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Antenna Summary
Chapter 9

For Reactive Near Field Region R =.62,/L3 /A & For Radiating Near Field Region R=2L?/4

9-1 The Short Dipole

Eor A short dipole, also called a Hertzian dipole. | should not exceed A /50.

(R, 6, ¢P)

5 1 =
H=—Vx A
T e Mo
i~ J()_ J o s
A(R}zi_"ﬁ = Faitle o G
e and JwEQ
H Wl x| S + : sin @ (9.8a)
h=——e " | = ;
s R kR " (kR)?
Ag = Holol cos (e—; ) 2olk? 1 j
2T : Fr= R - cosf (9.8b
ar i B = e [(kRP (kmﬁ] By
2 rolol . i S RN 1 J
Ag=— sin 6 ; [ e s STRK S
i 4 ( R 8= O e e S e
_ . 9.8
For Short Dipole: Ap=0. >>> 6:3c)
where g = ~/po/e0 = 1207w (£2) is the intrinsic
impedance of free space. The remaining components
(Hp, Hy, and E,) are everywhere zero. And k — ﬂ.’)f(f = 2:.71,‘,.?‘}‘,

9-1.1 Far-Field Approximation

For Far Field Approximation: t ® = A ©F equivalently, kR = 2 R/A > 1

This condition sk fe*RY | ; :
allows us to neglect the terms varying as 1/ (kR)? and e ( R )Sm i g
1/(kR)" in Egs. (9.82) to (9.8c) in favor of the terms 5 R 9.9b)

varying as 1/kR, which yields the far-field expressions : | Mo




and Er 1s negligible.
9-1.2 Power Density

Given E and H in phasor form, the fime-average
Poynting vector of the radiated wave, which is also called the power density, .

Sav = 19%e (ﬁ > 1’-”1*) CW/m?2).
For the short dipole, use of Egs. (9.9a) and (9.9b) gives S(R,0) — (ngk2 Igi? ) e
. : 3272 R>
Sav =R S(R, 6), O it — Spsin?0  (W/m?). (9.12)
S(R, 0, ¢)
: R : F(09) ="——————— dimensionless).
the normalized radiation intensity F(©, ¢), . G s ( )

For Hertzian dipole :

nok2 1212

RS o BOTERE

= ISRIZ ( ) s>>> F(8,¢) = F(B) = sin 6.
82 Antenna Radiation Characteristics .

= i = R = . . . — P
dPrag = Sav-dA = Say - RAA = SdA \nq iy the spherical coordinate system : A = R*sin6 df d¢, .

and the selid angle d2 associated with d A, defined as
the subtended area divided by R2, is given by

dA
AR = — =i d i
o7 =sin0dodg  (sr). (9.18) dPrag = R*S(R. 0, ¢) dS2.

>>>>

rad—sz f S(R, 0, ¢)sin6 dé do
=0 J8=0

= R%S, . ] f F (0, ¢)sin6 do do
#=0

= R%Smax ff F(O,¢)d (W), (9.20)
4

(Total Radiated Power)




0-2.1 Antenna Pattern .

F (dB) = 10log F.

7 = e, dE2 :
paitern solid angle Qp : £2p f f4 5 F (e, ¢) (s1)

For an isotropic antenna with F(@,¢) = 1 in all
directions, 2, = 4ot (sr).

The half-power beamwidth, Sply the beamwidth B, g —g, —¢,,

9-2.3 Antenna Directivity .

Finax
Diig By using Eq. (9.20) in Eq. (9.23), D can be expressed
1 ds
% f f F (6, ¢) dS2
4 7
AR S S
S jz_t (dimensionless), (9.23) D= P e (9.24)

where S,y = Prg/(4m R?) And D (dB) = ]Ull}g D.

For an antenna with a single main lobe pointing
in the- z-direction as shown in Fig. 9-12, €2, may
be approximated as the product of the half-power
beamwidths 8,. and £,. (in radians):

2p = By Bz (9.25)

and therefore

AT = AT
Q;D = JBXzJByz E

(9.26)

Directivity of a Hertzian Dipole

D= &5 or, equivalently, 1.76 dB.

0-2.4 Antenna Gain

Prag 7 4
s ; = d less).
Theradiation efficiency & . 5= g~ (dimensioniess)
47 R* Siax

; : G=—
d
The gain of an antenna is defined as P, > G=E¢D

(dimensionless).




9-2.5 Radiation Resistance .
1

Prag = EI(JZRmds
P L 2R
loss — = loss s ' ' ' ' ..
0% T 20O here [y is the amplitude of the sinusoidal cument exciting the antenna.
P. P, R
e = LA B E Rl
P t P, rad + Ploss Rrad i Rloss
Rlctss == 23 :"Tfhju-'c B
Resistance or Circler wire of length | and radius a % £
For Hertzian dipole:
s 4w R? 15715 (i)z
1.5 R2 Y
2 y2 { 2
:4031”1(—)- Riaqa = 8021 /A)>
A kad Bt 20, (See derivation in Example 9.3)
9-3 Half-Wave Dipole Antenna .
(1) = = jot T it A
For Half Wave Dipole: i(t) = Iycos wt coskz = Re[Igcoskze’],  T(z) = Iycosks, e

Current distrubution
I(z)y = g cos kz

Transmission ||
line 5

I=2/2 = !
’
Dipole T i 7
antenna a¥=e

ad

z = —I2

dEg(z) =

i lc = —Jjks
J4;:O I(z)dz (e = )sin@s,

Two Approximations:

s =R, 6r=0

Also — 7' (Magnitude Approximation)

2. § = R — z cos&. (Phase Approximation)




St e —jkR ‘ =3 N
dEy = —ano I(z) dz (E - )sine ot Eg = f dEg.
jr L

>>> S

carrying out the integration, the following expressions
are obtained:

E,g:j— 607, [COS[(:Z;/:;COS 6]](37;:«3 ECT s
Hy— Eo ’ (9.42b)
o
and the corresponding time-average power density is . = ,
£ Examination of Eq. (9.43) reveals that S(R,8) is
S(R, 0) = 'i‘”z maximum at @ = /2, and its value is
o
1575 [ cos?[(mr/2) cos O]
= 7Rz I: : sin® @ 5 Rl = 151{%
o [0032[(:::222005 0]] (W/m?). (9.43) max — 20 — (J‘T RZ) .
Hence, the normalized radiation intensity is
S(R, 6) cos[(mr/2) cos ]2
F(®) = = [ == ] . (9.44)
9-3.1 Directivity of 1/2 Dipole .
Pra = R? /f S(R,0) dQ
47
1512 2w o 2
==5 f [COS[(T;/:;COSQ]] siné do de.
o Jo 8 — 2
(9.45) Prad — 36.6 I{}
- bnRSny  4R* (1502
T P 661 \nR2) or, equivalently, 2.15 dB.
9-3.2 Radiation Resistance of )./2 Dipole
o 2P _ 2% 36.61; s
wd, = T S i : =
I I Xin= 42Qati/xa=05, , down to zero at [/A = 0.48

Zin = Rin -+ "innWhere Rin = Rpaa + Rioss-

For the half-wave dipole, Rjog is much smaller than Ry, s ,
+ e Zin = Rrag + j Xin.
and can be ignored. Hence, in = frad T J<in




9-3.3 Quarter-Wave Monopole Antenna.

for a 1/4 monopole, Prpg = 18.312 and
its radiation resistance is Ryq = 36.5 Q. Also Xin = 21.25

9-4 Dipole of Arbitrary Length .

the current phasor T (z) can be
expressed as a sine function with an argument that goes
to zero at z = 1 /2:

I(z) =
Iysin[k (I/2 — 2)], forO0 <z <1/2,
(9.52)
Iosin[k (I/2 + 2)1, for —1/2 <z <0,
~  jkmoly (e 1o
dEgzm(—) el g
v \ R > .
lsin[k(f/z-zn ford <z <) & 2160*’0( R )
X )
i ) (4 cosg) — Led
smlk(/2+2)], for -[/2<2<0. T fuz B : !co&,(z cot )9 cos(z)} s
033 >> = >> R
|Ey|?
e = 250
1512 | cos (B cos0) — cos (ZH) t
i Jng |: sin & o
For Wave length-long dipole : Smax = 6015 /(T R?)
9-5 Effective Area of a Receiving Antenna -
_ ¥ AL Pine (m?). (9.57)
effective area Ae: Si
Lin = Ryaq + inlu
1. = R + Y
for maximum power transfer, a source Vg, connected across a resistance
the load impedance must be chosen such that Z;, = Z*, _ _equal o 2Ry
— 2 —
1 ~ L1 | Vol |V00|2 v 12
PL=—|L|*?Rrng = — = ! V.
1L 2' L| rad ) [ZRrad] rad SRrad Pint = PL ida | D-ci E
8 Riad

(9.59) >>>




R 5
_ Eil" _ Eil _ P _ 30wVl

Si = L A == — .
2??{} 240:‘1 >SS = S Rraq| Ej|?
322 A—@ (m’) (any antenna). ~ (9.64)
) e=—  (m? (shortdipole). (9.63) 2= | —Riie A A R
For short Dipole: 8n For ay antenna:

See example 9.4 for derivation of maximum power transfer.

9-6 Friis Transmission Formula -

Transmitting Receiving
antenna antenna

P
Siso = = =% St Bl 1S St A by
7 47 R2 St = GtSiso = E:DSiso = AR 2R2 R2
§ALAL Py P GEAA: (L)Z
Ay 5, A T S BB PR

(Power transfer ratio)

e useg b = EDJAn = Gojén, and similar relations to the receiving antenne

If the two antennas are not oriented in the direction of
maximum power transfer, Eq. (9.75) can be rewritten in
the general form

P]’EC
Py

o 2
= GG+ m) F (B¢, ) Fr(6r, @), (9.76)

) P, — KT B W
Noise Level: - SR S0

where 75y [measured in kelvins (K)] is a figure of merit,
called the systerm noise temperature, that characterizes
the noise performance of the receiver—antenna combina-
tion, K is Boltzmann’s constant [1.38 x 10723 (J/K)], and
B is the receiver bandwidth in Hz.

The signal-to-noise ratio S, Sn = Prec/ Pn




9-7 Radiation by Large-Aperture
Antennas :

where d is the longest linear dimension of the radiatin
> 2d*/A, : i

To satisfy the far — field condition: aperture.
E(R. 0 J (e
(R, 8, ¢) = = ( = ) h(O, P), (9.80)

where

?’:(9, @) = f-/_‘oo Ea(xaa ya)
-exp [jksin @ (x, cos ¢ + y,sin )] dx, dy,. i ; : ~
‘oo Weshallzefertoh(6, g) asthe form fuctor of E(R, 8, 9).

Note: Ea is the exciting field.

|E(R, 0, $)1> _ |h(0, $)?

S(R, 8, = = ,
(R, 0, ¢) 5 See

(9.82)

9-8 Rectangular Aperture with Uniform
Aperture Distribution

Aperture
illumination

i Aperture plane A

Observation plane O

a uniform field distribution .

- Ey, for —1,/2 < x, <1,/2 o /2 /2

E,\(xa, Ya) = and —-f_\_./2 < ya<14,/2, ) h(é’) 2[ ] Eoexp[kaa sin 0] dx, dya
0, otherwise. Assuming ¢ = O =/ =l 1
';1-(6) = ZEoly sin(rzrf, sin & /2)

2
(—H sin 19)
A

sin(rr f, sin & /A1)
o i, sin & /5 Vomep ok sin £
= EgAp sinc(sr{, sin & /), We used i

— Eol. 1,




And from equation 9.82 >> S8 = Susinc’rlysing/y) (v—zplane), 989 where Sp = EGAZ/(2n0A* R?)

S(R, 6)
S]'II'LIX
= sinc? (7l sin @ /)

= sinc(ry) (r=gplanc),| . ¥ == (fx /l} sin @

F(0) =

9-8.1 Beamwidth-

18,1'?_ = b — 0 And 91 = _92 >>> :sz = 26,

o) : Tl . S1T1 =S i
F(QE) = Sinc (JT[_,_- Slﬂ@/k) =0.3 >>(from tables)>> SN AN a s s FE

A similar solution for the y-z plane (¢ = 7/2) gives

A
- Bxz = 26, =~ 25sin6; = 0.88— By =n_saIi (rad).  (9.94b)
Because A/, € 1 sinf, >~ 6. ' ,.

A
ﬁxz = kxi,_ s (995)

where &, is a constant related to the steepness of the taper.
For a uniform distribution with no taper, &k, = 0.88, and
for a highly tapered distribution, k, =~ 2. In the typical
case, k. =~ 1.

For a circularly symmetric antenna pattern. 8 = A /d.

. . .IBJZ-": % ﬁyzl" i
For a cylindrical reflector x And Iy
9-6.2 Dirgctivity and Effective Area -
4T = 4, 3 £ d7r A i drr A
Glana o ¢t B e : " Also e A2

Jor aperture antennas, their effective apertires
are approximately equal to their physical apertures; that
IS A=A




9-9 - Antenna Arrays .

kR Se(R.0, ) = 5= |Ee(R. 0. D) —JkR;
—~ ey ~ EI(Rngstp):A f(€-¢)
FeB o dsem= F0.0) — RO B L
where A; = a;e/¥ is a complex feeding coefficient
Q
L
Element N-1
il
Element N-2
Element i
id
Element 1
Element O >~Id cos @ =y
= 2(N — 1)3d*
e =~ )
To satisfy Far field condition A A Where - l = (N — 1)d- array length

Two Approximations:

1. Ri = Ry (Magnitude Approximation)

5 RixRo~zicos6l =Ry idcost where; = idisth disnce between the ith cemen and the zeroth element

(Phase Approximation)

1

i~ ot e_Jl&R[} S(Rl]s 69 ¢) == 2??0 |E(R03 6, (p)iz
E(Ro, 0, ¢) = fe(0, @) ( 5 ) " 2
0 1 b S ;
| == 7@ @)% DE Ajeitidees
S ] 2??0R§ i=0
% E A,eﬁkdcosﬂ 5 :
1 ) ;
7 = Se(Ro, 0, @) E Aieﬂkdcose .(9.106)
i=0 o NN >

71

S(RU:9!¢) = SC(R019a¢) FH(H) (9108)

MN—1
Fa(e) = Z Afejfkd(:()sa
i—0

Denoting the array factor by

>>>

N—1 2

E aiejli'fejikdcosﬂ
i=0

A. :a.ejv‘l'rl'. Fﬁ(g):
C £ >>>

(9.110)




9-10 ~-Element Array with Uniform
Phase Distribution

For ‘:"ff = ‘tpﬂ

N—1 2

e_nffg E :ajej"kdcm'g
i=0

N—1
E :aiejzkdcnsﬁ
i=0

2

Fa(6) =

2
=|€f§!'f0|2

N—1
§ :aiej:kdcosﬂ
i—0

The phase difference between the fields radiated by
adjacent elements is

2nd
y = kdcosf = %cosf}.

(9.112)
>>>

In terms of y, Eq. (9.111) takes the compact form

2

Fy(y) = (uniform phase). (9.113)

N—1
2 :aieffy
i=0

_sin’(Ny/2)

" sinf(y/2)

For a uniform amplitude distribution with ¢; =1 _

The maximum value of Fy(y) can be _shown to oceur g V= 0 (Df@ =

. =
POy all)

(uniform amplitude and phase).

C120) Derivation page 4108411)

/1) mdisequalto ! normalized array factor i given by .

_ sin®(WNy /2)

Fa, Tax

9-11 Electronic Scanning of Arrays

¥ = —ié

For Electronic steering

T NZ2sin?(y/2)
Nmd
sin~ [ = CcOos 9]

A
7 5
N2 sin? I:ET cOs Q:I

N—1 2

§ :aje—jiéejikdcosﬂ

E=0

Fa(B) =

>>

N=1 2

E :afe_;:(kdcosﬂ—é‘)
i—0 ;

2

N—1

E et
i=0

é Fﬂ(y J)p




where §
y'=kdcosd —8. ,.q 0=kdcost. (9 ]25) d(cos§ —cosf). (9.126)

9-11.1  Uniform-Amplitude Excitation

sin2(Ny '/2)
N2sin*(y '/2)

Fan(y r) =

9-11.2 Array Feeding -

o 0

Il

£1=30+f

™~
Iy=1ly+ 21 /‘\/\/+<
s = lo + 31 W

For Frequency Scanning; 4: = ¢Z -+ o

where [ is the path length of the zeroth element. Wave 0(f)= =Bl =l = 2_JT -

propagation at a frequency f on a transmission line of Tregm iy fi=h)

length [; is characterized by a phase factor e ~/#i, where - =%
B = 2mf/uy is the phase constant of the line and u, i fl. 1) ] = —F
I8 its propagation velocity . ly let Jo

vi(fo+ Af) = —Z—R(fo + Af)I

i ZJrng (2:@?3) AF

i
= —2ngir — 2ng7 (—) A
fo 8 = 2nom ( f)

= —2n91w — &, .

Similarly, Vs ( fy+Af) = 201 and s fy+Af) = 30h. .. 1gnore 2z and its multiples (no influence of relative phases).

COS By =

2not (Af )

kd
Jo (Using equation 125)




Additional Formulas You Might Need:

Rrad - ZO . ] —+ |r|
N Rat 2o ST
Voltage Reflection coefficient: rad © standing wave ratio: — T (See problem 12)

For Direct and Reflected Waves from antenna:

EI” /3om0 &
S=— Er=(\llr:]?:10—oe f”“")]‘.

-y — ) ] JkR R
MO pirger:  Fa v/ 2Nosi e ...Reflected

Table 7-1: Expressions for «, 8, 1c, tp, and A for various types of media.

Lossless Low-loss Good
Any Medium Medium Medium Conductor Units
(=0 | (/e <D | (/e > 1)

75
o= |w %|};‘ E—,- 0 % % Vrfuo (Np/m)

./ 1E W, /ILE Vrfuo (rad/m)

—12
o= \/EE ( ) - £ a+ps ®
up = 1/ /& 1//ite VArfuo (m/s)
A= 23?/8 = up/f tp/f up/f up/f (m)

Notes: & = &; " = o/w; in free space, £ = &y, [t = jig; in practice, a material is considered a
low-loss medium if £” /¢’ = o/we < 0.01 and a good conducting medium if &7 /¢" > 100.

€, = & (Snell’s law of reflection), (8.28a)

sin & _ Wpy, \/,u.w.‘. c
singy | tp, 28D T Wrr . (8.29)

(Snell’s law of refraction). (8.28b) >

L W T T 2 Y e
e : o =)y (8. i R,
sinfy  ny \ peen And: né m Ve, m Where where n = y/ju/¢ is the intrinsic impedance

Table 8-2: Expressions for I, T, R, and T for wave incidence from a medium with intrinsic impedance 77) onto a medium with
intrinsic impedance n2. Angles 6; and 6, are the angles of incidence and transmission, respectively.

Normal Incidence Perpendicular Parallel
Property =i =10 Polarization Polarization
Reflection o 2 i P 12 cos B — | cos O T 72 COS By — 1| cos G
coefficient n2 + Ny 172 cos G -+ 1 cos 6 12 cos 6y + ny cos 6;
IV ansailssion el Rl SR S G
coctficient 12 + 0y M2 €os &; + 1 cos G 12 €08 By + 11 cos 6;
Relationof C'tor | t =1+T Ty =141 r[|=(1+l“”)'30mEii
cos G
Reflectivity R=[32 Ry =|Cy? Ry =y ?
Transmissivity T = |z|? (ﬂ) T = (g PEASSE Tiie | et
n2 2 cos & n2 cos 6
Relationof Rto T IT'=1—R Ti=1—R, T":].*R"
Notes: (1) sin 0 = /181 /paeasin 6z (2) m = /a/e1; (3) N2 = /t2/€2; (4) for nonmagnetic
media, n2/n1 = ni/na. (See problem 38)




Tables:

Table B-2: CONDUCTIVITY ¢ OF SOME COMMON MATERIALS?

Table B-3: RELATIVE PERMEABILITY 1, OF SOME COMMON MATERIALS?

Material Conductivity, o (S/m) | Material Conductivity, o (S/m) 0= g and i = 47 x 10~ Him.
Conductors Semiconductors Tl
Silver 62 x 107 Pure germanium 22 Material Pe *‘(I ity
Copper 58 107 Pure silicon 44107 — LAY
Gold 4l X 107 ]fMH/’(if(HW I)!“i?]”‘[’,”(j”(‘
Aluminum 35107 Wet soi ~ 1072 Bismnuth 0.99983 ~ 1
Tungsten 1.8 x 107 Fresh water ~1073 Gold (.99996 ~ |
Zinc 1.7x 10/ Distilled water ~107 Mercury 0.99997 ~ |
Brass 15% 107 Dry soil ~107* Silver 0,99998 ~ |
7 i
ronze ard rubber
Water : o
Tin 9x 10° Paraffin 1075 T fiecd sy
Lead 5% 106 Mica 1071 il
Mercury 10° Fused quartz el Air ; LO00004 > 1
Carbon L% 104 Wax 10-17 Aluminum 109002 ~
Seawater 4 Tungsten 1.00008 ~ 1
Animal body (average) 0.3 (poor cond.) Titanium 1.0002~ 1
These are low-frequency values at room temperature (20° C). Platinum 1.0003 2 1
CARTESIAN (RECTANGULAR)
R §y 7
S0 DO e DAy (A, BA.\ - f0A 04,
Vs =l e _x(ay 82)+y(82 8x>+z(ax 'dy)
A RS
CYLINDRICAL COOHDINATES (e . ©,7)
rour r U(FJ
'y or Z ;
 Isgd d gi(iE L a A 3A,  3A. el 94
VEAS S a—z”(ragb az)”’( [ ) a¢]
A AR AT
SPHERICAL COORDINATES (R, ,¢)
R or $b R sin @
e SN L O Or i
R2s5in® | aR ae Dy
A g RAg (R sin@)A,
e frll 5 Ay ] - 1 1 8A g AR
= R sin & [E(Aw SO = D J o+ 0? [‘sll'] 0 o (RA“'&)] - i~ [ _]?(RAU) ~ Tae

Transformation I

Coordinate Variables

] Unit Vectors

Vector Components

Cartesian to o= x4 w2 r = Xcos¢g + ¥sing A, = Axcosg + A, sing
cylindrical ¢ =tan—(y/x) & = —Xsing + ¥cosg¢ Agp = —Ayxsing + A, cosg
z =z Z2=Z A, — A,
Cylindrical to x = r cosdg % = fcos¢p — ¢Psing Ay = A, cos¢p — Agsing
Cartesian ¥ = r sin g ¥ — ©sing + ¢ cos P Ay = Apsing + Ag cos ¢
Tl z=7 A = A
Cartesian to R = F'x2 4+ y2  z2 R = %sin 0@ cos ¢ Ar = Ay sin @ cos ¢
spherical + ¥ sin & sin ¢ + Zcos & + A, sinfsing + A cos@
@ = tan— [ ¥ x2 + y2/z] 6 — %Rcos 6 cos Ag — A, cosf cosg¢
+ ¥ cos @ sing — Zsin & + A, cos@sing — A;sind
P = tan ' (¥ /x) ¢ = —Ksing + ¥cosg Agp = —Arsing + Ay cosgh
Spherical to x = R sin & cos ¢ % — Rsin & cos ¢ Ay = Aprsin& cosg
Cartesian + 6 cos @ cos ¢ —@sinqb 4+ Agcosf cosg — Ag sing
v = Rsin@sin ¢ $ = Rsiné sing A, = Agsin @ sin ¢
+§c0595i_n¢-+$cos¢ + Agcos @ sing + Ay cosg
z = Rcos@ 2= Rcos® —Hsino A, = Arpcosf — Agsiné
Cylindrical to R = 372 + 22 R = fsin® + Zcos @ Ap = A, sinf + A_cos @
spherical 6 = tan—1(+/z) f# — Ffcos@ — Zsin Ag — A, cos8 — A_siné
¢ = b= Ap = Ay
Spherical to = Rsing = Rsin® + & cos @ A, = Apsin® -+ Ag cos &
cylindrical =igh t;& = $ Ap = Ay
z = Rcosé& Z2—Rcost —Osing A; = Arpcosf — Agsin&
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EXECUTIVE SUMMURY:

Helical antennas have long been popular in applications from VHF to microwaves requiring
circular polarization, since they have the unique property of naturally providing circularly
polarized radiation.

One area that takes advantage of this property is satellite communications. Where more
gain is required than can be provided by a helical antenna alone, a helical antenna can also be
used as a feed for a parabolic dish for higher gains. As we shall see, the helical antenna can be an
excellent feed for a dish, with the advantage of circular polarization.

One limitation is that the usefulness of the circular polarization is limited since it cannot be
easily reversed to the other sense, left-handed to right-handed or vice-versa. [1]
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Overview:

A helical antenna is an antenna consisting of a conducting wire wound in the form of
a helix. In most cases, helical antennas are mounted over a ground plane. The feed line is
connected between the bottom of the helix and the ground plane. Helical antennas can operate in
one of two principal modes: normal mode or axial mode.

In the normal mode or broadside helix, the dimensions of the helix (the diameter and the pitch)
are small compared with the wavelength. The antenna acts similarly to an electrically
short dipole or monopole, and the radiation pattern, similar to these antennas is omnidirectional,
with maximum radiation at right angles to the helix axis. The radiation is linearly
polarized parallel to the helix axis.

In the axial mode or end-fire helix, the dimensions of the helix are comparable to a wavelength.
The antenna functions as a directional antenna radiating a beam off the ends of the helix, along
the antenna's axis. It radiates circularly polarized radio waves. [2]

Geometry and Operation:

A sketch of a typical helical antenna is shown in Figure 1. The radiating element is a helix
of wire, driven at one end and radiating along the axis of the helix. A ground plane at the driven
end makes the radiation unidirectional from the far (open) end.
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Figure 1: A sketch of a typical helical antenna [1]




The benefits of this helix antenna axial mode or end-fire helix are it has a wide bandwidth,
is easily constructed, and has real input impedance.

The parameters of the helix antenna shown in figure 2 are defined Next Page.

Ground Plane

Coaxial Feed

Figure 2: Geometry of Helical Antenna. [3]




e D - Diameter of a turn on the helix antenna.
e C - Circumference of a turn on the helix antenna (C=pi*D).
¢ S - Vertical separation between turns for helical antenna.

e & - pitch angle, which controls how far the helix antenna grows in the z-direction per turn,
and is given by

48
.

o = tan

e N - Number of turns on the helix antenna.

e H - Total height of helix antenna, H=NS.

The antenna in Figure 2 is a left handed helix antenna, because if you curl your fingers on
your left hand around the helix your thumb would point up (also, the waves emitted from this
helix antenna are Left Hand Circularly Polarized). If the helix antenna was wound the other way,
it would be a right handed helical antenna.

The radiation pattern will be maximum in the +z direction (along the helical axis in Figure

1). The design of helical antennas is primarily based on empirical results, and the fundamental
equations will be presented here.

Helix antennas of at least 3 turns will have close to circular polarization in the +z direction
when the circumference C is close to a wavelength:

P gl

4 3

Once the circumference C is chosen, the inequalities above roughly determine the
operating bandwidth of the helix antenna. For instance, if C=0.5 meters, then the highest
frequency of operation will be given by the smallest wavelength that fits into the above equation,
or =0.75C=0.375 meters, which corresponds to a frequency of 800 MHz. The lowest frequency
of operation will be given by the largest wavelength that fits into the above equation, or
=1.333C=0.667 meters, which corresponds to a frequency of 450 MHz. Hence, the fractional
BW* is 56%, which is true of axial helical antennas in general.




The fractional bandwidth of an antenna is a measure of how wideband the antenna is. If the
antenna operates at center frequency fc between lower frequency f1 and upper frequency 2
(where fc=(f1+2)/2), then the fractional bandwidth FBW is given by:

FBW:M

¢

The fractional bandwidth varies between 0 and 2, and is often quoted as a percentage
(between 0% and 200%). The higher the percentage, the wider the bandwidth.

Wideband antennas typically have a Fractional Bandwidth of 20% or more. Antennas
with a FBW of greater than 50% are referred to as ultra-wideband antennas; this means that
helical antenna is an ultra-wideband antenna.




Impedance, Gain, and Radiation Pattern:

The helix antenna is a travelling wave antenna, which means the current travels along the
antenna and the phase varies continuously. In addition, the input impedance is primarily real and
can be approximated in Ohms by:

7z, =1405
A

The helix antenna functions well for pitch angles ( &) between 12 and 14 degrees.
Typically, the pitch angle is taken as 13 degrees.

The normalized radiation pattern for the E-field components is given by:

. NQ
- sin—
E, < E, «sin —cos@

/ 2N sin(Q/2)

Q =kS(cos@—1)—n(2+1/N)

For circular polarization, the orthogonal components of the E-field must be 90 degrees
out of phase. This occurs in directions near the axis (z-axis in Figure 1) of the helix. The axial
ratio for helix antennas decreases as the number of loops N is added, and can be approximated

by:

The axial ratio is the ratio of orthogonal components of an E-field. A circularly
polarized field is made up of two orthogonal E-field components of equal amplitude (and 90
degrees out of phase). Because the components are equal magnitude, the axial ratio is 1 (or O
dB).




The axial ratio for an ellipse is larger than 1 (>0 dB). The axial ratio for pure linear
polarization is infinite, because one of the orthogonal components of the field is zero.

Axial ratios are often quoted for antennas in which the desired polarization is circular. The
ideal value of the axial ratio for circularly polarized fields is 0 dB. In addition, the axial ratio
tends to degrade away from the mainbeam of an antenna, so the axial ratio may be indicated in a
spec sheet (data sheet) for an antenna as follows: "Axial Ratio: <3 dB for +-30 degrees from
mainbeam". This indicates that the deviation from circular polarization is less than 3 dB over the
specified angular range.

The gain of the helix antenna can be approximated by:

_6.2C’NS _ 6.2C*NSf?’

13 3

A c

G

In the above, c is the speed of light. Note that for a given helix geometry (specified in
terms of C, S, N), the gain increases with frequency. For an N=10 turn helix, that has a 0.5 meter
circumference as above, and pitch angle of 13 degrees (giving S=0.13 meters), the gain is 8.3
(9.2 dB).

For the same example helix antenna, the pattern is shown in Figure 3:

6 (degrees)
Figure 3: Radiation Pattern Helical Antenna. [3]
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The Half-Power Beamwidth for helical antennas can be approximated (in degrees) by:

654
NS
A

HPBW =
(&

The Beamwidth between nulls is approximately:

115X3/2

FNBW (degrees) ~ oV
"\




CONCLUTIONS:

Helical antennas have long been popular in applications from VHF to microwaves
requiring circular polarization.

A helical antenna is an antenna consisting of a conducting wire wound in the form of
a helix.

In the normal mode or broadside helix, the dimensions of the helix (the diameter and
the pitch) are small compared with the wavelength. The antenna acts similarly to
an electrically short dipole or monopole.

In the axial mode or end-fire helix, the dimensions of the helix are comparable to a
wavelength. The antenna functions as a directional antenna radiating a beam off the ends
of the helix, along the antenna's axis. It radiates circularly polarized radio waves.

The benefits of this helix antenna axial mode or end-fire helix are it has a wide
bandwidth, is easily constructed, and has real input impedance.

The helix antenna is a travelling wave antenna, which means the current travels along the
antenna and the phase varies continuously.

The fractional Bandwidth of helical antennas is 56%.

One limitation of helical antennas is that the usefulness of the circular polarization is
limited since it cannot be easily reversed to the other sense, left-handed to right-handed
or vice-versa




REFERENCES

1. Helical Feed Antennas Paul Wade W1GHZ.
2. http://en.wikipedia.org/wiki/Helical_antenna
3. http://www.antenna-theory.com/antennas/travelling/helix.php

4. Antenna Theory: Analysis and Design, Second Edition, Constantine A. Balanis, Chapter 10
Section 10.3.




Helical Antennas




Contents

e Overview of Helical Antenna

 Impedance, Gain, and Radiation Pattern

*Result of Calculating the Gain and Plot of Radiation Pattern .




Overview:

| >4

A helical antenna is an antenna consisting of a conducting wire
ound In the form of a helix. In most cases, helical antennas
re mounted over a ground plane. The feed line is connected
etween the bottom of the helix’and the ground plane. Helica
ntennas can operate in one of two principal modes: norma

ode or axial mode.
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Normal mode or Broadside helix

In the normal mode or broadside helix, the dimensions of the
helix (the diameter and the pitch) are small compared with
the wavelength. The antenna acts similarly to an electrically
short dipole or monopole, and the radiation pattern, similar to
these antennas I1s omnidirectional, with maximum radiation at
right angles to the helix axis. The radiation Is linearly
polarized parallel to the helix axis.



Axial mode or End-fire helix

In the axial mode or end-fire helix, the dimensions of the helix
are_comparable to a wavelength. The antenna functions as
a directional antenna radiating a beam off the ends of the
helix, along the antenna's axis. It radiates circularly
polarized radio waves.

The benefits of this helix antenna axial mode or end-fire helix
are it has a wide bandwidth, is easily constructed, and has real
Input Impedance.



Geometry and Operation

D

A
Y

- D - Diameter of a turn on the helix antenna.

1+ C_= Circumference of a turn.on the helix._. |
intenna (C=pi*D).

1 S - Vertical separation between turns for =
lelical antenna.

- @ - pitch angle, which controls how far the
1elix antenna grows in the z-direction per turn,
and is given by

Q)

—_—

—_—

qQ
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o = tan
- N - Number of turns on the helix antenna.

1 H - Total height of helix antenna, H=NS.

C =xD

Ground Plane

Coaxial Feed




Geometry and Operation

The radiation pattern will be maximum in the +z direction
(along the helical axis).

The design of helical antennas is primarily based on empirical
results, and the fundamental equations will be presented here.

Helix antennas of at least 3 turns will have close to circular
polarization in the +z direction when the
34 4

circumference C is close to a wavelength: 3 0=y




Impedance, Gain, and Radiation Pattern

The helix antenna is a travelling wave antenna, which means
the current travels along the antenna and the phase varies
continuously.

In addition, the input impedance iIs primarily real and can
be approximated in Ohms by:

C
Z, =140—
A



Impedance, Gain, and Radiation Pattern

The helix antenna functions well for pitch angles (o ) between
12 and 14 degrees.

Typically, the pitch angle is taken as 13 degrees.

The normalized radiation pattern for the E-field components
IS given by:

. INC
sin
- =

E, c E; ccsin —c080———
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Q =kS(cos@—1)—n(2+1/N)



Impedance, Gain, and Radiation Pattern

For circular polarization, the orthogonal components of the
E-field must be 90 degrees out of phase.

This occurs In directions near the axis (z-axis in Figure 1)
of the helix. The axial ratio for helix antennas decreases
as the number of loops N Is added, and can be approximated

by:




Impedance, Gain, and Radiation Pattern

The axial ratio is the ratio of orthogonal components of an
E-field. A circularly polarized field is made up of two
orthogonal E-field components of equal amplitude

(and 90 degrees out of phase).

Because the components are equal magnitude, the
axial ratio is 1 (or O dB).



Impedance, Gain, and Radiation Pattern

The gain of the helix antenna can be approximated by:

9 .| “
- 6.2C°N§S  6.2C°NSf°

V3 &

In the above, c Is the speed of light.

For an N=10 turn helix, that has a 0.5 meter
Circumference as above, and pitch angle of 13
degrees

(giving S=0.13 meters), the gain is 8.3 (9.2 dB).



Impedance, Gain, and Radiation Pattern

O

In the figure :

For the same example helix antenna, the pattern is shown
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Impedance, Gain, and Radiation Pattern

O

The Half-Power Beamwidth for helical antennas can be
approximated (in degrees) by:

654
=
A

The Beamwidth between nulls Is approximately:

HPBW =

11513
(VNS

FNBW (degrees) ~




O
The End

Any Question ?
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