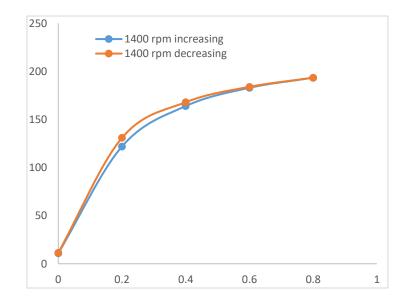


THE HASHMITE UNIVERSITY ELECTRICAL ENGINEERING DEPARTMENT ELECTRICAL MACHINES LAP

Lab Sheet Separately Excited DC-Generator.

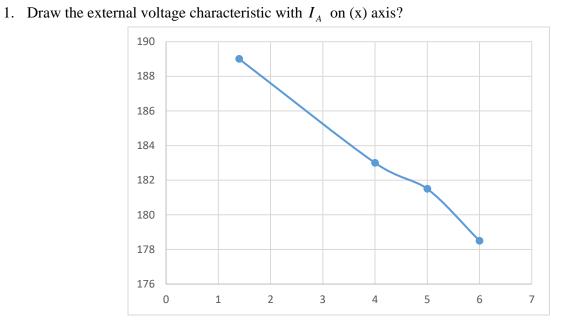

Group number:	Students ID:	
Moslem Naji Nayef Othman	1733045	

DC-Separately Excited Generator

The no-load characteristic

Table (6-7)					
1400rpm					
Increasing		Decreasing			
E_A (V)	I_F (A)	E_A (V)	I_F (A)		
11	0	11.5	0		
122	0.2	131	0.2		
164	0.4	168	0.4		
183	0.6	184	0.6		
193.5	0.8	193.5	0.8		

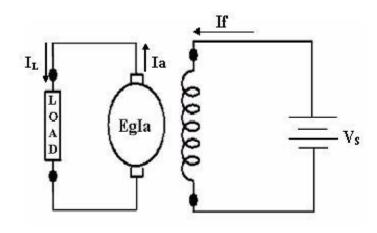
1. Draw the no load characteristic for increasing and decreasing I_F on (x) axis at 1400 on the same graph?



2. Why does the no load characteristic differ for increasing and decreasing excitation current? Because of the Hysteresis loss occurred in the armature current (Ia) of the DC machine

The load characteristic

Table (6-9)				
I_F (A)	N(rpm)	<i>I</i> _{<i>A</i>} (A)	$V_{T}(V)$	
0.8	1400	1.4	189	
0.8	1400	4	183	
0.8	1400	5	181.5	
0.8	1400	6	178.5	


Г

Why does V_T increase with decrease I_A ?
 Because of the drop voltage over the internal resistance of the armature current will decrease, so (Vt) will increase since Vt=Ea-Ia*Ra and (Ea is constant)

Conclusions:

- 1. In a separately-excited dc generator, the terminal voltage can be controlled by changing the internal generated voltage of the machine.
- 2. When the load supplied by the generator is increased, I_L (and therefore I_A) increases.
- 3. The DC voltage is obtained from this generator by means of "commutation."

