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Amplitude Modulation
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Figur% 2.1 (a) A sinusoidal modulating signal and (b) the corresponding AM signal with modulation
index 0.5.
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Double Sideband Spectrum
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Figure 6.2 (a) Spectrum of a message signal; (b) spectrum of the corresponding AM signal.
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SSB Modulators
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Figure 6.3 Generation of SSB using (a) a sideband filter and (b) a balanced modulator.
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Tone-in Band SSB
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Figure 6.4 lllustration of transparent tone-in-band system [from [McG84] © IEEE]. Only positive
frequencies are shown, and the two different cross-hatchings denote different spectral bands.
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Product Detection
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Figure 6.5 Block diagram of a product detector.
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VCO circult
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Figure 6.6 A simple reactance modulator in which the capacitance of a varactor diode is
changed to vary the frequency of a simple oscillator. This circuit serves as a VCO.



Wideband FM generation

modulating .
1N requency
signal m(t) » Integrator Limiter _’I\’Iu](:iiplier%d -
' widebanc
narrowband FM
FM
_90()
shift
Carnier
Oscillator

Figure 6.7 Indirect method for generating a wideband FM signal. A narrowband FM signal is gen-
erated using a balanced modulator and then frequency multiplied to generate a wideband FM signal.
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Slope Detector for FM
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Figure 6.8 Block diagram of a slope detector type FM demodulator.
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Digital Demod for FM
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Figure 6.9 Block diagram of a zero-crossing detector and associated waveforms.
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PLL Demod for FM
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Figure 6.10 Block diagram of a PLL used as a frequency demodulator.
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Phase-shift qguadrature FM demod
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Figure 6.11
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FM Demod circuit
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Line Coding spectra
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Figure 6.13 Power spectral density of (a) unipolar NRZ, (b) bipolar RZ, and (c) Manchester NRZ

line codes.
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RZ and NRZ Line Codes
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Figure 6.14 Time waveforms of binary line codes: i ; i ;
(0 Manchester NRZ. y (@) unipolar NRZ; (b) bipolar RZ;
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Nyquist Pulses for zero-ISI
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Figure 6.15 Nyquist ideal pulse shape for zero intersymbol interference.



Raised Cosine Spectrum
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Figure 6.16 Transfer function of a Nyquist pulse-shaping filter at baseband.
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Spectrum of Raised Cosine pulse
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Figure 6.17 Magnitude transfer function of a raised cosine filter at baseband.
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Raised Cosine pulses
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Figure 6.18 Impulse response of a raised cosine rolloff filter at baseband.
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RF signal usig Raised Cosine
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Figure 6.19 Raised cosine filtered (o = 0.5) pulses corresponding to 1, 0, 1 data stream for a
BPSK signal. Notice that the decision points (at 47, 5T, 6T,) do not always correspond to the
maximum values of the RF waveform.
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Gaussian pulse-shapes
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Figure 6.20 Impulse response of a Gaussian pulse-shaping filter.
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Figure 6.21

BPSK constellation
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Virtue of pulse shaping
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Figure 6.22 Power spectral density (PSD) of a BPSK signal.
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BPSK Coherent demodulator
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Figure 6.23 BPSK receiver with carrier recovery circuits.
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Differential PSK encoding

Table 6.1 lllustration of the Differential Encoding Process
m

{m,} I 0 0 | 0 1 I 0

(d, ) 1 1 0 ! ! 0 | 0 0

(d,) I 1 0 1 1 0 0 0 1
“I
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DPSK modulation
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Figure 6.24 Block diagram of a DPSK transmitter.
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DPSK receliver
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Figure 6.25 Block diagram of DPSK receiver.
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QPSK constellation diagrams
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Figure 6.26 (a) QPSK constellation where the carrier phases are 0, n/2, n, 3n/2; (b) QPSK
constellation where the carrier phases are n/4, 3n/4, 5n/4, 7n/4.
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Virtues of Pulse Shaping
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Figure 6.27 Power spectral density of a QPSK signal.

[+R2

ft+R,h

© 2002 Pearson Education, Inc. Commercial use, distribution, or sale prohibited.



Input Data
—>

R,I'J

QPSK modulation

R,/2
—>

LPF

Serial to
Parallel
Converter

N
R,/2

Local

Oscillator

R —

LPF

90°
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Figure 6.29 Block diagram of a QPSK receiver.
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Offset QPSK waveforms
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Figure 6.30 The time offset waveforms that are applied to the in-phase and quadrature arms of
an OQPSK modulator. Notice that a half-symbol offset is used.
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Pi/4 QPSK signaling
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Figure 6.31 Constgllation diagram of a n/4 QPSK signal: (a) possible states for 0, when
0,1 = n/4;(b) possible states when 6,_, = nn/2; (c) all possible states.
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Pi/4 QPSK phase shifts

Table 6.2 Carrier Phase Shifts Corresponding to Various
Input Bit Pairs [Feh91], [Rap91b]

Information bits m,, mg, Phase shift ¢,
[ 1 m/4
01 in/4
00 | —3nt/4

10 —1t/4

“
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Pi1/4 QPSK transmitter
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Figure 6.32 Generic n/4 QPSK transmitter.

© 2002 Pearsc



Differential detection of pi/4 QPSK
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Figure 6.33 Block diagram of a baseband differential detector [from [Feh91] © IEEE].
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FM Discriminator detector
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Figure 6.35 FM discriminator detector for n/4 DQPSK demodulation.
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FSK Coherent Detection
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Figure 6.36 Coherent detection of FSK signals.
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Noncoherent FSK
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Figure 6.37 Block diagram of noncoherent FSK receiver.
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Minimum Shift Keying spectra
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Figure 6.38 Power spectral density of MSK signals as compared to QPSK and OQPSK signals.
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MSK modulation
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Figure 6.39 Block diagram of an MSK transmitter. Note that m,(t) and mq(t) are offset by 7,
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MSK reception
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GMSK spectral shaping
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Figure 6.41 Power spectral density of a GMSK signal [from [Mur81] © IEEE].
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GMSK spectra shaping

Table 6.3 Occupied RF Bandwidth (for GMSK and MSK as a fraction of R,)
Containing a Given Percentage of Power [Mur81]. Notice that GMSK is
Spectrally Tighter than MSK

BT 90% 99% 99.9% 99.99%
0.2 GMSK (.52 0.79 0.99 [.22
(.25 GMSK 0.57 (.86 1.09 .37
0.5 GMSK 0.69 .04 .33 2.08
MSK 0.78 [.20 2.76 6.00
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Simple GMSK generation
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Figure 6.42 Block diagram of a GMSK transmitter using direct FM generation.
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Figure 6.43 Block diagram of a GMSK receiver.
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Digital GMSK demodulator
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Figure 6.44 Digital logic circuit for GMSK demodulation [from [deB72] © IEEE].
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8-PSK Signal Constellation
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Figure 6.45 Constellation diagram of an M-ary PSK system (M = 8).



Bandwidth vs. Power Efficiency

Table 6.4 Bandwidth and Power Efficiency of M-ary PSK Signals

M 2 4 8 16 32 64
N, = R,/B 0.5 1 1.5 2 2.5 3
E,/N, for BER=10° 10.5 10.5 14 18.5 234 28.5

* B: First null bandwidth of M-ary PSK signals
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Pulse Shaped M-PSK
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Figure 6.46 M-ary PSK power spectral density, for M = 8, 16 (PSD for both rectangular and
raised cosine filtered pulses are shown for fixed R, ).
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16-QAM Signal Constellation
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Figure 6.47 Constellation diagram of an M-ary QAM (M = 16) signal set.
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QAM efficiencies

Table 6.5 Bandwidth and Power Efficiency of QAM [Zie92]

M 4 16 64 256 1024 4096

r] B ] 2 _:. 4 ‘-; (}

E,/N, for BER = 107° 10.5 15 18.5 24 28 33.5
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M-ary FSK efficiencies

Table 6.6 Bandwidth and Power Efficiency of Coherent M-ary FSK [Zie92]

M 2 4 8 16 32 64

Ny 0.4 0.57 (.55 (.42 .29 0.18

E,/N, for BER = 107° 13.5 10.8 9.3 8.2 7.5 6.9
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PN Sequence Generator
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Figure 6.48 Block diagram of a generalized feedback shift register with m stages.
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Direct Sequence Spread Spectrum
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Figure 6.49 Block diagram of a DS-SS system with binary phase modulation: (a) transmitter;
and (b) receiver.
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Direct Sequence Spreading
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Figure 6.50 Spectra of desired received signal with interference: (a) wideband filter output and
(b) correlator output after despreading.
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Frequency Hopping Spread
Spectrum
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Figure 6.51 Block diagram of frequency hopping (FH) system with single channel modulation.
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CDMA — Multiple Users
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Figure 6.52 A simplified diagram of a DS-SS system with K users. (a) Model of K users in a
CDMA spread spectrum system; (b) receiver structure for User 1.
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Effects of Fading
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Figure 6.53 Bit error rate performance of binary modulation schemes in a Rayleigh flat-fading
channel as compared to a typical performance curve in AWGN.
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Irreducible Bit Error Rate due to multipath
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Figure 6.54 The irreducible BER performance for different modulations with coherent detection
for a channel with a Gaussian shaped power delay profile. The parameter d is the rms delay
spread normalized by the symbol period [from [Chu87] © IEEE].
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Irreducible Bit Error Rate due to
multipath
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Figure 6.55 The same set of curves as plotted in Figure 6.54 plotted as a function of rms delay
spread normalized by bit period [from [Chu87] © IEEE].
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Simulation of Fading and Multipath
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Figure 6.56 The BERSIM concept: (a) Block diagram of actual digital communication
system; (b) block diagram of BERSIM using a baseband digital hardware simulator with
software simulation as a driver for real-time BER control (US Patent 5,233,628).
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Irreducible BER due to fading

P(e) vs. C/N in slow flat-tading channels
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Figure 6.57 BER performance of n/4 DQPSK in a slow flat-fading channel corrupted by CCI and
AWGN. f, = 850 MHz, f, = 24 ksps raised cosine roll-off factor = 0.2, C/I = (1) 20 dB, (2) 30 dB,
(3) 40 dB, (4) 50 dB, (5) infinity [from [Liu91] © IEEE].
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Irreducible BER due to fading
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Figure 6.58 BER performance versus E,/ N, for t/4 DQPSK in a Raleigh flat-fading channel for
various mobile speeds: f,= 850 MHz, f, = 24 ksps, raised cosine rolloff factoris 0.2, C//=100 dB.
Generated by BERSIM [from [Fun93] © IEEE].
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BER due to fading & multipath
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Figure 6.59 BER performance of n/4 DQPSK in a two-ray Rayleigh fading channel, where the
time delay 1, and the power ratio C/D between the first and second ray are varied. f, = 850 MHz,
f, = 24 ksps, raised cosine rolloff rate is 0.2, v = 40 km/hr, 120 km/hr E, /Ny = 100 dB.
Produced by BERSIM [from [Fun93] © IEEE].
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