Chapter 1

1. In case of an accident, there is a high chance of getting lost. The transportation cost is very high each
time. However, if the infrastructure is set once, it will be very easy to use it repeatedly. Time for
wireless transmission is negligible as signals travel at the speed of light.

2. Advantages of bursty data communication

(a) Pulses are made very narrow, so multipaths are resolvable

(b) The transmission device needs to be switched on for less time.
Disadvantages

(a) Bandwidth required is very high
(b) Peak transmit power can be very high.

3. B,=10"12
1 _ —12
=10

5 = % =5 x 10! (very high)

4. Geo: 35,786 Km above earth = RTT = 2x35786x10% _ 93865
Meo: 8,000~ 20,000 Km above earth = RTT = 2x8000x10% _ 533

Leo: 500- 2,000 Km above earth = RTT = 2X500x10° _ () 0033
Only Leo satellites as delay = 3.3ms < 30ms

6. optimum no. of data user = d
optimum no. of voice user = v
Three different cases:

Case 1: d=0, v=6
= revenue = 60.80.2 = 0.96

Case 2: d=1, v=3

revenue = [prob. of having one data user|x (revenue of having one data user)
+ [prob. of having two data user|x (revenue of having two data user)

+ [prob. of having one voice user|x (revenue of having one voice user)

+ [prob. of having two voice user|x (revenue of having two voice user)

+ [prob. of having three or more voice user|x (revenue in this case)

6

2

= 0.52<f>><$1+0.52><$1+<$>0.8x0.25><$0.2+(

) 0.82 x 0.2* x $0.4+

[1 B < t; > 0.8 x 0.2° x $0.2 — < g > 0.8 x 0.2* x $0.4} x $0.6

= $1.35

Case 3: d=2, v=0
revenue =2 x 0.5 = $1
So the best case is case 2, which is to allocate 60kHz to data and 60kHz to voice.



7.

8. 1. Hand-off becomes a big problem.
2. Inter-cell interference is very high and should be mitigated to get reasonable SINR.
3. Infrastructure cost is another problem.

9. Smaller the reuse distance, larger the number of users who can use the same system resource and so
capacity (data rate per unit bandwidth) increases.

10. (a) 100 cells, 100 users/cell = 10,000 users

(b) 100 users/cell = 2500 cells required

100km2 A _ 2
Area/Tell = 2500cells = CZIEZG = .04km

(c) From Rappaport or iteration of formula, we get that 100 % = 89 % Q@p, = .02
Fach subscriber generates 3—10 of an Erlang of traffic.
Thus, each cell can support 30 x 89 = 2670 subscribers
Macrocell: 2670 x 100 = 267,000 subscribers
Microcell: 6,675,000 subscribers

(d) Macrocell: $50 M
Microcell: $1.25 B

(e) Macrocell: $13.35 M/month = 3.75 months approz 4 months to recoop
Microcell: $333.75 M/month = 3.75 months approx 4 months to recoop

11. One CDPD line : 19.2Kbps
average Wiz ~ 40Mbps
. number of CDPD lines ~ 2 x 103



Chapter 2
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47100
Attenuation is very high for high frequencies
. d= 100m
ht = 10m
h, = 2m
delay spread = 7 = ”%/_l = 1.33x
+z—1)
. Ag = Zmara)
2 +x—1

d > hy, h,, we need to keep only first order terms

A¢

} A=c/f.=0.06
2
= P, = 4.39KW

2
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4. Signal nulls occur when A¢ = (2n 4+ 1)7
2r(a' + o — 1)

X\
27” [\/(ht T2+ & — /(e — I )? + dﬂ — a(2n+1)

= 2n+rm

A
Ve +h)2 +d2 —/(hy —h)2 +d2 = S@n+1)
Let m = (2n+1)
A
(he +h )2 +d? = my + (ht — hy)? + d?
square both sides
)\2
(ht + he)? +d* = m?‘Z + (hy — hy)* + d* + mA/(hy — hy )2 + d?
x=(hi+he)? y=(he —h)? ©—y=4dhh,

)\2
z = m*— +y+mi\y+d?

4

<t = i)

4hyh, (2n + 1A\ >
d = \/<(2nim_ I > —(h¢ —h)2 neEZ

5. hy =20m
h, =3m
fe=2GHz M= ﬁ =0.15
de = ke = 1600m = 1.6Km
This is a good radius for suburban cell radius as user density is low so cells can be kept fairly large.
Also, shadowing is less due to fewer obstacles.

6. Think of the building as a plane in R?
The length of the normal to the building from the top of Tx antenna = h;
The length of the normal to the building from the top of Rx antenna = h,
In this situation the 2 ray model is same as that analyzed in the book.

7. h(t) = a10(t — 7) + ad(t — (7 + 0.22us))

G,=G =1
ht = hr =8m
fe=900MHz,\=c¢/f.=1/3
R=-1
r+ax —1 6
delay spread = —— = 0.022 x 10 °s
c
21/82 + () —d
= (2) = 0.022 x 10755
c
=d=16.1m
d
S.T=—=2583.6Tns
c
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a9 = -_—

4 x + x!

2
) =271 x107°

2
) =137x107°

8. A program to plot the figures is shown below. The power versus distance curves and a plot of the
phase difference between the two paths is shown on the following page. From the plots it can be seen
that as G, (gain of reflected path) is decreased, the asymptotic behavior of P, tends toward d—2 from
d~*, which makes sense since the effect of reflected path is reduced and it is more like having only a
LOS path. Also the variation of power before and around dc is reduced because the strength of the
reflected path decreases as GG, decreases. Also note that the the received power actually increases with
distance up to some point. This is because for very small distances (i.e. d = 1), the reflected path is
approximately two times the LOS path, making the phase difference very small. Since R = -1, this
causes the two paths to nearly cancel each other out. When the phase difference becomes 180 degrees,
the first local maxima is achieved. Additionally, the lengths of both paths are initially dominated by
the difference between the antenna heights (which is 35 meters). Thus, the powers of both paths are
roughly constant for small values of d, and the dominant factor is the phase difference between the
paths.

clear all;
close all;
ht=50;
hr=15;
£=900e6;
c=3e8;
lambda=c/f;
GR=[1,.316,.1,.01];
Gl=1;

R=-1;
counter=1;
figure(1);

d=[1:1:100000];

1=(d. 2+ (ht-hr)"2).".5;
r=(d." 2+ (ht+hr) "2).".5;
phd=2*pi/lambdax*(r-1);
dc=4*ht*hr/lambda;
dnew=[dc:1:100000] ;

for counter = 1:1:4,
Gr=GR(counter) ;
Vec=Gl./1+R*Gr./r.*exp(phd*sqrt(-1));
Pr=(lambda/4/pi) “2*(abs(Vec)) . 2;
subplot (2,2, counter);
plot (10%1og10(d),10*1ogl10(Pr)-10%1ogl0(Pr(1)));
hold on;
plot (10*1logl0(dnew) ,-20*1oglO(dnew)) ;
plot (10%1logl0(dnew) ,-40%*1logl0(dnew)) ;
end
hold off
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Figure 1: Problem 8

As indicated in the text, the power fall off with distance for the 10-ray model is d~2 for relatively large
distances

The delay spread is dictated by the ray reaching last d = 1/(500/6)? + 102 = 83.93m
Total distance = 6d = 503.59m

7o = 503.59/c = 1.68us

L.O.S ray d = 500m

70 = 500/c = 1.6Tus

.. delay spread = 0.01us

fe=900MH~z

A=1/3m

G = 1 radar cross section 20dBm? = 10log; 0o = o = 100
d=1, s = s = /(0.5d)2 + (0.5d)? = dv/0.5 = V0.5

Path loss due to scattering

2
P, MW Go
— = |—7%5—| =0.0224 = -16.498dB
P, (47)3/2s5/

Path loss due to reflection (using 2 ray model)

2
P, Vv 2
B (BVGY) (AN 559 x 107 = —34544B
P; s+ s 4

d=10 Pscattering = —56.5dB Preflection = —54.54dB
d =100  Pscattering = —96.5dB  Prefiection = —74.54dB
d = 1000 Pscattering = —136.5dB  Prcfiection = —94.54dB
Notice that scattered rays over long distances result in tremendous path loss

do\"” L
P. = PK ] — simplified

) ()
s — — free space

PT:Pt< d



4
The two models are equal.

. when K = (ﬁ)Q and dgp = A

13. Ppoise = —160dBm
fe=1GHz dy = 1m, K = (\/47wdp)?> =5.7x 1074, A =03,y =4
We want SN R,..q = 20dB = 100
** Noise power is 10719
do\”
e (%)

d
4
1071 = 10K <O'3>
d
d < 260.7m

14. d = distance between cells with reused freq
p = transmit power of all the mobiles

<S ) > 20dB
I uplink

(a) Min. S/I will result when main user is at A and Interferers are at B
d4 = distance between A and base station #1 = /2km dp = distance between B and base station

#1 = \/2km

: —

S Pl i q2 (dnim — 1)2
(>min a 2P[[4;2]]2 - 26% - 4 1 = 100

dndp

= dpmin — 1 = 20km = dpm = 21km since integer number of cells should be accommodated in
distance d = dyn = 22km

(v) i
SR OMEE S
Py d I)win 2Pk [C%F
1 m _1 [dml] _1 [dml] _ 100
2 | da 27 V2 21 V2
= dmin = 9.27 = with the same argument = d,,;,, = 10km
(c)

d PY
I min a 2k [dfo}’y - 0.04 -

dp B
= dimin = 2.41km = with the same argument d,,;, = 4km

15. f. =900M Hz, hy = 20m, h, = bm,d = 100m
Large urban city PLjgpgecity = 353.52dB
small urban city  PLgnaiicity = 325.99dB

suburb PLgpury = 207.8769dB
rural area PLyyralareacountryside = 70.9278dB

As seen , path loss is higher in the presence of multiple reflectors, diffractors and scatterers



Plot for Gr = 0 dB
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Figure 2: Problem 16

16. Piecewise linear model for 2-path model. See Fig 2

17. P, = P, — Pr(d) — Y.} FAF; — Y} PAF,
FAF =(5,10,6), PAF =(3.4,3.4)

d() v —8
Prd)K | — ) =10"°=—8dB
d /g
—110=F,—-80—-5—-10—-6—-34—-34

18. (a) fdB = 10log; K — 10rlog; 04

using least squares we get

v=4

(b) PL(2Km) = 10log;y K — 10rlog,qd = —161.76dB

(c) Receiver power can be assumed to be Gaussian with variance aid B
2
X ~ N(0,0.45)

X —10
Prob(X < —10) = Prob ( <
OydB  OydB

> =6.512 x 10~*

19. Assume free space path loss parameters
fe=900MHz — X\=1/3m
OydB = 6
SNRecq = 15dB
P=1W



g =3dB
Proise = —40dBm = Precyg = —55dB
Suppose we choose a cell of radius d

u(d) = Preepa(due to path loss alone)
b (VGA ? 14x1--3
‘\ard ) — @

pap = 101og; 0(u(d))

P(Preca(d) > —55) 0.9

P (Precd(d) — paB —55 — MdB) — 09
OydB 6
M — 1.982
= ugp = —47.308
= pu(d) = 1.86x107°
=d = 8.68m

20. MATLAB CODE

Xc = 20;
ss = .01;
y = wgn(1,200%(1/s8));
for i = 1:length(y)
x(1) = y(1);
for j = 1:1i
x(1) = x(i)+exp(-(i-j)/Xc)*y(j);
end
end

21. Outage Prob. = Prob. [received power,g < Tpyg]
Tp = 10dB

(a)

outageprob. =1 — Q <M> =1-Q <5> =Q <5> = 26%

T4
(b) oy = 4dB, outage prob < 1% =

Tp— Tp—
Q(p“w> >09% = LM 933

ay ay
jy > 19.32dB
(c) -
oy =12dB,~ 21 « _6.99 = 11, > 37.8dB

Oy



20

—— White Noise Process
— — Filtered Shadowing Processing
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Figure 3: Problem 20

(d) For mitigating the effect of shadowing, we can use macroscopic diversity. The idea in macroscopic
diversity is to send the message from different base stations to achieve uncorrelated shadowing.
In this way the probability of power outage will be less because both base stations are unlikely to
experience an outage at the same time, if they are uncorrelated.

22.

2

0272

T

rQ <a+bln%) dr

L—

To perform integration by parts, we let du = rdr and v = Q (a + bln %) Then u = %T‘Q and

. 0 T\ 0 0 ™\ -1 2 b
dv=5,Q (0400 5) = 5 Q@ marvmym g, (a+ b ) = = ep(-k2/2) . (1)



where k:a—l—bln%

C

. Then we get

R
1 1
Qla)+ —5 [ r* exp(—k?%/2)=dr
R
r=0
a o "
Q(a)—i—_/ \/;?exp Tk 2bk—zb>dk

2 —2ab

o+ emn (25

N—— ——

Q(a) + exp <2 — 2ab

o

Since Q(—x) = 1 — Q(z).

=3
dy=1
k =0dB
o =4dB
R =100m

24. v=6

—100dBm = —130dB

_ da\”
P,(R) = BK <d0> =80 x 107? = —70.97dB
sz'n - ?
a= Prin = Py (R) _ 14.7575
g
10vlogge

b= = 3.2572

OydB

c=Q(a)+ e%Q <2 —b2ab> ~1

P,(R) =20+ Ppin
a=-20/8 =—-2.5

10 x 6 x logloe

8
c=0.9938

b= = 20.3871




Y/ O ‘ 2 4 6

95 4 0.7728 | 0.8587 | 0.8977
-8 0.6786 | 0.7728 | 0.8255
12 0.6302 | 0.7170 | 0.7728

Since P.(r) > Py, for all 7 < R, the probability of non-outage is proportional to Q (_71), and thus
decreases as a function of o. Therefore, C' decreases as a function of o. Since the average power at the
boundary of the cell is fixed, C increases with v, because it forces higher transmit power, hence more
received power at 7 < R. Due to these forces, we have minimum coverage when v = 2 and ¢ = 12. By
a similar argument, we have maximum coverage when v = 6 and ¢ = 4. The same can also be seen
from this figure:

0.95

0.9

=
075 = —

Coverage

Figure 4: Problem 25

The value of coverage for middle point of typical values i.e. v = 4 and ¢ = 8 can be seen from the
table or the figure to be 0.7728.



Chapter 3

1. d=ut
2
r+r =d+ 2%
Equivalent low-pass channel impulse response is given by

(1) = ag(t)e 705 (r — 75(t)) 4+ a1 (£)e 71O (r — (1))

ap(t) = AVGL with d = vt

o0(t) = 21 foro(t) — Dy
T0(t) =d/c

¢D0 = ft27TfD0(t)dt
JDo(t) = % cost(t)
Oo(t) =0 Vt

€] €] .
o (1) = 4):?@) - 4,,/\(54@) with d = vt

¢1(t) = 2m feri(t) — &b,

mit) = (r+1')/e = (d+ %) fo
¢p, = [, 2m fp, (t)dt

[, (t) = X cosb1(t)

01(t) = m — arctan d—% vt

2. For the 2 ray model:

To =

+ ol=
&\

x

T =

o

L+ =1 (e )2+ 2 — (e — )2+ &P

.. delay spread(7T5,)
c c

when d > (hy + h)
12hih,

e d
hy = 10m, h, =4m, d = 100m

ST, =2.67 %1079

3. Delay for LOS component = 19 = 23 ns
Delay for First Multipath component = 71 = 48 ns
Delay for Second Multipath component = 75 = 67 ns

T. = Delay for the multipath component to which the demodulator synchronizes.

Ty, = MaX Ty — Te
m

So, when 7. = 19, T, = 44 ns. When 7. = 7, T, = 19 ns.



. fe=10°Hz
10
Tn,min = 331085

comin for, = :,)IXOW =33>1

. Use CDF strategy.

2
2. 2 9 1 —G%+y? A 22
F.(z)= Plz*4y* < z2°] = e 202 dxdy = e—rdrd@ =1—e2?(2>0)
2mo? o
x2+4+y2<22 0
d 22
/() =2 57 o Rayleigh
dz o2
For Power: )
Fa(2)=P[Z <z =1-— 6;722
1 —z
f(2)= 53653 FEzxponential
202 20

. For Rayleigh fading channel ,
Pr(P. < Py) =1— e P0/%

20% = —80dBm, Py = —95dBm, Pr(P, < Py) = 0.0311
20% = —80dBm, Py = —90dBm, Pr(P, < Py) = 0.0952

. For Rayleigh fading channel

_ 2
Poutage =1l-e Po/20

0.01 =1—e Po/Pr
. P, = —60dBm
? = -80dBm = 10~1!

Target Power Py = -80 dBm = 107!
Avg. power in LOS component = s = -80dBm = 10~

107°
Priz? <107 = Prlz < ——
22 <1071 = Priz < ——]
_ 107°
Let Zo—ﬁ .
20 —(z+s%)
:/ % e 27 Io(zs)dz, 2>0
2 2
0 g g

= (0.3457

To evaluate this, we use Matlab and Ip(x) = besseli(0,z). Sample Code is given:

clear PO = le-11; s2 = le-11; sigma2 = (le-11)/2; z0 =

sqrt(le-11); ss = z0/1e7; z = [0:ss:20]; pdf =

(z/sigma?2) . xexp(-(z. 2+s2)/(2xsigma2)) . *besseli(0,z.*(sqrt(s2)/sigma2));
int_pr = sum(pdf)*ss;



9. CDF of Ricean distribution is

10.

ngcean(z) _ /Z pPZ{icean(z)
0
where
, 22(K +1) (K +1)22 K(K +1)
Ricean
= - - >
P (2) By oXP [ K Pr Iy | 22 Pr , 220

For the Nakagami-m approximation to Ricean distribution, we set the Nakagami m parameter to be
(K +1)?/(2K + 1). CDF of Nakagami-m distribution is

Fgakagami—m (z) _ /0 z pgakagami—m (z)

where

>0, m=>05

— M —

Nakagami—m( ) 2mm22m_1 _mZQ
Pz '(m)Prm Ppe

We need to plot the two CDF curves for K = 1,5,10 and Pr =1 (we can choose any value for Pr as it
is the same for both the distributions and our aim is to compare them). Sample code is given:

z = [0:0.01:3]; K = 10; m = (K+1)"2/(2%K+1); Pr = 1; pdfR =
((2xz* (K+1) ) /Pr) . *exp (-K- ((K+1) .*(z.~2)) /Pr) . *besseli (0, (2*xsqrt ((K*x(K+1)) /Pr) ) *z) ;
pdfN = ((2*m"m*z.” (2*m-1))/(gamma (m)*Pr"m) ) . *exp (- (m/Pr) *z."2);
for i = 1:length(z)
cdfR(i) = 0.01*sum(pdfR(1:i));
cdfN(i) = 0.01*sum(pdfN(1:1));
end plot(z,cdfR); hold on plot(z,cdfN,’b--’); figure;
plot(z,pdfR); hold on plot(z,pdfN,’b--’);

As seen from the curves, the Nakagami-m approximation becomes better as K increases. Also, for a
fixed value of K and z, prob(y<z) for = large is always greater for the Ricean distribution. This is seen
from the tail behavior of the two distributions in their pdf, where the tail of Nakagami-distribution is
always above the Ricean distribution.

(a) W = average received power
Z; = Shadowing over link i
P,; = Received power in dBW, which is Gaussian with mean W, variance o

(b)

2

Poutage = P[Pri <TNPo<T] = P[P.1 <T|P[P, <T] since Z1, Zy independent

(=)

[ee]

Pout: /P[PTJSTaPrQ<T|Y:y]fy(y)dy

—00

PalY=y °~ N (W + by,a202) , and [Poa|Y =y] L [PalY =y

T by—T\12 1 2
Poutage: / |:Q <W + Y ):| e 21{72 dy
ao Varo

— 00
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Figure 1: The CDF and PDF for K = 1,5, 10 and the Tail Behavior



let £= u

_OO 1 W —T+buoc\1* -2 B T 1 A + byo 2 —y?
() e [le (B0 e

(d) Leta=b =21 o =8 A =5 With independent fading we get

V2
5 2
Pout: |:Q <8>:| = 0.0708.

With correlated fading we get P,,;= 0.1316.
Conclusion : Independent shadowing is prefarable for diversity.

11. There are many acceptable techniques for this problem. Sample code for both the stochastic tech-
nique(preferred) and the Jake’s technique are included.

Jakes: Summing of appropriate sine waves

%Jake’s Method
close all; clear all;
%choose N=30
N=30; M=0.5*(N/2-1); Wn(M)=0; beta(M)=0;
%We choose 1000 samples/sec
ritemp(M,2001)=0; rqtemp(M,2001)=0; rialpha(1,2001)=0; fm=[1 10
100] ; Wm=2xpi*fm; for i=1:3
for n=1:1:M
for t=0:0.001:2
%Wn (i) =Wm*cos (2*pi*i/N)
Wn (n)=Wm(i)*cos(2*pi*n/N) ;
Jbeta(i)=pi*xi/M
beta(n)=pi*n/M;
Jritemp(i,20001)=2*cos(beta(i))*cos(Wn(i)*t)
%hrqtemp(i,20001)=2*sin(beta(i))*cos(Wn(i)*t)
ritemp(n,1000*t+1)=2*cos(beta(n))*cos(Wn(n)*t);
rqtemp (n,1000xt+1)=2*sin(beta(n))*cos(Wn(n)*t) ;
%Because we choose alpha=0,we get sin(alpha)=0 and cos(alpha)=1
%rialpha=(cos(Wm*t)/sqrt(2))*2*cos(alpha)=2*cos (Wm*t)/sqrt(2)
%rqalpha=(cos (Wm*t)/sqrt(2))*2*sin(alpha)=0
rialpha(1,1000%t+1)=2%cos(Wm(i)*t)/sqrt(2);
end
end
%summarize ritemp(i) and rialpha
ri=sum(ritemp)+rialpha;
%summarize rqtemp(i)
rg=sum(rqtemp) ;
hr=sqrt(ri~2+rq~2)
r=sqrt(ri.” 2+rq."2);
%find the envelope average
mean=sum(r) /2001 ;
subplot(3,1,1);



time=0:0.001:2;
%plot the figure and shift the envelope average to 0dB
plot(time, (10*1logl0(r)-10*1loglO(mean)));
titlename=[’fd = ’ int2str(fm(i)) ’ Hz’];
title(titlename) ;
xlabel (’time(second)’);
ylabel (’Envelope(dB)’);

end



Envelope(dB) Envelope(dB)
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Figure 2: Problem 11

Stochastic: Usually two guassian R.V.’s are filtered by the Doppler Spectrum and summed. Can also
just do a Rayleigh distribution with an adequate LPF, although the above technique is prefered.

function [Ts,
b
yA
b
yA
pA

function [Ts, z_dB]
generates a Rayleigh fading signal for given Doppler frequency f_D,
during the time perios [0, t], with sampling frequency f_s >= 1000Hz.

z_dB] = rayleigh_fading(f_D, t, f_s)

rayleigh_fading(f_D, t, f_s)

% Input(s)

b -——£_D [Hz] [1x1 double] Doppler frequency

% -t simulation time interval length, time interval [0,t]

/A - [Hz] sampling frequency, set to 1000 if smaller.

% Output(s)

%h - Ts [Sec] [1xN double] time instances for the Rayleigh signal
% -— z_dB : [dB] [1xN double] Rayleigh fading signal

b

% Required parameters

if f_s < 1000;
f_ 1000;
end;

S

% [Hz]

Minumum required sampling rate



N = ceil( t*xf_s ); % Number of samples

% Ts contains the time instances at which z_dB is specified
Ts = linspace(0,t,N);

if mod( N, 2) == 1

N = N+1; % Use even number of samples in calculation
end;
f = linspace(-f_s,f_s,N); % [Hz] Frequency samples used in calculation

% Generate complex Gaussian samples with line spectra in frequency domain
% Inphase :

Gfi_p = randn(2,N/2); CGfi_p = Gfi_p(1,:)+i*Gfi_p(2,:); CGfi = [
conj(fliplr(CGfi_p)) CGfi_p 1;

% Quadrature :

Gfq_p = randn(2,N/2); CGfq_p = Gfq_p(1,:)+i*Gfq_p(2,:); CGfq = [

conj (f1iplr(CGfq_p)) CGfq_p 1;

% Generate fading spectrum, this is used to shape the Gaussian line spectra
omega_p = 1; % this makes sure that the average received envelop can be 0dB
S_r = omega_p/4/pi./(f_D*sqrt(1-(£/£_D)."2));

% Take care of samples outside the Doppler frequency range, let them be O
idx1l = find(£>=f_D); idx2 = find(f<=-f_D); S_r(idxl) = O;

S_r(idx2) = 0; S_r(idx1(1)) = S_r(idx1(1)-1);

S_r(idx2(length(idx2))) = S_r(idx2(length(idx2))+1);

% Generate r_I(t) and r_Q(t) using inverse FFT:
r_I = Nxifft(CGfi.*sqrt(S_r)); r_Q = -ixN*ifft(CGfq.*sqrt(S_r));

% Finally, generate the Rayleigh distributed signal envelope
z = sqrt(abs(r_I). 2+abs(r_Q)."2); z_dB = 20*logl0(z);

% Return correct number of points
z_dB = z_dB(1:1length(Ts));
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Figure 3: Problem 11
P, =30dBm
fD =10H=z
2
Po = 0dBm, T, = %L — 0.0013
0= m, = — U. S
° pfpVen
Py = 15dBm, t, = 0.0072s
Py = 25dBm, t, = 0.0264s
In the reader, we found the level crossing rate below a level by taking an average of the number of

times the level was crossed over a large period of time. It is easy to convince that the level crossing
rate above a level will have the same expression as eq. 3.44 in reader because to go below a level again,
we first need to go above it. There will be some discrepancy at the end points, but for a large enough
T it will not effect the result. So we have

Lz(above) = Lz(below) = \/277po6_"2

And,

_ p(z > 2
tz(above) = L;(abov(z)

p(z>Z):1—p(z§Z):1—(1—e_p2):e_p

2

tz(above) =

1
V2w fpp



The values of tz(above) for fp = 10,50,80 Hz are 0.0224s, 0.0045s, 0.0028s respectively. Notice that as
fp increases, tz(above) reduces.

14. Note: The problem has been solved for Ts = 10us

P, =10dB
fp=80Hz

Ry :
R :
Rs :
Ry :
R :
Rg :
Ry
Rs :

—00 <y < —10dB,
—10dB < v < 0dB,
0dB < v < 5dB,
5dB < v <10dB,
10dB < v < 15dB,
15dB < v < 20dB,
20dB < v < 30dB,

N; — level crossing rate at level A;

MATLAB CODE:

30dB < v < o0,
Ny =0, p
Ny =19.85, p
N3 =57.38, p
Ny =8219, p
N5 =73.77, p
Ng =15.09, p
N7 =0.03, »p
Ng =0, p

N = [0 19.85 57.38 82.19 73.77 15.09 .03 0];

[l [l I [l Il I [l

m = 9.95 x 1073

mo = 0.085
w3 = 0.176
my = 0.361
75 = 0.325
6 =— 0.042

w7 =4.54 x 107°
g = 3.72 x 1074

(=]
—_

=
[e=]

[y

[e]
o
ot

= H‘»—l
O | OO | =
o

H
o~
ot

H
_
ol

=
)
w

=
=]

Pi = [9.95e-3 .085 .176 .361 .325 .042 4.54e-5 3.72e-44];

T = 10e-3;
for i = 1:8
if i ==
p@i,1)
p(i,2)
p(i,3)
elseif i ==
p@i,1)
p(i,2)
p(i,3)
else
p@i,1
p(i,2)

p(i,3)

=0;

(N(i+1)*T)/Pi(i);
1-(p(i,D+p(i,2));

(N(i)*T)/Pi(i);
0;

= 1-(p(i,D+p(i,2));

(N(E)*T) /Pi(i);
(N(i+1)*T) /Pi(i);
1-(p(a,D+p(i,2));
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end

% p
yA
yA
yA
pA
yA
yA
yA
pA
yA

end

0 0.0199 0.9801
0.0023 0.0068 0.9909
0.0033 0.0047 0.9921
0.0023 0.0020 0.9957
0.0023 0.0005 0.9973
0.0036 0.0000 0.9964
0.0066 0 0.9934
0 0 1.0000
a19(7) p="T0Hz
S(r,p) =1 a20(t —0.022usec) p=49.5Hz
0 else

The antenna setup is shown in Fig. 15
From the figure, the distance travelled by the LOS ray is d and the distance travelled by the first
multipath component is
d)\ 2
2 = 64
(3)

Given this setup, we can plot the arrival of the LOS ray and the multipath ray that bounces off
the ground on a time axis as shown in Fig. 15

So we have

d 2
2 (2) +82 - d=0.022x 10753 x 10®

d2
=4 <4 + 82> = 6.6% + d* 4 2d(6.6)

=d=16.1m

fp = wvcos(@)/\. v = fpA/cos(f). For the LOS ray, # = 0 and for the multipath component,
0 = 45°. We can use either of these rays and the corresponding fp value to get v = 23.33m/s.

_ 4hh,
DY
d. = 768 m. Since d < d., power fall-off is proportional to d—2.

Ty, = 0.022us, B~! = 0.33us. Since T},, < B~!, we have flat fading.

de

Outdoor, since delay spread =~ 10 usec.
Consider that 10 usec = d = ct = 3km difference between length of first and last path

Scattering function
S(7,p) = Far[Ac(r, At)]

= %rect (%p) for 0 <7 < 10usec

The Scattering function is plotted in Fig. 16
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17.

d meters
Figure 4: Antenna Setting
0.022 us
‘ ‘
i i
t0 tl t —>
10 = (d/3e8)

tl = 2 sqrt[(d/2)"2+8"2]/3e8

Figure 5: Time Axis for Ray Arrival

Ro7'AC(T)d7'
(c) Avg Delay Spread = e——— = Husec
Ac(r)dr
0
Re 2
(T—prm)“Ac(T)dT
RMS Delay Spread = | *— = 2.89usec

Ac(r)dr
0

Doppler Spread = % = 50 Hz

(d) B, > Coherence BW = Freq. Selective Fading ~ -~ = 10° = 3, > = 10° kHz

T
Can also use pry, or or, instead of T,

(e) Rayleigh fading, since receiver power is evenly distributed relative to delay; no dominant LOS

path

2
(f) tp = p;pm_/%r with p =1, fp = % — t, = .0137 sec

(g) Notice that the fade duration never becomes more than twice the average. So, if we choose our
data rate such that a single symbol spans the average fade duration, in the worst case two symbols
will span the fade duration. So our code can correct for the lost symbols and we will have error-free

transmission. So ti = 72.94 symbols/sec
R

(a) Ty, =~ .1lmsec = 100usec
B, ~ .1Hz

Answers based on u7,, or o, are fine too. Notice, that based on the choice of either T}, u7,, or

or, , the remaining answers will be different too.
(b) Be~ 7- = 10kHz

Af > 10kHz for uy 1 us
(c) (At), = 10s
(d) 3kHz < B, = Flat

30kHz > B, = Freq. Selective
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Figure 6: Scattering Function
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Chapter 4

. C' = Blog, (14—%)

B log, 1+%
= T

As B — o<}>3 by L’Hospital’s rule

51
= N3
. B = 50 MHz
P =10 mW
No =2 x107? W/Hz
N = NyB
C = 6.87 Mbps.

Ppew = 20 mW, C = 13.15 Mbps (for z < 1, log(1 + z) ~ x)
B = 100 MHz, Notice that both the bandwidth and noise power will increase. So C' = 7 Mbps.

. Pnoise =0.1mW

B =20MHz

(a) Cuse'rl—»base station — 0.933B = 1866Mbp8
(b) Cuser2—>base station = 3.46B = 69.2Mbp5

(a) Ergodic Capacity (with Revr CST only)= B[>.0_, logy(1 4 7i)p(7i)] = 2.8831x B = 57.66 Mbps.

(b) Pout = P""(’V < '}’min)
Co = (1'pout)Blog2(1 + ’Ymin)
For
Ymin > 2OdB7 Pout = 17 C10 =0
15dB < Ymin < 20dB, pout = .9, C, = 0.1Blogy(1 + Ymin), max C, at ymin ~ 20dB.
10dB < Ymin < 15dB, pout = .75, Cp = 0.25Blogy (1 + Ymin), max Cy, at Ymin ~ 15dB.
5dB < Ymin < 10dB, pouy = .5, Cp = 0.5Blogy(1 4+ Ymin), max Cy, at Ymin ~ 10dB.
0dB < Ymin < 5dB, pout = .35, C, = 0.65Blogs(1 4+ Ymin), max C, at Ymin ~ 5dB.
—5dB < Ymin < 0dB, pout = .1, C, = 0.9Blogs(1 + Ymin), max Cy at Ymin ~ 0dB.
Ymin < —5dB; pout = 0, Cp = Blogy(1 + Ymin), max Cy, at ymin =~ -HdB.

Plot is shown in Fig. 1. Maximum at ymin = 10dB, pout=0.5 and C, = 34.59 Mbps.

(a) We suppose that all channel states are used

4
1 1
— =1+ —pi= 4 =08109

Y0 =1 It
1 1
— — — >0.. true
Yo 4
Stv) 1 1




Capacity (bps)

x 10
:

L L L L L
0.2 0.4 0.6 0.8 1

Figure 1: Capacity vs Py

1.2322 v=mv
S(y) ) 1.2232 y=m
S ) 11332 4 =13
0.2332 v=

5
S50i) _ o
S Yi

0.0043 v=m

S(y) ] 0.0029 v =

S ] 04288 4 =13

4.2882 v =y

C
B= logy(1 + o) = 2.4028bps/H z

(¢) To have poyt = 0.1 or 0.01 we will have to use all the sub-channels as leaving any of these will
result in a pyy¢ of at least 0.2 .-, truncated channel power control policy and associated spectral
efficiency are the same as the zero-outage case in part b .

To have pyy+ that maximizes C with truncated channel inversion, we get

max% = 4.1462bps/Hz  pour = 0.5

10dB w.p. 0.4

_ P,(d) 5dB  w.p. 0.3
SNBrevs = 5" = 0dB w.p. 0.2
—10dB w.p. 0.1

Assume all channel states are used

4
1 1
— =1+ Z —p; = Y0 =0.4283 > 0.1 .. not possible
Yo iy Vi



Now assume only the best 3 channel states are used

0.9 1
—=14+> —pi= 9 =06742<1 . okl
Y0 = i
13832 y=~v =10
S(y) ) 11670 = = 3.1623
S ) 04832 A=~3=1
0 vy=v =0.1

C/B = 2.3389bps/Hz
(b) & =0.7491
C/B = logy(1 + o) = 0.8066bps/H z

(c) (Q)max = 2.1510bps/ H z obtained by using the best 2 channel states.
With poyt =0.14+0.2=0.3

(a) Maximize capacity given by
S
C= R max B /Blog <1 + W) p(y)d.
SO Sp(dr=5 S
Construct the Lagrangian function

L= ABlog (1 + Sg”) p(y)dy — A/ Sg”p(’y)dv

Taking derivative with respect to S(7), (refer to discussion section notes) and setting it to zero,

we obtain,
5(7)_{ SRR =l
S 0 7<%

Now, the threshold value must satisfy

/7:0 <710 - i) p(y)dy =1

Evaluating this with p(y) = %6_7/10, we have

1 3] 1 o0 ,—7v/10
1 = — e'Y/lOd'y—/ dry (1)

1070 Yo 10 Y0 v
1 1 (e

— e 0/10 _ 0 e—dv (2)
00 1wy
1 1

— %e—%/ 10 _ 1o EXPINT (70/10) (3)

where EXPINT is as defined in matlab. This gives vy = 0.7676. The power adaptation becomes

Sty _ omes — 5 7 > 0.7676
S 0 v < 0.7676



(b)

Capacity can be computed as

o0

1
C/B=— log (7/0.7676) e /104y = 2.0649 nats/sec/Hz.
10 Jo.7676

Note that I computed all capacites in nats/sec/Hz. This is because I took the natural log. In
order to get the capacity values in bits/sec/Hz, the capacity numbers simply need to be divided
by natural log of 2.

AWGN capacity C/B = log(1 + 10) = 2.3979 nats/sec/Hz.
Capacity when only receiver knows ~y
1 o
C/B = 10/ log (1 + ) e /dy = 2.0150 nats/sec/Hz.
0

Capacity using channel inversion is ZERO because the channel can not be inverted with finite
average power. Threshold for outage probability 0.05 is computed as

L[ o0
— e "Pdy =0.95
10 /o
which gives 79 = 0.5129. This gives us the capacity with truncated channel inversion as
1
C/B = log |1+ 5 — ] *0.95 (4)
10 Jro 77710y
log |1 + = 0.95 (5)
= Og * U.
LEXPINT(v0/10)
= 1.5463 nats/s/Hz. (6)

Channel Mean=-5 dB = 0.3162. So for perfect channel knowledge at transmitter and receiver we
compute 9 = 0.22765 which gives capacity C'//B = 0.36 nats/sec/Hz.

With AWGN, C/B = log(1 + 0.3162) = 0.2748 nats/sec/Hz.

With channel known only to the receiver C'/B = 0.2510 nats/sec/Hz.

Capacity with AWGN is always greater than or equal to the capacity when only the reciever
knows the channel. This can be shown using Jensen’s inequality. However the capacity when
the transmitter knows the channel as well and can adapt its power, can be higher than AWGN
capacity specially at low SNR. At low SNR, the knowledge of fading helps to use the low SNR
more efficiently.

If neither transmitter nor receiver knows when the interferer is on, they must transmit assuming
worst case, i.e. as if the interferer was on all the time,

C = Blog (1 + > = 10.7Kbps.

NoB+1

Suppose we transmit at power S; when jammer is off and Sy when jammer is off,

51 82
C=B I 1 0.75 + 1L 1+—= 1025
max[°g< +NOB) +Og< +NOBH) }

subject to

0.7551 + 0.2555 = S.
This gives S = 12.25mW, Sy = 3.25mW and C = 53.21 Kbps.



(¢) The jammer should transmit —xz(¢) to completely cancel off the signal.

S = 10mW
No = .001 yW/Hz
B = 10 MHz

Now we compute the SNR’s as:

=S
= "NyB
‘s glvedr A — 11?103 — — — —
This gives: 71 = 55om0-610x108 = 1+ 72 = -29, 73 = 4, 74 = 0.0625

To compute vy we use the power constraint as:

()
S(L-1) -
j Y0 Vi +
First assume that v9 < 0.0625, then we have
4 14 1 + 1 + 1 n 1
SO 25 0625
= v = .1798 > 0.0625

So, our assumption was wrong. Now we assume that 0.0625 < vg < .25, then

3 1. 1+ 1 +1
Yo o 25 4
= 9 = .48 > 0.25

So, our assumption was wrong again. Next we assume that 0.25 < vy < 1, then

2 (1,
Y 1 4
= 79 = .8889 < 1

This time our assumption was right. So we get that only two sub-bands each of bandwidth 10 MHz
are used for transmission and the remaining two with lesser SNR’s are left unused.

Now, we can find capacity as:

Z Blog, <%)
Ji20

This gives us, C = 23.4 Mbps.

. Suppose transmit power is P;, interference power is P;,; and noise power is Pppise-

In the first strategy C'/B = log, (1 + m>

In the second strategy C'/B = log, (1 + nm:’:)
Assuming that the transmitter transmits -x[k] added to its message always, power remaining for actual
messages is P, — Py
The first or second strategy may be better depending on
P, _PPu
<
Pint + Pnoise Pnoz'se

P, is generally greater than Pj,; + Phoise , and so strategy 2 is usually better.

:>Pt_Pmt_Pnoisezo



H(f) 2

0.25

S
fc-20 fc fc+20

fc-10
© fex10 f (in MHz)

Figure 2: Problem 11

10. We show this for the case of a discrete fading distribution

(L+5)°F
=Xl 1+ —
C 0g< + NoB

(1+4)*P;
L:;IOg(l-}-]VOB —dj zj:Pj—P
oL

IP;
(1+4)*P; LA+5)*

= 0

NoB A NoB
(14 5)%P
NoB
P; 11
P AP

denot 1 1
enote— = ——
Yo AP

J

lety; =

P Y v
subject to the constraint
SP,
P

I
—_

11. S = 10mW
No = .001 uW/Hz
B = 10 MHz

Now we compute the SNR’s as: B
|H;[*S
Vi =
NoB

. . 210—3
This gives: v = 0‘0015}01,0610“06 =1,v = .25, v3 =4, v4 = 0.0625

To compute vg we use the power constraint as:

SE

J
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13.

First assume that vy < 0.0625, then we have

4_1+ 1+1+1+ 1
- 25 4 .0625

= 70 = .1798 > 0.0625

So, our assumption was wrong. Now we assume that 0.0625 < vg < .25, then

3. 1+1+1
Yo .25

= 70 = .48 > 0.25

So, our assumption was wrong again. Next we assume that 0.25 < vy < 1, then

2—1+ 1+1
Yo 1 4

= 0 = .8889 < 1

This time our assumption was right. So we get that only two sub-bands each of bandwidth 10 MHz
are used for transmission and the remaining two with lesser SNR’s are left unused.

Now, we can find capacity as:

= 3 Blog, (”)

I 270
This gives us, C = 23.4 Mbps.

For the case of a discrete number of frequency bands each with a flat frequency response, the problem

can be stated as H(/ )]2P(f)
1 1 N BT
st ng(}J(%KP; o8 ( TV >

denote y(f;) = IH(fz‘J)\\fw

0

L= Zlogz< () >+/\2sz

denote x; = Pgi), the problem is similar to problem 10
N 1 1
T, =——
Yo ()

where g is found from the constraints

1 1 1 1 .
§<%‘m>—““d% Ay =

(a) C=13.98Mbps



MATLAB

Gammabar = [1 .5 .125];

ss = .001;
P = 30e-3;
NO = .001e-6;
Bc = 4e6;

Pnoise = NOx*Bc;
hsquare = [ss:ss:10*max(Gammabar)];
gamma = hsquare*(P/Pnoise);

for i = 1:length(Gammabar)

pgamma(i,:) = (1/Gammabar(i))x*exp(-hsquare/Gammabar(i));

end

gammaOv = [1:.01:2];
for j = 1:length(gammaOv)
gamma0 = gammaOv(j);
sumP(j) = 0;
for i = 1:length(Gammabar)
a = gamma.*(gamma>gammaO) ;
[b,c] = max(a>0);
gammac = a(find(a));
pgammac = pgamma(i,c:length(gamma)) ;
Pj_by_P = (1/gamma0)-(1./gammac);
sumP (j) sumP(j) + sum(Pj_by_P.*pgammac)*ss;
end

end
[b,c] = min(abs((sumP-1)));
gammaOch = gammaOv(c) ;

C =0;
for i = 1:length(Gammabar)

a = gamma.*(gamma>gammaOch) ;

[b,c] = max(a>0);

gammac = a(find(a));

pgammac = pgamma(i,c:length(gamma));

C = C + Bc*ss*xsum(log2(gammac/gammaOch) . *pgammac) ;
end

C=13.27Mbps
MATLAB

Gammabarv = [1 .5 .125];

ss = .001;

Pt = 30e-3;
NO = .001le-6;
Bc = 4e6;

Pnoise = NO*Bc;



P = Pt/3;
for k = 1:length(Gammabarv)

Gammabar = Gammabarv (k) ;

hsquare = [ss:ss:10*Gammabar];

gamma = hsquare*(P/Pnoise);

pgamma = (1/Gammabar)*exp(-hsquare/Gammabar) ;
gammaOv = [.01:.01:1];

for j = 1:length(gammaOv)

gamma0 = gammaOv(j);

a:
(b,

gamma . * (gamma>gamma0) ;
c] = max(a>0);

gammac = a(find(a));
pgammac = pgamma(c:length(gamma)) ;

Pj_by_P = (1/gamma0l)-(1./gammac) ;
sumP (j) = sum(Pj_by_P.*pgammac)*ss;
end
[b,c] = min(abs((sumP-1)));

gammaOch = gammaOv(c);
a = gamma.* (gamma>gammaOch) ;

[b,cl
gammac

max (a>0) ;
= a(find(a));

pgammac = pgamma(c:length(gamma)) ;

Ck) =
end Ctot

Bcxss*xsum(log2 (gammac/gammaOch) . *pgammac) ;
sum(C) ;



Chapter 5

1. Si(t) = Zk 5ik¢k(t)
Sj(t) = Zk Sjk:d)k(t)

where {¢y(t)} forms an orthonormal basis on the interval [0,T]

[ @ -sora = [0 (Zs bl) = 3 sim <t>)2dt
0 7 j . . imPm — im®Pm
T 2
_ /O (Z(sim—sjm)gzﬁm(t)> dt

m

Notice all the cross terms will integrate to 0 due to orthonormal property. So we get
4 2
= [ X G s o000 (0)t
0 m
= > (sim = sjm)” = Ilsi — 5]

2. Consider
1 . 2t 2mt
N =T [Sm <T> eos (M
1 . 27t 27t
Po = —T [sm (T) — COS ()}
T T T
2 2
oo =0, /0 o3(t) =1, /0 53t =1
3.

M
T M M
< 5 (1), () >= /0 (sm(t) - % Zsi(t)> (sn(t) _ % Zsi(t)> dt = — £
=1 =1



= f1(t), f2(t), f3(t) are orthogonal

(b)

=a=-2,

z(t) = afi(t) +bfa(t) + cfs(?)

1 1
0<t<1l:z(t) = ia—I—fb—l—
1 1
1<t<2:2(t) = = b —
x(t) 2a+2
1 1
2<t<3:2(t) = — —b
1 1
3<t<4:z(t) = —a+ =b
st<d:a(l) 3%t 3
b=2, c=-2

1
o= —1
2
1
—c=1
2
1
—c=1
+2
1
—Z¢c=3
2

= x(t) = =2fi(t) +2f2(t) — 2f3(t)

5. (a) A set of orthonormal basis functions is

In this set the given waveforms can be written as

sp=[12-1-1]
sg=[1-11-1]
sg=[2111]

sg=[1-2-22]

now we can see using Matlab or otherwise that the dimensionality is 4

(b) done in part a
(c)

l[s1 — so||> = 14
|[s1 — s3||> = 22
l[s1 — sa4||> =27
||so — s3||> = 14
|[s2 — s4||> = 19
||s3 — s4]|* = 31
[s1]]* = 10
[152]* = 4
1s3]|* = 6
[lsal* =13

The minimum distance between any pair is /14

6. From 5.28 we have

m = m; corresponding to §; = arg maxs, p(7y|si)p(s;)

max [(s;) =

max L(s;)
si

logL(s:)

p(v[si)p(si)
log p(7]si) + log p(s;)

N
max — —- log(mNy) —
si

constant

1

No

-

J=1

Vi — Sij)2 + log p(s;)



Figure 1: Problem 5




Figure 2: Problem 6

1
= max— el - sijl|* +log p(s:)

1
= min <=l — syl + log 1/p(s:)

s1 = (A, 0)

sz = (0, Ac)

s3 = (—A,0)

sq4 = (0, —Ac)
p(s1) = p(s3) = 0.2
p(s2) = p(s4) =0.3

1 1 .
sz =1 € R ||z — si||* +log 1/p(si) < ||z — s5]|* +log 1/p(s;)Vi # j
A% A%

which can be further solved using Matlab or otherwise far a given value of A. and Ny

() = n(t) — S0 nig;(t)

Vi = Sij 1

We know ¢_, ¢ span the signal space. Suppose we add (M-N) additional basis vectors so that ¢1 ... das
span the noise space . This can always be done for some M(may be infinite). Also MyN

M
n(t) = Z ng¢r(t) whereg;form an orthonormal set
k=1

then
M N
Elne(te)rs] = E | | D nedi(te) = Y npdp(ty) | (si +ny)
k=1 p=1

Since the signal is always independent of noise and white noise components in the orthogonal directions
are independent too, we have

Eln,(ty)r;] = E[njo;(ty)] — Elne;(ty)] =0 forj=1...N
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Figure 3: Problem 9a

8. Suppose s,,(t) is transmitted and N; is noise added. If the k' filter is hy(t), the output of the k'®
filter is

() = /Oo(sm(r)—i—NT)hk(t—r)dT

—0o0
sampling at time T gives

(T) = /OO sm(T)hk(T—T)dT—i-/_oo Nohio(T — 7)dr

— 00

Denote noise contribution as vy, = [*° Nyhy(T — 7)dr

E[l/k] =0
Ny [
agk = 2/00 | (T — 7)|%dr

2
Signal energy = (ffooo S (T) (T — T)d7'>

(foooo S (T)h (T — T)dT>2

SNR =~
%f_oo |hi(T — 7)|2dT

use Cauchy-Schwartz inequality to get upper bound on SNR as
SNR<2/OO| (7)%d
SN ) Sm(T)|“dT
with equality iff
hPUT — 1) = asp (1) = P (t) = as, (T —t)
which is the required result for matched filter
9. (a) g@):@ 0<t<T

g(T—t)z\/% 0<t<T
plotted for T=1 , integral value = 2/T = 2
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Figure 4: Problem 9b
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Figure 5: Problem 9c

(b) g(t) = sinc(t) 0<t<T
g(T —t)=sinc(T —t) 0<t<T
plotted for T=1 , integral value = 0.2470

(¢) g(t) = Lmemmt?/0® g <t<T
g(T —t) == %e‘“Q(T_tF/O‘Z 0<t<T
plotted for T=1 , integral value = 0.009

MATTLAB CODE
T =1; alpha = 1;

t = [0:.01:T];

%h Part a)

g = repmat(sqrt(2/T),1,length(t));
gm=repmat (sqrt(2/T),1,length(t));

int_a = sum(g.*gm)*.01;

plot(t,g,’b--’); hold on; plot(t,gm,’b:’);

%k Part Db)
figure;

g = sinc(t);
gm = sinc(T-t);



10.

11.

int_b = sum(g.*gm)*.01;
plot(t,g,’b--");

hold on;
plot(t,gm,’b:’);

hh Part c)

figure; g = (sqrt(pi)/alpha)*exp(-((pi)~2*t."2)/alpha~2);
gm=(sqrt (pi) /alpha) *exp (- ((pi) "2*(T-t) ."2) /alpha”2);;
int_c=sum(g.*gm)*.01; plot(t,g,’b--7);

hold on;

plot(t,gm,’b:’);

For Fig 5.4 v, = fOT'y(T)(;Sk(T)dT
For Fig 5. v, = fOT () (T — (T — 7))dT = fOT ~¥(7)¢r (7)dT which is the same as above.

d;
(5.40) gives 1 0L 31 . Q (ﬁ) —4.1% 1079
(5.43) gives ( ~1)Q () =23 x 107
(4-1) d2 7
(5.44) glves NG exp( 4’7\;"> =19x 10~
(5.45) gives My . Q (\/M) = 2Q ( L ) =15x107%
MATLAB CODE
Ac = 4;
s(1,:) = [Ac 0];
s(2,:) = [0 2*Ac];
s(3,:) = [0 -2%Ac];
s(4,:) = [-Ac 0];
sume = 0; for i = 1:4
for j = 1:4
if § "= i
d(i) = norm(s(i,:)-s(j,:));
sume = sume+Q(d(i)/sqrt(2));
end
end
end E1 = .25%sume;
dmin = min(d);
E2 = 3*Q(dmin/sqrt(2));
E3 = (3/sqrt(pi))*exp(-dmin~2/4);

E4=2%Q(dmin/sqrt(2));



Figure 6: Problem 11

- 8-PSK -
4.psK f‘i\- Jz A = N2

Figure 7: Problem 13

12.
n(0) = [ eos(zater +O)gle - (T - 7))dr
= /[51(7') + n(1)] cos(2m for + @) g(t — (T — 7))dr
si(1) = $i19(7) cos(2m foT + ¢o) + Si2g(7) sin(27 fom + ¢o)
sn(t) = [ Zhleos(mfer + 6 + 60) + cos(é — do)lg(r)g(t — (T - 7))dr +

il
2
"5 leos(4m fo7 + & + o) — cos(¢ — do)lg(T)g(t — (T —7))dr +

n(t) cos(2m for + @) g(t — (T — 7))dr

—

where ¢ — ¢g = A¢
Similrly we can find 75(t). Notice that terms involving f. will integrate to 0 approximately as f.T > 1

13. For 4PSK dpin = V2 = e4psi =1
For 8PSK d,in = \/5 +¢e—2ecos(m/4) = espsk =
extra energy factor = 3.4142 = 5.33dB

1 _
oo = 34142

14. For square QAM constellations, it is easy to derive that

2 .
5 = dnéin(22l _ 1) _ (?%;)) %(4l _ 1)

4[

44!

LS 10(7:481
AR



(16 QAM) For MQAM, s;(I = 2) = 2.5d%
(4 PAM) For MPAM, s;(l = 2) = 1.25d%
(16 PSK) For MPSK, (I = 2) = -

___ %min 2
— i = 6.5685d

min

15. M points are separated by an angle QM”
If |Algp > %QMW , we will go into the decision region for another adjacent symbol and so will make a
detection error

16. Gray encoding of bit sequence to phase transitions:
We first draw the figure and write down bit sequences for each phase in a way that exactly 1 bit changes
between nearest neighbors. We get the following table

Bit Sequence | Phase transition
000 0

001 /4

010 3m/4

011 /2

100 —m/4

101 —7/2

110 s

111 —37/4

The resulting encoding of the given sequence is as follows:

Bit Sequence | Mapped Symbol
s(k-1) = Ael™/4

101 s(k) = Ae=Im/4

110 s(k+1) = Ael3m/4

100 s(k+2) = Ael™/?

101 s(k+3)=A

110 s(k+4) = Ae™

17. (a) a=0.7071A

b=1.366A
(b) A? =72 (2—2cos )
r = 1.3066A

(c) Avg power of 8PSK = 72 = 1.7071A?
Avg power of 8 QAM = 1.1830A2
The 8QAM constellation has a lower average power by a factor of 1.443 (1.593 dB)

(d) See Fig 10
(e) We have 3 bits per symbol .'. symbol rate = 30 Msymbols/sec
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Figure 8: Problem 16
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Figure 9: Problem 17a

8-PSK AND 8-QAM

111
011

Figure 10: Problem 17d
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Figure 11: Problem 18a
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Figure 12: Problem 18b

18. (a) one set is on the axis and the other is w/4— offset. If the current symbol uses a point of ® , the
next symbol must come from ® and vice versa

(b) See Fig 12

(¢) 01001001 11 10 01 01 Assume we start from the ® points
S3 Sh 1 85 S4 S| S3 84

(d) See Fig 13

b1bg | Phase change from previous symbol

00 | w/4
01 | 3r/4
11 | —3r/4

10 | —7/4




19.

20.

Given, last symbol of X had phase -3 77/4

Given, last symbol of (@) had phase
Assuming we started from QO points

Tl'-3TI74|sls'2 s, s § §
|

00 01 00 10 01 11 10
Initial
symbols

Figure 13: Problem 18d

T T T
/ 2 cos(2m fit) cos(2m ft)dt = 0 = / 2cos (27 (fi + f5)t) +/
0 0 0

N

-

01 01

2cos (2n(f; — f;)t)

A
A=0 as fitf;>

1

B

B =sin(2n(f; — f;)T) is 0 first time for 27 (f; — f;)T = £7 = |fi — f;| = 0.5T

MATLAB CODE
gamma_dB = [0:.01:60];
gamma = 10." (gamma_dB/10);

vBdT = .01;

x = 2xpixvBdT;

tho_C = besselj(0,x);
Pb_bar=.5*((1+gamma* (1-rho_C)) ./ (1+gamma)) ;
semilogy (gamma_dB,Pb_bar) ;

hold on;

vBdT = .001;

x = 2¥pi*vBdT;

tho_C = besselj(0,x);

Pb_bar= .5*%((l+gamma*(1-rho_C))./(1l+gamma));
semilogy (gamma_dB,Pb_bar,’b:’);

vBdT = .0001;

x = 2xpixvBdT;

tho_C = besselj(0,x);

Pb_bar=.5*((1+gamma* (1-rho_C))./(1+gamma)) ;
semilogy (gamma_dB,Pb_bar,’b--");
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Figure 14: Problem 19

p(t) = /ml%ﬁé%ﬁﬁ
p(kT) = /mzﬁna%“ﬂﬁ

00 (2m+1)/2T o T
p(T) = 23/;1WTPma” af
_ Z /1/2T ) e_j27rfdef
= J-1/21
1/2T7 ma
- P(f+ D) 2T g
/—1/2T m;m ( T)

1/2T }
p(T) = / QU T 1

—1/2T

Q(f) is periodic with period 1/T and therefore it can be expanded in terms of Fourier coefficients

o0

Q(f) _ Z qnejZanT

n=—oo

1/2T '
where ¢, = T/ Q(f)e 2 InTqr .2
—1/2T

Compare 1 and 2 to get
qn = Tp(—nT)

~J poT n=0
“"=10 n#£0

But this means that Q(f) =poT or > ;> P(f+1/T) = poT

. ’a’ translates to

21. Gaussian pulse is given as
g(t) =

Notice that g(t) never goes to 0 except at +oo

*. Nyquist criterion
_J g9 k=

T _242/,2
feﬂt/a
«



cannot be satisfied for any finite T.



Chapter 6

1. (a) For sinc pulse, B = ﬁ =T, =55 =5x10""s

(b) SNR = 25 =10
0
Since 4-QAM is multilevel signalling
B Es  _ 2Es .. _1
SNR = 35 = NyBT: = Nob (BT, =3)
.. SNR per symbol = ﬁ—g =
SNR per bit = £& =2.5 (a symbol has 2 bits in 4QAM)

(¢c) SNR per symbol remains the same as before = f,—z =5

SNR per bit is halved as now there are 4 bits in a symbol % =1.25

2. po=0.3,p1 = 0.7

P. = Pr(0 detected, 1 sent — 1 sent)p(1 sent) + Pr(1 detected, 0 sent — 0 sent)p(0 sent)

dmm dmin o dmin
= 07 <v2N0> 03¢ (\/2N0> =@ (V2N0>

[2A2
= Q ~

A A
0.70 [ 222 ) =030 L I
B B

()

0.7Q A =0.3Q B

/No
2
Clearly A > B, for a given A we can find B
(d) Take £ = 4> =10
In part a) P, = 3.87 x 1079
In part b) a=0.0203 P, = 3.53 x 1076

In part ¢) B=0.9587 P. = 5.42 x 1076
Clearly part (b) is the best way to decode.

MATLAB CODE:

A =1;

NO = .1;

a = [0:.00001:1];

tl = . 7*Q(A/sqrt(NO/2));



t2=.3*Q(a/sqrt (N0/2)) ;
diff = abs(t1-t2);
[c,d] = min(diff);
a(d)

c

3. s(t) = +g(t) cos2n f.t
r =71cos A¢
where 7 is the signal after the sampler if there was no phase offset. Once again, the threshold that
minimizes P, is 0 as (cos A¢) acts as a scaling factor for both +1 and -1 levels. P, however increases
as numerator is reduced due to multiplication by cos A¢

dymin COS Aqb)

Fe=0 < V2N,

T Ty 1 4r fot
A? / cos? 2nftdt = A2 / —H%ch
0 0

Ty,  sin(4nf.1p)

= A% |22
“12 + 87 fe
—_———
—0 as fe>1
_ AT
2
z(t) = 1+n(t)
Let prob 1 sent =p; and prob 0 sent =pq
1 2 2
Pe = &lLp1+0.po] + [0.p1 +0.po] + £[0.p1 + 0.po] +
1
6[0491 + 1.po]
1 1
= 6[291 +po] = 5 (. p1 +po =1 always )

5. We will use the approximation P, ~ (average number of nearest neighbors).Q (%)

where number of nearest neighbors = total number of points taht share decision boundary

(a) 12 inner points have 5 neighbors
4 outer points have 3 neighbors
avg number of neighbors = 4.5

P6:4.5Q(¢36LT0>
(b) 16QAM,P6:4(1—%)Q(\/3@TO>:3 ( 3%)
(c) P8N2><3—g3><2Q (Jyﬂ) _

2
0 o st a) -20m0 ()

o0
%
8
I
—_
|
VR
—
|
N
=R
=
Q
VR
< e
| |32
—
N———
N———
[\]
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Figure 1: Problem 5

Ps,approx = \/M M—1

approximation is better for high SNRs as then the multiplication factor is not important and P, is
dictated by the coefficient of the Q function which are same.

4<m—1>Q< 37, )

MATLAB CODE:

gamma_db = [0:.01:25];
gamma = 10." (gamma_db/10);
M = 16;

Ps_exact=1-exp(2*log((1-((2*(sqrt (M)-1))/(sqrt (M)))*Q(sqrt ((3*gamma) /(M-1))))));
Ps_approx = ((4*(sqrt(M)-1))/sqrt(M))*Q(sqrt((3*gamma)/(M-1)));

semilogy (gamma_db, Ps_exact);

hold on

semilogy (gamma_db,Ps_approx,’b:’);

See figure. The approximation error decreases with SNR because the approximate formula is based
on nearest neighbor approximation which becomes more realistic at higher SNR. The nearest neighbor
bound over-estimates the error rate because it over-counts the probability that the transmitted signal
is mistaken for something other than its nearest neighbors. At high SNR, this is very unlikely and this
over-counting becomes negligible.

(a) o
Io(a) = /0 T

x? 4 12
since the integral converges we can interchange integral and derivative for a;0

0l (a) /‘X’ —te‘atht
da  Jy x24t2

)
2*1,(a) — sla) /Oo @+ et /oo e — = T
da 0 x? + 12 0 2V a




Problem 2 — Symbol Error Probability for QPSK

10 T T T

1072k B
n

o
1071 —— Approximation al
— - Exact Formula
10‘300 I I I I I
0 5 10 15 20 25 30
o Problem 2 — Symbol Error Probability for QPSK
10 T T T T T T

n

o

SNR(dB)

Figure 2: Problem 7
(b) Let I;(a) =y, we get

y'—x2y - __
comparing with
Y +Pla)y = Qa)

P(a) = _x2 ) Q(CL) =75

solving we get

y = %G‘ZIQerfc(x\/&)
(c)
2x 2 2z 2 [ emat®
erfe(zva) = I(a)—e ¥ = —e™ ———dt
felava) = Li@Zee = Hewt [T
a=1
20 _ 2 [ e—at?
= = —dt
erfe(x) —e /0 o
2
— 2/71’/ e—x2/sin29d9
T Jo

w/2
Q(ﬂﬁ) = %erfc(a:/\@) = 1/ e*’”2/23m29d9
0

™



9. P=100W
No =4W, SNR =25
P. = Q(v/27) = Q(v/50) = 7.687 x 10713
data requires P, ~ 1076
voice requires P, ~ 1073
so it can be used for both.
with fading P, = ﬁ =0.01
So the system can’t be used for data at all. It can be used for very low quality voice.

10. Ts = 1b5usec
at lmph T, = B% = % =0.745 > T,
.. outage probability is a good measure.
at 10 mph T, = 0.074s > T .. outage probability is a good measure.
at 100 mph T, = 0.0074s = 7400us > 15us outage or outage combined with average prob of error can

be a good measure.

11.

12. (a) When there is path loss alone, d = v/1002 + 5002 = 100+/6 x 103
P. = e " =, = 13.1224

Py = 13.12224 = P, = 13122 x 10~ 1
Py [V/G)
L [m} = 4.8488W

r=1.3122 x 1074 = —138.82dB
Pyap ~ N(uPy,8),04 =8

P(P'y,dBZx) = 0.9
P(P%dB_“P”zx_“P”> = 09
8 8
—uP
:Q("” “7) = 09
8
— uP
% —  _1.2816

= pP, = —128.5672dB = 1.39 x 10~ *?

13. (a) Law of Cosines:
c? =a? +b%> — 2abcos C with a,b = /Es, ¢ = dppin, C = 0 = 22.5
¢ = dpmin = /2Es(1 — c0s22.5) = .39V E;
Can also use formula from reader

(b) P = apQ (\/ ﬁm’)/s) =20 <\/ %) = 2Q(V '076’75)
am = 2, By = .076




(0.0
f J(s)ds
0

- T Qo) f ()

0
Using alternative Q form
bl
— m S o — ﬁm
_Tof(lJr (s1gnA/¢) ) d¢ with g = =5
/1 _{;ﬁ% =1—4/ 14'3%%?% = .0716%, where we have used an integral table to evaluate

theinﬁegral

(d) Py=1%

(e) BPSK: P, = —b =1073, = 7, =250, 16PSK: From above get 7, = 3289.5

Penalty = 250 = 11.2dB
Also will accept v,(16PSK) = 822 == 5.2dB

14.

But from 6.65
S"y —m
M, (s) = (1——)

P, = 333x1073

15. ¥%Script used to plot the average probability of bit error for BPSK modulation in
%#Nakagami fading m = 1, 2, 4.
%Initializations
avg_SNR = [0:0.1:20]; gamma_b_bar = 10."(avg_SNR/10); m = [1 2 4];
line = [’-k’, ’-r’, ’-b’]

for i = 1:size(m,?2)
for j = 1l:size(gamma_b_bar, 2)
Pb_bar(i,j) = (1/pi)*quad8(’nakag MGF’,0,pi/2,[],[],gamma_b_bar(j),m(i),1);
end
figure(1);
semilogy(avg_SNR, Pb_bar(i,:), line(i));
hold on;
end

xlabel(’Average SNR ( gamma_b ) in dB’); ylabel(’Average bit error
probability ( P_b ) ’); title(’Plots of P_b for BPSK modulation in
Nagakami fading for m = 1, 2, 4’); legend(’m = 1’, 'm = 27, ’m =
4°);



function out = nakag MGF(phi, gamma_b_bar, m, g);

%This function calculates the m-Nakagami MGF function for the specified values of phi.
%phi can be a vector. Gamma_b_bar is the average SNR per bit, m is the Nakagami parameter
%hand g is given by Pb(gamma_b) = aQ(sqrt(2*g*gamma_b)).

out = (1 + gamma_b_bar./(m*(sin(phi)."2)) ). " (-m);
SNR = 10dB

M| BER

1 | 2.33x1072
2 | 5.53x1073
4 ]1.03x1073

16. For DPSK in Rayleigh fading, P, = % = 7 = 500
NoB =3 x 1072mW = Piyrger = 7, NoB = 1.5 x 107"mW = -88.24 dBm

Now, consider shadowing: o
Pout :P[Pr < Ptarget] :P[\Ij <Ptarget_?r] :¢<M)

g

= $1(.01) = 2.327 = Daraser=r

ag
P, =—74.28 dBm = 3.73 x 1078 mW = Pt(ﬁ)2
=d=13724m

17. (a)

In MRC, 75 = y1+72. So,

w O

il

Il
—

Y2 =

—
at

10

5
_ 10
Tz = 35

40

w.Dp.
w.Dp.

w.Dp.
w.Dp.

w.Dp.

w.p
w.p

1/3
2/3

1/2
1/2

1/6
. 1/6
. 1/3

w.p. 1/3

(b) Optimal Strategy is water-filling with power adaptation:

5(7)_{ L1 9>

S 0 7<%

Notice that we will denote ~s; by « only hereon to lighten notation. We first assume g < 5,

I

i— \7J0 i

1 4p‘
= —=14+) =
WS



= 40 = 0.9365 < 5

So we found the correct value of vq.

4
Vi

C= BZlogQ () Di
i—1 Y0

C = 451.91 Kbps
(c) Without, receiver knowledge, the capacity of the channel is given by:

4
C =B _logy(1+7)p;
=1

C = 451.66 Kbps
Notice that we have denote vy by ~ to lighten notation.
18. (a)
s(k) = s(k—-1)
2(k—=1) = gr1s(k—1)+n(k—1)
z(k) = grs(k) +n(k)

From equation 5.63 , the input to the phase comparator is

2(k)2*(k—=1) = grgk —1)*s(k)s*(k — 1) + grs(k — 1)nj_ +
gk —1)%s*(k — D)ng + ngnj_y

s(k)s*(k—1) = |sg]>=1 (normalized)
(b)
e = SE_qNk
Ng—1 = Sjp_1Mk-1
=~ * ~% * ~
Z = GkGp—1t GkN_1 + Gr_1Mk
p1p2 A B
s) = = +
S PR [P By A g
p1p2
A=(s— 8)|s= =
(s = P1)@a(8)]s=p: PL— Do
p1p2
B=(s— S)|s= =
(s = P2)@a(5)]s=ps P2 — p1
(c) Relevant part of the pdf
P1p2
Pa(s) =

(p2 — p1)(s — p2)

P1P2 -1 1 > D1P2 >
Sope(x) = L = e’ x <0
Pa(®) (p2 — p1) <(8 —p2) (p2 — p1)

0
P, = prob(z < 0) = b2 / eP2ldy = — p1
(p2 - p1) —0 P2 —P1



19.

20.

21.

1 1 Ty 41

P2 —P1 = — + — = — —
2T TN (1= po) + 1] 2No[To (T +pe) + 1] No[(1 — pe) + UFo(1 + pe) + 1]
(1 — pe 1
P, = L= pe) +1
2(9, +1)
(f) pe=1
P 1
2(%, + 1)
7, 0 to 60dB

pe = Jo(2n BpT) with BpT = 0.01,0.001, 0.0001
where J; is 0 order Bessel function of 1¢ kind.

P 1 {1+’7b(1p0)]
b — —
2 1+’7b

when BpT = 0.01, floor can be seen about 7, = 40dB
when BpT = 0.001, floor can be seen about %, = 60dB
when BpT = 0.0001, floor can be seen between 7, = 0 to 60dB

Data rate = 40 Kbps

Since DQPSK has 2 bits per symbol. .". Ty = 55255 = 5 X 10 sec
DQPSK
Gaussian Doppler power spectrum, p, = e~ (* BpT)?
Bp =80Hz
Rician fading K =2
pe = 0.9998
P 1 c/V2)? 2 —V2)K/2
Pfloor =—11- (p /\f) exp _¢
2 1— (pe/V/2)? 1= pe/V2
ISL:

Formula based approach:

2
ol
Pfloor = < T8m>
Since its Rayleigh fading, we can assume that o1, ~ pur,, = 100ns

Pfloor < 10_4
which gives us

So, Ts > 10us. Ty > bus. Ry < 200 Kbps.

] =2.138 x 107°



22.

Thumb - Rule approach:

e = 100 nsec will determine ISI. As long as Ts > pup, ISI will be negligible. Let Ts > 10 ur
R < 2bits 1 symbols _ g)\[} g

— symbol Ts  sec

Doppler:
Bp = 80 Hz

1
Pioor = 1071 > 5 |1 =

But p. for uniform scattering is Jo(2rBpTs), so
pe = Jo(2rBpT,) = 1 — (nfpTs)? > 0.9999

= Ts <39.79us
Ty, <19.89us. Ry > 50.26 Kbps.

Combining the two, we have 50.26 Kbps < R;, < 200 Kbps (or 2 Mbps).

From figure 6.5
with P, =103, d=0r, /Ts, 01, =3us
BPSK
d=5x10"2

Ts = 60usec
R=1/T; = 16.7Kbps

QPSK
d=4x10"2

Ty = THusec
R=2/T, =26.7TKbps

MSK
d=3x10"2

Ts = 100usec
R =2/T; = 20Kbps

. Then



Chapter 7

1. P,=1073
QPSK, P; = 2Q(/7s) < 1073, 45 > 7o = 10.8276.

Pout ('YO) =

_X
(1—6 71‘)

—-

@
I
A

5, = 10, 7, = 31.6228, 75 = 100.

M=1 .
Py = (1 _ e‘ﬁ) — 0.6613

M =2
_ 20 0
Py = (1—e ﬂ) (1—e vz) 0.1917

M =3 . .
Pyt = (l—e m) <1—e @> (l—e ws) 0.0197

2. prg(7) = % [1 — efv/ﬂM_l e~/
7y =10dB =10
as we increase M, the mass in the pdf keeps on shifting to higher values of v and so we have higher
values of v and hence lower probability of error.

MATLAB CODE

gamma = [0:.1:60];
gamma_bar = 10;
=[1 24 8 10];
fori=1:length(M)
pgamma(i,:) = (M(i)/gamma_bar)*(l-exp(-gamma/gamma_bar))."...
(M(1)-1) .*(exp(-gamma/gamma_bar)) ;
end

3.
_ © 1 .
Pb = 0 56 p72(7)d’7
o A M-1 _
= / le 7{4 [1_647/7] efv/vd,y
0 2 Y
M -1
- e~ (1+1/7)y e~/
25 [1 } @y
% 1

" —Uﬁifﬂvdv

2 0(

MY ( 1
2n:0n

;_-

M —
n
M —

— = desired expression
1+n+

Jo
Jo



Figure 1: Problem 2

4.
po(y) = Prie<omm <o} V<7
> Priv: <m <A} + Pr{ve <vm.m <7} 7>
If the distribution is iid this reduces to
(y) = { Py (7) Py (77) v <
” Pri{vs <m <7} + Py (1) Pp(yr) 7> 7
5
— %01 —
P, = 56 Py (’Y)d’)’
0
- (1 — e_’YT/W) %G_VT‘/W f}/ < f)/T
Prs(7) = (2- eﬂ:r/ﬁ) %efw/ﬁ ¥ > A7
P, = é (1 _ e—'YTW) /W e e Vdy + é (2 - e_%/ﬁ) /oo e e Vdry
27 0 2y VT
1 — _
- = (1_e/7 -r —WT/W)
2(74_1)( e +e e
6. _ _ —
Py Py(10dB) | Py(20dB)
. . T
no diversity G+ . 0.0455 0.0050
@ M-1 ,
M-1 m m -
SC(M=2) S ()™ s — 0.0076 | 9.7 x 107°
SSC e (L—e ™7 +eme ) [ 00129 [ 2.7 x 1077
As SNR increases SSC approaches SC
7. See

MATLAB CODE:

gammab_dB = [0:.1:20];
gammab = 10." (gammab_dB/10) ;
M= 2;



|
zzz
W

swn

g (OPSK)
/

Py,
5

Figure 2: Problem 7

for j = 1:length(gammab)
Pbs(j) =0
for m = 0:M-1
f = factorial(M-1)/(factorial (m)*factorial(M-1-m));
Pbs(j) = Pbs(j) + (M/2)*((-1)"m)*f*(1/(1+m+gammab(j)));
end
end
semilogy (gammab_dB,Pbs, ’b--")
hold omn

M = 3;
for j = 1:length(gammab)
Pbs(j) =0
for m = 0:M-1
f = factorial(M-1)/(factorial (m)*factorial(M-1-m));
Pbs(j) = Pbs(j) + (M/2)*((-1) "m)*f*(1/(1+m+gammab(j)));
end
end
semilogy(gammab_dB,Pbs, ’b-.");
hold on

M= 4;
for j = 1:length(gammab)
Pbs(j) =0
for m = 0:M-1
f = factorial(M-1)/(factorial (m)*factorial(M-1-m));
Pbs(j) = Pbs(j) + (M/2)*((-1)"m)*f*(1/(1+m+gammab(j)));
end
end
semilogy(gammab_dB,Pbs,’b:’);
hold omn

2
M
1 (S an) L Xaya X
n = — < — =
TNyl No  ¥af No




Where the inequality above follows from Cauchy-Schwartz condition. Equality holds if a; = ¢y; where
c is a constant
9. (a) %, =10dB=10,1<i<N
N=1,v=10, M =4
P, = 2¢O = 2¢715/3 = 0.0013.
(b) In MRC, vs =71+ 72+ ...+ .

So e = 10N
P, = 2¢ P0r = 207N < 1976
N > 2.4412

So, take N = 3, P, = 6.12 x108 < 1076,

10. Denote N(z) = ﬁe—xzﬂ ,Q'(z) = —N(z)

Py = /O T Q)P ()

_ V2 o1 1
7OV = N5 = =T

_ > 1 1
P, = / ——e "——P(y)d
b . Vot 2 (v)dy

/mlevld 1
N TSN 2
M N M k—1
R S B N 0 70 1 1 /0" v 1+ a7
92 T~ /A M gy = 5 A2 (1 d
/o NN P i e Y e yil v GV

k=1

1\ /2
Denote A = <1 + )
8l

1 1 e 2 m
_ = —y/A% 172 (0 d
ml wﬁ/o c 7 <7> !
let v/A% = u




11.

12.

13.

DenoteN (z) = ! e/ Q'(z) =1 - ¢(x)] = —N(x)

jo /f@(@ﬂpm - /OOO L L Py

V2 /2y
1 1 1 1 1
—e¢ T——=dy = —=I'|=z)== 1
/0 V. vm T UE (2> 2 M
>~ 1 1 - 1
e 6—27/7d7 = - 2
/0 vor o V2 2,/1+ 2 ®

2 1
where A=1+—=, B=1+—
Y

v
— 1 1
Overall Pb:§ 1— ].—m
Py Py(10dB) | P,(20dB)
no diversity 11— \/ ng 0.0233 0.0025
two branch SC [Q(27)pyedy | 0.0030 | 3.67 x 107°
two branch SSC | [ Q(v/27)pyedy | 0.0057 | 1.186 x 1074
two branch EGC | [ Q(v/27)pyydy | 0.0021 | 2.45 x 107°
two branch MRC | [ Q(v/27)p,ydy | 0.0016 0.84 x 107°

As the branch SNR increases the performance of all diversity combining schemes approaches the same.

MATLAB CODE:

gammatv = [.01:.1:10];

gammab = 100;

gamma = [0:.01:50*gammab] ;

for i = 1:length(gammatv)
gammat = gammatv(i);
gammal = [0:.01:gammat];
gamma2 = [gammat+.01:.01:50*gammab] ;
tointegl = Q(sqrt(2xgammal)).*((1/gammab)* (1-exp(-gammat/gammab)) .*exp(-gammal/gammab)) ;
tointeg2 = Q(sqrt(2*gamma2)).*((1/gammab) * (2-exp (-gammat/gammab) ) . *exp (-gamma2/gammab) ) ;
anssum(i) = sum(tointegl)*.0l+sum(tointeg2)*.01;

end

gammab_dB = [10];

gammab = 10." (gammab_dB/10) ;

Gamma=sqrt (gammab. / (gammab+1) ) ;

pb_mrc =(((1-Gamma)/2).72).*(((1+Gamma) /2) . 0+2* ((1+Gamma)/2) .7 1);
pb_egc = .5%(1-sqrt(1-(1./(1+gammab))."2));



14.

15.

16.

17.

18.

107

— MRC
EGC

o dB penalty ~ 5 dB
107 F

10°F

P

107k

10°

Figure 3: Problem 13

1073 = P, = Q(+/2v) = 4.75,7 = 10
MRC Ppyy = 1 — e 10/7 500, 0830 — 0.0827

ECG Py =1— e 2" — /e (1 — 2Q(v27R)) = 0.1041 > Py are
Py vre = 0.0016 < 0.0021Py, pee

If each branch has ¥ = 10dB Rayleigh
N o —1/(/2)
VBXP;) gKovemll recvd SNR = 252 ~ Veﬁ a1 20

o
Py = / Q(+/27)pywdy = 0.0055
0

p(7) where [ p(y)e "dy = >0

we will use MGF approach

1 /2
= / (0.017 sin ¢)?d¢
T Jo
01%)?
= (0047):0.0025
— -7\ & l+m 1+7\" ¥
P 2N s

Nakagami-2 fading

1 7 o\ 2
M, | — =1
7 sin? gb) < * 2 sin? d))
1

D 1 /2 ’ 1.5 9
Py =— M, | - dg,7 =10 =5.12 x 10~
vl (o (o)) e ’

MATLAB CODE:

gammab = 107(1.5);
Gamma = sqrt(gammab./(gammab+1));



sumf = 0;

for m = 0:2
f = factorial(2+m)/(factorial (2)*factorial(m));
sumf = sumf+f*((1+Gamma)/2) "m;

end

pb_rayleigh = ((1-Gamma)/2)~3*sumf;

phi = [0.001:.001:pi/2];

sumvec = (1+(gammab./(2*(sin(phi)."2)))).~(-6);

pb_nakagami = (1/pi)*sum(sumvec)*.001;

o 1 [7/2 ~ -2 5 -1
Py =— 1 1 d
b ﬂgé ( +2sm2¢> < +sm2¢> ¢

gammab_dB = [5:.1:20];
gammabvec = 10." (gammab_dB/10);

19.

for i = 1:length(gammabvec)
gammab = gammabvec(i);
phi = [0.001:.001:pi/2];
sumvec = ((1+(gammab./(2*(sin(phi)."2)))). (-2)) . *x((1+...
(gammab./(1*(sin(phi)."2))))."(-1));
pb_nakagami(i) = (1/pi)*sum(sumvec)*.001;
end

Pb,
avg

Vavg (@B)

Figure 4: Problem 19

20. 5
P =@ (V2u@sin(§))

a=2/3, g=3sin’ (%)

_ o\ -1
g - a7
My <_sin2 gb) N (1 * sin? gb)

5 _a [P 7\
Py =— 1 d
b T /0 < + sin? gb) ¢




MATLAB CODE:
M=1[1248];
alpha = 2/3; g = 3*sin(pi/8)~2;

[5:.1:20];
10. " (gammab_dB/10) ;

gammab_dB
gammabvec

for k = 1:length(M)
for i = 1:length(gammabvec)
gammab = gammabvec(i);
phi = [0.001:.001:pi/2];
sumvec = ((1+((gxgammab)./(1*(sin(phi)."2)))). " (-M(k)));
pb_nakagami(k,i) = (alpha/pi)*sum(sumvec)*.001;
end
end

Pb,

0L

07

Yoy (@B

Figure 5: Problem 20



21.

1 w/2 22
Qz) = 7T/0 exp{ sianb]d ,z2>0
w/4 2
@ = L [Tew|-p i a0
4 L [ 97
Ps(’YS) - ; <1 - M)/(; €xp |:_Sin2 ¢:| d¢_
1 12 97s
(- ) [ e g e
P, = /0 PS(’VE)pWZ(’YZ)d’YE
/2
- % 1-— >/ / exp( )pm( )dysdg —
4 w/4
p / / erp (Slnz¢>P72(7)d72d¢

But ys=m+7+...+79 =Xy

o 5 awaw

\_/\_/\_/

w/2 v
Ji i (i e

2 rm/4 g
/ H?LM-(—.Q >d¢
0 ‘ sin® ¢

—
|

SHN NN

/N N /D/—\

22. Rayleigh: M., (s) = (1 — 57,)"

.. k ksis
Rician: M, (s) = H%—SVS exp (HkZﬁS)
MPSK

B (M—1)7/M g
Py = / M (— — ) d¢ — no diversity
0 sin” ¢

Three branch diversity

o (M-1)m/M — -1 ) _ 2
P _ 1/ (1+ 97 ) [ (1+l§)2s,1n e (_ kag _ )} do
™ Jo sin® ¢/ L(1+k)sin® ¢ + g7, (1+ k)sin® ¢ + g7,

w2 77)
g = Sln (16

= 0.1670
MQAM:
Formula derived in previous problem with g = % = %
P, =0.0553

MATLAB CODE:

gammab_dB = 10;
gammab = 10." (gammab_dB/10);
K = 2;



23.

g = sin(pi/16)°2;
phi = [0.001:.001:pi*(15/16)];

sumvec=((1+((g*gammab) ./ (sin(phi).~2))) .~ (-1)) .x((((...
(1+K) *sin(phi) ."2) ./ ((1+K)*sin(phi) . "2+. ..

g*gammab) ) . *exp (- (K¥gammab*g) ./ ((1+K) *sin(phi) . "2+g*gammab))) . "2) ;

pb_mrc_psk = (1/pi)*sum(sumvec)*.001;

g = 1.5/(16-1);
phil = [0.001:.001:pi/2];
phi2 = [0.001:.001:pi/4];

sumvecl=((1+((gxgammab) ./ (sin(phil)."2)))."...
(-1)) .x(((((1+K) *sin(phil) . 72) ./ ((1+K) *. ..
sin(phil) . 2+g*gammab) ) . xexp (- (K*gammabx*g) ./ ((. ..
1+K)*sin(phil) . "2+gxgammab))) . 2);
sumvec2=((1+((gxgammab) ./ (sin(phi2) ."2))) . (-1)) . *x((((...
(1+K)*sin(phi2) ."2) ./ ((1+K) *sin(phi2) . 2+. ..

g*gammab) ) . *exp (- (K¥gammab*g) ./ ((1+K) *sin(phi2) . "2+g*gammab))) . 2) ;

pb_mrc_gam = (4/pi)*(1-(1/sqrt(16)))*sum(sumvecl)*.001 - ...
(4/pi)*(1-(1/sqrt(16))) "2*sum(sumvec2) *.001;

Figure 6: Problem 22

MATLAB CODE:

M=1[1248];
alpha = 2/3;
g = 1.5/(16-1);

[6:.1:20];
10. " (gammab_dB/10) ;

gammab_dB
gammabvec

for k = 1:length(M)
for i = 1:length(gammabvec)
gammab = gammabvec (i) ;
phil = [0.001:.001:pi/2];



phi2 = [0.001:.001:pi/4];
sumvecl = ((1+((g*gammab)./(1*(sin(phil)."2)))) .~ (-M(k)));
sumvec2 = ((1+((g*gammab)./(1*(sin(phi2)."2)))) .~ (-M(k)));

pb_mrc_qam(k,i) = (4/pi)*(1-(1/sqrt(16)))*sum(sumvecl)*.001 - ...

(4/pi)*(1-(1/sqrt(16))) "2*sum(sumvec2)*.001;
end

end



1. (3,1) code

2.

Chapter 8

(a) parity bit indicates if number of 1’s is even or odd

even number of 1’s = parity = 0

odd number of 1’s = parity = 1

(

(
(b

a

C

)
)
)
)

see Matlab
see Matlab

gi = i*" column of G

—_ == O O OO

7

0 0
01
10
11
00
01
10
11

_H OO MOMMEO

> cigi=0

i=1

co+cs+ce5=0

c1+c3+ce5=0

c2+c3+cg=0

cr+ca+cer=0

61:1
Cy —
63:1
cy =1
C5:0
cg =0
C7:0
' =

0120
Cy —
03:0
cy =1
C5:0
Ce —
Cr =

OO O R
_ = O = O~ O

01=0
Cy =
03:1
cy =0
0521
Ce —
Cr =

= O M= O == O




() R=[1 1 0 1 0 1 1]
S=RH"=[1 0 0

(e) see Matlab

(f) A row reduced echelon form can be obtained by row operations and column permutations. Clearly
we get that as

1 000 0 11
01 00110
001 0101
0001111
See Figure 1
Py y
/\ cO0=u0
u
— P u3 u2 ul uo cl=ul

c2=u2
. C5

c3=u3

g

. C6
»

%

Figure 1: Problem 2f

MATLAB
G=[0101100;1010100;0110010;110000 1];

b = 0:15;
a = dec2bin(b,4);
for i = 1:length(b)
u=a(i,:);
c(i,:) = zeros(1l,length(G));
for j = 1:length(uw)
h(j,:) = G(G,)*ul(j);
c(i,:) = mod(c(i,:)+h(j,:),2);
end
end

% c =
/A
%
/A
%
%
%
%

O = = O O
_ O O+ = O
Ll i e R )
O O O O O O
= = O O O O
OO r mr OO
= O R, O R O



o
b
o
h
h
h
h
h
h
o

O, OFr P OFr OO
R OO R, Pk OO KL, O -
OO P, P P, P, OOOO
ol ol o o o i e @)

d = ¢c(2:15,:); dmin = min(sum(d’));

QO O OO P, P P, KL, PEP PP

P P, OOk, KPP, OORKR K~

S = O

% dmin =
%
yA 3
% H =
%
b 1 1 1
% 0 1 0
b 0 1 1
R=[1101011]; S = mod((R*xH?),2)
%S =
yA
% 1 0 0
count = 1; for i = 1l:length(c)
d=c(i,:);
if sum(d) == dmin
e(count,:) = c(i,:);
count = count+1;
end
end
hoe=

h
h
h
h
o
h
o
h

_ O O O+ O ¥
O O O O - =
O OO = = O
= = =, O O O O

.t =1 ,-.1 error can be corrected.
dmin — 1 = 2 errors can be detected

OO Pk, OO

=, O O+~ O+ O

O, O Fr O OmFr O

O r O, O O



glx)=1+xz+az*
c(z)=14+z+23+2" = ¢1(x)/g9(z) = 1 + 23, remainder = 0 = valid
co(x ) =142%+2° + 2% = e(2)/g9(z) = 1 4+ 2 + 2°, remainder = z* = not valid

( ) Zzl
”T q(x) + p( )(degree of p(x) should be less than 4)
say u( ) (for example)
for a given u(x), the systematic form of codeword is generated in three steps
1 u(z)z"F =151 =gt
4
2 o =ar)=1, pl)=1+=
3 c(x)=zu(z)+plx)=1+x+2* (c(x)= codeword in systematic form)

5. (a)

1011000

G 0101100

0010110

0001011

in systematic form
100 0101
G 0100111
10010110
0001011
(b)

1110100
Hsx7=10 1 1 1 10

(¢) Cree=[1 0 1.0 0 1 1]
S=CH"” =[0 0 0] — another valid codeword corresponding to input [1 0 1 0]

(d) All possible received codewords to give error 0 are all possible codewords.

6. N(r) = Silo Nia' = gy [(L+0) 401 42) "7 (1 2)"F
N; =number of codewords of weight i

(a) (7,4) code — block length n="7
1A+ 2)" +n(l+2)31—2)' =14 723+ T2t + 27
number of codewords of weight 0 = 1
number of codewords of weight 3 =7
number of codewords of weight 4 =7
number of codewords of weight 7 =1

(b) r =10dB = Eb/N() = EC/N() = 40/7
p=Q(/80/7) = 3.6162 x 10~* From 8.38:
P <30, 6[4p(1 — p)]"i/* = 3.9951 x 1074

7. Hamming code, m=7
n=2"-1=127
k=2"—1—m =120
P.= P, ~ (28 = 1) [4p(L — p)"/? ~ 1



p=2Q (JRsin (%)) =2Q <\/%sin (g)) = 0.0962
For uncoded modulation
2 E, . /m
p=30Q (, /zﬁog sin (8)> — 0.0870

.. for this sceme, unmodulated transmission is better.

8. There is negative coding gain below 2.8dB

snr_dB = 0:.1:20;

snr = 10." (snr_dB/10);

k = 2;

for i = 1:length(snr)
snr_c = (2/5)*snr(i);
p = .bxerfc(sqrt(2*snr_c)/sqrt(2));
Pe(i) = (2°k-1)*(4*xp*x(1-p))~(3/2);
Pe_uncoded(i) = .b5*erfc(sqrt(2*snr(i))/sqrt(2));

end

plot(snr_dB,Pe)

hold on;

plot (snr_dB,Pe_uncoded,’r’)

15 T

Coded
— - Uncoded

05F q

0 2 4 6 8 10 12 14 16 18 20

Figure 2: Problem 8

9. (7,4) Hamming code
Ge = 1010g1g [Redmin — k1n (2/7)] = 2.1128dB

R, =4/7
k=4

W = 15dB = 10'.5

10. At high SNR, the performance is almost the same.



MATLAB

clear;
snr_dB = 0:.1:10;
snr = 10.  (snr_dB/10);

k = 12;
n = 24,
dmin = 8;

for i = 1:length(snr)
snr_c = (k/n)*snr(i);
p = .5*xerfc(sqrt(2*xsnr_c)/sqrt(2));
Pe_hdd(i) = (27k-1)*(4xpx(1-p))~(dmin/2);
Pe_sdd(i) = (2°k-1)*.5*erfc(sqrt(2*snr(i)*(k/n)*dmin)/sqrt(2));
Pe_uncoded(i) = .b5*erfc(sqrt(2+snr(i))/sqrt(2));
end
plot(snr_dB,Pe_hdd,’b--’)
hold on;
plot(snr_dB,Pe_sdd,’b:’)
% plot(snr_dB,Pe_uncoded,’b-.")

11. Extended Gray code — (24,12), dpin =8, t =3, = 10dB = 10

p=Q (V2E/No) == Q (VoRE/Ny) = Q (VZX 1/2 % 10) = 7.82 x 10~

262x10719< P, <1.073x 107"

350
— - HDD
SDD
3001 i
250+ 1

200+ \ R

150 - \ 7

50 \ 7

Figure 3: Problem 10

12. k=3
K=4
8PSK modulation
N=2F_1=7

t=[5(N-K)|]=1[53)] =1
Amin=N—-—K +1=14
P, <349 x 10711

2k—1

Py=2%—P, =199 x 10"



min— 1.35 x 1078

13. P, < 2k <2dmm_1> 1d
. (&4

Amin AR
Le = 15dB = Ro%t = 15dB = R = 15dB = 1015
(23,12) code, dpin =7

14. Choose a (5,2) linear block code with d,,;, = 3 as in problem 8

R.=2/5
7 =10

Now, from (8.81) with Rayleigh fading,
P, < 2F < 2k 2edmin = 1) L_dmin _ ().0098 x 10~2 . bit errors do not occur mostly and any depth

dmin AR
is ok as long as delay is less than bmsec.
ndls < bdmsec
=d <30
.. we use an interleaver with n columns and d rows.

15, U=[0110101101]
C =000 111 101 001 100 010 100 101 001 100
see Figure 4

00
01 01
10 10

Figure 4: Problem 15

16. (a) S :SQS3
see Figure 3:16a

(b) p=10—°

Path metric = log(p(R/C))

2 3
= Z Z log P(RU/CZ])
i=0 j=1
= 3logp+5log(l —p) =—20.73



S0 =00

S1=01

S2 =10

S3=11

Figure 5: Problem 16

(c) We consider the path that goes from Sy to S to S1 to Sp. This path is at the minimum hamming

distance to the all 0 path.
C; =110 110 011

Path metric

17. (a) see figure 6

log (p(1/C))
2 3
Z Z log P(R;j/Cij)

i=0 j=1
5logp + 4log(l — p) = —34.54

2
D 1101

Figure 6: Problem 17a

(b) see figure 7

JND?*X, + JND?*X,
JD*X. + JD*X,
JNX.+ JND*X,
JD?*X,



Figure 7: Problem 17b

Solving we get

J3NDS(1 - JND? + JN)

Xe
J(D,N,J) = 3£ =

(C) dmin = 6
(d) =10
R.=1/3
_ NDS(1-ND?+N)
T(D,N) = (1-ND2)—ND%(1-ND2+N)

Py < TR re = 619 x 1079

(e) p=Q (V2%R.:) = 0.0049
dT(D,N) B s
Py < SNyt pe iy = 22883 X 10

Coding gain = —101log;, (}j;;gg ) — 35.678

18. T. = 10ms
Rs = 50,000sps
NT, > T,

N > T./T, = 500

delay = N(N-1)T; ~ 5sec
Memory associated = w =1.2475 x 10°

19. (a) see figure 8

X X X

(1—JND?) — J2ND*(1— JND? + JN)

X X X

Figure 8: Problem 19a



dmin = 2d16gan (for parallel transitions)

d?
G, =—-—""-2"7=1365>1

dOsPSK

(b) see figure 9

coded bits
d0,16QAM

x>0 |X O

OAOA
X O|X ©

O A|OA

cosetl 00

coset2 01

S1=01 coset3 10

>0 ox

coset4 11

00 dmin 01 _ uncoded bits

H cosetl

10 11

X X

Figure 9: Problem 19b

each branch corresponds to 4 parallel transitions
coded bits pick the coset
uncoded bits pick a point in the coset

(¢) Minimum distance error event through the trellis would normally be Sy = Sy = S; = Sp.
However since parallel transitions are also a part of the trellis, minimum distance error event will
be another point of a coset being decoded which is at dpp

(d) dmin = 2d016QAM = 1.264
20. (a) For C;

n=2"-1=3
k=22-1-2=1
Aumin = 3
P. < (4p(1 - p))*?
For Cy
P < 4(4p(1—p))*/
For Cy
P, <11 (4p(1 —p))*”?
(b) Ts = 10pus

R, = 1/3 — Data rate = 3 x 10°bps R¢, = 4/7 — Data rate = 1.75 x 10°bps Re, = 11/15 —
Data rate = 1.36 x 10°bps

(c) (25,16) code

21. For low priority bits use (7,4) Hamming code with BPSK
P, =2.199 x 1074
For high priority bits use (23,12) Golay code with BPSK
P,=9x107"



Chapter 9

7 o\ -1
97s .o (T
1 d = Z
< * sin? (b) ¢ g == (8)

P, = Pylogy8 =3P, =3 x 1073

~=1119
Ry 3Rs 3
B B
. Py =P(y<y)=1—e/100—-01]
Yo = 10.536
1
o =1/Ey[1/7] = —=+—— = 56.3125 = 17.506dB

o0
o 5P
For 4-QAM, SNR =10.35dB
16-QAM, SNR = 17.35dB
.. Maximum constellation size is 16-QAM

. For QPSK
Py=Q(\o)=10"°
o = 10.35dB = 10.85

Settin o = 1/E,,[1/~] and solving for 7
Yo = 0.0056

Poy=1—e0/100 _ 5651075

(a) M=4
P, =Q(vo) =102 - o =10.35dB
M=16
o =17.35dB
4 < 10.35dB no transmission
10.35dB < v < 17.35dB  4-QAM
v > 17.35dB 16-QAM
v = 10.35dB
(b)
P(AQAM) = P(10.35dB < v < 17.35dB)

17.35dB 1100
= ——e 1 dy
/10.35dB 100

= 0.3164

P(16QAM) = P(y> 17.35dB)
o~ 17.5dB/100

0.5809
. Ry =0.3164 x 24 0.5809 x 4 = 2.9564bps/H z



5. For BPSK

For QPSK

For 8PSK

For Rayleigh fading

R

7, = b POIR(/

e = = 0.0242
0 P(v)dy
Py=Q(\/2y) =107

v = 4.77 = 6.78dB

By =Q(y7) =107
v =4.77 =10.35dB

P, ~ 0.67Q (\/ﬂsm(w/g)) — 1078
~ = 14.784B

v > 14.78dB

10.35dB < v < 14.78dB
6.78dB < v < 10.35dB
3.78dB < v < 6.78dB
2.78dB < v < 3.78dB
1.78dB < v < 2.78dB

v < 1.78dB

P(6.78dB < v < 10.35dB).1 + P(3.784B < v < 6.78dB)

+P(2.78dB < v < 3.78dB) - .
2.6061bps/H z

1 1
:{’Yo K

oo M(y)
M(v)

.. log,

fooo}y e~ V/79e—1.5v/(M— 1)d7

no code 8PSK
no code QPSK
no code BPSK
1st code BPSK
2nd code BPSK
3rd code BPSK
no transmission

P(y > 14.78dB).3 + P(10.35dB < v < 14.78dB).2

Do | =

+ P(1.78dB < vy < 2. 78dB)4

v > /K
¥ </K

1 1
(2
Y K

=v/VK
= log, (v/7k)



(b) Using (a)
Numerically, M=2 ..BPSK P,=0.025
Specral efficiency = 1bps/Hz
(¢) In Fig 9.3 , Average SNR = 20dB
Spectral efficiency = 4bps/Hz
.. Adaptive modulation has higher spectral efficiency.

__15y S(v)
Py, < .2e -0 "5
15y S(v) S()
MAy)=14—"L 20 14 yg=22 0
) —In(5F) S TS
where
L5
 —In(5P)

We maximize spectral efficiency by maximizing:

Eflogy M(v)] = / logy (1 +K S?) p(v)dy

subject to:

This gives the water-filling solution for optimal power adaptation as:

1 1
(%5 123
0
This gives that the optimal rate adaptation is
~
M(y)=—, 72
YK

where vy = 79/ K.
To find the cut-off, we use the average power constraint equation as

/°°1<1 1>1”d .
- R — :e’y’}/:
w K\ )7

For 7 = 20 dB = 100 and P, = 10~%, Using Matlab we get K = 0.1973, vx = 4.3, 7o = 0.8486.

= = Eflog, M(7)] = / log; (1 + vKSS)> p()dy = /jo e (&) ie_zd”

K

Using Matlab we get 3.7681 bits/sec/Hz

M(7)=1+7KSS)

For truncated channel inversion, the power adaptation is given as



where

I 1
Eqo[1/7] f;}o %ie_ﬁdfy

The value of =g is chosen so as to maximize spectral efficiency i.e.

5 = max log,(1

= max log, (1 + K
Yo

+ Ko)p(y > )

1
W) (v > 0)

Using Matlab we get, % = 3.3628 at 79 = 23.18 and poys = 0.2069.

9. Assume a target BER of 1073

(a)

Try 4 channels

P+

Y0

K

2K =0/ K = 2.2928
il

.. we should use 4 channels
.. optimal power and rate adaptation

Instant Rate

S(7) 1

& Y=0/K
v < /K

1
&2 P(vi) +1
= 0.6491

—-1.5
= = 0.2831
In(5P)

= 10%° > 0.6491

1

S 0.6491 0.2831y

logy M () = logy (v/2.2928)

(b) Average spectral density

) " Pylogy (v/2.2928) = 2.457bps/H~

(¢) Truncated channel inversion
First we use 4 channels

4
E(1/7) =)
=1

5= (1 507 -

Second, we use 3 channels

4
EQ1/v) =)

i=1

logy (1 +

1
— P, =0.1530
Yi

0.2831
0.1530

) = 1.5111

1
—P; = 0.0265

)



R K
— =1 1+ ——+-1]0.6=2.1278
5o (1 57
Now, we use 2 channels
4
1
E(1/y) =) —P =0.0065

i=1 "

R K
T og, (1 + > 0.4 = 2.1910

B E(1/7)
Finally, we use 1 channel
R _ 1 1+ K 0.2 = 2.0936
B~ ™\ T EQy) T
.. we use 2 channels.
Power control policy
S 1 153.84
(7) = = , v =15dB,20dB
S yE(1/y) gl
R
5= 2.191bps/H =

This is less than waterfilling

10. ¥ = 100, P, = 1073

11.

Constellation restricted to M = {0, 2,4, 16, 64,256}

gzrr}yzgxlogzL<l+K ])JMP(’Y>’YO)

1
E’Yo [1/7
Define

m:(l—FKW)

Using Matlab:

For the unrestricted case, we get, (R/B)max = 3.76 at 7§ = 20.25 and x(75) = 24.37. As for the
continuous case, the R/B curve is a strictly concave function of 79, we know that the best choices of
M are either 16 or 64 as 16 < () = 24.37 < 64.

For z = 16, we get 9 = 9.4 and corresponding (R/B) as 3.64
For x = 64, we get 7o = 60.5 and corresponding (R/B) as 3.27.
So, we choose M = 16 and corresponding spectral efficiency is 3.36 bits/sec/Hz.
(a)
v < 20 no transmission
20< vy <40 M=2
40 <y <160 M=4

160 < v < 640 M=16
640 < v < 0o M=64

From table 9.2,
5 =20dB, fp=100Hz



12.

fp=80Hz is4/5of fp=100Hz
R

.7 =10.737 0.301 1.06 2.28 3.84]5/4 ms
7 =[0.9213 0.3762 1.3250 2.85 1.7875] ms

number of symbols = 7 /T
Spectral efficiency:

R
5 P(20 < v < 40)0.1 4+ P(40 < v < 160)0.2
+P(160 < v < 640)0.4 + P(640 < v < 00)0.8
1.8995bps/H z

= 1> 3(M;—1) | [7kM _

YieM;—1

*. the exact BER is better than the target BER

(a) 7 = 100
B = 30 KHz
fp =80 Hz
P, =103

2

— 1 1
Po= [ 6P pede= [ L 6R) (o= 0007
0 0

.5
where the last integral was evaluated using Matlab.

Another, more analytical way to solve this is a method proposed by William Wu, a student enrolled
for the course as:

1.5
pb ~ .2/ (5Pb)1/6d6
0.5

This integral cannot be evaluated in closed form, but it can be expressed in terms of a special
function; namely, the exponential integral.

Consider the integral S = f Iié 2 at/*dz, where a is a real positive number. Then a = €P for some
p € R. Rewriting the integral in terms of p, and then integrating by parts, we have

Ko Ka —p
T - / xep/”"—zdaz
Kq K x

Ko Ko
T + / Bep/zdx.
K1 K1 T

Ko Ko
S = al/md:c:/ Pty = P/
K1 K1

— eP/T.

B

With regards to the second integral “3”, let u = —p/x. Then x = —£, and dz = L du, yielding



Ky

Ky ,—u
8= (—u)e_”%du = —p/ ¢
Ks U Ky U

Q

where K3 = ;(—}1’ and Ky = %7' Applying the data provided in this problem, p = —5.298, K3 ~
10.596, and K4 = 3.532. Reversing the orientation of integration yields

K3 e~ U
B=p [ Cmdu = p(B(K) ~ By ()

where Ej is the exponential integral function Ej(x) £ [°°

- et;tdt. Conclusively, using K; =
0.5, Ky = 1.5, and P, = 1073, we have

_ K.
b, = (1/5) [6”/””3 : x‘; + p(E1(Ky) — El(Kg)):| ~ 1.674 x 1073
1

where F;(x) was evaluated using the expint () function in MATLAB.

A(t) =t = 7) +7e(®)
Py(y(t),4(t) < 0.2exp [M—(;i%(tj : S(@Su»]

()

= 0.2(5P)7® (2)
= =0.2(5B,)5 (3)

where (t )
_i-r

o= (1)

oo )

v(t)

IF the fading process is stationary t does not matter. In general (¢ — 7) and 7.(t) are not
independent of ~(t).

In further calculation we drop t as process stationary

—= o 0 bl N ga
PbS/ /70 0.2(5P,) 7 p(v, ¥)dAdy
0

Notice that 4 integrates only from =y as the transmitter which has knowledge of 4 only does not
transmit if 4 is less than ~y, where as v can vary over its entire range.

P< [ ( / %wo.z(wbﬂpwmcza) p()dy

where we have used Baye’s rule to relate the joint distribution to the marginal distribution as

p(7,9) = p(¥17)p(v)

Now using

we get

Pos [T ([o026m)% (G +am a6+ o) sy



where if 4 € {70,00} and 7 € {0,000}, then (§ +¢€) = % € {0,00}.
Now IF, v(t — 7)|y and ~¢|y are independent then we can write

p((6 +€)|v) = p(0]7) @ p(elv)

Further, IF (¢t — 7)|v only depends on p(7), we only need the distribution of p(7) and p(v.|7y).

13. Suppose target P, =103
K.=KG.=3dB x 0.2831 = 0.5662

. S() :{ ==k = /Ke
8 0 ¥ <o/ Ke

S(v)
/ 5 Y0
S() _ ﬁ - 0.5;627 v 2 1.67
S 0 N < 1.67

5 e (o)
— log p(y)dy = 5.1bps/Hz
5=/, (5 ) r) /

14.

2
5}
O]
[\
(@2}
3
)
@
>
o]
/T\
2
< e
|~Q
—t
N—
~__

15.

J = /OOO K)p(n)dy +~ [/OOO S?) P(v)d’y]

0 q Cavy S(’y)) <5(7) )
= —logy | Oy — —— < —~ dy+ 2 [ 222 p()d
/0 Cs OgQ( 1T In(w/C1) S p()dy + A { ——p(n)dy
0J 1/1n2 Cyry A
0= _4 2
08" O~ ey g2 m(B/C)S 5
= @ — _3(1n12))\§ - VLK S(v) > 0,K(y) >0
S 0 else



16. (a) ¥ = 30 dB = 1000
P, =107

C1 (6] C3 Cq4
1st Bound [ 0.05| 6 | 1.9 | 1
2nd Bound | 0.2 | 7 | 1.9 | -1
3rd Bound | 0.25 | 8 | 1.94 | O

We use eq. 9.46 in the reader

For the 1st bound:
K = 0.4572

S()_ ﬁ—% Y > (4)
S 0 0.W.

S

K is known to be 0.4572, 7 is found using the constraint

o0 1 1
/ <70K - WK) p(v)dy =1
Yo

Using Matlab, we get 79 = 2.16

For the 2nd bound:
K = -0.4825

SO _ [ 5k 5k 1> 5)
S 0 o.W.

S

K is known to be -0.4825, ~q is found using the constraint

& 1 1
/ (_ WK ’YK> POl =1
Y0

Using Matlab, we get 79 = 2.10

For the 3rd bound:
K = o

5(v) Koy >0
2| )

S 10 ow.

Ky is %;b/cl) = 1.8415, ~q is found using the constraint

A °° (f;’) plr)dy =1

Using Matlab, we get 79 = 1.838



S()/ Avg(S) vs ¥

— Bound 1
- - Bound 2
- Bound3

15
r(dB)

Figure 1: Problem 16, S(v)/S

K@) vs T
T

k(1) (bps/Hz)
~
@

15
r (dB)

Figure 2: Problem 16, k(7)

m):{ &loga () 7270 (7)

The plots for S(v)/S and k(v) are given below:
For bound 1, the cutoff is dictated by the power constraint, where as for bounds 2 and 3, where
K is either negative or infinite, the cutoff is dictated by the rate positivity constraint.

(c) By looking at the curves we notice that for Low SNR

1st Bound: Water-filling
2nd Bound: Channel-Inversion
3rd Bound: Constant Power

For high SNR’s, all the three bounds have the same power adaptation.
The rates are almost the same for all the three bounds.

17. M ={My=0,... My_1} where M is no data transmission
k‘j :logQMj ,3>0
ko=0
k; assigned to Rj = [v; —1,7v;) ,j=0,...N -1



7-1=0

IN—-1 =X S
ol
TS
Bl =aes [w_J
Setting target value P, = P(v)
S50)

P —av—=<-
m(=2)=——5_
c1 ocsk; Cq

| S0) Tt ) hgy)
S gl ¥
Nl i NUovi (ks
L= kj/ v)dy + A / ( ])p(fy)d’y—l
j=1 ’ijl j=1"v"7i—1 v
oL :
oL h(kq
— =—k - =0
77 12(70) o p(70)
h(k
Yo=p (k V) for some constantp = —\
1
forj >0
oL h(k; h(kjt1
o iP(75) = kjrap(v;) + A (%J)p(w) - (;;)p(%‘) =0
h(kiy1) — h(k;
= (J+1) (])p 1<j<N-2
kjt1 —kj
For some p = —A where p is found from the average power constraint as:
N1 h(k.:
Ol
j=1"7i—1 v
18.
N-1 , N-1 , B 0o B
J=3k / Dyt a | Sk / ~Pyp)dy |+ [ JRECOE:
Jj=1 - Jj=1 i-1 7o
aJ
2 0
95(7)

Notice that Py(7) is a function of S(7)

0P,
7) (v) +Xap(v) =0 Ly 1 <y <y

M50y P




N _
5()  En
S(v)
—av s
Pb(’)/) = C1 exp [m]
0P, () —0Y5 =k £ (kj)
=P = P = A <y < s
50 b(Y) Sek, — T Vi b(7) Ak, SIS
where A = g—i‘f
C2A1
f(k;) [—0275(7)/5]
A =ciexp | ————+—
vk; ! f(kj)
eSS [0
f(k;) c1vk;
S()=8;(v) s vi-1 <7<
Si(v) _ f(ky) f(kj)
where %7 = _ng In [)‘cwl]@}
9y o< j<N-2
0,

= (kj — kjt1) + M[kj(Po(v;) — Po) — kjp1(Po(v;) — Po)] 4+ X2[Sj(v;) — Sj41(7;)] =0

= 1 NSi(y) = Si(y)
P N=pP, — — = J J JN1J
b(13) = P AoAd (B — k)

Substituting for P,(v;) and S;(v;) we et an equation between ~;, A\; and Ay

Fkjtn) 1y [ A (k1) f(k;) Af(kj)
)‘f(kj) _p i o é —V]jt; In [Clﬁj’éj-:l} o _'Yj]CQ In [cl'yjlg]}

wh TN A (kjt1 = k)

_ Sk
where \ = o

Notice that A1 and Ao are found using the constraints

= (i)
?p(’Y)d’Y =1

and



19. ¥ = 20dB = 100

P, =10"*
C1 = 0.05, Cy = 6, Cc3 = 1.9, Cq = 1

M = {0,2,4,8,16}
Y-1 =10
Y(N-1) = Y4 =
N =5
Sgw_@? 7j—1§77j77j:071727374
where
h’(kj) = _ln(il;/m (26319]- - C4> 77j = 07 1727374

kj = logzMj, j 20,1,2,3,4

Region boundaries are g, 1, v2 and 4 given by

h(kjt1) — h(k;)
kj+1—k;

V=P ,7=1,2,3

Find p using:

=2

— (% h(k))

=1 -1 7

p(y)dy =1

<
Il

Using Matlab, we find that p = 0.7

Once we know the region boundaries (as we know p), we find the spectral efficiency as:

R N-—1 v
5= X[ e 0
j=1 771
N-1 vj
= k; / p(v)dy 9)
j=1 Yi—-1
N-1
= kip(j) (10)
j=1

where

Using Matlab we find that R/B = 3.002 bits/sec/Hz.

20. From 9.84 and 9.85

S() =S;(v) -1 <7<



where

; Af(k; k;
Sm)ln[ / ])} LG R P
S c1vk; | —vez
Af(k;
Py (v) = EC]) Vi1 <y <7 ,j=1...N-1
VRj
Solving approximately
k.
’}/j,l:f(j) s =1...N-1
kj
Solve for p and A using
N—-1
Y3 S y
JE
j=1 Yi—1
and
N-1 i _
b [ (B () = Pap)ay = 0
j=1 Yi—1
using Matlab we get one solution as
p=3 A=4x10"°
optimal region boundaries 0, 8.1964, 19.3932, 50.9842, 144.7588, oo
Pyt = 0.0787 ASE = 2.5810 bits/sec/Hz
MATLAB
M= [0248 16];
N =5; k = log2(M);
k(1) = 0;
cl = .05;
c2 = 6;
c3 =1.9;
c4 = 1;
Pb_bar = le-4;
gamma_bar = 100;
f = (2.7 (c3%k))-c4;
lambdal = l1le4; ss = .1; ssl = .0001; ss2 = .1; countl = 1; for

lambda = ssl:ssl:ssl
count2 = 1;
for rho = 1:s882:2
gamma_bnd = [f./k]*rho;
gamma_bnd (1) = 0;
gamma_bnd (6)
for i = 1:N
a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];
loi(i) = length(a);

100*gamma_bar;

end
mloi = max(loi);
gamma = zeros(5,mloi);



1:N
[gamma_bnd (i) :ss/10:gamma_bnd (i+1)];

gamma(i,:) = [a zeros(l,mloi-length(a))];
end

for i

a

sum_power (countl,count2) = -1;
for i = 1:N-1
S_by_S_bar = -log((lambdax*f(i+1))./(cl*gamma(i+1,1:10i(i))*k(...
i+1))) . *x(£(i+1) ./ (gamma(i+1,1:10i(i))*c2));
if min(S_by_S_bar)<0
stop;
end
p_gamma = (1/gamma_bar)*exp(-gamma(i+1,1:10i(i))/gamma_bar);
sum_int (i) = (ss/10)*sum(S_by_S_bar.*p_gamma) ;
sum_power (countl,count2) = sum_power (countl,count2)+sum_int(i);
end
sum_Pb(countl,count2) = 0;
for i = 1:N-1
p_gamma = (1/gamma_bar)*exp(-gamma(i+1,1:10i(i))/gamma_bar);
Pb_gamma = repmat(Pb_bar-(1/lambdal), 1, length(p_gamma));
Pb_int(i) = (ss/10)*k(i+1)*sum((Pb_gamma-Pb_bar) .*p_gamma) ;
sum_Pb(countl,count2) = sum_Pb(countl,count2)+Pb_int(i);
end
count2 = count2+1;
end
countl = countil+i;

end

PART b
M=1[024 8 16];
N = 5;

k = log2(M);

k(1) = 0;

cl = .05;

c2 = 6;

c3 =1.9;

cd = 1;

Pb_bar = 1le-4;
gamma_bar = 100;

f = (2.7(c3*k))-c4;

lambdal = 1le4; ss = .1;
count2 = 1;
for rho = 15:1:20
gamma_bnd = [f./k]*rho;
gamma_bnd (1) = 0;
gamma_bnd(6) = 100*gamma_bar;
for i = 1:N
a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];



loi(i) = length(a);

end

mloi = max(loi);

gamma = zeros(5,mloi);

for i 1:N
a = [gamma_bnd(i):ss/10:gamma_bnd(i+1)];
gamma(i,:) = [a zeros(l,mloi-length(a))];

end

sum_Pb(count2) = 0;

for i = 1:N-1
p_gamma = (1/gamma_bar)*exp(-gamma(i+1l,1:10i(i))/gamma_bar);
Pb_gamma = repmat(Pb_bar-(1/lambdal), 1, length(p_gamma));
Pb_int(i) = (ss/10)*k(i+1)*sum((Pb_gamma-Pb_bar) .*p_gamma) ;
sum_Pb(count2) = sum_Pb(count2)+Pb_int(i);

end

count2 = count2+1;

end

1076
1.4 e L

0.8 b

P,

0.6 B

0.4 B

o s Ll s Ll s PR | s PR | s Ll
-2 -1 0 1 2 3 4

10 10 10 10 10 10 10
Y(dB)

Figure 3: Problem 20

21. C1 =005 Cy=6 (C3=19 C;=1

K:&
Cy /Py — 1
Pb(V):f
S(7)S
;ZZWQﬂM +1



25 T

15F

bar

S(y)/s

0.5

sl

S

Matlab gives
ﬁb == 092,

MATLAB CODE:

cl = .05;
c2 = 6;
c3 =1.9;
cd = 1;

b

Pb_bar = 1le-3;
K = ¢c2/((c1/Pb_bar)-1);

meu_psi_db = 20;
sigma_psi_db = 8;

sigma = 10~ (sigma_psi_db/10);
meu = 10~ (meu_psi_db/10);

10

Y (dB)

W =

Py = 10716,

1

Figure 4: Problem 20

- 7> 0m/K

else

k() = ;1og2<m/fyo>

logy <M> p(¥)dy

Yo

R/B = 1.964bits/sec/Hz



22.

[92]
]

sqrt (log(exp(log(sigma~2)-2*1log(meu))+1));

M

(2*log(meu)-S72)/2;

gammaO_bar = [.9:.01:1];
ssl = .1;
for k1 = 1:length(gammaO_bar)
a = [(c4/K)*gammaO_bar (k1) :ss1:1000*meu] ;
b = (1./(S*sqrt(2*pi)*a)).*exp(-(log(a)-M)."2/(2%572));
S_by_S_bar = (1/gamma0_bar(k1)) - ((c4/K)./a);
sum_int (k1) = ssl*sum(S_by_S_bar.x*b);
end

[m,n] = min(abs(sum_int-1));
gammaO_bar_chosen = gammaO_bar(n);

[(c4/K) *gammaO_bar_chosen:ss1:100*meu] ;

)
1]

o
I

(1./(S*sqrt(2*pi)*a)) .*xexp(-(log(a)-M)."2/(2xS"2));
S_by_S_bar = (1/gammaO_bar_chosen) - ((c4/K)./a);
kgamma = (1/c3)*1log2(K*(a/gamma0_bar_chosen));

ASE = sum(b.*kgamma)*ss1;
Pout = 1-(sum(b)*ssl);

Notice that from 9.91 to 9.97 remains unchanged

(9.97) —

We maximize spectral efficiency by maximizing

B = [ toms [er + 20| ey

|2 a1

subject to

for ¢4 < 0, =
we get the solution similar to 9.54 as

SO _ [ 57 vz R
S 0 0.w.

where 7, is determined by power constraint
Notice that it is like channel inversion as c4 is negative
Also, optimal rate adaptation is
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Figure 5: Problem 21

23. Similar to the previous problem, we get the optimal adaptation as

S(v)_{fg 7

v

Yo
w.

where Ky = and - is found from power constraint.
Notice that it is an on-off power transmission scheme.

Optimal rate adaptation is given as
1 5
k(7) = — log ()
) = oy (2

Cl/ﬁb—l
C:

100



S(vbar)/sbar

1.4

12

0.8

0.6
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Figure 6:
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Problem 21



For AAH

Chapter 10

A =), i.e. eigen-values are real

(AANT = (AH)T AT
- @an'ar
= AA"

AAT = QAQH

(b) XHAAHX = (XHA)(XTAH = | XHA| >0
. AAM is positive semidefinite.
(¢) In + AA" = Inp + QAQH = Q(I + N)QHY
A positive semidefinite = \; > 0Vi
14N >0V
o Iy + AAH positive definite

(d)

AAH

det[Ips + AAH)

det[Iy + A7 A]

and A A have the same eigen-value

sodet[Iy + AAT) = det[Iy + AH A]

2. H=UxvT

U:

-

—0.4793
—0.5896
—0.6508

1.7034

0

det[Ip; + QAQH]
det[Q(In + An) Q"]
det [IM + AM]

ek (1 4 \)

det[In + QAQY]
det[Q(In + An)Q™]

det[IN + AN]

ek (1 4 \)

—0.4272 —0.6855

0.8685 —0.1298 ]

—0.2513  0.7164

0 0
0 0.7152 0

0 0.1302



—0.3458  0.6849  0.4263
—0.5708  0.2191  0.0708

V=1 _o7116 —0.6109 0.0145
—0.2198  0.3311 —0.9017
3. H=UxVT
Let
1 1 0
U=1]0 1 V=101 E:[ég}
0 0 0
100
H=(0 2 0
0 00
4. Check the rank of each matrix
rank(Hy) = 3
.. multiplexing gain = 3
rank(Hy) = 4
.. multiplexing gain = 4
5.
Ry ip
C = ;1()%2 (1 + Mt)
Constraint > V; = p>_ A\; = constant
oC 1 1
LoC _p p _0

6.

0N Min2(14 %) Mln2(14 %)

= )\Z = )‘j
. when all Ry singular values are equal, this capacity is maximized.

(a) Any method to show H ~ UAV is acceptable. For example:

13 .08 .11
D= .05 .09 14| where: di; = | %= ] x 100
23 13 .10

(b) precoding filter M = V!
shaping filter F = U~!
—.5195 —.3460 —.7813
F = ]-.02561 —.9078 .4188
—.8540 .2373  .4629
—.2407 —.8894  .3887
M = |—.4727 —.2423 —.8473
—.8478 3876  .3622
Thus Y = F(HMX + FN = U*UAVV*X + U*N

= AX +U*N
(¢) =L —LforL>L 0else

v = ;‘\}'25 =945fori=1,6.86 fori =2, .68 fori = 3

o

Assume o > g > 3 since 3 = .68 is clearly too small for data transmission




5676 12 = 4324
= B [logy (1+71%) +log, (1+727%)]
775.9 kbps

(d) With equal weight beamforming, the beamforming vector is given by ¢ = ﬁ[l 1 1]. The SNR

I QM
Il ko

2

2

is then given by:
H 7 H
c*H"Hc
SNR=———F— = (.78)(100) = 78. 1

N = (7800) M)
This gives a capacity of 630.35 kbps. The SNR achieved with beamforming is smaller than the
best channel in part (c). If we had chosen ¢ to equal the eigenvector corresponding to the best
eigenvalue, then the SNR with beamforming would be equal to the largest SNR in part(c). The
beamforming SNR for the given c is greater than the two smallest eigenvalues in part(c) because
the channel matrix has one large eigenvalue and two very small eigenvalues.

7. C = max Blogy det[Iy, + HRxHY|
Rx : T,(Rx) = p If the channel is known to the transmitter, it will perform an SVD decomposition of
H as
H=UXV

HRxHY” = (USV)Rx(UXZV)H
By Hadamard’s inequality we have that for A € R"*"
det(A) < H?:lAu‘

with equality iff A is diagonal.
We choose Rx to be diagonal, say = €2 then

det(Inr + HRx HY) = det(I 4 Q¥?)

. C = pmax Bojlogy (1 + \ip;)
i Pisp

where v/ \; are the singular values.

8. The capacity of the channel is found by the decomposition of the channel into Ry parallel channels,
where Ry is the rank of the channel matric H.

C = Blog,(1 + \ipi
pi:mlaggpzi: 0gs(1 + N\ip;)

where \/); are the Ry non-zero singular values of the channel matrix H and p is the SNR constraint.
Vi = Aip

Then the optimal power allocation is given as

P

Pi_{ T %0
0 Yi <0

for some cut-off value 7. The resulting capacity is given as

C= > Blog(vi/)

Y270



For

1 1 -1 1
11 -1 -1
H= 11 1 1
11 1 -1

Ry =3, v1 = 80, 7o = 40, v3 = 40. We first assume that =g is less than the minimum ~; which is 40.

N 3
0= T35 T
1+ 30 5

which gives v9 = 2.8236 < min; ;, hence the assumption was correct.

% = 12.4732 bits/sec/Hz

For
1 1 1 -1
1 1 -1 1
H = 1 -1 1 1
1 -1 -1 -1

Ry =4, v1 = 40, v = 40, v3 = 40, v4 = 40. We first assume that g is less than the minimum ~;
which is 40.

4
Y= 1
L+> i %
which gives 79 = 3.6780 < min; ;, hence the assumption was correct.

% = 13.7720 bits/sec/Hz

h11 e tht

. H=

hMrl hMth M, % M,



Denote G = HHT

hzl
lim G = lim —[har. . b
Mtlgloo M, i = Mtlgloo M, il - T My
hin,
1 &
= | _ holl?
AQ%EX>A4t;£;”ZJH
= Ejllhi]?
= 0'2
= 1 Vi o
hj1
im Gy = lim —[ha b |
Mﬁlorg,#j M, M L e e e DM
P,
1 &
= lim — Y hiphjk
Mtlinoo Mt; Zk jk
= Ephighji
= Ep(hit)Er(hji)
= 0 Vi,j,i#j
. 1 T
g = I
. lim Blog,det 1M+ﬁHHT] —  Blog,det [Ins + plu]
M —o0 M

= DBlogy [l + p]det Iy
= MBlog,[1+ p]

10. We find the capacity by randomly generating 10® channel instantiations and then averaging over it.
We assume that distribution is uniform over the instantiations.

MATLAB CODE

clear;
clc;

Mt = 1;
Mr = 1;

rho_dB = [0:25];

rho = 10.7 (rho_dB/10);
for k = 1:length(rho)
for i = 1:100
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)



sigma(j) = L(j,j);
end
sigma_used = sigma(l:rank(H));
gamma = rho(k)*sigma_used;
%% Now we do water filling\
gammatemp = gamma;
gammatempl = gammatemp;
gamma0 = 1le3;
while gammaO > gammatempl(length(gammatempl));
gammatempl = gammatemp;
gamma0 = length(gammatempl)/(1+sum(1./gammatempl));
gammatemp = gammatemp(1l:length(gammatemp)-1);
end
C(1) = sum(log2(gammatempl./gamma0)) ;
end
Cergodic(k) = mean(C);
end

ergodic

p (dB)

Figure 1: Problem 10

11. We find the capacity by randomly generating 10% channel instantiations and then averaging over it
We assume that distribution is uniform over the instantiations.

MATLAB CODE

clear;
clc;
Mt = 1;



Mr = 1;
rho_dB = [0:30];

rho = 10.7(rho_dB/10);
for k = 1:length(rho)
for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’,’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)
sigma(j) = L(j,j);

end
sigma_used = sigma(l:rank(H));
gamma = rho(k)*sigma_used;
C(i) = sum(log2(l+gamma/Mt));
end
Cout (k) = mean(C);
pout = sum(C<Cout(k))/length(C);
while pout > .01
Cout (k) = Cout(k)-.1;
pout = sum(C<Cout(k))/length(C);
end
if Cout(k)<0;
Cout (k) = 0;
end
end

outage

p (dB)

Figure 2: Problem 11



12.

13.

14.

M,
Pu'n<X) = P (Zumz < X)

.. the statistics of u*n are the same as the statistics of each of these elements

Y, = |[u*Hox|

= |lu*Hol?|

= UHHHU*Hu*HUHx||2
o H Holz|?
v Q" Qul||?

)‘ma:c||xH2

IN

with equality when u, v are the principal left and right singular vectors of the channel matrix H

SN R = A P
. max maz =y max P
0.1 0.5 0.9
H=1{03 02 0.6
0.1 0.3 0.7

When both the transmitter and the receiver know the channel, for beamforming, u and v correspond
to the principal singular vectors (or the singular vectors corresponding to the maximum singular value
of H). Notice that the singular values of H are the square root of the eigen values of HH (Wishart
Matrix).

Using Matlab, we get that the maximum singular value of H is 1.4480 and the singular vectors corre-

sponding to this value are

[ —0.7101 |

Uopt = | —0.4641

| —0.5294 |

and ) )
—0.1818

Uopt = | —0.4190

| —0.8896 |

It is easy to check that uoTptuopt =1and vgptvopt = 1 and that

uly # H % vopy = 1.4480

Since, during beamforming from eq. 10.17 in reader,

y = (u'Hv)z +u''n



15.

and for a given transmit SNR of p, the received SNR is given as

SNRrCVd = p(ugpt Hvopt)2

since, uopy has norm 1, noise power is not increased. For, p = 1, SNR is simply (1.4480)% = 2.0968.

When the channel is not known to the transmitter, it allocates equal power to all the antennas and so
the precoding vector (or the optimal weights) at the transmitter is given as

Define
h = H'UQ

So, eq. 10.17 in the reader can be written as

y=(uTh)z+uln

To maximize SNR we need to find a uz of norm 1 such that (u'h) is maximized.

Using Matlab, we get that the maximum singular value of h is 1.2477 and the singular vector corre-

sponding to this value is
0.6941

uz = | 0.5090
0.5090

It is easy to check that ulus = 1 and that

ul « h =1.2477

Alternatively, from MRC concept we know that:

Wi 0.6941
[1h] 0.5090

where ||h|| is the Ly norm of h.

For a given transmit SNR of p, the received SNR is given as
SNRyevq = p(ul Huo)?

since, us has norm 1, noise power is not increased. For, p = 1, SNR is simply (1.2477)? = 1.5567.

(a) p=10dB = 10

Pe:pid

So to have P. < 1072, we should have d > 3, or at least d = 3. Solving the equation that relates
diversity gain d to multiplexing gain r at high SNR’s we get

d= (M, —7r)(My—r)



=3=08-r)4d-r)

Solving for r we get
r = 3.350r8.64

We have that » < min{M,, M;}, sor < 4 and so r = 3.35. But we know that 7 has to be an integer.
So, we take the nearest integer which is smaller than the calculated value of r, which gives us .

No credits for this part:

If we are allowed to assume that equations 10.23 and 10.24 hold at finite SNR’s too and we are
given that we can use base 2 for logarithms, we can find the data rate as

R = rlogy(p) = 9.96 bits/s/Hz
(b) With, » = 3, we can find d as
d= M, —r)(My—r)=(8-3)(4—3)=5

For this value of d,
P,=pd=10"°

16. According to SVD of h
VA =1.242
. C/B =1ogy(1 + Ap) = logy(1 + 1.242%2.10) = 4.038bps/H »

17.
o |3 5] _[ 5946 8041 8713 0 —.8507 5757
T 7 2] | —.8041 .5946 0 .3328 —.5757 —.8507
P=10mW
Ny = 1072 W/Hz
B = 100 KHz

(a) When H is known both at the transmitter and at the receiver, the transmitter will use the optimal
precoding filter and the receiver will use the optimal shaping filter to decompose the MIMO chan-
nel into 2 parallel channels. We can then do water-filling over the two parallel channels available
to get capacity.

Finding the ~,;’s

NP

= =75.92
g NoB
\p

= = 11.08
2 NoB

Finding ~q

Now, we have to find the cutoff value vy. First assume that g is less than both v; and ~2. Then

<1 1) <1 1>
)+ (=== ) =1
Y0 71 Yo 72



2 1 1

= —=14+—+—
o 71 V2
1
Y0 T T 1.81

which is less than both ~; and 79 values so our assumption was correct.

Finding capacity

Now we can use the capacity expression as

2

Vi

C= ZBlogQ (70> = 800 Kbps
i=1

(b) Total is

Essentially we have two parallel channels after the precoding filter and the shaping filter are used
at the transmitter and receiver respectively.

S
M(y)=1+ ’VKQ
S
Finding K
—-1.5
K= =.283
In(5P,)

Y = Y0/K.

Finding vy or vx

We now find the cut-off 7. First assume that 79 < {71,72}. Notice that «; and -, have already
been calculated in part (a) as 71 = 75.92 and 2 = 11.08.

<1 1) <1 1)
- + - =1
% K Y% K

2

= Y = A ; = 1.4649
1+F (,714',72)

which is less than both v; and =5 values, so our assumption was correct.

YK = ’}/0/K = 5.1742
Finding Rate R

Therefore the total rate, R is given as

o (3) v (2)
TK YK



18.

= R = B4.97
This gives that | R=497.36 Kbps‘ (Obviously less than ergodic capacity).

Since now we use beamforming to get diversity only, the transmitter and the receiver use the
principal left and right eigen vectors of the Wishart Matrix HH .

Once this is done the SNR at the combiner output is simply Apaxp, where Apax is the maximum

eigen value of the Wishart Matrix HH and p is ﬁ

Finding ~,

As given in the question, Apax 18 0.7592 and p was calculated to be 100. So we get that .
Finding P,

When using BPSK, ~vs = 7. Now we can use the expression for P, for BPSK

. _ |0 Using the approx. given in the Ques.
h=Q (V 2%) =@ (V2x15.92) = { 3.4 x 107%  Using Matlab

Credit is given for either value.

Finding Rate R

Since we are using BPSK and are given that B = 1/T}, we get the rate using BPSK to be

R=100 Kbps|.

Comparing with previous part

Comparing with part (b), we can see that the rate R decreases by 397.36 Kbps and the P, im-
proves as P, is now 3.4 x 1073% ~ 0 whereas earlier it was 1073,

Therefore we see that we can tradeoff rate for robustness of the system. If we are willing to de-
crease the rate at which we transmit, we can get more diversity advantage i.e. one strong channel
which gives a much less value of P,.

clear;
clc;

Mt = 4;
Mr = Mt;

rho_dB = [0:20];

rho = 10." (rho_dB/10);
for k = 1:length(rho)
for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’, ’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)



sigma(j) = L(j,j);
end
sigma_used = sigma(l:rank(H));
gamma = rho(k)*sigma_used;
%% Now we do water filling\
gammatemp = gamma;
gammatempl = gammatemp;
gamma0 = 1e3;
while gammaO > gammatempl(length(gammatempl));
gammatempl = gammatemp;
gammaO = length(gammatempl)/(1+sum(1./gammatempl));
gammatemp = gammatemp(1l:length(gammatemp)-1);
end
C(1) = sum(log2(gammatempl./gamma0)) ;
end
Cergodic(k) = mean(C);
end

clear;

clc;

Mt = 4;

Mr = Mt;

rho_dB = [0:20];

rho = 10."(rho_dB/10);
for k = 1:length(rho)
for i = 1:1000
H = wgn(Mr,Mt,0,’dBW’, ’complex’);
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)
sigma(j) = L(j,]);

end
sigma_used = sigma(l:rank(H));
gamma = rho(k)*sigma_used;
C(i) = sum(log2(l+gamma/Mt));
end
Cout (k) = mean(C);
end

19. using Matlab we get C,,; = 7.8320

MATLAB CODE

clear;

clc;
Mt =

Mr

b

4;
Mt;

rho_dB = 10;

rho

= 10." (rho_dB/10);

for k = 1:length(rho)

for i = 1:1000



25 T T

—C ) =M =1
ergodic  t r
M=M-=1
out t r
- ergodic  t Mr_4
. C M=M=4
out t r
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P (dB)

Figure 3: Problem 18

H = wgn(Mr,Mt,0,’dBW’,’complex’);
(F, L, M] = svd(H);
for j = 1:min(Mt,Mr)
sigma(j) = L(j,]);
end
sigma_used = sigma(l:rank(H));
gamma = rho(k)*sigma_used;
C(i) = sum(log2(1l+gamma/Mt));
end
Cout (k) = mean(C);
pout = sum(C<Cout(k))/length(C);
while pout > .1
Cout(k) = Cout(k)-.01;
pout = sum(C<Cout(k))/length(C);
end
if Cout(k)<0;
Cout (k) = 0;
end
end

. As p increases, the span of cdf becomes narrower and so capacity starts converging to a single number.

MATLAB CODE

clear;
clc;



Mt = 8;

Mr = Mt;

rho_dB = 10;

rho = 10.7 (rho_dB/10);

for i 1:1000
H = wgn(Mr,Mt,0, dBW’,’complex’) ;
[F, L, M] = svd(H);
for j = 1:min(Mt,Mr)
sigma(j) = L(j,j);

end
sigma_used = sigma(l:rank(H));
gamma = rho*sigma_used;
C(i) = sum(log2(1l+gamma/Mt));
end
[f,x] = ecdf(C);

Empirical CDF’s of Capacity w/o Tx CSI

1 T T T T = T

0.9

0.8

Q]

F

0.4

0.3

0.2

0.1

11 12 13 14 15 16 17

Figure 4: Problem 20

18



Chapter 11

1. See Fig 1

2B =100 KHz

fc-B fc+B

fc = 100 MHz

Figure 1: Band of interest.

B =50 KHz, f. = 100 MHz

1
He = =
Noise PSD = Ny W/Hz. Using this we get
fe+B
Noise Power = / No|Heq(f)?df (1)
fe=B
fet+B
- N[ (2)
fo—B
f3 (fe+B)
- mf] ®)
(fe—B)
N,
= (et B~ (fe-B)° (4)
= 102Ny W (5)

Without the equalizer, the noise power will be 2BNy = 10° Ny W. As seen from the noise power values,
there is tremendous noise enhancement and so the equalizer will not improve system performance.

2. (a) For the first channel:
ISI power over a bit time = A?T},/T}, = A? For the 2nd channel:

ISI power over a bit time = ‘%—j Yoy é;:l)Tb e t/Tmdt = 2¢=1/2 A2



3.

S(t)

Figure 2: Problem 2a

(b) No ISI: pulse interval = 11/2us = 5.5us

.. Data rate = 1/5.5us = 181.8 Kbps

If baseband signal =100KHz: pulse width = 10us
Data rate = 2/10us + 10us = 100K bps

(a)

T =0 W sec

Hence,

h(t):{ - t'z‘o

H(f) = /0 e eIty
o
1 jornf

Heolf) = = + j2nf

R
By Sa(NIH(f)?|Heq (f)|df
SNReq _ nfB NO|Heq(f)‘2df

SNRis1 B So(f)H(f)2df
2B Ny




10us t

x

Figure 3: Problem 2b

Assume S, (f) =S, -B< f<B =

2BS 2B
No 2B+ ps L4’ g2
R = — — = 0.9364 =-0.28 dB
S TplH(f)I2df 1.617 x 10
2B N,
(c)
—T —2T,
hin] = 1 4+ e+ dn—1]4+e + dn—2]+..
;TS ,1 ﬂ ,2 —3Ts 73
H(z) = 14erz 4er 2z “4+er 2 °+..
- _Ts _1\" z 1
= Z (e TE ) = .~ Ts
=0 z—e 7= l1l—e 7z71

= Hey(z) = m. Now, we need to use some approximation to come up with the filter tap

coefficient values. If we assume Ny = 0 (the zero-forcing assumption), we get Heq(z) = l—e~ =21,

Thus, a two tap filter is sufficient. For T = % ms, we have agp=1, a; = —0.0039 as the tap
coefficient values. Any other reasonable way is also accepted.

4. w; = ¢; where {¢;} is the inverse Z- transform of 1/F(z)
Show that this choice of tap weights minimizes

1 2
Ao (NN + .oy (D)
at z = el
If F(z) is of length 2 and monic, say F'(z) =1 — a1z then
1
=1+a;z"" +a%2_2 +... wherecy =a1, cg = a%, ar <1

F(z)



It is easy to see that the coefficients become smaller and smaller. So if we had the opportunity to
cancel any (2N+1) coefficients we will cancel the ones that are closest to 2°. Hence we get that w; = ¢;
minimizes (1). The result can be similarly proved for length of F(z) greate than 2 or non-monic.

5. (a)

(b)

()

He,(f) = ﬁ for ZF equalizer

1 fe—20MHz< f< f.—10MH=z
2 fo—10MHz<f<f.

Hey(f) =14 05 fe<[f<fe+10MHz 9)
4 fo4+10MHz< f < f.+20MHz~
0 0.1.

S=10mW Signal power
N = No[12 x I0MHz + 22 x 10MHz + 0.5 x 10M Hz + 42 x 10M Hz] = 0.2125mW
-.SNR = 47.0588 = 16.73dB

Ts = 0.0125pusec
—1.5v/M~-1 1.5SNR
P, <0.2e v/ or M <1+ Zin(5P,)

for Py = 1073 M < 14.3228 (M > 4 thus using the formula is reasonable)

R =12 = 307.2193Mbps

We use M=4 non overlapping subchannels, each with B=10MHz bandwidth
1. fo—20MHz< f< fe—10MHz a;=1

2: fo—1I0OMHz< f< f. ax2=0.5

3 fe<f<fe+10MHz a3=2

4 fe+10MHz < f < fe+20MHz o4 =0.25

Power optimization: ; = % fori=1,2,3,4

v1 = 1000 79 =250 ~3 =4000 4 =062.5

for P,=10"% K =0.2831

P 0 Y < /K

We can see that all subchannels will be used and
P, =26523 P, =2.5464 P3=2.6788 P, =2.1225

and
Yo = 3.7207

thus R = 2B Y7, log(K7i/v0) = 419.9711 Mbps

sty ={ g U<

o.w.

) = o F(f+£>

n=—oo

=1

.. folded spectrum of f(t) is flat.



yr = y(kT +to)

= > Xif(kT +to —iT)

1=—00

= Z Xif (k=T +to)

N+k
= Xgsinc(to) + Z Xif (k—=149)T +tg)
——N+h,ik

151

N+E . .
B sin (w(k — @) +to/T'T)
ISI = ), X o

N
= sin(nty/T) Z
i=—N,i#£0
N

= sin(mto/T) Y [
=1

=— N+k,itk

1
wto/T — i

-1 1
wto/T — i + mto/T — mi

N

= fsm (mto/T) Z t2/T2

Thus, ISI — 00 as N — oo

7. gm(t) = g*(=t) = g(t) = sinc(t/Ts), |t| < T
Noise whitening filter : W



8. Jinin =1— E;ifoo ij—j

B(z)
bo
T w/T X (eIwT
2m J e X(e74T) + No

9.
Vi J
J
oJ
= = 2Mw! =2V,
o v d
oJ
20
ow
10.
Jmin =
No >
Fs(f) + No
No
—— <
Fx(f)+ No

C(2)F(2)
F(z)F*(z71)
F(2)F*(z=1) + Ny
X(z)
X(Z) + N(]
1 B(z)
2mj | 2
1 X(z)
2m; | 2[X () + Vo)
T w/T X(eij)
% —7)T X(ej"JT) + Ny

dz

dz

dw

T w/T N

27 J_nyr X(@T) + No'

£ /ﬂ/T NO
210 )y T30 [H(w + 270 /T)[2 + Ny

—0.5T NO
Ts/ ——df
—os1. F=(f) +No

dw

(21 o
N owy’ T Owy

= wMyw* — 2R{Vyw*} + 1

= 2M,w’ =2V,

= wop = (MT) T VH

v

0.5T% NO
T - -
° /O.STS Fs(f)+ No

df

No _
No

0.5T
T, / 1df =1
—0.5T

<1



11.

o0

Fs(f) = ; 3 F<f+£>

n=—oo

1 > ] n i4 n
= = Y 140577 Irrs 03¢0 ST

n=—oo

MMSE equalizer :

0.5/Ts N,
—o.s/7, F(f) + No

0.5/Ts NO
Jmin = €xp Ts/ In [} df
—os/r LES(f) +No
12. (a) G(f) is a sinc(), so theoretically infinite. But 2/T is also acceptable (Null to Null bandwidth)

(b) 7> T is more likely since T = 10~%sec

As long as 7 > Ty, get ISI and so, frequency selective fading
(¢c) Require Ty = Ty + T = R = 7= = 49997.5bps
(d) Heq(z) = %Z) for ZF equalizer

= Hey(2) = 1

do+di1z= 1 +doz—2
Long division yields the first 2 taps as

DF equalizer :

’LU():l/Oéo

wy = —al/ag

13. (a)

0 < f <10KHz
10KHz < f < 20KHz
20KHz < f < 30KHz
30KHz < f < 40KHz
40KHz < f < 50KHz

=
~
—~
~
N~—
I
I
T = W N =

(b) The noise spectrum at the output of the filter is given by N(f) = No|Hq(f)|?, and the noise
power is given by the integral of N(f) from -50 kHz to 50 kHz:

50kH z 50kH z )
N = N = 2N / Hegf) 2
f=—50kHz f=0kHz

= 2No(1+4+9+ 16 +25)(10kHz)
= 1.ImW

(¢) The noise spectrum at the output of the filter is given by N(f) = (H(;Vw, and the noise power

is given by the integral of N(f) from -50 kHz to 50 kHz. For a = .5 we get
N =2Np( A4+ 1+ 1.44 + 1.78 + 2.04))(10kHz) = 0.134 mW

For aa =1 we get

N = 2Ny(.25 + .44 + .56 + .64 + .69))(10kHz) = 0.0516 mW



(d) As a increases, the frequency response Heq(f) decreases for all f. Thus, the noise power decreases,
but the signal power decreases as well. The factor a should be chosen to balance maximizing the
SNR and minimizing distortion, which also depends on the spectrum of the input signal (which
is not given here).

(e) As o — 00, the noise power goes to 0 because Heq(f) — 0 for all f. However, the signal power
also goes to zero.

14. The equalizer must be retrained because the channel de-correlates. In fact it has to be retrained at
least every channel correlation time.
Benefits of training

(a) Use detected data to adjust the equalizer coefficients. Can work without training information

(b) eliminate ISI.

15. N =4
LMS-DFE: 2N +1 operations/iteration = 9 operations/iteration
RLS: 2.5(N)? + 4.5N operations/iteration = 58 operations/iteration

Each iteration, one bit sent. The bit time is different for LMS-DFE/RLS, T}, (LMS-DFE) <7} (RLS).
But time to convergence is faster for RLS.

Case 1: fp = 100 Hz = (At.) = 10 msec, must retrain every 5 msec.

LMS-DFE: R = 107 . 1000 bits _ 911 K}y

5 msecs

RLS: R = 107 50 bits _ 169 Khps

58 ~ 5 msec

Case2: fp = 1000 Hz = retrain every 0.5 msec
Rpms-pre = 0 bps
Rpis = 72.4 Kbps

16. In the adaptive method, we start with some initial value of tap coefficients W and then use the

steepest descent method
Wk+1 =Wk -AGkg ... (1)

where A is some small positive number and Gg is the gradient of MSE = E|cik — dﬂz is RWi — p
(Notice that 11.37 was a solution of gradient =0 , .. RW = p)

GK = RWk —p= —E[EkYk*]
where Yk = [yk+L . .yK,L}T and Er = Cik - dAk
Approximately (1) can be rewritten as

Wi = Wi+ Ag Y™



Chapter 12

1. (a) ¢ =cos(2mj/Tnt + ¢;)
To form a set of orthonormal basis on [0, Tv]
We need, fOTN Yipdt =0

TN TN
Yivrpdt = / cos (2mj /Tt + ¢;) cos (2mk/Tnt + ¢) dt
0

Tn

0

%COS (2m(j+ k)/Tnt + o; + oK) + %COS (2m(j — k)/Tnt + ¢ — dp) dt

|
S~

1 T
= 2y 1 BTG+ R+ 6+ éx) —sin (95 + 6]
1 T
* 2 B 276 = k) + 65— éx) —sin (¢ — 6]
=0

= j and k are integers
= The minimum separation for sub-carriers cos (2mj/Tnt + ¢;)is 1/Ty for any ¢,

(b) If ¢; = OVj

TN

1 . , 1 Ty
pdt = 2m(j + k) + = —-————<sin2n(j — k) =
Vi 5 sin 27 (j ) 227(j — k) sin2w(j —k)=0

_In
:>27T(j—|—k‘):llﬂ' 27T(j—/{3):l271' l1,l0 € Z
= j and k are multiples of 1/2
= The minimum separation:1/2Ty

2. (a) Ty =1/By = 10T}, = 10/B. = 10/10KHz = 1ms
(b) B = N(+B+e) _ 128(141.540.1) _ gagp-pr.

TN 1ms

(C) B = N-;ﬁ-‘re — 128+11.5+0.1 =129.6K H 2z
N ms
.. The total bandwidth using overlapping carriers is less than half of the non overlapping band-

width.
3.

z3[n] = x2[n] ® z1[n]

N-1
= xa[m]z1[(n — m)N]

m=0
N-1

X3U€] = x3[n]w5€\fn
N

_ wa[m]a1 [(n — m)n]| i



interchange order of summation

N-1 N-—1
Xs[k] = wo[m] | > mi[(n —m)n]wk
[
= zo[m) X [K]wkm
m=0
N-1
= Xi[k] ) mo[mlwiy”
m=0
= Xi[k]XslK]

.. circular convolution of discrete-time sequences leads to multiplication of their DFT's.

4. (a) For FDM, the number of subchannels = 5~ = 5
T, = 10 psec, R = ——+— = 0.1 Mbps

(Af)e

10 psec

(b) B, = % [1—,/% } where 7, = 1000/n

Vo

B,

250

U W N =B

1000 | 2.5 x 1074
500 5x 1074
333 | 7.5 x 1074

1073

200 | 1.25 x 1073

BER after decoding = Y°_, P, [i channels in error] = 3.5 x 10~°

The total date rate of the system is the same as the data rate of any of the subcarriers (since they

all have the same bits transmitted over them) = R = 0.1 Mbps

Since it is not specified which equation to use for calculation of SNR, all answers
based on any correct equation in the reader are being given full credit.
given below is just one way to do the problem. Your answer can be totally different

but we still give credit for it.
For BPSK in Rayleigh fading:

1 bl
Py == [1—,/——
b 2{ 1+v]

For P, < 1073, we get SNRyin = 248.75.
For higher order QAM’s we use the equation given in the reader:

which gives

For 4-QAM (since its a rectangular constellation), from Table 6.1 we have ap; = 1 and By = 1, so
we get SNRin = 249.25. However using the exact equation 6.81, we get that for 4-QAM, SNRyin
= 453, which makes more sense as it is much greater than that required for BPSK. Hence we will

use this value.

P, = aM (4 _ 0’5ﬁM787

2 14+ 0.58m7,
?b ~ apg 1_ 0.5ﬁM787
2logy M 14 0.5807,



For 8-QAM (since its a non-rectangular constellation), from Table 6.1 we have oy = 4 and
B = 3/7, so we get SNRy,in = 1552, which is higher than the SNR on any branch and so should
not be used.

n| %s, | Max(M) P,

1 | 1000 4 0.454 x 103
Honce: 2| 500 4 0.906 x 10~3

3| 333 2 0.748 x 1073

4| 250 2 0.997 x 10~3

5| 200 0 1.25 x 1073 with BPSK

R=0.1), logy(M) = 0.6 Mbps

5. (a) If the baseband bandwidth is 100 Khz, then at the carrier frequency they have bandwidth of
B =200 KHz.

For flat fading we need the coherence bandwidth to be much greater than the bandwidth of the
signal. Therefore B, > 10B = 2 MHz.

For independent fading, we want the channel between two carriers to be uncorrelated. That is,
we want B, < AB = 200 KHz.

If the fading between the different channels is correlated, they will all tend to have fades at the
same instants. Therefore, coding over sub-channels will not work because all channels will tend
to fade at same time and the code will not be able to correct all these errors.

(b) We have
BER < .2¢~157(M-1)

which means that

1.5
—In5BER
For the first sub-channel, this gives M < 4.5672, which means we use 4-QAM.
For the second sub-channel, M < 8.108, which means we use 8-QAM.
For the third sub-channel, M < 18.856, which means we use 16-QAM.
Therefore, at each symbol time we will transmit 9bits.
We have that Ts = 1/B = 10 ps, means we transmit at 900 Kbps total.

M<1+ =1+0.283y

(¢) To achieve the same data rate, we will need 3bits/symbol per sub-channel, that is 8-QAM con-
stellation.

To achieve this, we need a minimum SNR of 13.93 dB per sub-channel.

In the first sub-channel we must increase the power by 2.93dB, giving a transmit power of P;, =
196.33 mW.

For the second sub-channel we need 0.07 dB less power, that is P, = 98.40 mW.

For the third sub-channel we need 4.07 dB less, that is P, = 39.17 mW.

The total transmit power is now, P; = 333.90 mW. Therefore we need to increase the transmit
power by 33.90 mW with respect to case b).

6. T. = 20us
S.B.=1/T.=50KH~z
..By =B./2=25KHz
B=NBy=8x25KHz=200KHz
SNR =20dB, target BER = 1073
For MQAM P, ~ 0.2¢~1-57/M~1



= M =1+ —1.57/In5P, = 29.31

<. R=NRy = Nlogy M/Ty = Nlogy M£% = 400K bps

o.M =16
7.
[ YN—-1
YN—-2
L Y0
8. DFT:

ho
0

ho

cocooco o

ha

hq h, 0
ho hu-1 hy,
oo hy 0
ho .. hu—1 hy
... 0 0
0 0 0
hs B2
ho hyu-1
ho h, 0
0 ho ... hy.
hy hy ... hu_o
hy ... hu-1
X[i] =
X[0] =
X[1] =
X[N-1] =
i 1
1 wN
VN
_1 wal

0 TN-1
0
o
Tr—1
ho h# 1 L .%'_#
0 17 xnv=1
0
hy,
ho ] [ o
0 1T anv=t [ vn—1 ]
0
0
0
1 L %o L Yo i
... 0 i -xN—l- -VN—I-
hy, 0
n
by,
ho ] L2 | B2
1 N—1 -
— z|nlw
N & N
n=0
N—1
1
— x[n]l
N n=0
1 N—1 .
— r|n\w
N & N
n=0
N—1
1 _
x[n] (N=1)n
N n=0
1 1 |
wjz\, wx_l
ij\;N—l) w](\J[V—l)Q |

UN—-1

W




9.

(a) First rowof Q =[11. .. 1]
HQ, )T =H[11... 00 =%t hf11...17T
.. First row of Q) is an eigenvector of H with \g = Yt h;
(b) Secondrow of Q =[ 1 wy wi ... ... wih ]
HQ2,)T = H[1 wy w} ... ... w%il ]T
o
= Zhiwfv[ 1 wy w¥ .o w%_l ]T
i=0
ILL .
= Zhiwﬁ\f@(%:)T
i=0
.. second row of Q is an eigenvector of H with A; = > hiwh,
h _ - 2(k—1 N—-1)(k—1
(¢) For k' row of Q = [ okl QHESD N }
T
AT - 2(k—1 N-1)(k—1
HQ(k,:)" = H[l w]]‘ifl w]\; b wg\, ) )}
= Zhiwﬁ\(,k_l) [ 1 w]’i,_l w%kil) w%vfl)(kil) ]
=0
L itke)
= thw]\] Q(kv :)T
i=0
- Vk, k" row of Q is an eigenvector of H with eigenvalue A\, = > hiwj\([k_l)
5[ ] =0...... O:L'O ...... TN-1
m
Fory<n<N
yln] = Zn]xhln]
o
= > h[k]En — k]
k=1
“w
= > hlklazn - k)
k=1
m
= > h[klzln — kly
k=1
= z[n] ® hin|
Forn<p
yln] = Z[n|xh[n|+ Z[n+ N]*h[n+ N|



11. (a)

7 5 3 0 0 0 0 0 0 0
075 3 00000 0
0 0.75 3 000 0 0
g_| 0007530000
000 0.75 3 00 0
0000 0.75 300
0000 0 0.7 5 .30
.0 0 00O 0 0 .75 .3
Y=Hz+v
(b)
75 3 0 0 0 0 07
075 3 00 0 0
0 0.7.5 .3 00 0
F_|0 0075300
00 0 0.7 5 3 0
00 0 0 0.7 .5 .3
3 0 0 0 0 0 .7 5
5 3 0 0 0 0 0 .7]
H = MAMHY

(c) The flat fading channel gains are the diagonal elements of the matrix A

MATLAB CODE
clear all;

H=[ .7 .6 .3 00
0.7 .5 .30
00 .7 .5 .3
000 .7 .5.
0000 .7 .5.
00000 .7
.300000
.5.30000

w O O O
w O O O o
N 01w o O O O o

—_

.5
7
0
[V,D] = eig(H)

VxD*V’ -H

12. (a) p=4
The VC system doesn’t require a cyclic prefix to make the subchannels orthogonal.
(b) ] o ] o )

Y255 1 0.6 07 03 0.2 0 0 0 ... 0 I255 V255
Y254 0 1 06 07 03 02 0 ... ... 0

Yo o ... ... ... .1 0.6 0.7 03 02 | [ xz_4 10




H=Usv"
Singular values (using ’svd’ in Matlab)

(c) use ’svd’ in Matlab

— - : 1/2bit 1 coded bit 1 sub-carrrier symbol __
13. Rm”‘ = 52sub-carriers x coded bit sub-cacr?rieer S;mbol = 4C>?10—.eﬁs::<}:, < = 65Mbp8
Rma:v = 52sub-carriers x cjc{jclljllazit X sub—?:a(ljr(;?i‘zf ;;;fnbol X : SUb;LCjif)ri%rs:ZmbOI = 58.5Mbp$
14.
R 48 b ors 1/2bit o 1 coded bit " 1 sub-carrrier symbol
= —sub-carriers
2 coded bit  sub-carrrier symbol 4 x 10~ 5sec
n b {ors % 3/4bit 6 coded bit " 1 sub-carrrier symbol
—sub-carriers
2 coded bit  sub-carrrier symbol 4 x 10~%sec
= T7.5Mbps
. cos(BZt
15. a(t) = sinc (4) [ 1(25)]
T wl < 7(1=5)
Xw) =4 F[1=sin (& (wl-5))] 70-0)<lwl<F0+0)
0 lw| > F(1+8)

By [|X(t)|2] = ﬁEw [|X(W)‘2]
1 (6 7 (T ™ ) 1 o7
= 27rT2/;(1_/3) ]5 {1 — sin <2ﬁ <\w - T))] |“dw + ﬁT T(l - B)
= 1-0.58
max |z(t)]? B 1
PAR E I X®)?] 1-053

DD @
I
N = O
T
N
=
I
[\]
H
.
w
ie!
=5
72
o)
w
=
&
3
<)
=
o
0
n
w
[}
=}
@)
=
<
)
=+
o
=
2.
=}
o
o)
=
=
o
=
n



16.

lim
6—0

Co

%

Q

Tn (1 _ e*j27r(5+m))
lim -
5—0 727 (6 +m)

T 1— —j27é
lim N ( - ¢ )
5—0 j2mm
TN (]27‘(‘5)

j2mm
Tné
m

>l

m£i

2

n%;i (;)2 (Two)®
> ()




Chapter 13

x; = OT z(t)s(t)dt = Z;\le s?j + I;s45) (see [1] for details)

Elz;/si(t)] = Es ( to show )

si(t) = si;(t)
J
By linearity of expectation,

BICY 5%+ Lisig)/si(t)) = B s/ (0] + BlLsi) /si(1) (1)

Jj=1

si; are all zero mean and variance Es/N
Also, the interfering signal is independent of the transmitted signal. Thus, the equation (1) above,
evaluates to

Es
~ N+ ElLJo = B,

Notice that the knowledge of s; is needed to get the correlation to work out. If s; is not known,
correlation will do the right thing only 1/M of the time as we see in the next part.

o
&
I
=
smw

<
Il
—_

I
E

E[Szzj/siﬂp(sij)

<.
Il
—

SIS

Varlzi/si(t)] = Blz}/si(t)] — Blzi/si(t)]
= Blz}/5(t)]

= E|Y Llsgs
ol

SN AR
k



(d) As in part b,

Var(z;] = %]@J (As correlator gives non-zero expected output only 1/M of the time)
E?[z; Es/M)? _ Es N
() SIR= it = BLY — &4
NM
2. Matlab
fc = 100e6;
Ts = 1e-6;
ss = 100;

t = [Ts/ss:Ts/ss:2*xTs];

s = [ones(1,100) -1*ones(1,100)]; sc = [ones(1,10) -1%ones(1,10)];
for i = 1:9
sc = [sc ones(1,10) -1%ones(1,10)];
end
car = cos(2xpixfc*t);
X = s.*sc.*car;

0.8r- q

0.6 b

0.4 b

0.2 T

x(t)
o

0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2

Figure 1: Problem 2

3. 7 =10us
(a) No fading if hop rate greater than 1/e

T <
= 100K Hz

[

1
R. = — = hoprate >
Te
(b) 7. =50us
7s = 0.5ms
Since number of reflected paths get averaged over one symbol duration, we have flat fading.
(¢) 7. =50us
Ts = 0.5us
System has severe frequency-selective fading.



4. 0/(t) = n(t)se(t)

pu (1) = E[n'(t)%kn/(—t)] (Real n’(t))
= (

(b) If pe(7) = 0(7) = p (7) = pa(7)
(c) If n(t)is AWGN then p,(7) = %5(7)

pu (1) = 2 pe(7)
As N — oo, pu(r)="26(r) (same as p,(7))

5. s¢(t) is real and periodic. p.(t) is periodic with the same period.

1
pe(t) = T/ Se(T)se(t + 7)dT (/ — integral over any interval of length T)
T T

pe(—t) = ;/TSC(T)SC(—t—FT)dT
Let z=—-t+T71
pe(—t) = ;/Tsc(x +t)sc(x)dx

To prove that maximum is at ¢t = 0,

pelt) = / se(T)selt + 7)dr < / 2(r)dr = pe(0)
Hence maximum is at 0.

1 (7 1
T/O Sc(t—TQ)Sc(t—Tl)dt = T/Tsc(t—T())Sc(t—Tl)dt

Let x=t—7
= / Scx—i-T()—Tl)d
= pe(T0 = 71) = pe(T1 — 70)

7. sc(t) is periodic with period T
= Sc.(t £ T) = sc(t)

T
pe(t) = 111/0 Se(T)sc(t + 7)dT
T
pe(t+T) = 111/0 Se(T)sc(t +T + 7)dr

But sc(t+ T+ 7) = sc(t+7)

T
S olt+T) = 1 [ st +rr = pult)



8. We are given in (13.19) that

7 1— |T|(1;1/N) ‘T’ <T.
pe(T) = ¢
—-1/N |T| > T,

periodic with period

one period —

I I I
0 Tc NTc=Ts (N+1)Tc

Figure 2: Problem 8

(1+3)a0-5 = (B5) s - 1o)

<1 4 z1v> A(t/T,) — % - T, [(1 4 %)sm(ﬁ(m) - 0T

make periodic with period NT,

o0 [e.9] 1 m
k;@mt—mn) = 2 NSl — )
— | N+1 1
D) = Y| T - = o)

neglect for large N

MATLAB

clear;

Ts = 1e-6;
spread = 1000;
ss = 10;

Hh
|

= [-1*spread*(1/Ts): ss/Ts: spread*(1/Ts)];
100;

=
I

B8
I

-1l*spread:ss:spread;
for i = 1:length(m)
Psc(i) = ((N+1)/N"2)*(sinc(m(i)/N)) "2 - (1/N"2)*(m(i)==0);



end
plot (£*Ts,Psc,’bo’)

0.01 T

0.009 - .. B
0.008 B
0.007 B

0.006 - q

P M

0.005 - 4
0.004 - ° e T
0.003 - q
0.002 - q

0.001 - 4

0 . . . S e S s . . .
-1000 —-800 -600 —-400 -200 0 200 400 600 800 1000

f (in MHz)

Figure 3: Problem 8

9. Both m-sequences and random binary spreading sequences have balanced run-length and shift proper-
ties.
First notice that all these properties are trivially true for a random binary sequence (rbs)
1. balanced: since a rbs is generated by coin tosses using a fair coin ", E[heads| = E[0's] = N/2 =
E[1's] = Eltails| after N coin tosses.
2. run-length:
prob of having (single 1 or single 0 in a row) = 1/2

prob of having (2 1’s or 2 0’s in a row) = 1/4

prob of having (k 1’s or k 0’s in a row) = 1/2k

3. Shift: Comparing a rbs with a shifted version of itself is same as comparing two independent coin
tosses, so prob(2 independent coin tosses result in same outcome) = 1/2 = prob(2 independent coin
tosses result in different outcome)

.. half of the positions will be same and the remaining half will be different

Now we show the same for m-sequences

1. balanced: Consider a shift register generator of length 'r’. The shift register passes through all
possible nonzero states. Of these states 277! = %(N + 1) have a one in the right-most position, and
27=1 — 1 have a zero in the right-most position. Thus there is one more one than zeros in the output
sequence.

2. run-length: Consider a shift register of length ’r’. There can be no run of ones having length 1> r
since this would require that the all-one shift register state be followed by another all-ones state. This
cannot occur since each shift register state occurs once and only once during N cycles. Thus there is a
single run of r consecutive ones and this run is preceded by a zero and followed by a zero.



10.

11.

A run of r-1 ones must be preceded and followed by a zero. This requires that the shift register state
which is r-1 ones followed by a 0 be followed immediately by the state which is a 0 followed by r-1
ones. These two states are also passed through in the the generation of the run of r ones, where they
are separated by the all-ones state. Since each state occurs only once, there can be no run of r-1 ones.
A run of r-1 zeros must be preceded by and followed by 1’s. Thus the shift register must pass through
the state which is a 1 followed by r-1 zeros. This state occurs only once so there is a single run of r-1
ZEros.

Now consider a run of k ones where 1 < k < r — 1. Each run of k ones must be preceded by and
followed by a 0. Thus the shift register must pass through the state which is a 0 followed by k ones
followed by a 0, with 1-k-2 remaining positions taking arbitrary values. There are 2""¥=2 possible ways
to complete these remaining positions in the shift register, so there are 2" ~%~2 runs of k ones. Similarly,
there are 2" 7%~2 runs of k zeros.

3. Shift: We first prove a property known as ”shift and add”. This says that the modulo-2 sum of an
m-sequence and any phase shift of the same sequence is another phase of the same m-sequence.
Proof: Consider a shift register. Since different initial conditions result in a different phase of the same
sequence, two phases b(D) and b’(D) of the same sequence can be written as b(D)=a(D)/g(D) and
b’(D)=a’(D)/g(D), where a(D) and a’(D) are distinct initial conditions. The modulo-2 sum b(D) +
b’(D) =[a(D)+a’(D)]/g(D) = a”(D)/g(D). Since the modulo-2 sum o any two distinct initial conditions
is a third distinct initial condition, a” (D)/g(D) =b” (D) is a third distinct phase of the original sequence
b(D).

Now we prove the claim by contradiction. Suppose they do not match and mismatch at exactly half
the locations. Then their sum will have more 1’s and 0’s. sum is also an m-sequence which is supposed
to have equal 1’s and 0’s; thus we have a contradiction.

h(t) = 0405(25 — 7’0) + 0415(25 — 7'1)

neglecting noise, the signal input to the synchronizer is given as

2(t) = apx(t — 70)sc(t — 10) cos?(2ILf.(t — 70)) + arx(t — 11)s.(t — 71) cos(2I f(t — 71)) cos(2ILf.(t — 70))
We have assumed that the demodulator got synchronized to the first multipath

Assuming x(t) remains the same z, over an interval [0,T] we have

1 T
w(r) = g | awmuselt — w)selt = ) cos’ (ALt — )t
10 T
+T /0 a1ZgSe(t — 11)8c(t — 7) cos(2IL fo(t — 71)) cos(2IL fo(t — 79))dt

0.5x 0.5x
T kaopc(T - TO) + u

a1pe(T — 1) cos(2IL fe (10 — 71))

For binary transmission z; = +1
So Costa loop will try to maximize |w(7)| and will synchronize to the first component if ag is higher
or the second component of ay cos(2I1f.(19 — 71)) is higher.

A similar analysis can be done if demodulator synchronizes to the other multipath component. However,
notice that the demodulator will also synchronize to the multipath component for which «a; is greater.
Essentially, both the demodulator and the Costa loop will synchronize to the first multipath component
if o is higher and to the second multipath component otherwise.

P, = 106
For DPSK, we know that the BER is given by %6_%, which for a maximum BER of 1079, gives a value
of minimum receive SNR. of ypin = 13.12.

We assume that the noise statistics are the same after de-spreading and that the possible interference
is modeled as white noise.



We have that
SNR(after—despreading) = Kpg (T)SNR(before—despreading)

For the first branch, p.(0) = 1, for the second branch p.(7./4) = 0.733 and for the third branch
pe(Te/3) = 0.644. Therefore, the SNR’s after de-spreading are: SNR; = 150, SNRy = 80.667, SNR3 =
62.296.

With selection combining, the outage probability is given by

_ Ymin _ JDmin _ Jmin

Pot=(1—e 71 )(1—e 72 )(1—e 7 )=0.24%

12. (a) E(rP) = E(r1) + E(r2) = 9+ 9p® = 11.9438

(b) p(r®) = p(r1)%*p(ra)
a=1/6. See Fig 4

1/6

N

6(1+ P2 ) 6+12 r2 12+ 6 PZ 121+ Pz )

Figure 4: Problem 12b

(c) P,=Jexp ™ =1, =8.5172
. 1 6p> -1
height of A = & (78.5172§7.9625> =0.0471
<. Py = 1(0.0471)(8.5172 — 7.9625) = 0.0131

1/6

Figure 5: Problem 12

13. (a) For the multipaths to be attenuated by —1/N, we need 71 > T, and 71 < T}, — T,. Similarly, we
need 7 > T, and 75 < Tp — T..

(b) Instantaneous BER in DPSK is given by P, = %e*%. For P, = 1073, this corresponds to v, = 6.21.
While the channel has average power 7, the outage probability in Rayleigh fading is given by
Py = 1 — e /7. Note that ag is Rayleigh distributed with average power 5 with probability
.5 and the channel is Rayleigh distributed with average power 10 with probabilty .5. This is not
equivalent to Rayleigh fading with average power 7.5. While the channel has average power 5
the outage probability is 1 — e~21/5 and while the channel has average power 10 the outage

probability is 1 — e~621/19_ The overall outage probability is given by
Py = 5(1— e 021/5 41 — ¢=6:21/10y — 587

(c) The outage probability when using selection combining is the product of each of outage probability
of each branch. For branch 2, the outage probability is .5(1 4+ 1 — e~621/20) = 633. For branch



14.

15.

3, the outage probability is .75(1 — e~621/5) 4 0.25(1 — e~6-21/10) = (.649. Therefore, the overall
outage probability is given by:

Pout = Pout.1 Pout 2 Pout.s = (0.587)(0.633)(0.649) = 0.241

(d) Again, the outage probability of a 2-branch RAKE with selection combining is given by the product
of the outage probability of each branch. Therefore, we should select the two branches with the
smallest outage probabilities, i.e. branches 0 and 1. The corresponding outage probability is

Pout = Pout 1 Pouta = (0.587)(0.633) = 0.37

Following along the same lines as the previous question, we know that outage on the ith branch is

1 w.p. 0.25
Pyt = — Ymin
l—e 7% w.p. 0.75

given as:

For DPSK, we know that the BER is given by %e*%, which for a maximum BER of 10—3, gives a
value of minimum receive SNR of ypin = 6.21. Therefore, the outage probability will be

6.21

Pyt = (0.25 +0.75 (1 . e*%)) (0.25 +0.75 (1 . e*i*o)) (0.25 +0.75 (1 . e*%))

1 6.21

(0:25+0.75 (1 e=*%)) (0254075 (1 - ") ) = 12.49%
For the case where there is always a multipath in each bin with average SNR of 20,
_6.21\
Py = (1= ™ 5") = 0.14%

Clearly the outage probability is much smaller in the second case.

(a)
I o
B = T Se(t —iTp) Z alpha;o(t — jTe)sc(t)dt
O .

7=0

N 1 Ty

= Y / et — iT)se(t — jTo)dt
= o

5 «; foritcarrier
@il = ..
I 0 fori#j

thus 8; = «; for all i
(b) ﬂo = a, ﬁl = 0.8(), ﬁg = 0.2[), ,83 = 0.50, 64 = 0.5¢
(c) P,=0.5e"" = 5 =6.21
SC:
M
Pyut = [1 - e—%/W] — 0.099

MRC:

—\2
Put=1—¢ /7 <1 + /7 + w> =0.025



16.

17.

18.

19.

Autocorrelation and Cross-correlation for Gold codes, Kasawi codes from the small set
n=8
Kasawi codes ; small set

i = —0.0039
p(r) = —ggf# —  —0.0667
2n/241-2
ZoAH=2 = —0.0588
number of sequences = 2"/2 = 16
large set
graT = —0.0039
p(r) = %}{f —  —0.0667,0.0588
2@V D 0.0627, —0.0706
number of sequences = 23"/2 = 4096
Cold codes; t(n) = 20*+2)/2 4 1 =33
s = —0.0039
p(7) = %};;(? = —0.1204
t(n)—2
o = 0.1216
11 1 1
1 -1 1 -1
Hi=\y 1 1 4
1 -1 -1 1
To see orthogonality of rows,
4 0 0 0
r |10 4 00
Halli =10 0 4 0
00 0 4

Due to the symmetric nature of Hy, shifts by T¢/2 do not change orthogonality properties and cross-
correlation is 0 between any two users.

Oé2
% =0.2512(—6dB)

a23N

K =40
N =100
Pb = Q(\/ 27’5) = 0.0247

For synchronous users, the situation is worse (13.39)

r(t) = 22 aibise; (t) +n(t)

= Jotr(t)se, ()dt = apbrprk + [y n(t)se, ()t + 354 ibjprs

U
Il =

For 2 users, it is easy to see

[?“1] B [Pn P12] [041 0} [51] |:n1:|
= +
2 p21 p22] [0 az| |b2 19

We assume that noise statistics remain unchanged after despreading.



20. ML decision minimizes r = RAb+n
(r — RAD)?
=T — 20T ATRTr + T ATRT RAb
first term is same for all b , A is symmetric, R is symmetric
- mazimize — 26T ARr + bT AR% Ab or minimize 2b7 Ar — b7 ARAb

21. (a) If he transmits only one spreading sequence, there will be no other interference than noise. So

BER =Q < 2P(17)7> - (v2PO))

R bits/sec is achieved in this case.
If he transmits both with equal energy

_ P(y)y
BER =0 ( s P(V)y + 1)

2R bits/sec is achieved in this case
(b) Assume that SN Ry is such that
Py = Q(vSNRy) since we want to keep P, < Pyx
S(y)y=SNRyforvo <v<m
Hg% = SNRy for v <7
P(vy) =0 for v <
therefore

0 7<%
P(y) = Y <7Y<m
Y19 m<v

According to power constraint

Define K = SNRy Ky = SN

power constraint will be

and
0 v<7%
P(y) = ? Y <v<m
Fons<y<oo

g o0
J = Rp{v <~v<m}+2Rp{m §7}+A{K1/ p§7d7+K2/ p,(yfyd’y—l}
Y Y1

0

oJ oJ
9o om
o= 21
Y0 = R
Ky — K
oy = MK

R



Chapter 14

1. B=10 MHz
Biotar = [(10 4 2)100|M Hz = 1200M H

2. Btotal = 25MHZ
125 TDMA channels

8 user time slots per channel
R=270.833Kbps

Pre|1|2|3|4 5|6|7|8

3 I 58 data bits 25;_’3""”9 I 58 data bits I | 8.25
its

3
start bits stop bits data bits
as guard

(a) time
Figure 1: Problem 2a

2(58) B
(b) srams)rasrarsas = 07424

Information rate = 201.066 Kbps

(c¢) Frame duration = 8 x timeslotduration

time slot duration = 2(3);720(.58?;216[;8'25 = 576.92us
Frame duration = 4.61 ms

Latency = £ (frame duration) = 4.038 ms

(d) duration of guard band + stop bits = % = 41.54us

.. max delay spread T,,, < 41.54us for guard band to be useful.

3. B=10MHz
G=100
cross-correlation = 1/G
Interference limited system (N=0)

_ P _ G
(a) SIR = é(kfl)pT - K-1
(b) P, =Q(v2y) =107
SIR = 3.0902
K =1+ 4% = [33.36] = 33
(c) B=10MHz

Information signal Bandwidth = %M1z — 100K Hz Total number of users = 100

100
(d) SIR ==&~ =100 = o = 0.3269
No, this is not a reasonable voice activity factor. It is too low.

4. (a) Since the system is interference limited
SIR = ( 1,1) ="
P.=Q(\/()) (assuming binary signalling)

Pe:Q<m)

3

—_




(b) P.(more than one user occupy same freq band) = 1— Prob(only one user occupies it) — Prob(no
user occupies it)

=1- (f) (0.01)1(0.99)K -1 — (I(){) (0.99)K
(c)

K
P.ag = 0.Prob (only one user) + 7;262( ml— 1) (: f}i) (0.01)™(0.99)K ™
S 1 (K m o
= > Q(\/ﬁ) <m> (0.01)™(0.99)

m=2

5. pure Aloha : T= Le 2L
I = Le 2l (-2)+ e =0
=e (2L +1)=0
.'.2L = 0.5 = Tynae = 0.1839
ot = (—22L +1)e2b(=2) + e 2L (=2) = (4L — 4)e™ 2L
v L<1, ng <0 .. maxima
slotted Aloha : T = Le™F
I =Lel(-1)+et=0
L=1, Ty =0.3679

6. R=100 Mbps (pure Aloha)
N=103
A = 10? packets per second
=58 =1x1075, L =\r=0.01, T = Le~ 2L = 0.0098
effective data rate = RT=980.2 Kbps
L=2.835, also gives the same throughput
But psyccess earlier was 0.98 and now is 0.0034 (lots of packets are lost)

7. gl—l
g2 =3
g3 =
ry 5 =r3 =10, n=1

(a) We expand

where

T
" — (’anl Yam2 ’YJ*VTLN>
g1 g2 gnN

9kk

0 k=7
Fij = Vi9kjiP k£

P=(PPy...Py)"



first row of (I-F)P

_p 19122 igisPs > i
gi1 g11 g11
giiPr > ~fni+95g12P2 + 7 13 Ps
g P -

ni + gi2FPo + g13P3

which is precisely the SNR constraint for user 1.
We can similarly show this for users 2 and 3.

(b)
0 if k=7
ij = { rXgip . .
L= if kE#F]
r1g2p  T193p
F = L %1 mg’@ = 1003 3O0 5303 0.01
- g2 g2 - / / x Y.
—r3gip  Tr292p 0 2 6 0
g3 g3
€igmaz(F) =02 < 1
. P*exists .
__ (10 10 10
u= (13 %)
12.5
P = (I — F)’lu = [4.1667
2.5
8. P=10mW
B=100KHz
No =10"3W/Hz
Py Py
Cpc = Ry = Bl 1+ ——],Ry =Bl 1+ —
BC U ( 1 og2< +N0B>’ 2 ng( +NOB+P1)>
{P1P2:P1+P2:10mW}
MATLAB
P = 10e-3;
ss = P/1000;
B = 100e3;
NO = 1e-9;
P1 = O:ss:P;

for i = 1:length(P1)

P2(i) = P-P1(i);

R1(i) = B*log2(1+(P1(i)/NO*B));

R2(i) = Bxlog2(1+(P2(i)/(NO*B+P1(i))));
end

9. We show this result for 2 users

define ?\}0% =z = n]le whereny, = %
9P _ . P
NoB — ¥ = 03B

say g1 > g2, N1 <ng P:%<1



10.

11.

x 10

R, (bps)

I I I I I I I
0 0.5 1 15 2 25 3 3.5 4
R, (bps) x 10

Figure 2: Problem 8

Ry = Blog, (1+:2,§ipl) = Blog, (1"‘#)
Ry + Ry = Blogs(1 + ) + Blogy (1+ ;)
Ri+ Ry = Blog, <1+x+y(11;rpa;)) < Blog, <1+:c+%) = Blog, (1—1—7”%) (cp<1)

Hence we see that the sum rate for any P;, P> assignment is always less than or equal to the rate
achievable if all power is assigned to better user.

Ry = Blogy (1+ 1) = Blogy(1 +2)

Based on the previous part; we know that the sum-rate maximizing strategy is to assign all power to
a single user at a time instant. The problem then reduces to water-filling for a single user, but the
fading statistic is given at each instant as

Nmin (1) = min{nq (i, n2(7),...nx(i))}  for k users
The cut-off is determined by distribution of 7,y (%)

P(’Y):{ e )

P 0 7 <

(distribution of + is dictated by the distribution of 1)

/:O (710 - i) plr)dy =1

[ ImW wp. 1/2
T smW owp. 1/2

I ImW w.p. 3/4
e 5mW  w.p. 1/4



Now we just treat it as a single user channel

[ 10 w.p. 3/4
TT12 wp 1/4

If’)/0<2

(&= =)ot (- =) ptw =1

1 _p(n) |, p(72)
o M 72

S =0.833 <2 | soitis ok
1 _
P(V)_{1-2—71 Y=m

+1

E— 1 .
P 1.2 - B Y= 72
P(y1) = 11mW, P(y2) = TmW

Sum capacity Csg = Blog, (%) p(71) + Blog, <%> p(v2) = 3.005B

12. ¥ = 155 = 10
1~ %e—v/ﬁ
Yo ~ %eﬂ/ﬁ
Ymaz = Max(y1,72) ~ % (L—e /) e /7 [From (7.9) in Reader]

1 1

-1 vz
— Yo Y
PO {0 7<%

* /1 1
[ (=) =1
Y0 ’YO ry
/ (1 — 1> g <1 — e*'Y/W) e dy =1
w \ /)7

¥ =10= v =0.89 Using Matlab

1.1236 — X~ >0.89
P(y) = v
™) { 0 v < 0.89

Csp = B/ logs (7/70) p(y)dy = 366.27Kbps  (Using Matlab)
gl

0

MATLAB

gammab = 10;

ss = .01;

gamma0 = [ss:ss:le4];
i=1;

gamma = [gammaO(i):ss:gammal(length(gammal))];

gammavec=(1/gamma0(i)-1./gamma)*(2/gammab) . *(1-. ..
exp (-gamma/gammab) ) . xexp (-gamma/gammab) ;
sumcheck = sum(gammavec)*ss;



while sumcheck > 1
i=1i+1;
gamma = [gammaO(i):ss:gammaO(length(gammaOl))];
gammavec = (1/gammaO(i)-1./gamma)*(2/gammab).x*. ..
(1-exp(-gamma/gammab) ) . *exp (-gamma/gammab) ;
sumcheck = sum(gammavec)*ss;

end

gammaOch = gammaO (i) ;

gamma = [gammaOch:ss:gammaO(length(gamma0))];
gammavec=log?2 (gamma/gammaOch) . * (2/gammab) . *(1-. ..
exp (-gamma/gammab) ) . *exp (-gamma/gammab) ;

Csr = B*sum(gammavec)*ss;

13. Consider the it" user

P:

with time-division

P
R, = Bt;1 1 0<¢; <1
i 20g2< +tz‘NOBz‘> St s
B
.Zti::j§

14. B=100KHz
[ 10°W/Hz w.p. 3/4
T\ 2% 100°W/Hz wp. 1/4

[ 107°W/H =z w.p. 1/2
T\ 2x 100W/Hz wp. 1/2

YIOW/Hz w.p. 3/8
JI0°W/Hz w.p. 3/8
JIOPW/Hz w.p. 1/8
JI0°W/Hz w.p. 1/8

P = 10; nl = 1e-5; n2 = 2e-5; B = 100e3;

tau = [.01:.01:1-.01]; for k = 1:length(tau)
P1 = [0.1:.1:P/tau(k)-.1];
P2 = (P-tau(k)*P1)/(1-tau(k));

%/ For User 1
for i = 1:length(P1)
gammal = P1(i)/(nl1*B);
gamma2 = P1(i)/(n2*B);
gammaOltry = 1/(1+(.75/gammal)+(.25/gamma2)) ;
gammaO2try = .75/(1+(.75/gammal)) ;
if gammaOltry < gamma?2
gammaOch = gammaOltry;



C1(i) = tau(k)*B*(log2(gammal/gammaOch)x*.75+1log2(gamma2/gammalOch)*.25) ;
elseif (gammaO2try > gamma2) & (gammaO2try < gammal)
gammaOch = gammaO2try;
C1(i) = tau(k)#*B*.75%log2(gammal/gammaOch) ;
else
C1(i) = 0;
end
end

%% For User 2
for i = 1:length(P2)
gammal = P2(i)/(n1*B);
gamma2 = P2(i)/(n2+*B);
gammaOltry = 1/(1+(.5/gammal)+(.5/gamma2)) ;
gammaO2try = .5/(1+(.5/gammal));
if gammaOltry < gamma?2
gammaOch = gammaOltry;
C2(i) = (1-tau(k))*B*(log2(gammal/gammaOch)*.5+1log2(gamma2/gammalOch)*.5) ;
elseif (gammaO2try > gamma2) & (gammaO2try < gammal)
gammaOch = gammaO2try;
C2(i) = (1-tau(k))*B*.5xlog2(gammal/gammaOch) ;

else
Cc2(i) = 0;
end
end
plot(C1,C2); hold on;
clear C1 C2
end

%% Now we use superposition coding and successive interference cancellation
P1 = 5; P2 = 5; C1 = .375%Bxlog2(1+(P1/(n1%*B))) +
.375*%Bx1log2(1+(P1/(n1%*B))) + .125%B*log2(1+(P1/(n2%B+P2))) +

.125%B*1og2 (1+(P1/(n2*B+P2))); C2 = .125%B*log2(1+(P2/(nl1*B))) +
.125*%Bx1log2(1+(P2/(n2%B))) + .375%B*log2(1+(P2/(n2%B+P1))) +
.375%Bxlog2(1+(P2/(n1*B+P1))); plot(C1,C2,’ro’);

(b) Consider an assignment Py, P> & 7 s.t

TP1+(1—T)P2:P
For user 1:

Py Py

n137 2= TZQB

(jo - 711) p(m) + <710 - ;) p(y2) =1

CH=T<Bb&<$>pWﬁ+Bb&<£>MWO

7=

If y1 <y
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Figure 3: Problem 14a

E

C1 = 7Blog, <%> p(1)
Y0

for v <y <m

for v > m
We have similar equations for user 2
See Matlab for a sketch of capacity region

To achieve a point outside the TD-VP region we use code-division with interference cancellation
and superposition coding.
take the triplet

PP=5 Ny =1x10"°
P=5 No=2x107°

P,
ClzBlog2(1+ ! )

w.p. 3/8

N B

P
= Bl 14+ ————
C'2 Ogg( +NlB+P1>

Py
— Blog, (1
= °g2< + N1B>

P
Cy = Bl 14+ ———
2 Ogg( +N2B+P1>

Py
= Bl 1+ ———
C1= Blog, ( * NZB+P2>

P,
C’2=Blog2<1+ 2 >

w.p. 3/8

w.p. 1/8

N1 B



w.p. 1/8

Py
= Bl 14+ —r——
Cl og2< +NQB+P2>

Py
= B1 1
Co OgQ( + N2B>

i =1; snr = 10.7([5 10 20]1/10); R = 100e3*log2(l+snr); ic = 10;
Tcur = zeros(1,3); Rcur = zeros(1,3); while i < 1led

R1(i) = R(floor(unifrnd(1,4)));
R2(i) = R(floor(unifrnd(1,4)));
R3(i) = R(floor(unifrnd(1,4)));

Recur(i,:) = [R1(i) R2(i) R3(i)];
if i == 1
[a,b] = max(Rcur(i,:));
Tcur(i+1,b) = Rcur(i,b);
else
Rcur_chk = Rcur(i,:)./(Tcur(i,:)+1e-10);
[a,b] = max(Rcur_chk);
Tcur(i+1,:) = (1-1/ic)*Tcur(di,:);
Tcur(i+1,b) = (1-1/ic)*Tcur(i,b) + (1/ic)*Rcur(i,b);
end
Rgot(i,b) = Rcur(i,b);
i = i+1;
end Rmean = [sum(Rgot(:,1))/i sum(Rgot(:,2))/i sum(Rgot(:,3))/i]
Rmeansys = sum(Rmean)

(C) B1 :B2 = B/2

P, =P,=P/2
For user 1 p p
1 1
= =10 = =5
71 nlBl ; 72 n231
If vo <2
Y0 =0.8889 < v =5
C = 1.6209 x 10°
For user 2
=10 =5
If vo <2

70 = 0.8696 < 79 =5
C; = 1.5118 x 10°

(d) Consider the worst channel condition
(n1,n9) = (2,2) x 107°

Py

= Bl 14+ ——
1 089 < + n413>

Py
Cy =Bl 1+ —
2 0g2< +ngB—|—P1>



15.

16.

P P—-P
Ci =0y =1 1+ — ) =1 14— -
! 2 OgQ( nB> 0g2< nB—l—P1>

P P-P

T B nBtP
= P? +2P;(nB) — PnB =0
= P, = 2.889
- we get Cp = Co = 1.2925 x 10°

P,
Crac = {(RlRQ...Rk) : ZRk < Blogs <1+Zkesgkk> VS € {1,k}}

kes Nob
Scale g by « , P by 1/«
Since capacity region depends on g Py, it remains unchanged.
B =100KHz
P1 =3mW
P2 =1mW
No =0.001uW/Hz
See Fig 4

Code division with SIC

L Al €y G
AN —P Time division
AN > L .
I < » Code division without SIC
>
(€10 X

Figure 4: Problem 16

(a) C1 = Blogy (1+ 5 ) = 4.95B

Cy = Blog, (1 + %) — 3.46B
Ry = 3B In TD rates lie on the straight line joining C; & Cs, so
R
71 + @ =1
cy Oy
3B n Ry
4.95B = 3.46B
Ry = 136.30Kbps

1

With superposition coding and successive interference cancellation we have,
_ P, _
Ct = Blogy (1+ wyhip; ) = 1.8988



C3 = Blog, (1+ Noipr ) = 048

—-C3
(y—C2) = C;—Cl ?(z - CY)
r=Ry =3B
y = Ro = 235.51Kbps
(b) Ry = Bilog, (1 + NoB1>
Ry = By log, (1 + % Bz) For the point that touches the capacity region, we have:

Bi_h_3
Bs Py 1
31:332
By =25KH~z
By =T75KH=z

R, = 401.816 K bps
Ry = 133.939K bps

(c) For time-division

7+7

Ci Oy
Ri=Rs=R
R R _
Ci Oy

R1 = R2 = 203.65Kbp8

With code division and successive interference cancellation
G=10
Bs = Bgignal = B/10=10KHz

Py
01 = BS 10g2 (]. + ]V()Bs> = 8.234Bs

P
= Bl 1+ —"——) =6.
Co 0g2< + N(]Bs> 6.658Bs
Py
* = Bl 1+ ——— ) =4.
Cl Og2 < + NoBs —|—P2/G> 82133
C5 = B, lo 1—I—L = 2.079Bs
2 = D082 NoB, + P1/G '
Cy — C’; N
-0 = = le =)
x=y=R
(R=Cy) = m(R—C})
s R=""CC% 560585
R =56.05Kbps

with code division and without interference cancellation

Ry = Ry = min(CT,C3) = 20.79Kbps



17. The sum rate of a MAC is given by

k
Zk:1 ngk)

C = Bl 1
MAC,SR 08> ( + NoB

where P} is the maximum power at user k. Clearly to achieve Cyac,sgr, each user must transmit at
Py

18.

Cmac,sr = max eq
’ PeFyac

Blog, <1 + M)]

NoB

We know that for sum-rate we can treat the two users as a single user with a common power

_ aPL+ g P
NoB

g1 ~ p(g1)
g2 ~ p(92)
v~ p(v)

/: <vlo Bl i) p(y)dy=1

Blog, C;) p(y)dy

Find vy s.t.

Crmac,sr :/

Yo

11

2 _ ) %y 7 =
P 0 0.W.

where individual power adaptations are given as

P
Plzﬁpl

P_
PQZfPQ

19. ?1 = ?2 = 10mW
[ 1ImW w.p. 1/2
MEMT W wp. 1/2

E {10 w.p. 1/2

n= o 12 wp 1/2
_ E [ 10 wp. 1/2
2= ne | 2 wp. 1/2
20 w.p. 1/4
Y=mn+r=1{ 12 wp 1/2
4 w.p. 1/4

Cymac,sr = Blogy(1+7)



say vo < 4
3
1 1
> (-2 ) st =1
— \7 Vi

v = 0.8955

3
CrAC,SRmaz = B Y _logy (vi/70) p(vi) = 3.5322B
=1
20. 3 user

B=100KHz
5dB  w.p. 1/3

v=1< 10dB w.p. 1/3
20dB w.p. 1/3

where r is the SNR distribution for any user if it were the only user present.

(a) If the best user is always picked, the system is equivalent to a single user with fading statistics
governed by the max at each instant, ;4. is distributed as

5dB  w.p. 1/27
Ymaz = 10dB  w.p. 7/27
20dB w.p. 19/27

If 7o < 3.1623 (5dB)
Yo = 0.9572  (which is ok)

Cge,sr = 5.66128 = 566.12Kbps

(b) MATLAB CODE

i=1;
snr = 10.°([5 10 201/10);
R = 100e3*log2(1+snr);
ic = 10;
Tcur = zeros(1,3);
Rcur = zeros(1,3);
while i < 1e4
R1(i) = R(floor(unifrnd(1,4)));
R2(i) = R(floor(unifrnd(1,4)));
R3(i) = R(floor(unifrnd(1,4)));
Rcur(i,:) = [R1(i) R2(i) R3(1)];
if i ==
[a,b] = max(Rcur(i,:));
Tcur(i+1,b) = Rcur(i,b);
else
Rcur_chk = Rcur(i,:)./(Tcur(i,:)+1e-10);
[a,b] = max(Rcur_chk);
Tcur(i+1,:) = (1-1/ic)*Tcur(di,:);
Tcur(i+1,b) = (1-1/ic)*Tcur(i,b) + (1/ic)*Rcur(i,b);
end
Rgot(i,b) = Rcur(i,b);
i = i+1;
end



Rmean = [sum(Rgot(:,1))/i sum(Rgot(:,2))/i sum(Rgot(:,3))/i]
Rmeansys = sum(Rmean)
i=1000

ic=1,  Cpcsi = 509.28Kbps

Rinean = [1.9385 1.7655 1.3887] x 10°bps
ic=5,  Cpcsr=536.13Kbps
Rinean = [1.7848 1.7818 1.7947] x 10°bps
ic =10,  Cpc,sr = 558.98Kbps
Rinean = [1.8728 1.8621 1.8549] x 10°bps

Notice that as i. T Ryean becomes equal for all users.



1.

2.

3.

4.

Chapter 15

City has 10 macro-cells

each cell has 100 users

.. total number of users = 1000

Cells are of size 1 sqgkm

maximum distance traveled to traverse = v/2km
- time =Y2 = 169.7s

In the new setup

number of cells = 10° microcells

total number of users = 1000 x 100%users

time = Y210 _1 §0g

30x103
.. number of users increases by 10000 and handoff time reduces by 1/100

See Fig 1

Figure 1: Problem 2

D? = (j20)2 + (i20)% — 2(520)(i20) cos(27/3)
= D =2a\/i? + j2 +ij = V3R\/i2 + j2 + ij

diamond shaped cells, R= 100m

Dypin = 600m
D =2KR

D _ 600 __
K_ﬁ%_QxlOO_
N=K2?=9

(a) number of cells per cluster = N =9
(b) number of channels per cell = total number/N = 450/9 = 50

(a) R=1km
D=6km JaD?
— Acuster — V3D?/2 1 2 _ 1p2
N==4ar= 3v3R2/2 3(D/R)” = 367 =12
number of cells per cluster = N = 12



SHADED CELLS USE
SAME FREQUENCY

Figure 2: Problem 3

(b) number of channels in each cell = 1200/12 = 100
(c) Vi2+72+ij=2V3 = i=2 j=2

5. R=10m
D=60m
v =2
Yo =4
M =4 for diamond shaped cells

RV R™2
MDY 4D—4
R—4
4D—4

R72
T 4D2
SIR, > SIR, > SIR,

= 32400

SIR,

=324

SIRy =

SIR, =9

6. y=2
BPSK
P, = 1076 — P, = Q(\/E> = v, = SIRy = 4.7534
B=50MH=z
each userl00K Hz = B;
SIR = ﬁ (%)7 M=6 for hexagonal cells
a1 = 0.167
as = 3

2/
N> 1 (%) T S N >94879 - N =10

az \ ar

Cy =50

7. G =100
£=1
A=1.5

With no sectorization 1
SIR = = 4.7534

(N — 1)(1+A)
N, = [26.2450] = 26

With sectorization, interference is reduced by a factor of 3

N, = |76.7349| = 76



8. SINR = P&

e P XN

a=pX;=1)

N ~

G(0.247N,,0.078N,)

Pout = p(SIR < SIRy)

(a)
(b)

()

()

Pout =p <PG—+ < SIRO) =P <Z£V:c1—1 Xi+ N> Sﬁfo)

X =Nt X; then X ~ Bin(a, N, — 1)
p(z+ N > G/SIRy) = SN p(n+ N > G/SIR|x = n)p(x = n)

plz =n) = (Ncn— 1) a™(1 — q)Ne=1-m

Ne—1
p(x+ N > G/SIRy) = Z p(N > G/SIRy — n|z = n)p(x = n)
N=0
X (N —0247N, _ grm; —n— 0.247N.
— Z p € > 0 r=n

= "'\ V007N, VO.OT8N,
Nc—1 G
P VO.078N,

N, =35

a=0.5

SIRy=5

G =150

p = 0.0973

MATLAB

for i = 1:length(n)
pn(i) = (factorial(Nc-1)./(factorial(n(i)).*factorial(Nc-1-n(i))))...
*alpha. " n(i)*(1-alpha).”~ (Nc-1-n(i));
end

sump = 0; for i = 1:length(n)
f = ((G/sir0)-n(i)-.247+*Nc)/(sqrt(.078%Nc));
sump = sump + .5%erfc((f)/sqrt(2))*pn(i);
end

If x can be approximated as Gaussian then
x ~ G((N; — 1)a, (Ne — 1)a(l — a))
x4+ N ~G(0.247N. + (N, — 1), 0.078 N, + (N, — 1)a(1 — )
51 — (0.247N. + (N — 1)a)
V0.078 N, + (N — 1)a(1 — )

plx+ N >G/SIRy) =Q (

p= 0.0969 (very accurate approximation!)

9. define

9k .
Tk = k,jed{l,...K
N+ 0D ki GkiDi { ’




10.

where,

gr. is channel power gain from user k to his base station nj is thermal noise power at user k’s base
station

p is interference reduction factor (p ~ 1/G)

gk; is channel power gain from 4" interfering transmitter to user k’s base station

pr is user k’s Tx power

pj is user j’s Tx power

define a matrix F such that

v { 0 k=j
kj = Vi9kiP .
e k]

k,je{l,...K}

. <7In1 312 7%%)
n wm T
If Perron Ferbinius eigenvalue of F is less than 1 , then a power control policy exists. The optimal
power control policy is given to be P* = (I — F)~lu

Matlab
D= 2:.01:10;
R=1;

gamma = 2;
Pdes = R"(-gamma) ;

for i = 1:length(D)
Pint = 6*(.2%(D(i)-R) "~ (-gamma)+.2*(D(i)-R/2) "~ (-gamma)+.2*(D(i)) " (-gamma) . ..
+.2%x(D(i)+R/2) "~ (-gamma)+.2*(D(i)+R) ~ (-gamma) ) ;
Pintbest = 6*((D(i)+R) "~ (-gamma) ) ;
Pintworst = 6*((D(i)-R)~(-gamma));
ASE(i) = log(1+Pdes/Pint)/(pi*(.5*D(i))"2);
ASEbest (i) = log(1+Pdes/Pintbest)/(pi*(.5*D(i))"2);
ASEworst (i) = log(1+Pdes/Pintworst)/(pi*(.5*D(i))"~2);
end



0.35

T T
— 5 Case ASE
— — Best Case ASE

Worst Case ASE

0.3r

0251

0.2 N

ASE(D)

Figure 3: Problem 10

B =100KHz
No =10"1W/Hz~
3
P = PK (%0) do =1, K = 100
(a) D=2R
2 users share the band available
Each user gets 50KHz

R=1Km

@ BASESTATION

(V2 \ED>

N N A Y
X USER

[ J [ J [ J

¢ ¢ ¢

A Y A Y A Y

Figure 4: Problem 11a

(b) Py = =107 = 5= = 3 = 250

If D(n) = 2nR, number of users that share band = 2(2(n-1)+1)

.. each user gets ;?gffﬁ; = By(n)
interference is only from first tier
3
(4
SIR(n) = N > 25

No __do

5 Bu(n) + 2 <PtK ( R2+D(n)2> )
using Matlab |, n=4, SIR=261.9253, D =8R
Matlab
Pt = 5;
R = 1000;



D = 2x*nx*R;

Bu = (100/(2%(2%n-1)))*1e3;

K = 100;
do = 1;
Pdes = Pt*K*(d0/R)"3;

Pint = 2% (Pt*K*(d0/sqrt(R"2+D"2))"3);
Npower = sigma_2%*Bu;

sir = Pdes/(Npower+Pint) ;
while sir < 250
n = n+l;
D = 2*nx*R;
Bu = (100/(2*(2*n-1)))*1e3;
K = 100;
do = 1;
Pdes = Pt*K*(d0/R)"3;
Pint 2% (Pt*K* (d0/sqrt (R"2+D"2))"3);
Npower = sigma_2*Bu;
sir = Pdes/(Npower+Pint);
end

(c) ASE = Giti)/2
Ri =Ry = Bu(l) log(l + SIR(l))
B,(1) =50KHz, SIR(1) =5.5899

ASE = 0.6801bps/H z/km?

12. B=100KHz
No =10""W/Hz
K =10
P =10mW  per user
(a) 0<a<l1 a is channel gain between cells.
See Matlab

If « is large, interference can be decoded and subtracted easily so capacity grows with « as high
SNR’s (beyond an « value) .

For low SNR values (« less than a value) ¢ decreases with increase in « as interference is increased
which cannot be easily decoded due to low SNR.

MATLAB CODE:

B = 100e3;
sigma_2 = le-9;
P = 10e-3;

K = 10;

ss = .001;

alpha = 0:.01:1;
theta O:ss:1;
for i = 1:length(alpha)
capvec = log2(1+(KxP*(1+2*alpha(i)*cos(2*pi*theta))."2)/(sigma_2+*B));

C(i) = (1/K)*sum(capvec)*ss;



end

B =100 KHz

CB

L L L L L L L L L
0.1 0.2 03 04 05 06 0.7 08 0.9 1

Figure 5: Problem 12a

(b) C(K)| as KT because as the number of mobile per cell increases system resources get shared more

and so per user capacity C(K) has to fall.
MATLAB CODE:

BB = 100e3;
sigma_2 = le-9;
P = 10e-3;
K=1:.1:30;
ss = .001;
alpha .5;
theta O:ss:1;
for i = 1:length(K)
capvec = log2(1+(K(i)*P*(1+2*alpha*cos(2xpi*theta))."2)/(sigma_2%B));
C(i) = (1/K(i))*sum(capvec)x*ss;

end

B =100 KHz
T

Figure 6: Problem 12b

(c) as transmit power P T, capacity C' T but gets saturated after a while as the system becomes

interference limited.

MATLAB CODE:



B = 100e3;

sigma_2 = le-9;

P = [0:.1:100]*1e-3;

K = 10;

ss = .001;

alpha .5;

theta O:ss:1;

for i = 1:length(P)
capvec = log2(1+(K*P(i)*(1+2*alpha*cos(2xpi*theta))."2)/(sigma_2%B));
C(i) = (1/K)*sum(capvec)*ss;

end

B =100 KHz

c(P)B

Figure 7: Problem 12c



Chapter 16

1. d=1Km , P, = Pd™"

(a) P, = Pyd"
P(y=2)=10KW
Pi(y=2)=1x10""W
(b) d= 500m
P(y=2)=25KW
Total power is simply twice.
Ptotal =5KW
Pi(y =4) = 6.25 x 103W
Total power Pioq = 1.25 x 109 KW

()

(N +1)2

A\t 1x 100
x10%) = 2 ——
N +1 (N + 1)

1 x 10% 1 x 104
PMZQ):(N“)(J\HA)2 T (N+1)

1 x 1010 1 x 1010
P(y=4) = (N+1)(N+1)4 T (N+1)3

1 2 1x10%
Pt(v=2)=10><103<N ><103> _ A0

Pi(y=4)=10x 1073 <

2. Y1 =2 =7dB

Y3 = 10dB
p=1
n; = 1V¢
1 0.06 0.04
G= 0.09 0.9 0.126

0.064 0.024 0.8
(a) We expand

(I-F)P > u

where

T
" (7{”1 Yam2 ’YJ*VTZN>
gi1 ’ g22 ’ ’ gNN

0 k=
Fig =9 st p 45

9kk

P=(PPy...Py)"



first row of (I-F)P

_p 19122 igisPs > i
gi1 g11 g11
giiPr > ~fni+95g12P2 + 7 13 Ps
g P -

ni + gi2FPo + g13P3

which is precisely the SNR constraint for user 1.
We can similarly show this for users 2 and 3.

0 0.3007 0.2005
(b) F = 0.5012 0 0.7017 | From Matlab:
0.8 0.3 0

A = abs(eig(F')) = (0.8667 0.4791 0.4791)

As max(|A\]) = 0.8667 < 1 a feasible power vector for the system exists.

(c) u=[5.0119 5.5687 12.5]
P* = (I — F)~'u = [39.7536 71.6634 65.8019)]

3. P(0) = [50 50 50]

MATLAB CODE

P = [50 50 50];
k=1;
while k<50
for i = 1:3
sum_int = 0;
for j = 1:3
if i7=j
sum_int = sum_int + rho*(G(i,j)*P(j));
end
end

gamma (i) = (G(i,1)*P(i))/(n(i)+sum_int);
end
P_plot(:,k) = P(:);
Gamma_plot(:,k) = gamma(:);
k = k+1;
for i = 1:3
P(i) = (gamma_des(i)/gamma(i))=*P(1i);
end
end



Figure 1: Problem 3:Power, User 1

Figure 3: Problem 3:Power, User 3



Figure 6: Problem 3:SNR, User 3



4. (a) y=2, for N=2, we want P, (10m) = 10mW which will ensure that P,(d > 10m) < 10mW
Prnaz(10)72 =10 x 1073
Pmaz = 1w

(b) y=2,N=4

Pz =4
(c) y=4,N=14
P,(20m) = 10mW

maz = 1600W

5. MATLAB CODE:

clear;
Ra = 20:-1:1;
for j = 1:length(Ra)
for k = 1:100
no_of_Cluster = 1;
node(1,1,no_of_Cluster)
node(1,2,no_of_Cluster)

unifrnd(0,100);
unifrnd(0,100);

R = Ra(j);
no_of_nodes = size(node,1);
while (no_of_nodes == 1) | (no_of_Cluster > 1)

no_of_Cluster = no_of_Cluster + 1;
no_of_nodes = no_of_nodes + 1;
node(1,1,no_of_Cluster) = unifrnd(0,100);
node(1,2,no_of_Cluster) = unifrnd(0,100);
new_node = reduce_clusters(node,R);

node = new_node;

no_of_Cluster = size(node,3);

end
no_of_nodes_this_run(k) = no_of_nodes;
clear node;
end
des_ans(j) = mean(no_of_nodes_this_run);
end

e—d/D

6. p(d) = <2 d>0
Prob that one of the copies arrives after D = prob(d;D)

= /OO ie_’”/Ddac =e !
p D

Prob that all N copies arrive after D assuming independence = e~
N=1, Prob = 0.3679

N=5, Prob = 0.0067

Since the paths were identical(had similar delay profile), throughput goes down by a facto of 5 as we
are sending same information on all paths.

As we try to decrease delay, the throughput also goes down.

Delay is proportional to throughput. This is the trade-off

N



7. Dy =12

Cq/j

The function is linear in fij, so it is both convex and concave. Specifically, it is convex.

8Dij _ _&
aCij szj
02D fii
862? = 2%]' > 0 for fij,cij >0
1) %)

Hence it is convex in ¢;; too.

8. C=10Mbps

—D=fC
- - D=FIC-F)

F (flow) x10°

Figure 7: Problem 8

9. \ = Julei=fij _ _ci

fij/cij cij—fij

(a)m:& 0<z<l1

Cli
/\:171
(b) 1 <A<

() A>10= £ >10=2>9/10 = f;; > 0.9¢;;

(d) Network for which delay is calculated based on (16.6) will be more congested as the metric will
tell us that the delay less (say below a threshold fixed apriori) and so we will keep on placing more

traffic.

10. (a) Since there is full cooperation, we can adapt R based on the values of C.

Using Matlab
Ropt = [29.322.336.3] K'bps

Din, = 0.993

(b) Dinin = 1.3028

(c) Notice that even with a lower data rate, we get 31 % increase in average distortion without

cross-layer design

MATLAB

clear DO = .38;
RO = 18.3e3;



Theta = 2537;

K=1;

L = 3040;

T = 350e-3;

C = [45 24 60]*1e3;

p=[.5 .25 .25];

count = 1;

ss = .1;

Rposl = [(RO/1e3)+ss:ss:(C(1)/1e3)-ss]*1e3;
Rpos2 = [(RO/1e3)+ss:ss:(C(2)/1e3)-ss]l*1e3;

Rpos3 =[(RO/1e3)+ss:ss:(C(3)/1e3)-ss]*1e3;
for i1 = 1:length(Rposl)
R(1) = Rpos1(il);
for i2 = 1:length(Rpos2)
R(2) = Rpos2(i2);
for i3 = 1:length(Rpos3)
R(3) = Rpos3(i3);
Rv(count,:) = R;
AvgDist(count) = 0;
for i = 1:length(C)
Dist = DO+(Theta/(R(i)-R0O))+K*exp(-(C(1)-R(1))*(T/L));
AvgDist (count) = AvgDist(count) + Dist*p(i);
end
count = count+1;
end
end
end
[AvgDistmin,d] = min(AvgDist) Ropt = Rv(d,:)

E 20/B 1

Cn) = T

Ny C/B

As C 7, numerator T exponentially whereas denominator T only linearly. .". %(C’B) T as C T for fixed

B o
E 2 -1
bpy=—pZ "~

No - C
ORE(B)  —2¢/Bln2  20/B 1
OB ~ BC c ' C
2C/B > 1forC, B > 0
£y

. —(B) | as B 1 for C fixed
No



