{s^{2}}{(s+1)(s+2)}=1
$$

(ii)

$$
\begin{array}{rc}
\frac{s}{(s+1)(s+2)}= & \frac{-1}{s+1}+\frac{2}{s+2} \\
v(t) & = \\
-e^{-t} u(t)+2 e^{-2 t} u(t) \tag{1}\\
v\left(0^{+}\right) & =
\end{array}
$$

(b) (i)

$$
\lim _{s \rightarrow 0} \frac{s^{2}}{(s+1)(s+2)}=0
$$

(ii)

$$
\lim _{t \rightarrow \infty}-e^{-t} u(t)+2 e^{-2 t} u(t)=0
$$

(c) $[r, p, k]=\operatorname{residue}\left(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]\right)$
$7.10 \quad v(s)=\frac{2 s+1}{s^{2}+4}=\frac{2 s}{s^{2}+4}+\frac{1}{s^{2}+4}$
a) (i) $v\left(0^{+}\right)=\lim _{s \rightarrow \infty} s V(s)=\operatorname{li}_{s \rightarrow \infty} \frac{2 s^{2}+s}{s^{2}+4}=2$
(ii)

$$
\begin{aligned}
& v(t)=[2 \cos 2 t+1 / 2 \sin 2 t] u(t) \\
& \therefore v\left(0^{+}\right)=2+1 / 2(0)=2
\end{aligned}
$$

b) (i) $v(\infty)=\lim _{s \rightarrow 0} s v(s)=\lim _{s \rightarrow 0} \frac{2 s^{2}+s}{s^{2}+4}=0$ [in errov]
(ii) $V(\infty)=\lim _{t \rightarrow \infty}(2 \cos 2 t+1 / 2 \sin 2 t) \Rightarrow$ undefined
7.11 a) $\mathcal{L}[t u(t)]=\frac{-d}{d s} \mathcal{L}[u(t)]=\frac{-d}{d s}(1 / s)=1 / s^{2}$
b) $\mathcal{L}[\cos b t]=\frac{s}{s^{2}+b^{2}}$
$\mathcal{L}[t$ as $b t] \frac{s^{2}+b^{2}}{=-\frac{d}{d s}}\left[\frac{s}{s^{2}+b^{2}}\right]=\frac{-1}{s^{2}+b^{2}}+\frac{s \cdot 2 s}{\left(s^{2}+b^{2}\right)^{2}}$

$$
=\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}
$$

c) $\mathcal{L}\left[t t^{n-1}\right]=\frac{-d}{d S} \mathcal{L}\left[t^{n-1}\right]=\frac{-d}{d s}\left[\frac{(n-1)!}{s^{n}}\right]=\frac{n!}{s^{n+1}}$
$7.12 f(t)=\frac{d}{d t}[\sin b t]=b \cos b t$

$$
\begin{aligned}
F(s) & =S \mathcal{L}[\sin b t]-\sin \left(0^{+}\right)=S\left[\frac{b}{s^{2}+b^{2}}\right]=b \mathcal{L}[\cos b t] \\
& \therefore \mathcal{L}[\cos b t]=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

7.13
a) $F(s)=\frac{5}{S(s+2)}=\frac{2.5}{s}+\frac{-2.5}{s+2} \Rightarrow f(t)=2.5\left(1-e^{-2 t}\right) u(t)$
b) $\begin{aligned} F(s)=\frac{s+3}{s(s+1)(s+2)}=\frac{1.5}{s}+\frac{-2}{s+1}+\frac{.5}{s+2} & \Rightarrow f(t)=\left(1.5-2 e^{-t}\right. \\ & \left.+.5 e^{-2 t}\right) u(t)\end{aligned}$
c)

$$
\begin{gathered}
F(s)=\frac{10(s+3)}{s^{2}+25}=\frac{k_{1}}{s+j 5}+\frac{k_{1}^{*}}{s-j 5} ; k_{1}=\frac{10(3+j 5)}{-j 5-j 5} \\
\therefore k_{1}=5.831 \angle 149^{\circ}
\end{gathered}
$$

Continued \rightarrow
7.13, continued

$$
\begin{aligned}
& \text { d) } F(s)=\frac{3}{S\left[(s+1)^{2}+\left(2^{2}\right)\right]}=\frac{3 / 5}{s}+\frac{k_{1}}{S+1+j 2}+\frac{k_{1}^{*}}{s+1-j 2} \\
& \quad k_{1}=\left.\frac{3}{S(S+1-j 2)}\right|_{S=-1-j 2}=\frac{3}{\left(-1-j_{2}\right)(-j 4)}=\cdot 335 \angle-153.4 \\
& n=\left[\begin{array}{lll}
0 & 0 & 5
\end{array}\right] ; d=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] ;[r, p, k]=\text { residue }(n, d) \\
& n=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] ; d=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] ;[r, p, k]=\text { residue }(n, d) \text {, pause } \\
& n=\left[\begin{array}{lll}
0 & 10 & 30
\end{array}\right] ; d=\left[\begin{array}{lll}
1 & 25
\end{array}\right] ;[r, p, k]=\text { residue }(n, d), \text { pause } \\
& n=\left[\begin{array}{llll}
0 & 0 & 0 & 3
\end{array}\right] ; d=\left[\begin{array}{lll}
1 & 2 & 5
\end{array}\right] ;[r, p, k]=\text { residue }(n, d)
\end{aligned}
$$

7.14 (a)

$$
\begin{array}{rlcl}
\frac{1}{s^{2}(s+1)} & = & \frac{-1}{s}+\frac{1}{s^{2}}+\frac{1}{s+1} \\
f(t) & = & -u(t)+t u(t)+e^{-t} u(t)
\end{array}
$$

Verify partial fraction exp. in MATLAB: $\left[\begin{array}{ll}\mathrm{r} p \mathrm{k}\end{array}\right]=\operatorname{residue([\begin{array} {llll}{0}&{0}&{0}&{1}\end{array}]\text {,}[\begin{array} {llll}{1}&{1}&{0}&{0}\end{array}])~}$
(b)

$$
\begin{array}{rcc}
\frac{1}{s(s+1)^{2}}= & \frac{-1}{s+1}+\frac{-1}{(s+1)^{2}}+\frac{1}{s} \\
f(t)= & -e^{-t} u(t)-t e^{-t} u(t)+u(t)
\end{array}
$$

c)

$$
\begin{aligned}
& F(s)^{\prime}=\frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{1 / 4}{s^{2}}+\frac{k_{1}^{\prime}}{s}+\frac{k_{2}}{s+j 2}+\frac{k_{2}^{*}}{s-j 2} \\
& K_{1}=\frac{d}{d s}\left[\frac{1}{s^{2}+4}\right]_{s=0}=\left.\frac{-2 s}{\left(s^{2}+4\right)^{2}}\right|_{S=0}=0 \\
& K_{2}=\left.\frac{1}{s^{2}(s-j 2)}\right|_{s=-j 2}=\frac{1}{(-4)(-j 4)}=\frac{1}{16} \angle-90^{\circ}
\end{aligned}
$$

7.14, continued
(d)

$$
\begin{array}{rlr}
\frac{39}{(s+1)^{2}\left(s^{2}+4 s+13\right)} & = & \frac{-0.78}{s+1}+\frac{3.9}{(s+1)^{2}}+\frac{0.39+0.52 j}{s+2-3 j}+\frac{0.39-0.52 j}{s+2+3 j} \\
& = & -0.78 e^{-t} u(t)+3.9 t e^{-t} u(t)+(0.39+0.52 j) e^{(-2+3 j) t} u(t)+(0.39-0.52 j) e^{(-2-3 j) t} u(t) \\
& = & -0.78 e^{-t} u(t)+3.9 t e^{-t} u(t)+0.78 e^{-2 t} \cos (3 t) u(t)-1.04 e^{-2 t} \sin (3 t) u(t) \\
& = & -0.78 e^{-t} u(t)+3.9 t e^{-t} u(t)+1.3 e^{-2 t} \cos \left(3 t+94.61^{\circ}\right) u(t)
\end{array}
$$

Verify: $\left[\begin{array}{ll}\mathrm{r} & \mathrm{p} k\end{array}\right]=\mathrm{residue}\left(\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 39\end{array}\right],\left[\begin{array}{llll}1 & 6 & 22 & 30\end{array}\right.\right.$ 13$\left.]\right)$
7.15
a) $F(s)=\frac{3 e^{-2 s}}{s(s+3)}=e^{-2 s}\left(\frac{1}{s}+\frac{-1}{s+3}\right) \Rightarrow f(t)=\left(1-e^{-3(t-2)}\right) u(t-2)$

$$
1-\left.e^{-3(t-2)}\right|_{t=4}=.0025
$$

$$
\text { b) } \begin{aligned}
F(s)=\left(\frac{1}{s}+\frac{-1}{s+3}\right)\left(1-e^{-2 s}\right) \Rightarrow f(t) & =\left(1-e^{-3 t}\right) u(t) \\
& -\left(1-e^{-3(t-2)}\right) u(t-2) \\
t=1 / 3 s ; 1-\left.e^{-3 t}\right|_{t=2}= & =.0025
\end{aligned}
$$

7.16 (a)

$$
\begin{aligned}
\frac{s^{-2 s}}{s(s+1)} & =e^{-2 s}\left[\frac{1}{s}+\frac{-1}{s+1}\right] \\
f(t) & =\left[1-e^{-(t-2)}\right] u(t-2)
\end{aligned}
$$

(b)

$$
\begin{array}{rlc}
\frac{1-e^{-s}}{s(s+1)} & = & \frac{1}{s}+\frac{-1}{s+1}+\frac{-e^{-s}}{s}+\frac{e^{-s}}{s+1} \\
f(t) & = & {\left[1-e^{-t}\right] u(t)-\left[1-e^{-(t-1)}\right] u(t-1)}
\end{array}
$$

(c)

$$
f(t)=\frac{1}{2}[\delta(t-2)-\delta(t-3)]
$$

(d)

$$
\begin{array}{rc}
\frac{1-e^{-5 s}}{s(s+5)} & = \\
& \frac{0.2\left(1-e^{-5 s}\right)}{s}+\frac{-0.2\left(1-e^{-5 s}\right)}{s+5} \\
& =0.2[u(t)-u(t-5)]-0.2\left[u(t) e^{-5 t}-u(t-5) e^{-5(t-5)}\right]
\end{array}
$$

(a)

(c)

(d)

7.17 (a)

$$
\begin{array}{rlc}
H(s) & = & \frac{2}{s^{2}+5 s+4} \\
& = & \frac{2}{(s+4)(s+1)} \\
& = & \frac{-2 / 3}{s+4}+\frac{2 / 3}{s+1} \\
h(t) & = & (-2 / 3) e^{-4 t} u(t)+(2 / 3) e^{-t} u(t)
\end{array}
$$

(ii)

$$
\begin{array}{rlc}
H(s) & = & \frac{2 s+6}{s^{2}+5 s+4} \\
& = & \frac{2 s+6}{(s+4)(s+1)} \\
& = & \frac{2 / 3}{s+4}+\frac{4 / 3}{s+1} \\
h(t) & = & (2 / 3) e^{-4 t} u(t)+(4 / 3) e^{-t} u(t)
\end{array}
$$

(iii) Note the typo ($4 \frac{d^{2} y(t)}{d t^{2}}$ should be $4 \frac{d y(t)}{d t}$)

After correcting the typo:

$$
\begin{array}{rlc}
H(s) & = & \frac{6}{s^{3}+3 s^{2}+4 s+2} \\
& = & \frac{6}{s+1}+\frac{-3}{s+1-j}+\frac{-3}{s+1+j} \\
h(t) & = & 6 e^{-t} u(t)+-3 e^{(-1+j) t} u(t)+-3 e^{(-1-j) t} u(t) \\
& = & 6 e^{-t} u(t)-3 e^{-t}\left[e^{j t}+e^{-j t}\right] u(t) \\
& = & 6 e^{-t} u(t)-6 e^{-t} \cos (t) u(t)
\end{array}
$$

On the other hand, if you neglected to correct the typo:

$$
\begin{array}{rlc}
H(s) & = & \frac{6}{s^{3}+7 s^{2}+2} \\
& = & \frac{0.1197}{s+7.0403}+\frac{-0.0598-0.7933 j}{s-0.0202-0.5326 j}+\frac{-0.0598+0.7933 j}{s-0.0202+0.5326 j} \\
h(t) & = & 0.1197 e^{-7.0403 t} u(t)+(-0.0598-0.7933 j) e^{(0.0202+0.5326 j) t} u(t)+(-0.0598+0.7933 j) e^{(0.0202-0.5326 j)} \\
& = & 0.1197 e^{-7.0403 t} u(t)-0.1197 e^{0.0202 t} \cos (0.5326 t) u(t)+1.5865 e^{0.0202 t} \sin (0.5326 t) u(t)
\end{array}
$$

Continued \rightarrow

$$
\begin{array}{rlc}
H(s) & = & \frac{4 s-8}{s^{3}-s^{2}+2} \\
& = & \frac{1.2+0.4 j}{s-1-j}+\frac{1.2-0.4 j}{s-1+j}+\frac{-2.4}{s+1} \\
h(t) & = & (1.2+0.4 j) e^{(1+1 j) t} u(t)+(1.2-0.4 j) e^{(1-1 j) t} u(t)+-2.4 e^{-t} u(t) \\
& = & 2.4 e^{t} \cos (t) u(t)-0.8 e^{t} \sin (t) u(t)-2.4 e^{-t} u(t) \\
& = & 2.5298 e^{t} \cos \left(t+18.4349^{\circ}\right) u(t)-2.4 e^{-t} u(t)
\end{array}
$$

(b) (i)

$$
\begin{array}{rlc}
s(t) & = & \mathcal{L}^{-1}\left[H(s) \frac{1}{s}\right]=\mathcal{L}^{-1}\left[\frac{2}{s^{3}+5 s^{2}+4 s}\right] \\
\frac{2}{s^{3}+5 s^{2}+4 s} & = & \frac{(1 / 6)}{s+4}+\frac{(-2 / 3)}{s+1}+\frac{(1 / 2)}{s} \\
s(t) & = & \frac{1}{6} e^{-4 t} u(t)-\frac{2}{3} e^{-t} u(t)+\frac{1}{2} u(t)
\end{array}
$$

(ii)

$$
\begin{array}{rc}
H(s) \frac{1}{s} & = \\
& \frac{2 s+6}{s^{3}+5 s^{2}+4 s} \\
& = \\
s(t) & = \\
\hline & \frac{-1 / 6}{6+4}+\frac{-4 / 3}{s+1}+\frac{3 / 2}{s} e^{-4 t} u(t)-\frac{4}{3} e^{-t} u(t)+\frac{3}{2} u(t)
\end{array}
$$

Continued \rightarrow
7.17(b), continued
(iii) (after correcting the typo)

$$
\begin{array}{rlc}
H(s) \frac{1}{s} & = & \frac{6}{s^{4}+3 s^{3}+4 s^{2}+2 s} \\
& = & \frac{1.5+1.5 j}{s+1-j}+\frac{1.5-1.5 j}{s+1+j}+\frac{-6}{s+1}+\frac{3}{s} \\
s(t) & = & (1.5+1.5 j) e^{(-1+j) t} u(t)+(1.5-1.5 j) e^{(-1-j) t} u(t)+-6 e^{-t} u(t)+3 u(t) \\
& = & 3 e^{-t} \cos (t) u(t)-3 e^{-t} \sin (t) u(t)-6 e^{-t} u(t)+3 u(t) \\
& = & 3 \sqrt{2} e^{-t} \cos \left(t+45^{\circ}\right) u(t)-6 e^{-t} u(t)+3 u(t)
\end{array}
$$

(iv)

$$
\begin{array}{rlc}
H(s) \frac{1}{s} & = & \frac{4 s-8}{s^{4}-s^{3}+2 s} \\
& = & \frac{0.8-0.4 j}{s-1-j}+\frac{0.8+0.4 j}{s-1+j}+\frac{2.4}{s+1}+\frac{-4}{s} \\
s(t) & = & (0.8-0.4 j) e^{(1+j) t} u(t)+(0.8+0.4 j) e^{(1-1 j) t} u(t)+2.4 e^{-t} u(t)-4 u(t) \\
& = & 1.6 e^{t} \cos (t) u(t)+0.8 e^{t} \sin (t) u(t)+2.4 e^{-t} u(t)-4 u(t) \\
& = & 0.8 \sqrt{5} e^{t} \cos \left(t-26.56^{\circ}\right) u(t)+2.4 e^{-t} u(t)-4 u(t)
\end{array}
$$

(c) Taking derivatives of the results in part (b) (and using $\left.\frac{d}{d t}(f(t) u(t))=f^{\prime}(t) u(t)+\delta(t) f(0)\right)$ gives the results in part (a).
(d) Partial fraction expansions were done using $[r \mathrm{p} k]=\operatorname{residue}(\mathrm{b}, \mathrm{a})$. For example, for part
 6], $\left[\begin{array}{ll}1 & 5\end{array}\right]$).
7.18 (Note that these are just possible answers; any other answer that satisfies the conditions is correct) (a)

(b)

(c)

Same
 continued \rightarrow
7.18, continued
(d)

$$
H(5)=\frac{1}{(5+1)^{2}+1}
$$

x	s
$x+-1$	

(e)

$$
H(S)=\frac{1}{S^{2}+1}
$$

(f)

$$
H(S)=\frac{S^{2}+1}{S^{2}+2 S+2}
$$

$h(t)=\delta(t)+C e^{-t} \cos (t-\Theta)$
(g)

Lame as (a)
7.19 (a) (i) stable
(ii) stable
(iii) stable
(iv) not stable
(b) (i) $e^{-4 t}, e^{-t}$
(ii) $e^{-4 t}, e^{-t}$
(iii) $e^{-t}, e^{(-1+j) t}, e^{(-1-j) t}$ or $e^{-t} \cos (t), e^{-t}$
(iv) $e^{(1+j) t}, e^{(1-j) t}, e^{-t}$ or $e^{t} \cos (t), e^{t} \sin (t), e^{-t}$, or $e^{t} \cos (t+\theta), e^{-t}$
(c) (i) $H_{i}(s)=\frac{s^{2}+5 s+4}{2}$
(ii) $H_{i}(s)=\frac{s^{2}+5 s+4}{2 s+6}$
(iii) $H_{i}(s)=\frac{s^{3}+3 s^{2}+4 s+2}{6}$
(iv) $H_{i}(s)=\frac{s^{3}-s^{2}+2}{4 s-8}$
7.20
(a)

$$
\begin{aligned}
& y(s)=\frac{1}{s+b} \quad x(s)=\frac{1}{s+a} \\
& H(s)=\frac{y(s)}{x(s)}=\frac{s+a}{s+b}-\frac{a}{s+b}+\frac{s}{s+b} \\
& h(t)=a e^{-b t} u(t)+\frac{d}{d t}\left(e^{-b t} u(t)\right)=a e^{-b t} u(t)+-b e^{-b t} u(t) \\
& \quad+e^{-b t} \delta(t) \\
& \therefore h(t)=\delta(t)+(a-b) e^{-b t} u(t)
\end{aligned}
$$

(b) We know that $h(t)=\frac{d}{d t} s(t)$ and here $s(t)=e^{-a t} \cos (b t) u(t)$, so

$$
h(t)=-a e^{-a t} \cos (b t) u(t)-b e^{-a t} \sin (b t) u(t)+\delta(t) .
$$

We can also find the solution using $h(t)=\mathcal{L}^{-1}[H(s)]$ where

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{s(s+a)}{(s+a)^{2}+b^{2}} .
$$

7.21
(a)

$$
\int_{-\infty}^{\infty} e^{-2 t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-(2+s) t} d t=\frac{1}{s+2}, \operatorname{Re}(s)>-2
$$

(b)

$$
\begin{array}{rlc}
\int_{-\infty}^{\infty} e^{-2 t} u(t-1) e^{-s t} d t & = & \int_{1}^{\infty} e^{-t(2+s)} d t \\
& =\frac{1}{2+s} e^{-(s+2)}, \operatorname{ROC}: \operatorname{Re}(s)>-2
\end{array}
$$

(c)

$$
-\int_{-\infty}^{\infty} e^{2 t} u(-t) e^{-s t} d t=-\int_{-\infty}^{0} e^{(2-s) t} d t=\frac{-1}{2-s}=\frac{1}{s-2}, \operatorname{ROC}: \operatorname{Re}(\mathrm{s})<2
$$

(d)

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{2 t} u(-t-1) e^{-s t} d t & =\quad \int_{-\infty}^{-1} e^{t(2-s)} d t \\
& =\frac{1}{s-2} e^{s-2}, \operatorname{ROC}: \operatorname{Re}(s)<2
\end{aligned}
$$

(e)

$$
\int_{-\infty}^{\infty} e^{-2 t} u(t+4) e^{-s t} d t=\int_{-4}^{\infty} e^{-(s+2) t} d t=\frac{e^{(s+2) 4}}{(s+2)}, 2 e(s)>-2
$$

$$
\begin{align*}
& \int_{-\infty}^{\infty} e^{-2 t} u(-t+1) e^{-s t} d t= \tag{f}\\
& \int_{-\infty}^{1} e^{-t(2+s)} d t \\
&=\frac{-1}{2+s} e^{2+s}, \operatorname{ROC}: \operatorname{Re}(s)<-2
\end{align*}
$$

7.22 Using known bilateral transforms of exponential signals:
(a)

$$
F(s)=\frac{1}{s+10}-\frac{1}{s-5}, R O C:-10<\operatorname{Re}(s)<5
$$

(b) does not exist
(c) does not exist
(d)

$$
F(s)=\frac{1}{s+10}-\frac{1}{s+5}, R O C:-10<\operatorname{Re}(s)<-5
$$

7.23 (a)

$$
\begin{aligned}
F(s) & =\int_{-1}^{2} e^{5 t} e^{-s t} d t=\frac{1}{5-s}\left[e^{2(5-s)}-e^{-1(5-s)}\right] \\
& =\quad \frac{1}{5-s}\left[e^{10-2 s}-e^{s-5}\right], R O C: \text { all } s
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathcal{L}\left[e^{5 t}(u(t+1)-u(t-2))\right] & = & \mathcal{L}\left[e^{5 t} u(t+1)\right]+\mathcal{L}\left[e^{5 t} u(t-2)\right] \\
\mathcal{L}\left[e^{5 t} u(t+1)\right] & = & e^{-5} \mathcal{L}\left[e^{5(t+1)} u(t+1)\right]=e^{-5} \frac{1}{s-5} e^{s}, \operatorname{ROC}: \operatorname{Re}(s)>5 \\
\mathcal{L}\left[e^{5 t} u(t-2)\right] & = & e^{10} \mathcal{L}\left[e^{5(t-2)} u(t-2)\right]=e^{10} \frac{1}{s-5} e^{-2 s}, \operatorname{ROC}: \operatorname{Re}(s)>5 \\
F(s) & = & \frac{1}{s-5}\left[e^{s-5}-e^{-2 s+10}\right] \\
& = & \frac{1}{5-s}\left[e^{10-2 s}-e^{s-5}\right]
\end{aligned}
$$

Note that the ROC of the sum is in general the intersection of the ROCs (in this case $\operatorname{Re}(s)>5$), but since we know it is a finite-duration signal, the ROC is in fact all s.
7.23, continued
(c)

$$
\begin{array}{rlrl}
\mathcal{L}\left[e^{5 t}[u(2-t)-u(-1-t)]\right. & = & \mathcal{L}\left[e^{5 t} u(2-t)-e^{5 t} u(-1-t)\right] \\
\mathcal{L}\left[e^{5 t} u(2-t)\right] & =e^{10} \mathcal{L}\left[e^{5(t-2)} u(-(t-2))\right] \\
& =e^{10} \frac{1}{s-5} e^{-2 s}, \operatorname{ROC}: \operatorname{Re}(s)<5 \\
\mathcal{L}\left[e^{5 t} u(-1-t)\right] & =e^{-5} \mathcal{L}\left[e^{5(t+1)} u(-(t+1))\right] \\
& =e^{-5} \frac{1}{s-5} e^{s}, R O C: \operatorname{Re}(s)<5 \\
F(s) & = & \frac{1}{5-s}\left[e^{10-2 s}-e^{s-5}\right]
\end{array}
$$

The intersection of the ROCs is $\operatorname{Re}(s)<5$, but since it is a finite signal, the ROC is all s.
$7.24^{(a)}$ Jeft-sided functim

$$
F_{b}(s)=\frac{s+4}{s(s+1)}=\frac{9}{s}+\frac{-8}{s+1}
$$

From $(7.83), f(t)=-9 u(-t)+8 e^{-t} u(-t)$
(b) Right-sided function

$$
f(t)=9 u(t)-8 e^{-t} u(t)
$$

(c) $\frac{9}{3}$ betided; $\frac{-8}{5+1}$ right sided

$$
\therefore f(t)=-9 u(-t)-8 e^{-t} u(t)
$$

(d)
(a) $f(\infty)=0$
(b) $f(\infty)=9$
(c) $f(\infty)=0$
$7.25 \times(s)=\frac{s+3}{(s+1)(s-1)}=\frac{-1}{s+1}+\frac{2}{s-1}$
poles at -1, 1

a) $\operatorname{Re}(s)<-1, x(t)=e^{-t} u(-t)-2 e^{t} u(-t)$
$-1 \leqslant \operatorname{Re}(s) \leqslant 1, x(t)=-e^{-t} u(t)-2 e^{t} u(-t)$
$R e(s) \geqslant 1, x(t)=-e^{-t} u(t)+2 e^{t} u(t)$
b) $\operatorname{Re}(s)<-1$

c) for $\operatorname{Re}(s)<-1, x(t)$ is noncausal for $-1 \leqslant \operatorname{Re}(s) \leqslant 1, x(t)$ is 2 -hided for $\operatorname{Re}(s) \geqslant 1, x(t)$ is causal
d) for $\operatorname{Re}(s)<-1, x(t)$ is Not BUBO stable for $-1 \leqslant \operatorname{Re}(s) \leqslant 1, x(t)$ is BIBO Stable for $R e(s) \geqslant 1, x(t)$ is NOt B1BO stable
e) for $\operatorname{Re}(s)<-1$, Final value is 0 for $-1 \leqslant \operatorname{Re}(s) \leqslant 1$, That value is 0 for $\operatorname{Re}(s) \geqslant 1$, Final value does not exist
7.26 a) $\mathrm{h}(\mathrm{t})$ causal \Rightarrow both functions are right-Sided

$$
\begin{array}{ll}
& \\
-b^{\alpha-a} & \operatorname{Re}(a)>0
\end{array} \quad \& \operatorname{Re}(b)>0
$$

b) 2 Sided \Rightarrow one is left-Sided $\&$ one is vight-Side either $\operatorname{Re}(b)<0$ and $\operatorname{Re}(a)>0$ or $\operatorname{Re}(a)<0<\operatorname{Re}(b)$

c) Both left-sided $\mathrm{Re}(a)<0$ \& $\operatorname{Re}(b)<0$

$7 \cdot 27$

$$
\begin{aligned}
& H(S)=\frac{S+1}{(S+4)(S+2)}=\frac{3 / 2}{S+4}+\frac{-1 / 2}{S+2} \\
& \therefore \quad h(t)=3 / 2 e^{-4 c} u(t)+1 / 2 e^{-2 t^{2}} u(-t)
\end{aligned}
$$

$7.28 \mathrm{H}(s)=\frac{1}{(s+10)(s+5)(s-3)}$ poles at $-10,-5,3$
Converges to the right of
 $-10 \otimes-5 \Rightarrow \therefore$ these are right-sided time functions converges to the eft of $3 \Rightarrow-$ this is left -sided tine function
7.29
a)

$$
\text { a) } \begin{aligned}
x(t) & =e^{s t} u(t), x(s)=\frac{1}{s-5}, \operatorname{Re}(s)>5 \\
h(t) & =u(t), H(s)=\frac{1}{s}, \operatorname{Re}(s)>0 \\
y(s) & =H(s) x(s)=\frac{1}{s(5-5)}, \operatorname{Re}(s)>5 \\
y(s)=\frac{-1 / 5}{s}+\frac{1 / 5}{s-5} \Rightarrow y(t) & =-1 / 5 u(t)+1 / 5 e^{s t} u(t) \\
& =1 / 5\left[e^{5 t}-1\right] u(t)
\end{aligned}
$$

(b)

$$
\left.\left.\begin{array}{rl}
X(s) & = \\
H(s) & = \\
Y(s) & = \\
& \frac{1}{1+s} \\
& = \\
y(t) & = \\
& H(s) X(s)=\frac{-e^{-2 s}}{s+\frac{1}{s} e^{-4 s}} \\
(1+s) s \\
s+1 & {\left[1-e^{-(t-2)}\right] u(t-2)-\left[1-e^{-4 s}\right.} \\
(1+s) s \\
s+1
\end{array} \frac{e^{-(t-4)}}{s}\right] u(t-4)\right] .
$$

7.30 $\quad h(t)=e^{t} u(t)$
a) $H(s)=\frac{1}{s-1}, \operatorname{Re}(s)>1$

NOT BIBO Stable
b)

$$
\begin{aligned}
& w(t)=x(t)-A y(t), w(s)=x(s)-A y(s) \\
& y(t)=w(t) * h(t), y(s)=w(s) H(s)
\end{aligned}
$$

Part (b) continued \rightarrow
7.30(b), continued

$$
\begin{aligned}
& \frac{y(s)}{H(s)}=w(s)=x(s)-A y(s) \\
& y(s)\left[\frac{1}{H(s)}+A\right]=x(s), \frac{y(s)}{x(s)}=\frac{H(s)}{1+A H(s)}
\end{aligned}
$$

c)

$$
\text { For stability, examine } \begin{aligned}
& \frac{H(S)}{1+A H(S)}=\frac{\frac{1}{S-1}}{1+\frac{A}{S-1}} \frac{\frac{1}{S-1}}{\frac{S+A-1}{S-1}} \\
&=\frac{1}{S+A-1}
\end{aligned}
$$

As long as $A-1>0$, then the pole at $A-1$ will be in the left haff-plane and the system will be stable.
\therefore we require $A>1$

$$
\text { 8.1. } L \frac{d i}{d t}+R i=v_{i} \Rightarrow \frac{d i}{d t}=-\frac{R}{L} i+\frac{1}{L} v_{i}, v_{R}=R_{i}
$$

(a)

$$
\begin{aligned}
& x_{1}=i, u(t)=v_{i}, y=v_{R} \\
& \dot{x}=-\frac{R}{L} x+\frac{1}{L} u \\
& y=R x
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x=v_{R}=R i, i=\frac{1}{R} x \\
& \frac{1}{R} \dot{x}=-\frac{1}{L} x+\frac{1}{L} u \Rightarrow \dot{x}=-\frac{R}{L} x+\frac{R}{L} u \\
& y=x
\end{aligned}
$$

8.2.(a)

$$
\begin{aligned}
& N_{i}=L \frac{d L}{d t}+N_{c} \Rightarrow \frac{d i}{d t}=-\frac{1}{L} N_{c}+\frac{1}{2} N_{c} \\
& v_{c}=\frac{1}{c} \int_{0}^{t} 2 d \tau \Rightarrow \frac{d v_{c}}{d t}=\frac{1}{c} i \\
& \therefore\left[\begin{array}{c}
d i / d t \\
d v_{c} / d t
\end{array}\right]=\left[\begin{array}{cc}
0 & -\frac{1}{L} \\
\frac{1}{c} & 0
\end{array}\right]\left[\begin{array}{l}
1 / L \\
0
\end{array}\right]+\left[\begin{array}{c}
1 / L \\
0
\end{array}\right] N_{i} \Rightarrow \dot{x}=\left[\begin{array}{cc}
0 & -\frac{1}{L} \\
1 / c & 0
\end{array}\right] \underline{x}+\left[\begin{array}{c}
1 / \\
0
\end{array}\right] u \\
& v_{c}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
i \\
v_{c}
\end{array}\right], \quad \Rightarrow y=[0 \quad 1] x
\end{aligned}
$$

(b) Same state equation, with

$$
i=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
i \\
v_{c}
\end{array}\right] \quad \Rightarrow y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
$$

8.3 (a) Letting $x_{1}(t)=y(t)$:

$$
\begin{array}{rccc}
\dot{x_{1}} & = & -a x_{1}+b u \\
y & = & x_{1}
\end{array}
$$

(b) Letting $x_{1}(t)=y(t)$:

$$
\begin{array}{ccc}
\dot{x_{1}}= & & 2 x_{1}+4 u \\
y & = & x_{1}
\end{array}
$$

(c) Letting $x_{1}(t)=y(t)$ and $x_{2}(t)=\dot{y(t)}$:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
9
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

(d) Letting $x_{1}(t)=y(t)$ and $x_{2}(t)=y(t)$:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{6} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{2}{3}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

(e) First correct the typo $\left(3 y_{1}(t)\right.$ in first equation should be $\left.3 \dot{y}_{1}(t)\right)$.

Let $x_{1}(t)=y_{1}(t), x_{2}(t)=y_{2}(t)$, and $x_{3}(t)=\dot{y_{1}}(t)=\dot{x_{1}}(t)$:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-4 & -2 & 0 \\
-6 & 9 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & -4 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{aligned}
$$

(f) Letting $x_{1}(t)=y_{1}(t), x_{2}(t)=y_{2}(t)$, and $x_{3}(t)=\dot{y_{2}}(t)=\dot{x_{2}}(t)$:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -4 & 0 \\
0 & 0 & 1 \\
1 & -6 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{cc}
5 & -1 \\
0 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{aligned}
$$

8.4
(a) $H(s)=\frac{6}{s+4}$

(b)

$$
\begin{aligned}
& \dot{x}=-4 x+4 \\
& y=6 x
\end{aligned}
$$

(c) $\frac{d y}{d t}+4 y(t)=6 u(t)$

$\left[\begin{array}{l}\text { (b) } \\ \text { (c) }\end{array}\right.$

$$
\dot{\underline{x}}=\left[\begin{array}{ll}
0 & 1 \\
-1 & -3
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

$y=\left[\begin{array}{ll}0 & 50\end{array}\right] x$
(c) $\ddot{y}+3 \dot{y}+y=50 \dot{u}$

Continued \rightarrow
8.4, continued
(e)

$$
H(s)=\frac{20 s+160}{s^{3}+12 s^{2}+36 s+72}
$$

(a)

(b)

$$
\begin{aligned}
& \underline{\dot{x}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-72 & -36 & -12
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
160 & 20 & 0
\end{array}\right] \underline{x}
\end{aligned}
$$

(c) $\frac{d^{3} y}{d t^{3}}+12 \frac{d^{2} y}{d t^{2}}+36 \frac{d y}{d t}+72=20 \frac{d u t}{d t}+160 u(t)$
8.5. (a) $\dot{y}=-2 y+4 u$

$$
\text { (b) } \begin{aligned}
\dot{x} & =-2 x+u \\
y & =4 x
\end{aligned}
$$

$$
\text { (c) } \frac{Y(s)}{v(s)}=\frac{4}{s+2}
$$

(d)

$$
\begin{aligned}
& A=[-2] ; B=[1] ; C=[4] ; D=0 ; \\
& {[n, d]=\operatorname{sintf}(A, B, C, D), p \text { pause, }} \\
& A=[01 ;-128] ; B=[0 ; 1] ; C=[40 \quad 0] ; D=0 ; \\
& {[n, d]=\sin 2 \operatorname{tf}(A, B, C, D) ; \text { pause }} \\
& A=[0110 ; 001 ;-15-10-20] ; B=[0 ; 0 ; 1] ; C=\left[\begin{array}{lll}
50 & 0 & 0
\end{array}\right] ; D=0 ; \\
& {[n, d]=\operatorname{ss2tf}(A, B, C, D)}
\end{aligned}
$$

Continued \rightarrow
8.5, continued
(e)

$$
\ddot{y}(t)-10 \dot{y}(t)+24 y(t)=64 u(t)
$$

(a)

(b)

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-24 & 10
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
64 & 0
\end{array}\right] \underline{x}
\end{aligned}
$$

(c)

$$
H(s)=\frac{64}{s^{2}-10 s+24}
$$

(d)

$$
\begin{aligned}
& \gg A=[01 ;-2410] ; B=[0 ; 1] ; C=[640] ; D=0 ; \\
& \gg \text { [n d] }=\operatorname{ss2tf}(A, B, C, D)
\end{aligned}
$$

Continued \rightarrow
$8.5(f)$

$$
\ddot{y}(t)+4 \ddot{y}(t)+10 \dot{y}(t)+3 y(t)=10 u(t)
$$

(a)

(b)

$$
\begin{aligned}
& \dot{\dot{x}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & -10 & -4
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
10 & 0 & 0
\end{array}\right] \underline{x}
\end{aligned}
$$

(c)

$$
H(s)=\frac{10}{s^{3}+4 s^{2}+10 s+3}
$$

(d)

$$
\begin{aligned}
& \text { >> A=[0 } 10 \text { 0; } 0001 ;-3-10-4] ; B=[0 ; 0 ; 1] ; C=[1000] ; D=0 ; \\
& \gg \text { [n d] = ss2tf(A, B, C, D) }
\end{aligned}
$$

8.6. (a) $\dot{x}=-3 x+6 u$

$$
y=4 x
$$

(b)

$$
\begin{aligned}
& s I-A=s+3 \\
& H(s)=C(s I-A)^{-1} B=4 \frac{1}{s+3}(6)=\frac{24}{s+3}
\end{aligned}
$$

(c) $A=[-3] ; B=[6] ; C=[4] ; D=0$;
(a) $[n, d]=\operatorname{ss} 2 t f(A, B, C, D)$
(d)

8.7
(a)

$$
\begin{aligned}
\dot{x}_{1} & =-5 x_{1}+3 x_{2}+u \\
\dot{x}_{2} & =-6 x_{1}+x_{2}+2 u \\
\Rightarrow \quad \dot{\dot{x}} & =\left[\begin{array}{cc}
-5 & 3 \\
-6 & 1
\end{array}\right] \underline{x}+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
5 & 4
\end{array}\right] \underline{x}
\end{aligned}
$$

continued \rightarrow
8.7 (b)
(following example 8.10)
calculation of resolvant matix $(S I-A)^{-1}$:

$$
\begin{aligned}
s I-A & =\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
-5 & 3 \\
-6 & 1
\end{array}\right]=\left[\begin{array}{cc}
s+5 & -3 \\
+6 & s-1
\end{array}\right] \\
\operatorname{adj}(s I-A) & =\left[\begin{array}{cc}
s-1 & 3 \\
-6 & s+5
\end{array}\right] \\
\operatorname{det}(s I-A) & =(s+5)(s-1)-(-3)(6) \\
& =s^{2}+4 s+13 \\
(s I-A)^{-1} & =\left[\begin{array}{ll}
\frac{s-1}{s^{2}+4 s+13} & \frac{+3}{s^{2}+4 s+13} \\
\frac{-6}{s^{2}+4 s+13} & \frac{s+5}{s^{2}+4 s+13}
\end{array}\right] \\
H(s) & =C(s I-A)^{-1} B \\
& =\left[\begin{array}{ll}
5 & 4
\end{array}\right]\left[\begin{array}{ll}
\frac{s-1}{s^{2}+4 s+13} & \frac{3}{s^{2}+4 s+13} \\
\frac{-6}{s^{2}+4 s+13} & \frac{s+5}{s^{2}+4 s+13}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \left.=\left[\begin{array}{ll}
5 & 4
\end{array}\right]\left[\frac{s+5}{s^{2}+4 s+13}\right]=\frac{2 s+4}{\frac{s}{s^{2}+4 s+13}}\right]
\end{aligned}
$$

8.7(c)
$\gg A=[-53 ;-61] ; B=[1 ; 2] ; C=[54] ; D=0$
(d)

$$
\begin{gathered}
\text { (e) } \dot{x}_{1}=x_{2} \\
\Rightarrow \dot{x}_{2}=-13 x_{1}-4 x_{2}+u \\
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-13 & -4
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{ll}
41 & 13
\end{array}\right] \underline{x}
\end{gathered}
$$

Continued \rightarrow
$8.7(f)$

$$
\left.\left.\begin{array}{rl}
s I-A & =\left[\begin{array}{ll}
s & -1 \\
13 & s+4
\end{array}\right] \quad \operatorname{adj}(s I-A)=\left[\begin{array}{cc}
s+4 & 1 \\
-13 & s
\end{array}\right] \\
\operatorname{det}(s I-A)=s(s+4)+13=s^{2}+4 s+13 \\
(s I-A)^{-1} & =\left[\begin{array}{ll}
\frac{s+4}{s^{2}+4 s+13} & \frac{1}{s^{2}+4 s+13} \\
\frac{-13}{s^{2}+4 s+13} & \frac{s}{s^{2}+4 s+13}
\end{array}\right] \\
H(s)=C(s I-A)^{-1} B=[41 \\
& =[4113][s I-A)^{-1}[0 \\
1
\end{array}\right] \quad\left[\frac{1}{s^{2}+4 s+13}\right]=\frac{s 1+13 s}{s^{2}+4 s+13}\right]
$$

(g)
$\gg A=[01 ;-13-4] ; B=[0 ; 1] ; C=[4113] ; D=0$;
$\gg[n d]=\operatorname{ss2tf}(A, B, C, D)$;
8.8
(a)

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-5 x_{1}-2 x_{2}+m \\
& \dot{\dot{x}}=\left[\begin{array}{cc}
0 & 1 \\
-5 & -2
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] m \\
& \quad y=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \underline{x}
\end{aligned}
$$

(b)

$$
\left.\begin{array}{rl}
s I-A & =\left[\begin{array}{ll}
s & -1 \\
5 & s+2
\end{array}\right] \quad \operatorname{adj}(S I-A)=\left[\begin{array}{cc}
s+2 & 1 \\
-5 & s
\end{array}\right] \\
\operatorname{det}(s I-A) & =s(s+2)+5 \quad(s I-A)^{-1}=\left[\begin{array}{ll}
\frac{s+2}{s^{2}+2 s+5} & \frac{1}{s^{2}+2 s+5} \\
\frac{-5}{s^{2}+2 s+5} & \frac{s}{s^{2}+2 s+5}
\end{array}\right] \\
& =s^{2}+2 s+5
\end{array}\right] \begin{aligned}
H_{p}(s) & =C(s I-A)^{-1} B=\left[\begin{array}{ll}
3 & 4
\end{array}\right](s I-A)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{l}
\frac{1}{s^{2}+2 s+5} \\
\frac{s}{s^{2}+2 s+5}
\end{array}\right]=\frac{3+4 s}{s^{2}+2 s+5}
\end{aligned}
$$

(c) $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y(t)=4 \frac{d m}{d t}+3 m(t)$

Continued \rightarrow
8.8, continued
(d)

$$
\begin{aligned}
& \dot{x}_{3}=-3 x_{3}+e \\
& m(t)=4 x_{3}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& (s I-A)^{-1}=\frac{1}{s+3} \\
& H_{c}(s)=C(s I-A)^{-1} B=4 \cdot \frac{1}{s+3} \cdot 1=\frac{4}{s+3}
\end{aligned}
$$

(f)

$$
\frac{d m}{d t}+3 m(t)=4 e(t)
$$

(g)

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-5 & -2 & 4 \\
-3 & -4 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u} \\
& y=\left[\begin{array}{lll}
3 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

Continued \rightarrow
$8.8(h)$

$$
s I-A=\left[\begin{array}{ccc}
s & -1 & 0 \\
5 & s+2 & -4 \\
3 & 4 & s+3
\end{array}\right]
$$

It's easiest to find $(S I-A)^{-1}$ in MATLAB (or using a symbolic calculatre)

$$
\begin{aligned}
& >s=\operatorname{sym}\left(\text { 's' }^{\prime}\right) ; \\
& \gg \\
& \gg \\
& \gg \operatorname{inv}(M)
\end{aligned}
$$

>> syms s;
>> $M=[s-10 ; 5 s+2-4 ; 34 s+3]$;
$\gg \operatorname{inv}(\mathrm{M})$

$$
(s I-A)^{-1}=\left[\begin{array}{ccc}
s^{2}+5 s+22 & s+3 & 4 \\
-5 s-27 & s^{2}+3 s & 4 s \\
-3 s+14 & -4 s-3 & s^{2}+2 s+5
\end{array}\right] / s^{3}+5 s^{2}+27 s+27
$$

$$
\left.\begin{array}{rl}
H(s) & =C(s I-A)^{-1} B=\frac{12+16 s}{s^{3}+5 s^{2}+27 s+27} \\
C & =[34 \\
3 & 0
\end{array}\right] \quad \begin{aligned}
& B=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

(i) $\frac{d^{3} y}{d t^{3}}+\frac{5 d^{2} y}{d t^{2}}+27 \frac{d y}{d t}+27 y(t)=12 u(t)+16 \frac{d u}{d t}$
(j)

$$
\begin{aligned}
& \text { >> A=[0 } 10 ;-5-2 \text { 4; -3 -4 -3]; B=[0; 0; 1]; C=[3 } 40 \text { 0]; D=0; } \\
& \gg \text { [n d] = ss2tf(A, B, C, D) }
\end{aligned}
$$

(k)

$$
\begin{aligned}
& H_{c}(s)=\frac{4}{s+3} \quad H_{p}(s)=\frac{3+4 s}{s^{2}+2 s+5} \\
& H_{c}(s) H_{p}(s)=\frac{12+16 s}{s^{2}+5 s^{2}+11 s+15} \\
& H(s)=\frac{H_{c}(s) H p(s)}{1+H_{c}(s) H p(s)}=\frac{12+16 s}{\left(1+\frac{12+16 s}{s^{3}+5 s+11 s+15}\right)\left(s^{3}+5 s^{2}+11 s+15\right)} \\
&=\frac{12+16 s}{s^{3}+5 s^{2}+27 s+27}
\end{aligned}
$$

8.9
parts $(a)-(c)$ are the same as 8.8 :
(a):

$$
\begin{aligned}
& \underline{\dot{x}}=\left[\begin{array}{cc}
0 & 1 \\
-5 & -2
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] m \\
& y=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \underline{x}
\end{aligned}
$$

(b)

$$
\begin{aligned}
s I-A & =\left[\begin{array}{cc}
s & -1 \\
5 & s+2
\end{array}\right] \\
(s I-A)^{-1} & =\left[\begin{array}{cc}
s+2 & 1 \\
-5 & s
\end{array}\right] /\left(s^{2}+2 s+5\right) \\
H \rho(s) & =\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{cc}
\frac{s+2}{s^{2}+2 s+5} & \frac{1}{s^{2}+2 s+5} \\
\frac{-5}{s^{2}+2 s+5} & \frac{s}{s^{2}+2 s+5}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{3+4 s}{s^{2}+2 s+5}
\end{aligned}
$$

(c)

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y(t)=4 \frac{d m}{d t}+3 m(t)
$$

(d) $m=2 e$
(e) $\quad H_{c}(s)=2$
(f) $m(t)=2 e(t)$
8.9, continued
8.9

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =2(-1)(4) x_{2}+2(-1)(3) x_{1}+(-5) x_{1}+(-2) x_{2}+2 u \\
& =-11 x_{1}+-10 x_{2}+2 u \\
\dot{\dot{x}} & =\left[\begin{array}{cc}
0 & 1 \\
-11 & -10
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
2
\end{array}\right] u \\
y(t) & =\left[\begin{array}{ll}
3 & 4
\end{array}\right] \underline{x}
\end{aligned}
$$

(h)

$$
\begin{aligned}
s I-A & =\left[\begin{array}{ll}
s & -1 \\
11 & s+10
\end{array}\right] \quad \operatorname{adj}(s I-A)=\left[\begin{array}{cc}
s+10 & 1 \\
-11 & s
\end{array}\right] \\
\operatorname{det}(s I-A) & =s(s+10)+11=s^{2}+10 s+11 \\
(s I-A)^{-1} & =\left[\begin{array}{cc}
s+10 & 1 \\
-11 & s
\end{array}\right] /\left(s^{2}+10 s+11\right) \\
H(s) & =c(s I-A)^{-1} B=\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{ll}
\frac{s+10}{s^{2}+10 s+11} & \frac{1}{s^{2}+10 s+11} \\
\frac{-11}{s^{2}+10 s+11} & \frac{s}{s^{2}+10 s+11}
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{l}
\frac{2}{s^{2}+10 s+11} \\
\frac{2 s}{s^{2}+10 s+11}
\end{array}\right]=\frac{6+8 s}{s^{2}+10 s+11}
\end{aligned}
$$

(i) $\frac{d^{2} y}{d t^{2}}+10 \frac{d y}{d t}+11 y(t)=6 u(t)+8 \frac{d u}{d t}$

$$
\begin{aligned}
& \text { (j) } \gg A=[01 ;-11-10] ; B=[0 ; 2] ; C=[34] ; D=0 ; \\
& \gg[n d]=\operatorname{ss2tf}(A, B, C, D) ; \\
& (k) \frac{H_{c}(s) H p(s)}{1+H_{c}(s) H p(s)}=\frac{6+8 s}{\left(1+\frac{6+8 s}{s^{2}+2 s+5}\right)\left(s^{2}+2 s+5\right)}=\frac{6+8 s}{s^{2}+10 s+11}
\end{aligned}
$$

8.10. (a)

(b)

$$
\begin{aligned}
|s I-A|= & \left.\begin{array}{cc}
s+4 & -5 \\
0 & s-1
\end{array} \right\rvert\,=s^{2}+3 s-4 \\
H(s) & =C\left(s I-\left.A\right|^{-1} B+D=\frac{1}{|s I-A|}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
s-1 & 5 \\
0 & s+4
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]+2\right. \\
& =\frac{1}{|s I-A|}\left[\begin{array}{cc}
11 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
s+4
\end{array}\right]+2=\frac{s+9}{s^{2}+3 s-4}+2=\frac{2 s^{2}+7 s+1}{s^{2}+3 s-4}
\end{aligned}
$$

(C) $A=[01 ;-4-5] ; B=[0 ; 1] ; C=\left[\begin{array}{ll}103 & 23\end{array}\right] ; D=0$;

$$
\text { (e) } \begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
0 & 1 \\
4 & -3
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u ;|s I-A|=\left|\begin{array}{cc}
s & -1 \\
-4 & s+3
\end{array}\right|=s^{2}+3 s-4 \\
y & =\left[\begin{array}{cc}
9 & 1
\end{array}\right] \underline{x} \\
(f) H(s) & =\frac{1}{|s I-A|}\left[\begin{array}{ll}
9 & 1
\end{array}\right]\left[\begin{array}{cc}
s+3 & 1 \\
4 & s
\end{array}\right]\left[\begin{array}{c}
0 \\
1
\end{array}\right]+2=\frac{1}{|s I-A|}\left[\begin{array}{ll}
9 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
s
\end{array}\right]+2 \\
& =\frac{s+9}{s^{2}+3 s-4}+2=\frac{2 s^{2}+7 s+1}{s^{2}+3 s-4}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \gg A=[01 ; 4-3] ; B=[0 ; 1] ; C=\left[\begin{array}{ll}
9 & 1] ; D=0 ; \\
\gg & {[n d]=\operatorname{ss2tf}(A, B, C, D)}
\end{array}\right.
\end{aligned}
$$

$8.10(h) \quad \dot{x}(t)=-2 x(t)+4 u(t)$
(a)

$$
\begin{aligned}
& s X(s)=-2 X(s)+4 u(s) \\
& Y(s)=X(s) \\
& (s+2) X(s)=4 u(s) \\
& X(s)=\frac{4}{s+2} u(s) \Rightarrow Y(s)=\frac{4}{s+2} u(s) \\
& H(s)=\frac{4}{s+2}
\end{aligned}
$$

ar $A=-2 \Rightarrow S I-A=S+2$

$$
B=4, \quad C=1, \quad D=0
$$

(b) $\frac{Y(s)}{U(S)}=C[S I-A]^{-1} B+D=1(S+2)^{-1} \times 4=\frac{4}{s+2}$
(c)
>> A=-2; B=4; C=1; D=0;
$\gg[\mathrm{nd} \mathrm{d}]=\operatorname{ss2tf}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
(d) let $P=9, P^{-1}=1 / 9=Q$

$$
\begin{aligned}
v(t)=Q x(t) & =1 / 9 x(t) \\
(8.60) \quad \dot{v}(t) & =P^{-1} A P v(t)+P^{-1} B u(t) \\
y(t) & =\operatorname{CPv}(t)+\operatorname{Du}(t) \\
\therefore \underline{v}(t) & =\frac{1}{9}(-2) 9 v(t)+(1 / 9)(4) u(t) \\
y(t) & =(1)(9) v(t)
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \dot{v}(t)=-2 v(t)+4 / 9 u(t) \\
& y(t)=9 v(t)
\end{aligned}
$$

(f)

$$
\begin{aligned}
& A_{v}=-2, B_{v}=4 / 9, C_{v}=9, D_{v}=0 \\
& \frac{Y(s)}{U(S)}=C_{v}\left(S I-A_{v}\right)^{-1} B_{v}+D_{v} \\
& =\frac{9 \times 4 / 9}{s+2}=\frac{4}{s+2}
\end{aligned}
$$

(a)

(b)

$$
\begin{aligned}
H(s) & =C[S I-A]^{-1} B+D \\
& =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s & -1 \\
-1 & -1 & s+1
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& =\frac{2\left(s^{2}+s-1\right)}{s^{3}+s^{2}-s-1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \gg[n d]=s s 2 t(A, B, C, D)
\end{aligned}
$$

(d)

(e)

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right] \underline{x}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
2 & 0 & 0
\end{array}\right] \underline{x}
\end{aligned}
$$

(f)

$$
\begin{aligned}
H(S) & =C[S I-A]^{-1} B+D \\
& =\left[\begin{array}{lll}
2 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
5 & 0 & -1 \\
-1 & 5 & -1 \\
0 & -1 & S+1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
H(S) & =\frac{2\left(S^{2}+S-1\right)}{S^{3}+S^{2}-S-1}
\end{aligned}
$$

8.11. (a) From Problem 8.1

$$
\dot{x}=-\frac{R}{L} x+\frac{R}{L} u
$$

$$
y=x
$$

$$
\begin{aligned}
(b) H(s) & =C(S I-A)^{-1} B=(1)\left(\frac{1}{s+R / L}\right)\left(\frac{R}{L}\right) \\
& =\frac{R / L}{s+R / L}
\end{aligned}
$$

(c) $\frac{V_{R}(S)}{V_{i}(S)}=\frac{R}{S L+R}=\frac{R / L}{S+R / L}=H(s)$
8.12. (a) From Prob 8.1: $\quad \dot{x}=-\frac{R}{L} x+\frac{1}{L} u$

$$
y=R x
$$

(b) $H(S)=C(S I-A)^{\prime} B=R\left(\frac{1}{S+R / L}\right) \frac{1}{L}=\frac{R / L}{S+R / L}$
(c) $\frac{V_{R}(s)}{V_{i}(s)}=\frac{R}{s L+R}=\frac{R / L}{s+R / L}$
8.13. (a) See problem8.2.
(b)
8.14, (a) See Problem8.2.
(b) From Problem 8.13(b)

$$
\begin{aligned}
H(S) & =\frac{1}{|s I-A|}\left[\begin{array}{ll}
1 & \Delta
\end{array}\right]\left[\begin{array}{cc}
s & -\frac{t}{1} / 2 \\
s
\end{array}\right]\left[\begin{array}{l}
1 / \\
0
\end{array}\right]=\frac{1}{|s I-A|}\left[\begin{array}{ll}
s & -\frac{1}{L}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] \\
& =\frac{\frac{1}{L} s}{s^{2}+\frac{1}{L C}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& Z(s)=L s+\frac{1}{c s} \\
& \frac{I(s)}{V_{i}(s)}=\frac{1}{z^{2} s}=\frac{1}{L s+\frac{1}{c s}}=\frac{c s}{2 c s^{2}+1}=\frac{1}{2} \frac{s}{s^{2}+\frac{1}{2 c}}
\end{aligned}
$$

$$
\begin{aligned}
& |S I-A|=\left|\begin{array}{cc}
S & \frac{1}{L} \\
-\frac{1}{C} & S
\end{array}\right|=S^{2}+\frac{1}{L C} \\
& H(s)=C(s I-A)^{-1} B=\frac{1}{|S I-f| \mid}[\Delta \quad 1]\left[\begin{array}{cc}
s & -\frac{1}{L} \\
\frac{1}{C} & s
\end{array}\right]\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right]=\frac{1}{|S I-A|}\left[\begin{array}{cc}
\frac{1}{c} & \left.s]\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right], ~\right]
\end{array}\right. \\
& =\frac{\frac{1}{L C}}{s^{2}+\frac{1}{L C}} \\
& \text { (C) } H(S)=\frac{\frac{1}{S C}}{S L+\frac{1}{S C}}=\frac{1}{S^{2} L C+1}=\frac{\frac{1}{L C}}{S^{2}+\frac{1}{L C}}
\end{aligned}
$$

8.15. (4)

$$
\begin{aligned}
& \dot{x}=-3 x+6 u \\
& y=4 x
\end{aligned}
$$

(b) $\dot{\Phi}(s)=(s I-A)^{-1}=\frac{1}{s+3} ; \Phi(t)=e^{-3 t}$
(c) $y_{c}(t)=C \Phi(t) x(0)=8 e^{-3 t}, t>0$
(d)

$$
\begin{aligned}
& X(s)=\Phi(s) B V(s)=\frac{1}{s+3} \cdot 6 \cdot \frac{1}{3}=\frac{6}{5(s+3)}=\frac{2}{5}+\frac{-2}{5+3} \\
& \therefore X(t)=2\left(1-e^{-3 t}\right), t>0 \Rightarrow y_{p}(t)=4 x(t)=8\left(1-e^{-3 t}\right), t>0
\end{aligned}
$$

(e) From Problem $8.6, H(s)=\frac{24}{5+3}$

$$
\begin{aligned}
& \therefore Y_{p}(s)=H(s) \cdot \frac{1}{5}=\frac{24}{s(s+3)}=\frac{8}{3}-\frac{8}{5+3} \Rightarrow y_{\rho}(t)=8\left(1-e^{-3 t}\right), t>0 \\
& \text { (f) } y(t)=y_{c}(t)+y_{p}(t)=8 e^{-3 t}+8-8 e^{-3 t}=8, t>0
\end{aligned}
$$

8.16
(a) [same as 8.7(a)]

$$
\begin{aligned}
& \dot{x}_{1}=-5 x_{1}+3 x_{2}+u \\
& \dot{x}_{2}=-6 x_{1}+x_{2}+2 u \\
& \Rightarrow \quad \dot{\dot{x}_{2}}
\end{aligned}=\left[\begin{array}{ll}
-5 & 3 \\
-6 & 1
\end{array}\right] \underline{x}+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u \text {. }
$$

(b) $\Phi(s)=(S I-A)^{-1}$ was found in $8.7(b)$:

$$
\begin{aligned}
\Phi(s)= & {\left[\begin{array}{ll}
\frac{s-1}{s^{2}+4 s+13} & \frac{3}{s^{2}+4 s+13} \\
\frac{-6}{s^{2}+4 s+13} & \frac{s+5}{s^{2}+4 s+13}
\end{array}\right] } \\
& =\left[\begin{array}{ll}
\frac{0.5+0.5 j}{s+2-3 j}+\frac{0.5-0.5 j}{s+2+3 j} & \frac{-0.5 j}{s+2-3 j}+\frac{0.5 j}{s+2+3 j} \\
\frac{j}{s+2-3 j}+\frac{-j}{s+2+3 j} & \frac{0.5-0.5 j}{s+2-3 j}+\frac{0.5+0.5 j}{s+2+3 j}
\end{array}\right] \\
\Phi(t)=\mathcal{L}^{-1}[\Phi(s)] & =\left[\begin{array}{ll}
-2 t[\cos (3 t)-\sin (3 t)] & e^{-2 t} \sin (3 t) \\
-2 e^{-2 t} \sin (3 t) & e^{-2 t}[\cos (3 t+\sin (3 t)]
\end{array}\right]
\end{aligned}
$$

8.16 (c)

$$
\begin{aligned}
& U(t)=0 \\
& \underline{X}(0)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\top} \\
& \underline{X}(s)=\Phi(s) \cdot \underline{X}(0)+\Phi(s) \cdot \underline{B} \cdot U(s)
\end{aligned}
$$

$$
\text { From (b), } \Phi(s)=\left[\begin{array}{ll}
\frac{s-1}{s^{2}+4 s+13} & \frac{3}{s^{2}+4 s+13} \\
\frac{-6}{s^{2}+4 s+13} & \frac{s+5}{s^{2}+4 s+13}
\end{array}\right]
$$

$$
X(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], U(s)=0 \text { since } U(t)=0
$$

$$
\underline{x}(s)=\left[\begin{array}{ll}
\frac{s-1}{s^{2}+4 s+13} & \frac{3}{s^{2}+4 s+13} \\
\frac{-6}{s^{2}+4 s+13} & \frac{s+5}{s^{2}+4 s+13}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{s-1}{s^{2}+4 s+13} \\
\frac{-6}{s^{2}+4 s+13}
\end{array}\right]
$$

$$
\underline{x}(t)=\mathcal{L}^{-1}[\underline{x}(s)]=\left[\begin{array}{l}
e^{-2 t}[\cos (3 t)-\sin (3 t)] \\
-2 e^{-2 t} \sin (3 t)
\end{array}\right]
$$

(from the state trans. matrix $\mathcal{L}^{-1}[\Phi(s)]$ found in $8.16(b)$)

$$
\begin{aligned}
y_{c}(t)=C \cdot \underline{x}(t) & =\left[\begin{array}{ll}
5 & 4
\end{array}\right]\left[\begin{array}{l}
e^{-2 t}[\cos (3 t)-\sin (3 t) \\
-2 e^{-2 t} \sin (3 t)
\end{array}\right] \\
& =5 e^{-2 t} \cos (3 t)-13 e^{-2 t} \sin (3 t), t>0
\end{aligned}
$$

8.16
(d)

$$
\left.\begin{array}{rl}
(d) \quad \underline{x}(s) & =\Phi(s) \cdot B \cdot u(s)=\Phi(s) \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot \frac{1}{s} \\
& =\left[\begin{array}{l}
\frac{s+5}{s\left(s^{2}+4 s+13\right)} \\
\left.\frac{2 s+4}{s\left(s^{2}+4 s+13\right)}\right] \\
\underline{x}(t)
\end{array}\right] \\
\frac{5}{13}-\frac{5}{13} e^{-2 t} \cos (3 t)+\frac{1}{13} e^{-2 t} \sin (3 t) \\
-\frac{4}{13} e^{-2 t} \cos (3 t)+\frac{6}{13} e^{-2 t} \sin (3 t)+\frac{4}{13}
\end{array}\right]
$$

$$
\begin{aligned}
y_{p}(t) & =C \cdot \underline{x}(t)=\left[\begin{array}{ll}
5 & 4
\end{array}\right] \underline{x}(t) \\
& =\frac{41}{13}-\frac{41}{13} e^{-2 t} \cos (3 t)+\frac{29}{13} e^{-2 t} \sin (3 t), t>0
\end{aligned}
$$

8.16 (e)

From $8.7(b), H(s)=\frac{13 s+41}{s^{2}+4 s+13}$

$$
\begin{aligned}
& X(s)=\mathcal{L}[u(t)]=\frac{1}{s} ; \\
& Y(s)=H(s) \cdot \frac{1}{s}=\frac{13 s+41}{s\left(s^{2}+4 s+13\right)} \\
& y_{p}(t)=\mathcal{L}^{-1}[Y(s)]=\frac{41}{13}-\frac{41}{13} e^{-2 t} \cos (3 t)+\frac{29}{13} e^{-2 t} \sin (3 t) \\
& t>0
\end{aligned}
$$

(Note: this could be done in MATLAB using:
\gg sums s i;

$$
\begin{aligned}
& >\text { syms } s t ; \\
& \left.>\text { ilaplace }\left((13 * s+41) /\left(s *\left(s^{\wedge} 2+4 * s+13\right)\right)\right)\right)
\end{aligned}
$$

(f) $y(t)=y_{c}(t)+y_{p}(t)$, where $y_{c}(t)$ was found in part (c) and $y_{p}(t)$ was found in part (d)

$$
\begin{aligned}
y(t)= & 5 e^{-2 t} \cos (3 t)-13 e^{-2 t} \sin (3 t)+\frac{41}{13}-\frac{41}{13} e^{-2 t} \cos (3 t) \\
& +\frac{29}{13} e^{-2 t} \sin (3 t), t>0 \\
= & \frac{41}{13}+\frac{24}{13} e^{-2 t} \cos (3 t)-\frac{140}{13} e^{-2 t} \sin (3 t), t>0
\end{aligned}
$$

8.17. La) From Problem 8.10,

$$
\begin{aligned}
& \Phi(s)=(s I-A)^{-1}=\left[\begin{array}{cc}
\frac{s-1}{(s-1)(s+4)} & \frac{5}{(s-1)(s+4)} \\
0 & \frac{s+4}{(s-1)(s+4)}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{s+4} & \frac{1}{s+1}+\frac{-1}{s+4} \\
0 & \frac{1}{s-1}
\end{array}\right] \\
& \therefore \Phi(t)=\left[\begin{array}{ll}
e^{-4 t} & e^{t}-e^{-4 t} \\
0 & e^{t}
\end{array}\right] \\
& x(t)=\Phi(t) x(0)=\Phi(t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
e^{-4 t} \\
0
\end{array}\right] \\
& \therefore y_{c}(t)=C \underline{x}(t)=\left[\begin{array}{ll}
1 & 1] \underline{x}(t)=e^{-4 t}, t>0
\end{array}\right.
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \therefore y_{c}(t)=C \underline{x}(t)=\left[\begin{array}{ll}
1 & 1] \underline{x}(t)=e^{-4 t}, t>0
\end{array}\right. \\
& \Phi(t) B U(s)=\Phi(s)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \frac{1}{3}=\left[\begin{array}{c}
\frac{5}{5(s-1)(s+4)} \\
\frac{1}{3(s-1)}
\end{array}\right]=\left[\begin{array}{l}
\frac{-54}{5}+\frac{1}{5-1}+\frac{1 / 4}{3+4} \\
-\frac{1}{3}+\frac{1}{3-1}
\end{array}\right] \\
& \therefore \underline{x}(t)=\left[\begin{array}{c}
-\frac{5}{4}+e^{t}+\frac{1}{4} e^{-4 t} \\
-1+e^{t}
\end{array}\right] \\
& y(t)=[1 \quad 1] x(t)+2=-\frac{9}{4}+2 e^{t}+\frac{1}{4} e^{-4 t}+2 \\
& =-\frac{1}{4}+2 e^{t}+\frac{1}{4} e^{-4 t}, t>0
\end{aligned}
$$

(c) From Problem 8.10,

$$
\begin{aligned}
& Y_{p}(s)=H(s) \cdot \frac{1}{5}=\frac{2 s^{2}+7 s+1}{s(s-1)(s+4)}=\frac{-1 / 4}{5}+\frac{10 / 5}{s-1}+\frac{1 / 4}{s+4} \\
& \therefore y_{p}(t)=-\frac{1}{4}+2 e^{t}+\frac{1}{4} e^{-4 t}, t>0
\end{aligned}
$$

(d) $\ddot{y}+3 \dot{y}-4 y=2 \dot{u}+7 \dot{u}+1$
(e) $\dot{u}=i \dot{i}=0, \dot{y}=2 e^{t}-e^{-4 t}$

$$
\begin{aligned}
& \therefore\left(2 e^{x}+4 e^{-4 t}\right)+\left(6 e^{t}-3 e^{-4 t}\right)-\left(-1+8 e^{t}+e^{-4 t}\right)=1 \\
& \therefore 1=1
\end{aligned}
$$

(f)

$$
\begin{aligned}
& y(t)=y_{c}(t)+y_{p}(t)=-\frac{1}{4}+2 e^{t}+5 / 4 e^{-4 t}, t>0 \\
& y(0)=c x(0)+2 u(0)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2=3^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8.18. }(S I-A)=\left[\begin{array}{cc}
5 & -1 \\
0 & 5
\end{array}\right],|s I-A|=S^{2} \\
& \Phi(s)=(s I-A)^{-1}=\left[\begin{array}{cc}
1 / 5 & 1 / s^{2} \\
0 & 1 / s
\end{array}\right] \Rightarrow \Phi(t)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8.19.(a) }(s I-A)=\left[\begin{array}{cc}
5 & 0 \\
-1 & 5
\end{array}\right],|s I-A|=s^{2} \\
& \Phi(s)=(s I-A)^{-1}=\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
\frac{1}{s^{2}} & \frac{1}{s}
\end{array}\right] \Rightarrow \Phi(t)=\left[\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right]
\end{aligned}
$$

(b) $\Phi(t)=I+A t ;$ since $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & \Delta\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

$$
\therefore \Phi(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
t & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right]
$$

(c)

$$
\begin{aligned}
& \underline{x}(t)=\Phi(t) x(0)=\left[\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
2+t
\end{array}\right] \\
& y(t)=C \underline{x}(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
2+t
\end{array}\right]=\frac{2+t}{2}, t>0
\end{aligned}
$$

(d) $\dot{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]=A \underline{x}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}1 \\ 2+t\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\text { (e) } \begin{aligned}
& \underline{X}(s)=\Phi(s) B U(s)=\Phi(s)\left[\begin{array}{l}
1 \\
1
\end{array}\right] \frac{1}{s}=\left[\begin{array}{cc}
\frac{1}{s^{2}} & \\
\frac{1}{s^{2}}+\frac{1}{3^{3}}
\end{array}\right] \\
& \therefore x(t)=\left[\begin{array}{c}
t \\
t+t^{2} / 2
\end{array}\right] \Rightarrow y(t)=C \underline{x}(t)=\left[\begin{array}{cc}
0 & 1
\end{array}\right] \underline{x}(t)=t+\frac{t^{2}}{2}, t>0
\end{aligned}
$$

(f)

$$
\begin{aligned}
& H(s)=C(s I-A)^{-1} B=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{s} & 0 \\
\frac{1}{s^{2}} & \frac{1}{s}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{s^{2}} & \frac{1}{s}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& H(s)=\frac{1}{5}+\frac{1}{s^{2}} \\
& Y(s)=H(s) U(s)=\frac{1}{s^{2}}+\frac{1}{s^{3}}=>y(t)=t+\frac{t^{2}}{2}, t>0 \\
& y_{t}(t)=2+2 t+\frac{t^{2}}{2}, t>0
\end{aligned}
$$

8.20

$$
\begin{gathered}
\dot{x}(t)=-4 x(t)+8 u(t) \\
y(t)=2 x(t) \\
A=-4, B=8, C=2
\end{gathered}
$$

(a)

$$
\begin{aligned}
& \Phi(S)=[S I-A]^{-1}, \quad[S I-A]=S+4 \\
& \therefore \Phi(S)=\frac{1}{S+4}, \phi(t)=\delta^{-1}\{\Phi(S)\}=e^{-4 t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\phi(t) & =1+(-4) t+(-4)^{2} \frac{t^{2}}{2!}+(-4)^{3} \frac{t^{3}}{3!} \\
& =e^{-4 t} \text { from }(8,37)
\end{aligned}
$$

(c)

$$
\begin{aligned}
x(t) & =\phi(t) x(0) \\
\therefore x(t) & =\phi(t)=e^{-4 t} \\
y(t) & =2 x(t)=2 e^{-4 t}
\end{aligned}
$$

(d) $\dot{x}(t)=-4 x(t)$
for $x(t)=e^{-4 t}, \frac{d x(t)}{d t}=-4 e^{-4 t}=A x(t)$
(e)

$$
\begin{aligned}
& x(s)=\Phi(s) x(0)+\Phi(s) B U(s) \quad(8,28) \\
& x(0)=0, \therefore x(s)=\Phi(s) B u(s)
\end{aligned}
$$

for $u(t)=$ unitstep function, $U(s)=1 / s$

$$
\begin{aligned}
& D(s)=\delta\{\phi(t)\}=\frac{1}{s+4} \\
& x(s)=\frac{8}{s(s+4)}=\frac{2}{s}-\frac{2}{s+4} \\
& x(t)=\left(2-2 e^{-4 t}\right) u(t) \\
& y(t)=2 x(t)=4\left(1-e^{-4 t}\right) u(t)
\end{aligned}
$$

(f)

$$
\begin{aligned}
& H(s)=c[s I-A]^{-1} B+D=2\left[\frac{1}{s+4}\right] 8 \\
& H(s)=\frac{16}{s+4} \\
& y(s)=\frac{1}{s} H(s)=\frac{16}{s(s+4)}=\frac{4}{s}-\frac{4}{s+4} \\
& y(t)=4\left(1-e^{-4 t}\right) u(t)
\end{aligned}
$$

8.21. (a) From Problem 8.10(b), $H(s)=\frac{2 s^{2}+2 s+1}{s^{2}+3 s-4}$
(b) $\operatorname{Let} Q=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right], \therefore P=Q^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$

$$
\begin{aligned}
A_{v} & =P^{-1} A P=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-4 & 5 \\
0 & 1
\end{array}\right] P=\left[\begin{array}{cc}
-8 & 1 \\
-4 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
-19 & 30 \\
-10 & 16
\end{array}\right] \\
B_{v} & =P^{-1} B=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 \\
1
\end{array}\right] \\
C_{v} & =C P=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] ; D_{v}=D=2 \\
\therefore \underline{v} & =\left[\begin{array}{cc}
-19 & 30 \\
-10 & 16
\end{array}\right] v+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] v+2 u
\end{aligned}
$$

(C)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
-4 & 5 ; 0 \\
P=\operatorname{inv}(Q) ;
\end{array}\right] ; B=[0 ; 1] ; C=\left[\begin{array}{ll}
11
\end{array}\right] ; D=2 ; Q=\left[\begin{array}{ll}
21 ; 11
\end{array}\right] ; \\
& A v=Q * A * P \\
& B v=Q * B \\
& C v=C * P \\
& D v=D
\end{aligned}
$$

pause
$[\mathrm{n}, \mathrm{d}]=\mathrm{ss} 2 \mathrm{tE}(\mathrm{Av}, \mathrm{Bv}, \mathrm{Cv}, \mathrm{Dv})$
(d) $\left|s I-A_{N}\right|=\left|\begin{array}{cc}s+19 & -30 \\ 10 & s-16\end{array}\right|=s^{2}+3 s-304+200=s^{2}+3 s-4^{2}$

$$
\begin{aligned}
& \quad C_{v}\left(s I-A_{N} \Gamma^{\prime} B_{N}=\left[\begin{array}{ll}
\Delta & 1
\end{array}\right] \frac{1}{1 s I-R_{w}} \left\lvert\,\left[\begin{array}{cc}
s-16 & 3 \Delta \\
-10 & s+19
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right.\right. \\
& \quad=\frac{1}{\left|s I-A_{N}\right|}\left[\begin{array}{ll}
-10 & s+19
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{s+9}{s^{2}+3 s-4} \\
& \therefore H(s)=\frac{s+9}{s^{2}+3 s-4}+2=\frac{2 s^{2}+7 s+1}{s^{2}+3 s-4}
\end{aligned}
$$

(e) See (c)
(f)

$$
\begin{aligned}
& |s I-A|=\left|s I-A_{w}\right|=s^{2}+3 s-4^{2}=(s-1)(s+4)=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \\
& |A|=-4 ;\left|A_{w}\right|=-304+300=-4=\lambda_{1} \lambda_{2}=(1)(-4)=-4^{2}
\end{aligned}
$$

$$
\text { tr } A=-4+1=-3 ; \text { tr } A_{w}=-19+16=-3^{2}=\lambda_{1}+\lambda_{2}=1-4=-3
$$

$$
\begin{gathered}
8.22 \dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-5 & -4
\end{array}\right] \underline{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{cc}
2 & 0
\end{array}\right] x(t)
\end{gathered}
$$

$$
\text { (a) } \begin{aligned}
H(s) & =C(S I-A]^{-1} B+D=\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{ll}
s & -1 \\
5 & s+4
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
H(s) & =\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{cc}
s+4 & 1 \\
-5 & 5
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
s
\end{array}\right] \\
s^{2}+4 s+5 & \frac{2}{s^{2}+4 s+5}
\end{aligned}
$$

Note: part (b) can be different for each student; parts (c)-(f) are self-checking.

$$
\begin{gathered}
8.23(a) \dot{x}(t)=-4 x(t)+8 u(t) \\
y(t)=2 x(t) \\
A=-4, B=8, C=2, D=0 \\
H(S)=C[S I-A]^{-1} B+D=2\left[\frac{1}{S+4}\right] \dot{8} \\
H(S)=\frac{16}{S+4}
\end{gathered}
$$

Note: part (b) can be different for each student; parts (c)-(g) are self-checking.
8.24
(a) From 8.10(i), $H(s)=\frac{2\left(s^{2}+s-1\right)}{s^{3}+s^{2}-s-1}$
(b)

$$
\text { b) } \left.\left.\begin{array}{rl}
P & =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad P^{-1}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \\
A_{v} & =P^{-1} A P=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] .\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] .
$$

(c), (f)

$$
\begin{aligned}
& \gg A=\left[\begin{array}{llllllll}
0 & 1 & 0 ; & 0 & 0 & 1 ; & 1 & 1 \\
-1
\end{array}\right] ; B=[2 ; 0 ; 0] ; C=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] ; D=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& \gg \mathrm{Q}=\mathrm{inv}(\mathrm{P}) \\
& \gg \mathrm{Av}=\mathrm{Q} * \mathrm{~A} * \mathrm{P} \\
& \gg B v=Q^{*} B \\
& \gg \mathrm{Cv}=\mathrm{C} \text { * } \\
& \gg \mathrm{Dv}=\mathrm{D} \\
& \gg[\mathrm{nd}]=\operatorname{ss2tf(Av,~Bv,~Cv,~Dv)~}
\end{aligned}
$$

(d) Show that $\mathrm{H}(\mathrm{s})=\mathrm{C}_{\mathrm{v}}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{~B}_{\mathrm{v}}$ gives the same result as in part (a)
8.25.

$$
\begin{aligned}
& C_{v}\left(S I-A_{v}\right)^{-1} B_{v}+D_{V}=C P\left(S I-P^{-1} A P\right)^{-1} P P^{-1} B \\
& =C P\left(S P^{-1} I P-P^{-1} A P\right)^{-1} P^{-1} B=C P\left(P^{-1}(S I-A) P\right)^{-1} P^{-1} B \\
& =C P P^{-1}(S I-A)^{-1} P P^{-1} B=C(S I-A) B, \sin c e(A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

8.26
(a) $A=\left[\begin{array}{cc}-4 & 5 \\ 0 & 1\end{array}\right] \quad|s I-A|=\left|\begin{array}{cc}s+4 & -5 \\ 0 & s-1\end{array}\right|=(s+4)(s-1)$
roots: $-4,1$
not stable since root $1>0$
(b) $e^{-4 t}, e^{t}$
(c) $\gg A=[-45 ; 01]$; eig(A)
8.27 from Problem 8.22
(a) $C E=s^{2}+4 s+5=0=(s+2-j 1)(s+2+j 1)$

Eigenvalues: $S_{1}=-2+j_{1}, S_{2}=-2-j 1$

$$
\operatorname{Re}\left\{S_{1}\right\}<0, \operatorname{Re}\left\{S_{2}\right\}<0
$$

\therefore System is stable
(b) System modes

$$
\begin{aligned}
& \text { System modes } \\
& e^{-2+j 1) t}=e^{-2 t} e^{j t} \text { and } e^{(-2-y) t}=e^{-\lambda t} e^{-\gamma t}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \gg A=[01 ;-5-4] ; \\
& \gg \operatorname{eig}(A)
\end{aligned}
$$

8.28
(a) $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]$
$|s I-A|=\left|\begin{array}{ccc}s & -1 & 0 \\ 0 & s & -1 \\ -1 & -1 & s+1\end{array}\right|=s^{3}+s^{2}-s-1$ rook: $1,-1,-1$
(b) $e^{+}, e^{-t},+e^{-t}$ not stable
(c) $\gg A=\left[\begin{array}{lllllllll}0 & 1 & 0 ; & 0 & 0 & 1 ; & 1 & 1 & -1\end{array}\right]$; $\gg \operatorname{eig}(\mathrm{A})$

CHAPTER 9 solutions

$9.1 x_{1}[n], x_{2}[n]$ and $x_{4}[n]$ (parts (a), (b), and (d)) are all equal to the constant signal $x[n]=1$ for all n. The one that is different is $x_{3}[n]$ (part (c)) which is equivalent to the signal

$$
\begin{aligned}
x[n] & =1, n \neq 0 \\
& =2, n=0
\end{aligned}
$$

9.2

(a)

$9.2 \quad$ (c)

9.3 (a)

$2-3 x_{a}[n]$

$1+2 x_{a}[n-2]$

$2 x_{a}[-n]$

$2 x_{a}[-n]-4$

9.3 (b)

$2-3 x_{b}[n]$

$1+2 x_{b}[n-2]$

$2 x_{b}[-n]$

$3-\mathrm{x}_{\mathrm{b}}[\mathrm{n}]$

$2 x_{b}[-n]-4$

9.3 (c)

$2-3 x{ }_{d}[n]$

$1+2 x_{d}[n-2]$

$2 x_{d}[-n]$

$2 x_{d}[-n]-4$

9.4 (a)

9.4 (b)

9.4 (c)

$x_{c}[n] \delta[n-2]$

9.4 (d)

$x_{d}[n] u[n+2]$

$x_{d}[n] \delta[n-2]$

9.5

Replacing n with $-3 n-1$ in $x[n]$ gives:

$$
y[n]=3(u[3 n+1]-u[3 n-7])+6(u[-3 n]-u[-3 n-7])
$$

and using the facts that $u[3 n+1]=u[n], u[3 n-7]=u[n-3], u[-3 n]=u[-n]$, and $u[-3 n-7]=u[-n-3]$ gives:

$$
y[n]=3(u[n]-u[n-3])+6(u[-n]-u[-n-3])
$$

9.6
a) $x_{t}[n]=A x[a n+n 0]+B$
let $a n+n o=m \Rightarrow n=\frac{1}{a} m-\frac{1}{a} n_{0}$
$A x[m]=x_{t}\left[\frac{1}{a} m-\frac{1}{a} n_{0}\right]-B$
let $m \leftarrow n$

$$
x[n]=\frac{1}{A} x \in\left[\frac{1}{a} n-\frac{1}{a} n_{0}\right]-B / A
$$

(b) $x_{1}[n]=1.5 x_{3}[-n-2]+3 \Longrightarrow x_{3}[n]=\frac{2}{3} x_{1}[-n-2]-2$.

n
(c)

$$
\begin{aligned}
& x_{1}[0]=1.5 x_{3}[-2]+3=1.5(-2)+3=0 \\
& x_{1}[1]=1.5 x_{3}[-3]+3=1.5\left(-\frac{10}{3}\right)+3=-2 \\
& x_{1}[2]=1.5 x_{3}[-4]+3=1.5\left(-\frac{10}{3}\right)+3=-2
\end{aligned}
$$

Continued \rightarrow

9.8, continued

9.9
(a)
(i) $x[n]=3 u[n-2]: x[n] \neq x[-n], x[n] \neq-x[-n]$. So this is neither even nor odd.
(ii) $x[n]=-n, x[-n]=n$, so $x[n]=-x[-n] \Longrightarrow$ odd.
(iii) $x[n]=0.2^{|n|}=0.2^{|-n|} \Longrightarrow$ even.
(iv) $x[n]=6+.2^{n}+.2^{-n}=x[-n]=6+.2^{-n}+.2^{n} \Longrightarrow$ even.
(v) $\sin (2 n)=-\sin (2(-n)) \Longrightarrow$ odd.
(vi) $\sin (n-\pi / 6) \neq \sin (-n-\pi / 6), \neq-\sin (-n-\pi / 6) \Longrightarrow$ neither even nor odd.

Continued \rightarrow

Continued \rightarrow

9.9, continued

(c)
(i) $x_{e}[n]=\frac{x[n]+x[-n]}{2}=1.5 u[-n-2]+1.5 u[n-2]$,
$x_{o}[n]=\frac{x[n]-x[-n]}{2}=1.5 u[n-2]-1.5 u[-n-2]$. (plotted below)
(ii) $x_{o}[n]=x[n]=-n, x_{e}[n]=0$.
(iii) $x_{e}[n]=x[n]=.2^{|n|}, x_{o}[n]=0$.
(iv) $x_{e}[n]=x[n]=6+.2^{n}+.2^{-n}, x_{o}[n]=0$.
(v) $x_{o}[n]=x[n]=\sin (2 n), x_{e}[n]=0$.
(vi) $x_{e}[n]=\frac{\sin (n-\pi / 6)+\sin (-n-\pi / 6)}{2}=\cos (n) \cos (2 \pi / 3)=\cos (n)(-0.5)$,
$x_{o}[n]=\frac{\sin (n-\pi / 6)+\sin (n+\pi / 6)}{2}=\sin (n) \cos (\pi / 6)=\sin (n)(\sqrt{3} / 2)$. (plotted below)

9.10

$$
x e[n]=x e[-n]
$$

$$
x_{0}[n]=x[n]-x_{c}[n] \quad n \geqslant 0
$$

$$
x_{0}[n]=-x_{0}[-n] \quad n \leqslant 0
$$

(b) $x_{0}[0]=0$ means thant $x_{e}[0]=0$ with no other
9.11
(a)

$$
\begin{aligned}
& x_{0}[n]=-x_{0}[-n] \Rightarrow x_{0}[0]=-x_{0}[0], \therefore x_{0}[0]=0 \\
& x e[0]=x_{0}[0]-x_{0}[0]=x[0]
\end{aligned}
$$

(b) $\sum_{-\infty}^{\infty} x_{0}[n]=\sum_{-\infty}^{6} x_{0}[n]+\sum_{0}^{\infty} x[n]=\sum_{-\infty}^{0}-x_{0}[-n]+\sum_{0}^{\infty} x_{0}[n]$
9.11. Let $n \rightarrow-n$ in the first sumniatim:
(cont)

$$
\Rightarrow-\sum_{n=\infty}^{0} x[n]+\sum_{n=0}^{\infty} x[n]=0
$$

(C) $\therefore \sum_{n=-\infty}^{\infty} x[n]=\sum_{n=-\infty}^{\infty} x_{e}[n]+\sum_{n=-\infty}^{\infty} x_{0}[n]=\sum_{n=-\infty}^{\infty} x_{e}[n]$, from (a)
9.11 (d) Similar to part c we can show that $\sum_{k=-n}^{n} x[k]=\sum_{k=-n}^{n} x_{e}[k]$ since $\sum_{k=-n}^{n} x_{o}[k]=0$, but it is NOT true that $\sum_{k=n_{1}}^{n_{2}} x[n]=\sum_{k=n_{1}}^{n_{2}} x_{e}[n]$ in general if $n_{1} \neq-n_{2}$.
9.12.(a) $x_{t}[n]=x_{e_{1}}[n]+x_{e_{2}}[n]$

$$
x_{t}[-n]=x_{e_{1}}[-n]+x_{e_{2}}[-n]=x_{e_{1}}[n]+x_{e_{2}}[n]=x_{t}[n], \therefore \text { even }
$$

(b) $x_{t}[n]=x_{01}[n]+x_{\Delta_{2}}[n]$

$$
x_{t}[-n]=x_{01}[-n]+x_{02}[-n]=-x_{01}[n]-x_{02}[n]=-x_{t}[n], \therefore \text { odd }
$$

$$
\text { (c) } x_{t}[n]=x_{e}[n]+x_{0}[n]
$$

$$
x_{t}[-n]=x_{e}[-n]+x_{0}[-n]=x_{e}[n]-x_{0}[n], \therefore \text { nithen }
$$

(d) $x_{t}[n]=x_{e_{i}}[n] x_{e 2}[n]$
$\chi_{t}[-n]=x_{e_{1}}[-n] \chi_{e_{2}}[-n]=\chi_{e_{1}}[n] x_{e 2}[n]=\chi_{t}[n], \therefore$ even
(e) $x_{t}[n]=x_{01}[n] x_{02}[n]$

$$
x_{t}[-n]=x_{01}[-n] x_{02}[-n]=\left[-x_{01}[n]\right]\left[-x_{02}[n]\right]=x_{t}[n], \therefore \text { even }
$$

(f) $x_{t}[n]=x_{e}[n] x_{0}[n]$
$x_{t}[-n]=x_{e}[-n] x_{0}[-n]=x_{e}[n]\left[-x_{0}[n]\right]=-x_{t}[n], \therefore$ odd
9.13
(a) $x_{1}[n]=\cos \left(\frac{2 \pi n}{10}\right):$ need $\frac{2 \pi N_{0}}{10}=k 2 \pi$ for some integer $k, \Longrightarrow N_{0}=10$, periodic.
(b) $x_{2}[n]=\sin \left(\frac{2 \pi n}{25}\right):$ need $\frac{2 \pi}{25} N_{0}=k 2 \pi \Longrightarrow N_{0}=25$, periodic.
(c) $x_{3}[n]=e^{j \frac{2 \pi n}{20}}$, periodic, $N_{0}=20$.
(d) yes $x_{1}[n]+x_{2}[n]+x_{3}[n]$ is periodic with period $\operatorname{LCM}(10,25,20)=100$.
9. 14. (a) $x[n+N]=e^{j 5 \pi(n+N) / 7}=e^{j^{5 \pi n / 7}} e^{j 5 \pi N / 7}=e^{j 5 \pi n / 7} e^{j^{2 \pi k}}$

$$
\therefore 5 \pi N / 7=2 \pi k \Rightarrow N=\frac{14 k}{5} ; b=5, N_{0}=14
$$

(b) $x\left[n+N J=e^{j 5 n} e^{j 5 N} \quad \therefore 5 N=2 \pi k \quad\right.$ not parodic
(c) $x[n+N]=e^{j 2 \pi n} e^{j 2 \pi N} \quad \therefore 2 \pi N * 2 \pi k, N_{0}=1 \quad$ ($x[n]=1$)
(d) $x[n+N]=e^{-0.3 N / \pi} e^{j 0.3 / 7} \therefore \frac{0.3 N}{\pi}=2 \pi b \quad \therefore$ not periodic
(e) $x[n+N]=\cos (6 \pi n / 7+3 \pi N / 7),: \frac{3 \pi N}{7}=2 \pi b, N=\frac{14 \beta}{3}, N_{0}=14$
(f) $x[n+N]=e^{j 0.3 n T} e^{j 0.3 N}, \therefore 0,3 N=2 \pi k$, not periodic
(g) From parts (a) and (c), $e^{j 5 \pi n / 7}$ has period $N_{0}=14$ and $e^{2 \pi n}$ has period $N_{0}=1$ so their sum has period $\operatorname{LCM}(14,1)=14$.
(h) From part (g), $e^{j 5 \pi n / 7}+e^{j 2 \pi n}$ has period 14 and from part (e) $\cos (3 \pi n / 7)$ has period 14; so their sum has period $\operatorname{LCM}(14,14)=14$.
(i) From part (f), the first term, $e^{j 0.3 n}$, is not periodic. So the sum $e^{j 0.3 n}+e^{j 2 \pi n}$ is not periodic.
9.15. $t=n T, x[n]=\cos (2 \pi n T), \omega_{0}=2 \pi, \therefore T_{0}=1$
$N_{D}=\#$ of samples in the fundamental period.

$$
\text { (a) (i) } \begin{aligned}
& x[n]=\cos (2 \pi n T) \\
& x\left[n+N_{0}\right]=\cos \left(2 \pi n+2 \pi N_{0}\right), \therefore 2 \pi N_{0}=2 \pi k \Rightarrow k=1
\end{aligned}
$$

\therefore periodic with $N_{0}=\frac{1}{P}$ (constant signal)
iii) $x[n]=\cos (0.2 \pi n) \stackrel{?}{=} \cos \left(0.2 \pi n+0.2 \pi N_{0}\right)$
$\therefore 0.2 \pi N_{0}=2 \pi k \Rightarrow N_{0}=\frac{2 h}{0.2} \Rightarrow N_{0}=10, k=1$, periodic
(iii) $x[n]=\cos (0.25 \pi n) \stackrel{?}{=} \cos \left(0.25 \pi n+0.25 \pi N_{0}\right)$
$\therefore 0.25 \pi N_{0}=2 \pi k \Rightarrow N_{0}=\frac{2 k}{0.25} \Rightarrow N_{0}=\underline{8}, k=1 \quad \therefore$ periodic
(iN) $x[n]=\cos (0.26 \pi n) \stackrel{\rho}{=} \cos \left(0.26 \pi n+0.26 \pi N N_{0}\right)$
$\therefore 0.26 \pi N_{0}=2 r k \Rightarrow N_{0}=\frac{2 k}{0.26}=\frac{200}{26} k=\frac{100}{13} k$
$\therefore N_{0}=100, k=13$ periodic
(v) $x[n]=\cos (10 \pi n) \stackrel{?}{=} \cos \left(10 \pi n+10 \pi N_{0}\right)$
$\therefore 10 \pi N_{0}=2 \pi k, N_{0}=\frac{k}{5} \Rightarrow N_{0}=1, k=5 \therefore$ periodic (constant)
(vi) $x[n]=\cos \left(\frac{8}{3} \pi n\right)=\cos \left(\frac{8}{3} \pi n+\frac{8}{3} \pi N\right)$
$\therefore \frac{8}{3} \pi N_{0}=2 \pi k \Rightarrow N_{0}=\frac{64}{8} \Rightarrow N_{0}=3, k=\underline{4}$ periodic
(b) (i) $b=1$ (ii) $b=1$ (Lii) $b=1$
$\begin{array}{ll}\text { (c) }(i) N_{b}=1 & \text { (ii) } N_{0}=10 \text { (iii) } N_{0}=8\end{array}$
(iv) $b=13 \quad(A) b=\underline{5}(v i) b=\underline{4}$
(iv) $N_{0}=100(w) N_{0}=1 \quad(v i) N_{0}=3$
9.16 Want to find τ such that $\left.e^{-t / \tau}\right|_{t=n T}=e^{-(n T) / \tau}=x[n]$. The sampling rate of 10 Hz means $T=\frac{1}{10}=0.1 \mathrm{sec}$.
(a) Need $e^{-n 0.1 / \tau}=0.3^{n} \Longrightarrow e^{-0.1 / \tau}=0.3 \Longrightarrow-0.1 / \tau=\log (0.3) \Longrightarrow \tau=$ $\frac{-0.1}{\log (0.3)}=0.083$.
(b) Need $e^{-T / \tau}=0.3 \Longrightarrow$ same τ as (a).

To find ω need $\omega \cdot T=1 \Longrightarrow \omega=1 / 0.1=10$.
(c) $(-0.3)^{n}=(0.3)^{n}(-1)^{n}=(0.3)^{n} \cos (\pi n)$. From (a), $\tau=0.083$.
$\omega=\pi / 0.1=10 \pi$.
(d) Same τ and ω as part (b) because the sin instead of cos and the additional 1 just change the phase, not the frequency.
(a)
(i) $\cos \left(\pi n+\pi N_{0}\right)=\cos (\pi n+2 \pi) \Longrightarrow N_{0}=2 k$ for some integer $k ; N_{0}=2$, periodic.
(ii) $-3 \sin \left(0.01 \pi n+0.01 \pi N_{0}\right)=-3 \sin (0.01 \pi n+2 \pi k) \Longrightarrow 0.01 N_{0}=2 k \Longrightarrow$ $N_{0}=200$, periodic.
(iii) $\cos \left(3 \pi\left(n+N_{0}\right) / 2+\pi\right)=\cos \left(3 \pi n / 2+\pi+3 \pi N_{0} / 2\right) \Longrightarrow 3 N_{0} / 2=2 k \Longrightarrow$ $k=3, N_{0}=4$, periodic.
(iv) $\sin \left(3.15 n+3.15 N_{0}\right)=\sin (3.15 n+2 \pi k) \Longrightarrow 3.15 N_{0}=2 \pi k \Longrightarrow N / k=$ $2 \pi / 3.15$, not periodic since not rational.
(v) $1+\cos \left(0.5 \pi n+0.5 \pi N_{0}\right)=1+\cos (0.5 \pi n+2 \pi k) \Longrightarrow 0.5 N_{0}=2 k \Longrightarrow$ $N_{0}=4$, periodic.
(vi) $\sin \left(3.15 \pi n+3.15 \pi N_{0}\right)=\sin (3.15 \pi n+2 \pi k) \Longrightarrow 3.15 N_{0}=2 k \Longrightarrow N_{0}=$ $2 k / 3.15=200 k / 315=40 k / 63 \Longrightarrow k=63, N_{0}=40$. periodic
(b) (i) $N_{0}=2$, (ii) $N_{0}=200$, (iii) $N_{0}=4$, (iv) not periodic, (v) $N_{0}=4$, (vi) $N_{0}=40$

9.18

(a) -C (alternating $+/-5$)
(b) -D (values $0,+5,0,-5$ at $\mathrm{n}=0,1,2,3$)
(c) -B (constant 3)
(d)- A (values $+5,0,-5,0$ at $\mathrm{n}=0,1,2,3$)

9.19

$$
\begin{aligned}
& \text { (a) } x_{a}[n]=\delta[n+3]+\delta[n+2]+\delta[n+1]+\delta[n]-2 \delta[n-1]-2 \delta[n-2]-2 \delta[n- \\
& 3]-2 \delta[n-4]=\sum_{k=-3}^{0} \delta[n-k]-2 \sum_{k=1}^{4} \delta[n-k] \\
& \text { (b) } x_{b}[n]=-2 \sum_{k=-2}^{-1} \delta[n-k]+2 \sum_{k=1}^{4} \delta[n-k] \\
& \text { or }=-2(\delta[n+2]+\delta[n+1])+2(\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]) \\
& \text { (c) } x_{c}[n]=-2 \delta[n+1]+4 \delta[n]-2 \delta[n-1]+2 \delta[n-2]-\delta[n-3] \\
& \text { (d) } x_{d}[n]=3 \delta[n+3]+2 \delta[n+2]+\delta[n+1]+\delta[n-1]+2 \delta[n-2]+3 \delta[n-3]+\delta[n-5]
\end{aligned}
$$

9.20
$a 8 b$)

9.21a)

$$
\begin{aligned}
& m[n]=T_{3}\left[T_{2}\left\{x[n]-T_{4}(y[n])\right\}\right] \\
& y[n]=T_{1}(x[n])+T_{3}\left[T_{2}\left\{x[n]-T_{4}(y[n])\right\}\right]
\end{aligned}
$$

b)

$$
y[n]=T_{2}\left(m_{2}[n]\right)=T_{2}\left(T_{1}(x[n]-y[n]-y[n])\right.
$$

$$
\begin{aligned}
& m_{1}[n]=x[n]-y[n] \\
& m_{2}[n]=T_{1}(x[n]-y[n])-y[n]
\end{aligned}
$$

9.22 a) $\therefore y[k]=y[k-1]+T / 2[x[k]+x[k-1]]$
b) $y(1)=0, T=.1$;
for $n=1: 51$

$$
y(n+1)=y(n)+T / 2 *(\exp (-n * T)+\exp ((1-n) * T)) ;
$$

end
C) y

$$
\begin{aligned}
& \text { Result :y } y=.9941 \\
& \int_{0}^{5} e^{-t} d t=\left.e^{-t}\right|_{0} ^{5}=1-e^{-5}=.9933
\end{aligned}
$$

9.23 (a)
(i) Not memoryless (depends on time $a n+1 \neq n$);
(ii) Not invertible because $y[0]=0(x[1])+5$ we cannot get from $y[n]$ the value of $x[1]$
(iii) Not causal ($a n+1>n$ so depends on input value at future time)
(iv) Not stable-for example, if $x[n]=1$ is the input (a constant value 1), then $x[n]$ is bounded but the output is $y[n]=n+5$ which goes to ∞ as $n \rightarrow \infty$ (v) Not time invariant: $x\left[n-n_{0}\right] \rightarrow n x\left[a n+1-n_{0}\right]+5$ but this $\neq y\left[n-n_{0}\right]=$ $\left(n-n_{0}\right) x\left[a\left(n-n_{0}\right)+1\right]+5$
(vi) Not linear: $k x[n] \rightarrow n k x[a n+1]+5$ but this $\neq k y[n]=k(n x[a n+1]+5)$ (b)
(i) Not memoryless (depends on $-n+2$)
(ii) Invertible: $x[n]=y[-n+2]$
(iii) Not causal $(-n+2>n$ when $n \leq 0)$
(iv) Stable
(v) Not time invariant: $x\left[n-n_{0}\right] \rightarrow x\left[-n+2-n_{0}\right]$ but this $\neq y\left[n-n_{0}\right]=$ $x\left[-\left(n-n_{0}\right)+2\right]=x\left[-n+2+n_{0}\right]$
(vi) Linear: $k_{1} x_{1}[n]+k_{2} x_{2}[n] \rightarrow k_{1} y_{1}[n]+k_{2} y_{2}[n]$

Continued \rightarrow

9.23, continued

(c)
(i) Memoryless
(ii) Not invertible (for example $x[n]$ and $x[n]+2 \pi$ are two inputs that have the same output for any $x[n]$)
(iii) Causal (memoryless implies causal)
(iv) Stable $(|\cos (x[n])| \leq 1)$
(v) Time invariant: $x\left[n-n_{0}\right] \rightarrow \cos \left(x\left[n-n_{0}\right]\right)=y\left[n-n_{0}\right]$
(vi) Not linear: $k_{1} x_{1}[n] \rightarrow \cos \left(k_{1} x_{1}[n]\right) \neq k_{1} \cos \left(x_{1}[n]\right)=k_{1} y[n]$
(d)
(i) Memoryless
(ii) Invertible: $x[n]=e^{y[n]}$
(iii) Causal
(iv) Not stable: if $x[n]=0$ output is $-\infty$
(v) Time invariant
(vi) Not linear
(e)
(i) Memoryless
(ii) Not invertible: can't get back the value of $x[0]$ because it gets multiplied but 0 , but can get back all other values.
(iii) Causal
(iv) Not stable (same reason as (d))
(v) Not time invariant: $x\left[n-n_{0}\right] \rightarrow \log \left(n x\left[n-n_{0}\right]\right)$ but $y\left[n-n_{0}\right]=\log ((n-$ $\left.n_{0}\right) x\left[n-n_{0}\right]$) (vi) Not linear

Continued \rightarrow
9.23, continued
(f)
(i) Not memoryless (depends on $n-3$ input)
(ii) Invertible: $x[n]=(1 / 4) y[n+3]-3 / 4$
(iii) Causal ($n-3<n$ for all n)
(iv) Stable: if $|x[n]|<K$ then $|4 x[n-3]+3|<4 K+3$
(v) Time invariant: $x\left[n-n_{0}\right] \rightarrow 4 x\left[n-n_{0}-3\right]+3$ and $y\left[n-n_{0}\right]=4 x\left[n-n_{0}-3\right]+3$
(vi) Not linear: $x_{1}[n]+x_{2}[n] \rightarrow 4\left(x_{1}[n]+x_{2}[n]\right)+3$ but $x_{1}[n] \rightarrow 4 x_{1}[n]+3$ and

$$
x_{2}[n] \rightarrow 4 x_{2}[n]+3 \text { so } x_{1}[n]+x_{2}[n] \rightarrow 4\left(x_{1}[n]+x_{2}[n]\right)+3+3
$$

a.24 $\quad y[n]=2 y[n-1]-y[n-2]+x[n]$
a) has memory
b) $y\left[n-n_{0}\right]=2 y\left[n-n_{0}-1\right]-y\left[n-n_{0}-2\right]+x\left[n-n_{0}\right]$
c) $a, y_{1}[n]+a_{2} y_{2}[n] \quad \therefore$ time invariant
c) $a_{1} y_{1}[n]+a_{2} y_{2}[n]-2\left[a_{1} y_{1}[n-1]+a_{2} y_{2}[n-1]\right]$

$$
\begin{array}{r}
+a_{1} y_{1}[n-2]+a_{2} y_{2}[n-2]=a_{1} x_{1}[n]+a_{2} x_{2}[n] \\
\therefore a_{1}\left\{y_{1}[n]-2 y_{1}[n-1]+y_{1}[n-2]-x_{1}[n]\right\}+a_{2}\left\{y_{2}[n]\right. \\
\left.-2 y_{2}[n-1]+y_{2}[n-2]-x_{2}[n]\right\}=0
\end{array}
$$

$\Rightarrow 0_{n}+0=0,:-$ linear
9.25 a) $y[n]=\sum_{-n}^{n} x[k+a]$
(i) has memory
(ii) not invertible
(iii) not causal, whether or not it looks at future depends on a \& we don't know

Continued \rightarrow
(iv) stable
(v) Tine varying (vi) linear
b) $y[n]=1 / 2[x[n]+x[n-1]]$
(i) has memory
(ii)

$$
\begin{aligned}
x[n] & =2 y[n]-x[n-1] \quad \text { invertible } \\
& =2 y[n]-2 y[n-1]+x[n-2]=2 y[n] \cdots
\end{aligned}
$$

(iii) causal
(iv) Stable
(v) Time invariant
(vi) linear
C) (i) has memory
(ii) Invertible
(iii) Causal
(iv) Stable
(v) Tine invariant
(vi) linear
$9.26 \quad y[n]=k_{n} x[n]$ with $k_{n}=\left[\frac{n+2.5}{n+1.5}\right]^{2}$ as $n \rightarrow \infty$ \& as $n \rightarrow-\infty, k_{n} \longrightarrow 1$

n	k_{n}
2	1.65
1	1.96
0	1.67
-1	9.0
-3	.111

9.27
a) $y[n]=-3|x[n]|$
(i) memory less
(ii) not invertible
(iii) Causal
(iv) Stable
(v) Time-Invaiant
(vi) $\left|x_{1}\right|+\left|x_{2}\right| \nmid x_{1}+x_{2} \mid \therefore$ Not linear
b) $J[n]=\left\{\begin{array}{cc}3 x[n] & x<0 \\ 0 & x \geqslant 0\end{array}\right.$
(i) memonyless
(ii) not invertible; $y=0, x \geqslant 0$
(iii) Causal
(iv) Stable
(v) time invariant
(vi) let $x_{1}=1, x_{2}=1 \Longrightarrow y_{1}=0, y_{2}=-1$
c)

$$
\therefore-1=\left.y[n]\right|_{x_{2}=1} \neq\left. y[n]\right|_{n=1-1=0}=0 \text { not linear }
$$

(i) memaryiess
(ii) $y=10$ for $x \geqslant 1$, not invertible
(iii) Causal

Continued \rightarrow
(iv) Stable
(v) time-invanant
(vi) $x_{1}=x_{2}=1 \Rightarrow y_{1}=y_{2}=10,\left.y\right|_{x=2} \neq 20 \therefore$ not linear
d)

(i) memoryless
(ii) $y=2$ for $x \geqslant 2$, not invertible
(iii) causal
(iv) stable
(v) time-invariant
(vi) $\left.y\right|_{x_{1}=x_{2}=2}=2 \neq\left. y\right|_{x_{1}=2}+\left.y\right|_{x_{2}=2} \therefore$ non linear
9.28

Causal system $\Longrightarrow h[n]=0, n<0$. Must have $h_{e}[n]=h_{e}[-n]$ and $h_{o}[n]+$ $h_{e}[n]=0, n<0$. This implies that the odd part for $n \leq 0$ is:

$$
\begin{aligned}
h_{o}[n] & =\quad 0, n=0 \\
& =-3, n=-1 \\
& =-4, n=-2 \\
& =\quad-1, n \geq 3
\end{aligned}
$$

continued \rightarrow

9.28, continued

Adding the even and odd parts gives:

$$
\begin{aligned}
h[n] & =0, n \leq 0 \\
& =6, n=1 \\
& =8, n=2 \\
& =2, n \geq 3
\end{aligned}
$$

So in other words, when we know that $h[n]=0$ for $n<0$ then $h[n]=2 h_{e}[n]$ for $n>0, h[n]=0$ for $n<0$, and $h[0]=h_{e}[0]$.

9.29

Not memoryless (depends on previous inputs)
Causal-only depends on input values up to current time n
Linear: for two inputs $x_{1}[n]$ and $x_{2}[n]$ and their individual outputs $y_{1}[n]$ and $y_{2}[n]$,
$a x_{1}[n]+b x_{2}[n] \rightarrow \sum_{k=-\infty}^{n-1} k\left(a x_{1}[k+1]+b x_{2}[k+1]\right)$
$=a \sum_{k=-\infty}^{n-1} k x_{1}[k+1]+b \sum_{k=-\infty}^{n-1} k x_{2}[k+1]=a y_{1}[n]+b y_{2}[n]$
Not time invariant: $x\left[n-n_{0}\right] \rightarrow \sum_{k=-\infty}^{n-1} k x\left[k+1-n_{0}\right]=\sum_{k=-\infty}^{n-n_{0}-1}\left(k+n_{0}\right) x[k+1]$ but $y\left[n-n_{0}\right]=\sum_{k=-\infty}^{n-n_{0}-1} k x[k+1]$.
Not stable: if $x[n]$ is a constant, $y[n] \rightarrow \infty$ as $n \rightarrow \infty$.

Chapter 10 Solutions
10.1

$$
\begin{aligned}
& 10.1 \quad \text { Chapter } 10 \\
& \sum_{k=-\infty}^{\infty} x[k] h[n-k] \text { - replace } k \text { with }\left(n-k_{1}\right) \text {, } n \text { constant } \\
& \Rightarrow \sum_{k=-\infty}^{\infty} x\left[n-k_{1}\right] h\left[k_{1}\right]=\sum_{-\infty}^{\infty} h\left[k_{1}\right] x\left[n-k_{1}\right] \\
& 10.2 \quad g[n] * \delta[n]=\sum_{k=-\infty}^{\infty} g[k] \delta[n-k] \\
& \\
& \delta[n-k]= \begin{cases}1, & k=n \\
0, & \text { otherwise }\end{cases} \\
& \therefore g[n] * \delta[n]=g[n](1)=g[n]
\end{aligned}
$$

10.3
(a) $y[5]=\sum_{k=-\infty}^{\infty} x[k] h[5-k]=\sum_{k=1}^{6} h[5-k]=h[4]+h[3]+h[2]+h[1]+h[0]+h[-1]=3 \cdot 2=6$
(b) \max is $h[1]+h[0]+h[-1]+h[-2]=8$
(c) max occurs at $n=2,3,4$
(d)

$$
\begin{array}{rlc}
y[n] & = & \sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& = & 0, n \leq-2 \\
& = & h[-2]=2, n=-1 \\
& = & h[-2]+h[-1]=4, n=0 \\
& = & h[-2]+h[-1]+h[0]=6, n=1 \\
& = & h[-2]+h[-1]+h[0]+h[1]=8, n=2,3,4 \\
& = & h[-1]+h[0]+h[1]=6, n=5 \\
& = & h[0]+h[1]=4, n=6 \\
& = & h[1]=2, n=7 \\
& = & 0, n \geq 8
\end{array}
$$

Continued \rightarrow
10.3d, continued

$$
y[n]
$$

(e) $\gg n=-2: 8$
>> $\mathrm{x}=[0,0,0,1,1,1,1,1,1,0,0]$;
$\gg h=[2,2,2,2,0,0,0,0,0,0,0]$;
$\gg y=\operatorname{conv}(x, h)$;
>>stem((-2+-2):(8+8),y); title('y[n]'), xlabel('n')
$\mathrm{y}[\mathrm{n}]$

10.4
$h[n]=\alpha^{n} u[n], x[n]=\beta^{n} u[n], \alpha \neq \beta$
(a)

$$
\begin{array}{rlrl}
y[n] & =\quad \sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n-k} u[n-k]=\left[\sum_{k=0}^{n} \alpha^{k} \beta^{n-k}\right] u[n] \\
& =\beta^{n}\left[\sum_{k=0}^{n}\left(\alpha \beta^{(-1)}\right)^{k}\right] u[n]=\beta^{n}\left[\frac{1-\alpha^{(n+1)} \beta^{-(n+1)}}{1-\alpha \beta^{(-1)}}\right] u[n] \\
& = & \frac{\beta^{n}-\alpha^{(n+1)} \beta^{(-1)}}{1-\alpha \beta^{(-1)}} u[n]=\frac{\beta^{(n+1)}-\alpha^{(n+1)}}{\beta-\alpha} u[n]
\end{array}
$$

(b) $y[4]=\frac{\beta^{5}-\alpha^{5}}{\beta-\alpha} \Rightarrow \frac{1}{\beta-\alpha) \frac{\beta^{4}+\alpha \beta^{3}+\alpha^{2} \beta^{2}+\alpha^{3} \beta+\alpha^{4}}{\beta^{5}-\alpha \beta^{4}}}-\alpha^{5}$
$\therefore y[H]=\frac{\beta^{4}+\alpha \beta^{3}+\alpha^{2} \beta^{2}+\alpha^{3} \beta+\alpha^{4} \quad \alpha \beta^{4}-\alpha^{2} \beta^{3}}{\cdots}$
(c) $y[4]=\sum_{\theta=0}^{4} \alpha^{k} \beta^{4-k}=\alpha^{0} \beta^{4}+\alpha^{1} \beta^{3}+\alpha^{2} \beta^{2}+\alpha^{3} \beta^{1}+\alpha^{4} \beta^{0}$
$=\beta^{4}+\alpha \beta^{3}+\alpha^{2} \beta^{2}+\alpha^{3} \beta+\alpha^{4}$
10.5
(a) $y[4]=\sum_{k=-\infty}^{\infty} x[k] h[4-k]=2 \sum_{k=-1}^{3} h[4-k]=2(h[5]+h[4]+h[3]+h[2]+h[1])=0$
(b) max is $2 \cdot 5=10$
(c) max occurs at $n=-3,-2$
(d)

Continued \rightarrow

10.5(d), continued

$$
\begin{array}{rlr}
y[n] & = & 2 \sum_{k=-1}^{3} h[n-k] \\
& = & 0, n \leq-8 \\
& = & h[-6]=2, n=-7 \\
& = & h[-6]+h[-5]=4, n=-6 \\
& = & h[-6]+h[-5]+h[-4]=6, n=-5 \\
& = & h[-6]+h[-5]+h[-4]+h[-3]=8, n=-4 \\
& = & h[-6]+h[-5]+h[-4]+h[-3]+h[-2]=10, n=-3 \\
& = & h[-5]+h[-4]+h[-3]+h[-2]+h[-1]=10, n=-2 \\
& = & h[-4]+h[-3]+h[-2]+h[-1]=8, n=-1 \\
& = & h[-3]+h[-2]+h[-1]=6, n=0 \\
& = & h[-2]+h[-1]=4, n=1 \\
& = & h[-1]=2, n=2
\end{array}
$$

$=0, n \geq 3$
(e)

```
>> n=-6:5;
>> x=[zeros (1,5),2*ones (1,5),0,0];
>> h=[ones(1,6),zeros(1,6)];
>> stem((-6+-6):(5+5),conv(x,h));
>> title('y[n]'); xlabel('n');
```


10.5e plot

10.6
(a)

(b) $y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$ and since $h[k]=0$ outside of $k \in[-2,1]$, we have:

$$
\begin{aligned}
y[n] & = & \sum_{k=-2}^{1} 1 x[n-k]=\sum_{k=-2}^{1}(0.7)^{n-k} u[n-k] \\
& = & 0, n \leq-3 \\
& = & (0.7)^{0}=1, n=-2 \\
& = & (0.7)^{1}+(0.7)^{0}=1.7, n=-1 \\
& = & (0.7)^{2}+(0.7)^{1}+1=2.19, n=0 \\
& = & (0.7)^{n+2}+(0.7)^{n+1}+(0.7)^{n}+(0.7)^{n-1}, n \geq 1
\end{aligned}
$$

10.7.(4) $y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=0}^{1} x[n-k]+\sum_{k=4}^{5} x[n-k]$
(b)

(d)

$$
\begin{aligned}
y[n]= & \sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=0}^{1}(u[n-k]-u[n-6-k])+\sum_{k=4}^{5} i \\
= & u[n]-u[n-6]+u[n-1]-u[n-7] \\
& +u[n-4]-u[n-10]+u[n-5]-u[n-11]
\end{aligned}
$$

10.7 (d) $y[n]=0, n<0$
(cont)

$$
\begin{aligned}
& y[0]=1 \\
& y[1]=2 \\
& y[2]=2 \\
& y[3]=2
\end{aligned}
$$

$$
y[4]=3
$$

$$
y[5]=4
$$

$$
\begin{aligned}
& y[8]=2 \\
& 4[2]=2
\end{aligned}
$$

$$
y[6]=3
$$

$$
y[10]=1
$$

$$
y[f]=2
$$

$$
y[n]=0, \quad n \geqslant 11
$$

(e) $x=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}\right] ; h=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1\end{array}\right] ; \mathrm{y}=\operatorname{conv}(\mathrm{x}, \mathrm{h})$
(f)

$$
\begin{array}{ll}
y[n]=\sum_{k=0}^{1}(u[n-k]-u[n-b-27)=u[n]+u[n-1]-u[n-2]-u[n-3] \\
\therefore y[n]=0, n<0 & y[2]=1 \\
y[0]=1 & y[n]=0 \quad, n \geq 3
\end{array}
$$

(g)乡[J] $=2$
$x=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right] ; h=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right] ; \mathrm{y}=\operatorname{conv}(\mathrm{x}, \mathrm{h})$

$$
\begin{aligned}
& \left.y[n]=\sum_{k=-\infty}^{\infty} h[b] x[n-b]=\sum_{k=0}^{1}(4[n-b]-u[n-2-b])+\sum_{k=4}^{5} c^{2}\right) \\
& =u[n]-u[n-2]+u[n-1]-u[n-3] \\
& +u[n-4]-u[n-6]+u[n-5]-u[n-7] \\
& y^{[n]}=0, n<5 \\
& y[0]=1 \\
& y[4]=1 \\
& y[1]=2 \\
& y[5]=z \\
& y[2]=1 \\
& y[3]=0 \\
& y[6]=1 \\
& y[n]=0 \quad n \geqslant 7
\end{aligned}
$$

$$
\begin{aligned}
& x[n-b]=u[n-k] \\
& \therefore y[n]=u[n]+u[n-1]+u[n-4]+u[n-5] \\
& \therefore y[n]=0, n<0 \\
& y[\Delta]=1 \\
& y[3]=z \\
& y[1]=2 \\
& y[4]=3 \\
& y[2]=2 \\
& y[n]=4, n \geqslant 5
\end{aligned}
$$

$y[n]=0, n \geqslant 10$
(b). $y[n]<0, n<0 ; y[n]-0, n \geqslant 8$

$$
\frac{n 101234567}{y \tan 7 \frac{1}{20200-20-2}}
$$

(c) $y[n]=0, n<0 ; y[n]=0, n \geqslant 8$

| n | 01234567 |
| :---: | :---: | :---: |
| $y[00$ | 6911126310 |

(d) $y[n]=0, n<0 ; y[n]=0, n \geq 8$

$$
\begin{array}{l|llllllll}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

(e) $y[n]=0, n<0 ; y[n]=0, n \geqslant 8$

(f) $x=\left[\begin{array}{llllll}2 & 2 & 2 & 2 & 0 & 0\end{array}\right] ; h=\left[\begin{array}{llll}3 & 3 & 1 & 1\end{array} 0\right.$ 0 ; $y=\operatorname{conv}(x, h)$, pause $x=\left[\begin{array}{lllllll}2 & 2 & 2 & 2 & 2 & 0 & 0\end{array}\right] ; h=\left[\begin{array}{llllll}1 & -1 & 1 & -1 & 0 & 0\end{array}\right] ; y=\operatorname{conv}(x, h)$, pause $x=\left[\begin{array}{lllllll}2 & 2 & 2 & 2 & 2 & 0 & 0\end{array}\right] ; h=\left[\begin{array}{llllll}3 & 1.5 & 1 & 0.5 & 0 & 0\end{array}\right] ; y=\operatorname{conv}(x, h)$, pause $x=\left[\begin{array}{lllllll}3 & 3 & 1 & 1 & 0 & 0\end{array}\right] ; h=\left[\begin{array}{lllll}1 & -1 & 1 & -1 & 0\end{array} 0\right] ; y=c o n v(x, h), p a u s e$ $X=\left[\begin{array}{lllllll}3 & 3 & 1 & 1 & 1 & 0\end{array}\right] ; h=\left[\begin{array}{llll}-1 & -1 & 1 & 1\end{array}\right] ; y=\operatorname{conv}(x, h)$
10.9
a) $x[n]=a^{-3 n} u[1-n], \quad h[n]=\vec{b}^{n} u[2-n]$

$$
\begin{aligned}
& n-2>1, n>3, y[n]=0 \\
& n-2 \leqslant 1, n \leqslant 3 \\
& \sum_{n=n-2}^{1} b^{n-k} a^{-3 k}=b_{k=n-2}^{n} \sum_{k}^{1}\left(\frac{1}{a^{3} b}\right)^{k}=b^{n}\left(\frac{1}{a^{3} b}\right)^{n-2} \sum_{0}^{n-2}\left(\frac{1}{a^{3} b}\right)^{k} \\
&=b^{n}\left(\frac{1}{a^{3} b}\right)^{n-2}\left[\frac { 1 - (\frac { 1 } { a ^ { 3 } b }) ^ { 4 - n } } { 1 - \frac { 1 } { a ^ { 3 } b } } \left(\frac{b^{2}}{b^{2}}\left(\frac{1}{a^{3}}\right)^{n-2} x\right.\right. \\
&\left(\frac{a^{3} b-\left(a^{3} b\right)^{n-3}}{a^{3} b-1}\right) u[3-n]
\end{aligned}
$$

b) $\chi[n]=a \quad u[-n], h[n]=b^{n} u[n]$

$$
\begin{aligned}
& n<0, \sum_{-\infty}^{\infty} a^{k} b^{n-k}=b^{n} \sum_{u=-\infty}^{\infty}\left(\frac{a}{b}\right)^{k}=b^{n} \sum_{-n}^{\infty}(b / a)^{k}=\frac{b^{n}(b / a)^{-n}}{1-b / a} \\
& \therefore \quad=\frac{a^{n}}{1-n / a} \\
& =\frac{a^{n+1}}{a-b} u[n]=\frac{a^{n}}{1-b / a} u[-n-1]+\frac{b^{n}}{1-b / a} u[n]
\end{aligned}
$$

Continued \rightarrow
10.9, continued
c)

$$
\begin{aligned}
& n<0, y[n]=0 \\
& 0 \leqslant n \leqslant 99, y[n]=\sum_{k=0}^{n} a^{k}=\frac{1-a^{n+1}}{1-a} \\
& n \geqslant 100, y[n]=\sum_{0}^{99} a^{k}=\frac{1-a^{100}}{1-a} \\
& \therefore y[n]=\left(\frac{1-a^{n+1}}{1-a}\right)(u[n]-u[n-100])+\left(\frac{1-a^{100}}{1-a}\right) u(n-100]
\end{aligned}
$$

d)

$$
\begin{aligned}
& n+2<1, n<-1, y[n]^{n+2}=\sum_{k=1}^{\infty} b^{-2 k}=\sum_{k=1}^{\infty}\left(\frac{1}{b^{2}}\right)^{k}=\frac{\left(1 / b^{2}\right)}{1-\frac{1}{b^{2}}} \\
& n+2 \geqslant 1, n \geqslant-1, y[n]=\sum_{k=n+2}^{\infty}\left(\frac{1}{b^{2}}\right)^{k}=\frac{\left(1 / b^{2}\right)^{n+2}}{1-1 / b^{2}} \\
& \therefore y[n]=\frac{1}{b^{2}-1} u[-n-2]+\frac{\left(1 / b^{2}\right)^{n+2}}{1-1 / b^{2}} u[n+1] \\
& \quad=\frac{1}{b^{2}-1} u[-n-2]+\left(1 / b^{2}\right)^{n+1} \frac{1}{b^{2}-1} u[n+1]
\end{aligned}
$$

e) $\operatorname{Plip} h[n]$

$$
\begin{gathered}
n-2<0, y[n]=0 \\
n-2 \geqslant 0, n \geqslant 2, y[n]=\sum_{k=0}^{n-2} a^{2 k} b^{n-k}=b^{n} \sum_{k=0}^{n-2}\left(\frac{a^{2}}{b}\right)^{k}
\end{gathered}
$$

10.9e, continued

$$
\begin{aligned}
& =b^{n}\left[\frac{1-\left(\frac{a^{2}}{b}\right)^{n-1}}{1-a^{2} / b}\right]=b^{n}\left[\frac{b-b\left(a^{2} / b\right)^{n-1}}{b-a^{2}}\right] \\
& =\left(\frac{b^{n+1}-b^{2}\left(a^{2}\right)^{n-1}}{b-a^{2}}\right) \therefore y[n]=\left(\frac{b^{n+1}-b^{2}\left(a^{2}\right)^{n-1}}{b-a^{2}}\right) u[n-2]
\end{aligned}
$$

$$
\begin{aligned}
& n-1>50, \quad y[n]=0 \\
& 0 \leqslant n-1 \leqslant 50, \quad 1 \leqslant n \leqslant 51, y[n]=\sum_{k=n-1}^{50} 1=50-(n-1)+1 \\
& n-1<0, \quad y[n]=51 \\
& n<1 \quad \therefore \quad y[n]=(52-n)(u[n-1]-u[n-52])+51 u[-n]
\end{aligned}
$$

(g)

$$
y[n]=\sum_{k=-\infty}^{\infty} a^{-k} u[-k+1] b^{n-k} u[n-k-1]
$$

Note that $u[-k+1]$ is 0 if $k>1$ and $u[n-k-1]$ is 0 if $k>n-1$. So the argument is nonzero only if both $k>1$ and $k>n-1$. So if $n-1>1$ we sum to 1 , otherwise to $\mathrm{n}-1$. This gives:

If $n \geq 2$:

$$
\begin{aligned}
& =b^{n} \sum_{k=-\infty}^{1}(a b)^{-k}=b^{n} \sum_{k=-1}^{\infty}(a b)^{k} \\
& =\quad b^{n}\left(\frac{1}{1-a b}+(a b)^{-1}\right)=\frac{b^{n}}{1-a b}+\frac{b^{n}}{a b}
\end{aligned}
$$

(we know the sum converges because $|a|<1$ and $|b|<1 \Longrightarrow|a b|<1$.)
If $n<2$:

$$
\begin{aligned}
& =b^{n} \sum_{k=-\infty}^{n-1}(a b)^{-k}=b^{n} \sum_{k=-n+1}^{\infty}(a b)^{k} \\
& = \\
& b^{n}\left(\frac{(a b)^{-n+1}}{1-a b}\right)
\end{aligned}
$$

Therefore $y[n]=\left(b^{n} \frac{(a b)^{-n+1}}{1-a b}\right) u[1-n]+\left(\frac{b^{n}}{1-a b}+\frac{b^{n}}{a b}\right) u[n-2]$.

Continued \rightarrow

10.9, continued

(h) $y[n]=\sum_{k=-\infty}^{\infty} b^{k} u[-k] a^{(n-k-3)} u[n-k-3]$. Since $u[-k]=0$ when $k>0$:

$$
y[n]=\sum_{k=-\infty}^{0} b^{k} a^{(n-k-3)} u[n-k-3]=a^{n-3} \sum_{k=-\infty}^{0}\left(\frac{b}{a}\right)^{k} u[n-k-3]
$$

Since $u[n-k-3]=0$ when $k>n-3$ the sum goes up to $\min (0, n-3)$.
If $n>3$ the sum is to 0 :

$$
\begin{gathered}
=a^{(n-3)} \sum_{k=-\infty}^{0}\left(\frac{b}{a}\right)^{k}=a^{(n-3)} \sum_{k=0}^{\infty}\left(\frac{a}{b}\right)^{k} \\
=\quad a^{(n-3)} \frac{1}{1-\frac{a}{b}}
\end{gathered}
$$

as long as $\left|\frac{a}{b}\right|<1$ (same as $|a|<|b|$.)
If $n \leq 3$ the sum is to $n-3$:

$$
\begin{aligned}
& =a^{(n-3)} \sum_{k=-\infty}^{n-3}\left(\frac{b}{a}\right)^{k}=a^{n-3} \sum_{k=-n+3}^{\infty}\left(\frac{a}{b}\right)^{k} \\
& =\quad a^{n-3} \frac{\left(\frac{a}{b}\right)^{(-n+3)}}{1-\frac{a}{b}}
\end{aligned}
$$

Therefore $y[n]=\frac{a^{n-3}}{1-\frac{a}{b}}\left[\left(\frac{a}{b}\right)^{-n+3} u[3-n]+1 u[n-4]\right]$.
$10 \cdot 10$

n	$\leqslant-1$	0	1	2	3	4	5	6	$\geqslant 7$	$\ldots 0^{n} y[n]^{3}$
$y[n]$	0	1	2	3	4	3	2	1	0	

b) $y[0]=x[0] h[0]=(1)(1)=1$
$y[1]=x[0] h[1]+h[0] x[1]=(1)(-1)+(1)(-1)=-2$
$y[2]=x[2] h[0]+x[1] h[1]+x[0] h[2]=1+1+1=3$
$y[3]=x[3] h[0]+x[2] h[1]+x[1] h[2]+x[0] h[3]=-1+(-1)$
$y[4]=x[3] h[1]+x[2] h[2]+x[1] h[3]$
$=(-1)(-1)+(1)(1)+(-1)(-1)=3$

Continued \rightarrow

10.10b, continued

$y[5]=x[3] h[2]+x[2] h[3]=(-1)(1)+(1)(-1)=-2$
$y[6]=x[3] \ln [3]=(-1)(-1)=1$
10.11 (a) The input gets convolved first with $h_{1}[n]$ and then with $h_{2}[n]$ so impulse response is $\left(\delta[n] * h_{1}[n]\right) * h_{2}[n]=h_{1}[n] * h_{2}[n]$ (because $\left.\delta[n] * h[n]=h[n]\right)$.

$$
h_{1}[n] * h_{2}[n]=\sum_{k=-\infty}^{\infty}(0.6)^{k} u[k](0.6)^{n-k} u[n-k]
$$

If $n<0$ there are no nonzero terms in the sum and so it is 0 .
If $n \geq 0$:

$$
\begin{aligned}
& =\quad \sum_{k=0}^{n}(0.6)^{k}(0.6)^{n-k} \\
& =\quad(0.6)^{n} \sum_{k=0}^{n} 1 \\
& =\quad(0.6)^{n}(n+1)
\end{aligned}
$$

Therefore $h[n]=(0.6)^{n}(n+1) u[n]$.
(b)

$$
h_{1}[n] * h_{2}[n]=\delta[n+2] * \delta[n+2]=\delta[n+4]
$$

because $\delta\left[n+n_{0}\right] * x[n]=x\left[n+n_{0}\right]$ for any $x[n]$ and in this case we take $n_{0}=2$ and $x[n]=\delta[n+2]$ (giving $\delta[n+2] * x[n]=x[n+2]=\delta[n+4])$.
(c) $h_{1}[n] * h_{2}[n]=\ldots+h_{1}[-2] h_{2}[n+2]+h_{1}[-1] h_{2}[n+1]+h_{1}[0] h_{2}[n]+\ldots$, but only $h_{1}[-2]=1$ (and $h_{1}[k]=0$ for $k \neq-2$), so we have that

$$
\begin{aligned}
h_{1}[n] * h_{2}[n]=h_{1}[-2] h_{2}[n+2] & =0, n \neq-4 \\
& =1, n=-4
\end{aligned}
$$

which is the definition of the function $\delta[n+4]$.
continued \rightarrow

10.11, continued

(d)

$$
\begin{aligned}
h_{1}[n] * h_{2}[n] & = & \sum_{k=-\infty}^{\infty}(u[k]-u[k-3])(u[n-k]-u[n-k-3]) \\
& = & \sum_{k=0}^{2} u[n-k]-u[n-k-3]
\end{aligned}
$$

$u[n-k]-u[n-k-3]=1$ for $n-3<k \leq n:$

$$
\begin{array}{rlr}
h_{1}[n] * h_{2}[n] & = & 0, n<0 \\
& = & 1, n=0 \\
& = & 2, n=1 \\
& = & 3, n=2 \\
& = & 2, n=3 \\
& = & 1, n=4 \\
& =0, n-3 \geq 2 \Longrightarrow n \geq 5
\end{array}
$$

10.12 (a) Causal since $h[n]=0$ for $n<0$.
(b) Stable since $\sum_{n=-\infty}^{\infty}\left|(0.9)^{n} u[n]\right|=\sum_{n=0}^{\infty} 0.9^{n}=\frac{1}{1-0.9}<\infty$.
(c)

$$
\begin{aligned}
& y[n]=u[n] *(0.9)^{n} u[n]= \\
& \sum_{k=-\infty}^{\infty} u[k] 0.9^{n-k} u[n-k] \\
&=u[n] \sum_{k=0}^{n} 0.9^{n-k}=0.9^{n} \frac{1-0.9^{-(n+1)}}{1-0.9^{-1}} u[n] \\
&= \\
& \frac{0.9^{n}-\frac{1}{0.9}}{1-\frac{1}{0.9}} u[n]=\frac{1-0.9^{n+1}}{1-0.9} u[n]
\end{aligned}
$$

(d)

```
>>x=ones(1,100); % the more terms we include, the more accurate
>>n=0:99;
>>h=0.9. nn;
>>y=conv(x,h);
>>y(1:4) %index i corresponds to n=i-1 so this gives y[n] for n=0,1,2,3
ans =
```

1.00001 .90002 .71003 .4390
>>y=(1-0.9.^(n+1))/(1-0.9); \% analytical result
>>y (1:4)
ans =
1.00001 .90002 .71003 .4390

Note that the signals $u[n]$ and $0.9^{n} u[n]$ go on forever so we had to truncate them in MATLAB. The more terms we include, the more accurate our result.

Continued \rightarrow

10.12, continued

(e) Not causal since >0 for some (all) $n<0$.

Stable since $\sum_{k=-\infty}^{0} 3^{n}=\sum_{k=0}^{\infty} \frac{1}{3}^{n}=\frac{1}{1-\frac{1}{3}}$.

$$
u[n] *(3)^{n} u[-n]=\sum_{k=0}^{\infty} 3^{n-k} u[-(n-k)]
$$

Note that $u[-n+k]=0$ if $k<n$.
Therefore if $n \geq 0$ the sum starts at n :

$$
\begin{aligned}
& =3^{n} \sum_{k=n}^{\infty} \frac{1}{3}^{k}=3^{n} \frac{\frac{1}{3}^{n}}{1-\frac{1}{3}} \\
& =
\end{aligned}
$$

If $n<0$ the sum starts at 0 :

$$
\begin{array}{lc}
=3^{n} \sum_{k=0}^{\infty} \frac{1}{3}^{k}=3^{n} \frac{1}{1-\frac{1}{3}} \\
= & 3^{n}\left(\frac{3}{2}\right)
\end{array}
$$

So $y[n]=\frac{3}{2} u[n]+3^{n} \frac{3}{2} u[-n-1]$.
In MATLAB: $\gg x=[z e r o s(1,99)$, ones $(1,100)] ; \% \mathrm{u}[\mathrm{n}]$ from $\mathrm{n}=-99$ to $\mathrm{n}=99$ $\gg h=[3 . \wedge(-99: 1: 0), \operatorname{zeros}(1,99)] ; \% 3$. $n \mathrm{n} u[-n]$
>>y=conv(x, h);
>>y (99+99+1:99+99+3+1) $\% 99+99+1$ corresponds to $\mathrm{n}=0$
ans $=$
1.50001 .50001 .50001 .5000
(f) Not causal, not stable, response to $u[n]$ is ∞.
(g) Causal, not stable, infinite response to $u[n]$.

$$
\begin{array}{rl}
10.13 & f[n] * g[n]=\sum_{m=-\infty}^{\infty} f[m] g[n-m]=e[n] \\
f[n] & * g[n] * h[n]=\sum_{k=-\infty}^{\infty} e[k] h[n-k] \\
= & \sum_{k=-\infty}^{\infty}\left[\sum_{m=-\infty}^{\infty} f[m] g[k-m]\right] h[n-k] \\
= & \sum_{m=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty} g[k-m] h[n-k]\right] f[m] \text { let } k-m=p \\
\Rightarrow & \sum_{m=-\infty}^{\infty}\left[\sum_{p=-\infty}^{\infty} g[p] h[n-m-p]\right] f[m] \text { or } k=m+p \\
\Rightarrow & \sum_{m=-\infty}^{\infty}\left[\sum_{q=\infty}^{\infty} g[n-q] h[q-m]\right] f[m] \text { or } p=n-q-p \\
= & \sum_{q=-\infty}^{\infty}\left[\sum_{m=-\infty}^{\infty} f[m] h[q-m]\right] g[n-q] \\
& =f[n] * h[n] * g[n]
\end{array}
$$

10.14
(a) $h[n]=0.5 \delta[n-1]+0.7 \delta[n]$.
(b) Yes causal-output only depends on past and present (or, simply note that $h[n]=0, n<0$).
(c) $x[n]=u[n+1]$,

$$
y[n]=0.5(u[n])+0.7(u[n+1])
$$

Continued \rightarrow

10.14, continued

(d) Total response is $h[n]+\delta[n-1] *(-h[n])=h[n]-h[n-1]$
$=0.5 \delta[n-1]+0.7 \delta[n]-(0.5 \delta[n-2]+0.7 \delta[n-1])$
$=0.7 \delta[n]-0.2 \delta[n-1]-0.5 \delta[n-2]$
(e)

$$
\begin{aligned}
y[n]=h[n] * x[n] & =0.7 x[n]-0.2 x[n-1]-0.5 x[n-2] \\
& =0.7 u[n+1]-0.2 u[n]-0.5 u[n-1]
\end{aligned}
$$

10.15
(a) Yes linear: $a x_{1}[n]+b x_{2}[n] \rightarrow e^{n}\left(a x_{1}[n]+b x_{2}[n]\right)=a e^{n} x_{1}[n]+b e^{n} x_{2}[n]=a y_{1}[n]+b y_{2}[n]$
(b) Not time-invariant: $x\left[n-n_{0}\right] \rightarrow e^{n} x\left[n-n_{0}\right]$ but $y\left[n-n_{0}\right]=e^{n-n_{0}} x\left[n-n_{0}\right]$.
(c) $h[n]=e^{n} \delta[n]=e^{0} \delta[n]=\delta[n]$
(d) The response to $\delta[n-1]$ is $e^{n} \delta[n-1]=e^{1} \delta[n-1]$
(e) No it is not sufficient to describe a timevarying system completely by $h[n]$ because, as this case shows, the response to a delayed impulse might not be a delayed version of $h[n]$ but something else. Therefore we can't express the output of the system for any input just as a sum of weighted delayed $h[n]$ functions. However, it is sufficient to describe the system in terms of $h[n, m]$, the response of the system to $\delta[n-m]$.

10.16

(a) causal, unstable
(b) noncausal, unstable
(c) causal, unstable
(d) noncausal, unstable
(e) causal,stable
(f) causal, stable
$10.17 \quad y[n]=\sum_{0}^{\infty} e^{-2 k} x[n-k]$
a) let $x[n]=\delta[n]$

Then $h[n]=\sum_{k=0}^{\infty} e^{-2 k} \delta[n-k]=\sum_{0}^{\infty} e^{-2 n} \delta[n-k]$
b) Causal sInce $\ln [n]=0$, $n<0$
c) Stable since $\sum_{k=-\infty}^{\infty}|h[k]|=\sum_{k=0}^{\infty} e^{-2 n}=\frac{1}{1-e^{-2}}<\infty$
d) $y[n]=\sum_{k=-\infty}^{n} e^{-2(n-k)} x[k-1]$

$$
\begin{aligned}
& \text { a) } h[n]=\sum_{k=-\infty}^{n} e^{-2(n-k)} \delta[k-1]=\left\{\begin{array}{l}
0, n<1 \\
\therefore \quad \\
\left.e^{-2(n-1)}, n \geqslant n\right]=e^{-2(n-1)} u[n-1]
\end{array}, \$ 1\right.
\end{aligned}
$$

b) Causal, since $h[n]=0>n<0$
c)

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty}|h[k]| & =\sum_{k=1}^{\infty} e^{-2(n-1)}=e^{2} \sum_{k=1}^{\infty} e^{-2 n}=\frac{e^{2} e^{-2}}{1-e^{-2}} \\
& =\frac{1}{1-e^{-2}}<\infty \therefore \text { Stable }
\end{aligned}
$$

10.18
(a) $h[n]=\delta[n+7]+\delta[n-7]$
(b) $h[n]=\sum_{k=-\infty}^{n-3} \delta[k]+\sum_{k=n}^{\infty} \delta[k-2]$

If $n<3, \sum_{k=-\infty}^{n-3} \delta[k]=0$; if $n \geq 3, \sum_{k=-\infty}^{n-3} \delta[k]=1$.
If $n>2, \sum_{k=n}^{\infty} \delta[k-2]=0$; if $n \leq 2, \sum_{k=n}^{\infty} \delta[k-2]=1$.
Therefore $h[n]=u[n-3]+u[-n+2]$. We can show that convolving $h[n]$ with some input $x[n]$ is equivalent to the sum equation given for $y[n]$:

$$
x[n] * u[n-3]=\sum_{k=-\infty}^{\infty} x[k] u[n-k-3]=\sum_{k=-\infty}^{n-3} x[k] x[n] * u[2-n]=\sum_{k=-\infty}^{\infty} x[k] u[2-(n-k)]=\sum_{n-2}^{\infty} x[k]
$$

$10 \cdot 19$
a) (i)

$$
\begin{aligned}
& y[n]-5 / 6 y[n-1]=2^{n} u[n], y[-1]=0 \\
& z-5 / 6=0 \quad \therefore y_{c}[n]=c(5 / 6)^{n} \\
& y_{p}[n]=P(2)^{n} \\
& P 2^{n}-5 / 6 P 2^{n-1}=2^{n} \\
& 2 P-5 / 6 P=2 \rightarrow \not / 6 P=2 \Rightarrow P=\frac{12}{7}
\end{aligned}
$$

$$
y[n]=c(5 / 6)^{n}+12 / 7\left(2^{n}\right)
$$

$$
y[-1]=0=c(5 / 6)^{-1}+\frac{12}{7}\left(2^{-1}\right) \quad 6 / 5 c+6 / 7=0
$$

$$
\therefore y[n]=-5 / 7(5 / 6)^{n}+(12 / 7) 2^{n} \quad \therefore c=-5 / 7
$$

$$
\begin{gathered}
\text { b) } y[-1]=-5 / 7(6 / 5)+(12 / 7)(1 / 2)=-6 / 7+6 / 7=0 \\
n>0 \quad y[n]-5 / 6 y[n-1]=-5 / 7(5 / 6)^{2}+12 / 72^{n}+5 / 6(5 / 7)(5 / 6)^{n-1} \\
-5 / 6(12 / 7)^{n-1}=-5 / 7(5 / 6)^{n}+12 / 72^{n}+5 / 7(5 / 6)^{n}-5 / 72^{n} \\
=2^{n}
\end{gathered}
$$

Continued \rightarrow
10.19, continued
(ii) $y_{c}[n]=C(\cdot 7)^{n}$
a)

$$
\begin{aligned}
& y_{p}[n]=p e^{-n} \therefore p e^{-n}-.7 p e^{-(n-1)}=p e^{-n}[1-.7 e] \\
&=p e^{-n}[-.903]=e^{-n} \\
& \Rightarrow p=-1.108 \\
& \therefore y[n]=c(.7)^{n}-1.108 e^{-n}
\end{aligned} \begin{aligned}
& y[-1]=0=\frac{c}{.7}-1.108 e \Rightarrow \\
& \therefore y[n]=-1.108 e^{-n}+2.108(.7)^{n}, n \geqslant-1
\end{aligned}
$$

b)

$$
\begin{gathered}
y[-1]=-1.108 e^{-1}+2.108(.7)^{-1}=-3.012+3.01=0 V \\
y[n]-.7 y[n-1]=-1.108 e^{-n}+2.108(.7)^{n} \\
\quad-.7\left[-1.108 e^{-(n-1)}+2.108(.7)^{n-1}\right]=-1.108 e^{-n} \\
+2.108(.7)^{n}+2.108 e^{-n}-2.108(.7)^{n}=e^{-n}
\end{gathered}
$$

(iii)

$$
\text { iii) } \begin{aligned}
& y[n]+3 y[n-1]+2 y[n-2]=3 u[n] \\
& y[-1]=0, y[-2]=0 \\
& z^{2}+3 z+z=(z+2)(z+1) \\
& \therefore y_{c}[n]=c_{1}(-2)^{n}+c_{2}(-1)^{n} \quad y_{p}[n]=p \\
& \therefore \\
& \hline p+3 p+2 p=3 \Longrightarrow 6 p=3 \rightarrow p=1 / 2 \\
& \therefore y[n]=1 / 2+c_{1}(-2)^{n}+c_{2}(-1)^{n}
\end{aligned}
$$

use initial conditions to solve for $c_{1} \& c_{2}$.

$$
\begin{aligned}
& y[-1]=0=1 / 2+c_{1}(-1 / 2)+c_{2}(-1) \\
& y[-2]=0=1 / 2+c_{1}(1 / 4)+c_{2}
\end{aligned} \Rightarrow \begin{aligned}
& c_{1}=4 \\
& c_{2}=-3 / 2
\end{aligned}
$$

$$
\therefore y[n]=1 / 2+4(-2)^{n}-3 / 2(-1)^{n}
$$

$$
\text { b) } \left.\begin{array}{rl}
y[-1]=1 / 2 & +4(-2)^{-1}-3 / 2(-1)^{-1}-1 / 2+(-4 / 2)+3 / 2=0 \\
y[-2]=1 / 2 & +4(-2)^{-2}-3 / 2(-1)^{-2}=1 / 2+4 / 4-3 / 2=0 \\
y[n] & +3 y[n-1]+2 y[n-2]=1 / 2+4(-2)^{n}-3 / 2(-1)^{2} \\
+ & 3 / 2
\end{array}+12(-2)^{n-1}-9 / 2(-1)^{n-1}+1+8(-2)^{n-2}\right)
$$

10.20
(i) (a) mode is $(-0.6)^{n}$; (b) natural response is $y_{c}[n]=C(-0.6)^{n}$
(ii) (a) $z^{2}+1.5 z-1=(z-0.5)(z+2)$, modes are 0.5^{n} and $(-2)^{n}$; (b) natural response is $C_{1}(0.5)^{n}+C_{2}(-2)^{n}$
(iii) (a) $(z-j)(z+j)=0$, modes are $(j)^{n}=e^{j \frac{\pi}{2} n}$ and $(-j)^{n}=e^{-j \frac{\pi}{2} n}$; (b) natural response (in real form) is $C \cos \left(\frac{\pi}{2} n+\beta\right)$.
(iv) (a) $(z-0.7)(z-3)(z+0.2)=0$, modes $(0.7)^{n}, 3^{n},(-0.2)^{n}$; (b) natural response is $C_{1}(0.7)^{n}+$ $C_{2} 3^{n}+C_{3}(-0.2)^{n}$.
(v) (a) modes are $0.5^{n}, n 0.5^{n}$, and $n^{2} 0.5^{n}$; (b) natural response is $C_{1} 0.5^{n}+C_{2} n 0.5^{n}+C_{3} n^{2} 0.5^{n}$.
(vi) (a) modes are $0.5^{n}, 1.5^{n},(-0.7)^{n}$; (b) natural response is $C_{1} 0.5^{n}+C_{2} 1.5^{n}+C_{3}(-0.7)^{n}$.
10.21 Stable if all roots of characteristic eqn. are inside the unit circle:
(i) $z=-0.6$, stable;
(ii) $z=0.5,2$, unstable since 2 outside unit circle;
(iii) $z= \pm j$, unstable since $\pm j$ outside unit circle;
(iv) $z=0.7,3,-0.2$, unstable since 3 outside unit circle;
(v) $z=0.5$, stable;
(vi) $z=0.5,1.5,-0.7$, unstable since 1.5 outside unit circle

(b)

$$
\begin{aligned}
& y[n]=0.7 y[n-1]+2.5 x[n]-x[n-1] \\
& y[0]=0+2.5(1)-0=2.5 \\
& y[1]=0.7(2.5)+0-1=0.75 \\
& y[2]=0.7(0.75)+0-0=0.5250 \\
& y[3]=0.7(0.5250)=0.3675 \\
& y[4]=0.7(0.3675)=0.2573
\end{aligned}
$$

(c)

$$
\begin{array}{ll}
W[\Delta]=2.5 & y[0]=2.5 \\
W[1]=1 & y[1]=-1+0.7(2.5)=0.75 \\
W[2]=0 & y[2]=0.7(0.75)=0.5250 \\
W[3]=0 & y[3]=0.7(0.5250)=0.3675 \\
W[4]=0 & y[4]=0.7(0.3625)=0.2573
\end{array}
$$

(d) $y[n]=h[n+2]-3 h[n]+2 h[n-1]$
(e)

$$
\begin{aligned}
& y[-3]=h[-1]-3 h[-3]+2 h[-4]=0 \\
& y[-1]=h[1]-0+0=0.75 \\
& y[1]
\end{aligned}=h[3]-3 h[1]+2 h[0] \quad \begin{aligned}
& y[1] \\
&=0.3625-3(0.75)+2(2.5)=3.118
\end{aligned}
$$

(d)

(e)

$10.24(a) 2 z^{2}-z+4=2\left(z^{2}-0.5 z+2\right)=2\left(z-z_{1}\right)\left(z-z_{2}\right)$
$\therefore\left(z_{1} z_{2}\right)=2$, and at least one noot is greaten than usicty-not stalk
(b) $\left(z^{2}-5 z+1\right)=(z-4.79)(z-0.21)$ not stable

$$
\begin{array}{r}
\text { (c) } z^{3}-2 z^{2}+3 z-5=\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right) \\
\therefore\left(z_{1} z_{2} z_{3}\right)=5-\text { noz stable (sec (a) }
\end{array}
$$

(d) stable by mapection (no feedloach)

```
(e) }\mp@subsup{z}{}{2}-1.8z+0.9=(z-0.949118.40)(z-0.949/-18.40) stabl
    n=[[2 -1 4];
    roots(n)
    pause
    n=[\begin{array}{lll}{1}&{-5 1];}\end{array}]
    roots(n)
    pause
    n=[\begin{array}{llll}{1}&{-2}&{3}&{-5}\end{array}];
    roots(n)
    pause
    n=[1 -1.8 .9];
    roots(n)
```

10.25.(a)

$$
y[n]-1.5 y[n-1]+0.9 y[n-2]=2 x[n]-3 x[n-1]+4 x[n-2]
$$

(b) form II
10.26. $y[n]-0.9 y[n-1]=2 x[n]-1.9 y[n-1]$
(a)

(c)

$$
\begin{aligned}
& y[0]=0.9(0)+2-0=2 \\
& z-0.9=0 \Rightarrow y_{c}[n]=c(0.9)^{n} \\
& y_{p}[n]=P(0.8)^{n} \Rightarrow P(0.8)^{n}-\frac{0.9}{0.8} P(0.8)^{n} \\
& =(P-1.125 P)(0.8)^{n}=(2-2.315)(0.8)^{n} \Rightarrow P=3 \\
& \therefore y[n]=3(0.8)^{n}+c(0.9)^{n} \\
& y[0]=2=3+c \Rightarrow c=-1 \text { and } y[n]=3(0.8)^{n}-(0.9)^{n}
\end{aligned}
$$

Forexample: $y[5]=3(0.8)^{5}-(0.9)^{5}=0.3926$ checks $M A T L A B$
(d)

```
y(1)=2;
y(n=1:5.9*y(n)+2*((.8)^n)-1.9*((.8)^(n-1));
y
```

10.27.(a) $y[n]-0.9 y[n-1]=x[n]-x[n-1]$
(b)

(d) $x[n]=(0.7)^{n} u[n]$
(e)

$$
\begin{aligned}
& z-0.9=0 \Rightarrow y_{c}[n]=(10.9)^{n} ; y_{p}[n]=P(0.7)^{n} \\
& P(0.7)^{n}-\frac{0.9}{0.7} P(0.7)^{n}=(0.7)^{n}-\frac{1}{0.7}(0.7)^{n} \Rightarrow P=1.5
\end{aligned}
$$

$10.27(e) \quad=\gamma[n]=C(.9)^{n}+(1.5)(.7)^{n}$
cont $y[0]=0=C+1.5 \Rightarrow c=-1.5$
$\therefore y[n]=1.5\left[(.7)^{n}-(.9)^{n}\right]$

$$
\begin{array}{ll}
y[0]=0 & y[2]=-.48 \\
y[1]=-.3 & y[3]=-.579
\end{array}
$$

10.28
(a) $y[n]-0.9 y[n-1]=x[n]-x[n-1]$
(b) $y_{p}[n]=P(1)^{n}=P$; need $P-0.9 P=1-1=0 \Longrightarrow P=0 \Longrightarrow y_{p}[n]=0$.
(c) $H(z)=\frac{1-z^{-1}}{1-0.9 z^{-1}}=\frac{z-1}{z-0.9}$
(d) $Y(z)=H(z) X(z)=\frac{z-1}{z-0.9} \frac{z}{z-1}=\frac{z}{z-0.9}$ so $y[n]=(0.9)^{n} u[n]$ and $y_{p}[n]=\lim _{n \rightarrow \infty} y[n]=0$.
(e) In the second statement, replace the statement $x(n)=0.7^{\wedge}(n-1)$ with $x(n)=1$ (or replace entire second line with $x=o n e s(1,6))$.
(f) $\gg y(1)=0, x(1)=0$; \%first index corresponds to $n=-1$
\gg for $n=2: 6$; $x(n)=1$; end
\gg for $n=2: 6 \%$ indices $2-6$ correspond to $n=0$ to 4
$y(n)=0.9 * y(n-1)+x(n)-x(n-1) ;$
end
>>y
ans=
$\begin{array}{llllll}0 & 1.0000 & 0.9000 & 0.8100 & 0.7290 & 0.6561\end{array}$
$\gg n=0: 4 ; 0.9{ }^{\wedge} n$
ans=
$1.0000 \quad 0.90000 .81000 .72900 .6561$
The result matches $y(n)=0.9^{n}$ which is the natural response only (which decays to 0). There is no nondecaying particular response.

$$
\begin{aligned}
& 10.29 a) y[n]-.7 y[n-1]=x[n] \\
& y(z)-.7 z^{-1} y(z)=x(z) \\
& y(z)\left[1-.7 z^{-1}\right]=x(z) \\
& H(z)=\frac{y(z)}{x(z)}=\frac{1}{1-.7 z^{-1}}=\frac{z}{z-.7}
\end{aligned}
$$

b) $x[n]=\cos (n) u[n]=\cos (\Omega n) u[n] \therefore \Omega=1$

$$
\begin{aligned}
& \cos \Omega_{n} \rightarrow(1)\left|H\left(e^{j \Omega}\right)\right| \cos \left(\Omega_{n}+\theta 4\right) \\
& \left.\quad e^{j \Omega}\right|_{\Omega=1}=e^{j}=\cos 1+j \sin 1=.54+.841 j \\
& \therefore H\left(e^{j}\right)=\frac{-54+.841 j}{.54+j .841-.7}=\frac{1 \angle 57.3^{\circ}}{856 \angle 100.8^{\circ}}=1.168 \angle-43.5 \\
& \therefore y_{S S}[n]=1.168 \cos \left(n-43.5^{\circ}\right)
\end{aligned}
$$

d) $y_{s s}[n]-.7 y_{s s}[n-1]=1.168 \cos \left(n-43.5^{\circ}\right)$

$$
-.7(1.168) \cos \left(n-43.5^{\circ}-57.3^{\circ}\right)
$$

$=.847 \cos n+.804 \sin n+.153 \cos n$
. $803 \operatorname{tin} \approx \cos n$
10.30
(a) Need $|b|<1$;
(b) $a^{-n} u[n] * b^{n} u[n+6]=\sum_{k=-\infty}^{\infty} a^{-k} u[k] b^{n-k} u[n-k+6]=\sum_{k=0}^{\infty} a^{-k} b^{n-k} u[n-k+6]$ $=u[n-6] \sum_{k=0}^{n-6} a^{-k} b^{n-k}$. Since this is a finite sum for a fixed n, there is no restriction or apb for it to be finite.
(c) $a^{n} u[n-3] * u[-n-4]=\sum_{k=3}^{\infty} a^{k} u[-(n-k)-4]$ The term $u[-(n-k)-4]=1$ when $k \geq n+4$. Therefore the sum starts at the value of k where both $k>n+4$ and $k>0$: $=\sum_{k=\max (3, n+4)}^{\infty} a^{k}$. The sum to ∞ requires $|a|<1$ to converge.
(d) $a^{n} u[-n] * b^{n} u[-n-6]=\sum_{k=-\infty}^{0} a^{k} b^{n-k} u[-(n-k)-6]$ The term $u[-(n-k)-6]=u[k-(n+6)]$ is 0 if $k<n+6$, so the sum goes from $k=n+6$ to 0 or is 0 if $n+6>0$. So the sum is finite and will always converge for any a, b.
10.31 It is not linear, by the following reasoning: note that $x_{3}[n]=x_{1}[n]+x_{2}[n-1]$. A linear system must therefore satisfy $y_{3}[n]=y_{1}[n]+y_{2}[n-1]$ (because we know it's time invariant so that $x_{2}[n-1] \rightarrow y_{2}[n-1]$). But $y_{1}[n]+y_{2}[n-1]=2 \delta[n+1]+2 \delta[n]+2 \delta[n-1]+(2 \delta[n-1]-2 \delta[n-2])=2 \delta[n+1]+2 \delta[n]+4 \delta[n-1]-2 \delta[n-2]$. This is not equal to $y_{3}[n]$ in this case, so the system must not be linear.
10.32 It is not linear; note that $x_{2}[n]=x_{1}[n+2]+x_{1}[n]$, and since the system is time-invariant it requires that input $x_{1}[n+2]$ has output $y_{1}[n+2]$. So if the system were linear that would imply that $x_{1}[n+2]+x_{1}[n] \rightarrow y_{1}[n+2]+y_{1}[n]=2 \delta[n]+4 \delta[n-1]+2 \delta[n-2]=4 \delta[n-3]$. However, this is not equal to $y_{2}[n]$ in this case so the system can't be linear.
11.1
(a) $\sum_{n=0}^{\infty}(0.3)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{0.3}{z}\right)^{n}=\frac{1}{1-\frac{0.3}{z}}=\frac{z}{z-0.3}$ (with ROC $|z|>0.3$) (can also get by using Table 11.1 or 2).
(b) $\sum_{n=0}^{\infty}\left(0.2^{n}+2(3)^{n}\right) z^{-n}=\sum_{n=0}^{\infty}\left(\frac{0.2}{z}\right)^{n}+\sum_{n=0}^{\infty} 2\left(\frac{3}{z}\right)^{n}=\frac{z}{z-0.2}+2 \frac{z}{z-3}=\frac{z(z-3)+2 z(z-0.2)}{(z-0.2)(z-3)}=$ $\frac{3 z^{2}-3.4 z}{z^{2}-3.2 z+0.6}$ (with ROC $|z|>3$) (can also get by using Table 11.1 or 2 and linearity of z transform). (c) $\mathcal{Z}\left[3\left(e^{-.7}\right)^{n}\right]=\frac{3 z}{z-e^{-.7}}$ (from Table 11.1 or 2) with ROC $|z|>e^{-.7}$.
(d) $\mathcal{Z}\left[5\left(e^{-j 0.3}\right)^{n}\right]=\frac{5 z}{z-e^{-j 0.3}}$ (from Table 11.1 or 2) with ROC $|z|>e^{-j 0.3}$.
(e) $\mathcal{Z}[5 \cos (3 n)]=5 \frac{z(z-\cos (3))}{z^{2}-2 z \cos (3)+1}$ (from Table 11.2 entry 10) with ROC $|z|>1$.
(f) $\mathcal{Z}\left[\left(e^{-.7}\right)^{n} \sin (0.5 n)\right]=\frac{e^{-.7} z \sin (0.5)}{z^{2}-2 e^{-.7} z \cos (0.5)+e^{-1.4}}$ (from Table 11.2 entry 11) with ROC $|z|>e^{-.7}$.
$11.2 \quad t=n T=0.05 n$
a) $2 e^{-2 t}$ or $z\left[2 e^{-2(\cos n}\right]=z\left[2 e^{-0 / n}\right]=\frac{2 z}{z-e^{-1}}$

$$
=\frac{2 z}{z-.905}
$$

b) $z\left[2 e^{. .1 n}+2 e^{55 n}\right]=\frac{2 z}{z-e^{.1}}+\frac{2 z}{z-e^{.05}}=$

$$
\frac{2 z}{z-.905}+\frac{2 z}{z-1.05}
$$

c) $z\left[2 e^{-.2(.05) n}\right]=z\left[2 e^{-.01 n}\right]=\frac{2 z}{z-.905}=\frac{2 z}{z-.99}$
d) $z\left[5 e^{-.5 j(.05) n}\right]=z\left[5 e^{-.025 j n}\right]=\frac{5 z}{z-e^{-.025 j}}=\frac{5 z}{z-.9497+.025 j}$
11.2, continued
e)

$$
\text { e) } \begin{aligned}
& z[5 \cos (.05 n)]=\frac{5 z(z-\cos .05)}{z^{2}-2 z \cos .05+1}=\frac{5 z^{2}-4.99 z}{z^{2}-1.998 z+1} \\
\text { f) } & z\left[5 e^{-.05 n} \cos (.05 n)\right]=\frac{5 z\left[z-\left(e^{-.05}\right) \cos .05\right]}{z^{2}-2\left(e^{-.05}\right) \cos .05 z+\left(e^{-.05}\right)^{2}} \\
= & \frac{5 z^{2}-4.75}{z^{2}-1.9 z+.905}
\end{aligned}
$$

11.3 a) $x_{a}[n T]=e^{-5(.2) n}=e^{-n}=\left(e^{-1}\right)^{n}=(.3679)^{n}$
b) $x_{b}[n T]=e^{-n}=(.3679) n$
c) The value of the two signals ane equal at each sample instant.
d) $e^{-a n T}=\left(e^{-a T}\right)^{n}=\left(e^{-1}\right)^{n} \therefore a T=1$
(i) $a=1 / 2, T=2$ (ii) $a=2, T=1 / 2$
11.4
(a) (i) $x=\left.F(z)\right|_{z=1}$ where $F(z)=\mathcal{Z}\left[0.3^{n}\right]=\frac{z}{z-0.3}$ so $\left.F(z)\right|_{z=1}=\frac{1}{1-0.3}=\frac{1}{0.7}$.
(ii) $x=\left.F(z)\right|_{z=1}$ where $F(z)=\mathcal{Z}\left[0.3^{n} u[n-5]\right]$. Note that $F(z)=0.3^{5} z^{-5} \frac{z}{z-0.3}$ so $x=\frac{0.3^{5}}{1-0.3}=\frac{0.3^{5}}{0.7}$.
(b) $x=\left.\mathcal{Z}\left[0.5^{n} \cos (0.1 n)\right]\right|_{z=1}=\left.\frac{z(z-0.5 \cos (0.1))}{z^{2}-2(0.5) z \cos (0.1)+(0.5)^{2}}\right|_{z=1}=\frac{1-0.5 \cos (0.1)}{1-\cos (0.1)+0.25}=1.97$.
11.5
a) $z[A \cos \Omega n]=\frac{A z(z-\cos \Omega)}{z^{2}-2 \cos \Omega z+1}=\frac{3 z(z-.6967)}{z^{2}-1.393 z+1}$

$$
\therefore A=3 ; \cos \Omega=.6967 \Rightarrow \Omega=45.84^{\circ}=.8 \mathrm{rad}=\Omega
$$

b) $A=3 ; \cos s_{n}=\cos (\omega T) n, \therefore w(.0001)=.8$

$$
\therefore \omega=8000
$$

11.6
(a) $f[\infty]=\lim _{z \rightarrow 1}(z-1) \frac{z}{(z-1)(z-2)}=\frac{1}{1-2}=-1$.
(b) $F(z)=\frac{z}{(z-1)(z-2)}$

We assume $f[n]$ is causal to get the inverse transform.
Partial fractions: $\frac{F(z)}{z}=\frac{1}{(z-1)(z-2)}=\frac{-1}{z-1}+\frac{1}{z-2}$
So $F(z)=\frac{-z}{z-1}+\frac{z}{z-2}$
Taking inverse transform: $f[n]=-u[n]+(2)^{n} u[n]$

$$
f[\infty]=\lim _{n \rightarrow \infty}-u[n]+(2)^{n} u[n]=-1+\infty=\infty
$$

(c) The final value property doesn't apply when $\lim _{n \rightarrow \infty} f[n]=\infty$ (ie., when there is a pole outside the unit circle and $f[n]$ causal).
11.7
(a) Using property 5 in Table 11.4 (multiplication by n), $\mathcal{Z}\left[n 3^{n}\right]=-z \frac{d F(z)}{d z}=-z \frac{-3}{(z-3)^{2}}=$ $\frac{3 z}{(z-3)^{2}}$
(b) Table 11.2 (entry 7) gives $\mathcal{Z}\left[n 3^{n}\right]=\frac{3 z}{(z-3)^{2}}$
11.8 a) $z[y[n-3] u[n-3]]=z^{-3} y(z)=\frac{1}{z^{3}-3 z^{2}+5 z-9}=Y_{1}(z)$

$$
\text { b) } \begin{gathered}
z[y[n+3] u[n]]=z^{3}\left[y(z)-y[0]-y[1] z^{-1}-y[2] z^{-2}\right] \\
z^{3}-3 z^{2}+5 z-9 f+z^{3}+4 z^{-2}+6 z^{-3}+\cdots \\
\therefore y[0]=1, y[1]=3, y[2]=4 \\
\therefore z[y[n+3] u[n]]=z^{3}\left[\frac{z^{3}}{z^{3}-3 z^{2}+5 z-9}-1-\frac{3}{z}-\frac{4}{z^{2}}\right] \\
=\frac{6 z^{3}+7 z^{2}+36 z}{z^{3}-3 z^{2}+5 z-9}=Y_{2}(z)
\end{gathered}
$$

c) $y[0]=1, y[3]=6 \quad \operatorname{from}(b)$
$y_{1}[3]=1$, by inspection in a
$y_{i}[0]=6$, by inspection in b
d)

$$
\begin{aligned}
& y_{1}[3]=\left.y[n-3] u[n-3]\right|_{n=3}=y[0] \\
& y_{2}[0]=\left.y[n+3] u[n]\right|_{n=0}=y[3]
\end{aligned}
$$

11.9
(a) Time-scaling property: $\mathcal{Z}[f[n / 7]]=F\left(z^{7}\right)=\frac{z^{7}}{z^{7}-a}$
(b) Time-shifting property: $\mathcal{Z}[f[n-7] u[n-7]]=z^{-7} \frac{z}{z-a}=\frac{z^{-6}}{z-a}$

This can be verified by $\sum_{k=7}^{\infty} a^{(n-7)} z^{-n}=a^{-7} \sum_{k=7}^{\infty}\left(\frac{a}{z}\right)^{n}=a^{-7\left(\frac{a}{z}\right)^{7}} \frac{z^{-6}}{1-\frac{a}{z}}=\frac{z^{-6}}{z-a}$
(c) $\mathcal{Z}[f[n+3] u[n]]=\mathcal{Z}\left[a^{3} a^{n} u[n]\right]=a^{3} \frac{z}{z-a}$

This is verified by $\sum_{k=0}^{\infty} a^{n+3} z^{-n}=\sum_{k=0}^{\infty} a^{3}\left(\frac{a}{z}\right)^{n}=a^{3} \frac{1}{1-\frac{\pi}{z}}=a^{3} \frac{z}{z-a}$
(d) One method: $\mathcal{Z}\left[b^{2 n} f[n]\right]=\mathcal{Z}\left[\left(a b^{2}\right) u[n]\right]=\frac{z}{z-a b^{2}}$ (using entry 6 in Table 11.2)

Another method: using complex shifting: $\mathcal{Z}\left[b^{2 n} f[n]\right]=F\left(\frac{z}{b^{2}}\right)=\frac{\frac{z}{b^{2}}}{b^{2}-a}=\frac{z}{z-b^{2} a}$

11.10

(a)
(i) To get partial fractions for finding inverse transform: $\frac{X(z)}{z}=\frac{0.5 z}{(z-1)(z-0.5)}=\frac{1}{z-1}-\frac{0.5}{z-0.5}$
so $X(z)=\frac{z}{z-1}-\frac{0.5 z}{z-0.5}$
$x[n]=u[n]-0.5^{n+1} u[n]$
(ii) $\frac{X(z)}{z}=\frac{0.5}{(z-1)(z-0.5)}=\frac{1}{z-1}-\frac{1}{z-0.5}$

Continued \rightarrow

11.10a, continued

$X(z)=\frac{z}{z-1}-\frac{z}{z-0.5}$
$x[n]=u[n]-(0.5)^{n} u[n]$
(iii) $X(z)=\frac{1}{z-1}-\frac{1}{z-0.5}=z^{-1}\left(\frac{z}{z-1}-\frac{z}{z-0.5}\right)$ The z^{-1} implies a delayed version of the inverse transform of (ii): $x[n]=u[n-1]-(0.5)^{n-1} u[n-1]$

$$
\begin{aligned}
& \text { (iv) } \frac{X(z)}{z}=\frac{1}{\left(z-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)\left(z-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)} \\
& =\frac{1}{j \sqrt{3}} \frac{1}{z-\frac{1}{2}-j \frac{\sqrt{3}}{2}}-\frac{1}{j \sqrt{3}} \frac{1}{z-\frac{1}{2}+j \frac{\sqrt{3}}{2}} \\
& x[n]=\frac{1}{j \sqrt{3}}\left(\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)^{n} u[n]+\frac{-1}{j \sqrt{3}}\left(\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)^{n} u[n] \\
& =\frac{1}{j \sqrt{3}}\left(e^{j \pi / 3}\right)^{n} u[n]-\frac{1}{j \sqrt{3}}\left(e^{-j \pi / 3}\right)^{n} u[n] \\
& =\frac{1}{j \sqrt{3}}\left(e^{j n \pi / 3}-e^{-j n \pi / 3}\right) u[n]=\frac{2}{\sqrt{3}} \sin (\pi n / 3) u[n]
\end{aligned}
$$

Continued \rightarrow

11.10,continued

(b)
(i)
>>[r,p,k]=residue([0.5,0] , [1,-1.5, 0.5]) ;
r=1.0000,-0.5000
$\mathrm{p}=1.0000,0.5000$
k= []
(ii)
>>[r,p,k]=residue([0.5], [1,-1.5,0.5]);
$r=1,-1$
$\mathrm{p}=1.0000,0.5000$
k= []
(iii)
same expansion as (ii)
(iv)
>>[r, $\mathrm{p}, \mathrm{k}]=$ residue([1] , [1,-1, 1]);
r=0 - 0.5774i, $0+0.5774 i$
$\mathrm{p}=0.5000+0.8660 i, 0.5000-0.8660 i$
k= []
>>sqrt(3)/2
ans $=0.8660$
>>1/sqrt(3)
ans $=0.5774$

Continued \rightarrow

11.10 continued

(c)
(i) First nonzero values are at $n=0,1,2: x[0]=0.5, x[1]=0.75, x[2]=0.875$
(ii) First nonzero values are at $n=1,2,3: x[1]=0.5, x[2]=0.75, x[3]=0.875$
(iii) First nonzero values are at $n=2,3,4: x[2]=0.5, x[3]=0.75, x[4]=0.875$
(iv) First nonzero values are at $n=1,2,4: x[1]=\frac{2}{\sqrt{3}} \sin (\pi / 3)=1, x[2]=\frac{2}{\sqrt{3}} \sin (2 \pi / 3)=$ $1, x[3]=\frac{2}{\sqrt{3}} \sin (\pi)=0, x[4]=\frac{2}{\sqrt{3}} \sin (4 \pi / 3)=-1$.

Continued \rightarrow

(i)

$$
\begin{aligned}
z^{2}-1.5 z+0.5 & \frac{.5+.75 z^{-1}+.875 z^{-2}}{.5 z^{2}} \\
& \frac{\left(.5 z^{2}-.75 z+.25\right)}{-(75 z-.25} \\
& \frac{\left(.75 z-1.125+.375 z^{-1}\right)}{875-.375 z^{-1}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& z^{2}-1.5 z+0.5 \frac{.5 z^{-1}+.75 z^{-2}+.875 z^{-3}+\ldots}{.5 z}+\frac{\left(.5 z-.75+.25 z^{-1}\right)}{.75-.25 z^{-1}} \\
& \frac{-\left(.75-1.125 z^{-1}+.375 z^{-2}\right)}{.875 z^{-1}+.375 z^{-2}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& z^{2}-1.5 z+0.5 \sqrt{0.5 z^{-2}+0.75 z^{-3}+.875 z^{-4}+\ldots} \\
& \frac{\left(0.5-.75 z^{-1}+.25 z^{-2}\right)}{.75 z^{-1}-.25 z^{-2}} \\
&-\left(.75 z^{-1}-1.125 z^{-2}+.375 z^{-3}\right) \\
& z^{2}-z+1 \sqrt{z}+z^{-2}-z^{-4}+\ldots
\end{aligned}
$$

(iv)

$$
\begin{gathered}
z^{2}-z+1 \sqrt{z^{-1}+z^{-2}-z^{-4}+\ldots} \\
\frac{\left(z-1+z^{-1}\right)}{1-z^{-1}} \\
\frac{-\left(1-z^{-1}+z^{-2}\right)}{z^{-2}}
\end{gathered}
$$

11.10 continued

(e)
(i) $x[\infty]=\lim _{z \rightarrow 1} \frac{0.5 z^{2}}{z-0.5}=1$
(ii) $x[\infty]=\lim _{z \rightarrow 1} \frac{0.5 z}{z-0.5}=1$
(iii) $x[\infty]=\lim _{z \rightarrow 1} \frac{0.5}{z-0.5}=1$
(iv) $\lim _{n \rightarrow \infty} x[n]$ doesn't exist so final value property doesn't apply.
(f)
(i),(ii),(iii): $\lim _{n \rightarrow \infty} x[n]=\lim _{n \rightarrow \infty} u[n]=1$
(iv), limit doesn't exist
(g)
(i) $x[0]=\lim _{z \rightarrow \infty} \frac{0.5 z^{2}}{(z-1)(z-0.5)}=0.5$
(ii) $x[0]=\lim _{z \rightarrow \infty} \frac{0.5 z}{(z-1)(z-0.5)}=0$
(iii) $x[0]=\lim _{z \rightarrow \infty} \frac{0.5}{(z-1)(z-0.5)}=0$
(iv) $x[0]=\lim _{z \rightarrow \infty} \frac{z}{z^{2}-z+1}=0$
(h)

From part (c): (i) $x[0]=0.5$, (ii) $x[0]=0$, (iii) $x[0]=0$, (iv) $x[0]=0$
(a) $x_{2}[n]=x_{1}[n-1]$,
$x_{3}[n]=x_{2}[n-1]=x_{1}[n-2]$
(b) See the solution to 11.10 (a), which shows that

$$
\begin{array}{lrl}
x_{1}[n] & = & u[n]-0.5^{n+1} u[n], \\
x_{2}[n] & = & u[n]-0.5^{n} u[n], \\
x_{3}[n] & =u[n-1]-0.5^{n-1} u[n-1]
\end{array}
$$

Clearly $x_{1}[n-1]=u[n-1]-0.5^{n} u[n-1]=u[n]-0.5^{n} u[n]=x_{2}[n]$ since $u[0]=0.5^{0} u[0]=0$, and so then

$$
x_{1}[n-2]=x_{2}[n-1]=u[n-1]-0.5^{n-1} u[n-1]
$$

(c) For MATLAB verifications of partial fraction expansion see soln. to 11.10 (b).

$$
\begin{gathered}
11.12 \text { (a) } Y(z)=\left[1-1.5 z^{-1}+0.5 z^{-2}\right]=x(z) \Rightarrow H(z)=\frac{z^{2}}{z^{2}-1.5 z+0.5} j x(z)=z^{-1} \\
\therefore \frac{Y(z)}{z}=\frac{1}{(z-1)(z-0.5)}=\frac{z}{z-1}+\frac{-2}{z-0.5} \Rightarrow y[n]=2-2(0.5)^{n}
\end{gathered}
$$

//. $/ 2(b) \quad n=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right] ; d=\left[\begin{array}{llll}1 & -1.5 & .5\end{array}\right] ;[r, p, k]=\operatorname{residue}(n, d)$
(cont)
(c)

$$
\begin{aligned}
y[n]=2-2(0.5)^{n} \Rightarrow & y[0]=0, y[1]=1, y[2]=1.5, \\
y[3] & =1.75, y[4]=1.875
\end{aligned}
$$

$$
y[n]=1.5 y[n-1]-0.54[n-2]+x[n]
$$

$$
y[0]=0-0+0=0
$$

$$
y[1]=0-0+t=1
$$

$$
y[2]=1,5(1)-0+0=1,5
$$

$$
y[3]=1.5(1,5)-0.5(1)=1.05
$$

(d)

$$
y[4]=1,5(1.25)-0.5(1.5)=/, 875
$$

$$
\begin{aligned}
& x=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array} 0000\right] ; y(1)=0 ; y(2)=0 ; \\
& \text { for } n=3.7 \\
& \text { end } y(n)=1.5 \star y(n-1)-0.5^{\star} y(n-2)+x(n)
\end{aligned}
$$

(e) $y[0]=\lim _{z \rightarrow \infty} Y(z)=\lim _{z \rightarrow \infty} \frac{z}{z^{2}}=0$

$$
\text { (f) yes }-\lim _{z \rightarrow 1}(z-1) Y(z)=\lim _{z \rightarrow 1} \frac{z}{z-0.5}=3
$$

11. $13(a) Y(z)-0.75 z^{-1} Y(z)+0.125 z^{-2} Y(z)=X(z)=1$

$$
\begin{aligned}
& \therefore \frac{Y(z)}{z}=\frac{z}{z z 0.25 z+0.125}=\frac{z}{(z-0.5)(z-0.25)}=\frac{z}{z-0.5}+\frac{-1}{z-0.25} \\
& \therefore y[n]=\left(2(0.5)^{n}-(0.25)^{n}\right) u[n]
\end{aligned}
$$

(c)

$$
\text { (c) } \begin{aligned}
& y[0]=1, y[1]=0.75, y[2]=\frac{2}{4}-\frac{1}{14}=0.4375 \\
& y[3]=2(0.125)-\frac{1}{4}=0.2344, y[4]=0.1211 \\
& \text { alas } y[n]=0.75 y[n-1]-0.125 y[n-2]+x[n] \\
& y[0]=0-0+1=1 \\
& y[1]=0.25(0)-0+0=0.75 \\
& y[2]=0.25(0.75)-0.125(1)+0=0.4375 \\
& y[3]=0.25(0.4325)-0.125(0.25)=0.2344 \\
& y[4]=0.25(0.2344)-0.125(0.4315)=0.1211
\end{aligned}
$$

(e) $y[0]=\lim _{z \rightarrow \infty} Y(z)=1$
(f) Yes, $y[00]=0$ from (a)

$$
y[\infty]=\lim _{z \rightarrow 1}(z-1) Y(z)=\lim _{z \rightarrow 1} \frac{z^{2}(z-1)}{(z-0.5)(z-0.25)}=0
$$

11.13, continued
(b), (d)

$$
\mathrm{Y}
$$

11.14. (a) $Y(z)-z^{-1} Y(z)+0.5 z^{-2} Y(z)=X(z)=z^{-1}$

$$
\begin{aligned}
& \therefore Y(z)=\frac{z}{z^{2}-z^{2}+0.5}=\frac{z}{z^{2}-2 a \cos b z+a^{2}}=\frac{1}{4 \sin b} 3\left[a^{n} A \operatorname{in} b n\right] \\
& a=\sqrt{0.5}=0.707, \cos b=\frac{1}{2(0.707)}=0.707, b=45^{0}=\frac{\pi}{4} \\
& \therefore y[n]=\frac{(0.201)^{n}}{0.201(0.707)} \sin \frac{\pi}{4} n=2(0.707)^{n} \sin \left(\frac{\pi}{4} n\right) u[n]
\end{aligned}
$$

(c) $y[0]=0, y[1]=1, y[2]=1, y[3]=0.5, y[4]=0$ also $y[n]=y[n-1]-0.5 y[n-2]+z[n]$

$$
\begin{aligned}
& y[0]=0-0+0=0 \\
& y[1]=0-0+1=1 \\
& y[2]=1-0+0=1 \\
& y[3]=1-0.5+0=0.5 \\
& y[4]=0.5-0.5+0=0
\end{aligned}
$$

(e) $y[\Delta]=\lim _{z \rightarrow \infty} Y(z)=0$
(f) yes, $y[\infty]=\lim _{z \rightarrow 1}(z-1) y(z)=\lim _{z \rightarrow 1} \frac{z(z-1)}{z^{2} z+0.5}=0$ (b), (d)

$$
\begin{aligned}
& x=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] ; \quad y(1)=0 ; \quad y(2)=0 ; \\
& \text { for } n=3: 7 \\
& y(n)=y(n-1)-.5 * y(n-2)+x(n) ;
\end{aligned}
$$

$$
\begin{aligned}
& n=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] ; \quad d=\left[\begin{array}{lll}
1 & -.75 & .125
\end{array}\right] ; \\
& {[r, p, k]=r e s i d u e(n, d)} \\
& \text { pause } \\
& x=\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad y(1)=0 ; \quad y(2)=0 \text {; } \\
& \text { for } n=3: 7 \\
& \underset{d}{y}(n)=.75 * y(n-1)-.125 * y(n-2)+x(n) ; \\
& \text { end }
\end{aligned}
$$

11.15

$$
\begin{gathered}
\text { a) } y(z)=a z^{-1} x(z)+a z^{-1} y(z) \\
{\left[1-a z^{-1}\right] y(z)=a z^{-1} x(z)} \\
\therefore \quad y[n]=a y[n-1]=a x[n-1]
\end{gathered}
$$

b) from a) $\frac{y(z)}{x(z)}=\frac{a z^{-1}}{1-a z^{-1}}=\frac{a}{z-a}$
c) pole at $z=1$ must be inside the unit circle

$$
\begin{aligned}
& \therefore(z)=1, H(z)=\frac{a}{z-a} \Rightarrow \frac{H(z)}{z}=\frac{a}{z(z-a)}=\frac{-1}{z}+\frac{1}{z-a} \\
& \therefore h[n]= \begin{cases}-1+1=0 & , n=0 \\
a^{n} & , n \geqslant 1=a^{n} u[n-1]\end{cases}
\end{aligned}
$$

d)

Yes, this output is bounded only for $|a|<1$
e)

$$
\begin{aligned}
& y(z)=H(z) \times(z)=\frac{.5}{z-.5}\left(\frac{z}{z-1}\right) \\
& \quad \therefore \frac{y(z)}{z}=\frac{1}{z-1}+\frac{-1}{z-.5} \Rightarrow y[n]=1-.5^{n}, n \geqslant 0
\end{aligned}
$$

f.) $\frac{y(z)}{z}=\frac{-2}{z-1}+\frac{2}{z-2} \Rightarrow y[n]=2\left[1-2^{n}\right], n \geq 0$
g) $\quad \longrightarrow$ Since $y(z)=x(z) H(z)$

$$
\left.\begin{array}{l}
n=\left[\begin{array}{lll}
0 & 0 & 05
\end{array}\right] ; d=\left[\begin{array}{lll}
1 & -1.5 & .5
\end{array}\right], \\
{[r, p, k}
\end{array}\right]=\text { residue }(n, d) .
$$

pause

$$
\begin{aligned}
& n=\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right] ; \quad d=\left[\begin{array}{lll}
1 & -3 & 2
\end{array}\right] ; \\
& {[r, p, k]=\operatorname{residuc}(n, d)}
\end{aligned}
$$

11.16

(a) Plugging in $\delta[n]$ fpr $x[n]$, since the input is nonzero only at $n=0$ we see that $h[n]=0$ until $n=0$; then $h[0]=\delta[0]=1$; then $h[n]=h[n-1]=1$ for $n>0$. Therefore $h[n]=u[n]$.
(b) $Y(z)=X(Z) H(Z)=\left(\frac{z}{z-0.5}\right)\left(\frac{z}{z-1}\right)=\frac{2 z}{z-1}+\frac{-z}{z-0.5}$
$y[n]=2 u[n]-(0.5)^{n} u[n]$, natural response: $y_{c}[n]=2 u[n]$, forced response: $y_{p}[n]=-(0.5)^{n} u[n]$
(c) No, not BIBO stable because the system's pole $p=1$ lies on the unit circle. For example of a bounded input that gives unbounded output , the unit step function input has output $u[n] \sum_{k=0}^{n} u[k]=n u[n] \rightarrow \infty$.

11.17

(a) $h[n]=(0.5)^{n} u[n], Y(z)=\frac{z}{z-0.5} \cdot \frac{z}{z-\frac{3}{2}}=\frac{-0.5 z}{z-0.5}+\frac{1.5 z}{z-\frac{3}{2}}$
$y[n]=-0.5(0.5)^{n} u[n]+1.5(1.5)^{n} u[n]=-(0.5)^{n+1} u[n]+(1.5)^{n+1} u[n]$, with forced response $y_{p}[n]=(1.5)^{n+1} u[n]$ and natural response $y_{c}[n]=-(0.5)^{n+1} u[n]$
(b) Bibo stable, since the pole $p=0.5$ is within the unit circle and the system is causal.
11.18

The general form of the z-transform of a system with this pole-zero diagram is $H(z)=$ $\frac{A z^{2}}{(z-2)(z-3)}=\frac{k_{1} z}{z-2}+\frac{k_{2} z}{z-3}$ where A can be any constant (k_{1}, k_{2} satify the partial fraction expansion).

For a DC gain of 1 we require $H(1)=1$ which gives:

$$
H(1)=\frac{A}{(-1)(-2)}=1 \Longrightarrow A=2
$$

Then

$$
\begin{aligned}
H(z) / z=\frac{2 z}{(z-2)(z-3)} & =\frac{k_{1}}{z-2}+\frac{k_{2}}{z-3} \\
& =\frac{-4}{z-2}+\frac{6}{z-3} \\
H(z) & =\frac{-4 z}{z-2}+\frac{6 z}{z-3}
\end{aligned}
$$

The time functions will therefore be either:
(i) $h[n]=\left((-4) 2^{n}+(6) 3^{n}\right) u[n]$, with ROC $|z|>3$
(ii) $h[n]=(-4) 2^{n} u[n]+(-6) 3^{n} u[-n-1]$, with ROC $2<|z|<3$
(iii) $h[n]=(4) 2^{n} u[-n-1]+(-6) 3^{n} u[-n-1]$, with ROC $|z|<2$
(The z-transform does not exist for $h[n]=(4) 2^{n} u[-n-1]+(-6) 3^{n} u[n]$)
11.19

$$
Z[f[n / k]]=F\left(Z^{k}\right)
$$

(i)

$$
\text { a) } F\left(z^{2}\right)=\frac{z^{2}}{z^{2}-.7}, \cdots F(z)=\frac{z}{z-.7}, f[n]=(.7)^{n}
$$

$f[n / 2]=(.7)^{n / 2}, n=0,2,4, \cdots=0$, otherwise
b)

c)

$$
z^{2}-.7 \sqrt{z^{2}}+.7 z^{-2}+(.49) z^{-4}+\cdots
$$

(ii)

$$
\frac{\frac{z^{2}-7}{.7}}{.7-(149) z^{-2}}
$$

$$
\begin{aligned}
& \text { a) } \frac{z}{z^{2}-\cdot 7}=F_{1}\left(z^{2}\right)=z^{-1} F \\
& F(z)=\frac{z}{z-.7}, f(n]=(.7)^{n}
\end{aligned}
$$

$$
\therefore f_{1}[n / 2]=f\left[\frac{n-1}{2}\right] u[n-1]=(.7)^{\frac{n-1}{2}} u[n-1], n=1,3,5, \ldots
$$

b)
 $=0$, otherwise
c)

$$
\begin{aligned}
z^{2} \cdot 7 & \frac{z^{-1}+7 z^{-3}+49 z^{-5}}{z}+\cdots \\
& \frac{z^{-1} \cdot 7 z^{-1}}{\cdot 7 z^{-1}-(\cdot 49) z^{-3}} \\
& \frac{\cdot 7 z^{-1}}{(\cdot 49) z^{-3}}
\end{aligned}
$$

11.20

$$
\begin{array}{rlrl}
y[n] & =x[n] * h[n]=(\delta[n]+2 \delta[n-1]+3 \delta[n-3]) * h[n]=h[n]+2 h[n-1]+3 h[n-3] \\
\sum_{n=-\infty}^{\infty} y[n] & = & \sum_{n=-\infty}^{\infty} h[n]+\sum_{n=-\infty}^{\infty} 2 h[n-1]+\sum_{n=-\infty}^{\infty} 3 h[n-3] \\
& = & 7+2(7)+3(7)=6(7)=42
\end{array}
$$

11.21
a) $F(z)=\frac{z^{-9}}{z-a}=z^{-10} \frac{z}{z-a}$

$$
f[n]=a^{n-10} u[n-10]
$$

b)

$$
\begin{aligned}
& F(z)=\frac{z^{-2}}{z-3}=z^{-3} \frac{z}{z-3} \\
& f[n]=3^{n-3} u[n-3]
\end{aligned}
$$

11.22
(a) $H(z)=\frac{z^{3}}{(z-1.1)^{3}},|z|>1.1$
(b) $H(z)=\frac{z^{4}}{(z-1.1)^{3}},|z|<1.1$
(c) $H(z)=\frac{z^{4}}{(z-0.9)^{3}},|z|<0.9$
(d) $H(z)=\frac{z^{3}}{(z-0.9)^{3}},|z|>0.9$
(a) (i) Not stable: pole on unit circle
(ii) Not stable: pole 2 outside unit circle
(iii) Not stable pole -2 outside unit circle
(iv) $z^{3}-1.6 z^{2}+0.64 z=z(z-0.8)^{2}$ so there are poles at $0,0.8,0.8 \Longrightarrow$ stable-all poles are within the unit circle
(v) $z^{3}-2 z+0.99 z=z(z-.9)(z-1.1)$ (which can be gotten from MATLAB using 'roots' or 'residue'). Unstable since $1.1>1$.
(b) For (i), there is a $A u[n]$ term in the impulse response so $u[n]$ will have the unbounded output $u[n] * A u[n]=A u[n] \sum_{k=0}^{n} u[k]=A n u[n]$. For (ii), (iii), and (v), there is an unbounded term in the natural response (due to the pole outside the unit circle) so for example $\delta[n]$ produces an unbounded output (the impulse responses are not bounded). Another example is $u[n]$.
(c)
(i) For $x[n]=u[n]$:

$$
\begin{array}{rlc}
Y(z)=H(Z) X(z) & = & \frac{4(z-2)}{(z-1)(z-0.8)} \cdot \frac{z}{z-1} \\
& = & \frac{-20 z}{(z-1)^{2}}+\frac{120 z}{z-1}+\frac{-120 z}{z-.8} \\
y[n] & = & -20 n u[n]+120 u[n]-120(0.8)^{n} u[n]
\end{array}
$$

(the partial fraction expansion can be done in MATLAB using $[r, p, k]=r e s i d u e([4,-8], \operatorname{poly}([1,1,0.8])))$. The unbounded term is $-20 n u[n]$.

Continued \rightarrow

11.23 (c), continued

(ii) For $x[n]=\delta[n]$:

$$
\begin{array}{rlc}
Y(z)=H(z) & = & z^{-1} \frac{3(z+0.8) z}{z(z-0.8)(z-2)} \\
& = & z^{-1}\left(\frac{3.5 z}{z-2}+\frac{-5 z}{z-0.8}+\frac{1.5 z}{z}\right) \\
y[n] & =3.5(2)^{n-1} u[n-1]-5(0.8)^{n-1} u[n-1]+1.5 \delta[n-1]
\end{array}
$$

The partial fraction expansion of $H(z)$ we found in MATLAB using $[r, p, k]=r e s i d u e([0,0,3,2.4], \operatorname{poly}([0,0.8,2]))$.
The unbounded term is $3.5(2)^{n-1} u[n-1]$.
(iii) For $x[n]=\delta[n]$

$$
\begin{array}{rlc}
Y(Z)=H(Z) & z^{-1} \frac{3(z-0.8) z}{z(z+0.8)(z+2)} \\
& = & z^{-1}\left(\frac{-3.5 z}{z+2}+\frac{5 z}{z+.8}-\frac{1.5 z}{z}\right) \\
y[n] & = & -3.5(-2)^{n-1} u[n-1]+5(-0.8)^{n-1} u[n-1]-1.5 \delta[n-1]
\end{array}
$$

The partial fraction expansion of $H(z)$ we found in MATLAB using $[r, p, k]=r e s i d u e([0,0,3,-2.4], \operatorname{poly}([0,-0.8,-2]))$.
The unbounded term is $-3.5(-2)^{n-1} u[n-1]$.
(v) For $x[n]=\delta[n]$

$$
\begin{aligned}
& Y(z)=H(z)= \\
&= \\
& z^{-1} \frac{(2 z-1.5) z}{z^{3}-2 z^{2}+0.99 z} \\
& y[n]=3.1818(1.1)^{n-1} u[n-1]-1.66(0.9)^{n-1} u[n-1]+1.52 \delta[n-1]
\end{aligned}
$$

(got partial fractions using $[r, p, k]=r e s i d u e([2,-1.5],[1,-2,0.99,0])$. The unbounded term is $3.1818(1.1)^{n-1} u[n-1]$.
11.24
(a) Poles are at $z= \pm 1$, zeros at $z=0$. Bandstop, unstable.
(b) Poles are at $z= \pm 0.9 j$, zeros at $z=0$, bandpass, stable.
(c) Pole at $z=-1.1$, zero at $z=0$, highpass, unstable.
(d) $\frac{z^{2}}{z^{2}-4.25 z+1}=\frac{z^{2}}{(z-4)(z-1 / 4)}$, poles at $z=4, z=1 / 4$, zeros at $z=0$, lowpass, unstable.
11.25

$$
f[n]=a^{n} u[n]-b^{2 n} u[-n-1]
$$

a)

$$
\begin{aligned}
& F(z)=\frac{z}{z-a}+\frac{z}{z-b^{2}} \\
&|z|>|a| \quad|z|<\left|b^{2}\right| \\
& \therefore \quad|a|<\left|b^{2}\right|
\end{aligned}
$$

b) $\frac{z}{z-a}+\frac{z}{z-b^{2}},|a|<|z|<\left|b^{2}\right|$ or $|a|<|z|<b^{2}$
(a) $F(z)=\sum_{k=-\infty}^{\infty} 0.7^{n} u[n] z^{-n}=\sum_{k=0}^{\infty} 0.7^{n} z^{-n}=\frac{1}{1-0.7 / z}=\frac{z}{z-0.7}$. ROC $|z|>0.7$.
(b) $F(z)=\sum_{k=-\infty}^{\infty} 0.7^{n} u[n-7] z^{-n}=\sum_{k=7}^{\infty} 0.7^{n} z^{-n}=\frac{\left(\frac{0.7}{z}\right)^{7}}{1-\frac{0.7}{z}}=0.7^{7} \frac{z^{-6}}{z-0.7}$. ROC $|z|>0.7$.
(c) $F(z)=\sum_{k=-\infty}^{\infty} 0.7^{n} u[n+7] z^{-n}=\sum_{k=-7}^{\infty} 0.7^{n} z^{-n}=\sum_{k=0}^{\infty} 0.7^{n-7} z^{-(n-7)}=\left(\frac{0.7}{z}\right)^{-7} \frac{z}{z-0.7}=$ $0.7^{-7} \frac{z^{8}}{z-0.7}$. ROC $|z|>0.7$
(d) $F(z)=\sum_{k=-\infty}^{\infty}-0.7^{n} u[-n-1] z^{-n}=\sum_{k=-\infty}^{-1}-0.7^{n} z^{-n}=\sum_{k=1}^{\infty}-0.7^{-n} z^{n}=-\frac{z / 0.7}{1-z / 0.7}=$ $\frac{z}{z-0.7}, \operatorname{ROC}|z|<0.7$
(e) $F(z)=\sum_{k=-\infty}^{\infty}(0.7)^{-n} u[n+7] z^{-n}=\sum_{k=-7}^{\infty}(0.7 z)^{-n}=\sum_{k=0}^{\infty}(0.7 z)^{-(n-7)}=(0.7 z)^{7} \frac{1}{1-(0.7 z)^{-1}}=$ $(0.7 z)^{7} \frac{z}{z-\frac{1}{7}}=\frac{(0.7 z)^{8}}{0.7 z-1}$, ROC $|z|>\frac{1}{.7}$.
(f) $F(z)=\sum_{k=-\infty}^{\infty}(0.7)^{n} u[-n] z^{-n}=\sum_{k=0}^{\infty} 0.7^{-n} z^{n}=\frac{1}{1-\frac{z}{0.7}}=\frac{-0.7}{z-0.7}$, ROC $|z|<.7$.
$11.27 F_{b}(z)=\frac{0.6 z}{(z-1)(z-0.6)}=z\left(\frac{3 / 2}{z-1}+\frac{-3 / 2}{z-0.6}\right)$
(a)
(i) $|z|<0.6$: both leftsided, $f_{b}[n]=(3 / 2)\left(-u[-n-1]+0.6^{n} u[-n-1]\right)$
(ii) $|z|>1$: both rightsided, $f_{b}[n]=(3 / 2)\left(u[n]-0.6^{n} u[n]\right)$
(iii) $0.6<|z|<1$: pole 1 term leftsided, pole 0.6 term rightsided, $f_{b}[n]=(3 / 2)\left(-u[-n-1]-0.6^{n} u[n]\right)$
(b)
(i) $f_{b}[\infty]=0$
(ii) $f_{b}[\infty]=3 / 2$
(iii) $f_{b}[\infty]=0$

$$
\text { a) } F_{b}(z)=(1 / 2)^{-10} z^{10}+(1 / 2)^{-9} z^{9}+\cdots+1+(1 / 2) z+
$$

$$
=\left(1 / 2 z^{-1}\right)^{-10}+\left(1 / 2 z^{-1}\right)^{-9}+\cdots+\left(1 / 2 z^{-1}\right)^{20}
$$

since: $\sum_{k=n_{1}}^{n_{2}} a^{k}=\frac{a^{n_{1}}-a^{n_{2+1}}}{1-a}$

$$
\therefore F_{b}(z)^{k=n_{1}}=\frac{\left(1 / 2 z^{-1}\right)^{-10}-a}{1-1 / 2 z^{-1}}
$$

b) $(1 / 2)^{-10} z^{+10}+(1 / 2)^{20} \frac{1}{z^{20}}, \therefore R O C:|z| \neq 0$
c) $f_{1}[n]=(1 / 2)^{n},-10 \leqslant n \leqslant 10$
from a), $F_{b_{1}}(z)=\frac{\left(1 / 2 z^{-1}\right)^{-10}-\left(1 / 2 z^{-1}\right)^{11}}{1-1 / 2 z^{-1}},|z| \neq 0$

$$
\begin{aligned}
& f_{2}(n]=(1 / 4)^{n} u[n-21]=(1 / 4)^{21}(1 / 4)^{n-21} u[n-21] \\
& F_{b_{2}}(z)=(1 / 4)^{21} z^{-21} \frac{z}{z-1 / 4}=\frac{(1 / 4)^{21}}{z^{20}(z-1 / 4)},|z|>1 / 4 \\
& \therefore F_{b}(z)=F_{b_{1}}(z)+F_{b_{2}}(z),|z|>1 / 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{aligned}
f_{1}[n]= & (1 / 2)^{n},-10 \leqslant n \leq 0 \\
F b_{1}(z)=1 & +(1 / 2)^{-1} z+(1 / 2)^{-10} z^{10}=1+(2 z)+(2 z)^{2}+\cdots+(2 z)^{10} \\
& =\frac{1-(2 z)^{11}}{1-2 z} \\
f_{2}[n] & =(1 / 4)^{n}, 1 \leqslant n \leqslant 10 \\
F_{b_{2}}(z) & =\left(\frac{1}{4 z}\right)+\left(\frac{1}{4 z}\right)^{2}+\cdots+\left(\frac{1}{4 z}\right)^{10}=\frac{\frac{1}{4 z}-\left(\frac{1}{4 z}\right)^{11}}{1-\frac{1}{4 z} \quad z \neq 0} \\
\therefore F_{b}(z) & =F_{b_{1}}(z)+F_{b_{2}}(z), \quad z \neq 0
\end{aligned},
\end{aligned}
$$

$$
F(z)=\frac{3 z}{z-1}+\frac{z}{z-12}-\frac{z}{z-.6}
$$

a) $|z|<.6, .6\langle | z|<1,1<|z|<|2,|z|>12$

$$
\begin{aligned}
& \text { b) } \left.|z|<-6, f[n]=-3 u[-n-1]-(12)^{n} u[-n-1]+1 \cdot 6\right)^{n} u[-n-1] \\
& \cdot 6\langle | z \mid<1, f[n]=-(\cdot 6)^{n} u[n]-3 u[-n-1]-(12)^{n} u[-n-1] \\
& 1<|z|<12, f[n]=-(\cdot 6)^{n} u[n]+3 u[n]-(12)^{n} u[-n-1] \\
& |z|\rangle \mid 2, f[n]=-(.6)^{n} u[n]+3 u[n]+(12)^{n} u[n]
\end{aligned}
$$

11.30
a) $y_{m}(z)=y\left(z^{m}\right)$
b)

$$
\begin{aligned}
& x_{m}(z)=x\left(z^{m}\right) \\
& H_{m}(z)=H\left(z^{m}\right) \\
& \therefore \quad z\left[x_{m}[n] * h_{m}[n]\right]=X\left(z^{m}\right) H\left(z^{m}\right)
\end{aligned}
$$

12.1 (a)

$$
\begin{aligned}
& \text { (i) } f(n \pi s)=8 \cos [2 \pi(01 n)]+4 \sin [4 \pi(\cdot 1 k)] \\
& f[n]=8 \operatorname{cs}[.2 \pi n]+4 \sin [.4 \pi n] \\
& F(\Omega)=8 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega-.2 \pi-2 \pi k)+\delta(\Omega+\cdot 2 \pi-2 \pi k)] \\
& -74 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega-.4 \pi-2 \pi k)-\delta(\Omega+.4 \pi-2 \pi k)]
\end{aligned}
$$

(ii) $g[n]=4 \cos [.5 \pi n] u[n]$

$$
\begin{aligned}
& 4 \cos [.5 \pi n] \longleftrightarrow 4 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega \ldots .5 \pi-2 \pi k)+\delta(\Omega+\cdot 5 \pi-2 \pi k)] \\
& u[n] \longleftrightarrow \frac{1}{1-e^{-j \Omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\Omega-2 \pi k) \\
& x[n] y[n] \longleftrightarrow \frac{1}{2 \pi} \times(\Omega) * y(\Omega) \\
& G(\Omega)=\frac{4 e^{j 2 \Omega}}{1+e^{j 2 \Omega}}+2 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega-.5 \pi-2 \pi k)+ \\
& \delta(\Omega+.5 \pi-2 \pi k)]
\end{aligned}
$$

part b) neat page

(

$12.2(a)$

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{l}
(.5)^{n}, n \geq 0 ; x(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega} \\
0, n<0 \\
x(\Omega)=\sum_{n=0}^{\infty}(.5)^{n} e^{-j n \Omega}=1+\underbrace{1.5 e^{-j \Omega}+\left(.5 e^{-j \Omega}\right)^{2}}_{\text {geometric series }}+\left(.5 e^{-j \Omega}\right)^{3}+\ldots
\end{array}\right. \\
& x(\Omega)=\frac{1}{1-.5 e^{-j \Omega}}
\end{aligned}
$$

(b) $y[n]=-n(.5)^{n} u[n] \stackrel{\text { मिन }}{\Longleftrightarrow} Y(\Omega)=\sum_{n=0}^{\infty} n(.5)^{n} e^{-\frac{-1 n \Omega}{\leftrightarrows}}$

From Th⿰LEE $12.1 \quad y(\Omega)=\frac{.5 e^{j \Omega} x=0}{\left(e^{j \Omega}-.5\right)^{2}}$
(c)

$$
\begin{aligned}
v[n] & =2[u[n]-u[n-j]] \\
v(\Omega) & =\sum_{n=0}^{4} 2 e^{-j n \Omega}=2\left[1+e^{-j \Omega}+e^{-j 2 \Omega}+e^{-j 3 \Omega}+e^{-j 4 \Omega}\right] \\
& =2 e^{-j 2 \Omega}\left[e^{j \alpha \Omega}+e^{j \Omega}+1+e^{-j \Omega}+e^{-j 2 \Omega}\right] \\
& =2 e^{-j 2 \Omega}[1+2 \cos \Omega+2 \cos 2 \Omega]
\end{aligned}
$$

or from TABLE $12.1: V(\omega)=2 \frac{\sin \left(\frac{5 \Omega}{2}\right)}{\sin \left(\frac{\Omega}{2}\right)} e^{-j 2 \Omega}$

$$
\begin{aligned}
& \text { (d) } \omega[n]=\operatorname{rect}(n / 4)+\operatorname{rect}(n / 10) \\
& w(\Omega)=\sum_{n=-5}^{5} 1 e^{-j n \Omega}+\sum_{n=-2}^{2} 1 e^{-j n \Omega}= \\
& w(\Omega)=e^{45 \Omega}+e^{j 42 \varepsilon}+e^{43 \Omega}+2 e^{j 2 \Omega}+2 e^{1 / 2}+2+2 e^{-j \Omega}+2 e^{-j z \Omega}+e^{-j 3 \sqrt{-j 4 \Omega}+e^{-j 5 \Omega}+e^{2}}
\end{aligned}
$$

or From table iz.l

$$
\begin{aligned}
& W(\Omega)=\frac{\sin \left(\frac{5 \pi}{2}\right)}{\sin \left(\frac{\pi}{2}\right)}+\frac{\sin \left(\frac{11 \Omega}{2}\right)}{\sin \left(\frac{\pi}{2}\right)} \text { or } \\
& W(\Omega)=2 \cos 5 \Omega+2 \cos 4 \Omega+2 \cos 3 \Omega+4 \cos 2 \Omega \\
& +4 \cos \Omega+2
\end{aligned}
$$

12.3

Need to show that $\mathcal{D F}\left[a x_{1}[n]+b x_{2}[n]\right]=a\left(\mathcal{D F}\left[x_{1}[n]\right]\right)+b\left(\mathcal{D F}\left[x_{2}[n]\right]\right)$, where a, b are any constants and $x_{1}[n], x_{2}[n]$ are two length $-N$ signals.

$$
\begin{aligned}
\mathcal{D} \mathcal{F}\left[a x_{1}[n]+b x_{2}[n]\right] & = & \sum_{n=0}^{N-1}\left(a x_{1}[n]+b x_{2}[n]\right) e^{-j 2 \pi \frac{n k}{N}}=\sum_{n=0}^{N-1} a x_{1}[n] e^{-j 2 \pi \frac{n k}{N}}+b x_{2}[n] e^{-j 2 \pi \frac{n k}{N}} \\
& = & a \sum_{n=0}^{N-1} x_{1}[n] e^{-j 2 \pi \frac{n k}{N}}+b \sum_{n=0}^{N-1} x_{2}[n] e^{-j 2 \pi \frac{n k}{N}} \\
& = & a\left(\mathcal{D F}\left[x_{1}[n]\right]\right)+b\left(\mathcal{D F}\left[x_{2}[n]\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
12.4 & \times(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega}, \frac{d}{d \Omega} \times(\Omega)=\frac{d}{d \Omega} \sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega} \\
\frac{d}{d \Omega} \times(\Omega) & =\sum_{n=-\infty}^{\infty} x[n] \frac{d}{d \Omega} e^{-j n \Omega}=\sum_{n=-\infty}^{\infty}-j n x[n] e^{-j n \Omega} \\
y \frac{d}{d \Omega} \times(\Omega) & =\sum_{n=-\infty}^{\infty}(y)(-j) n x[n] e^{-j n \Omega}=\sum_{n=-\infty}^{\infty} n x[n] e^{-j n \Omega} \\
& =D T \nexists\{n x[n]\}
\end{aligned}
$$

12.5
(a) Plugging $\delta[n]$ in for $x[n]$ gives: $h[n]=3 \delta[n]+5 \delta[n-1]+3 \delta[n-2]$.

(b) $H(\Omega)=\sum_{n=-\infty}^{\infty} h[n] e^{-j n \Omega}=3+5 e^{-j \Omega}+3 e^{-j 2 \Omega}$
(c) Yes linear phase: $h[n]=h[M-1-n]$ where in this case $M=3(h[0]=h[2])$, $h[n]=e^{-j \Omega}\left(3 e^{j \Omega}+5+3 e^{-j \Omega}\right)=e^{-j \Omega}(6 \cos (\Omega)+5)$
phase $=-\Omega$

12.6

(a) No this is an IIR filter with impulse response $h_{1}[n]=0.7^{n} u[n]$ or $h_{1}[n]=-(0.7)^{n} u[-n-1]$
(b) Yes linear phase since $h_{2}[n]=h_{2}[M-1-n]$:

$$
\begin{aligned}
H_{2}(\Omega)= & e^{-\frac{3}{2} j \Omega}\left(e^{\frac{3}{2} j \Omega}+e^{-\frac{3}{2} j \Omega}\right)+3 e^{-\frac{3}{2} \Omega}\left(e^{j \frac{1}{2} \Omega}+e^{-j \frac{1}{2} \Omega}\right) \\
& = \\
\text { phase }= & 2 e^{-\frac{3}{2} j \Omega}\left(\cos \left(\frac{3}{2} \Omega\right)+3 \cos \left(\frac{1}{2} \Omega\right)\right) \\
& -\frac{3}{2} \Omega
\end{aligned}
$$

(c) Yes linear phase since $h_{3}[n]=h_{3}[M-1-n]$:

$$
\begin{aligned}
H_{3}(\Omega) & = & 2\left(e^{2 j \Omega}+e^{-2 j \Omega}\right)+3\left(e^{j \Omega}+e^{-j \Omega}\right)+7 \\
& = & 2(7+3 \cos (\Omega)+2 \cos (2 \Omega)) \\
\text { phase } & = & 0
\end{aligned}
$$

(d) No symmetry conditions satisfied \Longrightarrow nonlinear phase.
12.7

$$
\begin{aligned}
& 12.7 X_{0}(\Omega)=1+e^{-2 j-\Omega}+e^{-4 j \Omega} \\
& X(\Omega)
\end{aligned}=\frac{2 \pi}{5} \sum_{k=10}^{\infty} X_{0}\left(\frac{2 \pi k}{5}\right) \delta\left(\Omega-\frac{2 \pi k}{5}\right), ~ \begin{aligned}
X_{0}(\Omega) & =e^{-2 j \Omega}\left(e^{j 2 \Omega}+1+e^{-2 j \Omega}\right) \\
& =e^{-2 j \Omega}(1+2 \cos 2 \Omega) \therefore \angle X_{0}(\Omega)=-2 \Omega
\end{aligned}
$$

$12.8 \quad y[n]=x[n / 3]$

$$
\begin{aligned}
& y(\Omega)=\sum_{n=-\infty}^{\infty} x[n / 3] e^{-j \Omega n} \quad \text { let } l=n / 3 \\
& y(\Omega)=\sum_{l=-\infty}^{\infty} x[l] e^{-j \Omega 3 l}=x(3 \Omega)
\end{aligned}
$$

$12.9 \quad x_{0}[n]=\operatorname{idft}\left[\begin{array}{llll}4 & 0 & 4 & 0\end{array}\right]$
since $x[k]=x_{0}\left(\frac{2 \pi k}{4}\right)$ for $N=4$

$$
\begin{aligned}
& x_{0}[n]=1 / 4\left(4+4 e^{j \pi n}\right) \\
& x_{0}[n]=\left[\begin{array}{llll}
2 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

$12 \cdot 10$
$0 \int_{1}^{1} 0 \quad H(\Omega)$
let $H[k]=H\left(\frac{2 \pi k}{4}\right)=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$
$h[n]$ is simply IDFT of $H[k]$

$$
\begin{aligned}
& h[n]=1 / 4 \sum_{k=0}^{3} H[k] W_{4}^{-n k}=\frac{1}{4}\left[e^{\frac{j 2 \pi n}{4}}+e^{j \frac{6 \pi n}{4}}\right] \\
& h[n]=[1 / 2,0,-1 / 2,0]
\end{aligned}
$$

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{\Omega=0}^{2 \pi} X(\Omega)=\frac{1}{4} \int_{\Omega=0}^{2 \pi}\left(6 \delta\left(\Omega-\frac{2 \pi}{4}\right)+6 \delta\left(\Omega-\frac{6 \pi}{4}\right)\right) e^{j n \Omega} d \Omega \\
&= \\
& \frac{1}{4}\left(6 e^{j n \frac{\pi}{2}}+6 e^{j n \frac{3 \pi}{2}}\right)=3 / 2 e^{j n \frac{\pi}{2}}+3 / 2 e^{j n \frac{3 \pi}{2}}
\end{aligned}
$$

This gives:

$$
\begin{aligned}
x[n] & =3, n=0,4,8, \ldots \\
& =0, n=1,5,9, \ldots \\
& =-3, n=2,6,10, \ldots \\
& =0, n=3,7,11, \ldots
\end{aligned}
$$

First consider the signal $z_{0}[n]=z[n]$ over $0 \leq n \leq 3$ and $z_{0}[n]=0$ elsewhere. Then:

$$
\begin{aligned}
Z_{0}(\Omega) & = & \sum_{n=0}^{3} z[n] e^{-j n \Omega}=2 e^{-j 0 \Omega}+1 e^{-j 2 \Omega}=2+e^{-j 2 \Omega} \\
Z(\Omega) & = & \frac{2 \pi}{4} \sum_{k=-\infty}^{\infty} Z_{0}\left(\frac{2 \pi k}{4}\right) \delta\left(\Omega-k \frac{2 \pi}{4}\right) \\
& = & \frac{\pi}{2} \sum_{k=-\infty}^{\infty}\left(2+e^{-j k \pi}\right) \delta\left(\Omega-k \frac{\pi}{2}\right)
\end{aligned}
$$

Note that $2+e^{-j k \pi}=1$ if k odd and $2+e^{-j k \pi}=3$ if k even. Therefore:

$$
Z(\Omega)=\sum_{k=-\infty}^{\infty} \frac{\pi}{2} \delta\left(\Omega-(2 k+1) \frac{\pi}{2}\right)+\frac{3 \pi}{2} \delta\left(\Omega-(2 k) \frac{\pi}{2}\right)
$$

$$
\begin{aligned}
& x[0]=1+1+1+0=3 \\
& x[1]=1+1 e^{-j 2 \pi / 4}+e^{-j \pi}+0=e^{-j \pi / 2}=-j 1 \\
& x[2]=1+e^{-j \pi}+e^{-22 \pi}+0=1 \\
& x[3]=1+e^{-j 3 \pi / 2}+e^{-j 3 \pi}+0=e^{-j 3 \pi / 2}=f 1 \\
& \therefore X[k]=[3,-j 1,1, f 1]
\end{aligned}
$$

(b) MATLAB

$$
\begin{aligned}
& >x=\left[\begin{array}{lllllll}
1 & 1 & 1 & l & 1 & 0 & 0
\end{array}\right] ; \\
& \gg x=f f t(x) ; \\
& \gg \operatorname{stem}(\operatorname{abs}(x)) \\
& \gg \operatorname{stem}(\operatorname{angle}(x))
\end{aligned}
$$

12.13 c) Matiab problem

$$
\left.\begin{array}{l}
\Rightarrow x=\left[\begin{array}{llllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right] ;
$$

12.14

(a) Note that $x[n]=(0.5)^{n}$ over $n=0, \ldots, 8$:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{7} x[n] e^{-j 2 \pi \frac{n k}{8}}=\sum_{n=0}^{7} 0.5^{n} e^{-j 2 \pi \frac{n k}{8}} \\
& =\quad \frac{1-\left(0.5 e^{-j 2 \pi \frac{k}{8}}\right)^{8}}{1-0.5 e^{-j 2 \pi \frac{k}{8}}}, k=0, \ldots, 7
\end{aligned}
$$

using the formula $\sum_{n=0}^{M-1} r^{n}=\frac{1-r^{M}}{1-r}, r \neq 1$, where in this case $r=0.5 e^{-j 2 \pi \frac{k}{8}}$.
(b)
$\gg \mathrm{xn}=0.5 .^{\wedge}[0: 7]$;
$\gg \mathrm{Xk}=\mathrm{fft}(\mathrm{xn})$

$\mathrm{Xk}=1.9922$	$1.1861-0.6487 \mathrm{i}$	$0.7969-0.3984 i$	$0.6889-0.1799 \mathrm{i}$	0.6641	0.6889
+0.1799 i	$0.7969+0.3984 \mathrm{i}$	$1.1861+0.6487 \mathrm{i}$			
$\gg \mathrm{Xk}=(1-(0.5 * \exp (-j * 2 * \mathrm{pi} *[0: 7] / 8)) . \wedge 8) . /(1-0.5 * \exp (-j * 2 * \mathrm{pi} *[0: 7] / 8))$					

| $\mathrm{Xk}=1.9922$ | $1.1861-0.6487 i$ | $0.7969-0.3984 i$ | $0.6889-0.1799 i$ | $0.6641-0.0000 i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.6889+0.1799 i$ | $0.7969+0.3984 i$ | $1.1861+0.6487 i$ | | |

(c)

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} n(0.5)^{n} e^{-j 2 \pi \frac{n k}{8}}=\sum_{n=0}^{7} n\left(0.5 e^{-j 2 \pi \frac{k}{8}}\right)^{n} \\
&= \\
& a \frac{1-a^{8}-(8) a^{7}(1-a)}{(1-a)^{2}}
\end{aligned}
$$

where $a=0.5 e^{-j 2 \pi \frac{k}{8}}$. This comes from the formula $\sum_{k=0}^{n} k a^{k}=a \frac{d}{d a} \sum_{k=0}^{n} a^{k}=a \frac{d}{d a}\left(\frac{1-a^{n+1}}{1-a}\right)$.
(d)
$\gg \mathrm{xn}=[0: 7] \cdot *(0,5) . \wedge[0: 7]$;
$\gg \mathrm{Xk}=\mathrm{fft}(\mathrm{xn})$
$\mathrm{Xk}=1.9297-0.2334-0.8758 \mathrm{i} \quad-0.3438-0.2266 \mathrm{i} \quad-0.2666-0.0633 \mathrm{i} \quad-0.2422 \quad-0.2666$
$+0.0633 i \quad-0.3438+0.2266 i \quad-0.2334+0.8758 i$
$\gg \mathrm{a}=0.5 * \exp (-j * 2 * \mathrm{pi} *[0: 7] / 8)$;
$\gg \mathrm{Xk}=\mathrm{a} \cdot *\left(\left(1-\mathrm{a} \cdot{ }^{\wedge} 8\right)-8 * \mathrm{a} .^{\wedge} 7 . *(1-\mathrm{a})\right) . /(1-\mathrm{a}) \cdot \wedge 2$
$\mathrm{Xk}=1.9297-0.2334-0.8758 \mathrm{i} \quad-0.3438-0.2266 \mathrm{i} \quad-0.2666-0.0633 \mathrm{i} \quad-0.2422-0.0000 \mathrm{i}$
$-0.2666+0.0633 i \quad-0.3438+0.2266 i \quad-0.2334+0.8758 i$

$$
\begin{aligned}
& 12.15 \text { a) } x[n]=[5.0,-4.05,1.55,1.55,-4.05,5.0,-4.05 \\
& X[k]=\sum_{k=0}^{7} x[n] e^{-\frac{\partial \pi}{4} n k}, k=0,1, \ldots, 7 \\
& X[k]=[2.5,2.65+7.81,3.45+72.14,15.44+711.98, \\
& \quad-5.60,15.44-711.98,3.45-72.14,2.65-7.81]
\end{aligned}
$$

12.15(b) MATLAB

$$
\begin{aligned}
> & \text { for } n=1: 8 \\
& x(n)=5 * \cos ((n-1) * 8 * * p i / 10) ; \\
& \text { end } \\
\gg & x \\
\gg & x=f f(t)(x, 8) ; \\
\gg & X \\
\gg & \text { for } n=1: 8 \\
& w(n)=(n-1) * 2 * p i * 10 / 8 ; \\
& \quad \text { end } \\
\gg & \operatorname{stem}(w, a b s(x))_{i} \\
\gg & \operatorname{stem}(w, \text { angle }(x))_{i}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& X(\omega)=f\{5 \cos (8 \pi t)\}=5 \pi[\delta(\omega-8 \pi)+\delta(\omega+8 \pi)] \\
& X(\omega)=5 \pi[\delta(\omega-25.137)+\delta(\omega+25.137)]
\end{aligned}
$$

It is seen that the DFT can be used to approximate the Fourier transform. The DFT result's in this problem exhibit spectrum spreading.
12.16 The hanning window is given by eq. (12.58)

$$
\begin{aligned}
& \operatorname{han}[h]=[0,0.1883,0.6113,0.9505,0.9505,0.6113,0.1883,0] \\
& x_{2}[n]=\operatorname{han}[n] * x[n]=[0,-0.7615,0.9445,14686,-3.848,3.0563,-0.7615,0] \\
& X_{2}[k]=[0.1015,0.1068-j 0.0448,-4.0278-j 0.0826,7.5829+j 3.3671 \\
& -7.4252,7.5829-j 3.3671,-4.0278+j 0.0826,0.1068+j 0.0448]
\end{aligned}
$$

THE FREQUENCY Y COMPONENTS OF $X_{2}[k]$ ARE AT

$$
\omega[k]=\frac{2 \pi k}{N T}=2.5 \pi k, \quad k=0,1, \cdots 7
$$

notice that there is a large component. at $k=4$ OR $\omega[k]=10 \pi(\mathrm{rad} / \mathrm{s})=\omega_{s} / 2$ Because of SPECRUM SPREADING - HOWEVER it is LESS THAN FOUND IN Pi2-15.

The tanning window generated by the "hanning (8)" command in MATLAB differs from that given by eq. (12.58). However, the result of using the MATLAB function is similar to the calculated results.
$>$ (generator " x " as in problem $12.15(b)$)
>) $x_{h}=$ handing (8)'* x;
$\Rightarrow \quad x_{h}=f f t\left(x_{h}, 8\right)$;
) generate " w " as in problem 12.15 (b)
$\rangle \operatorname{stan}\left(\omega, \operatorname{abs}\left(x_{h}\right)\right), \operatorname{axis}([0,60,0,20])$
$12.17 \quad A[k]=\sum_{n=0}^{N-1}\left[1 / 2\left(e^{j \frac{2 \pi k n}{N}}+e^{-j 2 \pi k n} N\right)\right]\left[1 / 2\left(e^{-\frac{j \pi p n}{N}}+e^{-j 2 \pi p n} N\right)\right]$
by orthogonality of exponentials,

$$
\begin{aligned}
& =\frac{1}{4} N \delta[k+p]+1 / 4 N \delta[k-p]+1 / 4 N \delta[k-p]+ \\
& 1 / 4 N \delta[k+p] \\
& =N / 2[\delta[k+p]+\delta[k-p]]
\end{aligned}
$$

12.18

$$
\begin{aligned}
& x[n]=e^{j \frac{6 \pi n}{8}}, N=8 \\
& x[k]=\sum_{n=0}^{7} e^{j \frac{6 \pi n}{8}} e^{-\frac{j 2 \pi n k}{8}}=\sum_{n=0}^{7} e^{j 2 \pi n(3-k)} 88
\end{aligned}
$$

$=8 \delta[k-3]$ by orthogonality of exponential

12.19
(a) A ($x[n]$ has single frequency $-3 / 8$ which is equivalent to frequency $(8-3) / 8$)
(b) C ($x[n]$ has single DC frequency)
(c) $\mathrm{D}(x[n]$ has single frequency at $3 / 8$;)
(d) $\mathrm{B}\left(X[k]=\sum_{n=0}^{7} \delta[n] e^{-j 2 \pi \frac{k n}{s}}=1\right.$ for all $\left.k\right)$

$$
\begin{aligned}
& y[n]=x[n+1]=x[n-3] \\
& \begin{aligned}
y[k]=x[k] e^{\frac{j 2 \pi k}{4}}=x[k] e^{-3 j 2 \pi k} \frac{4}{4} & =w^{3 k} x[k] \\
& =\omega^{-k} x[k]
\end{aligned}
\end{aligned}
$$

(a)

$$
F(\omega)=3.5 \pi[\delta(\omega-140)+\delta(\omega+140)+\delta(\omega 0-60)+\delta(\omega+60)]
$$

the highest frequency component is $140(\mathrm{rad} / \mathrm{s})$

$$
\begin{aligned}
\therefore & \omega_{S}>2 \times 140(\mathrm{rad} / \mathrm{s}) \rightarrow \omega_{S}>280 \mathrm{rad} / \mathrm{s} \\
& T_{S}<\frac{2 \pi}{\omega_{S}} \therefore T_{S}<22.4(\mathrm{~ms})
\end{aligned}
$$

(b) To have resolution of $1 \mathrm{rad} / \mathrm{sec}$, at $\omega_{\mathrm{s}}=300 \mathrm{rad} / \mathrm{sec}$, need 300 samples.
12.22
a) $A \Omega=\frac{2 \pi}{N}=\frac{2 \pi}{1024}$.

$$
\Delta W=\frac{\Delta \Omega}{T S}=\frac{\frac{2 \pi}{1024}}{\frac{1}{1024}}=2 \pi \mathrm{rac} / \mathrm{sec}
$$

b) Highest Brequrecy allowed if aliasing can not occur is
Wax

$$
\begin{aligned}
& W S=\frac{2 \pi}{T S}=\frac{2 \pi}{\frac{1}{1024}}=2048 \pi \\
& W_{S}>2 \times W_{\text {max }} \Rightarrow W_{\text {max }}<1024 \pi
\end{aligned}
$$

(a) $X[k]=e^{j 2 \pi \frac{0}{4}} e^{-j 2 \pi \frac{0 \cdot k}{4}}+e^{j 2 \pi \frac{1}{4}} e^{-j 2 \pi \frac{1 \cdot k}{4}}+e^{j 2 \pi \frac{2}{4}} e^{-j 2 \pi \frac{2 \cdot k}{4}}+e^{j 2 \pi \frac{3}{4}} e^{-j 2 \pi \frac{3 \cdot k}{4}}$
$=1+e^{j \frac{\pi}{2}} e^{-j k \frac{\pi}{2}}+e^{j \pi} e^{-j \pi k}+e^{j \pi \frac{3}{2}} e^{-j \pi \frac{3 k}{2}}$
$=1+j-1-j=0, k=0$
$=1+1+1+1=4, k=1$
$=1-j-1+1+j=0, k=2$
$=1-1+1-1=0, \mathrm{k}=3$
$=[0,4,0,0]$
$=4 \delta[n-1]$
(b) $H[k]=2 e^{-j 2 \pi \frac{0 k}{4}}+1 e^{-j 2 \pi \frac{2 k}{4}}=2+e^{-j \pi k}$
$=2+(-1)^{k}$
$=3, k=0$
$=1, k=1$
$=3, k=2$
$=1, k=3$
$=[3,1,3,1]$ or
$=3 \delta[n]+\delta[n-1]+3 \delta[n-2]+\delta[n-3]$
(c) $X[k] H[k]=0, k=0,2,3$
$=4(1)=4, k=1$
$(\mathrm{d}) x[n] \bigotimes h[n]=\mathcal{D} \mathcal{F}^{-1}(X[k] H[k])=\frac{1}{4} \sum_{k=0}^{3}(X[k] H[k]) e^{j \frac{2 \pi n k}{4}}$
$=\frac{1}{4} 4 e^{j 2 \pi \frac{1 n}{4}}=e^{j \pi n / 2}=(j)^{n}=[1, j,-1,-j]$.
(a) $x[n]=[-2,-1,0,2], y[n]=[-1,-2,-1,-3]$

$$
\begin{aligned}
& x[n] * y[n]=[-2(-1),-2(-2)-1(-1),-2(-1)-1(-2)+0(-1), \\
& \quad-2(-3)-1(-1)+0(-2)+2(-1),-1(-3)+0(-1)+2(-2), 0(-3)+2(-1), 2(-3)] \\
& =[2,5,4,5,-1,-2,-6]
\end{aligned}
$$

(b) $x[n] \circledast y[n]=[-2(-1)-1(-3)+0(-1)+2(-2),-2(-2)-1(-1)+0(-3)+2(-1)$,

$$
\begin{aligned}
& -2(-1)-1(-2)+0(-1)+2(-3),-2(-3)-1(-1)+0(-2)+2(-1)] \\
= & {[1,3,-2,5] }
\end{aligned}
$$

(c) $R_{x y}[n]=\sum_{k=0}^{3} x[k] y[n+k]$. We assume that the first element in the vector is at 0 , so this works out to: $R_{x y}[n]=[-2,-4,-1,-2,5,5,6]$ for $n=0,1,2,3,4,5,6$
(d) $R_{y x}[n]=\sum_{k=0}^{3} x[n+k] y[k]$
$R_{y x}[n]=[6,5,5,-2,-1,-4,-2]$ for $n=0,1,2,3,4,5,6$
(e) $R_{x x}[n]=\sum_{k=0}^{3} x[n+k] x[k]$
$R_{x x}[n]=[-4,-2,2,9,2,-2,-4]$ for $n=0,1,2,3,4,5,6$
(f) In MATLAB:
$x=[-2,-1,0,2] ;$
$y=[-1,-2,-1,-3]$;
\% linear convolution:
conv (x, y)
\% circular convolution:
Xfft=fft(x);
Yfft=fft(y);
real (ifft (Xfft.*Yfft))
\% Rxy:
conv([fliplr(x),zeros (1,3)], [zeros (1,3),y])
\% Ryx:
conv([fliplr(y),zeros (1,3)], [zeros (1,3), x])
\% Rxx:
conv([fliplr(x),zeros (1,3)], [zeros (1,3),x])
(Note that the linear convolution, and the correlations, could also be done in the frequency domain using ff f).

The extended sequences must have $4+4-1=7$ elements: we just add 3 zeros onto the end of each and perform circular convolution. $x_{z}[n]=[-2,-1,0,2,0,0,0], y_{z}[n]=[-1,-2,-1,-3,0,0,0]$

$$
x_{z}[n] \circledast y_{z}[n]=[2,5,4,5,-1,-2,-6]
$$

12.26

$$
\begin{aligned}
& X[k]=\left[\begin{array}{llll}
12 & -2.2 j & 0 & -2+2 j
\end{array}\right] \\
& H[k]=\left[\begin{array}{llll}
2.3 & .51-.81 j & .68 & .51+.81 j
\end{array}\right] \\
& y[n]=x[n] * h[n] \\
& y[k]=X[k] H[k]=\left[\begin{array}{llll}
27.6 & -2.64+.6 i & 0 & -2.64-.6 i
\end{array}\right] \\
& y[n]=i f f t(y[k])=\left[\begin{array}{llll}
5.58 & 6.6 & 8.22 & 7.2
\end{array}\right] \\
& y[2]=8.22
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } V[n]=x[n] * y[-n], V[k] \neq x[k] y[k] \\
& x[n]=\frac{1}{4} \sum_{k=0}^{3} x[k] e^{j 2 \pi k n / 4}, n=0,1,2,3 \\
& y[n]=\frac{1}{4} \sum_{k=0}^{3} y[k] e^{j 2 \pi k n / 4}, n=0,1,2,3 \\
& x[n]=[2,6,6,8], y[n]=[1,3,3,1]=y[-n]
\end{aligned}
$$

$\left.\begin{array}{lllllll}0 & 0 & 2 & 6 & 6 & 8 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 & 0\end{array}\right\}$ limear convolution, $P=2$

$$
v[z]=\frac{0}{0} 1 \quad 3 \quad 3 \quad 1 \quad 0 \quad 0 \quad\{\text { LINEA }
$$

(b)

$$
\begin{aligned}
& w[k]=x[k] y[k]=[176,12+j 4,0,12-j 4] \\
& w[n]=D_{n}^{-1}\{W[k]\}=\frac{1}{4} \sum_{k=0}^{3} W[k] e^{j 2 \pi k n / 4}, n=0,1,2,3
\end{aligned}
$$

(c)

$$
w[z]=\frac{1}{4} \sum_{k=0}^{3} w[k] e^{i \pi n}=38
$$

$$
R_{x y}=x[n] * y[-n], \overline{R_{x y}[2]}=\frac{0026680}{1331000} \begin{aligned}
& 0+0+6+6+0+0+0
\end{aligned}
$$

(d) $R_{y x}=x[-n] * y[n]$

$$
, \begin{aligned}
R_{y x}[2]= & \begin{array}{l}
0013310 \\
\\
\frac{2668000}{0+0+6+24+0+0+0}=30
\end{array}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& R_{x x}=x[n] * x[-n] \\
& R_{x k[2]}= 0026668 \\
& \frac{266800}{0+6+12+48+0+8}=60
\end{aligned}
$$

(F)

$$
\begin{aligned}
S_{x}[k] & =\frac{1}{N} \quad X[k] X^{*}[k] \\
& =\frac{1}{4}\left[\begin{array}{llll}
22 & -4+j 2 & -6 & -4-j 2
\end{array}\right]\left[\begin{array}{llll}
-22 & -4-y^{2} & -6 & -4+y^{2}
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{llll}
(22)(22) & (-4+j 2)(-4-j 2)(-6)(-6)\left(-4-y^{2}\right)\left(-4+y^{2}\right.
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{llll}
484 & 20 & 36 & 20
\end{array}\right] \\
S_{x}[k] & =\left[\begin{array}{llll}
121 & 5 & 9 & 5
\end{array}\right]
\end{aligned}
$$

12.28
(a)

MATLAB

```
EDU# f=[lllllll
EDU> F=fft(f,4)
```

12.29
(a)

(b) EDU» $x=\left[\begin{array}{lllllllll}1 & 0.5 & 0.25 & 0.125 & 0.0625 & 0.03125 & 0.03125 / 2 & 0.03125 / 4\end{array}\right]$ EDU* X=fft $(x, 8)$

12.31

function compressimage(percentzero)
inputimage=imread('filename','pgm');
s=size(inputimage);
height=s(1);
width=s(2);
INPUTIMAGE=dct2(inputimage);
numbercoefficients=height*width*percentzero/100
side_percentzero=sqrt(numbercoefficients)
tpic=zeros(height,width);
for $\mathrm{i}=[1:$ round(side_percentzero)]
for $\mathrm{j}=[1:$ round(side_percentzero)]
tpic(i,j)=INPUTIMAGE(i,j); end
end
iinputimage=idct2(tpic);
figure
imshow(iinputimage, [0 255])
12.1 (a)

$$
\begin{aligned}
& \text { (i) } f(n \pi s)=8 \cos [2 \pi(01 n)]+4 \sin [4 \pi(\cdot 1 k)] \\
& f[n]=8 \operatorname{cs}[.2 \pi n]+4 \sin [.4 \pi n] \\
& F(\Omega)=8 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega-.2 \pi-2 \pi k)+\delta(\Omega+\cdot 2 \pi-2 \pi k)] \\
& -74 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega-.4 \pi-2 \pi k)-\delta(\Omega+.4 \pi-2 \pi k)]
\end{aligned}
$$

(ii) $g[n]=4 \cos [.5 \pi n] u[n]$

$$
\begin{aligned}
& 4 \cos [.5 \pi n] \longleftrightarrow 4 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega \ldots .5 \pi-2 \pi k)+\delta(\Omega+\cdot 5 \pi-2 \pi k)] \\
& u[n] \longleftrightarrow \frac{1}{1-e^{-j \Omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\Omega-2 \pi k) \\
& x[n] y[n] \longleftrightarrow \frac{1}{2 \pi} \times(\Omega) * y(\Omega) \\
& G(\Omega)=\frac{4 e^{j 2 \Omega}}{1+e^{j 2 \Omega}}+2 \pi \sum_{k=-\infty}^{\infty}[\delta(\Omega-.5 \pi-2 \pi k)+ \\
& \delta(\Omega+.5 \pi-2 \pi k)]
\end{aligned}
$$

part b) neat page

(

$12.2(a)$

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{l}
(.5)^{n}, n \geq 0 ; x(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega} \\
0, n<0 \\
x(\Omega)=\sum_{n=0}^{\infty}(.5)^{n} e^{-j n \Omega}=1+\underbrace{1.5 e^{-j \Omega}+\left(.5 e^{-j \Omega}\right)^{2}}_{\text {geometric series }}+\left(.5 e^{-j \Omega}\right)^{3}+\ldots
\end{array}\right. \\
& x(\Omega)=\frac{1}{1-.5 e^{-j \Omega}}
\end{aligned}
$$

(b) $y[n]=-n(.5)^{n} u[n] \stackrel{\text { मिन }}{\Longleftrightarrow} Y(\Omega)=\sum_{n=0}^{\infty} n(.5)^{n} e^{-\frac{-1 n \Omega}{\leftrightarrows}}$

From Th⿰LEE $12.1 \quad y(\Omega)=\frac{.5 e^{j \Omega} x=0}{\left(e^{j \Omega}-.5\right)^{2}}$
(c)

$$
\begin{aligned}
v[n] & =2[u[n]-u[n-j]] \\
v(\Omega) & =\sum_{n=0}^{4} 2 e^{-j n \Omega}=2\left[1+e^{-j \Omega}+e^{-j 2 \Omega}+e^{-j 3 \Omega}+e^{-j 4 \Omega}\right] \\
& =2 e^{-j 2 \Omega}\left[e^{j \alpha \Omega}+e^{j \Omega}+1+e^{-j \Omega}+e^{-j 2 \Omega}\right] \\
& =2 e^{-j 2 \Omega}[1+2 \cos \Omega+2 \cos 2 \Omega]
\end{aligned}
$$

or from TABLE $12.1: V(\omega)=2 \frac{\sin \left(\frac{5 \Omega}{2}\right)}{\sin \left(\frac{\Omega}{2}\right)} e^{-j 2 \Omega}$

$$
\begin{aligned}
& \text { (d) } \omega[n]=\operatorname{rect}(n / 4)+\operatorname{rect}(n / 10) \\
& w(\Omega)=\sum_{n=-5}^{5} 1 e^{-j n \Omega}+\sum_{n=-2}^{2} 1 e^{-j n \Omega}= \\
& w(\Omega)=e^{45 \Omega}+e^{j 42 \varepsilon}+e^{43 \Omega}+2 e^{j 2 \Omega}+2 e^{1 / 2}+2+2 e^{-j \Omega}+2 e^{-j z \Omega}+e^{-j 3 \sqrt{-j 4 \Omega}+e^{-j 5 \Omega}+e^{2}}
\end{aligned}
$$

or From table iz.l

$$
\begin{aligned}
& W(\Omega)=\frac{\sin \left(\frac{5 \pi}{2}\right)}{\sin \left(\frac{\pi}{2}\right)}+\frac{\sin \left(\frac{11 \Omega}{2}\right)}{\sin \left(\frac{\pi}{2}\right)} \text { or } \\
& W(\Omega)=2 \cos 5 \Omega+2 \cos 4 \Omega+2 \cos 3 \Omega+4 \cos 2 \Omega \\
& +4 \cos \Omega+2
\end{aligned}
$$

12.3

Need to show that $\mathcal{D F}\left[a x_{1}[n]+b x_{2}[n]\right]=a\left(\mathcal{D F}\left[x_{1}[n]\right]\right)+b\left(\mathcal{D F}\left[x_{2}[n]\right]\right)$, where a, b are any constants and $x_{1}[n], x_{2}[n]$ are two length $-N$ signals.

$$
\begin{aligned}
\mathcal{D} \mathcal{F}\left[a x_{1}[n]+b x_{2}[n]\right] & = & \sum_{n=0}^{N-1}\left(a x_{1}[n]+b x_{2}[n]\right) e^{-j 2 \pi \frac{n k}{N}}=\sum_{n=0}^{N-1} a x_{1}[n] e^{-j 2 \pi \frac{n k}{N}}+b x_{2}[n] e^{-j 2 \pi \frac{n k}{N}} \\
& = & a \sum_{n=0}^{N-1} x_{1}[n] e^{-j 2 \pi \frac{n k}{N}}+b \sum_{n=0}^{N-1} x_{2}[n] e^{-j 2 \pi \frac{n k}{N}} \\
& = & a\left(\mathcal{D F}\left[x_{1}[n]\right]\right)+b\left(\mathcal{D F}\left[x_{2}[n]\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
12.4 & \times(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega}, \frac{d}{d \Omega} \times(\Omega)=\frac{d}{d \Omega} \sum_{n=-\infty}^{\infty} x[n] e^{-j n \Omega} \\
\frac{d}{d \Omega} \times(\Omega) & =\sum_{n=-\infty}^{\infty} x[n] \frac{d}{d \Omega} e^{-j n \Omega}=\sum_{n=-\infty}^{\infty}-j n x[n] e^{-j n \Omega} \\
y \frac{d}{d \Omega} \times(\Omega) & =\sum_{n=-\infty}^{\infty}(y)(-j) n x[n] e^{-j n \Omega}=\sum_{n=-\infty}^{\infty} n x[n] e^{-j n \Omega} \\
& =D T \nexists\{n x[n]\}
\end{aligned}
$$

12.5
(a) Plugging $\delta[n]$ in for $x[n]$ gives: $h[n]=3 \delta[n]+5 \delta[n-1]+3 \delta[n-2]$.

(b) $H(\Omega)=\sum_{n=-\infty}^{\infty} h[n] e^{-j n \Omega}=3+5 e^{-j \Omega}+3 e^{-j 2 \Omega}$
(c) Yes linear phase: $h[n]=h[M-1-n]$ where in this case $M=3(h[0]=h[2])$, $h[n]=e^{-j \Omega}\left(3 e^{j \Omega}+5+3 e^{-j \Omega}\right)=e^{-j \Omega}(6 \cos (\Omega)+5)$
phase $=-\Omega$

12.6

(a) No this is an IIR filter with impulse response $h_{1}[n]=0.7^{n} u[n]$ or $h_{1}[n]=-(0.7)^{n} u[-n-1]$
(b) Yes linear phase since $h_{2}[n]=h_{2}[M-1-n]$:

$$
\begin{aligned}
H_{2}(\Omega)= & e^{-\frac{3}{2} j \Omega}\left(e^{\frac{3}{2} j \Omega}+e^{-\frac{3}{2} j \Omega}\right)+3 e^{-\frac{3}{2} \Omega}\left(e^{j \frac{1}{2} \Omega}+e^{-j \frac{1}{2} \Omega}\right) \\
& = \\
\text { phase }= & 2 e^{-\frac{3}{2} j \Omega}\left(\cos \left(\frac{3}{2} \Omega\right)+3 \cos \left(\frac{1}{2} \Omega\right)\right) \\
& -\frac{3}{2} \Omega
\end{aligned}
$$

(c) Yes linear phase since $h_{3}[n]=h_{3}[M-1-n]$:

$$
\begin{aligned}
H_{3}(\Omega) & = & 2\left(e^{2 j \Omega}+e^{-2 j \Omega}\right)+3\left(e^{j \Omega}+e^{-j \Omega}\right)+7 \\
& = & 2(7+3 \cos (\Omega)+2 \cos (2 \Omega)) \\
\text { phase } & = & 0
\end{aligned}
$$

(d) No symmetry conditions satisfied \Longrightarrow nonlinear phase.
12.7

$$
\begin{aligned}
& 12.7 X_{0}(\Omega)=1+e^{-2 j-\Omega}+e^{-4 j \Omega} \\
& X(\Omega)
\end{aligned}=\frac{2 \pi}{5} \sum_{k=10}^{\infty} X_{0}\left(\frac{2 \pi k}{5}\right) \delta\left(\Omega-\frac{2 \pi k}{5}\right), ~ \begin{aligned}
X_{0}(\Omega) & =e^{-2 j \Omega}\left(e^{j 2 \Omega}+1+e^{-2 j \Omega}\right) \\
& =e^{-2 j \Omega}(1+2 \cos 2 \Omega) \therefore \angle X_{0}(\Omega)=-2 \Omega
\end{aligned}
$$

$12.8 \quad y[n]=x[n / 3]$

$$
\begin{aligned}
& y(\Omega)=\sum_{n=-\infty}^{\infty} x[n / 3] e^{-j \Omega n} \quad \text { let } l=n / 3 \\
& y(\Omega)=\sum_{l=-\infty}^{\infty} x[l] e^{-j \Omega 3 l}=x(3 \Omega)
\end{aligned}
$$

$12.9 \quad x_{0}[n]=\operatorname{idft}\left[\begin{array}{llll}4 & 0 & 4 & 0\end{array}\right]$
since $x[k]=x_{0}\left(\frac{2 \pi k}{4}\right)$ for $N=4$

$$
\begin{aligned}
& x_{0}[n]=1 / 4\left(4+4 e^{j \pi n}\right) \\
& x_{0}[n]=\left[\begin{array}{llll}
2 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

$12 \cdot 10$
$0 \int_{1}^{1} 0 \quad H(\Omega)$
let $H[k]=H\left(\frac{2 \pi k}{4}\right)=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$
$h[n]$ is simply IDFT of $H[k]$

$$
\begin{aligned}
& h[n]=1 / 4 \sum_{k=0}^{3} H[k] W_{4}^{-n k}=\frac{1}{4}\left[e^{\frac{j 2 \pi n}{4}}+e^{j \frac{6 \pi n}{4}}\right] \\
& h[n]=[1 / 2,0,-1 / 2,0]
\end{aligned}
$$

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{\Omega=0}^{2 \pi} X(\Omega)=\frac{1}{4} \int_{\Omega=0}^{2 \pi}\left(6 \delta\left(\Omega-\frac{2 \pi}{4}\right)+6 \delta\left(\Omega-\frac{6 \pi}{4}\right)\right) e^{j n \Omega} d \Omega \\
&= \\
& \frac{1}{4}\left(6 e^{j n \frac{\pi}{2}}+6 e^{j n \frac{3 \pi}{2}}\right)=3 / 2 e^{j n \frac{\pi}{2}}+3 / 2 e^{j n \frac{3 \pi}{2}}
\end{aligned}
$$

This gives:

$$
\begin{aligned}
x[n] & =3, n=0,4,8, \ldots \\
& =0, n=1,5,9, \ldots \\
& =-3, n=2,6,10, \ldots \\
& =0, n=3,7,11, \ldots
\end{aligned}
$$

First consider the signal $z_{0}[n]=z[n]$ over $0 \leq n \leq 3$ and $z_{0}[n]=0$ elsewhere. Then:

$$
\begin{aligned}
Z_{0}(\Omega) & = & \sum_{n=0}^{3} z[n] e^{-j n \Omega}=2 e^{-j 0 \Omega}+1 e^{-j 2 \Omega}=2+e^{-j 2 \Omega} \\
Z(\Omega) & = & \frac{2 \pi}{4} \sum_{k=-\infty}^{\infty} Z_{0}\left(\frac{2 \pi k}{4}\right) \delta\left(\Omega-k \frac{2 \pi}{4}\right) \\
& = & \frac{\pi}{2} \sum_{k=-\infty}^{\infty}\left(2+e^{-j k \pi}\right) \delta\left(\Omega-k \frac{\pi}{2}\right)
\end{aligned}
$$

Note that $2+e^{-j k \pi}=1$ if k odd and $2+e^{-j k \pi}=3$ if k even. Therefore:

$$
Z(\Omega)=\sum_{k=-\infty}^{\infty} \frac{\pi}{2} \delta\left(\Omega-(2 k+1) \frac{\pi}{2}\right)+\frac{3 \pi}{2} \delta\left(\Omega-(2 k) \frac{\pi}{2}\right)
$$

$$
\begin{aligned}
& x[0]=1+1+1+0=3 \\
& x[1]=1+1 e^{-j 2 \pi / 4}+e^{-j \pi}+0=e^{-j \pi / 2}=-j 1 \\
& x[2]=1+e^{-j \pi}+e^{-22 \pi}+0=1 \\
& x[3]=1+e^{-j 3 \pi / 2}+e^{-j 3 \pi}+0=e^{-j 3 \pi / 2}=f 1 \\
& \therefore X[k]=[3,-j 1,1, f 1]
\end{aligned}
$$

(b) MATLAB

$$
\begin{aligned}
& >x=\left[\begin{array}{lllllll}
1 & 1 & 1 & l & 1 & 0 & 0
\end{array}\right] ; \\
& \gg x=f f t(x) ; \\
& \gg \operatorname{stem}(\operatorname{abs}(x)) \\
& \gg \operatorname{stem}(\operatorname{angle}(x))
\end{aligned}
$$

12.13 c) Matiab problem

$$
\left.\begin{array}{l}
\Rightarrow x=\left[\begin{array}{llllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right] ;
$$

12.14

(a) Note that $x[n]=(0.5)^{n}$ over $n=0, \ldots, 8$:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{7} x[n] e^{-j 2 \pi \frac{n k}{8}}=\sum_{n=0}^{7} 0.5^{n} e^{-j 2 \pi \frac{n k}{8}} \\
& =\quad \frac{1-\left(0.5 e^{-j 2 \pi \frac{k}{8}}\right)^{8}}{1-0.5 e^{-j 2 \pi \frac{k}{8}}}, k=0, \ldots, 7
\end{aligned}
$$

using the formula $\sum_{n=0}^{M-1} r^{n}=\frac{1-r^{M}}{1-r}, r \neq 1$, where in this case $r=0.5 e^{-j 2 \pi \frac{k}{8}}$.
(b)
$\gg \mathrm{xn}=0.5 .^{\wedge}[0: 7]$;
$\gg \mathrm{Xk}=\mathrm{fft}(\mathrm{xn})$

$\mathrm{Xk}=1.9922$	$1.1861-0.6487 \mathrm{i}$	$0.7969-0.3984 i$	$0.6889-0.1799 \mathrm{i}$	0.6641	0.6889
+0.1799 i	$0.7969+0.3984 \mathrm{i}$	$1.1861+0.6487 \mathrm{i}$			
$\gg \mathrm{Xk}=(1-(0.5 * \exp (-j * 2 * \mathrm{pi} *[0: 7] / 8)) . \wedge 8) . /(1-0.5 * \exp (-j * 2 * \mathrm{pi} *[0: 7] / 8))$					

| $\mathrm{Xk}=1.9922$ | $1.1861-0.6487 i$ | $0.7969-0.3984 i$ | $0.6889-0.1799 i$ | $0.6641-0.0000 i$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.6889+0.1799 i$ | $0.7969+0.3984 i$ | $1.1861+0.6487 i$ | | |

(c)

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} n(0.5)^{n} e^{-j 2 \pi \frac{n k}{8}}=\sum_{n=0}^{7} n\left(0.5 e^{-j 2 \pi \frac{k}{8}}\right)^{n} \\
&= \\
& a \frac{1-a^{8}-(8) a^{7}(1-a)}{(1-a)^{2}}
\end{aligned}
$$

where $a=0.5 e^{-j 2 \pi \frac{k}{8}}$. This comes from the formula $\sum_{k=0}^{n} k a^{k}=a \frac{d}{d a} \sum_{k=0}^{n} a^{k}=a \frac{d}{d a}\left(\frac{1-a^{n+1}}{1-a}\right)$.
(d)
$\gg \mathrm{xn}=[0: 7] \cdot *(0,5) . \wedge[0: 7]$;
$\gg \mathrm{Xk}=\mathrm{fft}(\mathrm{xn})$
$\mathrm{Xk}=1.9297-0.2334-0.8758 \mathrm{i} \quad-0.3438-0.2266 \mathrm{i} \quad-0.2666-0.0633 \mathrm{i} \quad-0.2422 \quad-0.2666$
$+0.0633 i \quad-0.3438+0.2266 i \quad-0.2334+0.8758 i$
$\gg \mathrm{a}=0.5 * \exp (-j * 2 * \mathrm{pi} *[0: 7] / 8)$;
$\gg \mathrm{Xk}=\mathrm{a} \cdot *\left(\left(1-\mathrm{a} \cdot{ }^{\wedge} 8\right)-8 * \mathrm{a} .^{\wedge} 7 . *(1-\mathrm{a})\right) . /(1-\mathrm{a}) \cdot \wedge 2$
$\mathrm{Xk}=1.9297-0.2334-0.8758 \mathrm{i} \quad-0.3438-0.2266 \mathrm{i} \quad-0.2666-0.0633 \mathrm{i} \quad-0.2422-0.0000 \mathrm{i}$
$-0.2666+0.0633 i \quad-0.3438+0.2266 i \quad-0.2334+0.8758 i$

$$
\begin{aligned}
& 12.15 \text { a) } x[n]=[5.0,-4.05,1.55,1.55,-4.05,5.0,-4.05 \\
& X[k]=\sum_{k=0}^{7} x[n] e^{-\frac{\partial \pi}{4} n k}, k=0,1, \ldots, 7 \\
& X[k]=[2.5,2.65+7.81,3.45+72.14,15.44+711.98, \\
& \quad-5.60,15.44-711.98,3.45-72.14,2.65-7.81]
\end{aligned}
$$

12.15(b) MATLAB

$$
\begin{aligned}
> & \text { for } n=1: 8 \\
& x(n)=5 * \cos ((n-1) * 8 * * p i / 10) ; \\
& \text { end } \\
\gg & x \\
\gg & x=f f(t)(x, 8) ; \\
\gg & X \\
\gg & \text { for } n=1: 8 \\
& w(n)=(n-1) * 2 * p i * 10 / 8 ; \\
& \quad \text { end } \\
\gg & \operatorname{stem}(w, a b s(x))_{i} \\
\gg & \operatorname{stem}(w, \text { angle }(x))_{i}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& X(\omega)=f\{5 \cos (8 \pi t)\}=5 \pi[\delta(\omega-8 \pi)+\delta(\omega+8 \pi)] \\
& X(\omega)=5 \pi[\delta(\omega-25.137)+\delta(\omega+25.137)]
\end{aligned}
$$

It is seen that the DFT can be used to approximate the Fourier transform. The DFT result's in this problem exhibit spectrum spreading.
12.16 The hanning window is given by eq. (12.58)

$$
\begin{aligned}
& \operatorname{han}[h]=[0,0.1883,0.6113,0.9505,0.9505,0.6113,0.1883,0] \\
& x_{2}[n]=\operatorname{han}[n] * x[n]=[0,-0.7615,0.9445,14686,-3.848,3.0563,-0.7615,0] \\
& X_{2}[k]=[0.1015,0.1068-j 0.0448,-4.0278-j 0.0826,7.5829+j 3.3671 \\
& -7.4252,7.5829-j 3.3671,-4.0278+j 0.0826,0.1068+j 0.0448]
\end{aligned}
$$

THE FREQUENCY Y COMPONENTS OF $X_{2}[k]$ ARE AT

$$
\omega[k]=\frac{2 \pi k}{N T}=2.5 \pi k, \quad k=0,1, \cdots 7
$$

notice that there is a large component. at $k=4$ OR $\omega[k]=10 \pi(\mathrm{rad} / \mathrm{s})=\omega_{s} / 2$ Because of SPECRUM SPREADING - HOWEVER it is LESS THAN FOUND IN Pi2-15.

The tanning window generated by the "hanning (8)" command in MATLAB differs from that given by eq. (12.58). However, the result of using the MATLAB function is similar to the calculated results.
$>$ (generator " x " as in problem $12.15(b)$)
>) $x_{h}=$ handing (8)'* x;
$\Rightarrow \quad x_{h}=f f t\left(x_{h}, 8\right)$;
) generate " w " as in problem 12.15 (b)
$\rangle \operatorname{stan}\left(\omega, \operatorname{abs}\left(x_{h}\right)\right), \operatorname{axis}([0,60,0,20])$
$12.17 \quad A[k]=\sum_{n=0}^{N-1}\left[1 / 2\left(e^{j \frac{2 \pi k n}{N}}+e^{-j 2 \pi k n} N\right)\right]\left[1 / 2\left(e^{-\frac{j \pi p n}{N}}+e^{-j 2 \pi p n} N\right)\right]$
by orthogonality of exponentials,

$$
\begin{aligned}
& =\frac{1}{4} N \delta[k+p]+1 / 4 N \delta[k-p]+1 / 4 N \delta[k-p]+ \\
& 1 / 4 N \delta[k+p] \\
& =N / 2[\delta[k+p]+\delta[k-p]]
\end{aligned}
$$

12.18

$$
\begin{aligned}
& x[n]=e^{j \frac{6 \pi n}{8}}, N=8 \\
& x[k]=\sum_{n=0}^{7} e^{j \frac{6 \pi n}{8}} e^{-\frac{j 2 \pi n k}{8}}=\sum_{n=0}^{7} e^{j 2 \pi n(3-k)} 88
\end{aligned}
$$

$=8 \delta[k-3]$ by orthogonality of exponential

12.19
(a) A ($x[n]$ has single frequency $-3 / 8$ which is equivalent to frequency $(8-3) / 8$)
(b) C ($x[n]$ has single DC frequency)
(c) $\mathrm{D}(x[n]$ has single frequency at $3 / 8$;)
(d) $\mathrm{B}\left(X[k]=\sum_{n=0}^{7} \delta[n] e^{-j 2 \pi \frac{k n}{s}}=1\right.$ for all $\left.k\right)$

$$
\begin{aligned}
& y[n]=x[n+1]=x[n-3] \\
& \begin{aligned}
y[k]=x[k] e^{\frac{j 2 \pi k}{4}}=x[k] e^{-3 j 2 \pi k} \frac{4}{4} & =w^{3 k} x[k] \\
& =\omega^{-k} x[k]
\end{aligned}
\end{aligned}
$$

(a)

$$
F(\omega)=3.5 \pi[\delta(\omega-140)+\delta(\omega+140)+\delta(\omega 0-60)+\delta(\omega+60)]
$$

the highest frequency component is $140(\mathrm{rad} / \mathrm{s})$

$$
\begin{aligned}
\therefore & \omega_{S}>2 \times 140(\mathrm{rad} / \mathrm{s}) \rightarrow \omega_{S}>280 \mathrm{rad} / \mathrm{s} \\
& T_{S}<\frac{2 \pi}{\omega_{S}} \therefore T_{S}<22.4(\mathrm{~ms})
\end{aligned}
$$

(b) To have resolution of $1 \mathrm{rad} / \mathrm{sec}$, at $\omega_{\mathrm{s}}=300 \mathrm{rad} / \mathrm{sec}$, need 300 samples.
12.22
a) $A \Omega=\frac{2 \pi}{N}=\frac{2 \pi}{1024}$.

$$
\Delta W=\frac{\Delta \Omega}{T S}=\frac{\frac{2 \pi}{1024}}{\frac{1}{1024}}=2 \pi \mathrm{rac} / \mathrm{sec}
$$

b) Highest Brequrecy allowed if aliasing can not occur is
Wax

$$
\begin{aligned}
& W S=\frac{2 \pi}{T S}=\frac{2 \pi}{\frac{1}{1024}}=2048 \pi \\
& W_{S}>2 \times W_{\text {max }} \Rightarrow W_{\text {max }}<1024 \pi
\end{aligned}
$$

(a) $X[k]=e^{j 2 \pi \frac{0}{4}} e^{-j 2 \pi \frac{0 \cdot k}{4}}+e^{j 2 \pi \frac{1}{4}} e^{-j 2 \pi \frac{1 \cdot k}{4}}+e^{j 2 \pi \frac{2}{4}} e^{-j 2 \pi \frac{2 \cdot k}{4}}+e^{j 2 \pi \frac{3}{4}} e^{-j 2 \pi \frac{3 \cdot k}{4}}$
$=1+e^{j \frac{\pi}{2}} e^{-j k \frac{\pi}{2}}+e^{j \pi} e^{-j \pi k}+e^{j \pi \frac{3}{2}} e^{-j \pi \frac{3 k}{2}}$
$=1+j-1-j=0, k=0$
$=1+1+1+1=4, k=1$
$=1-j-1+1+j=0, k=2$
$=1-1+1-1=0, \mathrm{k}=3$
$=[0,4,0,0]$
$=4 \delta[n-1]$
(b) $H[k]=2 e^{-j 2 \pi \frac{0 k}{4}}+1 e^{-j 2 \pi \frac{2 k}{4}}=2+e^{-j \pi k}$
$=2+(-1)^{k}$
$=3, k=0$
$=1, k=1$
$=3, k=2$
$=1, k=3$
$=[3,1,3,1]$ or
$=3 \delta[n]+\delta[n-1]+3 \delta[n-2]+\delta[n-3]$
(c) $X[k] H[k]=0, k=0,2,3$
$=4(1)=4, k=1$
$(\mathrm{d}) x[n] \bigotimes h[n]=\mathcal{D} \mathcal{F}^{-1}(X[k] H[k])=\frac{1}{4} \sum_{k=0}^{3}(X[k] H[k]) e^{j \frac{2 \pi n k}{4}}$
$=\frac{1}{4} 4 e^{j 2 \pi \frac{1 n}{4}}=e^{j \pi n / 2}=(j)^{n}=[1, j,-1,-j]$.
(a) $x[n]=[-2,-1,0,2], y[n]=[-1,-2,-1,-3]$

$$
\begin{aligned}
& x[n] * y[n]=[-2(-1),-2(-2)-1(-1),-2(-1)-1(-2)+0(-1), \\
& \quad-2(-3)-1(-1)+0(-2)+2(-1),-1(-3)+0(-1)+2(-2), 0(-3)+2(-1), 2(-3)] \\
& =[2,5,4,5,-1,-2,-6]
\end{aligned}
$$

(b) $x[n] \circledast y[n]=[-2(-1)-1(-3)+0(-1)+2(-2),-2(-2)-1(-1)+0(-3)+2(-1)$,

$$
\begin{aligned}
& -2(-1)-1(-2)+0(-1)+2(-3),-2(-3)-1(-1)+0(-2)+2(-1)] \\
= & {[1,3,-2,5] }
\end{aligned}
$$

(c) $R_{x y}[n]=\sum_{k=0}^{3} x[k] y[n+k]$. We assume that the first element in the vector is at 0 , so this works out to: $R_{x y}[n]=[-2,-4,-1,-2,5,5,6]$ for $n=0,1,2,3,4,5,6$
(d) $R_{y x}[n]=\sum_{k=0}^{3} x[n+k] y[k]$
$R_{y x}[n]=[6,5,5,-2,-1,-4,-2]$ for $n=0,1,2,3,4,5,6$
(e) $R_{x x}[n]=\sum_{k=0}^{3} x[n+k] x[k]$
$R_{x x}[n]=[-4,-2,2,9,2,-2,-4]$ for $n=0,1,2,3,4,5,6$
(f) In MATLAB:
$x=[-2,-1,0,2] ;$
$y=[-1,-2,-1,-3]$;
\% linear convolution:
conv (x, y)
\% circular convolution:
Xfft=fft(x);
Yfft=fft(y);
real (ifft (Xfft.*Yfft))
\% Rxy:
conv([fliplr(x),zeros (1,3)], [zeros (1,3),y])
\% Ryx:
conv([fliplr(y),zeros (1,3)], [zeros (1,3), x])
\% Rxx:
conv([fliplr(x),zeros (1,3)], [zeros (1,3),x])
(Note that the linear convolution, and the correlations, could also be done in the frequency domain using ff f).

The extended sequences must have $4+4-1=7$ elements: we just add 3 zeros onto the end of each and perform circular convolution. $x_{z}[n]=[-2,-1,0,2,0,0,0], y_{z}[n]=[-1,-2,-1,-3,0,0,0]$

$$
x_{z}[n] \circledast y_{z}[n]=[2,5,4,5,-1,-2,-6]
$$

12.26

$$
\begin{aligned}
& X[k]=\left[\begin{array}{llll}
12 & -2.2 j & 0 & -2+2 j
\end{array}\right] \\
& H[k]=\left[\begin{array}{llll}
2.3 & .51-.81 j & .68 & .51+.81 j
\end{array}\right] \\
& y[n]=x[n] * h[n] \\
& y[k]=X[k] H[k]=\left[\begin{array}{llll}
27.6 & -2.64+.6 i & 0 & -2.64-.6 i
\end{array}\right] \\
& y[n]=i f f t(y[k])=\left[\begin{array}{llll}
5.58 & 6.6 & 8.22 & 7.2
\end{array}\right] \\
& y[2]=8.22
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } V[n]=x[n] * y[-n], V[k] \neq x[k] y[k] \\
& x[n]=\frac{1}{4} \sum_{k=0}^{3} x[k] e^{j 2 \pi k n / 4}, n=0,1,2,3 \\
& y[n]=\frac{1}{4} \sum_{k=0}^{3} y[k] e^{j 2 \pi k n / 4}, n=0,1,2,3 \\
& x[n]=[2,6,6,8], y[n]=[1,3,3,1]=y[-n]
\end{aligned}
$$

$\left.\begin{array}{lllllll}0 & 0 & 2 & 6 & 6 & 8 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 & 0\end{array}\right\}$ limear convolution, $P=2$

$$
v[z]=\frac{0}{0} 1 \quad 3 \quad 3 \quad 1 \quad 0 \quad 0 \quad\{\text { LINEA }
$$

(b)

$$
\begin{aligned}
& w[k]=x[k] y[k]=[176,12+j 4,0,12-j 4] \\
& w[n]=D_{n}^{-1}\{W[k]\}=\frac{1}{4} \sum_{k=0}^{3} W[k] e^{j 2 \pi k n / 4}, n=0,1,2,3
\end{aligned}
$$

(c)

$$
w[z]=\frac{1}{4} \sum_{k=0}^{3} w[k] e^{i \pi n}=38
$$

$$
R_{x y}=x[n] * y[-n], \overline{R_{x y}[2]}=\frac{0026680}{1331000} \begin{aligned}
& 0+0+6+6+0+0+0
\end{aligned}
$$

(d) $R_{y x}=x[-n] * y[n]$

$$
, \begin{aligned}
R_{y x}[2]= & \begin{array}{l}
0013310 \\
\\
\frac{2668000}{0+0+6+24+0+0+0}=30
\end{array}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& R_{x x}=x[n] * x[-n] \\
& R_{x k[2]}= 0026668 \\
& \frac{266800}{0+6+12+48+0+8}=60
\end{aligned}
$$

(F)

$$
\begin{aligned}
S_{x}[k] & =\frac{1}{N} \quad X[k] X^{*}[k] \\
& =\frac{1}{4}\left[\begin{array}{llll}
22 & -4+j 2 & -6 & -4-j 2
\end{array}\right]\left[\begin{array}{llll}
-22 & -4-y^{2} & -6 & -4+y^{2}
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{llll}
(22)(22) & (-4+j 2)(-4-j 2)(-6)(-6)\left(-4-y^{2}\right)\left(-4+y^{2}\right.
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{llll}
484 & 20 & 36 & 20
\end{array}\right] \\
S_{x}[k] & =\left[\begin{array}{llll}
121 & 5 & 9 & 5
\end{array}\right]
\end{aligned}
$$

12.28
(a)

MATLAB

```
EDU# f=[lllllll
EDU> F=fft(f,4)
```

12.29
(a)

(b) EDU» $x=\left[\begin{array}{lllllllll}1 & 0.5 & 0.25 & 0.125 & 0.0625 & 0.03125 & 0.03125 / 2 & 0.03125 / 4\end{array}\right]$ EDU* X=fft $(x, 8)$

12.31

function compressimage(percentzero)
inputimage=imread('filename','pgm');
s=size(inputimage);
height=s(1);
width=s(2);
INPUTIMAGE=dct2(inputimage);
numbercoefficients=height*width*percentzero/100
side_percentzero=sqrt(numbercoefficients)
tpic=zeros(height,width);
for $\mathrm{i}=[1:$ round(side_percentzero)]
for $\mathrm{j}=[1:$ round(side_percentzero)]
tpic(i,j)=INPUTIMAGE(i,j); end
end
iinputimage=idct2(tpic);
figure
imshow(iinputimage, [0 255])

CHAPTER 13
13.1. (a)

$$
\begin{aligned}
& x[n]=y[n] \\
& x[n+1]=0.8 y[n]+1.9 u[n] \\
& y[n]=x[n]
\end{aligned}
$$

(b) Repslace n with $n+2$

$$
\begin{aligned}
& y[n+2]+0.8 y[n]=u[n] \\
& x_{1}[n]=y[n] \\
& x_{1}[n+1]=y[n+1]=x_{2}[n] ; \\
& x_{2}[n+1]=y[n+2]=-0.8 y[n]+u[n]=-0.8 x,[n]+u[n] \\
\therefore & \underline{x}[n+1]=\left[\begin{array}{cc}
0 & 1 \\
-0.8 & 0
\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u[n] \\
& y[n]=\left[\begin{array}{cc}
1 & 0
\end{array}\right] x[n]
\end{aligned}
$$

(C) $\xrightarrow{4[n]}$ D ${ }^{[5 n]}$

$$
\begin{array}{r}
x[n]=y[n] \quad \therefore x[n+1]=u[n] \\
\\
y[n]=x[n]
\end{array}
$$

13.2. (a) $z Y(z)=(1-\alpha) Y(z)+\alpha z X(z)$

$$
\therefore Y(z)=\frac{\alpha z}{z-(1-\alpha)} X(z) \Rightarrow \frac{X(z)}{\frac{\alpha}{1-(1-\alpha) z^{-1}}} Y(z)
$$

$$
\begin{aligned}
\therefore & x_{1}[n+1]=(1-\alpha) x_{1}[n]+\alpha u[n] \\
& y[n]=x_{1}[n+1]=(1-\alpha) x_{1}[n]+\alpha u[n]
\end{aligned}
$$

(b) (i) see above.
(ii)

$$
\begin{aligned}
& \quad Z X_{1}(z)=(1-\alpha) X_{1}(z)+\alpha U(z) \\
& \therefore X_{1}(Z)=\frac{\alpha}{z-(1-\alpha)} U(z) \\
& \therefore Y(z)=(1-\alpha) X_{1}(z)+\alpha U(z)=\left[\frac{\alpha(1-\alpha)}{z-(1-\alpha)}+\alpha\right] U(z) \\
& \quad=\frac{\alpha z}{Z-(1-\alpha)} U(z)
\end{aligned}
$$

13.3. (a) $x_{1}[n+1]=(1-\alpha) x_{1}[n]+(1-\alpha) T x_{2}[n]+\alpha u[n]$

$$
\begin{aligned}
& x_{2}[n+1]=x_{2}[n]+\frac{\beta}{T}\left[-x_{1}[n]-T x_{2}[n]\right]+\frac{\beta}{T} u[n] \\
& y_{1}[n]=y[n]=x_{1}[n+1]=(1-\alpha) x_{1}[n]+(1-\alpha) T x_{2}[n]+\alpha u[n] \\
& y_{2}[n]=N[n]-x_{2}[n+1]=-\frac{\beta}{T} x_{1}[n]+(1-\beta) x_{2}[n]+\frac{\beta}{T} u[n] \\
& \therefore \underline{x}_{[n+1]}=\left[\begin{array}{cc}
1-\alpha & 1-\alpha \\
-\beta / T & 1-\beta
\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}
\alpha \\
\beta / T
\end{array}\right] u[n] \\
& \underline{y}[n]=\left[\begin{array}{cc}
1-\alpha & 1-\alpha \\
-\beta / T & 1-\beta
\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}
\alpha \\
\beta_{T}
\end{array} u[n]\right.
\end{aligned}
$$

(b) With $\beta=0$, input to $x_{2}[n+1]$ is zeso, $\therefore x_{2}[n]=0$

$$
\begin{aligned}
\therefore x_{1}[n+1] & =(1-\alpha) x_{1}[n]+\alpha u[n] \\
y[n] & =(1-\alpha) x_{1}[n]+\alpha u[n]
\end{aligned}
$$

13.4.(a) $y[n+1]-0.9 y[n]=1.5 u[n+1]$

(b)

$$
\begin{aligned}
& \psi[n+1]=0.9 x[n]+u[n] \\
& y[n]=1.5 x[n+1]=1.35 x[n]+1.5 u[n]
\end{aligned}
$$

(c) $H(z)=\frac{1.5 z}{z-0.9}$
(d)

$$
\begin{aligned}
& A=[0,9] ; B=[1] ; C=[1,35] ; D=1.5 ; \\
& {[n, d]=\sin 2 t f(A, B, C, D)}
\end{aligned}
$$

(e) (a) Form 2:

(c) $H(z)=\frac{2}{z^{2}-1.5 z+0.9}$
(f) (a) Form 2:
(b) $\underline{\underline{L}}[n+1]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ \Delta .72 & -3.4 & 2.9\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] u[n]$
$y[n]=\left[\begin{array}{lll}2 & 0 & \Delta\end{array}\right] x[n]$

13.4. (c) $H(z)=\frac{z}{z^{3}-2.9 z^{2}+3.4 z-0.22}$

(b) $x[n+1]=0.8 x[n]+u[n]$
$y[n]=-0.4 x[n]+4 u[n]$
(c) $y[n]=0.8 y[n-1]+4 u[n]-3.6 u[n-1]$
(d) $\begin{array}{ll}\mathrm{n}=\left[\begin{array}{ll}4 & -3.6\end{array}\right] ; \\ \mathrm{d}=\left[\begin{array}{ll}1 & -0.8\end{array}\right] \text {; }\end{array}$
$[A, B, C, D]=t f 2 s s(n, d)$
(e) (a) Form 2:

(6) $\underline{\underline{u}}[n+1]=\left[\begin{array}{cc}0 & 1 \\ -0.8 & 1.96\end{array}\right] \underline{\underline{n}}[n]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u[n]$

$$
\left.y[n]=2 x_{2}[n+1]+3 x_{1} D_{n}\right]=\left[\begin{array}{ll}
1.4 & 3.92
\end{array}\right] \underline{x}[n]+2 u[n]
$$

(c) $y[n+2]-1.96 y[n+1]+0.8 y[n]=2 u[n+2]+3 u[n]$
(d) $\underline{v}[n+1]=\left[\begin{array}{cc}1.96 & -0.8 \\ 1 & 0\end{array}\right] \underline{\chi}[n]+\left[\begin{array}{l}1 \\ 0\end{array}\right] u[n] ; y[n]=[3.92 \quad 1.4] \underline{x}[n]+2 u[n]$

Simulation diagram same as in (a), with $x_{1} \& x_{2}$ neversed.
(f) Form 2:

> (a)

$$
y[n]=\left[\begin{array}{lll}
1.73 & -3.1 & 2
\end{array}\right] \underline{x}[n]
$$

13.5.(f)
(cont)
(c) $y[n+3]+2.3 y[n+2]-2.1 y[n+1]+0.65 y[n]$

$$
=2 u[n+2]-3.1 u[n+1]+1.73 u[n]
$$

(d) MFTLAB:

$$
\begin{aligned}
x[n+1] & =\left[\begin{array}{ccc}
-2.3 & 2.1 & -0.65 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u[n] \\
y[n] & =\left[\begin{array}{ccc}
2 & -3.1 & 1.73
\end{array}\right]
\end{aligned}
$$

Simulation diagram same as (a), with x_{1} and x_{3} reversed.

$$
\begin{aligned}
& n=\left[\begin{array}{ll}
2 & -1.96
\end{array}\right] ; \\
& d=[1 \\
& {[a, b, c, d]=\operatorname{tf} 2 \sin (n, d)} \\
& \text { pause } \\
& n=[203] ; \\
& d=[1-1.96 .8] ; \\
& {[a, b, c, d]=\operatorname{tf} 2 s s(n, d)} \\
& \text { pause } \\
& n=[02-3.11 .73] ; \\
& d=[12.3-2.1 .65] ; \\
& {[a, b, c, d]=\operatorname{tf} 2 s s(n, d)}
\end{aligned}
$$

13.6.(a)

$$
\begin{aligned}
x_{1}[n+1] & =0.8 x_{1}[n]+u[n] \\
x_{2}[n+1] & =1.6\left[2 x_{1}[n+1]+2.2 x_{1}[n]+0.9 x_{2}[n]\right. \\
& =1.6\left[1.6 x_{1}[n]+2 u[n]+2.2 x_{1}[n]+0.9 x_{2}[n]\right. \\
& =6.08 x_{1}[n]+0.9 x_{2}[n]+3.2 u[n] \\
y[n] & =1.9 x_{2}[n] \\
\therefore \underline{x}[n+1] & =\left[\begin{array}{ll}
0.8 & 0 \\
6.08 & 0.9
\end{array}\right] \underline{x}[n]+\left[\begin{array}{c}
1 \\
3.2
\end{array}\right] u[n] \\
y[n] & =\left[\begin{array}{ll}
0 & 1.9] \underline{x}[n]
\end{array}\right.
\end{aligned}
$$

(b)

$$
\left.\begin{array}{rl}
(z I-A) & =\left[\begin{array}{cc}
z-0.8 & 0 \\
-6.08 & z-0.9
\end{array}\right] ;|z I-A|=(z-0.8)(z-0.9)=\Delta(z) \\
H(z) & =C[z I-A]^{-1} B \frac{1}{\Delta(z)}\left[\begin{array}{cc}
0 & 1.9
\end{array}\right]\left[\begin{array}{cc}
z-0.9 & 0 \\
6.08 & z-0.8
\end{array}\right]\left[\begin{array}{c}
1 \\
3.2
\end{array}\right] \\
& =\frac{1}{\Delta(z)}[11.55 \\
1.9 z-1.52
\end{array}\right]\left[\begin{array}{c}
1 \\
3.2
\end{array}\right]=\frac{6.08 z+6.69}{(z-0.8)(z-0.9)}-1 .
$$

(C)

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0.8 & 0 ; 6.08 \quad 0.9] ; B=[1 ; 3.2
\end{array}\right] ; C=\left[\begin{array}{ll}
0 & 1.9
\end{array}\right] ; D=0 ; \\
& {[n, d]=\operatorname{ss} 2 t f(A, B, C, D), \text { pause }} \\
& A=[0 \text { 1-0.72 } 1.7] ; B=[0 ; 1] ; C=[6.696 .08] ; D=0 ; \\
& {[n, d]=\operatorname{Ss} 2 \operatorname{tf}(A, B, C, D)}
\end{aligned}
$$

(e)
(f) $z I-A=\left[\begin{array}{cc}z & -1 \\ 0.72 & z-1.7\end{array}\right] \quad ; \quad|z I-A|=z^{2}-1.7 z+0.72=\Delta(z)$

$$
H(z)=C[z I-R]^{-1} B=\left[\begin{array}{cc}
6.69 & 6.08
\end{array}\right] \frac{1}{\Delta(z)}\left[\begin{array}{cc}
z-1.7 & 1 \\
-0.72 & z
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
=\frac{1}{\Delta(z)}\left[\begin{array}{ll}
6.69 & 6.08
\end{array}\right]\left[\begin{array}{l}
1 \\
z
\end{array}\right]=\frac{6.08 z+6.69}{z^{2}-1.7 z+0.72}
$$

(g) See (c)
13.7, (a) $\underline{x}[n+1]=\left[\begin{array}{ll}0.8 & 1.5 \\ 2.3 & 0.7\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}1 \\ 2\end{array}\right] u[n]$

$$
y[n]=\left[\begin{array}{ll}
1.7 & 1.6] \underline{x}[n]
\end{array}\right.
$$

(b)
(C)

$$
\begin{aligned}
& A=[0.81 .5 ; 2.30 .7] ; B=[1 ; 2] ; C=[1.71 .6] ; D=0 ; \\
& {[n, d]=\sin 2 \operatorname{tf}(A, B, C, D) ; \text { pause }} \\
& A=[01 ; 2.891 .5] ; B=[0 ; 1] ; C=[5.034 .90] ; D=0 ; \\
& {[n, d]=\operatorname{ss} 2 t f(A, B, C, D)}
\end{aligned}
$$

(d) $u[n]$

$$
\begin{aligned}
& \begin{aligned}
z I-A=\left[\begin{array}{ll}
z-0.8 & -1.5 \\
-2.3 & z-0.7
\end{array}\right] ;|z I \cdot A| & =\Delta(z)=z^{2}-1.5 z+0.56-3.45 \\
& =z^{2}-1.5 z-2.89
\end{aligned} \\
& H(z)=C(z I-A)^{-1} B=\left[\begin{array}{ll}
1.7 & 1.6
\end{array}\right] \frac{1}{\Delta(z)}\left[\begin{array}{cc}
z-0.7 & 1.5 \\
2.3 & z-0.8
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\frac{1}{\Delta(z)}\left[\begin{array}{ll}
1.7 & 1.6
\end{array}\right]\left[\begin{array}{l}
z+2.3 \\
z z+0.7
\end{array}\right]=\frac{4.09 z+5.03}{z^{2}-1.5 z-2.89}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{x}[n+1]=\left[\begin{array}{cc}
0 & 1 \\
-0.72 & 1.7
\end{array}\right] \underline{\underline{y}}[n]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] 4[n] \\
& y[n]=\left[\begin{array}{ll}
6.69 & 6.08
\end{array}\right] x[n]
\end{aligned}
$$

$$
\begin{aligned}
& 13.7 .(e) \\
& (\text { cont })
\end{aligned} \quad \underline{\chi}[n+1]=\left[\begin{array}{cc}
0 & 1 \\
2.89 & 1.5
\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u[n]
$$

$$
y[n]=\left[\begin{array}{ll}
5.03 & 4.90] x[n]
\end{array}\right.
$$

(f) $\sec (c)$
$13.8 .(a)$

(b)

$$
\begin{aligned}
& z I-A=\left[\begin{array}{cc}
z-1.9 & -0.8 \\
1 & z
\end{array}\right],|z I-A|=\Delta=z^{2}-1.9 z+0.8 \\
& H(z)=C(z I-A)^{-1} B+D=[1.5-1.3] \frac{1}{\Delta}\left[\begin{array}{cc}
z & 0.8 \\
-1 & z-1.9
\end{array}\right]\left[\begin{array}{c}
0 \\
95
\end{array}\right]+2 \\
& =[1.5-1.3] \frac{1}{\Delta}\left[\begin{array}{c}
0.16 \\
0.95 z-1.805
\end{array}\right]+2=\frac{-1.235 z+3.4865}{z^{2}-1.9 z+0.8}+2 \\
& =\frac{2 z^{2}-5.035 z+5.0865}{z^{2}-1.9 z+0.8}
\end{aligned}
$$

(d)

(e) $\underline{x}[n+1]=\left[\begin{array}{cc}0 & 1 \\ -0.8 & 1.9\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u[n]$

$$
\begin{aligned}
y[n] & =[5.0865-1.6] x_{1}[n]+[-5.035+3.6] x_{2}[n]+2 u[n] \\
& =[3.4865-1.435] \underline{x}[n]+2 u[n]
\end{aligned}
$$

(f) $(z I-A)=\left[\begin{array}{cc}z & -1 \\ 0.8 & z-1.9\end{array}\right],|z I-A|=\Delta=z^{2}-1.9 z+0.8$

$$
\left.\begin{array}{rl}
H(z) & =C(z I-A)^{-1} B=[3.4865-1.435]
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
z-1.9 & 1 \\
-0.8 & z
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]+2 .
$$

(b) $H(z)=C(z I-A)^{-1} B=(1)\left[\frac{1}{z-0.82}\right](3.2)=\frac{3.2}{z-0.82}$

$$
235
$$

(cont)
 $y[n]=3.2 x[n]$
(f) $H(z)=C(z I-A)^{-1} B=(3.2)(z-0.82)^{-1}(1)=\frac{3.2}{z-0.82}$
(i) (a) 4

(b) $z I-A=\left[\begin{array}{ccc}z & -1 & 0 \\ 0 & z & -1 \\ -1 & 0 & z-1\end{array}\right]$
$|z I-A|=\Delta=z^{3}-z^{2}-1$
(b) cont. $\operatorname{cof}(z I-A)=\left[\begin{array}{cc}: & \begin{array}{l}z \\ \vdots \\ 0\end{array} \\ 1 \\ z^{2}\end{array}\right]$

$$
\therefore H(z)=C(z I-A)^{-1} B=\left[\begin{array}{lll}
10 & O & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
z & 1 & z^{2}
\end{array}\right]\left[\begin{array}{l}
z \\
0 \\
\Delta
\end{array}\right] \frac{1}{\Delta}
$$

$$
=\left[\begin{array}{lll}
z & I & z^{2}
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=\frac{2 z}{z^{3}-z^{2}-1}
$$ $y[n]=\left[\begin{array}{lll}0 & 2 & 0\end{array}\right] \underline{x}[n]$

(f) From $(i)(b)$,

$$
H(z)=\left[\begin{array}{lll}
0 & 2 & 0
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{lll}
\therefore & \therefore & : \\
z & 1 & z^{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
i
\end{array}\right]=\left[\begin{array}{lll}
0 & 2 & \Delta
\end{array}\right]\left[\begin{array}{l}
1 \\
z \\
z^{2}
\end{array}\right] \frac{1}{\Delta}=\frac{2 z}{z^{3}-z^{2}-1}
$$

MATLAB: $\begin{aligned} & a=[1.90 .8 ;-10] ; b=[0 ; .95] ; c=[1.5-1.3] ; d=2 ; \\ & {[n, d]=\operatorname{ss2tf}(a, b, c, d)}\end{aligned}$

$$
\begin{aligned}
& a=[.82] ; b=[3.2] ; c=[1] ; \\
& {[n, d]=\operatorname{ss2tf}(a, b, c, 0)}
\end{aligned}
$$

13.9. (a) $\underline{x}[n+1]=\left[\begin{array}{cc}0 & 1 \\ -0.8 & 1.7\end{array}\right] \underline{x}[n]+\left[\begin{array}{l}0 \\ 1\end{array}\right] m[n] ; y[n]=\left[\begin{array}{ll}-1.3 & 1.5] \underline{x}[n]\end{array}\right.$
(b) $H_{p}(z)=\frac{1.5 z-1.3}{z^{2}-1.7 z+0.8}$
(c) $y[n+2]-1.7 y[n+1]+0.8 y[n]=1.5 m[n+1]-1.3 m[n]$
(d) $x_{3}[n+1]=0.98 x_{3}[n]+e[n] ; m[n]=2 x_{3}[n]$
(e) $H_{C}(z)=\frac{2}{z-0.98}$
(f) $m[n+1]-0.98 m[n]=2 \in[n]$
(9) $x[n+1]=\left[\begin{array}{ccc}0 & 1 & 0 \\ -0.8 & 1.7 & 2 \\ 1.3 & -1.5 & 0.98\end{array}\right] x[n]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] u[n]$

$$
y[n]=[-1,31,5 \quad 0] \underline{\underline{x}}[n]
$$

$$
\begin{aligned}
& 13.9 .(h)(z I-A)=\left[\begin{array}{ccc}
z & -1 & 0 \\
0.8 & z-1.7 & -2 \\
-1.3 & 1.5 & z-0.98
\end{array}\right] \\
&|z I-A|=\Delta=z^{3}-2.68 z^{2}+1.666 z-2.6-[-3 z-0.8 z+0.748] \\
&=z^{3}-2.68 z^{2}+5.466 z-3.384 \\
& C o f(z I-A)=\left[\begin{array}{ccc}
: & 0 \\
2 & 2 z & z^{2}-1.7 z+0.8
\end{array}\right] \\
& H(z)=C(z I-A)^{-1} B=[-1.31 .5 \Delta] \frac{1}{\Delta}\left[\begin{array}{cc}
: & 2 z \\
\vdots & \cdot z^{2}-1.7 z+0.8
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
&=\frac{1}{\Delta}[-1.31 .50]\left[\begin{array}{c}
z \\
z z
\end{array}\right]=\frac{3 z-2.6}{z^{3}-2.68 z^{2}+5.466 z-3.384}
\end{aligned}
$$

(i)

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{llll}
0 & 1 & 0 ;-0.8 & 1.7 \\
\mathrm{~b} & =[0 ; 1.1 .3 & 0 ; 1.5 & 1
\end{array}\right] ; \mathrm{c}=\left[\begin{array}{lll}
-1.3 & 1.5 & 0
\end{array}\right] ; \\
& {[\mathrm{n}, \mathrm{~d}]=\operatorname{ss} 2 t f(\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0)}
\end{aligned}
$$

(j)

$$
H=\frac{H_{c} H_{p}}{1+H_{c} H_{p}}=\frac{\left(\frac{z}{z-0.98}\right)\left(\frac{1.5 z-1.3}{z^{2}-1.7 z+0.8}\right)}{1+(.)(.)}=\frac{3 z-2.6}{z^{3}-2.68 z^{2}+5.966 z-3.384}
$$

(b) $y[n+3]-2.68 y[n+2]+5.466 y[n+1]-3.384 y[n]$

$$
=3 u[n+1]-2.6 u[n]
$$

13.10. (a) From Problem 13.2: $x_{1}[n+1]=(1-\alpha) x_{1}[n]+\alpha u[n]$ $y[n]=(1-\alpha) x_{1}[n]+\alpha x[n]$
(b)

$$
\begin{aligned}
H(z) & =C(z I-\beta)^{-1} B+D=(1-\alpha) \frac{1}{z-(1-\alpha)} \alpha+\alpha \\
& =\frac{\alpha(1-\alpha)+\alpha z-\alpha(1-\alpha)}{z-(1-\alpha)}=\frac{\alpha z}{z-(1-\alpha)}
\end{aligned}
$$

13.11. (a) From Prob, 13.3: $\underline{x}[n+1]=\left[\begin{array}{cc}1-\alpha & 1-\alpha \\ -\beta / T & 1-\beta\end{array}\right] \underline{x}[n]+\left[\begin{array}{c}\alpha \\ \beta / T\end{array}\right] u[n]$
(b) $z I-A=\left[\begin{array}{cc}z-(1-\alpha) & -(1-\alpha) \\ \beta / T & z-(1-\beta)\end{array}\right][n]=\left[\begin{array}{ll}1-\alpha & 1-\alpha]\end{array}\right] \underline{x}[n]+\alpha u[n]$

$$
\begin{aligned}
&|z I-A|=\Delta=z^{2}-(z-\alpha-\beta) z+(1-\alpha-\beta+\alpha \beta+\beta / T-\alpha \beta / T) \\
& H(z)=C(z I-A)^{\prime} B+D=[1-\alpha \\
&=\frac{(1 \alpha)}{\Delta}\left[\begin{array}{ll}
z-(1-\beta)-\beta / T & z
\end{array}\right]\left[\begin{array}{ll}
\alpha-(1-\beta) & 1-\alpha \\
-\beta / T & z-(1-\alpha)
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta / T
\end{array}\right]+\alpha \\
&\left.=\frac{1-\alpha}{\Delta}\left[\alpha z-\alpha(1-\beta)-\alpha \beta+\frac{\beta}{T} z\right]+\alpha=\frac{(1-\alpha)[(\alpha+\beta / T) z-\alpha(1-\beta-\beta / T)}{z^{2}(2-\alpha-\beta) z+(1-\alpha-\beta+\alpha \beta+\beta-\alpha \beta} \frac{1}{T}\right) \\
&(c) \beta=0, H(z)=\frac{(1-\alpha)[z \alpha-\alpha]}{z^{2}-(2-\alpha) z+(1-\alpha)}+\alpha=\frac{\alpha(1-\alpha)[z-1]+\alpha z^{2}-\alpha z-\alpha(1-\alpha) z+\alpha(1-\alpha)}{} \\
&=\frac{\alpha z(z-1)}{(z-1)(z-(1-\alpha))}=\frac{\alpha z}{z-(1-\alpha)}
\end{aligned}
$$

13. 12. (a) From Prob. 13.6(a):
$\underline{x}[n+1]=\left[\begin{array}{cc}0.8 & 0 \\ 6.08 & 0.9\end{array}\right] \underline{x}[n]+\left[\begin{array}{c}1 \\ 3.2\end{array}\right] u[n]$ $y^{[n]}=\left[\begin{array}{ll}0 & 1.97 \\ \underline{x}[n]\end{array}\right.$
(b) From Prob $13.6(b)$:
(e) From Prob 13.6, $H(z)=\frac{6.08 z+6.69}{(z-0.8)(z-0.9)}$

$$
\begin{aligned}
& \frac{Y(z)}{z}=\frac{H(z) V(z)}{z}=\frac{6.08 z+6.69}{(z-1)(z-0.8)(z-0.9)}=\frac{638.6}{z-1}+\frac{5 n 1.7}{z-0.8}+\frac{-1216.2}{z-0.9} \\
& \therefore y[n]=638.5+577.7(0.8)^{n}-1216.2(0.9)^{n}
\end{aligned}
$$

(f) $y[n]=638.5+462.2(0.8)^{n}-1,096.9(0.9)^{n}$

$$
13.13 .(a) \underline{x}[n+1]=\left[\begin{array}{cc}
0.8 & 0 \\
0 & 0.7
\end{array}\right] \underline{v}[n]+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u[n], \quad y[n]=[1.71 .6] \underline{x}[n]
$$

$$
\text { (b) } z I-A=\left[\begin{array}{cc}
z-0.8 & 0 \\
0 & z-0.7
\end{array}\right] ;|z I-A|=(z-0.8)(z-0.1)=\Delta
$$

$$
\Phi(z)=z(z I-A)^{-1}=t\left[\begin{array}{cc}
z-4.7 & 0 \\
0 & z-0.8
\end{array}\right]=\left[\begin{array}{cc}
\frac{z}{z-0.8} & 0 \\
0 & \frac{z}{z-0.7}
\end{array}\right]
$$

$$
238
$$

$$
\begin{aligned}
& \text { (b) From Prob } 3.6(b) \text { : } \\
& z(z I-A)^{-1}=z\left[\begin{array}{cc}
\frac{z-0.9}{(z-0.8)(z-0.9)} & 0 \\
\frac{6.08}{(z-0.8)(z-0.4)} & \left.\frac{z-0.8}{(z-0.8)(z-0.9}\right]
\end{array}\right]=z\left[\begin{array}{cc}
\frac{1}{z-0.8} & 0 \\
\frac{-60.8}{z-0.8}+\frac{6.08}{z-0.9} & \frac{1}{z-0.9}
\end{array}\right] \\
& \therefore \Phi[n]=\left[\begin{array}{lc}
0.8^{n} & 0 \\
60.8\left[0.9^{n}-0.8 n\right] & 0.9^{n}
\end{array}\right] \\
& \text { (c) } \underline{x}[n]=\Phi[n] \underline{x}[0]=\Phi[n]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
0.8^{n} \\
62.8(0.9)^{n}-60.8(0.8)^{n}
\end{array}\right] \\
& y[n]=1.9 x_{2}[n]=\frac{119.3(0.9)^{n}-115.5(0.8)^{n}}{1}, n \geqslant 0 \\
& \text { (d) } \\
& \underline{X}(z)=(z I-A)^{-1} B U(z)=\left[\begin{array}{cc}
\frac{1}{z-0.8} & 0 \\
\frac{(z-0.8)(z-0.9)}{(z-0.9}
\end{array}\right]\left[\begin{array}{c}
1 \\
3.2
\end{array}\right] \frac{z}{z-1} \\
& =z\left[\begin{array}{l}
\frac{1}{(z-1)(z-0.8)} \\
\frac{4.08}{(z-0.8)(z-0.9)(z-1)}+\frac{3.2}{(z-1)(z-0.9)}
\end{array}\right] \\
& =z\left[\begin{array}{c}
\frac{5}{z-1}+\frac{-5}{z-0.8} \\
\frac{304}{z-1}+\frac{304}{z-0.8}+\frac{-608}{z-0.9}+\frac{32}{z-1}+\frac{-32}{z-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
1-5(0.8)^{n} \\
336+304(0.8)^{n}-640(0.9)^{n}
\end{array}\right] \\
& \therefore y[n]=1.9 x_{2}[n]=638.4+577.6(0.8)^{n}-1216(0.9)^{n}, n \geqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{(1)}{13.13 .(b)}(\text { cont) }}^{(1)}[n]=z^{-1}[\Phi(z)]=\left[\begin{array}{cc}
0.8^{n} & 0 \\
0 & 0.7^{n}
\end{array}\right] \\
& \text { (c) } \underline{x}[n]=\Phi[n] X[D]=\left[\begin{array}{ll}
0.7^{n} \\
d
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0.8^{n} \\
2(0.7)^{n}
\end{array}\right], \therefore y^{[n]}=\left[\begin{array}{ll}
1.7 & 1.6] x[n]
\end{array}\right] \\
& \text { (d) } \underline{X}(z)=(z I-A)^{-1} B U(z)=\left[\begin{array}{cc}
z & 0 \\
z-0.8 & \frac{z}{z} \\
0 & z-0.7
\end{array}\right]\left[\begin{array}{ll}
1 \\
z
\end{array}\right] \frac{z}{z=1} \\
& =1.76 .88^{n}+3.2(0.7)^{n} \\
& =\left[\begin{array}{l}
\frac{z}{(z-1)(z-0.8)} \\
\frac{z}{(z-1)(z-0.7}
\end{array}\right]=\left[\begin{array}{c}
\frac{5 z}{z-1}+\frac{-5 z}{z-0.8} \\
\frac{6.62 z}{z-1}+\frac{-6.67 z}{z-0.7}
\end{array}\right] \Rightarrow \underline{z}[n]=\left[\begin{array}{l}
5\left(1-0.8^{n}\right) \\
6.67\left(1-0.7^{n}\right)
\end{array}\right] \\
& \therefore y[n]=c \underline{y}[n]=[1.71 .6][.]=8.5\left(1-08^{n}\right)+10.67(1-0.7)^{n} \\
& \text { (e) } H(z)=C(z I-A)^{-1} B=\left[\begin{array}{lll}
1.7 & 1.6
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{z-0.8} & 0 \\
0 & \frac{1}{z-0.7}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=[1.71 .6]\left[\begin{array}{l}
\frac{1}{z-0.8} \\
\frac{2}{z-0.7}
\end{array}\right] \\
& \therefore H(z)=\frac{1.7}{z-0.8}+\frac{3.2}{z-0.7} \\
& Y(z)=H(z) v(z)=\frac{1.1 z z}{(z-1)(z-0.8}+\frac{3.2 z}{(z-1)(z-0.8)}=\frac{8.5 z}{z-1}+\frac{-8.5 z}{z-0.8}+\frac{10.67 z}{z-1}-\frac{10.67 z}{z-0.7} \\
& \therefore y[n]=8.5\left(1-0.8^{n}\right)+10.67(1-0.7)^{n} \\
& \text { (f) } y[n]=1.7(0.8)^{n}+3.2(0.7)^{n}+8.5-8.5(0.8)^{n}+10.67-10.67(0.7)^{n} \\
& =19.17-6.8(0.8)^{n}-7.47(0.7)^{n} \\
& \text { (g) } y[0]=4.9^{2}, y[2]=11.158^{2} \\
& \mathrm{x} 1(1)=1 ; \mathrm{x}_{2}(1)=2 \text {; } \\
& \text { for } \mathrm{n}=1: 4 \\
& y(n)=1.7 * \times 1(n)+1.6 * \times 2(n) ; \\
& \begin{array}{l}
x 1,(n+1)=.8 * \times 1(n)+0 * \times 2(n)+1 ; \\
x 2(n+1)=0 * x 1(n)+7 * 2(n)+2 ;
\end{array} \\
& { }^{\mathrm{xd}} \mathrm{~d}(\mathrm{n}+1)=0 * \times 1(\mathrm{n})+.7 * \times 2(\mathrm{n})+2 \text {; } \\
& \mathrm{y} \\
& \text { 13.14, (a) } z(A) I-\Delta=\left[\begin{array}{cc}
z & -1 \\
0 & z
\end{array}\right],|z I-A| z^{2},(z I-A)^{-1}=\left[\begin{array}{cc}
\frac{1}{z} & \frac{1}{z^{2}} \\
0 & \frac{1}{z}
\end{array}\right] \\
& \Phi[n]=z^{-1}\left(z(z I-A)^{-1}\right)=z^{-1}\left[\begin{array}{cc}
1 & \frac{1}{z} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
S[n] & S[n-1] \\
0 & S[n]
\end{array}\right] \\
& \text { (2) } \Phi[n]=A^{n} ; \Phi(\Delta)=I\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \Phi[1]=A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& \Phi[2]=A^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \therefore n \geqslant 2, \Phi[n]=\Phi[2] \Phi[n-2]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \therefore \Phi[n]=\left[\begin{array}{cc}
\delta[n] & S[n-1] \\
0 & \delta[n]
\end{array}\right]
\end{aligned}
$$

13.15. (a) $z I-A=\left[\begin{array}{cc}z & 0 \\ -1 & z\end{array}\right],|z I-A|=z^{2}, \quad(z I-A)^{-1}=\left[\begin{array}{cc}\frac{1}{z} & 0 \\ 1 / z^{2} & 1 / z\end{array}\right]$
$\begin{aligned} & \text { 13.15.(a) } \\ & \text { (cont) }\end{aligned} \therefore \Phi[n] z^{-1}\left[z(z I-A)^{-1}\right]=z^{-1}\left[\begin{array}{cc}1 & 0 \\ 1 / z & 1\end{array}\right]=\left[\begin{array}{cc}S[n] & 0 \\ S[n-1] & \delta[n]\end{array}\right]$
(b) $\Phi[n]=A^{n} ; \Phi[D]=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \Phi[1]=A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \Phi[z]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \therefore n \geqslant 2, \Phi[n]=0 \\
& \therefore[n]=\left[\begin{array}{cc}
S[n] & 0 \\
S[n-1] & S[n]
\end{array}\right]
\end{aligned}
$$

(d)
(e)
(f) $\underline{X}(z)=(z I-A)^{-1} B \cup(z)=\left[\begin{array}{cc}1 & 0 \\ \frac{z}{z} & \frac{1}{z}\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right] \frac{z}{z-1}=\left[\begin{array}{c}\frac{1}{z} \\ \frac{1}{z^{2}}+\frac{1}{z}\end{array}\right] \frac{z}{z-1}=\left[\begin{array}{c}\frac{1}{z-1} \\ \frac{1}{z(z-1)}+\frac{1}{z-1}\end{array}\right]$

$$
Y(z)=C \underline{X}(z)=\left[\begin{array}{ll}
0 & 1
\end{array}\right][\cdot]=\frac{1}{z(z-1)}+\frac{1}{z-1}
$$

$$
\therefore y[n]=3^{-1} y(z)=\frac{u[n-2]+u[n-1]}{7[1}
$$

(g) $H(z)=C(z I-A)^{-1} B=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{cc}\frac{1}{z} & 0 \\ \frac{1}{z^{2}} & \frac{1}{z}\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{ll}\frac{1}{z^{2}} & \frac{1}{z}\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\frac{1}{z^{2}}+\frac{1}{z}$

$$
\therefore Y(z)=H(z) U(z)=\left[\frac{1}{z^{2}}+\frac{1}{z}\right]\left[\frac{z}{z-1}\right] \Rightarrow y[n]=u[n-2]+u[n-1]
$$

(b)

$$
\begin{aligned}
& \mathrm{x1}(1)=0 ; \times 2(1)=0 ; \\
& \text { for } n=1: 4 \\
& \quad y(n)=0 * \times 1(n)+1 * \times 2(n) ; \\
& \times 1(n+1)=0 * \times 1(n)+0 * \times 2(n)+1 ; \\
& \quad x 2(n+1)=1 * \times 1(n)+0 * \times 2(n)+1 ; \\
& \text { end } \\
& y
\end{aligned}
$$

13.16. (a) $\Phi(z)=z(z I-A)^{-1}=z \frac{1}{z-0.95}=\frac{z}{z-0.95} \Rightarrow \Phi[n]=0.95^{n}$
(b) $x[n]=\Phi[n] x[0]=0.95^{n} ; y[n]=C x[n]=3(0.95)^{n}$

$$
\begin{aligned}
& y[\Delta]=C x[\Delta]=0 \\
& \underline{\underline{x}}[1]=A \underline{x}[\Delta]+B u[\Delta]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left(1=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; y[1]=x_{2}[1]=1\right. \\
& \underline{\underline{x}}[2]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right](1)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; y[2]=x_{2}[2]=\underline{2} \\
& x[3]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right](1)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; y[3]=\underline{2} \\
& x[4]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right](1)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad j y[4]=2 \\
& \therefore y[n]= \begin{cases}0, & n=0 \\
1, & n=1 \\
2, & n \geqslant 2\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{x}[1]=A \underline{x}[\Delta]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \underline{\underline{x}}[2]=A \underline{x}[1]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \therefore \underline{x}[n]=0, n \geqslant 2 \\
& \text { (c) } X[n]=\Phi[n] \notin[0]=\left[\begin{array}{cc}
S[n] & 0 \\
\delta[n-1] & S[n]
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\delta[n] \\
2 S[n]+S[n-1]
\end{array}\right] \\
& \therefore y[n]=\left[\begin{array}{cc}
0 & 1] x[n]=2 \delta[n]+S[n-1]
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{lll}
13.16 \text { (c) } & x[1]=0.95 x[0]=0.95 & x[3]=0.95 x[2]=(0.95)^{3} \\
(\text { cont })
\end{array}, \quad x[2]=0.95 x[1]=(0.95)^{2} \quad \therefore x[n]=(0.95)^{n}\right)
$$

(d) $X(z)=(z I-A)^{-1} B U(z)=\frac{1}{z-0.95}(1)\left(\frac{z}{z-1}\right)$

$$
\begin{aligned}
& \frac{x(z)}{z}=\frac{1}{(z-1)(z-0.95)}=\frac{20}{z-1}+\frac{-20}{z-0.95} \Rightarrow x[n]=20\left(1-0.95^{n}\right), n \geqslant 0 \\
& y[n]=3 x[n]=60\left(1-0.95^{n}\right), n \geqslant 0
\end{aligned}
$$

(e) $H(z)=C(z I-A)^{-1} B=\frac{3}{z-0.95}$
$\therefore \frac{y(z)}{z}=\frac{3}{[z-1)(z-0.95)}=\frac{60}{z-1}+\frac{-60}{z-0.95} \Rightarrow y[n]=60\left(1-0.95^{n}\right), n \geqslant 0$
(f) $\mathrm{u}=1 ; \times(1)=0$;
for $n=1: 5$
$\mathrm{y}=3 * \mathrm{x}(\mathrm{n})$
end ${ }^{x(n+1)=0.95 * x(n)+u ; ~}$
13.17.(a) From Prob 13.16, $H(z)=\frac{1}{z}+\frac{1}{z^{2}}=\frac{z+1}{z^{2}}$
(b) Let $P=\left[\begin{array}{ll}1 & 1 \\ 1\end{array}\right], p^{-1}=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$
$A_{\sigma}=P^{-1} A P=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right]$
$B_{\sigma}=P^{-1} B=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$C_{\nu}=C P=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 2\end{array}\right]$
$\therefore \Delta[n+1]=\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right] v[n]+\left[\begin{array}{l}1 \\ 0\end{array}\right] u[n] ; y[n]=\left[\begin{array}{ll}1 & 2\end{array}\right] v[n]$ (d) $z I-A_{U}=\left[\begin{array}{cc}z+1 & 1 \\ -1 & z-1\end{array}\right] ;\left(z I-A I=z^{2}=\Delta\right.$

(f) $\lambda_{1}=\lambda_{2}=0$
$(13.67)|z I-A|=z^{2}=\left|z I-A_{V}\right|=(z-\Delta)(z-\Delta)$
(13.68) $\operatorname{det} A=0=\operatorname{det} A_{r}=(0)(0)$
(13.64) $t 九 A=0=t r A_{w}=0+0$
(c)(e)

```
a=[0 0;1] 0]; b=[1;1]; c=[011]; d=0;q=[2 -1;-1 1];
p=inv(q);
av=q*a*p
bv=q*b
cv=c*p
pause
[n,di]=ss2tf(av,bv,cv,d)
```

13.18. (a) Frone Prot. 13.8, $H(z)=\frac{2 z^{2}-5.035 z+5.0865}{z^{2}-1.9 z+0.8}$
(b) $\operatorname{Let} p=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], p-1=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$

$$
A_{v}=P^{-1} A P=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1.9 & 0.8 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
4.8 & 1.6 \\
-2.9 & -0.8
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
6.4 & 8 \\
-3.7 & -4.5
\end{array}\right]
$$

$$
B_{v}=P^{-1} B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0.95
\end{array}\right]=\left[\begin{array}{c}
-0.95 \\
0.95
\end{array}\right]
$$

$$
C_{v}=C P=\left[\begin{array}{ccc}
1.5 & -1.3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{lll}
0.2 & -1.1
\end{array}\right] ; \quad D_{N}=D=2
$$

$\therefore v[n+1]=\left[\begin{array}{cc}6.4 & 8 \\ -3.7 & -4.5\end{array}\right] \underline{v}[n]+\left[\begin{array}{cc}-0.95 \\ 0.95\end{array}\right] u[n]$

$H(z)=C_{v}\left(z I-A_{N}\right)^{-1} B_{N}+D_{v}=[0.2-1,1] \frac{1}{\Delta}\left[\begin{array}{ll}z+4.5 & 8 \\ -3.7 & z-6.4\end{array}\right]\left[\begin{array}{c}-0.95 \\ 0.95\end{array}\right]+2$
$=\frac{1}{\Delta}[0.2 z+4.97-1.1 z+8.64]\left[\begin{array}{c}-0.95 \\ 0.95\end{array}\right]+z=\frac{2 z^{2}-5.035 z+5.0865}{z^{2}-1.9 z+0.8}$
(f) $(13.67)|z I-A|=z^{2}-1.9 z+0.8=\left|z I-A_{\sigma}\right|=(z-1.27)(z-0.63)$
(13.68) $\operatorname{det} A=0.8=\operatorname{det} A_{v}=(1.27)(0.63)$
(13.69) 右 $A=1.9=$ t $A_{v}=1.27+0.63$
(c) (e)
$a=[1.9 ; 8 ;-10] ; b=[0 ; .95] ; c=[1.5-1.3] ; d=2 ; q=[2-1 ;-11] ;$
$p=\operatorname{lnv}(q) ;$
$\mathrm{p}=\operatorname{inv}(\mathrm{q})$;
$a v=q * a * p$
$b v=q * b$
$c v=c * p$
pause
$[\mathrm{n}, \mathrm{d} 1]=\mathrm{ss2tf}(\mathrm{av}, \mathrm{bv}, \mathrm{cv}, \mathrm{d})$
13.19, (a) From Prob. 13.18, C.E.: $z^{2}-1.9 z+\Delta .8=(z-1.27)(z-0.63)=0$ not stable
(b) mades: $(1.27)^{n},(0.63)^{n}$
(c) $\quad \begin{aligned} & a=[1.9 \quad 0.8 ;-10] ; \\ & \text { eig(a) }\end{aligned}$
13.20.(a) $\quad \begin{aligned} & a=\left[\begin{array}{llllll}1 \\ \text { eig(a) } & 0 ; 0 & 0 & 1 ; 1 & 0 & 1\end{array}\right] ; 1\end{aligned}$

From MATLAB, $z=1.4656,0.826 \pm 106.4^{\circ}$
\therefore unstable
(b) modes: $(1.4656)^{n},(-0.2328+j 0.7926)^{n},(-0.2328-j 0.7926)^{n}$

