
Chapter 1

1. In case of an accident, there is a high chance of getting lost. The transportation cost is very high each
time. However, if the infrastructure is set once, it will be very easy to use it repeatedly. Time for
wireless transmission is negligible as signals travel at the speed of light.

2. Advantages of bursty data communication

(a) Pulses are made very narrow, so multipaths are resolvable

(b) The transmission device needs to be switched on for less time.

Disadvantages

(a) Bandwidth required is very high

(b) Peak transmit power can be very high.

3. Pb = 10−12

1
2γ = 10−12

γ = 1012

2 = 5× 1011 (very high)

4. Geo: 35,786 Km above earth ⇒ RTT = 2×35786×103

c = 0.2386s
Meo: 8,000- 20,000 Km above earth ⇒ RTT = 2×8000×103

c = 0.0533s

Leo: 500- 2,000 Km above earth ⇒ RTT = 2×500×103

c = 0.0033s
Only Leo satellites as delay = 3.3ms < 30ms

5.

6. optimum no. of data user = d
optimum no. of voice user = v
Three different cases:
Case 1: d=0, v=6
⇒ revenue = 60.80.2 = 0.96

Case 2: d=1, v=3
revenue = [prob. of having one data user]×(revenue of having one data user)
+ [prob. of having two data user]×(revenue of having two data user)
+ [prob. of having one voice user]×(revenue of having one voice user)
+ [prob. of having two voice user]×(revenue of having two voice user)
+ [prob. of having three or more voice user]×(revenue in this case)

⇒ 0.52

(
2
1

)
× $1 + 0.52 × $1 +

(
6
1

)
0.8× 0.25 × $0.2 +

(
6
2

)
0.82 × 0.24 × $0.4+

[
1−

(
6
1

)
0.8× 0.25 × $0.2−

(
6
2

)
0.82 × 0.24 × $0.4

]
× $0.6

⇒ $1.35

Case 3: d=2, v=0
revenue =2× 0.5 = $1
So the best case is case 2, which is to allocate 60kHz to data and 60kHz to voice.

7.

8. 1. Hand-off becomes a big problem.
2. Inter-cell interference is very high and should be mitigated to get reasonable SINR.
3. Infrastructure cost is another problem.

9. Smaller the reuse distance, larger the number of users who can use the same system resource and so
capacity (data rate per unit bandwidth) increases.

10. (a) 100 cells, 100 users/cell ⇒ 10,000 users

(b) 100 users/cell ⇒ 2500 cells required
100km2

Area/cell = 2500cells ⇒ Area
cell = .04km2

(c) From Rappaport or iteration of formula, we get that 100 channels
cell ⇒ 89 channels

cell @Pb = .02
Each subscriber generates 1

30 of an Erlang of traffic.
Thus, each cell can support 30× 89 = 2670 subscribers
Macrocell: 2670× 100 ⇒ 267, 000 subscribers
Microcell: 6,675,000 subscribers

(d) Macrocell: $50 M
Microcell: $1.25 B

(e) Macrocell: $13.35 M/month ⇒ 3.75 months approx 4 months to recoop
Microcell: $333.75 M/month ⇒ 3.75 months approx 4 months to recoop

11. One CDPD line : 19.2Kbps
average Wimax ∼ 40Mbps
∴ number of CDPD lines ∼ 2× 103

Chapter 2

1.

Pr = Pt

[√
Glλ

4πd

]2

λ = c/fc = 0.06

10−3 = Pt

[
λ

4π10

]2

⇒ Pt = 4.39KW

10−3 = Pt

[
λ

4π100

]2

⇒ Pt = 438.65KW

Attenuation is very high for high frequencies

2. d= 100m
ht = 10m
hr = 2m
delay spread = τ = x+x′−l

c = 1.33×

3. ∆φ = 2π(x′+x−l)
λ

x′ + x− l =
√

(ht + hr)2 + d2 −
√

(ht − hr)2 + d2

= d




√(
ht + hr

d

)2

+ 1−
√(

ht − hr

d

)2

+ 1




d À ht, hr,we need to keep only first order terms

∼ d






1

2

√(
ht + hr

d

)2

+ 1


−


1

2

√(
ht − hr

d

)2

+ 1








=
2(ht + hr)

d

∆φ ∼ 2π

λ

2(ht + hr)
d

4. Signal nulls occur when ∆φ = (2n + 1)π

2π(x′ + x− l)
λ

= (2n + 1)π

2π

λ

[√
(ht + hr)2 + d2 −

√
(ht − hr)2 + d2

]
= π(2n + 1)

√
(ht + hr)2 + d2 −

√
(ht − hr)2 + d2 =

λ

2
(2n + 1)

Let m = (2n + 1)
√

(ht + hr)2 + d2 = m
λ

2
+

√
(ht − hr)2 + d2

square both sides

(ht + hr)2 + d2 = m2 λ2

4
+ (ht − hr)2 + d2 + mλ

√
(ht − hr)2 + d2

x = (ht + hr)2, y = (ht − hr)2, x− y = 4hthr

x = m2 λ2

4
+ y + mλ

√
y + d2

⇒ d =

√[
1

mλ

(
x−m2

λ2

4
− y

)]2

− y

d =

√(
4hthr

(2n + 1)λ
− (2n + 1)λ

4

)2

− (ht − hr)2 , n ∈ Z

5. ht = 20m
hr = 3m
fc = 2GHz λ = c

fc
= 0.15

dc = 4hthr
λ = 1600m = 1.6Km

This is a good radius for suburban cell radius as user density is low so cells can be kept fairly large.
Also, shadowing is less due to fewer obstacles.

6. Think of the building as a plane in R3

The length of the normal to the building from the top of Tx antenna = ht

The length of the normal to the building from the top of Rx antenna = hr

In this situation the 2 ray model is same as that analyzed in the book.

7. h(t) = α1δ(t− τ) + α2δ(t− (τ + 0.22µs))
Gr = Gl = 1
ht = hr = 8m
fc = 900MHz, λ = c/fc = 1/3
R = −1

delay spread =
x + x′ − l

c
= 0.022× 10−6s

⇒
2
√

82 +
(

d
2

)2 − d

c
= 0.022× 10−6s

⇒ d = 16.1m

∴ τ =
d

c
= 53.67ns

α1 =
(

λ

4π

√
Gl

l

)2

= 2.71× 10−6

α2 =
(

λ

4π

√
RGr

x + x′

)2

= 1.37× 10−6

8. A program to plot the figures is shown below. The power versus distance curves and a plot of the
phase difference between the two paths is shown on the following page. From the plots it can be seen
that as Gr (gain of reflected path) is decreased, the asymptotic behavior of Pr tends toward d−2 from
d−4, which makes sense since the effect of reflected path is reduced and it is more like having only a
LOS path. Also the variation of power before and around dc is reduced because the strength of the
reflected path decreases as Gr decreases. Also note that the the received power actually increases with
distance up to some point. This is because for very small distances (i.e. d = 1), the reflected path is
approximately two times the LOS path, making the phase difference very small. Since R = -1, this
causes the two paths to nearly cancel each other out. When the phase difference becomes 180 degrees,
the first local maxima is achieved. Additionally, the lengths of both paths are initially dominated by
the difference between the antenna heights (which is 35 meters). Thus, the powers of both paths are
roughly constant for small values of d, and the dominant factor is the phase difference between the
paths.

clear all;
close all;
ht=50;
hr=15;
f=900e6;
c=3e8;
lambda=c/f;
GR=[1,.316,.1,.01];
Gl=1;
R=-1;
counter=1;
figure(1);
d=[1:1:100000];
l=(d.^2+(ht-hr)^2).^.5;
r=(d.^2+(ht+hr)^2).^.5;
phd=2*pi/lambda*(r-1);
dc=4*ht*hr/lambda;
dnew=[dc:1:100000];

for counter = 1:1:4,
Gr=GR(counter);
Vec=Gl./l+R*Gr./r.*exp(phd*sqrt(-1));
Pr=(lambda/4/pi)^2*(abs(Vec)).^2;
subplot(2,2,counter);
plot(10*log10(d),10*log10(Pr)-10*log10(Pr(1)));
hold on;
plot(10*log10(dnew),-20*log10(dnew));
plot(10*log10(dnew),-40*log10(dnew));

end
hold off

0 20 40 60
−150

−100

−50

0

50

10
 *

 lo
g1

0(
P

r)

10 * log10(d)

G
r
 = 1

0 20 40 60
−150

−100

−50

0

50

10
 *

 lo
g1

0(
P

r)

10 * log10(d)

G
r
 = .316

0 20 40 60
−150

−100

−50

0

50

10
 *

 lo
g1

0(
P

r)

10 * log10(d)

G
r
 = .1

0 20 40 60
−150

−100

−50

0

50

10
 *

 lo
g1

0(
P

r)

10 * log10(d)

G
r
 = .01

0 20 40 60
0

100

200

300

400

P
ha

se
 (

de
g)

10 * log10(d)

Figure 1: Problem 8

9. As indicated in the text, the power fall off with distance for the 10-ray model is d−2 for relatively large
distances

10. The delay spread is dictated by the ray reaching last d =
√

(500/6)2 + 102 = 83.93m
Total distance = 6d = 503.59m
τ0 = 503.59/c = 1.68µs
L.O.S ray d = 500m
τ0 = 500/c = 1.67µs
∴ delay spread = 0.01µs

11. fc = 900MHz
λ = 1/3m
G = 1 radar cross section 20dBm2 = 10 log1 0σ ⇒ σ = 100
d=1 , s = s′ =

√
(0.5d)2 + (0.5d)2 = d

√
0.5 =

√
0.5

Path loss due to scattering

Pr

Pt
=

[
λ
√

Gσ

(4π)3/2ss′

]2

= 0.0224 = −16.498dB

Path loss due to reflection (using 2 ray model)

Pr

Pt
=

(
R
√

G

s + s′

)2 (
λ

4π

)2

= 3.52× 10−4 = −34.54dB

d = 10 Pscattering = −56.5dB Preflection = −54.54dB
d = 100 Pscattering = −96.5dB Preflection = −74.54dB
d = 1000 Pscattering = −136.5dB Preflection = −94.54dB

Notice that scattered rays over long distances result in tremendous path loss

12.

Pr = PtK

(
d0

d

)γ

→ simplified

Pr = Pt

(√
Gl

4π

)2 (
λ

d

)2

→ free space

∴ when K =
(√

Gl
4π

)2
and d0 = λ

The two models are equal.

13. Pnoise = −160dBm
fc = 1GHz, d0 = 1m, K = (λ/4πd0)2 = 5.7× 10−4, λ = 0.3, γ = 4
We want SNRrecd = 20dB = 100
∵ Noise power is 10−19

P = PtK

(
d0

d

)γ

10−17 = 10K

(
0.3
d

)4

d ≤ 260.7m

14. d = distance between cells with reused freq
p = transmit power of all the mobiles

(
S

I

)

uplink

≥ 20dB

(a) Min. S/I will result when main user is at A and Interferers are at B
dA = distance between A and base station #1 =

√
2km dB = distance between B and base station

#1 =
√

2km
(

S

I

)

min

=
P

[
Gλ

4πdA

]2

2P
[

Gλ
4πdB

]2 =
d2

B

2d2
A

=
(dmin − 1)2

4
= 100

⇒ dmin − 1 = 20km ⇒ dmin = 21km since integer number of cells should be accommodated in
distance d ⇒ dmin = 22km

(b)

Pγ

Pu
= k

[
d0

d

]γ

⇒
(

S

I

)

min

=
Pk

[
d0
dA

]γ

2Pk
[

d0
dB

]γ =

1
2

[
dB

dA

]γ

=
1
2

[
dmin − 1√

2

]γ

=
1
2

[
dmin − 1√

2

]3

= 100

⇒ dmin = 9.27 ⇒ with the same argument ⇒ dmin = 10km

(c)
(

S

I

)

min

=
k

[
d0
dA

]γ

A

2k
[

d0
dB

]γ

B

=
(dmin − 1)4

0.04
= 100

⇒ dmin = 2.41km ⇒ with the same argument dmin = 4km

15. fc = 900MHz, ht = 20m,hr = 5m, d = 100m

Large urban city PLlargecity = 353.52dB
small urban city PLsmallcity = 325.99dB
suburb PLsuburb = 207.8769dB
rural area PLruralarea/countryside = 70.9278dB

As seen , path loss is higher in the presence of multiple reflectors, diffractors and scatterers

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−60

−50

−40

−30

−20

−10

0
Plot for Gr = 0 dB

y = −15x+8

y = −35x+56

Figure 2: Problem 16

16. Piecewise linear model for 2-path model. See Fig 2

17. Pr = Pt − PL(d)−∑3
i FAFi −

∑2
j PAFj

FAF =(5,10,6), PAF =(3.4,3.4)

PL(d)K
(

d0

d

)γ

0

= 10−8 = −8dB

−110 = Pt − 80− 5− 10− 6− 3.4− 3.4

⇒ Pt = −2.2dBm

18. (a) Pr
Pt

dB = 10 log10 K − 10r log1 0 d
d0

using least squares we get
10 log10 K = −29.42dB
γ = 4

(b) PL(2Km) = 10 log10 K − 10r log10 d = −161.76dB

(c) Receiver power can be assumed to be Gaussian with variance σ2
ψdB

X ∼ N(0, σ2
ψdB)

Prob(X < −10) = Prob

(
X

σψdB
<
−10
σψdB

)
= 6.512× 10−4

19. Assume free space path loss parameters
fc = 900MHz → λ = 1/3m
σψdB = 6
SNRrecd = 15dB
Pt = 1W

g = 3dB
Pnoise = −40dBm ⇒ Precvd = −55dB
Suppose we choose a cell of radius d

µ(d) = Precvd(due to path loss alone)

= Pt

(√
Glλ

4πd

)2

=
1.4× 1−−3

d2

µdB = 10 log1 0(µ(d))
P (Precd(d) > −55) = 0.9

P

(
Precd(d)− µdB

σψdB
>
−55− µdB

6

)
= 0.9

⇒ −55− µdB

6
= −1.282

⇒ µdB = −47.308
⇒ µ(d) = 1.86× 10−5

⇒ d = 8.68m

20. MATLAB CODE

Xc = 20;
ss = .01;
y = wgn(1,200*(1/ss));
for i = 1:length(y)

x(i) = y(i);
for j = 1:i

x(i) = x(i)+exp(-(i-j)/Xc)*y(j);
end

end

21. Outage Prob. = Prob. [received powerdB 6 TpdB]
Tp = 10dB

(a)

outageprob. = 1−Q

(
Tp− µψ

σψ

)
= 1−Q

(−5
8

)
= Q

(
5
8

)
= 26%

(b) σψ = 4dB, outage prob < 1% ⇒

Q

(
Tp− µψ

σψ

)
> 99% ⇒ Tp− µψ

σψ
< −2.33 ⇒

µψ ≥ 19.32dB

(c)

σψ = 12dB,
Tp− µψ

σψ
< −6.99 ⇒ µψ ≥ 37.8dB

0 20 40 60 80 100 120 140 160 180 200
−60

−50

−40

−30

−20

−10

0

10

20
White Noise Process
Filtered Shadowing Processing

Figure 3: Problem 20

(d) For mitigating the effect of shadowing, we can use macroscopic diversity. The idea in macroscopic
diversity is to send the message from different base stations to achieve uncorrelated shadowing.
In this way the probability of power outage will be less because both base stations are unlikely to
experience an outage at the same time, if they are uncorrelated.

22.

C =
2

R2

R∫

r=0

rQ
(
a + b ln

r

R

)
dr

To perform integration by parts, we let du = rdr and v = Q
(
a + b ln r

R

)
. Then u = 1

2r2 and

dv =
∂

∂r
Q

(
a + b ln

r

R

)
=

∂

∂x
Q(x)|x=a+b ln(r/R)

∂

∂r

(
a + b ln

r

R

)
=

−1√
2π

exp(−k2/2)
b

r
dr. (1)

where k = a + b ln r
R . Then we get

C =
2

R2

[
1
2
r2Q

(
a + b ln

r

R

)]R

r=0

+
2

R2

R∫

r=0

1
2
r2 1√

2π
exp(−k2/2)

b

r
dr (2)

= Q(a) +
1

R2

R∫

r=0

r2 1√
2π

exp(−k2/2)
b

r
dr (3)

= Q(a) +
1

R2

R∫

r=0

1√
2π

R2 exp
(

2(k − a)
b

)
exp(−k2/2)

b

r
dr (4)

= Q(a) +

a∫

k=−∞

1√
2π

exp
(−k2

2
+

2k

b
− 2a

b

)
dk (5)

= Q(a) + exp
(−2a

b
+

2
b2

) a∫

k=−∞

1√
2π

exp
(
−1

2
(k − 2

b
)2

)
dk (6)

= Q(a) + exp
(

2− 2ab

b2

)[
1−Q

(
a− 2

b

1

)]
(7)

= Q(a) + exp
(

2− 2ab

b2

)
Q

(
2− ab

b

)
(8)

(9)

Since Q(−x) = 1−Q(x).

23. γ = 3
d0 = 1
k = 0dB
σ = 4dB
R = 100m
Pt = 80mWPmin = −100dBm = −130dB

Pγ(R) = PtK

(
d0

d

)γ

= 80× 10−9 = −70.97dB

a =
Pmin − Pγ(R)

σ
= 14.7575

b =
10γ log10 e

σψdB
= 3.2572

c = Q(a) + e
2−2ab

b2 Q

(
2− 2ab

b

)
' 1

24. γ = 6
σ = 8

Pγ(R) = 20 + Pmin

a = −20/8 = −2.5

b =
10× 6× log10 e

8
= 20.3871

c = 0.9938

25.

γ/σψdB
2 4 6

4 0.7728 0.8587 0.8977
8 0.6786 0.7728 0.8255
12 0.6302 0.7170 0.7728

Since Pr(r) ≥ Pmin for all r ≤ R, the probability of non-outage is proportional to Q
(−1

σ

)
, and thus

decreases as a function of σ. Therefore, C decreases as a function of σ. Since the average power at the
boundary of the cell is fixed, C increases with γ, because it forces higher transmit power, hence more
received power at r < R. Due to these forces, we have minimum coverage when γ = 2 and σ = 12. By
a similar argument, we have maximum coverage when γ = 6 and σ = 4. The same can also be seen
from this figure:

2

3

4

5

6

4

6

8

10

12
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

γ
σψ

dB

C
ov

er
ag

e

Figure 4: Problem 25

The value of coverage for middle point of typical values i.e. γ = 4 and σ = 8 can be seen from the
table or the figure to be 0.7728.

Chapter 3

1. d = vt
r + r′ = d + 2h2

d
Equivalent low-pass channel impulse response is given by

c(τ, t) = α0(t)e−jφ0(t)δ(τ − τ0(t)) + α1(t)e−jφ1(t)δ(τ − τ1(t))

α0(t) = λ
√

Gl
4πd with d = vt

φ0(t) = 2πfcτ0(t)− φD0

τ0(t) = d/c
φD0 =

∫
t 2πfD0(t)dt

fD0(t) = v
λ cos θ0(t)

θ0(t) = 0 ∀t
α1(t) = λR

√
Gl

4π(r+r′) = λR
√

Gl

4π(d+ 2h2

d
)

with d = vt

φ1(t) = 2πfcτ1(t)− φD1

τ1(t) = (r + r′)/c = (d + 2h2

d)/c
φD1 =

∫
t 2πfD1(t)dt

fD1(t) = v
λ cos θ1(t)

θ1(t) = π − arctan h
d/2 ∀t

2. For the 2 ray model:

τ0 =
l

c

τ1 =
x + x′

c

∴ delay spread(Tm) =
x + x′ − l

c
=

√
(ht + hr)2 + d2 −

√
(ht − hr)2 + d2

c

when d À (ht + hr)

Tm =
1
c

2hthr

d

ht = 10m, hr = 4m, d = 100m

∴ Tm = 2.67× 10−9s

3. Delay for LOS component = τ0 = 23 ns
Delay for First Multipath component = τ1 = 48 ns
Delay for Second Multipath component = τ2 = 67 ns

τc = Delay for the multipath component to which the demodulator synchronizes.

Tm = max
m

τm − τc

So, when τc = τ0, Tm = 44 ns. When τc = τ1, Tm = 19 ns.

4. fc = 109Hz
τn,min = 10

3×108 s

∴ min fcτn = 1010

3×108 = 33 À 1

5. Use CDF strategy.

Fz(z)= P [x2+y2 ≤ z2] =
∫ ∫

x2+y2≤z2

1
2πσ2

e
−(x2+y)2

2σ2 dxdy =

2π∫

0

z∫

0

1
2πσ2

e
−r2

2σ2
rdrdθ = 1− e

−z2

2σ2 (z ≥ 0)

dfz(z)
dz

=
z

σ2
e−

z2

2σ2 → Rayleigh

For Power:

Fz2(z)=P [Z ≤ √
z] = 1− e

−z2

2σ2

fz(z)=
1

2σ2
e
−z

2σ2
→ Exponential

6. For Rayleigh fading channel
Pr(Pr < P0) = 1− e−P0/2σ2

2σ2 = −80dBm, P0 = −95dBm, Pr(Pr < P0) = 0.0311

2σ2 = −80dBm, P0 = −90dBm, Pr(Pr < P0) = 0.0952

7. For Rayleigh fading channel
Poutage = 1− e−P0/2σ2

0.01 = 1− e−P0/Pr

∴ Pr = −60dBm

8. 2σ2 = -80dBm = 10−11

Target Power P0 = -80 dBm = 10−11

Avg. power in LOS component = s2 = -80dBm = 10−11

Pr[z2 ≤ 10−11] = Pr[z ≤ 10−5

√
10

]

Let z0 = 10−5√
10

=
∫ z0

0

z

σ2
e

�
−−(z2+s2)

2σ2

�

I0

(zs

σ2

)
dz, z ≥ 0

= 0.3457

To evaluate this, we use Matlab and I0(x) = besseli(0,x). Sample Code is given:

clear P0 = 1e-11; s2 = 1e-11; sigma2 = (1e-11)/2; z0 =
sqrt(1e-11); ss = z0/1e7; z = [0:ss:z0]; pdf =
(z/sigma2).*exp(-(z.^2+s2)/(2*sigma2)).*besseli(0,z.*(sqrt(s2)/sigma2));
int_pr = sum(pdf)*ss;

9. CDF of Ricean distribution is
FRicean

Z (z) =
∫ z

0
pRicean

Z (z)

where

pRicean
Z (z) =

2z(K + 1)
Pr

exp
[
−K − (K + 1)z2

Pr

]
I0

(
2z

√
K(K + 1)

Pr

)
, z ≥ 0

For the Nakagami-m approximation to Ricean distribution, we set the Nakagami m parameter to be
(K + 1)2/(2K + 1). CDF of Nakagami-m distribution is

FNakagami-m
Z (z) =

∫ z

0
pNakagami-m

Z (z)

where

pNakagami-m
Z (z) =

2mmz2m−1

Γ(m)Prm
exp

[−mz2

Pr

]
, z ≥ 0, m ≥ 0.5

We need to plot the two CDF curves for K = 1,5,10 and Pr =1 (we can choose any value for Pr as it
is the same for both the distributions and our aim is to compare them). Sample code is given:

z = [0:0.01:3]; K = 10; m = (K+1)^2/(2*K+1); Pr = 1; pdfR =
((2*z*(K+1))/Pr).*exp(-K-((K+1).*(z.^2))/Pr).*besseli(0,(2*sqrt((K*(K+1))/Pr))*z);
pdfN = ((2*m^m*z.^(2*m-1))/(gamma(m)*Pr^m)).*exp(-(m/Pr)*z.^2);
for i = 1:length(z)

cdfR(i) = 0.01*sum(pdfR(1:i));
cdfN(i) = 0.01*sum(pdfN(1:i));

end plot(z,cdfR); hold on plot(z,cdfN,’b--’); figure;
plot(z,pdfR); hold on plot(z,pdfN,’b--’);

As seen from the curves, the Nakagami-m approximation becomes better as K increases. Also, for a
fixed value of K and x, prob(γ<x) for x large is always greater for the Ricean distribution. This is seen
from the tail behavior of the two distributions in their pdf, where the tail of Nakagami-distribution is
always above the Ricean distribution.

10. (a) W = average received power
Zi = Shadowing over link i
Pri = Received power in dBW, which is Gaussian with mean W, variance σ2

(b)

Poutage = P [Pr,1 < T ∩ Pr,2 < T] = P [Pr,1 < T]P [Pr,2 < T] since Z1, Z2 independent

=
[
Q

(
W − T

σ

)]2

=
[
Q

(4
σ

)]2

(c)

Pout =

∞∫

−∞
P [Pr,1 ≤ T , Pr,2 < T |Y = y] fy (y) dy

Pr,1|Y = y ~ N
(
W + by,a2σ2

)
, and [Pr,1|Y = y] ⊥ [Pr,2|Y = y]

Poutage=

∞∫

−∞

[
Q

(
W + by − T

aσ

)]2 1√
2πσ

e−
y2

2σ2 dy

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ricean
Nakagami −m

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K = 5

Ricean
Nakagami−m

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K = 10

Ricean
Nakagami−m

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K = 1

Ricean
Nakagami − m

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
K = 5

Ricean
Nakagami−m

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
K = 10

Ricean
Nakagami−m

3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−31

Tail Behavior

K = 10

Ricean
Nakagami−m

Figure 1: The CDF and PDF for K = 1, 5, 10 and the Tail Behavior

let y
σ= u

=

∞∫

−∞

1√
2π

[
Q

(
W − T + buσ

aσ

)]2

e
−u2

2 du =

∞∫

−∞

1√
2π

[
Q

(4+ byσ

aσ

)]2

e
−y2

2
dy

(d) Let a = b = 1√
2

, σ = 8, 4 = 5. With independent fading we get

Pout=
[
Q

(
5
8

)]2

= 0.0708.

With correlated fading we get Pout= 0.1316.
Conclusion : Independent shadowing is prefarable for diversity.

11. There are many acceptable techniques for this problem. Sample code for both the stochastic tech-
nique(preferred) and the Jake’s technique are included.

Jakes: Summing of appropriate sine waves

%Jake’s Method
close all; clear all;
%choose N=30
N=30; M=0.5*(N/2-1); Wn(M)=0; beta(M)=0;
%We choose 1000 samples/sec
ritemp(M,2001)=0; rqtemp(M,2001)=0; rialpha(1,2001)=0; fm=[1 10
100]; Wm=2*pi*fm; for i=1:3

for n=1:1:M
for t=0:0.001:2

%Wn(i)=Wm*cos(2*pi*i/N)
Wn(n)=Wm(i)*cos(2*pi*n/N);
%beta(i)=pi*i/M
beta(n)=pi*n/M;
%ritemp(i,20001)=2*cos(beta(i))*cos(Wn(i)*t)
%rqtemp(i,20001)=2*sin(beta(i))*cos(Wn(i)*t)
ritemp(n,1000*t+1)=2*cos(beta(n))*cos(Wn(n)*t);
rqtemp(n,1000*t+1)=2*sin(beta(n))*cos(Wn(n)*t);
%Because we choose alpha=0,we get sin(alpha)=0 and cos(alpha)=1
%rialpha=(cos(Wm*t)/sqrt(2))*2*cos(alpha)=2*cos(Wm*t)/sqrt(2)
%rqalpha=(cos(Wm*t)/sqrt(2))*2*sin(alpha)=0
rialpha(1,1000*t+1)=2*cos(Wm(i)*t)/sqrt(2);

end
end
%summarize ritemp(i) and rialpha
ri=sum(ritemp)+rialpha;
%summarize rqtemp(i)
rq=sum(rqtemp);
%r=sqrt(ri^2+rq^2)
r=sqrt(ri.^2+rq.^2);
%find the envelope average
mean=sum(r)/2001;
subplot(3,1,i);

time=0:0.001:2;
%plot the figure and shift the envelope average to 0dB
plot(time,(10*log10(r)-10*log10(mean)));
titlename=[’fd = ’ int2str(fm(i)) ’ Hz’];
title(titlename);
xlabel(’time(second)’);
ylabel(’Envelope(dB)’);

end

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−5

0

5
fd = 1 Hz

E
nv

el
op

e(
dB

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−10

0

10
fd = 10 Hz

E
nv

el
op

e(
dB

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−10

0

10
fd = 100 Hz

E
nv

el
op

e(
dB

)

Figure 2: Problem 11

Stochastic: Usually two guassian R.V.’s are filtered by the Doppler Spectrum and summed. Can also
just do a Rayleigh distribution with an adequate LPF, although the above technique is prefered.

function [Ts, z_dB] = rayleigh_fading(f_D, t, f_s)
%
% function [Ts, z_dB] = rayleigh_fading(f_D, t, f_s)
% generates a Rayleigh fading signal for given Doppler frequency f_D,
% during the time perios [0, t], with sampling frequency f_s >= 1000Hz.
%
% Input(s)
% -- f_D : [Hz] [1x1 double] Doppler frequency
% -- t : simulation time interval length, time interval [0,t]
% -- f_s : [Hz] sampling frequency, set to 1000 if smaller.
% Output(s)
% -- Ts : [Sec][1xN double] time instances for the Rayleigh signal
% -- z_dB : [dB] [1xN double] Rayleigh fading signal
%

% Required parameters
if f_s < 1000;
f_s = 1000; % [Hz] Minumum required sampling rate

end;

N = ceil(t*f_s); % Number of samples

% Ts contains the time instances at which z_dB is specified
Ts = linspace(0,t,N);

if mod(N, 2) == 1
N = N+1; % Use even number of samples in calculation

end;
f = linspace(-f_s,f_s,N); % [Hz] Frequency samples used in calculation

% Generate complex Gaussian samples with line spectra in frequency domain
% Inphase :
Gfi_p = randn(2,N/2); CGfi_p = Gfi_p(1,:)+i*Gfi_p(2,:); CGfi = [
conj(fliplr(CGfi_p)) CGfi_p];

% Quadrature :
Gfq_p = randn(2,N/2); CGfq_p = Gfq_p(1,:)+i*Gfq_p(2,:); CGfq = [
conj(fliplr(CGfq_p)) CGfq_p];

% Generate fading spectrum, this is used to shape the Gaussian line spectra
omega_p = 1; % this makes sure that the average received envelop can be 0dB
S_r = omega_p/4/pi./(f_D*sqrt(1-(f/f_D).^2));

% Take care of samples outside the Doppler frequency range, let them be 0
idx1 = find(f>=f_D); idx2 = find(f<=-f_D); S_r(idx1) = 0;
S_r(idx2) = 0; S_r(idx1(1)) = S_r(idx1(1)-1);
S_r(idx2(length(idx2))) = S_r(idx2(length(idx2))+1);

% Generate r_I(t) and r_Q(t) using inverse FFT:
r_I = N*ifft(CGfi.*sqrt(S_r)); r_Q = -i*N*ifft(CGfq.*sqrt(S_r));

% Finally, generate the Rayleigh distributed signal envelope
z = sqrt(abs(r_I).^2+abs(r_Q).^2); z_dB = 20*log10(z);

% Return correct number of points
z_dB = z_dB(1:length(Ts));

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−30

−20

−10

0
 1 Hz

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−30

−20

−10

0

10
 10Hz

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−40

−20

0

20
l00 Hz

Figure 3: Problem 11

12. Pr = 30dBm
fD = 10Hz

P0 = 0dBm, tz =
eρ2 − 1
ρfD

√
2π

= 0.0013s

P0 = 15dBm, tz = 0.0072s

P0 = 25dBm, tz = 0.0264s

13. In the reader, we found the level crossing rate below a level by taking an average of the number of
times the level was crossed over a large period of time. It is easy to convince that the level crossing
rate above a level will have the same expression as eq. 3.44 in reader because to go below a level again,
we first need to go above it. There will be some discrepancy at the end points, but for a large enough
T it will not effect the result. So we have

LZ(above) = LZ(below) =
√

2πfDρe−ρ2

And,

tZ(above) =
p(z > Z)
LZ(above)

p(z > Z) = 1− p(z ≤ Z) = 1− (1− e−ρ2
) = e−ρ2

tZ(above) =
1√

2πfDρ

The values of tZ(above) for fD = 10,50,80 Hz are 0.0224s, 0.0045s, 0.0028s respectively. Notice that as
fD increases, tZ(above) reduces.

14. Note: The problem has been solved for Ts = 10µs
Pr = 10dB
fD = 80Hz

R1 : −∞ ≤ γ ≤ −10dB, π1 = 9.95× 10−3

R2 : −10dB ≤ γ ≤ 0dB, π2 = 0.085
R3 : 0dB ≤ γ ≤ 5dB, π3 = 0.176
R4 : 5dB ≤ γ ≤ 10dB, π4 = 0.361
R5 : 10dB ≤ γ ≤ 15dB, π5 = 0.325
R6 : 15dB ≤ γ ≤ 20dB, π6 = 0.042
R7 : 20dB ≤ γ ≤ 30dB, π7 = 4.54× 10−5

R8 : 30dB ≤ γ ≤ ∞, π8 = 3.72× 10−44

Nj → level crossing rate at level Aj

N1 = 0, ρ =
√

0
10

N2 = 19.85, ρ =
√

0.1
10

N3 = 57.38, ρ =
√

1
10

N4 = 82.19, ρ =
√

100.5

10

N5 = 73.77, ρ =
√

10
10

N6 = 15.09, ρ =
√

101.5

10

N7 = 0.03, ρ =
√

102

10

N8 = 0, ρ =
√

103

10

MATLAB CODE:
N = [0 19.85 57.38 82.19 73.77 15.09 .03 0];

Pi = [9.95e-3 .085 .176 .361 .325 .042 4.54e-5 3.72e-44];

T = 10e-3;
for i = 1:8

if i == 1
p(i,1) = 0;
p(i,2) = (N(i+1)*T)/Pi(i);
p(i,3) = 1-(p(i,1)+p(i,2));

elseif i == 8
p(i,1) = (N(i)*T)/Pi(i);
p(i,2) = 0;
p(i,3) = 1-(p(i,1)+p(i,2));

else
p(i,1) = (N(i)*T)/Pi(i);
p(i,2) = (N(i+1)*T)/Pi(i);
p(i,3) = 1-(p(i,1)+p(i,2));

end
end

% p =
%
% 0 0.0199 0.9801
% 0.0023 0.0068 0.9909
% 0.0033 0.0047 0.9921
% 0.0023 0.0020 0.9957
% 0.0023 0.0005 0.9973
% 0.0036 0.0000 0.9964
% 0.0066 0 0.9934
% 0 0 1.0000

15. (a)

S(τ, ρ) =





α1δ(τ) ρ = 70Hz
α2δ(τ − 0.022µsec) ρ = 49.5Hz
0 else

The antenna setup is shown in Fig. 15
From the figure, the distance travelled by the LOS ray is d and the distance travelled by the first
multipath component is

2

√(
d

2

)2

+ 64

Given this setup, we can plot the arrival of the LOS ray and the multipath ray that bounces off
the ground on a time axis as shown in Fig. 15
So we have

2

√(
d

2

)2

+ 82 − d = 0.022× 10−63× 108

⇒ 4
(

d2

4
+ 82

)
= 6.62 + d2 + 2d(6.6)

⇒ d = 16.1m

fD = v cos(θ)/λ. v = fDλ/ cos(θ). For the LOS ray, θ = 0 and for the multipath component,
θ = 45o. We can use either of these rays and the corresponding fD value to get v = 23.33m/s.

(b)

dc =
4hthr

λ

dc = 768 m. Since d ¿ dc, power fall-off is proportional to d−2.

(c) Tm = 0.022µs, B−1 = 0.33µs. Since Tm ¿ B−1, we have flat fading.

16. (a) Outdoor, since delay spread ≈ 10 µsec.
Consider that 10 µsec ⇒ d = ct = 3km difference between length of first and last path

(b) Scattering function
S(τ, ρ) = F∆t[Ac(τ, ∆t)]

= 1
W rect

(
1
W ρ

)
for 0 ≤ τ ≤ 10µsec

The Scattering function is plotted in Fig. 16

8m 8m

d meters

Figure 4: Antenna Setting

0.022 us

0 t

t0 = (d/3e8)

t1 = 2 sqrt[(d/2)^2+8^2]/3e8

t1t0

Figure 5: Time Axis for Ray Arrival

(c) Avg Delay Spread =

∞R
0

τAc(τ)dτ

∞R
0

Ac(τ)dτ
= 5µsec

RMS Delay Spread =

√√√√√
∞R
0

(τ−µTm)2Ac(τ)dτ

∞R
0

Ac(τ)dτ
= 2.89µsec

Doppler Spread = W
2 = 50 Hz

(d) βu > Coherence BW ⇒ Freq. Selective Fading ≈ 1
Tm

= 105 ⇒ βu > = 105 kHz
Can also use µTm or σTm instead of Tm

(e) Rayleigh fading, since receiver power is evenly distributed relative to delay; no dominant LOS
path

(f) tR = eρ2−1
ρFD

√
2π

with ρ = 1, fD = W
2 → tr = .0137 sec

(g) Notice that the fade duration never becomes more than twice the average. So, if we choose our
data rate such that a single symbol spans the average fade duration, in the worst case two symbols
will span the fade duration. So our code can correct for the lost symbols and we will have error-free
transmission. So 1

tR
= 72.94 symbols/sec

17. (a) Tm ≈ .1msec = 100µsec
Bd ≈ .1Hz
Answers based on µTm or σTm are fine too. Notice, that based on the choice of either Tm, µTm or
σTm , the remaining answers will be different too.

(b) Bc ≈ 1
Tm

= 10kHz
∆f > 10kHz for u1 ⊥ u2

(c) (∆t)c = 10s

(d) 3kHz < Bc ⇒ Flat
30kHz > Bc ⇒ Freq. Selective

rho

tau

W/2-W/2

10 us

S(tau,rho)

Figure 6: Scattering Function

Chapter 4

1. C = B log2

(
1 + S

N0B

)

C =
log2

�
1+ S

N0B

�

1
B

As B →∞ by L’Hospital’s rule

C =
S

N0

1
ln 2

2. B = 50 MHz
P = 10 mW
N0 = 2 ×10−9 W/Hz
N = N0B
C = 6.87 Mbps.

Pnew = 20 mW, C = 13.15 Mbps (for x ¿ 1, log(1 + x) ≈ x)
B = 100 MHz, Notice that both the bandwidth and noise power will increase. So C = 7 Mbps.

3. Pnoise = 0.1mW
B = 20MHz

(a) Cuser1→base station = 0.933B = 18.66Mbps

(b) Cuser2→base station = 3.46B = 69.2Mbps

4. (a) Ergodic Capacity (with Rcvr CSI only)= B[
∑6

i=1 log2(1 + γi)p(γi)] = 2.8831×B = 57.66 Mbps.

(b) pout = Pr(γ < γmin)
Co = (1-pout)Blog2(1 + γmin)
For
γmin > 20dB, pout = 1, Co = 0
15dB < γmin < 20dB, pout = .9, Co = 0.1Blog2(1 + γmin), max Co at γmin ≈ 20dB.
10dB < γmin < 15dB, pout = .75, Co = 0.25Blog2(1 + γmin), max Co at γmin ≈ 15dB.
5dB < γmin < 10dB, pout = .5, Co = 0.5Blog2(1 + γmin), max Co at γmin ≈ 10dB.
0dB < γmin < 5dB, pout = .35, Co = 0.65Blog2(1 + γmin), max Co at γmin ≈ 5dB.
−5dB < γmin < 0dB, pout = .1, Co = 0.9Blog2(1 + γmin), max Co at γmin ≈ 0dB.
γmin < −5dB, pout = 0, Co = Blog2(1 + γmin), max Co at γmin ≈ -5dB.

Plot is shown in Fig. 1. Maximum at γmin = 10dB, pout=0.5 and Co = 34.59 Mbps.

5. (a) We suppose that all channel states are used

1
γ0

= 1 +
4∑

i=1

1
γi

pi ⇒ γ0 = 0.8109

1
γ0
− 1

γ4
> 0 ∴ true

S(γi)
S

=
1
γ0
− 1

γi

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

P
out

C
ap

ac
ity

 (
bp

s)

Figure 1: Capacity vs Pout

S(γ)
S

=





1.2322 γ = γ1

1.2232 γ = γ2

1.1332 γ = γ3

0.2332 γ = γ4

C

B
=

4∑

i=1

log2

(
γi

γ0

)
p(γi) = 5.2853bps/Hz

(b) σ = 1
E[1/γ] = 4.2882

S(γi)

S
= σ

γi

S(γ)
S

=





0.0043 γ = γ1

0.0029 γ = γ2

0.4288 γ = γ3

4.2882 γ = γ4

C

B
= log2(1 + σ) = 2.4028bps/Hz

(c) To have pout = 0.1 or 0.01 we will have to use all the sub-channels as leaving any of these will
result in a pout of at least 0.2 ∴ truncated channel power control policy and associated spectral
efficiency are the same as the zero-outage case in part b .
To have pout that maximizes C with truncated channel inversion, we get

max
C

B
= 4.1462bps/Hz pout = 0.5

6. (a)

SNRrecvd =
Pγ(d)
Pnoise

=





10dB w.p. 0.4
5dB w.p. 0.3
0dB w.p. 0.2

−10dB w.p. 0.1

Assume all channel states are used

1
γ0

= 1 +
4∑

i=1

1
γi

pi ⇒ γ0 = 0.4283 > 0.1 ∴ not possible

Now assume only the best 3 channel states are used

0.9
γ0

= 1 +
3∑

i=1

1
γi

pi ⇒ γ0 = 0.6742 < 1 ∴ ok!

S(γ)
S

=





1.3832 γ = γ1 = 10
1.1670 γ = γ2 = 3.1623
0.4832 γ = γ3 = 1
0 γ = γ4 = 0.1

C/B = 2.3389bps/Hz

(b) σ = 0.7491
C/B = log2(1 + σ) = 0.8066bps/Hz

(c)
(

C
B

)
max

= 2.1510bps/Hz obtained by using the best 2 channel states.
With pout = 0.1 + 0.2 = 0.3

7. (a) Maximize capacity given by

C = max
S(γ):

R
S(γ)p(γ)dγ=S

∫

γ
B log

(
1 +

S(γ)γ
S

)
p(γ)dγ.

Construct the Lagrangian function

L =
∫

γ
B log

(
1 +

S(γ)γ
S

)
p(γ)dγ − λ

∫
S(γ)

S
p(γ)dγ

Taking derivative with respect to S(γ), (refer to discussion section notes) and setting it to zero,
we obtain,

S(γ)
S

=
{ 1

γ0
− 1

γ γ ≥ γ0

0 γ < γ0

Now, the threshold value must satisfy
∫ ∞

γ0

(
1
γ0
− 1

γ

)
p(γ)dγ = 1

Evaluating this with p(γ) = 1
10e−γ/10, we have

1 =
1

10γ0

∫ ∞

γ0

e−γ/10dγ − 1
10

∫ ∞

γ0

e−γ/10

γ
dγ (1)

=
1
γ0

e−γ0/10 − 1
10

∫ ∞

γ0
10

e−γ

γ
dγ (2)

=
1
γ0

e−γ0/10 − 1
10

EXPINT(γ0/10) (3)

where EXPINT is as defined in matlab. This gives γ0 = 0.7676. The power adaptation becomes

S(γ)
S

=
{ 1

0.7676 − 1
γ γ ≥ 0.7676

0 γ < 0.7676

(b) Capacity can be computed as

C/B =
1
10

∫ ∞

0.7676
log (γ/0.7676) e−γ/10dγ = 2.0649 nats/sec/Hz.

Note that I computed all capacites in nats/sec/Hz. This is because I took the natural log. In
order to get the capacity values in bits/sec/Hz, the capacity numbers simply need to be divided
by natural log of 2.

(c) AWGN capacity C/B = log(1 + 10) = 2.3979 nats/sec/Hz.

(d) Capacity when only receiver knows γ

C/B =
1
10

∫ ∞

0
log (1 + γ) e−γ/10dγ = 2.0150 nats/sec/Hz.

(e) Capacity using channel inversion is ZERO because the channel can not be inverted with finite
average power. Threshold for outage probability 0.05 is computed as

1
10

∫ ∞

γ0
e−γ/10dγ = 0.95

which gives γ0 = 0.5129. This gives us the capacity with truncated channel inversion as

C/B = log

[
1 +

1
1
10

∫∞
γ0

1
γ e−γ/10dγ

]
∗ 0.95 (4)

= log

[
1 +

1
1
10EXPINT(γ0/10)

]
∗ 0.95 (5)

= 1.5463 nats/s/Hz. (6)

(f) Channel Mean=-5 dB = 0.3162. So for perfect channel knowledge at transmitter and receiver we
compute γ0 = 0.22765 which gives capacity C/B = 0.36 nats/sec/Hz.
With AWGN, C/B = log(1 + 0.3162) = 0.2748 nats/sec/Hz.
With channel known only to the receiver C/B = 0.2510 nats/sec/Hz.

Capacity with AWGN is always greater than or equal to the capacity when only the reciever
knows the channel. This can be shown using Jensen’s inequality. However the capacity when
the transmitter knows the channel as well and can adapt its power, can be higher than AWGN
capacity specially at low SNR. At low SNR, the knowledge of fading helps to use the low SNR
more efficiently.

8. (a) If neither transmitter nor receiver knows when the interferer is on, they must transmit assuming
worst case, i.e. as if the interferer was on all the time,

C = B log
(

1 +
S

N0B + I

)
= 10.7Kbps.

(b) Suppose we transmit at power S1 when jammer is off and S2 when jammer is off,

C = B max
[
log

(
1 +

S1

NoB

)
0.75 + log

(
1 +

S2

NoB + I

)
0.25

]

subject to
0.75S1 + 0.25S2 = S.

This gives S1 = 12.25mW , S2 = 3.25mW and C = 53.21Kbps.

(c) The jammer should transmit −x(t) to completely cancel off the signal.

S = 10mW
N0 = .001 µW/Hz
B = 10 MHz

Now we compute the SNR’s as:

γj =
|Hj |2S
N0B

This gives: γ1 = |1|210−3

0.001×10−610×106 = 1, γ2 = .25, γ3 = 4, γ4 = 0.0625

To compute γ0 we use the power constraint as:
∑

j

(
1
γ0
− 1

γj

)

+

= 1

First assume that γ0 < 0.0625, then we have

4
γ0

= 1 +
(

1
1

+
1

.25
+

1
4

+
1

.0625

)

⇒ γ0 = .1798 > 0.0625

So, our assumption was wrong. Now we assume that 0.0625 < γ0 < .25, then

3
γ0

= 1 +
(

1
1

+
1

.25
+

1
4

)

⇒ γ0 = .48 > 0.25

So, our assumption was wrong again. Next we assume that 0.25 < γ0 < 1, then

2
γ0

= 1 +
(

1
1

+
1
4

)

⇒ γ0 = .8889 < 1

This time our assumption was right. So we get that only two sub-bands each of bandwidth 10 MHz
are used for transmission and the remaining two with lesser SNR’s are left unused.

Now, we can find capacity as:

C =
∑

j:γj≥γ0

B log2

(
γj

γ0

)

This gives us, C = 23.4 Mbps.

9. Suppose transmit power is Pt, interference power is Pint and noise power is Pnoise.
In the first strategy C/B = log2

(
1 + Pt

Pint+Pnoise

)

In the second strategy C/B = log2

(
1 + Pt−Pint

Pnoise

)

Assuming that the transmitter transmits -x[k] added to its message always, power remaining for actual
messages is Pt − Pint

The first or second strategy may be better depending on

Pt

Pint + Pnoise
≷ Pt − Pint

Pnoise
⇒ Pt − Pint − Pnoise ≷ 0

Pt is generally greater than Pint + Pnoise , and so strategy 2 is usually better.

1

0.5

2

0.25

f (in MHz)

fc
fc+10

fc+20
fc-10

fc-20

H(f)

Figure 2: Problem 11

10. We show this for the case of a discrete fading distribution

C = Σ log
(

1 +
(1 + j)2Pj

N0B

)

L =
∑

i

log
(

1 +
(1 + j)2Pj

N0B

)
− dj


∑

j

Pj − P




∂L
∂Pj

= 0

⇒ (1 + j)2Pj

N0B
=

1
λ

(1 + j)2

N0B
− 1

letγj =
(1 + j)2P

N0B

⇒ Pj

P
=

1
λP

− 1
γj

denote
1
γ0

=
1

λP

∴ Pj

P
=

1
γ0
− 1

γj

subject to the constraint
ΣPj

P
= 1

11. S = 10mW
N0 = .001 µW/Hz
B = 10 MHz

Now we compute the SNR’s as:

γj =
|Hj |2S
N0B

This gives: γ1 = |1|210−3

0.001×10−610×106 = 1, γ2 = .25, γ3 = 4, γ4 = 0.0625

To compute γ0 we use the power constraint as:
∑

j

(
1
γ0
− 1

γj

)

+

= 1

First assume that γ0 < 0.0625, then we have

4
γ0

= 1 +
(

1
1

+
1

.25
+

1
4

+
1

.0625

)

⇒ γ0 = .1798 > 0.0625

So, our assumption was wrong. Now we assume that 0.0625 < γ0 < .25, then

3
γ0

= 1 +
(

1
1

+
1

.25
+

1
4

)

⇒ γ0 = .48 > 0.25

So, our assumption was wrong again. Next we assume that 0.25 < γ0 < 1, then

2
γ0

= 1 +
(

1
1

+
1
4

)

⇒ γ0 = .8889 < 1

This time our assumption was right. So we get that only two sub-bands each of bandwidth 10 MHz
are used for transmission and the remaining two with lesser SNR’s are left unused.

Now, we can find capacity as:

C =
∑

j:γj≥γ0

B log2

(
γj

γ0

)

This gives us, C = 23.4 Mbps.

12. For the case of a discrete number of frequency bands each with a flat frequency response, the problem
can be stated as

max
s.t.
P

i P (fi)≤P

∑

i

log2

(
1 +

|H(fi)|2P (fi)
N0

)

denote γ(fi) = |H(fi)|2P (fi)
N0

L =
∑

i

log2

(
1 + γ(fi)

P (fi)
P

)
+ λ(

∑
P (fi))

denote xi = P (fi)
P , the problem is similar to problem 10

⇒ x?
i =

1
γ0
− 1

γ(fi)

where γ0 is found from the constraints

∑

i

(
1
γ0
− 1

γ(fi)

)
= 1 and

1
γ0
− 1

γ(fi)
≥ 0∀i

13. (a) C=13.98Mbps

MATLAB

Gammabar = [1 .5 .125];
ss = .001;
P = 30e-3;
N0 = .001e-6;

Bc = 4e6;
Pnoise = N0*Bc;
hsquare = [ss:ss:10*max(Gammabar)];
gamma = hsquare*(P/Pnoise);

for i = 1:length(Gammabar)
pgamma(i,:) = (1/Gammabar(i))*exp(-hsquare/Gammabar(i));

end

gamma0v = [1:.01:2];
for j = 1:length(gamma0v)

gamma0 = gamma0v(j);
sumP(j) = 0;
for i = 1:length(Gammabar)

a = gamma.*(gamma>gamma0);
[b,c] = max(a>0);
gammac = a(find(a));
pgammac = pgamma(i,c:length(gamma));
Pj_by_P = (1/gamma0)-(1./gammac);
sumP(j) = sumP(j) + sum(Pj_by_P.*pgammac)*ss;

end
end
[b,c] = min(abs((sumP-1)));
gamma0ch = gamma0v(c);

C = 0;
for i = 1:length(Gammabar)

a = gamma.*(gamma>gamma0ch);
[b,c] = max(a>0);
gammac = a(find(a));
pgammac = pgamma(i,c:length(gamma));
C = C + Bc*ss*sum(log2(gammac/gamma0ch).*pgammac);

end

(b) C=13.27Mbps

MATLAB

Gammabarv = [1 .5 .125];
ss = .001;
Pt = 30e-3;
N0 = .001e-6;

Bc = 4e6;
Pnoise = N0*Bc;

P = Pt/3;
for k = 1:length(Gammabarv)

Gammabar = Gammabarv(k);
hsquare = [ss:ss:10*Gammabar];
gamma = hsquare*(P/Pnoise);
pgamma = (1/Gammabar)*exp(-hsquare/Gammabar);
gamma0v = [.01:.01:1];
for j = 1:length(gamma0v)

gamma0 = gamma0v(j);
a = gamma.*(gamma>gamma0);
[b,c] = max(a>0);
gammac = a(find(a));
pgammac = pgamma(c:length(gamma));
Pj_by_P = (1/gamma0)-(1./gammac);
sumP(j) = sum(Pj_by_P.*pgammac)*ss;

end
[b,c] = min(abs((sumP-1)));
gamma0ch = gamma0v(c);
a = gamma.*(gamma>gamma0ch);
[b,c] = max(a>0);
gammac = a(find(a));
pgammac = pgamma(c:length(gamma));
C(k) = Bc*ss*sum(log2(gammac/gamma0ch).*pgammac);

end Ctot = sum(C);

Chapter 5

1. si(t) =
∑

k sikφk(t)
sj(t) =

∑
k sjkφk(t)

where {φk(t)} forms an orthonormal basis on the interval [0,T]
∫ T

0
[si(t)− sj(t)]2dt =

∫ T

0

(∑
m

simφm(t)−
∑
m

sjmφm(t)

)2

dt

=
∫ T

0

(∑
m

(sim − sjm) φm(t)

)2

dt

Notice all the cross terms will integrate to 0 due to orthonormal property. So we get

=
∫ T

0

∑
m

(sim − sjm)2 φm(t)φm(t)dt

=
∑
m

(sim − sjm)2 = ||si − sj ||2

2. Consider

φ1 =
1√
T

[
sin

(
2πt

T

)
+ cos

(
2πt

T

)]

φ2 =
1√
T

[
sin

(
2πt

T

)
− cos

(
2πt

T

)]

∫ T

0
φ1(t)φ2(t) = 0,

∫ T

0
φ2

1(t) = 1,
∫ T

0
φ2

2(t) = 1

3.

s′m(t) = sm(t)− 1
M

M∑

i=1

si(t)

ε′ =
∫ T

0
s′2m(t)dt =

∫ T

0

(
sm(t)− 1

M

M∑

i=1

si(t)

)2

dt

si’s are orthonormal so the cross terms integrate to 0 and we get

ε′ =
∫ T

0
s2
m(t)dt−

∫ T

0

1
M

s2
m(t)dt = ε− 1

M
ε = ε

(M − 1)
M

< s′m(t), s′n(t) >=
∫ T

0

(
sm(t)− 1

M

M∑

i=1

si(t)

)(
sn(t)− 1

M

M∑

i=1

si(t)

)
dt = − ε

M

4. (a)

< f1(t), f2(t) >=
∫ T

0
f1(t)f2(t)dt = 0

< f1(t), f3(t) >=
∫ T

0
f1(t)f3(t)dt = 0

< f2(t), f3(t) >=
∫ T

0
f2(t)f3(t)dt = 0

⇒ f1(t), f2(t), f3(t) are orthogonal

(b)

x(t) = af1(t) + bf2(t) + cf3(t)

0 ≤ t ≤ 1 : x(t) =
1
2
a +

1
2
b +

1
2
c = −1

1 ≤ t ≤ 2 : x(t) =
1
2
a +

1
2
b− 1

2
c = 1

2 ≤ t ≤ 3 : x(t) = −1
2
a +

1
2
b +

1
2
c = 1

3 ≤ t ≤ 4 : x(t) = −1
2
a +

1
2
b− 1

2
c = 3

⇒ a = −2, b = 2, c = −2
⇒ x(t) = −2f1(t) + 2f2(t)− 2f3(t)

5. (a) A set of orthonormal basis functions is

In this set the given waveforms can be written as
s1 = [1 2 -1 -1]
s2 = [1 -1 1 -1]
s3 = [-2 1 1 1]
s4 = [1 -2 -2 2]
now we can see using Matlab or otherwise that the dimensionality is 4

(b) done in part a
(c)

||s1 − s2||2 = 14
||s1 − s3||2 = 22
||s1 − s4||2 = 27
||s2 − s3||2 = 14
||s2 − s4||2 = 19
||s3 − s4||2 = 31

||s1||2 = 10
||s2||2 = 4
||s3||2 = 6
||s4||2 = 13

The minimum distance between any pair is
√

14

6. From 5.28 we have
m̂ = mi corresponding to ŝi = arg maxsi p(γ|si)p(si)

max
si

L(si) = p(γ|si)p(si)

max
si

l(si) = logL(si) = log p(γ|si) + log p(si)

= max
si

− N

2
log(πN0)

︸ ︷︷ ︸
constant

− 1
N0

N∑

j=1

(γj − sij)2 + log p(si)

1 2 3 4

1 1
t

1 2 3 4

1 2
t

1 2 3 4

1
3

t

1 2 3 4

1
4

t

Figure 1: Problem 5

S

S

S

S

1

4

3

2

Ac

A

A

A

c

c

c

-

-

Figure 2: Problem 6

= max
si

− 1
N0
||γj − sij ||2 + log p(si)

= min
si

1
N0
||γj − sij ||2 + log 1/p(si)

s1 = (Ac, 0)

s2 = (0, Ac)

s3 = (−Ac, 0)

s4 = (0,−Ac)

p(s1) = p(s3) = 0.2

p(s2) = p(s4) = 0.3

∴ zi =
{

x ∈ <2| 1
N0
||x− si||2 + log 1/p(si) <

1
N0
||x− sj ||2 + log 1/p(sj)∀i 6= j

}

which can be further solved using Matlab or otherwise far a given value of Ac and N0

7. nr(t) = n(t)−∑N
j=1 njφj(t)

γj = sij + nj

We know φ→φN span the signal space. Suppose we add (M-N) additional basis vectors so that φ1 . . . φM

span the noise space . This can always be done for some M(may be infinite). Also M¿N

n(t) =
M∑

k=1

nkφk(t) whereφiform an orthonormal set

then

E[nr(tk)rj] = E







M∑

k=1

nkφk(tk)−
N∑

p=1

npφp(tp)


 (sij + nj)




Since the signal is always independent of noise and white noise components in the orthogonal directions
are independent too, we have

E[nr(tk)rj] = E[n2
jφj(tk)]− E[n2

jφj(tk)] = 0 , for j = 1 . . . N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

t

g(t)
g(T−t)

Figure 3: Problem 9a

8. Suppose sm(t) is transmitted and Nt is noise added. If the kth filter is hk(t), the output of the kth

filter is

yk(t) =
∫ ∞

−∞
(sm(τ) + Nτ)hk(t− τ)dτ

sampling at time T gives

yk(T) =
∫ ∞

−∞
sm(τ)hk(T − τ)dτ +

∫ ∞

−∞
Nτhk(T − τ)dτ

Denote noise contribution as νk =
∫∞
−∞Nτhk(T − τ)dτ

E[νk] = 0

σ2
νk

=
N0

2

∫ ∞

−∞
|hk(T − τ)|2dτ

Signal energy =
(∫∞
−∞ sm(τ)hk(T − τ)dτ

)2

SNR =

(∫∞
−∞ sm(τ)hk(T − τ)dτ

)2

N0
2

∫∞
−∞ |hk(T − τ)|2dτ

use Cauchy-Schwartz inequality to get upper bound on SNR as

SNR ≤ 2
N0

∫ ∞

−∞
|sm(τ)|2dτ

with equality iff
hopt

k (T − τ) = αsm(τ) ⇒ hopt
k (t) = αsm(T − t)

which is the required result for matched filter

9. (a) g(t) =
√

2
T 0 ≤ t ≤ T

g(T − t) =
√

2
T 0 ≤ t ≤ T

plotted for T=1 , integral value = 2/T = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

g(t)
g(T−t)

Figure 4: Problem 9b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

g(t)
g(T−t)

Figure 5: Problem 9c

(b) g(t) = sinc(t) 0 ≤ t ≤ T
g(T − t) = sinc(T − t) 0 ≤ t ≤ T
plotted for T=1 , integral value = 0.2470

(c) g(t) =
√

π
α e−π2t2/α2

0 ≤ t ≤ T

g(T − t) ==
√

π
α e−π2(T−t)2/α2

0 ≤ t ≤ T
plotted for T=1 , integral value = 0.009

MATTLAB CODE
T = 1; alpha = 1;

t = [0:.01:T];
%% Part a)
g = repmat(sqrt(2/T),1,length(t));
gm=repmat(sqrt(2/T),1,length(t));
int_a = sum(g.*gm)*.01;
plot(t,g,’b--’); hold on; plot(t,gm,’b:’);

%% Part b)
figure;
g = sinc(t);
gm = sinc(T-t);

int_b = sum(g.*gm)*.01;
plot(t,g,’b--’);
hold on;
plot(t,gm,’b:’);

%% Part c)
figure; g = (sqrt(pi)/alpha)*exp(-((pi)^2*t.^2)/alpha^2);
gm=(sqrt(pi)/alpha)*exp(-((pi)^2*(T-t).^2)/alpha^2);;
int_c=sum(g.*gm)*.01; plot(t,g,’b--’);
hold on;
plot(t,gm,’b:’);

10. For Fig 5.4 γk =
∫ T
0 γ(τ)φk(τ)dτ

For Fig 5. γk =
∫ T
0 γ(τ)φk(T − (T − τ))dτ =

∫ T
0 γ(τ)φk(τ)dτ which is the same as above.

11. (5.40) gives 1
4

∑4
i=1

∑4
j=1,j 6=i Q

(
dij√
2N0

)
= 4.1× 10−9

(5.43) gives (4− 1)Q
(

dmin√
2N0

)
= 2.3× 10−8

(5.44) gives (4−1)√
π

exp
(
−d2

min
4N0

)
= 1.9× 10−7

(5.45) gives MdminQ
(

dmin√
2N0

)
= 2Q

(
dmin√
2N0

)
= 1.5× 10−8

MATLAB CODE
Ac = 4;
s(1,:) = [Ac 0];
s(2,:) = [0 2*Ac];
s(3,:) = [0 -2*Ac];
s(4,:) = [-Ac 0];

sume = 0; for i = 1:4
for j = 1:4

if j ~= i
d(i) = norm(s(i,:)-s(j,:));
sume = sume+Q(d(i)/sqrt(2));

end
end

end E1 = .25*sume;
dmin = min(d);

E2 = 3*Q(dmin/sqrt(2));
E3 = (3/sqrt(pi))*exp(-dmin^2/4);
E4=2*Q(dmin/sqrt(2));

S

S

S

S

1

4

3

2

Ac

A

A

A

c

c

c

-

-

Figure 6: Problem 11

d min
= 2

4-PSK d min
= 2

8-PSK

Figure 7: Problem 13

12.

γ1(t) =
∫

τ
γ(τ) cos(2πfcτ + φ)g(t− (T − τ))dτ

=
∫

τ
[si(τ) + n(τ)] cos(2πfcτ + φ)g(t− (T − τ))dτ

si(τ) = si1g(τ) cos(2πfcτ + φ0) + si2g(τ) sin(2πfcτ + φ0)

∴ γ1(t) =
∫

τ

si1

2
[cos(4πfcτ + φ + φ0) + cos(φ− φ0)]g(τ)g(t− (T − τ))dτ +

∫

τ

si2

2
[cos(4πfcτ + φ + φ0)− cos(φ− φ0)]g(τ)g(t− (T − τ))dτ +

∫

τ
n(τ) cos(2πfcτ + φ)g(t− (T − τ))dτ

where φ− φ0 = ∆φ
Similrly we can find γ2(t). Notice that terms involving fc will integrate to 0 approximately as fcT À 1

13. For 4PSK dmin =
√

2ε ⇒ ε4PSK = 1
For 8PSK dmin =

√
ε + ε− 2ε cos(π/4) ⇒ ε8PSK = 1

1−cos(π/4) = 3.4142
extra energy factor = 3.4142 = 5.33dB

14. For square QAM constellations, it is easy to derive that

sl =
d2

min

6
(22l − 1) =

(
dmin√

(2)

)
1
3
(4l − 1)

∴ sl ∝ 4l

3

∴ sl+1 ∝ 44l

3
= 4sl

(16 QAM) For MQAM, sl(l = 2) = 2.5d2
min

(4 PAM) For MPAM, sl(l = 2) = 1.25d2
min

(16 PSK) For MPSK, sl(l = 2) = d2
min

2(1−cos(π/8)) = 6.5685d2
min

15. M points are separated by an angle 2π
M

If |∆|φ > 1
2

2π
M , we will go into the decision region for another adjacent symbol and so will make a

detection error

16. Gray encoding of bit sequence to phase transitions:
We first draw the figure and write down bit sequences for each phase in a way that exactly 1 bit changes
between nearest neighbors. We get the following table

Bit Sequence Phase transition
000 0
001 π/4
010 3π/4
011 π/2
100 −π/4
101 −π/2
110 π
111 −3π/4

The resulting encoding of the given sequence is as follows:

Bit Sequence Mapped Symbol
s(k-1) = Aejπ/4

101 s(k) = Ae−jπ/4

110 s(k + 1) = Aej3π/4

100 s(k + 2) = Aejπ/2

101 s(k + 3) = A
110 s(k + 4) = Aejπ

17. (a) a = 0.7071A
b = 1.366A

(b) A2 = r2
(
2− 2 cos π

4

)
r = 1.3066A

(c) Avg power of 8PSK = r2 = 1.7071A2

Avg power of 8 QAM = 1.1830A2

The 8QAM constellation has a lower average power by a factor of 1.443 (1.593 dB)

(d) See Fig 10

(e) We have 3 bits per symbol ∴ symbol rate = 30 Msymbols/sec

1

2

011

001
010

110

111
101

100

000

Figure 8: Problem 16

A
A

a a = A

b

2

Figure 9: Problem 17a

111

110
011

010

000
001

101

100

8-PSK AND 8-QAM

Figure 10: Problem 17d

1S

2S

3S

4S

1S’

2S’

4S’

3S’

Figure 11: Problem 18a

1

00

00
01

01

11
11

10

10

S

2S

3S

4S

1S’

2S’

4S’

3S’

Figure 12: Problem 18b

18. (a) one set is on the axis and the other is π/4− offset. If the current symbol uses a point of ⊗ , the
next symbol must come from ¯ and vice versa

(b) See Fig 12

(c) 0 1 00 10 01 11 10 01 01 Assume we start from the ¯ points
s3 s′2 s1 s′3 s4 s′1 s3 s′3

(d) See Fig 13

b1b0 Phase change from previous symbol

00 π/4
01 3π/4
11 −3π/4
10 −π/4

Given, last symbol of

Given, last symbol of

Assuming we started from points

-3 /4 S S’ S S’ S S’ S S’
1 2 1 3 1 1 2 4

00 01 00 10 01 11 10 01 01

Initial
symbols

 -3 /4had phase

had phase

Figure 13: Problem 18d

19. ∫ T

0
2 cos(2πfit) cos(2πfjt)dt = 0 ⇒

∫ T

0
2 cos (2π(fi + fj)t)

︸ ︷︷ ︸
A

+
∫ T

0
2 cos (2π(fi − fj)t)

︸ ︷︷ ︸
B

A → 0 , as fi + fj À 1

B = sin (2π(fi − fj)T) is 0 first time for 2π(fi − fj)T = ±π ⇒ |fi − fj | = 0.5T

MATLAB CODE
gamma_dB = [0:.01:60];
gamma = 10.^(gamma_dB/10);

vBdT = .01;
x = 2*pi*vBdT;
rho_C = besselj(0,x);
Pb_bar=.5*((1+gamma*(1-rho_C))./(1+gamma));
semilogy(gamma_dB,Pb_bar);

hold on;
vBdT = .001;
x = 2*pi*vBdT;
rho_C = besselj(0,x);
Pb_bar= .5*((1+gamma*(1-rho_C))./(1+gamma));
semilogy(gamma_dB,Pb_bar,’b:’);

vBdT = .0001;
x = 2*pi*vBdT;
rho_C = besselj(0,x);
Pb_bar=.5*((1+gamma*(1-rho_C))./(1+gamma));
semilogy(gamma_dB,Pb_bar,’b--’);

20.

p(kT) =
{

p0 = p(0) k = 0
0 k 6= 0

}
. . . (a)

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

γ
bar

 in dB

P
b ba

r

B
D

T = .01
B

D
T = .001

B
D

T = .0001

Figure 14: Problem 19

p(t) =
∫ ∞

−∞
P (f)ej2πftdf

p(kT) =
∫ ∞

−∞
P (f)ej2πfkT df

p(kT) =
∞∑

m=−∞

∫ (2m+1)/2T

(2m−1)/2T
P (f)ej2πfkT df

=
∞∑

m=−∞

∫ 1/2T

−1/2T
P

(
f +

m

T

)
ej2πfkT df

=
∫ 1/2T

−1/2T

∞∑
m=−∞

P
(
f +

m

T

)
ej2πfkT df

p(kT) =
∫ 1/2T

−1/2T
Q(f)ej2πfkT df . . . 1

Q(f) is periodic with period 1/T and therefore it can be expanded in terms of Fourier coefficients

Q(f) =
∞∑

n=−∞
qnej2πfnT

where qn = T

∫ 1/2T

−1/2T
Q(f)e−j2πfnT df . . . 2

Compare 1 and 2 to get
qn = Tp(−nT)

∴ ’a’ translates to

qn =
{

p0T n = 0
0 n 6= 0

But this means that Q(f) = p0T or
∑∞

l=−∞ P (f + l/T) = p0T

21. Gaussian pulse is given as

g(t) =
√

π

α
e−π2t2/α2

Notice that g(t) never goes to 0 except at ±∞
∴ Nyquist criterion

g(kT) =
{

g0 k = 0
0 k 6= 0

cannot be satisfied for any finite T.

Chapter 6

1. (a) For sinc pulse, B = 1
2Ts

⇒ Ts = 1
2B = 5× 10−5s

(b) SNR = Pb
N0B = 10

Since 4-QAM is multilevel signalling
SNR = Pb

N0B = Es
N0BTs

= 2Es
N0B

(
∵ BTs = 1

2

)

∴ SNR per symbol = Es
N0

= 5
SNR per bit = Eb

N0
= 2.5 (a symbol has 2 bits in 4QAM)

(c) SNR per symbol remains the same as before = Es
N0

= 5
SNR per bit is halved as now there are 4 bits in a symbol Eb

N0
= 1.25

2. p0 = 0.3, p1 = 0.7

(a)

Pe = Pr(0 detected, 1 sent — 1 sent)p(1 sent) + Pr(1 detected, 0 sent — 0 sent)p(0 sent)

= 0.7Q

(
dmin√
2N0

)
+ 0.3Q

(
dmin√
2N0

)
= Q

(
dmin√
2N0

)

dmin = 2A

= Q




√
2A2

N0




(b)
p(m̂ = 0|m = 1)p(m = 1) = p(m̂ = 1|m = 0)p(m = 0)

0.7Q


A + a√

N0
2


 = 0.3Q


A− a√

N0
2


 , a > 0

Solving gives us ’a’ for a given A and N0

(c)
p(m̂ = 0|m = 1)p(m = 1) = p(m̂ = 1|m = 0)p(m = 0)

0.7Q


 A√

N0
2


 = 0.3Q


 B√

N0
2


 , a > 0

Clearly A > B, for a given A we can find B

(d) Take Eb
N0

= A2

N0
= 10

In part a) Pe = 3.87× 10−6

In part b) a=0.0203 Pe = 3.53× 10−6

In part c) B=0.9587 Pe = 5.42× 10−6

Clearly part (b) is the best way to decode.

MATLAB CODE:
A = 1;
N0 = .1;
a = [0:.00001:1];
t1 = .7*Q(A/sqrt(N0/2));

t2=.3*Q(a/sqrt(N0/2));
diff = abs(t1-t2);
[c,d] = min(diff);
a(d)
c

3. s(t) = ±g(t) cos 2πfct
r = r̂ cos∆φ
where r̂ is the signal after the sampler if there was no phase offset. Once again, the threshold that
minimizes Pe is 0 as (cos ∆φ) acts as a scaling factor for both +1 and -1 levels. Pe however increases
as numerator is reduced due to multiplication by cos ∆φ

Pe = Q

(
dmin cos ∆φ√

2N0

)

4.

A2
c

∫ Tb

0
cos2 2πfctdt = A2

c

∫ Tb

0

1 + cos 4πfct

2

= A2
c




Tb

2
+

sin(4πfcTb)
8πfc︸ ︷︷ ︸

→0 as fcÀ1




=
A2

cTb

2
= 1

x(t) = 1 + n(t)
Let prob 1 sent =p1 and prob 0 sent =p0

Pe =
1
6
[1.p1 + 0.p0] +

2
6
[0.p1 + 0.p0] +

2
6
[0.p1 + 0.p0] +

1
6
[0.p1 + 1.p0]

=
1
6
[p1 + p0] =

1
6

(∵ p1 + p0 = 1 always)

5. We will use the approximation Pe ∼ (average number of nearest neighbors).Q
(

dmin√
2N0

)

where number of nearest neighbors = total number of points taht share decision boundary

(a) 12 inner points have 5 neighbors
4 outer points have 3 neighbors
avg number of neighbors = 4.5
Pe = 4.5Q

(
2a√
2N0

)

(b) 16QAM, Pe = 4
(
1− 1

4

)
Q

(
2a√
2N0

)
= 3Q

(
2a√
2N0

)

(c) Pe ∼ 2×3+3×2
5 Q

(
2a√
2N0

)
= 2.4Q

(
2a√
2N0

)

(d) Pe ∼ 1×4+4×3+4×2
9 Q

(
3a√
2N0

)
= 2.67Q

(
3a√
2N0

)

6.

Ps,exact = 1−
(

1− 2(
√

M − 1)√
M

Q

(√
3γs

M − 1

))2

Figure 1: Problem 5

Ps,approx =
4(
√

M − 1)√
M

Q

(√
3γs

M − 1

)

approximation is better for high SNRs as then the multiplication factor is not important and Pe is
dictated by the coefficient of the Q function which are same.

MATLAB CODE:
gamma_db = [0:.01:25];
gamma = 10.^(gamma_db/10);
M = 16;

Ps_exact=1-exp(2*log((1-((2*(sqrt(M)-1))/(sqrt(M)))*Q(sqrt((3*gamma)/(M-1))))));
Ps_approx = ((4*(sqrt(M)-1))/sqrt(M))*Q(sqrt((3*gamma)/(M-1)));
semilogy(gamma_db, Ps_exact);
hold on
semilogy(gamma_db,Ps_approx,’b:’);

7. See figure. The approximation error decreases with SNR because the approximate formula is based
on nearest neighbor approximation which becomes more realistic at higher SNR. The nearest neighbor
bound over-estimates the error rate because it over-counts the probability that the transmitted signal
is mistaken for something other than its nearest neighbors. At high SNR, this is very unlikely and this
over-counting becomes negligible.

8. (a)

Ix(a) =
∫ ∞

0

e−at2

x2 + t2
dt

since the integral converges we can interchange integral and derivative for a¿0

∂Ix(a)
∂a

=
∫ ∞

0

−te−at2

x2 + t2
dt

x2Ix(a)− ∂Ix(a)
∂a

=
∫ ∞

0

(x2 + t2)e−at2

x2 + t2
dt =

∫ ∞

0
e−at2dt =

1
2

√
π

a

0 5 10 15 20 25 30
10

−300

10
−200

10
−100

10
0

P
s

Problem 2 − Symbol Error Probability for QPSK

Approximation
Exact Formula

0 1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

SNR(dB)

P
s

Problem 2 − Symbol Error Probability for QPSK

Approximation
Exact Formula

Figure 2: Problem 7

(b) Let Ix(a) = y, we get

y′ − x2y = −1
2

√
π

a

comparing with
y′ + P (a)y = Q(a)

P (a) = −x2 , Q(a) = −1
2

√
π

a

I.F. = e
R

P (u)u = e−x2a

∴ e−x2ay =
∫
−1

2

√
π

a
e−x2udu

solving we get

y =
π

2x
eax2

erfc(x
√

a)

(c)

erfc(x
√

a) = Ix(a)
2x

π
e−ax2

=
2x

π
e−ax2

∫ ∞

0

e−at2

x2 + t2
dt

a = 1

erfc(x) =
2x

π
e−ax2

∫ ∞

0

e−at2

x2 + t2
dt

=
2
π

∫ π/2

0
e−x2/sin2θdθ

Q(x) =
1
2
erfc(x/

√
2) =

1
π

∫ π/2

0
e−x2/2sin2θdθ

9. P = 100W
N0 = 4W, SNR = 25
Pe = Q(

√
2γ) = Q(

√
50) = 7.687× 10−13

data requires Pe ∼ 10−6

voice requires Pe ∼ 10−3

so it can be used for both.
with fading Pe = 1

4γb
= 0.01

So the system can’t be used for data at all. It can be used for very low quality voice.

10. Ts = 15µsec
at 1mph Tc = 1

Bd
= 1

v/λ = 0.74s À Ts

∴ outage probability is a good measure.
at 10 mph Tc = 0.074s À Ts ∴ outage probability is a good measure.
at 100 mph Tc = 0.0074s = 7400µs > 15µs outage or outage combined with average prob of error can
be a good measure.

11.

Mγ(s) =
∫ ∞

0
esγp(γ)dγ

=
∫ ∞

0
esγ 1

γ
e−γ/γdγ

=
1

1− γs

12. (a) When there is path loss alone, d =
√

1002 + 5002 = 100
√

6× 103

Pe = 1
2e−γb ⇒ γb = 13.1224

Pγ

N0B = 13.1224 ⇒ Pγ = 1.3122× 10−14

Pγ

Pt
=

[√
Gλ

4πd

]2
⇒ 4.8488W

(b)
x = 1.3122× 10−14 = −138.82dB

Pγ,dB ∼ N(µPγ , 8), σdB = 8

P (Pγ,dB ≥ x) = 0.9

P

(
Pγ,dB − µPγ

8
≥ x− µPγ

8

)
= 0.9

⇒ Q

(
x− µPγ

8

)
= 0.9

⇒ x− µPγ

8
= −1.2816

⇒ µPγ = −128.5672dB = 1.39× 10−13

13. (a) Law of Cosines:
c2 = a2 + b2 − 2ab cosC with a,b =

√
Es, c = dmin, C = Θ = 22.5

c = dmin =
√

2Es(1− cos 22.5) = .39
√

Es

Can also use formula from reader

(b) Ps = αmQ
(√

βmγs

)
= 2Q

(√
dmin

2

2No

)
= 2Q(

√
.076γs)

αm = 2, βm = .076

(c) Pe =
∞∫
0

Ps(γs)f(γs)dγs

=
∞∫
0

αmQ(
√

βmγs)f(γs)dγs

Using alternative Q form

= αm
π

π
2∫
0

(
1 + gγs

(sin φ)2

)−1
dφ with g = βm

2

= αm
2

[
1−

√
gγs

1+gγs

]
= 1−

√
.038γs

1+.038γs
= 1

.076γs
, where we have used an integral table to evaluate

the integral

(d) Pd = Ps
4

(e) BPSK: P b = 1
4γb

= 10−3, ⇒ γb = 250, 16PSK: From above get γs = 3289.5
Penalty = 3289.5

250 = 11.2dB
Also will accept γb(16PSK) = 822 ⇒= 5.2dB

14.

P b =
∫ ∞

0
Pb(γ)p(γ)dγ

Pb(γ) =
1
2
e−γ

P b =
1
2

∫ ∞

0
e−γbpγ(γ)dγ =

1
2
M

But from 6.65

Mγ(s) =
(
1− sγ

m

)−m

∴ P b =
1
2

(
1 +

γ

m

)−m

For M = 4, γ = 10
P b = 3.33× 10−3

15. %Script used to plot the average probability of bit error for BPSK modulation in
%Nakagami fading m = 1, 2, 4.
%Initializations
avg_SNR = [0:0.1:20]; gamma_b_bar = 10.^(avg_SNR/10); m = [1 2 4];
line = [’-k’, ’-r’, ’-b’]

for i = 1:size(m,2)
for j = 1:size(gamma_b_bar, 2)

Pb_bar(i,j) = (1/pi)*quad8(’nakag_MGF’,0,pi/2,[],[],gamma_b_bar(j),m(i),1);
end
figure(1);
semilogy(avg_SNR, Pb_bar(i,:), line(i));
hold on;

end

xlabel(’Average SNR (gamma_b) in dB’); ylabel(’Average bit error
probability (P_b) ’); title(’Plots of P_b for BPSK modulation in
Nagakami fading for m = 1, 2, 4’); legend(’m = 1’, ’m = 2’, ’m =
4’);

function out = nakag_MGF(phi, gamma_b_bar, m, g);
%This function calculates the m-Nakagami MGF function for the specified values of phi.
%phi can be a vector. Gamma_b_bar is the average SNR per bit, m is the Nakagami parameter
%and g is given by Pb(gamma_b) = aQ(sqrt(2*g*gamma_b)).

out = (1 + gamma_b_bar./(m*(sin(phi).^2))).^(-m);

SNR = 10dB

M BER
1 2.33×10−2

2 5.53×10−3

4 1.03×10−3

16. For DPSK in Rayleigh fading, Pb = 1
2γb

⇒ γb = 500
NoB = 3× 10−12mW ⇒ Ptarget = γbN0B = 1.5× 10−9mW = -88.24 dBm

Now, consider shadowing:
Pout = P [Pr < Ptarget] = P [Ψ < Ptarget − Pr] = Φ

(
Ptarget−Pr

σ

)

⇒ Φ−1(.01) = 2.327 = Ptarget−Pr

σ

Pr = −74.28 dBm = 3.73× 10−8 mW = Pt

(
λ

4πd

)2

⇒ d = 1372.4 m

17. (a)

γ1 =
{

0 w.p. 1/3
30 w.p. 2/3

γ2 =
{

5 w.p. 1/2
10 w.p. 1/2

In MRC, γΣ = γ1+γ2. So,

γΣ =





5 w.p. 1/6
10 w.p. 1/6
35 w.p. 1/3
40 w.p. 1/3

(b) Optimal Strategy is water-filling with power adaptation:

S(γ)
S

=
{ 1

γ0
− 1

γ , γ ≥ γ0

0 γ < γ0

Notice that we will denote γΣ by γ only hereon to lighten notation. We first assume γ0 < 5,

4∑

i=1

(
1
γ0
− 1

γi

)
pi = 1

⇒ 1
γ0

= 1 +
4∑

i=1

pi

γi

⇒ γ0 = 0.9365 < 5

So we found the correct value of γ0.

C = B

4∑

i=1

log2

(
γi

γ0

)
pi

C = 451.91 Kbps

(c) Without, receiver knowledge, the capacity of the channel is given by:

C = B

4∑

i=1

log2(1 + γi)pi

C = 451.66 Kbps
Notice that we have denote γΣ by γ to lighten notation.

18. (a)

s(k) = s(k − 1)
z(k − 1) = gk−1s(k − 1) + n(k − 1)

z(k) = gks(k) + n(k)

From equation 5.63 , the input to the phase comparator is

z(k)z?(k − 1) = gkg(k − 1)?s(k)s?(k − 1) + gks(k − 1)n?
k−1 +

g(k − 1)?s?(k − 1)nk + nkn
?
k−1

but s(k) = s(k − 1)
s(k)s?(k − 1) = |sk|2 = 1 (normalized)

(b)

ñk = s?
k−1nk

ñk−1 = s?
k−1nk−1

z̃ = gkg
?
k−1 + gkñ

?
k−1 + g?

k−1ñk

φx(s) =
p1p2

(s− p1)(s− p2)
=

A

s− p1
+

B

s− p2

A = (s− p1)φx(s)|s=p1 =
p1p2

p1 − p2

B = (s− p2)φx(s)|s=p2 =
p1p2

p2 − p1

(c) Relevant part of the pdf
φx(s) =

p1p2

(p2 − p1)(s− p2)

∴ px(x) =
p1p2

(p2 − p1)
L−1

(
1

(s− p2)

)
=

p1p2

(p2 − p1)
ep2x , x < 0

(d)

Pb = prob(x < 0) =
p1p2

(p2 − p1)

∫ 0

−∞
ep2xdx = − p1

p2 − p1

(e)

p2 − p1 =
1

2N0[γb(1− ρc) + 1]
+

1
2N0[γb(1 + ρc) + 1]

=
γb + 1

N0[γb(1− ρc) + 1][γb(1 + ρc) + 1]

∴ P b =
γb(1− ρc) + 1

2(γb + 1)

(f) ρc = 1

∴ P b =
1

2(γb + 1)

19. γb 0 to 60dB
ρc = J0(2πBDT) with BDT = 0.01, 0.001, 0.0001
where J0 is 0 order Bessel function of 1st kind.

P b =
1
2

[
1 + γb(1− ρc)

1 + γb

]

when BDT = 0.01, floor can be seen about γb = 40dB
when BDT = 0.001, floor can be seen about γb = 60dB
when BDT = 0.0001, floor can be seen between γb = 0 to 60dB

20. Data rate = 40 Kbps
Since DQPSK has 2 bits per symbol. ∴ Ts = 2

40×103 = 5× 10−5sec

DQPSK
Gaussian Doppler power spectrum, ρc = e−(πBDT)2

BD = 80Hz
Rician fading K = 2
ρc = 0.9998

P floor =
1
2

[
1−

√
(ρc/

√
2)2

1− (ρc/
√

2)2

]
exp

[
−(2−√2)K/2

1− ρc/
√

2

]
= 2.138× 10−5

21. ISI:

Formula based approach:

Pfloor =
(

σTm

Ts

)2

Since its Rayleigh fading, we can assume that σTm ≈ µTm = 100ns
Pfloor ≤ 10−4

which gives us

(
σTm

Ts

)2

≤ 10−4

Ts ≥ σTm√
Pfloor

= 10µsec

So, Ts ≥ 10µs. Tb ≥ 5µs. Rb ≤ 200 Kbps.

Thumb - Rule approach:

µt = 100 nsec will determine ISI. As long as Ts À µT , ISI will be negligible. Let Ts ≥ 10 µT . Then
R ≤ 2bits

symbol
1
Ts

symbols
sec = 2Mbps

Doppler:

BD = 80 Hz

Pfloor = 10−4 ≥ 1
2


1−

√√√√
(
ρc/
√

2
)2

1− (
ρc/
√

2
)2




⇒ ρc ≥ 0.9999

But ρc for uniform scattering is J0(2πBDTs), so

ρc = J0(2πBDTs) = 1− (πfDTs)2 ≥ 0.9999

⇒ Ts ≤ 39.79µs

Tb ≤ 19.89µs. Rb ≥ 50.26 Kbps.

Combining the two, we have 50.26 Kbps ≤ Rb ≤ 200 Kbps (or 2 Mbps).

22. From figure 6.5
with Pb = 10−3, d = θTm/Ts, θTm = 3µs
BPSK

d = 5× 10−2

Ts = 60µsec

R = 1/Ts = 16.7Kbps

QPSK
d = 4× 10−2

Ts = 75µsec

R = 2/Ts = 26.7Kbps

MSK
d = 3× 10−2

Ts = 100µsec

R = 2/Ts = 20Kbps

Chapter 7

1. Ps = 10−3

QPSK, Ps = 2Q(
√

γs) ≤ 10−3, γs ≥ γ0 = 10.8276.

Pout(γ0) =
M∏

i=1

(
1− e

− γ0
γi

)

γ1 = 10, γ2 = 31.6228, γ3 = 100.

M = 1
Pout =

(
1− e

− γ0
γ1

)
= 0.6613

M = 2
Pout =

(
1− e

− γ0
γ1

) (
1− e

− γ0
γ2

)
= 0.1917

M = 3
Pout =

(
1− e

− γ0
γ1

) (
1− e

− γ0
γ2

) (
1− e

− γ0
γ3

)
= 0.0197

2. pγΣ(γ) = M
γ

[
1− e−γ/γ

]M−1
e−γ/γ

γ = 10dB = 10
as we increase M, the mass in the pdf keeps on shifting to higher values of γ and so we have higher
values of γ and hence lower probability of error.

MATLAB CODE

gamma = [0:.1:60];
gamma_bar = 10;
M = [1 2 4 8 10];
fori=1:length(M)

pgamma(i,:) = (M(i)/gamma_bar)*(1-exp(-gamma/gamma_bar)).^...
(M(i)-1).*(exp(-gamma/gamma_bar));

end

3.

P b =
∫ ∞

0

1
2
e−γpγΣ(γ)dγ

=
∫ ∞

0

1
2
e−γ M

γ

[
1− e−γ/γ

]M−1
e−γ/γdγ

=
M

2γ

∫ ∞

0
e−(1+1/γ)γ

[
1− e−γ/γ

]M−1
dγ

=
M

2γ

M−1∑

n=0

(
M − 1
n

)
(−1)ne−(1+1/γ)γdγ

=
M

2

M−1∑

n=0

(
M − 1
n

)
(−1)n 1

1 + n + γ
= desired expression

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

γ

p γ Σ(γ
)

M = 1
M = 2
M = 4
M = 8
M = 10

Figure 1: Problem 2

4.

pγΣ(γ) =
{

Pr{γ2 < γτ , γ1 < γ} γ < γτ

Pr{γτ ≤ γ1 ≤ γ}+ Pr{γ2 < γτ , γ1 < γ} γ > γτ

If the distribution is iid this reduces to

pγΣ(γ) =
{

Pγ1(γ)Pγ2(γτ) γ < γτ

Pr{γτ ≤ γ1 ≤ γ}+ Pγ1(γ)Pγ2(γτ) γ > γτ

5.

P b =
∫ ∞

0

1
2
e−γpγΣ(γ)dγ

pγΣ(γ) =

{ (
1− e−γT /γ

)
1
γ e−γr/γ γ < γT(

2− e−γT /γ
)

1
γ e−γr/γ γ > γT

P b =
1
2γ

(
1− e−γT /γ

)∫ γT

0
e−γ/γe−γdγ +

1
2γ

(
2− e−γr/γ

)∫ ∞

γT

e−γ/γe−γdγ

=
1

2(γ + 1)

(
1− e−γT /γ + e−γT e−γT /γ

)

6.
P b P b(10dB) P b(20dB)

no diversity 1
2(γ+1) 0.0455 0.0050

SC(M=2) M
2

∑M−1
m=0 (−1)m

0
@ M − 1

m

1
A

1+m+γ 0.0076 9.7× 10−5

SSC 1
2(γ+1)

(
1− e−γT /γ + e−γT e−γT /γ

)
0.0129 2.7× 10−4

As SNR increases SSC approaches SC

7. See

MATLAB CODE:
gammab_dB = [0:.1:20];
gammab = 10.^(gammab_dB/10);
M= 2;

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

γ
avg

P
b,

av
g (

D
P

S
K

)

M = 2
M = 3
M = 4

Figure 2: Problem 7

for j = 1:length(gammab)
Pbs(j) = 0
for m = 0:M-1

f = factorial(M-1)/(factorial(m)*factorial(M-1-m));
Pbs(j) = Pbs(j) + (M/2)*((-1)^m)*f*(1/(1+m+gammab(j)));

end
end
semilogy(gammab_dB,Pbs,’b--’)
hold on

M = 3;
for j = 1:length(gammab)

Pbs(j) = 0
for m = 0:M-1

f = factorial(M-1)/(factorial(m)*factorial(M-1-m));
Pbs(j) = Pbs(j) + (M/2)*((-1)^m)*f*(1/(1+m+gammab(j)));

end
end
semilogy(gammab_dB,Pbs,’b-.’);
hold on

M = 4;
for j = 1:length(gammab)

Pbs(j) = 0
for m = 0:M-1

f = factorial(M-1)/(factorial(m)*factorial(M-1-m));
Pbs(j) = Pbs(j) + (M/2)*((-1)^m)*f*(1/(1+m+gammab(j)));

end
end
semilogy(gammab_dB,Pbs,’b:’);
hold on

8.

γΣ =
1

N0

(∑M
i=1 aiγi

)2

∑M
i=1 a2

i

≤ 1
N0

∑
a2

i

∑
γ2

i∑
a2

i

=
∑

γ2
i

N0

Where the inequality above follows from Cauchy-Schwartz condition. Equality holds if ai = cγi where
c is a constant

9. (a) γi = 10 dB = 10, 1 ≤ i ≤ N

N = 1, γ = 10, M = 4

Pb = .2e
−1.5 γ

(M−1) = .2e−15/3 = 0.0013.

(b) In MRC, γΣ = γ1 + γ2 + . . . + γN .
So γΣ = 10N

Pb = .2e
−1.5

γΣ
(M−1) = .2e−5N ≤ 10−6

⇒ N ≥ 2.4412

So, take N = 3, Pb = 6.12 ×10−8 ≤ 10−6.

10. Denote N(x) = 1√
2π

e−x2/2 , Q′(x) = −N(x)

P b =
∫ ∞

0
Q(

√
2γ)dP (γ)

Q(∞) = 0, P (0) = 0
d

dγ
Q(

√
2γ) = −N(

√
2γ)

√
2

2
√

γ
= − 1√

2π
e−γ 1

2
√

γ

P b =
∫ ∞

0

1√
2π

e−γ 1
2
√

γ
P (γ)dγ

P (γ) = 1− e−γ/γ
M∑

k=1

(γ/γ)k−1

(k − 1)!

1
∫ ∞

0

1√
2π

e−γ 1
2
√

γ
dγ =

1
2

2
∫ ∞

0

1√
2π

e−γ 1
2
√

γ
e−γ/γ

M∑

k=1

(γ/γ)k−1

(k − 1)!
dγ =

M∑

k=1

1
(k − 1)!

[
1

2
√

π

∫ ∞

0
e
−γ
�
1+ 1

γ

�
γ−1/2

(
γ

γ

)k−1

dγ

]

Denote A =
(

1 +
1
γ

)−1/2

=
M−1∑

m=0

1
m!

1
2
√

pi

∫ ∞

0
e−γ/A2

γ−1/2

(
γ

γ

)m

dγ

let γ/A2 = u

=
M−1∑

m=0

1
m!

1
2
√

pi

∫ ∞

0
e−u u−1/2

A

(
uA2

γ

)m

A2du

=
A

2
+

M−1∑

m=1

(
2m− 1

m

)
A2m

22m

A

γm

P b =
1−A

2
−

M−1∑

m=1

(
2m− 1

m

)
A2m+1

22mγm

11.

DenoteN(x) =
1√
2π

e−x2/2 Q′(x) = [1− φ(x)]′ = −N(x)

Pb =
∫ ∞

0
Q(

√
2γ)dP (γ) =

∫ ∞

0

1√
2π

e−γ 1√
2γ

P (γ)dγ

∫ ∞

0

1√
2π

e−γ 1√
2γ

dγ =
1√
π

Γ
(

1
2

)
=

1
2

(1)
∫ ∞

0

1√
2π

e−γ 1√
2γ

e−2γ/γdγ =
1

2
√

1 + 2
γ

(2)

∫ ∞

0

1√
2π

e−γ 1√
2γ

√
πγ

γ
e−γ/γ

(
1− 2Q

(√
2γ

γ

))
dγ =

1
2
√

γ

1
B
√

Aγ
(3)

where A = 1 +
2
γ

, B = 1 +
1
γ

overall P b =
1
2

[
1−

√
1− 1

(1 + γ)2

]

12.
P b P b(10dB) P b(20dB)

no diversity 1
2

[
1−

√
γb

1+γb

]
0.0233 0.0025

two branch SC
∫

Q(
√

2γ)pγΣdγ 0.0030 3.67× 10−5

two branch SSC
∫

Q(
√

2γ)pγΣdγ 0.0057 1.186× 10−4

two branch EGC
∫

Q(
√

2γ)pγΣdγ 0.0021 2.45× 10−5

two branch MRC
∫

Q(
√

2γ)pγΣdγ 0.0016 0.84× 10−5

As the branch SNR increases the performance of all diversity combining schemes approaches the same.

MATLAB CODE:
gammatv = [.01:.1:10];
gammab = 100;
gamma = [0:.01:50*gammab];
for i = 1:length(gammatv)

gammat = gammatv(i);
gamma1 = [0:.01:gammat];
gamma2 = [gammat+.01:.01:50*gammab];
tointeg1 = Q(sqrt(2*gamma1)).*((1/gammab)*(1-exp(-gammat/gammab)).*exp(-gamma1/gammab));
tointeg2 = Q(sqrt(2*gamma2)).*((1/gammab)*(2-exp(-gammat/gammab)).*exp(-gamma2/gammab));
anssum(i) = sum(tointeg1)*.01+sum(tointeg2)*.01;

end

13. gammab_dB = [10];
gammab = 10.^(gammab_dB/10);
Gamma=sqrt(gammab./(gammab+1));
pb_mrc =(((1-Gamma)/2).^2).*(((1+Gamma)/2).^0+2*((1+Gamma)/2).^1);
pb_egc = .5*(1-sqrt(1-(1./(1+gammab)).^2));

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

γ

P
b(γ

)

MRC
EGC

dB penalty ~ .5 dB

Figure 3: Problem 13

14. 10−3 = Pb = Q(
√

2γb) ⇒ 4.75, γ = 10
MRC Pout = 1− e−γ0/γ

∑M
k=1

(γ0/γ)k−1

(k−1)! = 0.0827
ECG Pout = 1− e−2γR −√πγRe−γR(1− 2Q(

√
2γR)) = 0.1041 > Pout,MRC

15. P b,MRC = 0.0016 < 0.0021P b,EGC

16. If each branch has γ = 10dB Rayleigh
γΣ = overall recvd SNR = γ1+γ2

2 ∼ γe−γ/(γ/2)

(γ/2)2
γ ≥ 0

BPSK
P b =

∫ ∞

0
Q(

√
2γ)pγΣdγ = 0.0055

17. p(γ) where
∫∞
0 p(γ)e−xγdγ = 0.01γ√

x

we will use MGF approach

P b =
1
π

∫ π/2

0
Π2

i=1Mγi

(
− 1

sin2 φ

)
dφ

=
1
π

∫ π/2

0
(0.01γ sinφ)2dφ

=
(0.01γ)2

4
= 0.0025

18.

P b =
(

1− π

2

)3 2∑

m=0

(
l + m

m

)(
1 + π

2

)m

; π =
√

γ

1 + γ

Nakagami-2 fading

Mγ

(
− 1

sin2 φ

)
=

(
1 +

γ

2 sin2 φ

)−2

P b =
1
π

∫ π/2

0

(
Mγ

(
− 1

sin2 φ

))3

dφ, γ = 101.5 = 5.12× 10−9

MATLAB CODE:

gammab = 10^(1.5);
Gamma = sqrt(gammab./(gammab+1));

sumf = 0;

for m = 0:2
f = factorial(2+m)/(factorial(2)*factorial(m));
sumf = sumf+f*((1+Gamma)/2)^m;

end
pb_rayleigh = ((1-Gamma)/2)^3*sumf;
phi = [0.001:.001:pi/2];
sumvec = (1+(gammab./(2*(sin(phi).^2)))).^(-6);
pb_nakagami = (1/pi)*sum(sumvec)*.001;

19.

P b =
1
π

∫ π/2

0

(
1 +

γ

2 sin2 φ

)−2 (
1 +

γ

sin2 φ

)−1

dφ

gammab_dB = [5:.1:20];
gammabvec = 10.^(gammab_dB/10);

for i = 1:length(gammabvec)
gammab = gammabvec(i);
phi = [0.001:.001:pi/2];
sumvec = ((1+(gammab./(2*(sin(phi).^2)))).^(-2)).*((1+...

(gammab./(1*(sin(phi).^2)))).^(-1));
pb_nakagami(i) = (1/pi)*sum(sumvec)*.001;

end

5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

γ
avg

 (dB)

P
b av

g

Figure 4: Problem 19

20.
Pb =

2
3
Q

(√
2γb(3) sin

(π

8

))

α = 2/3, g = 3 sin2
(π

8

)

Mγ

(
− g

sin2 φ

)
=

(
1 +

gγ

sin2 φ

)−1

P b =
α

π

∫ π/2

0

(
1 +

gγ

sin2 φ

)−M

dφ

MATLAB CODE:
M = [1 2 4 8];
alpha = 2/3; g = 3*sin(pi/8)^2;

gammab_dB = [5:.1:20];
gammabvec = 10.^(gammab_dB/10);

for k = 1:length(M)
for i = 1:length(gammabvec)

gammab = gammabvec(i);
phi = [0.001:.001:pi/2];
sumvec = ((1+((g*gammab)./(1*(sin(phi).^2)))).^(-M(k)));
pb_nakagami(k,i) = (alpha/pi)*sum(sumvec)*.001;

end
end

5 10 15 20
10

−15

10
−10

10
−5

10
0

γ
avg

 (dB)

P
b av

g

Figure 5: Problem 20

21.

Q(z) =
1
π

∫ π/2

0
exp

[
− z2

sin2 φ

]
dφ , z > 0

Q2(z) =
1
π

∫ π/4

0
exp

[
− z2

2 sin2 φ

]
dφ , z > 0

Ps(γs) =
4
π

(
1− 1√

M

)∫ π/2

0
exp

[
− gγs

sin2 φ

]
dφ−

4
π

(
1− 1√

M

2
)∫ π/4

0
exp

[
− gγs

sin2 φ

]
dφ

P s =
∫ ∞

0
Ps(γΣ)pγΣ(γΣ)dγΣ

=
4
π

(
1− 1√

M

)∫ π/2

0

∫ ∞

0
exp

(
gγΣ

sin2 φ

)
pγΣ(γ)dγΣdφ−

4
π

(
1− 1√

M

)2 ∫ π/4

0

∫ ∞

0
exp

(
gγΣ

sin2 φ

)
pγΣ(γ)dγΣdφ

But γΣ = γ1 + γ2 + . . . + γM = Σγi

=
4
π

(
1− 1√

M

)∫ π/2

0
ΠM

i=1Mγi

(
− g

sin2 φ

)
dφ−

4
π

(
1− 1√

M

)2 ∫ π/4

0
ΠM

i=1Mγi

(
− g

sin2 φ

)
dφ

22. Rayleigh: Mγs(s) = (1− sγs)−1

Rician: Mγs(s) = 1+k
1+k−sγs

exp
(

ksγs
1+k−sγs

)

MPSK

P s =
∫ (M−1)π/M

0
Mγs

(
− g

sin2 φ

)
dφ → no diversity

Three branch diversity

P s =
1
π

∫ (M−1)π/M

0

(
1 +

gγ

sin2 φ

)−1 [
(1 + k) sin2 φ

(1 + k) sin2 φ + gγs

exp
(
− kγsg

(1 + k) sin2 φ + gγs

)]2

dφ

g = sin2
(π

16

)

= 0.1670

MQAM:
Formula derived in previous problem with g = 1.5

16−1 = 1.5
15

P s = 0.0553

MATLAB CODE:

gammab_dB = 10;
gammab = 10.^(gammab_dB/10);
K = 2;

g = sin(pi/16)^2;
phi = [0.001:.001:pi*(15/16)];

sumvec=((1+((g*gammab)./(sin(phi).^2))).^(-1)).*((((...
(1+K)*sin(phi).^2)./((1+K)*sin(phi).^2+...
g*gammab)).*exp(-(K*gammab*g)./((1+K)*sin(phi).^2+g*gammab))).^2);

pb_mrc_psk = (1/pi)*sum(sumvec)*.001;

g = 1.5/(16-1);
phi1 = [0.001:.001:pi/2];
phi2 = [0.001:.001:pi/4];

sumvec1=((1+((g*gammab)./(sin(phi1).^2))).^...
(-1)).*(((((1+K)*sin(phi1).^2)./((1+K)*...
sin(phi1).^2+g*gammab)).*exp(-(K*gammab*g)./((...
1+K)*sin(phi1).^2+g*gammab))).^2);

sumvec2=((1+((g*gammab)./(sin(phi2).^2))).^(-1)).*((((...
(1+K)*sin(phi2).^2)./((1+K)*sin(phi2).^2+...
g*gammab)).*exp(-(K*gammab*g)./((1+K)*sin(phi2).^2+g*gammab))).^2);

pb_mrc_qam = (4/pi)*(1-(1/sqrt(16)))*sum(sumvec1)*.001 - ...
(4/pi)*(1-(1/sqrt(16)))^2*sum(sumvec2)*.001;

5 10 15 20
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
s av

g

Figure 6: Problem 22

23. MATLAB CODE:

M = [1 2 4 8];
alpha = 2/3;
g = 1.5/(16-1);

gammab_dB = [5:.1:20];
gammabvec = 10.^(gammab_dB/10);

for k = 1:length(M)
for i = 1:length(gammabvec)

gammab = gammabvec(i);
phi1 = [0.001:.001:pi/2];

phi2 = [0.001:.001:pi/4];
sumvec1 = ((1+((g*gammab)./(1*(sin(phi1).^2)))).^(-M(k)));
sumvec2 = ((1+((g*gammab)./(1*(sin(phi2).^2)))).^(-M(k)));
pb_mrc_qam(k,i) = (4/pi)*(1-(1/sqrt(16)))*sum(sumvec1)*.001 - ...

(4/pi)*(1-(1/sqrt(16)))^2*sum(sumvec2)*.001;
end

end

Chapter 8

1. (3,1) code

(a) parity bit indicates if number of 1’s is even or odd
even number of 1’s ⇒ parity = 0
odd number of 1’s ⇒ parity = 1

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(b) dmin = 2

2. (a) see Matlab

(b) see Matlab

(c)
7∑

i=1

cigi = 0

gi = ith column of G

c2 + c4 + c5 = 0

c1 + c3 + c5 = 0

c2 + c3 + c6 = 0

c1 + c2 + c7 = 0

c1 = 1 c1 = 0 c1 = 0
c2 = 1 c2 = 1 c2 = 1
c3 = 1 c3 = 0 c3 = 1
c4 = 1 c4 = 1 c4 = 0
c5 = 0 c5 = 0 c5 = 1
c6 = 0 c6 = 1 c6 = 0
c7 = 0 c7 = 1 c7 = 1

HT =




1 0 0
1 1 1
1 0 1
1 1 0
0 0 1
0 1 0
0 1 1




(d) R=
[
1 1 0 1 0 1 1

]
S = RHT =

[
1 0 0

]

(e) see Matlab

(f) A row reduced echelon form can be obtained by row operations and column permutations. Clearly
we get that as 



1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1




See Figure 1

u
u3 u2 u1 u0

c4

c5

c6

c0=u0

c1=u1

c2=u2

c3=u3

Figure 1: Problem 2f

MATLAB

G = [0 1 0 1 1 0 0; 1 0 1 0 1 0 0 ; 0 1 1 0 0 1 0; 1 1 0 0 0 0 1];

b = 0:15;
a = dec2bin(b,4);
for i = 1:length(b)

u = a(i,:);
c(i,:) = zeros(1,length(G));
for j = 1:length(u)

h(j,:) = G(j,:)*u(j);
c(i,:) = mod(c(i,:)+h(j,:),2);

end
end

% c =
%
% 0 0 0 0 0 0 0
% 1 1 0 0 0 0 1
% 0 1 1 0 0 1 0
% 1 0 1 0 0 1 1
% 1 0 1 0 1 0 0
% 0 1 1 0 1 0 1

% 1 1 0 0 1 1 0
% 0 0 0 0 1 1 1
% 0 1 0 1 1 0 0
% 1 0 0 1 1 0 1
% 0 0 1 1 1 1 0
% 1 1 1 1 1 1 1
% 1 1 1 1 0 0 0
% 0 0 1 1 0 0 1
% 1 0 0 1 0 1 0
% 0 1 0 1 0 1 1

d = c(2:15,:); dmin = min(sum(d’));

% dmin =
%
% 3

% H =
%
% 1 1 1 1 0 0 0
% 0 1 0 1 0 1 1
% 0 1 1 0 1 0 1

R = [1 1 0 1 0 1 1]; S = mod((R*H’),2)

% S =
%
% 1 0 0

count = 1; for i = 1:length(c)
d = c(i,:);
if sum(d) == dmin

e(count,:) = c(i,:);
count = count+1;

end
end

% e =
%
% 1 1 0 0 0 0 1
% 0 1 1 0 0 1 0
% 1 0 1 0 1 0 0
% 0 0 0 0 1 1 1
% 0 1 0 1 1 0 0
% 0 0 1 1 0 0 1
% 1 0 0 1 0 1 0

3. t = 1 ,∴ 1 error can be corrected.
dmin − 1 = 2 errors can be detected

4.
g(x) = 1 + x + x4

c1(x) = 1 + x + x3 + x7 ⇒ c1(x)/g(x) = 1 + x3, remainder = 0 ⇒ valid

c2(x) = 1 + x3 + x5 + x6 ⇒ c2(x)/g(x) = 1 + x + x2, remainder = x4 ⇒ not valid

u(x) =
∑10

i=0 cix
i

x4u(x)
g(x) = q(x) + p(x)

g(x)(degree of p(x) should be less than 4)
say u(x) = 1 (for example)
for a given u(x), the systematic form of codeword is generated in three steps
1 u(x)xn−k = 1.x15−11 = x4

2 x4

1+x+x4 ⇒ q(x) = 1, p(x) = 1 + x

3 c(x) = x4u(x) + p(x) = 1 + x + x4 (c(x) = codeword in systematic form)

5. (a)

G =




1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1




in systematic form

Gsys =




1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1




(b)

H3×7 =




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1




(c) Crec =
[
1 0 1 0 0 1 1

]
S = CHT =

[
0 0 0

] → another valid codeword corresponding to input [1 0 1 0]

(d) All possible received codewords to give error 0 are all possible codewords.

6. N(x) =
∑n

i=0 Nix
i = 1

n+1

[
(1 + x)n + n(1 + x)

n−1
2 (1− x)

n+1
2

]

Ni =number of codewords of weight i

(a) (7,4) code → block length n=7
1
8

[
(1 + x)7 + n(1 + x)3(1− x)4

]
= 1 + 7x3 + 7x4 + x7

number of codewords of weight 0 = 1
number of codewords of weight 3 = 7
number of codewords of weight 4 = 7
number of codewords of weight 7 =1

(b) r =10dB = Eb/N0 ⇒ Ec/N0 = 40/7
p = Q(

√
80/7) = 3.6162× 10−4 From 8.38:

Pe ≤
∑1

j=2 6 [4p(1− p)]wj/2 = 3.9951× 10−4

7. Hamming code, m=7
n = 2m − 1 = 127
k = 2m − 1−m = 120
dmin = 3

Pe = Pb ∼ (2k − 1) [4p(1− p)]dmin/2 ∼ 1

p = 2Q
(√

2γs sin
(π

M

))
= 2Q

(√
2
Es

N0
sin

(π

8

))
= 0.0962

For uncoded modulation

p =
2
3
Q

(√
2

Eb

N0
3 sin

(π

8

))
= 0.0870

∴ for this sceme, unmodulated transmission is better.

8. There is negative coding gain below 2.8dB

snr_dB = 0:.1:20;
snr = 10.^(snr_dB/10);
k = 2;
for i = 1:length(snr)

snr_c = (2/5)*snr(i);
p = .5*erfc(sqrt(2*snr_c)/sqrt(2));
Pe(i) = (2^k-1)*(4*p*(1-p))^(3/2);
Pe_uncoded(i) = .5*erfc(sqrt(2*snr(i))/sqrt(2));

end
plot(snr_dB,Pe)
hold on;
plot(snr_dB,Pe_uncoded,’r’)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
Coded
Uncoded

Figure 2: Problem 8

9. (7,4) Hamming code
Gc = 10 log10 [Rcdmin − k ln (2/γb)] = 2.1128dB

Rc = 4/7
dmin = 3
k = 4
γb = 15dB = 101.5

10. At high SNR, the performance is almost the same.

MATLAB

clear;
snr_dB = 0:.1:10;
snr = 10.^(snr_dB/10);
k = 12;
n = 24;
dmin = 8;
for i = 1:length(snr)

snr_c = (k/n)*snr(i);
p = .5*erfc(sqrt(2*snr_c)/sqrt(2));
Pe_hdd(i) = (2^k-1)*(4*p*(1-p))^(dmin/2);
Pe_sdd(i) = (2^k-1)*.5*erfc(sqrt(2*snr(i)*(k/n)*dmin)/sqrt(2));
Pe_uncoded(i) = .5*erfc(sqrt(2*snr(i))/sqrt(2));

end
plot(snr_dB,Pe_hdd,’b--’)
hold on;
plot(snr_dB,Pe_sdd,’b:’)
% plot(snr_dB,Pe_uncoded,’b-.’)

11. Extended Gray code → (24, 12), dmin = 8, t = 3, γb = 10dB = 10
p = Q

(√
2Ec/N0

)
== Q

(√
2RcEb/N0

)
= Q

(√
2× 1/2× 10

)
= 7.82× 10−4

2.62× 10−10 ≤ Pe ≤ 1.073× 10−7

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350
HDD
SDD

Figure 3: Problem 10

12. k=3
K=4
8PSK modulation
N= 2k − 1 = 7
t = b5(N −K)c = b5(3)c = 1
dmin = N −K + 1 = 4
Ps ≤ 3.49× 10−11

Pb = 2k−1

2k−1
Ps = 1.99× 10−11

13. Pe < 2k

(
2dmin − 1

dmin

)
1

4Rcγb

dmin = 1.35× 10−8

Ec
N0

= 15dB ⇒ Rc
Eb
N0

= 15dB ⇒ Rcγb = 15dB = 101.5

(23,12) code, dmin = 7

14. Choose a (5,2) linear block code with dmin = 3 as in problem 8
Rc = 2/5
γb = 10
dmin = 3
Now, from (8.81) with Rayleigh fading,

Pe < 2k < 2k

(
2dmin − 1

dmin

)
1

4Rcγb

dmin = 0.0098× 10−2 ∴ bit errors do not occur mostly and any depth

is ok as long as delay is less than 5msec.
ndTs ≤ 5msec
⇒ d ≤ 30
∴ we use an interleaver with n columns and d rows.

15. U = [0 1 1 0 1 0 1 1 0 1]
C = 000 111 101 001 100 010 100 101 001 100
see Figure 4

00

01

10

11

00

01

10

11

0/000

0/011

1/111

1/110

0/010

1/1010/001

1/110

Figure 4: Problem 15

16. (a) S =S2S3

see Figure 3:16a

(b) p=10−3

Path metric = log (p(R/C))

=
2∑

i=0

3∑

j=1

log P (Rij/Cij)

= 3 log p + 5 log(1− p) = −20.73

S0 =00

S1 =01

S2 =10

S3 =11

0/000

0/011

1/110

1/101

0/110

1/0000/101

1/011

Figure 5: Problem 16

(c) We consider the path that goes from S0 to S2 to S1 to S0. This path is at the minimum hamming
distance to the all 0 path.
C1 = 110 110 011

Path metric = log (p(R/C))

=
2∑

i=0

3∑

j=1

log P (Rij/Cij)

= 5 log p + 4 log(1− p) = −34.54

17. (a) see figure 6

a=00 c=10 b=01 e=00

d=11

0/000 1/000
0/101

1/110 0/110 0/011

1/101

1/011

D
2

D
2

D
2

D
2

D
2

D
2

1

1

Figure 6: Problem 17a

(b) see figure 7

Xc = JND2Xa + JND2Xb

Xb = JD2Xc + JD2Xd

Xd = JNXc + JND2Xd

Xe = JD2Xb

a=00 c=10 b=01 e=00

d=11

D
2

D
2

JN

D
2

JN

D
2

JN

J

D
2

J

D
2

J

JN

Figure 7: Problem 17b

Solving we get

J(D, N, J) =
Xe

Xa
=

J3ND6(1− JND2 + JN)
(1− JND2)− J2ND4(1− JND2 + JN)

(c) dmin = 6

(d) γb = 10
Rc = 1/3
T (D,N) = ND6(1−ND2+N)

(1−ND2)−ND4(1−ND2+N)

Pb < dT (D,N)
dN |N=1,D=e−γbRc = 6.19× 10−9

(e) p = Q
(√

2γbRc

)
= 0.0049

Pb < dT (D,N)
dN |

N=1,D=
√

4p(1−p)
= 2.2883× 10−5

Coding gain = −10 log10

(
PeSDD
PeHDD

)
= 35.678

18. Tc = 10ms
Rs = 50, 000sps

NTs > Tc

N ≥ Tc/Ts = 500

delay = N(N-1)Ts ∼ 5sec

Memory associated = N(N−1)
2 = 1.2475× 105

19. (a) see figure 8

Figure 8: Problem 19a

dmin = 2d16QAN (for parallel transitions)

Gc =
d2

min

d08PSK

2−γ = 1.365 > 1

(b) see figure 9

S0 =00

S1 =01

S2 =10

S3 =11

0/00

0/11

1/11

1/00

0/01

1/100/10

1/01

coset 1 00

coset 2 01

coset 3 10

coset 4 11

coded bits

d0,16QAM

dmin 01

00

10 11

uncoded bits
coset1

Figure 9: Problem 19b

each branch corresponds to 4 parallel transitions
coded bits pick the coset
uncoded bits pick a point in the coset

(c) Minimum distance error event through the trellis would normally be S0 ⇒ S2 ⇒ S1 ⇒ S0.
However since parallel transitions are also a part of the trellis, minimum distance error event will
be another point of a coset being decoded which is at dmin

(d) dmin = 2d016QAM = 1.264

20. (a) For C1

n = 22 − 1 = 3

k = 22 − 1− 2 = 1

dmin = 3

Pe < (4p(1− p))3/2

For C2

Pe < 4 (4p(1− p))3/2

For C3

Pe < 11 (4p(1− p))3/2

(b) Ts = 10µs
RC1 = 1/3 → Data rate = 3 × 105bps RC2 = 4/7 → Data rate = 1.75 × 105bps RC3 = 11/15 →
Data rate = 1.36× 105bps

(c) (25,16) code

21. For low priority bits use (7,4) Hamming code with BPSK
Pb = 2.199× 10−4

For high priority bits use (23,12) Golay code with BPSK
Pb = 9× 10−9

Chapter 9

1.

Ps =
1
π

∫ 7
8
π

0

(
1 +

gγs

sin2 φ

)−1

dφ g = sin2
(π

8

)

P s = P b log2 8 = 3P b = 3× 10−3

γ = 1119
Rb

B
=

3Rs

B
= 3

2. Pout = P (γ < γ0) = 1− e−γ0/100 = 0.1
γ0 = 10.536

σ = 1/Eγ0 [1/γ] =
1∫∞

γ0

1
γ P (γ)

= 56.3125 = 17.506dB

For 4-QAM, SNR =10.35dB
16-QAM, SNR = 17.35dB
∴ Maximum constellation size is 16-QAM

3. For QPSK
Pb = Q

(√
σ
)

= 10−3

σ = 10.35dB = 10.85

Settin σ = 1/Eγ0 [1/γ] and solving for γ0

γ0 = 0.0056

Pout = 1− e−γ0/100 = 5.6× 10−5

4. (a) M=4
Pb = Q(

√
σ) = 10−3 ∴ σ = 10.35dB

M=16
σ = 17.35dB

∴
γ < 10.35dB no transmission
10.35dB < γ < 17.35dB 4-QAM
γ > 17.35dB 16-QAM

γ0 = 10.35dB

(b)

P (4QAM) = P (10.35dB < γ < 17.35dB)

=
∫ 17.35dB

10.35dB

1
100

e−γ/100dγ

= 0.3164
P (16QAM) = P (γ > 17.35dB)

= e−17.5dB/100

= 0.5809

∴ Rb = 0.3164× 2 + 0.5809× 4 = 2.9564bps/Hz

(c)

P e =

∫ 10
0 P (γ)Q(

√
γ)dγ∫ γ0

0 P (γ)dγ
= 0.0242

5. For BPSK
Pb = Q(

√
2γ) = 10−3

γ = 4.77 = 6.78dB

For QPSK
Pb = Q(

√
γ) = 10−3

γ = 4.77 = 10.35dB

For 8PSK
Pb ≈ 0.67Q

(√
2γ sin(π/8)

)
= 10−3

γ = 14.78dB

γ > 14.78dB no code 8PSK
10.35dB < γ < 14.78dB no code QPSK
6.78dB < γ < 10.35dB no code BPSK
3.78dB < γ < 6.78dB 1st code BPSK
2.78dB < γ < 3.78dB 2nd code BPSK
1.78dB < γ < 2.78dB 3rd code BPSK

γ < 1.78dB no transmission

For Rayleigh fading

R = P (γ > 14.78dB).3 + P (10.35dB < γ < 14.78dB).2

+P (6.78dB < γ < 10.35dB).1 + P (3.78dB < γ < 6.78dB)
1
2

+P (2.78dB < γ < 3.78dB)
1
3

+ P (1.78dB < γ < 2.78dB)
1
4

= 2.6061bps/Hz

6.

J =
∫

log2

(
1 +

KγS(γ)
S

)
P (γ)dγ − λ

∫
S(γ)P (γ)dγ

∂J

∂S(γ)
= 0

⇒ 1

1 + KγS(γ)

S

Kγ

S
− λ = 0

S(γ)
S

=
{ 1

γ0
− 1

γK γ ≥ γ0/K

0 γ < γ0/K

M(γ) = 1 + γK
S(γ)

S
= 1 + γK

(
1
γ0
− 1

γK

)
=

γK

γ0

∴ M(γ) = γ/γK

∴ log2 M(γ) = log2 (γ/γK)

7. (a) P e =
∫∞
0

1
γ e−γ/γ2e−1.5γ/(M−1)dγ

(b) Using (a)
Numerically, M=2 ∴ BPSK P e = 0.025
Specral efficiency = 1bps/Hz

(c) In Fig 9.3 , Average SNR = 20dB
Spectral efficiency = 4bps/Hz
∴ Adaptive modulation has higher spectral efficiency.

8. (a)

Pb ≤ .2e
− 1.5γ

(M−1)
S(γ)

S

M(γ) = 1 +
1.5γ

− ln(5Pb)
S(γ)

S
= 1 + γK

S(γ)
S

where
K =

1.5
− ln(5Pb)

We maximize spectral efficiency by maximizing:

E[log2 M(γ)] =
∫

log2

(
1 + γK

S(γ)
s

)
p(γ)dγ

subject to: ∫
S(γ)p(γ)dγ = S

This gives the water-filling solution for optimal power adaptation as:

S(γ)
S

=
{ 1

γ0
− 1

γK γ ≥ γ0

K

0 γ < γ0

K

This gives that the optimal rate adaptation is

M(γ) =
γ

γK
, γ ≥ γK

where γK = γ0/K.
To find the cut-off, we use the average power constraint equation as

∫ ∞

γK

1
K

(
1

γK
− 1

γ

)
1
γ

e
− γ

γ dγ = 1

For γ = 20 dB = 100 and Pb = 10−4, Using Matlab we get K = 0.1973, γK = 4.3, γ0 = 0.8486.

(b)
R

B
= E[log2 M(γ)] =

∫
log2

(
1 + γK

S(γ)
S

)
p(γ)dγ =

∫ ∞

γK

log2

(
γ

γK

)
1
γ

e
− γ

γ dγ

Using Matlab we get 3.7681 bits/sec/Hz

(c)

M(γ) = 1 + γK
S(γ)

S

For truncated channel inversion, the power adaptation is given as

S(γ)
S

=
{ σ

γ γ ≥ γ0

0 o.w.

where
σ =

1
Eγ0 [1/γ]

=
1∫∞

γ0

1
γ

1
γ e
− γ

γ dγ

The value of γ0 is chosen so as to maximize spectral efficiency i.e.

R

B
= max

γ0

log2(1 + Kσ)p(γ > γ0)

= max
γ0

log2

(
1 + K

1
Eγ0 [1/γ]

)
p(γ > γ0)

Using Matlab we get, R
B = 3.3628 at γ0 = 23.18 and pout = 0.2069.

9. Assume a target BER of 10−3

(a)
S(γ)

S
=

{ 1
γ0
− 1

γK γ ≥ γ0/K

0 γ < γ0/K

Try 4 channels

γ0 =
1

1
K

∑ 1
γi

P (γi) + 1
= 0.6491

K =
−1.5

ln(5Pb)
= 0.2831

∴ γK = γ0/K = 2.2928
γ1 = 100.5 > 0.6491

∴ we should use 4 channels
∴ optimal power and rate adaptation

S(γ)
S

=
1

0.6491
− 1

0.2831γ

Instant Rate
log2 M(γ) = log2 (γ/2.2928)

(b) Average spectral density ∑
Pi log2 (γ/2.2928) = 2.457bps/Hz

(c) Truncated channel inversion
First we use 4 channels

E (1/γ) =
4∑

i=1

1
γi

Pi = 0.1530

R

B
= log2

(
1 +

K

E(1/γ)

)
= log2

(
1 +

0.2831
0.1530

)
= 1.5111

Second, we use 3 channels

E (1/γ) =
4∑

i=1

1
γi

Pi = 0.0265

R

B
= log2

(
1 +

K

E(1/γ)

)
0.6 = 2.1278

Now, we use 2 channels

E (1/γ) =
4∑

i=1

1
γi

Pi = 0.0065

R

B
= log2

(
1 +

K

E(1/γ)

)
0.4 = 2.1910

Finally, we use 1 channel
R

B
= log2

(
1 +

K

E(1/γ)

)
0.2 = 2.0936

∴ we use 2 channels.
Power control policy

S(γ)
S

=
1

γE(1/γ)
=

153.84
γ

, γ = 15dB, 20dB

R

B
= 2.191bps/Hz

This is less than waterfilling

10. γ = 100, Pb = 10−3

Constellation restricted to M = {0, 2, 4, 16, 64, 256}

R

B
= max

γ0

log2b
(

1 + K
1

Eγ0 [1/γ]

)
cMp(γ > γ0)

Define

x =
(

1 + K
1

Eγ0 [1/γ]

)

Using Matlab:

For the unrestricted case, we get, (R/B)max = 3.76 at γ∗0 = 20.25 and x(γ∗0) = 24.37. As for the
continuous case, the R/B curve is a strictly concave function of γ0, we know that the best choices of
M are either 16 or 64 as 16 ≤ x(γ∗0) = 24.37 ≤ 64.

For x = 16, we get γ0 = 9.4 and corresponding (R/B) as 3.64

For x = 64, we get γ0 = 60.5 and corresponding (R/B) as 3.27.

So, we choose M = 16 and corresponding spectral efficiency is 3.36 bits/sec/Hz.

11. (a)
γ < 20 no transmission

20 < γ < 40 M=2
40 < γ < 160 M=4

160 < γ < 640 M=16
640 < γ < ∞ M=64

From table 9.2,
γ = 20dB, fD = 100Hz

f̂D = 80Hz is 4/5 of fD = 100Hz
∴ τ̂ = fD

cfD
τ = 5

4τ j

∴ τ = [0.737 0.301 1.06 2.28 3.84]5/4 ms

τ = [0.9213 0.3762 1.3250 2.85 1.7875] ms

number of symbols = τ/Ts

Spectral efficiency:

R

B
= P (20 < γ < 40)0.1 + P (40 < γ < 160)0.2

+P (160 < γ < 640)0.4 + P (640 < γ < ∞)0.8
= 1.8995bps/Hz

(b)

P b =
N−1∑

j=1

2(
√

Mj − 1)√
Mj log2 Mj

Q

(√
3(Mj − 1)
K(Mj − 1)

)∫ γ?
KMj

γ?
KMj−1

P (γ)dγ = 2.25× 10−4

∴ the exact BER is better than the target BER

12. (a) γ = 100
B = 30 KHz
fD = 80 Hz
Pb = 10−3

ε =
γ̂

γ

P b =
∫ ∞

0

1
5
(5Pb)

1
ε p(ε)dε =

∫ 1.5

0.5

1
5
(5Pb)

1
ε p(ε)dε = 0.0017

where the last integral was evaluated using Matlab.
Another, more analytical way to solve this is a method proposed by William Wu, a student enrolled
for the course as:

P̄b u .2
∫ 1.5

0.5
(5Pb)1/εdε

This integral cannot be evaluated in closed form, but it can be expressed in terms of a special
function; namely, the exponential integral.
Consider the integral S =

∫ K2

K1
a1/xdx, where a is a real positive number. Then a = ep for some

p ∈ R. Rewriting the integral in terms of p, and then integrating by parts, we have

S =
∫ K2

K1

a1/xdx =
∫ K2

K1

ep/xdx = ep/x · x
∣∣∣
K2

K1

−
∫ K2

K1

xep/x−p

x2
dx

= ep/x · x
∣∣∣
K2

K1

+
∫ K2

K1

p

x
ep/xdx.

︸ ︷︷ ︸
β

With regards to the second integral “β”, let u = −p/x. Then x = − p
u , and dx = p

u2 du, yielding

β =
∫ K4

K3

(−u)e−u p

u2
du = −p

∫ K4

K3

e−u

u
du

where K3 = −p
K1

and K4 = −p
K2

. Applying the data provided in this problem, p u −5.298,K3 u
10.596, and K4 u 3.532. Reversing the orientation of integration yields

β = p

∫ K3

K4

e−u

u
du = p(E1(K4)− E1(K3))

where E1 is the exponential integral function E1(x) ,
∫∞
x

e−t

t dt. Conclusively, using K1 =
0.5,K2 = 1.5, and Pb = 10−3, we have

P̄b u (1/5)
[
ep/x · x

∣∣∣
K2

K1

+ p(E1(K4)− E1(K3))
]
u 1.674× 10−3

where E1(x) was evaluated using the expint() function in MATLAB.

(b)
γ̂(t) = γ(t− τ) + γε(t)

Pb(γ(t), γ̂(t)) ≤ 0.2exp
[−1.5γ(t)
M(γ̂(t))− 1

S(γ̂(t))
S

]
(1)

= 0.2(5Pb)
γ(t)
γ̂(t) (2)

= = 0.2(5Pb)
1

δ+ε (3)

where
δ =

γ(t− τ)
γ(t)

ε =
γε(t)
γ(t)

IF the fading process is stationary t does not matter. In general γ(t − τ) and γε(t) are not
independent of γ(t).
In further calculation we drop t as process stationary

P b ≤
∫ ∞

0

∫
γ0
∞0.2(5Pb)

γ
γ̂ p(γ, γ̂)dγ̂dγ

Notice that γ̂ integrates only from γ0 as the transmitter which has knowledge of γ̂ only does not
transmit if γ̂ is less than γ0, where as γ can vary over its entire range.

P b ≤
∫ ∞

0

(∫
γ0
∞0.2(5Pb)

γ
γ̂ p(γ̂|γ)dγ̂

)
p(γ)dγ

where we have used Baye’s rule to relate the joint distribution to the marginal distribution as

p(γ, γ̂) = p(γ̂|γ)p(γ)

Now using
γ

γ̂
=

1
δ + ε

we get

P b ≤
∫ ∞

0

(∫
0∞0.2(5Pb)

1
δ+ε p ((δ + ε)|γ) d(δ + ε)

)
p(γ)dγ

where if γ̂ ∈ {γ0,∞} and γ ∈ {0,∞}, then (δ + ε) = γ̂
γ ∈ {0,∞}.

Now IF, γ(t− τ)|γ and γε|γ are independent then we can write

p((δ + ε)|γ) = p(δ|γ)⊗ p(ε|γ)

Further, IF γ(t− τ)|γ only depends on p(τ), we only need the distribution of p(τ) and p(γε|γ).

13. Suppose target Pe = 10−3

Kc = KGc = 3dB × 0.2831 = 0.5662

∴ S(γ)
S

=
{ 1

γ0
− 1

γKc
γ ≥ γ0/Kc

0 γ < γ0/Kc

∫
S(γ)

S
= 1 ⇒ γ0 = 0.93

∴ S(γ)
S

=
{ 1

0.93 − 1
0.5562γ γ ≥ 1.67

0 γ < 1.67

R

B
=

∫ ∞

γKc

log2

(
γ

γKc

)
p(γ)dγ = 5.1bps/Hz

14.

Pb ≈ 4
log2 M

Q

(√
3γ

M − 1

)

≈ 4

log2 M
√

6πγ
M−1

exp
(
− 3γ

2(M − 1)

)

∴ C1 =
4

log2 M
√

6πγ
M−1

C2 = −1.5

C3 = 1

C4 = 1

15.

J =
∫ ∞

0
K(γ)p(γ)dγ + γ

[∫ ∞

0

S(γ)
S

P (γ)dγ

]

=
∫ ∞

0

1
C3

log2

(
C4 − C2γ

ln(γb/C1)
S(γ)

S

)
p(γ)dγ + λ

(
S(γ)

S
p(γ)dγ

)

∂J

∂S(γ)
0 ⇒ 1/ ln 2

C4 − C2γ
ln(pb/C1)

S(γ)

S

C2γ

ln(Pb/C1)S
+

λ

S

⇒ S(γ)
S

=

{
− 1

3(ln 2)λS
− 1

γK S(γ) ≥ 0,K(γ) ≥ 0

0 else

16. (a) γ = 30 dB = 1000
Pb = 10−7

c1 c2 c3 c4

1st Bound 0.05 6 1.9 1
2nd Bound 0.2 7 1.9 -1
3rd Bound 0.25 8 1.94 0

We use eq. 9.46 in the reader
1
K

= −c4

c2
ln

(
Pb

c1

)

K = − c2

c4 ln
(

Pb
c1

)

For the 1st bound:
K = 0.4572

S(γ)
S

=
{ 1

γ0K − 1
γK γ > γ0

0 o.w.
(4)

K is known to be 0.4572, γ0 is found using the constraint
∫ ∞

γ0

(
1

γ0K
− 1

γK

)
p(γ)dγ = 1

Using Matlab, we get γ0 = 2.16

For the 2nd bound:
K = -0.4825

S(γ)
S

=
{ − 1

γ0K − 1
γK γ > γ0

0 o.w.
(5)

K is known to be -0.4825, γ0 is found using the constraint
∫ ∞

γ0

(
− 1

γ0K
− 1

γK

)
p(γ)dγ = 1

Using Matlab, we get γ0 = 2.10

For the 3rd bound:
K = ∞

S(γ)
S

=
{ K0

γ0
γ > γ0

0 o.w.
(6)

K0 is − ln(Pb/c1)
c2

= 1.8415, γ0 is found using the constraint
∫ ∞

γ0

(
K0

γ0

)
p(γ)dγ = 1

Using Matlab, we get γ0 = 1.838

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r (dB)

S
(r

)
/ A

vg
(S

)

S(r) / Avg(S) vs r

Bound 1
Bound 2
Bound 3

Figure 1: Problem 16, S(γ)/S

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r (dB)

k(
r)

 (
bp

s/
H

z)

k(r) vs r

Bound 1
Bound 2
Bound 3

Figure 2: Problem 16, k(γ)

(b)

k(γ) =

{
1
c3

log2

(
γ
γ0

)
γ ≥ γ0

0 o.w.
(7)

The plots for S(γ)/S and k(γ) are given below:
For bound 1, the cutoff is dictated by the power constraint, where as for bounds 2 and 3, where
K is either negative or infinite, the cutoff is dictated by the rate positivity constraint.

(c) By looking at the curves we notice that for Low SNR

1st Bound: Water-filling
2nd Bound: Channel-Inversion
3rd Bound: Constant Power

For high SNR’s, all the three bounds have the same power adaptation.
The rates are almost the same for all the three bounds.

17. M = {M0 = 0, . . . MN−1} where M0 is no data transmission
kj = log2 Mj , j > 0
k0 = 0
kj assigned to Rj = [γj − 1, γj) , j = 0, . . . N − 1

γ−1 = 0
γN−1 = ∞

Pb(γ) ≈ c1 exp

[−c1γ
S(γ)

S

2c3kj − c4

]

Setting target value Pb = P (γ)

ln
(

Pb

c1

)
=
−c1γ

S(γ)

S

2c3kj − c4

⇒ S(γ)
S

=
− ln(Pb/c1)

c2
(2c3kj − c4)
γ

=
h(kj)

γ

L =
N−1∑

j=1

kj

∫ γj

γj−1

p(γ)dγ + λ




N−1∑

j=1

∫ γj

γj−1

h(kj)
γ

p(γ)dγ − 1




∂L
∂γj

= 0 0 ≤ j ≤ N − 2
∂L
∂γ0

= −k1p(γ0)− λ
h(k1)

γ0
p(γ0) = 0

γ0 = ρ
h(k1)

k1
for some constantρ = −λ

for j > 0

∂L
∂γ0

= kjp(γj)− kj+1p(γj) + λ

[
h(kj)

γj
p(γj)− h(kj+1)

γj
p(γj)

]
= 0

γj =
h(kj+1)− h(kj)

kj+1 − kj
ρ 1 ≤ j ≤ N − 2

For some ρ = −λ where ρ is found from the average power constraint as:

N−1∑

j=1

∫ γj

γj−1

h(kj)
γ

p(γ)dγ = 1

18.

J =
N−1∑

j=1

kj

∫ γj

γj−1

p(γ)dγ + λ1




N−1∑

j=1

kj

∫ γj

γj−1

(Pb(γ)− P b)p(γ)dγ


 + λ2

[∫ ∞

γ0

S(γ)p(γ)dγ − S

]

∂J

∂S(γ)
= 0

Notice that Pb(γ) is a function of S(γ)

λ1
∂Pb(γ)
S(γ)

p(γ) + λ2p(γ) = 0 , γj−1 ≤ γ ≤ γj

⇒ ∂Pb(γ)
S(γ)

=
−λ2

kjλ1

Pb(γ) = c1 exp

[−c1γ
S(γ)

S

2c3kj − c4

]

∂Pb(γ)
S(γ)

= Pb(γ)
−c2γ

1
S

2c3kj − c4
=
−λ2

kjλ1
⇒ Pb(γ) = λ

f(kj)
γkj

γj−1 ≤ γ ≤ γj

where λ = Sλ2
c2λ1

λ
f(kj)
γkj

= c1 exp
[−c2γS(γ)/S

f(kj)

]

−c2γS(γ)/S

f(kj)
= ln

[
λ

f(kj)
c1γkj

]

∴ S(γ) = Sj(γ) , γj−1 ≤ γ ≤ γj

where Sj(γ)

S
= f(kj)

−γc2
ln

[
λ

f(kj)
c1γkj

]

∂J

∂γj
= 0 0 ≤ j ≤ N − 2

⇒ (kj − kj+1) + λ1[kj(Pb(γj)− P b)− kj+1(Pb(γj)− P b)] + λ2[Sj(γj)− Sj+1(γj)] = 0

Pb(γj) = P b − 1
λ1
− λ2

λ1

Sj+1(γj)− Sj(γj)
(kj+1 − kj)

Substituting for Pb(γj) and Sj(γj) we et an equation between γj , λ1 and λ2

λf(kj)
γjkj

= P b − 1
λ1
− λ2

λ1

f(kj+1)
−γjc2

ln
[

λf(kj+1)
c1γjkj+1

]
− f(kj)

−γjc2
ln

[
λf(kj)
c1γjkj

]

(kj+1 − kj)

where λ = Sλ2
c2λ1

Notice that λ1 and λ2 are found using the constraints

N−1∑

j=1

∫ γj

γj−1

fi(γ)
S

p(γ)dγ = 1

and
N−1∑

j=1

kj

∫ γj

γj−1

(Pb(γj)− P b)p(γ)dγ = 0

19. γ = 20dB = 100
Pb = 10−4

c1 = 0.05, c2 = 6, c3 = 1.9, c4 = 1

M = {0, 2, 4, 8, 16}
γ−1 = 0
γ(N−1) = γ4 = ∞
N = 5.

S(γ)
S

=
h(kj)

γ
, γj−1 ≤ γγj , , j = 0, 1, 2, 3, 4

where
h(kj) = − ln(Pb/c1)

c2

(
2c3kj − c4

)
, , j = 0, 1, 2, 3, 4

kj = log2 Mj , j = 0, 1, 2, 3, 4

Region boundaries are γ0, γ1, γ2 and γ4 given by

γ0 = ρ
h(k1)

k1

γj = ρ
h(kj+1)− h(kj)

kj+1 − kj
, j = 1, 2, 3

Find ρ using:
N−1∑

j=1

∫ γj

γj−1

h(kj)
γ

p(γ)dγ = 1

Using Matlab, we find that ρ = 0.7

Once we know the region boundaries (as we know ρ), we find the spectral efficiency as:

R

B
=

N−1∑

j=1

∫ γj

γj−1

kjp(γ)dγ (8)

=
N−1∑

j=1

kj

∫ γj

γj−1

p(γ)dγ (9)

=
N−1∑

j=1

kjp(j) (10)

where
p(j) =

∫ γj

γj−1

p(γ)dγ

Using Matlab we find that R/B = 3.002 bits/sec/Hz.

20. From 9.84 and 9.85

S(γ) = Sj(γ) , γj−1 ≤ γ ≤ γj

where
Sj(γ)

S
ln

[
λf(kj)
c1γkj

]
f(kj)
−γc2

, j = 1, . . . N − 1

Pbj (γ) =
λf(kj)

γkj
γj−1 ≤ γ ≤ γj , j = 1 . . . N − 1

Solving approximately

γj−1 =
f(kj)

kj
ρ , j = 1 . . . N − 1

Solve for ρ and λ using
N−1∑

j=1

∫ γj

γj−1

Sj(γ)
S

p(γ)dγ = 1

and
N−1∑

j=1

kj

∫ γj

γj−1

(Pbj (γ)− P b)p(γ)dγ = 0

using Matlab we get one solution as
ρ = 3 λ = 4× 10−6

optimal region boundaries 0, 8.1964, 19.3932, 50.9842, 144.7588, ∞
Pout = 0.0787 ASE = 2.5810 bits/sec/Hz

MATLAB

M = [0 2 4 8 16];
N = 5; k = log2(M);
k(1) = 0;
c1 = .05;
c2 = 6;
c3 = 1.9;
c4 = 1;
Pb_bar = 1e-4;
gamma_bar = 100;

f = (2.^(c3*k))-c4;

lambda1 = 1e4; ss = .1; ss1 = .0001; ss2 = .1; count1 = 1; for
lambda = ss1:ss1:ss1

count2 = 1;
for rho = 1:ss2:2

gamma_bnd = [f./k]*rho;
gamma_bnd(1) = 0;
gamma_bnd(6) = 100*gamma_bar;
for i = 1:N

a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];
loi(i) = length(a);

end
mloi = max(loi);
gamma = zeros(5,mloi);

for i = 1:N
a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];
gamma(i,:) = [a zeros(1,mloi-length(a))];

end

sum_power(count1,count2) = -1;
for i = 1:N-1

S_by_S_bar = -log((lambda*f(i+1))./(c1*gamma(i+1,1:loi(i))*k(...
i+1))).*(f(i+1)./(gamma(i+1,1:loi(i))*c2));

if min(S_by_S_bar)<0
stop;

end
p_gamma = (1/gamma_bar)*exp(-gamma(i+1,1:loi(i))/gamma_bar);
sum_int(i) = (ss/10)*sum(S_by_S_bar.*p_gamma);
sum_power(count1,count2) = sum_power(count1,count2)+sum_int(i);

end
sum_Pb(count1,count2) = 0;
for i = 1:N-1

p_gamma = (1/gamma_bar)*exp(-gamma(i+1,1:loi(i))/gamma_bar);
Pb_gamma = repmat(Pb_bar-(1/lambda1), 1, length(p_gamma));
Pb_int(i) = (ss/10)*k(i+1)*sum((Pb_gamma-Pb_bar).*p_gamma);
sum_Pb(count1,count2) = sum_Pb(count1,count2)+Pb_int(i);

end
count2 = count2+1;

end
count1 = count1+1;

end

PART b
M = [0 2 4 8 16];
N = 5;
k = log2(M);
k(1) = 0;
c1 = .05;
c2 = 6;
c3 = 1.9;
c4 = 1;
Pb_bar = 1e-4;
gamma_bar = 100;

f = (2.^(c3*k))-c4;

lambda1 = 1e4; ss = .1;
count2 = 1;
for rho = 15:1:20

gamma_bnd = [f./k]*rho;
gamma_bnd(1) = 0;
gamma_bnd(6) = 100*gamma_bar;
for i = 1:N

a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];

loi(i) = length(a);
end
mloi = max(loi);
gamma = zeros(5,mloi);
for i = 1:N

a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];
gamma(i,:) = [a zeros(1,mloi-length(a))];

end

sum_Pb(count2) = 0;
for i = 1:N-1

p_gamma = (1/gamma_bar)*exp(-gamma(i+1,1:loi(i))/gamma_bar);
Pb_gamma = repmat(Pb_bar-(1/lambda1), 1, length(p_gamma));
Pb_int(i) = (ss/10)*k(i+1)*sum((Pb_gamma-Pb_bar).*p_gamma);
sum_Pb(count2) = sum_Pb(count2)+Pb_int(i);

end
count2 = count2+1;

end

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−6

γ(dB)

P
b(γ

)

Figure 3: Problem 20

21. C1 = 0.05 C2 = 6 C3 = 1.9 C4 = 1

K =
C2

C1/P b − 1

Pb(γ) =
c1

c2γS(γ)S

2c3k(γ)−c4
+ 1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

γ (dB)

S
(γ

)/
S

ba
r

Figure 4: Problem 20

S(γ)
S

=

{
1
γ0
− C4

γK γ ≥ C4γ0/K

0 else

k(γ) =
1
c3

log2(Kγ/γ0)

R

B
=

∫ ∞

C4γ0/K
log2

(
Kγ

γ0

)
p(γ)dγ

Matlab gives
γb = 0.92, Pout = 10−16, R/B = 1.964bits/sec/Hz

MATLAB CODE:

c1 = .05;
c2 = 6;
c3 = 1.9;
c4 = 1;
Pb_bar = 1e-3;

K = c2/((c1/Pb_bar)-1);

meu_psi_db = 20;
sigma_psi_db = 8;
sigma = 10^(sigma_psi_db/10);
meu = 10^(meu_psi_db/10);

S = sqrt(log(exp(log(sigma^2)-2*log(meu))+1));

M = (2*log(meu)-S^2)/2;

gamma0_bar = [.9:.01:1];
ss1 = .1;
for k1 = 1:length(gamma0_bar)

a = [(c4/K)*gamma0_bar(k1):ss1:1000*meu];
b = (1./(S*sqrt(2*pi)*a)).*exp(-(log(a)-M).^2/(2*S^2));
S_by_S_bar = (1/gamma0_bar(k1)) - ((c4/K)./a);
sum_int(k1) = ss1*sum(S_by_S_bar.*b);

end

[m,n] = min(abs(sum_int-1));
gamma0_bar_chosen = gamma0_bar(n);

a = [(c4/K)*gamma0_bar_chosen:ss1:100*meu];

b = (1./(S*sqrt(2*pi)*a)).*exp(-(log(a)-M).^2/(2*S^2));

S_by_S_bar = (1/gamma0_bar_chosen) - ((c4/K)./a);

kgamma = (1/c3)*log2(K*(a/gamma0_bar_chosen));

ASE = sum(b.*kgamma)*ss1;
Pout = 1-(sum(b)*ss1);

22. Notice that from 9.91 to 9.97 remains unchanged
(9.97) →
We maximize spectral efficiency by maximizing

E[k(γ)] =
∫ ∞

0

1
c3

log2

[
c4 +

KγS(γ)
S

]
p(γ)dγ

subject to ∫ ∞

0

S(γ)
S

p(γ)dγ = 1

for c4 < 0, K = c2
c1/P b−1

we get the solution similar to 9.54 as

S(γ)
S

=
{ 1

γ0
− c4

Kγ γ ≥ γ0
−c4
K

0 o.w.

where γ0 is determined by power constraint
Notice that it is like channel inversion as c4 is negative
Also, optimal rate adaptation is

k(γ) =
1
c3

log2

(−c4γ

γ0

)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

γ
bar

k(
γ ba

r)

Figure 5: Problem 21

23. Similar to the previous problem, we get the optimal adaptation as

S(γ)
S

=

{
K0
γ0

γ ≥ γ0

0 o.w.

where K0 = c1/P b−1
c2

and γ0 is found from power constraint.
Notice that it is an on-off power transmission scheme.
Optimal rate adaptation is given as

k(γ) =
1
c3

log2

(
γ

γ0

)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

γ
bar

S
(γ

ba
r)/

S
ba

r

Figure 6: Problem 21

Chapter 10

1. (a)

(AAH)T = (AH)T .AT

= (AT)
T
AT

= AAH

∴ (AAH)H = AAH

For AAH , λ = λ, i.e. eigen-values are real

AAH = QΛQH

(b) XHAAHX = (XHA)(XHA)H = ‖XHA‖ ≥ 0
∴ AAH is positive semidefinite.

(c) IM + AAH = IM + QΛQH = Q(I + Λ)QH

AH positive semidefinite ⇒ λi ≥ 0∀i
∴ 1 + λi > 0∀i
∴ IM + AAH positive definite

(d)

det[IM + AAH] = det[IM + QΛQH]
= det[Q(IM + ΛM)QH]
= det[IM + ΛM]

= ΠRank(A)
i=1 (1 + λi)

det[IN + AHA] = det[IN + Q̃ΛQ̃H]
= det[Q̃(IN + ΛN)Q̃H]
= det[IN + ΛN]

= ΠRank(A)
i=1 (1 + λi)

∵ AAH and AHA have the same eigen-value
∴ det[IM + AAH] = det[IN + AHA]

2. H = UΣV T

U =



−0.4793 0.8685 −0.1298
−0.5896 −0.4272 −0.6855
−0.6508 −0.2513 0.7164




Σ =




1.7034 0 0
0 0.7152 0
0 0 0.1302




V =




−0.3458 0.6849 0.4263
−0.5708 0.2191 0.0708
−0.7116 −0.6109 0.0145
−0.2198 0.3311 −0.9017




3. H = UΣV T

Let

U =




1 0
0 1
0 0


 V =




1 0
0 1
0 0


 Σ =

[
1 0
0 2

]

∴ H =




1 0 0
0 2 0
0 0 0




4. Check the rank of each matrix
rank(HI) = 3
∴ multiplexing gain = 3
rank(H2) = 4
∴ multiplexing gain = 4

5.

C =
RH∑

i=1

log2

(
1 +

λiρ

Mt

)

Constraint
∑

Vi = ρ
∑

λi = constant

∴ ∂C

∂λi
=

ρ

Mt ln 2
1

(1 + λiρ
Mt

)
− ρ

Mt ln 2
1

(1 + λiρ
Mt

)
= 0

⇒ λi = λj

∴ when all RH singular values are equal, this capacity is maximized.

6. (a) Any method to show H ≈ UΛV is acceptable. For example:

D =




.13 .08 .11

.05 .09 .14

.23 .13 .10


 where : dij =

∣∣∣Hij−H
Hij

∣∣∣× 100

(b) precoding filter M = V −1

shaping filter F = U−1

F =



−.5195 −.3460 −.7813
−.0251 −.9078 .4188
−.8540 .2373 .4629




M =



−.2407 −.8894 .3887
−.4727 −.2423 −.8473
−.8478 .3876 .3622




Thus Y = F(H)MX + FN = U∗UΛVV ∗X + U∗N
= ΛX + U∗N

(c) Pi
P = 1

γo
− 1

γi
for 1

γi
> 1

γo
, 0 else

γi = λi
2P

NoB = 94.5 for i = 1, 6.86 for i = 2, .68 for i = 3
Assume γ2 > γ0 > γ3 since γ3 = .68 is clearly too small for data transmission

∑ Pi
P = 1 ⇒ 2

γ0
− 1

γ1
− 1

γ2
= 1 ⇒ γ0 = 1.73

P1
P = .5676 P2

P = .4324
C = B

[
log2

(
1 + γ1

P1
P

)
+ log2

(
1 + γ2

P2
P

)]
= 775.9 kbps

(d) With equal weight beamforming, the beamforming vector is given by c = 1√
(3)

[1 1 1]. The SNR

is then given by:

SNR =
cHHHHc

N0B
= (.78)(100) = 78. (1)

This gives a capacity of 630.35 kbps. The SNR achieved with beamforming is smaller than the
best channel in part (c). If we had chosen c to equal the eigenvector corresponding to the best
eigenvalue, then the SNR with beamforming would be equal to the largest SNR in part(c). The
beamforming SNR for the given c is greater than the two smallest eigenvalues in part(c) because
the channel matrix has one large eigenvalue and two very small eigenvalues.

7. C = maxB log2 det[IMγ + HRXHH]
RX : Tγ(RX) = ρ If the channel is known to the transmitter, it will perform an SVD decomposition of
H as

H = UΣV

HRXHH = (UΣV)RX(UΣV)H

By Hadamard’s inequality we have that for A ∈ <n×n

det(A) ≤ Πn
i=1Aii

with equality iff A is diagonal.
We choose RX to be diagonal, say = Ω then

det(IMR + HRXHH) = det(I + ΩΣ2)

∴ C = maxP
i ρi≤ρ

Bσi log2(1 + λiρi)

where
√

λi are the singular values.

8. The capacity of the channel is found by the decomposition of the channel into RH parallel channels,
where RH is the rank of the channel matric H.

C = max
ρi:
P

i ρi≤ρ

∑

i

B log2(1 + λiρi)

where
√

λi are the RH non-zero singular values of the channel matrix H and ρ is the SNR constraint.

γi = λiρ

Then the optimal power allocation is given as

Pi

P
=

{ 1
γ0
− 1

γi
γi ≥ γ0

0 γi < γ0
(2)

for some cut-off value γ0. The resulting capacity is given as

C =
∑

i:γi≥γ0

B log2(γi/γ0)

For

H =




1 1 −1 1
1 1 −1 −1
1 1 1 1
1 1 1 −1




RH = 3, γ1 = 80, γ2 = 40, γ3 = 40. We first assume that γ0 is less than the minimum γi which is 40.

γ0 =
3

1 +
∑3

i=1
1
γi

which gives γ0 = 2.8236 < mini γi, hence the assumption was correct.

C

B
= 12.4732 bits/sec/Hz

For

H =




1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1




RH = 4, γ1 = 40, γ2 = 40, γ3 = 40, γ4 = 40. We first assume that γ0 is less than the minimum γi

which is 40.
γ0 =

4
1 +

∑4
i=1

1
γi

which gives γ0 = 3.6780 < mini γi, hence the assumption was correct.

C

B
= 13.7720 bits/sec/Hz

9. H =




h11 . . . h1Mt

.

.

.
hMr1 . . . hMrMt




Mr×Mt

Denote G = HHT

lim
Mt→∞

1
Mt

Gii = lim
Mt→∞

1
Mt

[hi1 . . . hiMt]




hi1

.

.

.

hiMt




= lim
Mt→∞

1
Mt

Mt∑

j=1

‖hij‖2

= Ej‖hij‖2

= σ2

= 1 ∀i

lim
Mt→∞,i6=j

1
Mt

Gij = lim
Mt→∞

1
Mt

[hi1 . . . hiMt]




hj1

.

.

.

hjMt




= lim
Mt→∞

1
Mt

Mt∑

k=1

hikhjk

= Ekhikhjk

= Ek(hik)Ek(hjk)
= 0 ∀i, j, i 6= j

∴ lim
M→∞

1
M

HHT = IM

∴ lim
M→∞

B log2 det
[
IM +

ρ

M
HHT

]
= B log2 det [IM + ρIM]

= B log2 [1 + ρ] det IM

= MB log2 [1 + ρ]

10. We find the capacity by randomly generating 103 channel instantiations and then averaging over it.
We assume that distribution is uniform over the instantiations.

MATLAB CODE

clear;
clc;
Mt = 1;
Mr = 1;
rho_dB = [0:25];

rho = 10.^(rho_dB/10);
for k = 1:length(rho)

for i = 1:100
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)

sigma(j) = L(j,j);
end
sigma_used = sigma(1:rank(H));
gamma = rho(k)*sigma_used;
%% Now we do water filling\
gammatemp = gamma;
gammatemp1 = gammatemp;
gamma0 = 1e3;
while gamma0 > gammatemp1(length(gammatemp1));

gammatemp1 = gammatemp;
gamma0 = length(gammatemp1)/(1+sum(1./gammatemp1));
gammatemp = gammatemp(1:length(gammatemp)-1);

end
C(i) = sum(log2(gammatemp1./gamma0));

end
Cergodic(k) = mean(C);

end

0 5 10 15 20 25
0

5

10

15

20

25

ρ (dB)

C
er

go
di

c

M
t
 = M

r
 = 3

M
t
 = 2 M

r
 =3

M
t
 = M

r
 = 2

M
t
 = 2 M

r
 =1

M
t
 = M

r
 = 1

Figure 1: Problem 10

11. We find the capacity by randomly generating 104 channel instantiations and then averaging over it.
We assume that distribution is uniform over the instantiations.

MATLAB CODE

clear;
clc;
Mt = 1;

Mr = 1;
rho_dB = [0:30];

rho = 10.^(rho_dB/10);
for k = 1:length(rho)

for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)

sigma(j) = L(j,j);
end
sigma_used = sigma(1:rank(H));
gamma = rho(k)*sigma_used;
C(i) = sum(log2(1+gamma/Mt));

end
Cout(k) = mean(C);
pout = sum(C<Cout(k))/length(C);
while pout > .01

Cout(k) = Cout(k)-.1;
pout = sum(C<Cout(k))/length(C);

end
if Cout(k)<0;

Cout(k) = 0;
end

end

0 5 10 15 20 25 30
0

5

10

15

20

25

ρ (dB)

C
ou

ta
ge

M
t
 = M

r
 = 3

M
t
 = 2 M

r
 =3

M
t
 = M

r
 = 2

M
t
 = 2 M

r
 =1

M
t
 = M

r
 = 1

Figure 2: Problem 11

12.

P (u?n < X) = P

(
Mr∑

i=1

uini < X

)

=
Mr∑

i=1

uiP (ni < X)

= P (ni < X)

∴ the statistics of u?n are the same as the statistics of each of these elements

13.

Σx = ‖u?Hvx‖
= ‖u?Hv‖2‖x‖2

= vHHHu?H
u?Hv‖x‖2

= vHHHHv‖x‖2

= vHQHQv‖x‖2

≤ λmax‖x‖2

with equality when u, v are the principal left and right singular vectors of the channel matrix H

∴ SNRmax = λmax
‖x‖2

N
= λmaxρ

14.

H =




0.1 0.5 0.9
0.3 0.2 0.6
0.1 0.3 0.7




When both the transmitter and the receiver know the channel, for beamforming, u and v correspond
to the principal singular vectors (or the singular vectors corresponding to the maximum singular value
of H). Notice that the singular values of H are the square root of the eigen values of HHH (Wishart
Matrix).

Using Matlab, we get that the maximum singular value of H is 1.4480 and the singular vectors corre-
sponding to this value are

uopt =



−0.7101
−0.4641
−0.5294




and

vopt =



−0.1818
−0.4190
−0.8896




It is easy to check that uT
optuopt = 1 and vT

optvopt = 1 and that

uT
opt ∗H ∗ vopt = 1.4480

Since, during beamforming from eq. 10.17 in reader,

y = (uT Hv)x + uT n

and for a given transmit SNR of ρ, the received SNR is given as

SNRrcvd = ρ(uT
optHvopt)2

since, uopt has norm 1, noise power is not increased. For, ρ = 1, SNR is simply (1.4480)2 = 2.0968.

When the channel is not known to the transmitter, it allocates equal power to all the antennas and so
the precoding vector (or the optimal weights) at the transmitter is given as

v2 =
1√
3




1
1
1




Define
h = Hv2

So, eq. 10.17 in the reader can be written as

y = (uT h)x + uT n

To maximize SNR we need to find a u2 of norm 1 such that (u′h) is maximized.

Using Matlab, we get that the maximum singular value of h is 1.2477 and the singular vector corre-
sponding to this value is

u2 =




0.6941
0.5090
0.5090




It is easy to check that uT
2 u2 = 1 and that

uT
2 ∗ h = 1.2477

Alternatively, from MRC concept we know that:

u2 =
hH

||h|| =




0.6941
0.5090
0.5090




where ||h|| is the L2 norm of h.

For a given transmit SNR of ρ, the received SNR is given as

SNRrcvd = ρ(uT
2 Hv2)2

since, u2 has norm 1, noise power is not increased. For, ρ = 1, SNR is simply (1.2477)2 = 1.5567.

15. (a) ρ = 10 dB = 10

Pe = ρ−d

So to have Pe ≤ 10−3, we should have d ≥ 3, or at least d = 3. Solving the equation that relates
diversity gain d to multiplexing gain r at high SNR’s we get

d = (Mr − r)(Mt − r)

⇒ 3 = (8− r)(4− r)

Solving for r we get
r = 3.35 or 8.64

We have that r ≤ min{Mr,Mt}, so r ≤ 4 and so r = 3.35. But we know that r has to be an integer.
So, we take the nearest integer which is smaller than the calculated value of r, which gives us r=3 .

No credits for this part:

If we are allowed to assume that equations 10.23 and 10.24 hold at finite SNR’s too and we are
given that we can use base 2 for logarithms, we can find the data rate as

R = r log2(ρ) = 9.96 bits/s/Hz

(b) With, r = 3, we can find d as

d = (Mr − r)(Mt − r) = (8− 3)(4− 3) = 5

For this value of d,
Pe = ρ−d = 10−5

16. According to SVD of h√
λ = 1.242

∴ C/B = log2(1 + λρ) = log2(1 + 1.2422.10) = 4.038bps/Hz

17.

H =
[

.3 .5

.7 .2

]
=

[−.5946 .8041
−.8041 .5946

] [
.8713 0

0 .3328

] [−.8507 .5757
−.5757 −.8507

]

P= 10mW
N0 = 10−9 W/Hz
B = 100 KHz

(a) When H is known both at the transmitter and at the receiver, the transmitter will use the optimal
precoding filter and the receiver will use the optimal shaping filter to decompose the MIMO chan-
nel into 2 parallel channels. We can then do water-filling over the two parallel channels available
to get capacity.

Finding the γi’s

γ1 =
λ2

1P

N0B
= 75.92

γ2 =
λ2

2P

N0B
= 11.08

Finding γ0

Now, we have to find the cutoff value γ0. First assume that γ0 is less than both γ1 and γ2. Then
(

1
γ0
− 1

γ1

)
+

(
1
γ0
− 1

γ2

)
= 1

⇒ 2
γ0

= 1 +
1
γ1

+
1
γ2

⇒ γ0 =
1

1 + 1
γ1

+ 1
γ2

= 1.81

which is less than both γ1 and γ2 values so our assumption was correct.

Finding capacity

Now we can use the capacity expression as

C =
2∑

i=1

B log2

(
γi

γ0

)
= 800 Kbps

(b) Total is

Essentially we have two parallel channels after the precoding filter and the shaping filter are used
at the transmitter and receiver respectively.

M(γ) = 1 + γK
S(γ)

S

Finding K

K =
−1.5

ln(5Pb)
= .283

γK = γ0/K.

Finding γ0 or γK

We now find the cut-off γ0. First assume that γ0 < {γ1, γ2}. Notice that γ1 and γ2 have already
been calculated in part (a) as γ1 = 75.92 and γ2 = 11.08.

(
1
γ0
− 1

γ1K

)
+

(
1
γ0
− 1

γ2K

)
= 1

⇒ 2
γ0

= 1 +
1

γ1K
+

1
γ2K

⇒ γ0 =
1

1 + 1
K

(
1
γ1

+ 1
γ2

) = 1.4649

which is less than both γ1 and γ2 values, so our assumption was correct.

γK = γ0/K = 5.1742

Finding Rate R

Therefore the total rate, R is given as

R = B

[
log2

(
γ1

γK

)
+ log2

(
γ2

γK

)]

⇒ R = B4.97

This gives that R=497.36 Kbps (Obviously less than ergodic capacity).

(c) Since now we use beamforming to get diversity only, the transmitter and the receiver use the
principal left and right eigen vectors of the Wishart Matrix HHH .

Once this is done the SNR at the combiner output is simply λmaxρ, where λmax is the maximum
eigen value of the Wishart Matrix HHH and ρ is P

N0B

Finding γs

As given in the question, λmax is 0.7592 and ρ was calculated to be 100. So we get that γs = 75.92 .

Finding Pb

When using BPSK, γs = γb. Now we can use the expression for Pb for BPSK

Pb = Q
(√

2γb

)
= Q

(√
2× 75.92

)
=

{
0 Using the approx. given in the Ques.
3.4× 10−35 Using Matlab

Credit is given for either value.

Finding Rate R

Since we are using BPSK and are given that B = 1/Tb, we get the rate using BPSK to be
R=100 Kbps .

Comparing with previous part

Comparing with part (b), we can see that the rate R decreases by 397.36 Kbps and the Pb im-
proves as Pb is now 3.4× 10−35 ∼ 0 whereas earlier it was 10−3.

(d) Therefore we see that we can tradeoff rate for robustness of the system. If we are willing to de-
crease the rate at which we transmit, we can get more diversity advantage i.e. one strong channel
which gives a much less value of Pb.

18. (a) clear;
clc;
Mt = 4;
Mr = Mt;
rho_dB = [0:20];

rho = 10.^(rho_dB/10);
for k = 1:length(rho)

for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)

sigma(j) = L(j,j);
end
sigma_used = sigma(1:rank(H));
gamma = rho(k)*sigma_used;
%% Now we do water filling\
gammatemp = gamma;
gammatemp1 = gammatemp;
gamma0 = 1e3;
while gamma0 > gammatemp1(length(gammatemp1));

gammatemp1 = gammatemp;
gamma0 = length(gammatemp1)/(1+sum(1./gammatemp1));
gammatemp = gammatemp(1:length(gammatemp)-1);

end
C(i) = sum(log2(gammatemp1./gamma0));

end
Cergodic(k) = mean(C);

end

(b) clear;
clc;
Mt = 4;
Mr = Mt;
rho_dB = [0:20];

rho = 10.^(rho_dB/10);
for k = 1:length(rho)

for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)

sigma(j) = L(j,j);
end
sigma_used = sigma(1:rank(H));
gamma = rho(k)*sigma_used;
C(i) = sum(log2(1+gamma/Mt));

end
Cout(k) = mean(C);

end

19. using Matlab we get Cout = 7.8320

MATLAB CODE

clear;
clc;
Mt = 4;
Mr = Mt;
rho_dB = 10;
rho = 10.^(rho_dB/10);

for k = 1:length(rho)
for i = 1:1000

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

ρ (dB)

C

C
ergodic

 M
t
 = M

r
 = 1

C
out

 M
t
 = M

r
 = 1

C
ergodic

 M
t
 = M

r
 = 4

C
out

 M
t
 = M

r
 = 4

Figure 3: Problem 18

H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)

sigma(j) = L(j,j);
end
sigma_used = sigma(1:rank(H));
gamma = rho(k)*sigma_used;
C(i) = sum(log2(1+gamma/Mt));

end
Cout(k) = mean(C);
pout = sum(C<Cout(k))/length(C);
while pout > .1

Cout(k) = Cout(k)-.01;
pout = sum(C<Cout(k))/length(C);

end
if Cout(k)<0;

Cout(k) = 0;
end

end

20. As µ increases, the span of cdf becomes narrower and so capacity starts converging to a single number.

MATLAB CODE

clear;
clc;

Mt = 8;
Mr = Mt;
rho_dB = 10;
rho = 10.^(rho_dB/10);

for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)

sigma(j) = L(j,j);
end
sigma_used = sigma(1:rank(H));
gamma = rho*sigma_used;
C(i) = sum(log2(1+gamma/Mt));

end
[f,x] = ecdf(C);

6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF’s of Capacity w/o Tx CSI

x

F
X
(x

)

M = 4
M = 6
M = 8

Figure 4: Problem 20

Chapter 11

1. See Fig 1

fc = 100 MHz

fc+Bfc-B

2B = 100 KHz

Figure 1: Band of interest.

B = 50 KHz, fc = 100 MHz

Heq(f) =
1

H(f)
= f

Noise PSD = N0 W/Hz. Using this we get

Noise Power =
∫ fc+B

fc−B
N0|Heq(f)|2df (1)

= N0

∫ fc+B

fc−B
f2df (2)

= N0
f3

3

](fc+B)

(fc−B)

(3)

=
N0

3
(fc + B)3 − (fc −B)3 (4)

= 1021N0 W (5)

Without the equalizer, the noise power will be 2BN0 = 105N0 W. As seen from the noise power values,
there is tremendous noise enhancement and so the equalizer will not improve system performance.

2. (a) For the first channel:
ISI power over a bit time = A2Tb/Tb = A2 For the 2nd channel:
ISI power over a bit time = A2

Tb

∑∞
n=1

∫ (n+1)Tb

nTb
e−t/Tmdt = 2e−1/2A2

A

S(t)

T
m /2

1

h

T
m

1
(t)

h
2
(t)

t

t

t

Figure 2: Problem 2a

(b) No ISI: pulse interval = 11/2µs = 5.5µs
∴ Data rate = 1/5.5µs = 181.8Kbps
If baseband signal =100KHz: pulse width = 10µs
Data rate = 2/10µs + 10µs = 100Kbps

3. (a)

h(t) =
{

e−
t
τ t ≥ 0

0 o.w.
(6)

τ = 6 µ sec

Heq(f) =
1

H(f)

H(f) =
∫ ∞

0
e−

t
τ e−j2πftdt (7)

=
1

1
τ + j2πf

(8)

Hence,

Heq(f) =
1
τ

+ j2πf

(b)

SNReq

SNRISI
=

RB
−B Sx(f)|H(f)|2|Heq(f)|2dfRB

−B N0|Heq(f)|2df
RB
−B Sx(f)|H(f)|2df

2BN0

1

h

10us

1
(t)

t

1

X

1us

(t)

t

h

12us

1
(t)*X(t)

t

1

Figure 3: Problem 2b

Assume Sx (f) = S, −B ≤ f ≤ B ⇒
2BS

N0

�
2B
τ2 + 8π2

3
B3
�

S
RB
−B |H(f)|2df

2BN0

=

2B�
1

τ2 + 4π2

3
B2
�

1.617× 10−6 = 0.9364 = −0.28 dB

(c)

h [n] = 1 + e
−Ts

τ δ [n− 1] + e
−2Ts

τ δ [n− 2] + ...

H(z) = 1 + e
−Ts

τ z−1 + e
−2Ts

τ z−2 + e
−3Ts

τ z−3 + ...

=
∞∑

n=0

(
e−

Ts
τ z−1

)n
=

z

z − e−
Ts
τ

=
1

1− e−
Ts
τ z−1

⇒ Heq(z) = 1
H(z)+N0

. Now, we need to use some approximation to come up with the filter tap

coefficient values. If we assume N0 u 0 (the zero-forcing assumption), we get Heq(z) = 1−e−
Ts
τ z−1.

Thus, a two tap filter is sufficient. For Ts = 1
30 ms, we have a0=1, a1 = −0.0039 as the tap

coefficient values. Any other reasonable way is also accepted.

4. ωi = ci where {ci} is the inverse Z- transform of 1/F(z)
Show that this choice of tap weights minimizes

∣∣∣∣
1

F (z)
− (ω−NzN + . . . + ωNz−N)

∣∣∣∣
2

. . . (1)

at z = ejω

If F(z) is of length 2 and monic, say F (z) = 1− a1z then

1
F (z)

= 1 + a1z
−1 + a2

1z
−2 + . . . where c1 = a1, c2 = a2

1, a1 < 1

It is easy to see that the coefficients become smaller and smaller. So if we had the opportunity to
cancel any (2N+1) coefficients we will cancel the ones that are closest to z0. Hence we get that ωi = ci

minimizes (1). The result can be similarly proved for length of F(z) greate than 2 or non-monic.

5. (a) Heq(f) = 1
H(f) for ZF equalizer

Heq(f) =





1 fc − 20MHz ≤ f < fc − 10MHz
2 fc − 10MHz ≤ f < fc

0.5 fc ≤ f < fc + 10MHz
4 fc + 10MHz ≤ f < fc + 20MHz
0 o.w.

(9)

(b) S=10mW Signal power
N = N0[12 × 10MHz + 22 × 10MHz + 0.52 × 10MHz + 42 × 10MHz] = 0.2125mW
∴ SNR = 47.0588 = 16.73dB

(c) Ts = 0.0125µsec
Pb ≤ 0.2e−1.5γ/M−1 or M ≤ 1 + 1.5SNR

−ln(5Pb)

for Pb = 10−3 M ≤ 14.3228 (M ≥ 4 thus using the formula is reasonable)
R = log2 M

Ts
= 307.2193Mbps

(d) We use M=4 non overlapping subchannels, each with B=10MHz bandwidth
1: fc − 20MHz ≤ f < fc − 10MHz α1 = 1
2: fc − 10MHz ≤ f < fc α2 = 0.5
3: fc ≤ f < fc + 10MHz α3 = 2
4: fc + 10MHz ≤ f < fc + 20MHz α4 = 0.25
Power optimization: γi = Pα2

i
N0B for i = 1, 2, 3, 4

γ1 = 1000 γ2 = 250 γ3 = 4000 γ4 = 62.5
for Pb = 10−3 K = 0.2831

Pi

P
=

{ 1
γ0
− 1

Kγi
γi ≥ γ0/K

0 γi ≤ γ0/K
(10)

We can see that all subchannels will be used and

P1 = 2.6523 P2 = 2.5464 P3 = 2.6788 P4 = 2.1225

and
γ0 = 3.7207

thus R = 2B
∑4

i=1 log(Kγi/γ0) = 419.9711Mbps

6. (a)

F{f(t)} =
{

T |f | < 1/T
0 o.w.

FZ(f) =
1
TS

∞∑
n=−∞

F

(
f +

n

Ts

)

= 1

∴ folded spectrum of f(t) is flat.

(b)

yk = y(kT + t0)

=
∞∑

i=−∞
Xif(kT + t0 − iT)

=
N∑

i=−N

Xif ((k − i)T + t0)

= Xksinc(t0) +
N+k∑

i=−N+k,i 6=k

Xif ((k − i)T + t0)

︸ ︷︷ ︸
ISI

(c)

ISI =
N+k∑

i=−N+k,i6=k

Xi
sin (π(k − i) + t0/Tπ)

π(k − i) + t0/Tπ

= sin(πt0/T)
N∑

i=−N,i6=0

1
πt0/T − πi

= sin(πt0/T)
N∑

i=1

[−1
πt0/T − πi

+
1

πt0/T − πi

]

=
2
π

sin(πt0/T)
N∑

n=1

n

n2 − t20/T 2

Thus, ISI →∞ as N →∞
7. gm(t) = g?(−t) = g(t) = sinc(t/TS), |t| < Ts

Noise whitening filter : 1
G?

m(1/z?)

8. Jmin = 1−∑∞
j=−∞ cjf−j

B(z) = C(z)F (z)

=
F (z)F ?(z−1)

F (z)F ?(z−1) + N0

=
X(z)

X(z) + N0

∴ b0 =
1

2πj

∮
B(z)

z
dz

=
1

2πj

∮
X(z)

z[X(z) + N0]
dz

=
T

2π

∫ π/T

−π/T

X(ejωT)
X(ejωT) + N0

dω

∴ Jmin = 1− T

2π

∫ π/T

−π/T

X(ejωT)
X(ejωT) + N0

dω

=
T

2π

∫ π/T

−π/T

N0

X(ejωT) + N0
dω

=
T

2π

∫ π/T

−π/T

N0

T−1
∑∞

n=−∞ |H(ω + 2πn/T)|2 + N0
dω

= Ts

∫ −0.5Ts

−0.5Ts

N0

FΣ(f) + N0
df

9.

VW J =
(

∂J

∂w0
, . . . ,

∂J

∂wN

)

J = wT Mvw
? − 2<{Vdw

?}+ 1

∴ ∂J

∂w
= 2Mvw

T − 2Vd

∂J

∂w
= 0 ⇒ 2Mvw

T = 2Vd

⇒ wopt =
(
MT

v

)−1
V H

d

10.

Jmin = Ts

∫ 0.5Ts

−0.5Ts

N0

FΣ(f) + N0
df

∵ N0

FΣ(f) + N0
≥ 0 ∴ Jmin ≥ 0

N0

FΣ(f) + N0
≤ N0

N0
= 1

∴ Jmin ≤ Ts

∫ 0.5Ts

−0.5Ts

1df = 1

∴ 0 ≤ Jmin ≤ 1

11.

FΣ(f) =
1
Ts

∞∑
n=−∞

F

(
f +

n

Ts

)

=
1
Ts

∞∑
n=−∞

1 + 0.5e
−j2π

�
f+ n

Ts

�
+ 0.3e

−j4π
�
f+ n

Ts

�

MMSE equalizer :

Jmin = Ts

∫ 0.5/Ts

−0.5/Ts

N0

FΣ(f) + N0
df

DF equalizer :

Jmin = exp

{
Ts

∫ 0.5/Ts

−0.5/Ts

ln
[

N0

FΣ(f) + N0

]}
df

12. (a) G(f) is a sinc(), so theoretically infinite. But 2/T is also acceptable (Null to Null bandwidth)

(b) τ À T is more likely since T = 10−9sec
As long as τ > Tb, get ISI and so, frequency selective fading

(c) Require Tb = Tm + T ⇒ R = 1
Tm+T = 49997.5bps

(d) Heq(z) = 1
F (z) for ZF equalizer

⇒ Heq(z) = 1
d0+d1z−1+d2z−2

Long division yields the first 2 taps as
w0 = 1/α0

w1 = −α1/α2
0

13. (a)

Hzf (f) =
1

H(f)
=





1 0 ≤ f ≤ 10KHz
2 10KHz ≤ f ≤ 20KHz
3 20KHz ≤ f ≤ 30KHz
4 30KHz ≤ f ≤ 40KHz
5 40KHz ≤ f ≤ 50KHz

(b) The noise spectrum at the output of the filter is given by N(f) = N0|Heq(f)|2, and the noise
power is given by the integral of N(f) from -50 kHz to 50 kHz:

N =
∫ 50kHz

f=−50kHz
N(f)df = 2N0

∫ 50kHz

f=0kHz
|Heq(f)|2df

= 2N0(1 + 4 + 9 + 16 + 25)(10kHz)
= 1.1mW

(c) The noise spectrum at the output of the filter is given by N(f) = N0
(H(f)+α)2

, and the noise power
is given by the integral of N(f) from -50 kHz to 50 kHz. For α = .5 we get

N = 2N0(.44 + 1 + 1.44 + 1.78 + 2.04))(10kHz) = 0.134 mW

For α = 1 we get

N = 2N0(.25 + .44 + .56 + .64 + .69))(10kHz) = 0.0516 mW

(d) As α increases, the frequency response Heq(f) decreases for all f . Thus, the noise power decreases,
but the signal power decreases as well. The factor α should be chosen to balance maximizing the
SNR and minimizing distortion, which also depends on the spectrum of the input signal (which
is not given here).

(e) As α → ∞, the noise power goes to 0 because Heq(f) → 0 for all f . However, the signal power
also goes to zero.

14. The equalizer must be retrained because the channel de-correlates. In fact it has to be retrained at
least every channel correlation time.
Benefits of training

(a) Use detected data to adjust the equalizer coefficients. Can work without training information

(b) eliminate ISI.

15. N = 4

LMS-DFE: 2N+1 operations/iteration ⇒ 9 operations/iteration

RLS: 2.5(N)2 + 4.5N operations/iteration ⇒ 58 operations/iteration

Each iteration, one bit sent. The bit time is different for LMS-DFE/RLS, Tb (LMS-DFE)<Tb (RLS).
But time to convergence is faster for RLS.

Case 1: fD = 100 Hz ⇒ (∆tc) ≡ 10 msec, must retrain every 5 msec.

LMS-DFE: R = 107

9 - 1000 bits
5 msecs = 911 Kbps

RLS: R = 107

58 - 50 bits
5 msec = 162 Kbps

Case2: fD = 1000 Hz ⇒ retrain every 0.5 msec

RLMS-DFE = 0 bps

RRLS = 72.4 Kbps

16. In the adaptive method, we start with some initial value of tap coefficients W0 and then use the
steepest descent method

Wk+1 = WK −∆GK . . . (1)

where ∆ is some small positive number and GK is the gradient of MSE = E|d̂k − ˆ̂
dk|2 is RWk − p

(Notice that 11.37 was a solution of gradient =0 , ∴ RW = p)

∴ GK = RWk − p = −E[εkYk
?]

where Yk = [yk+L . . .yK−L]T and εk = ˆ̂
dk − d̂k

Approximately (1) can be rewritten as

Wk+1 = Wk + ∆εkYk
?

Chapter 12

1. (a) ψi = cos (2πj/TN t + φj)
To form a set of orthonormal basis on [0, TN]
We need,

∫ TN

0 ψjψkdt = 0

∫ TN

0
ψjψkdt =

∫ TN

0
cos (2πj/TN t + φj) cos (2πk/TN t + φk) dt

=
∫ TN

0

1
2

cos (2π(j + k)/TN t + φj + φk) +
1
2

cos (2π(j − k)/TN t + φj − φk) dt

=
1
2

TN

2π(j + k)
[sin (2π(j + k) + φj + φk)− sin (φj + φk)]

+
1
2

TN

2π(j − k)
[sin (2π(j − k) + φj − φk)− sin (φj − φk)]

= 0

⇒ j and k are integers
⇒ The minimum separation for sub-carriers cos (2πj/TN t + φj)is 1/TN for any φj

(b) If φj = 0∀j
∫ TN

0
ψjψkdt =

1
2

TN

2π(j + k)
sin 2π(j + k) +

1
2

TN

2π(j − k)
sin 2π(j − k) = 0

⇒ 2π(j + k) = l1π 2π(j − k) = l2π l1, l2 ∈ Z
⇒ j and k are multiples of 1/2
⇒ The minimum separation:1/2TN

2. (a) TN = 1/BN = 10Tm = 10/Bc = 10/10KHz = 1ms

(b) B = N(1+β+ε)
TN

= 128(1+1.5+0.1)
1ms = 333KHz

(c) B = N+β+ε
TN

= 128+1.5+0.1
1ms = 129.6KHz

∴ The total bandwidth using overlapping carriers is less than half of the non overlapping band-
width.

3.

x3[n] = x2[n]⊗ x1[n]

=
N−1∑

m=0

x2[m]x1[(n−m)N]

X3[k] =
N−1∑

n=0

x3[n]ωkn
N

=
N−1∑

n=0

[
N−1∑

m=0

x2[m]x1[(n−m)N]

]
ωkn

N

interchange order of summation

X3[k] =
N−1∑

m=0

x2[m]

[
N−1∑

n=0

x1[(n−m)N]ωkn
N

]

=
N−1∑

m=0

x2[m]X1[k]ωkm
N

= X1[k]
N−1∑

m=0

x2[m]ωkm
N

= X1[k]X2[k]

∴ circular convolution of discrete-time sequences leads to multiplication of their DFTs.

4. (a) For FDM, the number of subchannels = B
(∆f)c

= 5

Ts = 10 µsec, R = 1
10 µsec = 0.1 Mbps

(b) P̄bn = 1
2

[
1−

√
γ̄bn

γ̄bn+1

]
where γbn = 1000/n

n γ̄bn P̄bn

1 1000 2.5× 10−4

2 500 5× 10−4

3 333 7.5× 10−4

4 250 10−3

5 200 1.25× 10−3

BER after decoding =
∑5

i=3 Pr [i channels in error] = 3.5× 10−9

The total date rate of the system is the same as the data rate of any of the subcarriers (since they
all have the same bits transmitted over them) ⇒ R = 0.1 Mbps

(c) Since it is not specified which equation to use for calculation of SNR, all answers
based on any correct equation in the reader are being given full credit. What is
given below is just one way to do the problem. Your answer can be totally different
but we still give credit for it.
For BPSK in Rayleigh fading:

P b =
1
2

[
1−

√
γ

1 + γ

]

For P b ≤ 10−3, we get SNRmin = 248.75.
For higher order QAM’s we use the equation given in the reader:

P s =
αM

2

(
1−

√
0.5βMγs

1 + 0.5βMγs

)

which gives

P b ≈ αM

2 log2 M

(
1−

√
0.5βMγs

1 + 0.5βMγs

)

For 4-QAM (since its a rectangular constellation), from Table 6.1 we have αM = 1 and βM = 1, so
we get SNRmin = 249.25. However using the exact equation 6.81, we get that for 4-QAM, SNRmin

= 453, which makes more sense as it is much greater than that required for BPSK. Hence we will
use this value.

For 8-QAM (since its a non-rectangular constellation), from Table 6.1 we have αM = 4 and
βM = 3/7, so we get SNRmin = 1552, which is higher than the SNR on any branch and so should
not be used.

Hence:

n γ̄sn Max(M) P̄b

1 1000 4 0.454× 10−3

2 500 4 0.906× 10−3

3 333 2 0.748× 10−3

4 250 2 0.997× 10−3

5 200 0 1.25× 10−3 with BPSK

R = 0.1
∑

n log2(M) = 0.6 Mbps

5. (a) If the baseband bandwidth is 100 Khz, then at the carrier frequency they have bandwidth of
B = 200 KHz.
For flat fading we need the coherence bandwidth to be much greater than the bandwidth of the
signal. Therefore Bc ≥ 10B = 2 MHz.
For independent fading, we want the channel between two carriers to be uncorrelated. That is,
we want Bc < ∆B = 200 KHz.
If the fading between the different channels is correlated, they will all tend to have fades at the
same instants. Therefore, coding over sub-channels will not work because all channels will tend
to fade at same time and the code will not be able to correct all these errors.

(b) We have
BER ≤ .2e−1.5γ(M−1)

which means that
M ≤ 1 +

1.5γ

− ln 5BER
= 1 + 0.283γ

For the first sub-channel, this gives M ≤ 4.5672, which means we use 4-QAM.
For the second sub-channel, M ≤ 8.108, which means we use 8-QAM.
For the third sub-channel, M ≤ 18.856, which means we use 16-QAM.
Therefore, at each symbol time we will transmit 9bits.
We have that Ts = 1/B = 10 µs, means we transmit at 900 Kbps total.

(c) To achieve the same data rate, we will need 3bits/symbol per sub-channel, that is 8-QAM con-
stellation.
To achieve this, we need a minimum SNR of 13.93 dB per sub-channel.
In the first sub-channel we must increase the power by 2.93dB, giving a transmit power of Pt1 =
196.33 mW.
For the second sub-channel we need 0.07 dB less power, that is Pt1 = 98.40 mW.
For the third sub-channel we need 4.07 dB less, that is Pt2 = 39.17 mW.
The total transmit power is now, Pt = 333.90 mW. Therefore we need to increase the transmit
power by 33.90 mW with respect to case b).

6. Tc = 20µs
∴ Bc = 1/Tc = 50KHz
∴ BN = Bc/2 = 25KHz
B = NBN = 8× 25KHz = 200KHz
SNR = 20dB, target BER = 10−3

For MQAM Pe ≈ 0.2e−1.5γ/M−1

⇒ M = 1 +−1.5γ/ln 5Pe = 29.31
∴ M = 16
∴ R = NRN = N log2 M/TN = N log2 M BN

1+β = 400Kbps

7. 


yN−1

yN−2

.

.

.
y0




=




h0 h1 . . . hµ 0 0
0 h0 . . . hµ−1 hµ 0
. .
. .
. .
0 h0 hµ







xN−1

.
x0

x−1

.
x−µ




+




νN−1

.

.

.

.
ν0




=




h0 . . . hµ 0 . . . 0
0 h0 . . . hµ−1 hµ 0
.
.
. hµ

0 h0







xN−1

.

.

.

.
x0




+




0 . . . 0 0 . . . 0
0 0 . . . 0 0 0
0 0
0 0
h2 h3 . . . hµ−2
h1 h2 . . . hµ−1







xN−1

.

.

.

.
x0




+




νN−1

.

.

.

.
ν0




=




h0 . . . hµ 0 . . . 0
0 h0 . . . hµ−1 hµ 0
.
.
h2 h3 . . . hµ−2 . . . hµ

h1 h2 . . . hµ−1 . . . h0







xN−1

.

.

.

.
x0




+




νN−1

.

.

.

.
ν0




8. DFT:

X[i] =
1√
N

N−1∑

n=0

x[n]ωin
N

X[0] =
1√
N

N−1∑

n=0

x[n]1

X[1] =
1√
N

N−1∑

n=0

x[n]ωn
N

.

X[N − 1] =
1√
N

N−1∑

n=0

x[n]ω(N−1)n
N

∴ X(n) =
1√
N




1 1 1 1
1 ωN ω2

N ωN−1
N

.

.

1 ωN−1
N ω

2(N−1)
N ω

(N−1)2

N




.x(n)

9. (a) First row of Q = [1 1 . . . 1]
HQ(1, :)T = H[1 1 . . . 1]T =

∑µ
i=0 hi[1 1 . . . 1]T

∴ First row of Q is an eigenvector of H with λ0 =
∑µ

i=0 hi

(b) Second row of Q =
[

1 ωN ω2
N ωN−1

N

]

HQ(2, :)T = H
[

1 ωN ω2
N ωN−1

N

]T

=
µ∑

i=0

hiω
i
N

[
1 ωN ω2

N ωN−1
N

]T

=
µ∑

i=0

hiω
i
NQ(2, :)T

∴ second row of Q is an eigenvector of H with λ1 =
∑µ

i=0 hiω
i
N

(c) For kth row of Q =
[

1 ωk−1
N ω

2(k−1)
N ω

(N−1)(k−1)
N

]

HQ(k, :)T = H
[

1 ωk−1
N ω

2(k−1)
N ω

(N−1)(k−1)
N

]T

=
µ∑

i=0

hiω
i(k−1)
N

[
1 ωk−1

N ω
2(k−1)
N ω

(N−1)(k−1)
N

]T

=
µ∑

i=0

hiω
i(k−1)
N Q(k, :)T

∴ ∀k, kth row of Q is an eigenvector of H with eigenvalue λk =
∑µ

i=0 hiω
i(k−1)
N

10. x̃[n] = 0 0︸ ︷︷ ︸
µ

x0 xN−1

For µ ≤ n ≤ N

y[n] = x̃[n] ? h[n]

=
µ∑

k=1

h[k]x̃[n− k]

=
µ∑

k=1

h[k]x[n− k]

=
µ∑

k=1

h[k]x[n− k]N

= x[n]⊗ h[n]

For n < µ

y[n] = x̃[n] ? h[n] + x̃[n + N] ? h[n + N]

=
µ∑

k=1

h[k]x̃[n− k] +
µ∑

k=n+1

h[k]x̃[N + n− k]

=
µ∑

k=1

h[k]x[n− k] +
µ∑

k=n+1

h[k]x[n− k]N

=
µ∑

k=1

h[k]x[n− k]N

= x[n]⊗ h[n]

11. (a)

H =




.7 .5 .3 0 0 0 0 0 0 0
0 .7 .5 .3 0 0 0 0 0 0
0 0 .7 .5 .3 0 0 0 0 0
0 0 0 .7 .5 .3 0 0 0 0
0 0 0 0 .7 .5 .3 0 0 0
0 0 0 0 0 .7 .5 .3 0 0
0 0 0 0 0 0 .7 .5 .3 0
0 0 0 0 0 0 0 .7 .5 .3




Y = Hx + ν

(b)

H̃ =




.7 .5 .3 0 0 0 0 0
0 .7 .5 .3 0 0 0 0
0 0 .7 .5 .3 0 0 0
0 0 0 .7 .5 .3 0 0
0 0 0 0 .7 .5 .3 0
0 0 0 0 0 .7 .5 .3
.3 0 0 0 0 0 .7 .5
.5 .3 0 0 0 0 0 .7




H̃ = MΛMH

(c) The flat fading channel gains are the diagonal elements of the matrix Λ

MATLAB CODE

clear all;

H=[.7 .5 .3 0 0 0 0 0
0 .7 .5 .3 0 0 0 0
0 0 .7 .5 .3 0 0 0
0 0 0 .7 .5 .3 0 0
0 0 0 0 .7 .5 .3 0
0 0 0 0 0 .7 .5 .3
.3 0 0 0 0 0 .7 .5
.5 .3 0 0 0 0 0 .7]

[V,D] = eig(H)

V*D*V’-H

12. (a) µ = 4
The VC system doesn’t require a cyclic prefix to make the subchannels orthogonal.

(b) 


y255

y254

.

.

.
y0




=




1 0.6 0.7 0.3 0.2 0 0 0 . . . 0
0 1 0.6 0.7 0.3 0.2 0 0
. .
. .
. .
0 1 0.6 0.7 0.3 0.2







x255

.

.

.

.
x−4




+




ν255

.

.

.

.
ν0




H = UΣV H

Singular values (using ’svd’ in Matlab)

(c) use ’svd’ in Matlab

13. Rmin = 52sub-carriers× 1/2bit
coded bit × 1 coded bit

sub-carrrier symbol × 1 sub-carrrier symbol
4×10−6sec

= 6.5Mbps

Rmax = 52sub-carriers× 3/4bit
coded bit × 6 coded bit

sub-carrrier symbol × 1 sub-carrrier symbol
4×10−6sec

= 58.5Mbps

14.

R =
48
2

sub-carriers× 1/2bit
coded bit

× 1 coded bit
sub-carrrier symbol

× 1 sub-carrrier symbol
4× 10−6sec

+
48
2

sub-carriers× 3/4bit
coded bit

× 6 coded bit
sub-carrrier symbol

× 1 sub-carrrier symbol
4× 10−6sec

= 7.5Mbps

15. x(t) = sinc
(

t
T

) [
cos(β πt

T)
1− 2βt

T

]

X(ω) =





T |ω| ≤ π
T (1− β)

T
2

[
1− sin

(
T
2β

(|ω| − π
T

))]
π
T (1− β) ≤ |ω| ≤ π

T (1 + β)
0 |ω| ≥ π

T (1 + β)

max
t
|x(t)|2 = s2(t)|t=0 = 1

Et

[|X(t)|2] =
1

2πT
Eω

[|X(ω)|2]

=
1

2πT
2

∫ π
T

(1+β)

π
T

(1−β)
|T
2

[
1− sin

(
T

2β

(
|ω| − π

T

))]
|2dω +

1
2πT

T 2 π

T
(1− β)

= 1− 0.5β

∴ PAR =
maxt |x(t)|2
Et [|X(t)|2] =

1
1− 0.5β





β = 0
β = 1
β = 2

, PAR =





1
2
∞

This pulse shape is less sensitive to timing errors.

16.

lim
δ→0

= lim
δ→0

TN

(
1− e−j2π(δ+m)

)

j2π(δ + m)

≈ lim
δ→0

TN

(
1− e−j2πδ

)

j2πm

≈ TN (j2πδ)
j2πm

=
TNδ

m

∴ ICIi =
∑

m6=i

|Im|2

=
∑

m6=i

(
TNδ

m

)2

=


∑

m6=i

(
1
m

)2

 (TNδ)2

∴ C0 =
∑

m6=i

(
1
m

)2

Chapter 13

1. xi =
∫ T
0 x(t)s(t)dt =

∑N
j=1 s2

ij + Ijsij) (see [1] for details)

(a)
E[xi/si(t)] = Es (to show)

si(t) =
∑

j

sijφj(t)

By linearity of expectation,

E[(
N∑

j=1

s2
ij + Ijsij)/si(t)] = E[(

N∑

j=1

s2
ij/si(t)] + E[Ijsij)/si(t)] (1)

sij are all zero mean and variance Es/N
Also, the interfering signal is independent of the transmitted signal. Thus, the equation (1) above,
evaluates to

Es

N
N + E[Ij]0 = Es

Notice that the knowledge of si is needed to get the correlation to work out. If si is not known,
correlation will do the right thing only 1/M of the time as we see in the next part.

(b)

E[xi] =
N∑

j=1

E[s2
ij]

=
N∑

j=1

E[s2
ij/sij]p(sij)

=
Es

M

(c)

V ar[xi/si(t)] = E[x2
i /si(t)]− E[xi/si(t)]

= E[x2
i /si(t)]

= E


∑

k,l

IkIlsiksil




=
∑

k

i2kE[s2
ik] =

Es

N

∑

k

I2
k

=
Es

N
Ej

(d) As in part b,
V ar[xi] = EsEj

NM (As correlator gives non-zero expected output only 1/M of the time)

(e) SIR = E2[xi]
V ar[xi]

= (Es/M)2

EsEj
NM

= Es
Ej

N
M

2. Matlab

fc = 100e6;
Ts = 1e-6;
ss = 100;
t = [Ts/ss:Ts/ss:2*Ts];

s = [ones(1,100) -1*ones(1,100)]; sc = [ones(1,10) -1*ones(1,10)];
for i = 1:9

sc = [sc ones(1,10) -1*ones(1,10)];
end
car = cos(2*pi*fc*t);
x = s.*sc.*car;

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x(
t)

Figure 1: Problem 2

3. τ = 10µs

(a) No fading if hop rate greater than 1/e

τc < τ

Rc =
1
τc

= hoprate >
1
e

= 100KHz

(b) τc = 50µs
τs = 0.5ms
Since number of reflected paths get averaged over one symbol duration, we have flat fading.

(c) τc = 50µs
τs = 0.5µs
System has severe frequency-selective fading.

4. n′(t) = n(t)sc(t)

(a)

ρn′(τ) = E[n′(t)Fn′(−t)] (Real n’(t))
= E[(n(t)sc(t))F(n(−t)sc(−t))]

= E

[∫
n(τ)sc(τ)n(t + τ)sc(t + τ)dτ

]

=
∫

ρn(τ)ρc(τ)dτ [PSD = F(ρn′(τ))]

(b) If ρc(τ) = δ(τ) ⇒ ρn′(τ) = ρn(τ)
(c) If n(t)is AWGN then ρn(τ) = N0

2 δ(τ)
ρn′(τ) = N0

2 ρc(τ)
As N →∞, ρn′(τ) = N0

2 δ(τ) (same as ρn(τ))

5. sc(t) is real and periodic. ρc(t) is periodic with the same period.

ρc(t) =
1
T

∫

T
sc(τ)sc(t + τ)dτ

(∫

T
→ integral over any interval of length T

)

ρc(−t) =
1
T

∫

T
sc(τ)sc(−t + τ)dτ

Let x = −t + τ

ρc(−t) =
1
T

∫

T
sc(x + t)sc(x)dx

= ρc(t)

To prove that maximum is at t = 0,

ρc(t) =
∫

sc(τ)sc(t + τ)dτ ≤
∫

s2
c(τ)dτ = ρc(0)

Hence maximum is at 0.

6.

1
T

∫ T

0
sc(t− τ0)sc(t− τ1)dt =

1
T

∫

T
sc(t− τ0)sc(t− τ1)dt

Let x = t− τ0

=
1
T

∫

T
sc(x)sc(x + τ0 − τ1)dx

= ρc(τ0 − τ1) = ρc(τ1 − τ0)

7. sc(t) is periodic with period T
⇒ sc(t± T) = sc(t)

ρc(t) =
1
T

∫ T

0
sc(τ)sc(t + τ)dτ

ρc(t + T) =
1
T

∫ T

0
sc(τ)sc(t + T + τ)dτ

But sc(t + T + τ) = sc(t + τ)

⇒ ρc(t + T) =
1
T

∫ T

0
sc(τ)sc(t + τ)dτ = ρc(t)

8. We are given in (13.19) that

ρc(τ) =

{
1− |τ |(1+1/N)

Tc
|τ | ≤ Tc

−1/N |τ | ≥ Tc

periodic with period
NTc = Ts

one period →

0 T_c NTc = Ts (N+1)Tc

1

Figure 2: Problem 8

(
1 +

1
N

)
Λ(t)− 1

N
↔

(
N + 1

N

)
sinc2(f)− 1

N
δ(f)

(
1 +

1
N

)
Λ(t/Tc)− 1

N
↔ Tc

[
(1 +

1
N

)sinc2(fTc)− 1
N

δ(fTc)
]

make periodic with period NTc
∞∑

k=−∞
ρ(t− kNTc) ↔

∞∑
m=−∞

1
NTc

S(f)|f= m
NTc

δ(f − m

NTc
)

∴ ρsc(f) =
∞∑

m=−∞




N + 1
N2

sinc2(
m

n
)δ(f − m

Ts
)− 1

N2
δ(m)

︸ ︷︷ ︸
neglect for large N




MATLAB

clear;
Ts = 1e-6;
spread = 1000;
ss = 10;

f = [-1*spread*(1/Ts): ss/Ts: spread*(1/Ts)];
N = 100;

m = -1*spread:ss:spread;
for i = 1:length(m)

Psc(i) = ((N+1)/N^2)*(sinc(m(i)/N))^2 - (1/N^2)*(m(i)==0);

end
plot(f*Ts,Psc,’bo’)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

f (in MHz)

P
sc

(f
)

Figure 3: Problem 8

9. Both m-sequences and random binary spreading sequences have balanced run-length and shift proper-
ties.
First notice that all these properties are trivially true for a random binary sequence (rbs)
1. balanced: since a rbs is generated by coin tosses using a fair coin ∴ E[heads] = E[0′s] = N/2 =
E[1′s] = E[tails] after N coin tosses.
2. run-length:

prob of having (single 1 or single 0 in a row) = 1/2

prob of having (2 1’s or 2 0’s in a row) = 1/4

prob of having (k 1’s or k 0’s in a row) = 1/2k

3. Shift: Comparing a rbs with a shifted version of itself is same as comparing two independent coin
tosses, so prob(2 independent coin tosses result in same outcome) = 1/2 = prob(2 independent coin
tosses result in different outcome)
∴ half of the positions will be same and the remaining half will be different

Now we show the same for m-sequences
1. balanced: Consider a shift register generator of length ’r’. The shift register passes through all
possible nonzero states. Of these states 2r−1 = 1

2(N + 1) have a one in the right-most position, and
2r−1 − 1 have a zero in the right-most position. Thus there is one more one than zeros in the output
sequence.
2. run-length: Consider a shift register of length ’r’. There can be no run of ones having length l≥ r
since this would require that the all-one shift register state be followed by another all-ones state. This
cannot occur since each shift register state occurs once and only once during N cycles. Thus there is a
single run of r consecutive ones and this run is preceded by a zero and followed by a zero.

A run of r-1 ones must be preceded and followed by a zero. This requires that the shift register state
which is r-1 ones followed by a 0 be followed immediately by the state which is a 0 followed by r-1
ones. These two states are also passed through in the the generation of the run of r ones, where they
are separated by the all-ones state. Since each state occurs only once, there can be no run of r-1 ones.
A run of r-1 zeros must be preceded by and followed by 1’s. Thus the shift register must pass through
the state which is a 1 followed by r-1 zeros. This state occurs only once so there is a single run of r-1
zeros.
Now consider a run of k ones where 1 ≤ k ≤ r − 1. Each run of k ones must be preceded by and
followed by a 0. Thus the shift register must pass through the state which is a 0 followed by k ones
followed by a 0, with r-k-2 remaining positions taking arbitrary values. There are 2r−k−2 possible ways
to complete these remaining positions in the shift register, so there are 2r−k−2 runs of k ones. Similarly,
there are 2r−k−2 runs of k zeros.
3. Shift: We first prove a property known as ”shift and add”. This says that the modulo-2 sum of an
m-sequence and any phase shift of the same sequence is another phase of the same m-sequence.
Proof: Consider a shift register. Since different initial conditions result in a different phase of the same
sequence, two phases b(D) and b’(D) of the same sequence can be written as b(D)=a(D)/g(D) and
b’(D)=a’(D)/g(D), where a(D) and a’(D) are distinct initial conditions. The modulo-2 sum b(D) +
b’(D) =[a(D)+a’(D)]/g(D) = a”(D)/g(D). Since the modulo-2 sum o any two distinct initial conditions
is a third distinct initial condition, a”(D)/g(D) =b”(D) is a third distinct phase of the original sequence
b(D).
Now we prove the claim by contradiction. Suppose they do not match and mismatch at exactly half
the locations. Then their sum will have more 1’s and 0’s. sum is also an m-sequence which is supposed
to have equal 1’s and 0’s; thus we have a contradiction.

10. h(t) = α0δ(t− τ0) + α1δ(t− τ1)
neglecting noise, the signal input to the synchronizer is given as
z(t) = α0x(t− τ0)sc(t− τ0) cos2(2Πfc(t− τ0))+α1x(t− τ1)sc(t− τ1) cos(2Πfc(t− τ1)) cos(2Πfc(t− τ0))
We have assumed that the demodulator got synchronized to the first multipath
Assuming x(t) remains the same xk over an interval [0,T] we have

w(τ) =
1
T

∫ T

0
α0xksc(t− τ0)sc(t− τ) cos2(2Πfc(t− τ0))dt

+
1
T

∫ T

0
α1xksc(t− τ1)sc(t− τ) cos(2Πfc(t− τ1)) cos(2Πfc(t− τ0))dt

∼ 0.5xk

T
α0ρc(τ − τ0) +

0.5xk

T
α1ρc(τ − τ1) cos(2Πfc(τ0 − τ1))

For binary transmission xk = ±1
So Costa loop will try to maximize |w(τ)| and will synchronize to the first component if α0 is higher
or the second component of α1 cos(2Πfc(τ0 − τ1)) is higher.

A similar analysis can be done if demodulator synchronizes to the other multipath component. However,
notice that the demodulator will also synchronize to the multipath component for which α1 is greater.
Essentially, both the demodulator and the Costa loop will synchronize to the first multipath component
if α0 is higher and to the second multipath component otherwise.

11. Pb = 10−6

For DPSK, we know that the BER is given by 1
2e−γb , which for a maximum BER of 10−6, gives a value

of minimum receive SNR of γmin = 13.12.

We assume that the noise statistics are the same after de-spreading and that the possible interference
is modeled as white noise.

We have that
SNR(after-despreading) = Kρ2

c(τ)SNR(before-despreading)

For the first branch, ρc(0) = 1, for the second branch ρc(Tc/4) = 0.733 and for the third branch
ρc(Tc/3) = 0.644. Therefore, the SNR’s after de-spreading are: SNR1 = 150, SNR2 = 80.667, SNR3 =
62.296.

With selection combining, the outage probability is given by

Pout = (1− e
− γmin

γ1)(1− e
− γmin

γ2)(1− e
− γmin

γ3) = 0.24%

12. (a) E(rP) = E(r1) + E(r2) = 9 + 9ρ2 = 11.9438

(b) p(rP) = p(r1)Fp(r2)
a=1/6. See Fig 4

6(1+ 2) 6+12 2 12+ 6 2 12(1+ 2)

1/6

Figure 4: Problem 12b

(c) Pb = 1
2 exp−rb ⇒ rb = 8.5172

height of ∆ = 1
6

(
6ρ2

8.5172−7.9625

)−1
= 0.0471

∴ Pout = 1
2(0.0471)(8.5172− 7.9625) = 0.0131

6 12

1/6

Figure 5: Problem 12

13. (a) For the multipaths to be attenuated by −1/N , we need τ1 ≥ Tc and τ1 ≤ Tb − Tc. Similarly, we
need τ2 ≥ Tc and τ2 ≤ Tb − Tc.

(b) Instantaneous BER in DPSK is given by Pb = 1
2e−γb . For Pb = 10−3, this corresponds to γb = 6.21.

While the channel has average power γ, the outage probability in Rayleigh fading is given by
Pout = 1 − e−γ0/γ . Note that α0 is Rayleigh distributed with average power 5 with probability
.5 and the channel is Rayleigh distributed with average power 10 with probabilty .5. This is not
equivalent to Rayleigh fading with average power 7.5. While the channel has average power 5
the outage probability is 1 − e−6.21/5, and while the channel has average power 10 the outage
probability is 1− e−6.21/10. The overall outage probability is given by

Pout = .5(1− e−6.21/5 + 1− e−6.21/10) = .587

(c) The outage probability when using selection combining is the product of each of outage probability
of each branch. For branch 2, the outage probability is .5(1 + 1 − e−6.21/20) = .633. For branch

3, the outage probability is .75(1− e−6.21/5) + 0.25(1− e−6.21/10) = 0.649. Therefore, the overall
outage probability is given by:

Pout = Pout,1Pout,2Pout,3 = (0.587)(0.633)(0.649) = 0.241

(d) Again, the outage probability of a 2-branch RAKE with selection combining is given by the product
of the outage probability of each branch. Therefore, we should select the two branches with the
smallest outage probabilities, i.e. branches 0 and 1. The corresponding outage probability is

Pout = Pout,1Pout,2 = (0.587)(0.633) = 0.37

14. Following along the same lines as the previous question, we know that outage on the ith branch is
given as:

Pout =

{
1 w.p. 0.25

1− e
− γmin

γi w.p. 0.75

For DPSK, we know that the BER is given by 1
2e−γb , which for a maximum BER of 10−3, gives a

value of minimum receive SNR of γmin = 6.21. Therefore, the outage probability will be

Pout =
(
0.25 + 0.75

(
1− e−

6.21
20

))(
0.25 + 0.75

(
1− e−

6.21
10

))(
0.25 + 0.75

(
1− e−

6.21
6.67

))

(
0.25 + 0.75

(
1− e−

6.21
5

))(
0.25 + 0.75

(
1− e−

6.21
4

))
= 12.49%

For the case where there is always a multipath in each bin with average SNR of 20,

Pout =
(
1− e−

6.21
20

)5
= 0.14%

Clearly the outage probability is much smaller in the second case.

15. (a)

βi =
1
Tb

∫ Tb

0
sc(t− iTc)

N∑

j=0

alphajδ(t− jTc)sc(t)dt

=
N∑

j=0

αj
1
Tb

∫ Tb

0
sc(t− iTc)sc(t− jTc)dt

= αjδij =
{

αi forithcarrier
0 fori 6= j

thus βi = αi for all i

(b) β0 = a, β1 = 0.8b, β2 = 0.2b, β3 = 0.5c, β4 = 0.5c

(c) Pb = 0.5e−γb ⇒ γ0 = 6.21
SC:

Pout =
[
1− e−γ0/γ

]M
= 0.099

MRC:

Pout = 1− e−γ0/γ

(
1 + γ0/γ +

(γ0/γ)2

2

)
= 0.025

16. Autocorrelation and Cross-correlation for Gold codes, Kasawi codes from the small set
n=8
Kasawi codes ; small set

ρ(τ) =





−1
2n−1 = −0.0039
−2n/2+1

2n−1 = −0.0667
2n/2+1−2

2n−1 = −0.0588

number of sequences = 2n/2 = 16
large set

ρ(τ) =





−1
2n−1 = −0.0039
−1±−2n/2

2n−1 = −0.0667, 0.0588
−1±(2n/2+1)

2n−1 = 0.0627,−0.0706

number of sequences = 23n/2 = 4096
Gold codes; t(n) = 2(n+2)/2 + 1 = 33

ρ(τ) =





−1
2n−1 = −0.0039
−1t(n)
2n−1 = −0.1294

t(n)−2
2n−1 = 0.1216

17.

H4 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




To see orthogonality of rows,

H4H
T
4 =




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4




Due to the symmetric nature of H4, shifts by TC/2 do not change orthogonality properties and cross-
correlation is 0 between any two users.

18. α2
k

α2 = 0.2512(−6dB)

SIR = α2
k3N

α2ξ(K−1)
= 1.9322

K = 40
N = 100
Pb = Q(

√
2rb) = 0.0247

For synchronous users, the situation is worse (13.39)

19. r(t) =
∑

i αibisci(t) + n(t)
rk =

∫ Tb

0 r(t)sck
(t)dt = αkbkρkk +

∫ Tb

0 n(t)sck
(t)dt +

∑
j 6=k αjbjρkj

For 2 users, it is easy to see

[
r1

r2

]
=

[
ρ11 ρ12

ρ21 ρ22

] [
α1 0
0 α2

] [
b1

b2

]
+

[
n1

n2

]

We assume that noise statistics remain unchanged after despreading.

20. ML decision minimizes r = RAb + n
(r −RAb)2

= rrT − 2bT AT RT r + bT AT RT RAb
first term is same for all b , A is symmetric, R is symmetric
∴ maximize− 2bT ARr + bT AR2Ab or minimize 2bT Ar − bT ARAb

21. (a) If he transmits only one spreading sequence, there will be no other interference than noise. So

BER = Q

(√
2P (γ)γ

1

)
= Q

(√
2P (γ)γ

)

R bits/sec is achieved in this case.
If he transmits both with equal energy

BER = Q

(√
P (γ)γ

1
2N P (γ)γ + 1

)

2R bits/sec is achieved in this case
(b) Assume that SNR0 is such that

P ?
b = Q(

√
SNR0) since we want to keep Pb ≤ Pb?

S(γ)γ = SNR0 for γ0 ≤ γ ≤ γ1
P (γ)γ

1+ 1
2N

P (γ)γ
= SNR0 for γ1 ≤ γ

P (γ) = 0 for γ ≤ γ0

therefore

P (γ) =





0 γ ≤ γ0
SNR0

γ γ0 ≤ γ ≤ γ1
1
γ

SNR0

1−SNR0
2N

γ1 ≤ γ

According to power constraint ∫ ∞

0
P (γ)p(γ)dγ = 1

Define K1 = SNR0 K2 = SNR0

1−SNR0
2N

power constraint will be

K1

∫ γ1

γ0

1
γ

p(γ)dγ + K2

∫ ∞

γ1

1
γ

p(γ)dγ = 1

and

P (γ) =





0 γ ≤ γ0
K1
γ γ0 ≤ γ ≤ γ1

K2
γ γ1 ≤ γ ≤ ∞

(c)

J = Rp{γ0 ≤ γ ≤ γ1}+ 2Rp{γ1 ≤ γ}+ λ

{
K1

∫ γ1

γ0

p(γ
γ

dγ + K2

∫ ∞

γ1

p(γ
γ

dγ − 1
}

∂J

∂γ0
= 0

∂J

∂γ1
= 0

⇒ γ0 = −λK1

R

⇒ γ1 = −λ(K2 −K1)
R

Chapter 14

1. B=10 MHz
Btotal = [(10 + 2)100]MHz = 1200MHz

2. Btotal = 25MHz
125 TDMA channels
8 user time slots per channel
R=270.833Kbps

(a)

Pre 1 2 3 4 5 6 7 8 Trail

3 58 data bits 58 data bits26 training
 bits

3 8.25

start bits stop bits data bits
as guard
time

Figure 1: Problem 2a

(b) 2(58)
3+2(58)+26+3+8.25 = 0.7424
Information rate = 201.066 Kbps

(c) Frame duration = 8× timeslotduration

time slot duration = 2(3)+2(58)+26+8.25
270.833×103 = 576.92µs

Frame duration = 4.61 ms
Latency = 7

8(frame duration) = 4.038 ms

(d) duration of guard band + stop bits = 3+8.25
270.833×103 = 41.54µs

∴ max delay spread Tm < 41.54µs for guard band to be useful.

3. B=10MHz
G=100
cross-correlation = 1/G
Interference limited system (N=0)

(a) SIR = Pr
1
G

(k−1)Pr
= G

K−1

(b) Pb = Q(
√

2γb) = 10−3

SIR = 3.0902
K = 1 + G

SIR = b33.36c = 33

(c) B=10MHz
Information signal Bandwidth = 10MHz

100 = 100KHz Total number of users = 100

(d) SIR = G
αSIR = 100 ⇒ α = 0.3269

No, this is not a reasonable voice activity factor. It is too low.

4. (a) Since the system is interference limited
SIR = 1

(m−1) = γb

Pe = Q(
√

(γb)) (assuming binary signalling)
Pe = Q(1√

m−1
)

(b) Pe(more than one user occupy same freq band) = 1− Prob(only one user occupies it) − Prob(no
user occupies it)

= 1−
(

K
1

)
(0.01)1(0.99)K−1 −

(
K
0

)
(0.99)K

(c)

Pe,avg = 0.Prob (only one user) +
K∑

m=2

Q(
1√

m− 1
)
(

=
K
m

)
(0.01)m(0.99)K−m

=
K∑

m=2

Q(
1√

m− 1
)
(

K
m

)
(0.01)m(0.99)K−m

5. pure Aloha : T= Le−2L

∂T
∂L = Le−2L(−2) + e−2L = 0
⇒ e−2L(−2L + 1) = 0
∴ L = 0.5 ⇒ Tmax = 0.1839
∂2T
∂L2 = (−2L + 1)e−2L(−2) + e−2L(−2) = (4L− 4)e−2L

∵ L < 1, ∂2T
∂L2 < 0 ∴ maxima

slotted Aloha : T = Le−L

∂T
∂L = Le−L(−1) + e−L = 0
L = 1, Tmax = 0.3679

6. R=100 Mbps (pure Aloha)
N=103

λ = 103 packets per second
τ = N

R = 1× 10−5, L = λτ = 0.01, T = Le−2L = 0.0098
effective data rate = RT=980.2 Kbps
L=2.835, also gives the same throughput
But psuccess earlier was 0.98 and now is 0.0034 (lots of packets are lost)

7. g1 = 1
g2 = 3
g3 = 5
r?
1 = r?

2 = r?
3 = 10, n = 1

(a) We expand

(I − F)P ≥ u

where

u =
(

γ?
1n1

g11
,
γ?
2n2

g22
, . . . ,

γ?
NnN

gNN

)T

Fkj =

{
0 k = j
γ?

kgkjρ
gkk

k 6= j

P = (P1P2 . . . PN)T

first row of (I-F)P

= P1 − γ?
1g12P2

g11
− γ?

1g13P3

g11
≥ γ?

1n1

g11

g11P1 ≥ γ?
1n1 + γ?

1g12P2 + γ?
1g13P3

g11P1

n1 + g12P2 + g13P3
≥ γ?

1

which is precisely the SNR constraint for user 1.
We can similarly show this for users 2 and 3.

(b)

Fkj =

{
0 , if k = j
r?
kgjρ
gk

, if k 6= j

F =




0 r1g2ρ
g1

r1g3ρ
g1−r2g1ρ

g2
0 r2g3ρ

g2−r3g1ρ
g3

r2g2ρ
g3

0


 =




0 30 50
10/3 0 50/3

2 6 0


× 0.01

eigmax(F) = 0.2 < 1
∴ P ?exists
u =

(
10
1 , 10

3 , 10
5

)T

P = (I − F)−1u =




12.5
4.1667

2.5




8. P=10mW
B=100KHz
N0 = 10−3W/Hz

CBC =
⋃

{P1P2:P1+P2=10mW}

(
R1 = B log2

(
1 +

P1

N0B

)
, R2 = B log2

(
1 +

P2

N0B + P1

))

MATLAB

P = 10e-3;
ss = P/1000;
B = 100e3;
N0 = 1e-9;
P1 = 0:ss:P;

for i = 1:length(P1)
P2(i) = P-P1(i);
R1(i) = B*log2(1+(P1(i)/N0*B));
R2(i) = B*log2(1+(P2(i)/(N0*B+P1(i))));

end

9. We show this result for 2 users
define g1P1

N0B = x = P1
n1B wherenk = N0

gk
g2P2

N0B = x = P2
n2B

say g1 > g2, n1 < n2 ρ = n1
n2

< 1

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

1

2

3

4

5

6

7
x 10

5

R
1
 (bps)

R
2 (

bp
s)

Figure 2: Problem 8

R1 = B log2

(
1 + P1

n1B

)
= B log2(1 + x)

R2 = B log2

(
1 + P2

n2B+P1

)
= B log2

(
1 + y

1+ρx

)

R1 + R2 = Blog2(1 + x) + B log2

(
1 + y

1+ρx

)

R1 + R2 = B log2

(
1 + x + y

(
1+x
1+ρx

))
< B log2

(
1 + x + y

ρ

)
= B log2

(
1 + P

n1B

)
(∵ ρ ≤ 1)

Hence we see that the sum rate for any P1, P2 assignment is always less than or equal to the rate
achievable if all power is assigned to better user.

10. Based on the previous part; we know that the sum-rate maximizing strategy is to assign all power to
a single user at a time instant. The problem then reduces to water-filling for a single user, but the
fading statistic is given at each instant as

nmin(i) = min{n1(i, n2(i), . . . nk(i))} for k users

The cut-off is determined by distribution of nmin(i)

P (γ)
P

=
{ 1

γ0
− 1

γ γ ≥ γ0

0 γ < γ0

γ =
P

nminB
(distribution of γ is dictated by the distribution of nmin)

∫ ∞

γ0

(
1
γ0
− 1

γ

)
p(γ)dγ = 1

11.

n =
{

1mW w.p. 1/2
5mW w.p. 1/2

nmin =
{

1mW w.p. 3/4
5mW w.p. 1/4

Now we just treat it as a single user channel

γ =
{

10 w.p. 3/4
2 w.p. 1/4

If γ0 < 2
(

1
γ0
− 1

γ1

)
p(γ1) +

(
1
γ0
− 1

γ2

)
p(γ2) = 1

1
γ0

=
p(γ1)
γ1

+
p(γ2)
γ2

+ 1

∴ γ0 = 0.833 < 2 , so it is ok

P (γ)
P

=

{
1.2− 1

γ1
γ = γ1

1.2− 1
γ2

γ = γ2

P (γ1) = 11mW, P (γ2) = 7mW

Sum capacity CSR = B log2

(
γ1

γ0

)
p(γ1) + B log2

(
γ2

γ0

)
p(γ2) = 3.005B

12. γ = P
N0B = 10

γ1 ∼ 1
γ e−γ/γ

γ2 ∼ 1
γ e−γ/γ

γmax = max(γ1, γ2) ∼ 2
γ

(
1− e−γ/γ

)
e−γ/γ [From (7.9) in Reader]

P (γ) =
{ 1

γ0
− 1

γ γ ≥ γ0

0 γ ≤ γ0

∫ ∞

γ0

(
1
γ0
− 1

γ

)
p(γ)dγ = 1

∫ ∞

γ0

(
1
γ0
− 1

γ

)
2
γ

(
1− e−γ/γ

)
e−γ/γdγ = 1

γ = 10 ⇒ γ0 = 0.89 Using Matlab

P (γ) =
{

1.1236− 1
γ γ > 0.89

0 γ < 0.89

CSR = B

∫ ∞

γ0

log2 (γ/γ0) p(γ)dγ = 366.27Kbps (Using Matlab)

MATLAB

gammab = 10;
ss = .01;
gamma0 = [ss:ss:1e4];
i = 1;

gamma = [gamma0(i):ss:gamma0(length(gamma0))];

gammavec=(1/gamma0(i)-1./gamma)*(2/gammab).*(1-...
exp(-gamma/gammab)).*exp(-gamma/gammab);

sumcheck = sum(gammavec)*ss;

while sumcheck > 1
i = i + 1;
gamma = [gamma0(i):ss:gamma0(length(gamma0))];
gammavec = (1/gamma0(i)-1./gamma)*(2/gammab).*...
(1-exp(-gamma/gammab)).*exp(-gamma/gammab);
sumcheck = sum(gammavec)*ss;

end
gamma0ch = gamma0(i);

gamma = [gamma0ch:ss:gamma0(length(gamma0))];

gammavec=log2(gamma/gamma0ch).*(2/gammab).*(1-...
exp(-gamma/gammab)).*exp(-gamma/gammab);

Csr = B*sum(gammavec)*ss;

13. Consider the ith user

Ri = Bi log2

(
1 +

Pi

N0Bi

)
0 ≤ Bi ≤ B

with time-division

Ri = Bti log2

(
1 +

Pi

tiN0Bi

)
0 ≤ ti ≤ 1

∴ ti =
Bi

B

14. B=100KHz

n1 =
{

10−5W/Hz w.p. 3/4
2× 10−5W/Hz w.p. 1/4

n2 =
{

10−5W/Hz w.p. 1/2
2× 10−5W/Hz w.p. 1/2

(a)

(n1, n2) =





(1, 1)10−5W/Hz w.p. 3/8
(1, 2)10−5W/Hz w.p. 3/8
(2, 1)10−5W/Hz w.p. 1/8
(2, 2)10−5W/Hz w.p. 1/8

P = 10; n1 = 1e-5; n2 = 2e-5; B = 100e3;

tau = [.01:.01:1-.01]; for k = 1:length(tau)
P1 = [0.1:.1:P/tau(k)-.1];
P2 = (P-tau(k)*P1)/(1-tau(k));

%% For User 1
for i = 1:length(P1)

gamma1 = P1(i)/(n1*B);
gamma2 = P1(i)/(n2*B);
gamma01try = 1/(1+(.75/gamma1)+(.25/gamma2));
gamma02try = .75/(1+(.75/gamma1));
if gamma01try < gamma2

gamma0ch = gamma01try;

C1(i) = tau(k)*B*(log2(gamma1/gamma0ch)*.75+log2(gamma2/gamma0ch)*.25);
elseif (gamma02try > gamma2) & (gamma02try < gamma1)

gamma0ch = gamma02try;
C1(i) = tau(k)*B*.75*log2(gamma1/gamma0ch);

else
C1(i) = 0;

end
end

%% For User 2
for i = 1:length(P2)

gamma1 = P2(i)/(n1*B);
gamma2 = P2(i)/(n2*B);
gamma01try = 1/(1+(.5/gamma1)+(.5/gamma2));
gamma02try = .5/(1+(.5/gamma1));
if gamma01try < gamma2

gamma0ch = gamma01try;
C2(i) = (1-tau(k))*B*(log2(gamma1/gamma0ch)*.5+log2(gamma2/gamma0ch)*.5);

elseif (gamma02try > gamma2) & (gamma02try < gamma1)
gamma0ch = gamma02try;
C2(i) = (1-tau(k))*B*.5*log2(gamma1/gamma0ch);

else
C2(i) = 0;

end
end
plot(C1,C2); hold on;
clear C1 C2

end

%% Now we use superposition coding and successive interference cancellation
P1 = 5; P2 = 5; C1 = .375*B*log2(1+(P1/(n1*B))) +
.375*B*log2(1+(P1/(n1*B))) + .125*B*log2(1+(P1/(n2*B+P2))) +
.125*B*log2(1+(P1/(n2*B+P2))); C2 = .125*B*log2(1+(P2/(n1*B))) +
.125*B*log2(1+(P2/(n2*B))) + .375*B*log2(1+(P2/(n2*B+P1))) +
.375*B*log2(1+(P2/(n1*B+P1))); plot(C1,C2,’ro’);

(b) Consider an assignment P1, P2 & τ s.t

τP1 + (1− τ)P2 = P

For user 1:

γ1 =
P1

n1B
, γ2 =

P1

n2B

If γ1 < γ2

(
1
γ0
− 1

γ1

)
p(γ1) +

(
1
γ0
− 1

γ2

)
p(γ2) = 1

C1 = τ

(
B log2

(
γ1

γ0

)
p(γ1) + B log2

(
γ2

γ0

)
p(γ2)

)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

C
1

C
2

Figure 3: Problem 14a

for γ2 < γ0 < γ1 (
1
γ0
− 1

γ1

)
p(γ1) = 1

C1 = τB log2

(
γ1

γ0

)
p(γ1)

for γ0 > γ1

We have similar equations for user 2
See Matlab for a sketch of capacity region
To achieve a point outside the TD-VP region we use code-division with interference cancellation
and superposition coding.
take the triplet

P1 = 5 N1 = 1× 10−5

P2 = 5 N2 = 2× 10−5

w.p. 3/8

C1 = B log2

(
1 +

P1

N1B

)

C2 = B log2

(
1 +

P2

N1B + P1

)

w.p. 3/8

C1 = B log2

(
1 +

P1

N1B

)

C2 = B log2

(
1 +

P2

N2B + P1

)

w.p. 1/8

C1 = B log2

(
1 +

P1

N2B + P2

)

C2 = B log2

(
1 +

P2

N1B

)

w.p. 1/8

C1 = B log2

(
1 +

P1

N2B + P2

)

C2 = B log2

(
1 +

P2

N2B

)

i = 1; snr = 10.^([5 10 20]/10); R = 100e3*log2(1+snr); ic = 10;
Tcur = zeros(1,3); Rcur = zeros(1,3); while i < 1e4

R1(i) = R(floor(unifrnd(1,4)));
R2(i) = R(floor(unifrnd(1,4)));
R3(i) = R(floor(unifrnd(1,4)));
Rcur(i,:) = [R1(i) R2(i) R3(i)];
if i == 1

[a,b] = max(Rcur(i,:));
Tcur(i+1,b) = Rcur(i,b);

else
Rcur_chk = Rcur(i,:)./(Tcur(i,:)+1e-10);
[a,b] = max(Rcur_chk);
Tcur(i+1,:) = (1-1/ic)*Tcur(i,:);
Tcur(i+1,b) = (1-1/ic)*Tcur(i,b) + (1/ic)*Rcur(i,b);

end
Rgot(i,b) = Rcur(i,b);
i = i+1;

end Rmean = [sum(Rgot(:,1))/i sum(Rgot(:,2))/i sum(Rgot(:,3))/i]
Rmeansys = sum(Rmean)

(c) B1 = B2 = B/2
P1 = P2 = P/2
For user 1

γ1 =
P1

n1B1
= 10, γ2 =

P1

n2B1
= 5

If γ0 < γ2

γ0 = 0.8889 < γ2 = 5

C1 = 1.6209× 105

For user 2

γ1 = 10 γ2 = 5

If γ0 < γ2

γ0 = 0.8696 < γ2 = 5

C1 = 1.5118× 105

(d) Consider the worst channel condition

(n1, n2) = (2, 2)× 10−5

C1 = B log2

(
1 +

P1

n1B

)

C2 = B log2

(
1 +

P2

n2B + P1

)

C1 = C2 = log2

(
1 +

P1

nB

)
= log2

(
1 +

P − P1

nB + P1

)

⇒ P1

nB
=

P − P1

nB + P1

⇒ P 2
1 + 2P1(nB)− PnB = 0

⇒ P1 = 2.889

∴ we get C1 = C2 = 1.2925× 105

15.

CMAC =

{
(R1R2 . . . Rk) :

∑

k∈S

Rk ≤ B log2

(
1 +

∑
k∈S gkPk

N0b

)
∀S ∈ {1, . . . k}

}

Scale gk by α , Pk by 1/α
Since capacity region depends on gkPk, it remains unchanged.

16. B = 100KHz
P1 = 3mW
P2 = 1mW
N0 = 0.001µW/Hz

See Fig 4

(C, x

y

Code division with SIC

Code division without SIC

Time division

1 ,0)

(C 2)
(0,C

2) 1
*, C

(C 2 *) , C1

Figure 4: Problem 16

(a) C1 = B log2

(
1 + P1

N0B

)
= 4.95B

C2 = B log2

(
1 + P2

N0B

)
= 3.46B

R1 = 3B In TD rates lie on the straight line joining C1 & C2, so

R1

C1
+

R2

C2
= 1

3B

4.95B
+

R2

3.46B
= 1

R2 = 136.30Kbps

With superposition coding and successive interference cancellation we have,
C?

1 = B log2

(
1 + P1

N0B+P2

)
= 1.898B

C?
2 = B log2

(
1 + P2

N0B+P1

)
= 0.4B

(y − C2) = C2−C?
2

C?
1−C1

(x− C?
1)

x = R1 = 3B
y = R2 = 235.51Kbps

(b) R1 = B1 log2

(
1 + P1

N0B1

)

R2 = B2 log2

(
1 + P2

N0B2

)
For the point that touches the capacity region, we have:

B1

B2
=

P1

P2
=

3
1

B1 = 3B2

B2 = 25KHz

B1 = 75KHz

R1 = 401.816Kbps

R2 = 133.939Kbps

(c) For time-division

x

C1
+

y

C2
= 1

R1 = R2 = R

R

C1
+

R

C2
= 1

R1 = R2 = 203.65Kbps

With code division and successive interference cancellation
G=10
Bs = Bsignal = B/10 = 10KHz

C1 = Bs log2

(
1 +

P1

N0Bs

)
= 8.234Bs

C2 = Bs log2

(
1 +

P2

N0Bs

)
= 6.658Bs

C?
1 = Bs log2

(
1 +

P1

N0Bs + P2/G

)
= 4.821Bs

C?
2 = Bs log2

(
1 +

P2

N0Bs + P1/G

)
= 2.079Bs

(y − C2) =
C2 − C?

2

C?
1 − C1

(x− C?
1)

x=y=R
(R− C2) = m(R− C?

1)
∴ R = −mC?

1+C2

1−m = 5.605Bs

R = 56.05Kbps

with code division and without interference cancellation

R1 = R2 = min(C?
1 , C?

2) = 20.79Kbps

17. The sum rate of a MAC is given by

CMAC,SR = B log2

(
1 +

∑k
k=1 gkpk

N0B

)

where Pk is the maximum power at user k. Clearly to achieve CMAC,SR, each user must transmit at
Pk

18.

CMAC,SR = max
P∈FMAC

eG

[
B log2

(
1 +

∑K
k=1 gkPk(g)

N0B

)]

We know that for sum-rate we can treat the two users as a single user with a common power

γ =
g1P1 + g1P2

N0B

g1 ∼ p(g1)

g2 ∼ p(g2)

γ ∼ p(γ)

Find γ0 s.t. ∫ ∞

γ0

(
1
γ0
− 1

γ

)
p(γ)dγ = 1

CMAC,SR =
∫ ∞

γ0

B log2

(
γ0

γ

)
p(γ)dγ

P

P
=

{ 1
γ0
− 1

γ γ ≥ γ0

0 o.w.

where individual power adaptations are given as

P1 =
P

P
P 1

P2 =
P

P
P 2

19. P 1 = P 2 = 10mW

n1 = n2 =
{

1mW w.p. 1/2
5mW w.p. 1/2

γ1 =
P 1

n1
=

{
10 w.p. 1/2
2 w.p. 1/2

γ2 =
P 2

n2
=

{
10 w.p. 1/2
2 w.p. 1/2

γ = γ1 + γ2 =





20 w.p. 1/4
12 w.p. 1/2
4 w.p. 1/4

CMAC,SR = B log2(1 + γ)

say γ0 < 4
3∑

i=1

(
1
γ0
− 1

γi

)
p(γi) = 1

γ0 = 0.8955

CMAC,SR,max = B
3∑

i=1

log2 (γi/γ0) p(γi) = 3.5322B

20. 3 user
B=100KHz

γ =





5dB w.p. 1/3
10dB w.p. 1/3
20dB w.p. 1/3

where r is the SNR distribution for any user if it were the only user present.

(a) If the best user is always picked, the system is equivalent to a single user with fading statistics
governed by the max at each instant, γmax is distributed as

γmax =





5dB w.p. 1/27
10dB w.p. 7/27
20dB w.p. 19/27

If γ0 < 3.1623 (5dB)
γ0 = 0.9572 (which is ok)

CBC,SR = 5.6612B = 566.12Kbps

(b) MATLAB CODE

i = 1;
snr = 10.^([5 10 20]/10);
R = 100e3*log2(1+snr);
ic = 10;
Tcur = zeros(1,3);
Rcur = zeros(1,3);
while i < 1e4

R1(i) = R(floor(unifrnd(1,4)));
R2(i) = R(floor(unifrnd(1,4)));
R3(i) = R(floor(unifrnd(1,4)));
Rcur(i,:) = [R1(i) R2(i) R3(i)];
if i == 1

[a,b] = max(Rcur(i,:));
Tcur(i+1,b) = Rcur(i,b);

else
Rcur_chk = Rcur(i,:)./(Tcur(i,:)+1e-10);
[a,b] = max(Rcur_chk);
Tcur(i+1,:) = (1-1/ic)*Tcur(i,:);
Tcur(i+1,b) = (1-1/ic)*Tcur(i,b) + (1/ic)*Rcur(i,b);

end
Rgot(i,b) = Rcur(i,b);
i = i+1;

end

Rmean = [sum(Rgot(:,1))/i sum(Rgot(:,2))/i sum(Rgot(:,3))/i]
Rmeansys = sum(Rmean)

i=1000
ic = 1, CBC,SR = 509.28Kbps

Rmean =
[
1.9385 1.7655 1.3887

]× 105bps

ic = 5, CBC,SR = 536.13Kbps

Rmean =
[
1.7848 1.7818 1.7947

]× 105bps

ic = 10, CBC,SR = 558.98Kbps

Rmean =
[
1.8728 1.8621 1.8549

]× 105bps

Notice that as ic ↑ Rmean becomes equal for all users.

Chapter 15

1. City has 10 macro-cells
each cell has 100 users
∴ total number of users = 1000
Cells are of size 1 sqkm
maximum distance traveled to traverse =

√
2km

∴ time =
√

2
30 = 169.7s

In the new setup
number of cells = 105 microcells
total number of users = 1000× 1002users
time =

√
2×10

30×103 =1.69s
∴ number of users increases by 10000 and handoff time reduces by 1/100

2. See Fig 1

(0,0)

(0,1)

v

u

(1,1)

(1,0)

60

Figure 1: Problem 2

D2 = (j20)2 + (i20)2 − 2(j20)(i20) cos(2π/3)

⇒ D = 2a
√

i2 + j2 + ij =
√

3R
√

i2 + j2 + ij

3. diamond shaped cells, R= 100m
Dmin = 600m
D = 2KR
K = D

2R = 600
2×100 = 3

N = K2 = 9

(a) number of cells per cluster = N = 9

(b) number of channels per cell = total number/N = 450/9 = 50

4. (a) R=1km
D=6km
N = Acluster

Acell
=

√
3D2/2

3
√

3R2/2
= 1

3(D/R)2 = 1
362 = 12

number of cells per cluster = N = 12

D

SHADED CELLS USE
SAME FREQUENCY

Figure 2: Problem 3

(b) number of channels in each cell = 1200/12 = 100

(c)
√

i2 + j2 + ij = 2
√

3 ⇒ i = 2, j = 2

5. R=10m
D=60m
γI = 2
γ0 = 4
M = 4 for diamond shaped cells

SIRa =
R−γI

MD−γ0
=

R−2

4D−4
= 32400

SIRb =
R−4

4D−4
= 324

SIRc =
R−2

4D−2
= 9

SIRa > SIRb > SIRc

6. γ = 2
BPSK
Pb = 10−6 → Pb = Q(

√
2γb) ⇒ γb = SIR0 = 4.7534

B = 50MHz
each user100KHz = Bs

SIR = 1
M

(
D
R

)γ M=6 for hexagonal cells
a1 = 0.167
a2 = 3

N > 1
a2

(
SIR0

a1

)2/γ
⇒ N ≥ 9.4879 ∴ N = 10

Cu = 50

7. G = 100
ξ = 1
λ = 1.5
With no sectorization

SIR =
1

ξ
3G(Nc − 1)(1 + λ)

= 4.7534

Nc = b26.2450c = 26

With sectorization, interference is reduced by a factor of 3

Nc = b76.7349c = 76

8. SINR = GPNc−1
i=1 Xi+N

α = p(Xi = 1)
N ∼ G(0.247Nc, 0.078Nc)
Pout = p(SIR < SIR0)

(a) Pout = p

(
GPNc−1

i=1 Xi+N
< SIR0

)
= p

(∑Nc−1
i=1 Xi + N > G

SIR0

)

(b) X =
∑Nc−1

i=1 Xi then X ∼ Bin(α,Nc − 1)
p(x + N > G/SIR0) =

∑Nc−1
N=0 p(n + N > G/SIR0|x = n)p(x = n)

p(x = n) =
(

Nc − 1
n

)
αn(1− α)Nc−1−n

p(x + N > G/SIR0) =
Nc−1∑

N=0

p(N > G/SIR0 − n|x = n)p(x = n)

=
Nc−1∑

N=0

p

(
N − 0.247Nc√

0.078Nc
>

G
SIR0

− n− 0.247Nc√
0.078Nc

|x = n

)

=
Nc−1∑

N=0

Q

(
G

SIR0
− n− 0.247Nc√

0.078Nc

)
p(x = n)

(c) Nc = 35
α = 0.5
SIR0 = 5
G = 150
p = 0.0973

MATLAB

for i = 1:length(n)
pn(i) = (factorial(Nc-1)./(factorial(n(i)).*factorial(Nc-1-n(i))))...

alpha.^n(i)(1-alpha).^(Nc-1-n(i));
end

sump = 0; for i = 1:length(n)
f = ((G/sir0)-n(i)-.247*Nc)/(sqrt(.078*Nc));
sump = sump + .5*erfc((f)/sqrt(2))*pn(i);

end

(d) If x can be approximated as Gaussian then
x ∼ G((Nc − 1)α, (Nc − 1)α(1− α))
x + N ∼ G(0.247Nc + (Nc − 1)α, 0.078Nc + (Nc − 1)α(1− α))

p(x + N > G/SIR0) = Q

(
G

SIR0
− (0.247Nc + (Nc − 1)α)√

0.078Nc + (Nc − 1)α(1− α)

)

(e) p= 0.0969 (very accurate approximation!)

9. define
γk =

gkPk

nk + ρ
∑

k 6=j gkjpj
k, j ∈ {1, . . . K}

where,
gk is channel power gain from user k to his base station nk is thermal noise power at user k’s base
station
ρ is interference reduction factor (ρ ∼ 1/G)
gkj is channel power gain from jth interfering transmitter to user k’s base station
pk is user k’s Tx power
pj is user j’s Tx power
define a matrix F such that

Fkj =

{
0 k = j
γ?

kgkjρ
gk

k 6= j

k, j ∈ {1, . . .K}

u =
(

γ?
1n1

g1
,
γ?

2n2

g2
, . . . ,

γ?
KnK

gK

)

If Perron Ferbinius eigenvalue of F is less than 1 , then a power control policy exists. The optimal
power control policy is given to be P ? = (I − F)−1u

10. Matlab

D = 2:.01:10;
R = 1;
gamma = 2;
Pdes = R^(-gamma);

for i = 1:length(D)
Pint = 6*(.2*(D(i)-R)^(-gamma)+.2*(D(i)-R/2)^(-gamma)+.2*(D(i))^(-gamma)...

+.2*(D(i)+R/2)^(-gamma)+.2*(D(i)+R)^(-gamma));
Pintbest = 6*((D(i)+R)^(-gamma));
Pintworst = 6*((D(i)-R)^(-gamma));
ASE(i) = log(1+Pdes/Pint)/(pi*(.5*D(i))^2);
ASEbest(i) = log(1+Pdes/Pintbest)/(pi*(.5*D(i))^2);
ASEworst(i) = log(1+Pdes/Pintworst)/(pi*(.5*D(i))^2);

end

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D

A
S

E
(D

)

5 Case ASE
Best Case ASE
Worst Case ASE

Figure 3: Problem 10

11. Pt = 5W
B = 100KHz
N0 = 10−16W/Hz

Pr = PtK
(

d0
d

)3
d0 = 1,K = 100

(a) D=2R
2 users share the band available
Each user gets 50KHz

BASESTATION

USER

R=1Km

Figure 4: Problem 11a

(b) P b = 1
4γb

⇒ 10−3 = 1
4γb

⇒ γb = 250
If D(n) = 2nR, number of users that share band = 2(2(n-1)+1)
∴ each user gets 100KHz

2(2n−1) = Bu(n)
interference is only from first tier

SIR(n) =
PtK

(
d0
R

)3

N0
2 Bu(n) + 2

(
PtK

(
d0√

R2+D(n)2

)3
) > 25

using Matlab , n = 4, SIR = 261.9253, D = 8R

Matlab

Pt = 5;
R = 1000;
sigma_2 = 1e-16;
n = 1;

D = 2*n*R;

Bu = (100/(2*(2*n-1)))*1e3;
K = 100;
d0 = 1;
Pdes = Pt*K*(d0/R)^3;
Pint = 2*(Pt*K*(d0/sqrt(R^2+D^2))^3);
Npower = sigma_2*Bu;

sir = Pdes/(Npower+Pint);
while sir < 250

n = n+1;
D = 2*n*R;
Bu = (100/(2*(2*n-1)))*1e3;
K = 100;
d0 = 1;
Pdes = Pt*K*(d0/R)^3;
Pint = 2*(Pt*K*(d0/sqrt(R^2+D^2))^3);
Npower = sigma_2*Bu;
sir = Pdes/(Npower+Pint);

end

(c) ASE = (R1+R2)/B
2km×2km

R1 = R2 = Bu(1) log(1 + SIR(1))
Bu(1) = 50KHz, SIR(1) = 5.5899
ASE = 0.6801bps/Hz/km2

12. B=100KHz
N0 = 10−9W/Hz
K = 10
P = 10mW per user

(a) 0 ≤ α ≤ 1 α is channel gain between cells.
See Matlab
If α is large, interference can be decoded and subtracted easily so capacity grows with α as high
SNR’s (beyond an α value) .
For low SNR values (α less than a value) c decreases with increase in α as interference is increased
which cannot be easily decoded due to low SNR.

MATLAB CODE:

B = 100e3;
sigma_2 = 1e-9;
P = 10e-3;
K = 10;
ss = .001;

alpha = 0:.01:1;
theta = 0:ss:1;
for i = 1:length(alpha)

capvec = log2(1+(K*P*(1+2*alpha(i)*cos(2*pi*theta)).^2)/(sigma_2*B));
C(i) = (1/K)*sum(capvec)*ss;

end

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

α

C
(α

)/
B

B = 100 KHz

Figure 5: Problem 12a

(b) C(K)↓ as K↑ because as the number of mobile per cell increases system resources get shared more
and so per user capacity C(K) has to fall.

MATLAB CODE:

BB = 100e3;
sigma_2 = 1e-9;
P = 10e-3;
K = 1:.1:30;
ss = .001;
alpha = .5;
theta = 0:ss:1;
for i = 1:length(K)

capvec = log2(1+(K(i)*P*(1+2*alpha*cos(2*pi*theta)).^2)/(sigma_2*B));
C(i) = (1/K(i))*sum(capvec)*ss;

end

0 5 10 15 20 25 30
0

1

2

3

4

5

6

K

C
(K

)/
B

B = 100 KHz

Figure 6: Problem 12b

(c) as transmit power P ↑, capacity C ↑ but gets saturated after a while as the system becomes
interference limited.

MATLAB CODE:

B = 100e3;
sigma_2 = 1e-9;
P = [0:.1:100]*1e-3;
K = 10;
ss = .001;
alpha = .5;
theta = 0:ss:1;
for i = 1:length(P)

capvec = log2(1+(K*P(i)*(1+2*alpha*cos(2*pi*theta)).^2)/(sigma_2*B));
C(i) = (1/K)*sum(capvec)*ss;

end

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P (in mW)

C
(P

)/
B

B = 100 KHz

Figure 7: Problem 12c

Chapter 16

1. d=1Km , Pγ = Ptd
−γ

(a) Pt = Pγdγ

Pt(γ = 2) = 10KW
Pt(γ = 2) = 1× 1010W

(b) d= 500m
Pt(γ = 2) = 2.5KW
Total power is simply twice.
Ptotal = 5KW
Pt(γ = 4) = 6.25× 108W
Total power Ptotal = 1.25× 109KW

(c)

Pt(γ = 2) = 10× 10−3

(
1

N + 1
× 103

)2

=
1× 104

(N + 1)2

Pt(γ = 4) = 10× 10−3

(
1

N + 1
× 103

)4

=
1× 1010

(N + 1)4

Pt(γ = 2) = (N + 1)
1× 104

(N + 1)2
=

1× 104

(N + 1)

Pt(γ = 4) = (N + 1)
1× 1010

(N + 1)4
=

1× 1010

(N + 1)3

2. γ1 = γ2 = 7dB
γ3 = 10dB
ρ = 1
ni = 1∀i

G =




1 0.06 0.04
0.09 0.9 0.126

0.064 0.024 0.8




(a) We expand

(I − F)P ≥ u

where

u =
(

γ?
1n1

g11
,
γ?
2n2

g22
, . . . ,

γ?
NnN

gNN

)T

Fkj =

{
0 k = j
γ?

kgkjρ
gkk

k 6= j

P = (P1P2 . . . PN)T

first row of (I-F)P

= P1 − γ?
1g12P2

g11
− γ?

1g13P3

g11
≥ γ?

1n1

g11

g11P1 ≥ γ?
1n1 + γ?

1g12P2 + γ?
1g13P3

g11P1

n1 + g12P2 + g13P3
≥ γ?

1

which is precisely the SNR constraint for user 1.
We can similarly show this for users 2 and 3.

(b) F =




0 0.3007 0.2005
0.5012 0 0.7017

0.8 0.3 0


 From Matlab:

λ = abs(eig(F)) = (0.8667 0.4791 0.4791)

As max(|λ|) = 0.8667 < 1 a feasible power vector for the system exists.

(c) u = [5.0119 5.5687 12.5]
P ? = (I − F)−1u = [39.7536 71.6634 65.8019]

3. P(0) = [50 50 50]

MATLAB CODE

P = [50 50 50];
k = 1;
while k<50

for i = 1:3
sum_int = 0;
for j = 1:3

if i~=j
sum_int = sum_int + rho*(G(i,j)*P(j));

end
end
gamma(i) = (G(i,i)*P(i))/(n(i)+sum_int);

end
P_plot(:,k) = P(:);
Gamma_plot(:,k) = gamma(:);
k = k+1;
for i = 1:3

P(i) = (gamma_des(i)/gamma(i))*P(i);
end

end

0 5 10 15 20 25 30 35 40 45 50
30

32

34

36

38

40

42

44

46

48

50

Figure 1: Problem 3:Power, User 1

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

Figure 2: Problem 3:Power, User 2

0 5 10 15 20 25 30 35 40 45 50
50

52

54

56

58

60

62

64

66

68

Figure 3: Problem 3:Power, User 3

0 5 10 15 20 25 30 35 40 45 50
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Figure 4: Problem 3:SNR, User 1

0 5 10 15 20 25 30 35 40 45 50
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

Figure 5: Problem 3:SNR, User 2

0 5 10 15 20 25 30 35 40 45 50
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

Figure 6: Problem 3:SNR, User 3

4. (a) γ = 2 , for N= 2 , we want Pγ(10m) = 10mW which will ensure that Pγ(d > 10m) < 10mW
Pmax(10)−2 = 10× 10−3

Pmax = 1W

(b) γ = 2 , N= 4
Pγ(20m) = 10mW
Pmax(20)−2 = 10× 10−3

Pmax = 4W

(c) γ = 4 , N= 4
Pγ(20m) = 10mW
Pmax(20)−4 = 10× 10−3

Pmax = 1600W

5. MATLAB CODE:

clear;
Ra = 20:-1:1;
for j = 1:length(Ra)

for k = 1:100
no_of_Cluster = 1;
node(1,1,no_of_Cluster) = unifrnd(0,100);
node(1,2,no_of_Cluster) = unifrnd(0,100);
R = Ra(j);
no_of_nodes = size(node,1);
while (no_of_nodes == 1) | (no_of_Cluster > 1)

no_of_Cluster = no_of_Cluster + 1;
no_of_nodes = no_of_nodes + 1;
node(1,1,no_of_Cluster) = unifrnd(0,100);
node(1,2,no_of_Cluster) = unifrnd(0,100);
new_node = reduce_clusters(node,R);
node = new_node;
no_of_Cluster = size(node,3);

end
no_of_nodes_this_run(k) = no_of_nodes;
clear node;

end
des_ans(j) = mean(no_of_nodes_this_run);

end

6. p(d) = e−d/D

D d > 0
Prob that one of the copies arrives after D = prob(d¿D)

=
∫ ∞

D

1
D

e−x/Ddx = e−1

Prob that all N copies arrive after D assuming independence = e−N

N=1, Prob = 0.3679
N=5, Prob = 0.0067
Since the paths were identical(had similar delay profile), throughput goes down by a facto of 5 as we
are sending same information on all paths.
As we try to decrease delay, the throughput also goes down.
Delay is proportional to throughput. This is the trade-off

7. Dij = fij

cij

The function is linear in fij , so it is both convex and concave. Specifically, it is convex.

∂Dij

∂cij
= −fij

c2
ij

∂2Dij

∂c2
ij

= 2
fij

c3
ij

> 0 for fij , cij > 0

Hence it is convex in cij too.

8. C=10Mbps

0 1 2 3 4 5 6 7 8 9 10

x 10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

F (flow)

D
el

ay
D = F/C
D = F/(C−F)

Figure 7: Problem 8

9. λ = fij/cij−fij

fij/cij
= cij

cij−fij

(a) x = fij

cij
0 ≤ x < 1

λ = 1
1−x

(b) 1 ≤ λ < ∞
(c) λ > 10 ⇒ 1

1−x > 10 ⇒ x > 9/10 ⇒ fij > 0.9cij

(d) Network for which delay is calculated based on (16.6) will be more congested as the metric will
tell us that the delay less (say below a threshold fixed apriori) and so we will keep on placing more
traffic.

10. (a) Since there is full cooperation, we can adapt R based on the values of C.
Using Matlab

Ropt = [29.322.336.3]Kbps

Dmin = 0.993

(b) Dmin = 1.3028

(c) Notice that even with a lower data rate, we get 31 % increase in average distortion without
cross-layer design

MATLAB

clear D0 = .38;
R0 = 18.3e3;

Theta = 2537;
K = 1;
L = 3040;

T = 350e-3;
C = [45 24 60]*1e3;
p = [.5 .25 .25];

count = 1;
ss = .1;
Rpos1 = [(R0/1e3)+ss:ss:(C(1)/1e3)-ss]*1e3;
Rpos2 = [(R0/1e3)+ss:ss:(C(2)/1e3)-ss]*1e3;
Rpos3 =[(R0/1e3)+ss:ss:(C(3)/1e3)-ss]*1e3;
for i1 = 1:length(Rpos1)

R(1) = Rpos1(i1);
for i2 = 1:length(Rpos2)

R(2) = Rpos2(i2);
for i3 = 1:length(Rpos3)

R(3) = Rpos3(i3);
Rv(count,:) = R;
AvgDist(count) = 0;
for i = 1:length(C)

Dist = D0+(Theta/(R(i)-R0))+K*exp(-(C(i)-R(i))*(T/L));
AvgDist(count) = AvgDist(count) + Dist*p(i);

end
count = count+1;

end
end

end
[AvgDistmin,d] = min(AvgDist) Ropt = Rv(d,:)

11.
Eb

N0
(CB) =

2C/B − 1
C/B

As C ↑ , numerator ↑ exponentially whereas denominator ↑ only linearly. ∴ Eb
N0

(CB) ↑ as C ↑ for fixed
B

Eb

N0
(B) = B

2C/B − 1
C

∂ EB
N0

(B)
∂B

=
−2C/Bln2

BC
− 2C/B

C
+

1
C

2C/B > 1forC, B > 0

∴ Eb

N0
(B) ↓ as B ↑ for C fixed

