The Hashemite University Faculty Of Engineering Mechanical Engineering Department

Name: Mohammed Nedal

ID: 1832971

Creep Test

Specimen specifications:- made of Lead. –Dimensions :(2*5mm –Section), 20mm Length. - Applied mass: 1.5 Kg. - Ambient temperature: 14°C.

Time Minutes	Dial Gauge Extension mm (Ext.1)			
15	4.90			
30	5.17			
45	5.27			
60	5.36			
75	5.39			
90	5.40			
105	5.48			
120	5.52			
135	5.56			
150	5.58			
165	5.62			
180	5.64			
240	5.74			
300	5.85			
360	5.95			
420	6.11			
480	6.18			
540	6.27			
600	6.45			
660	6.60			
690	6.71			
720	6.86			
735	6.92			
750	6.94			
765	7.01			
780	7.15			
795	7.10			

- Plot Strain against Time(s), the slope of the curve at the secondary region is the creep rate *έ*.
- Find the time required for each stage.

- Calculate the constant B.
- Discuss the advantages that can be obtained from the plot.
- State 2 applications where the creep test is essential in elements and members design.

			Dial Gauge	strain
		Dial Gauge	Extension	
Time(s)		Extension mm	mm	
	Time Minutes	(Ext.1)	(Ext.2)	
900	15	4.90	2.45	0.1225
1800			2.585	0.12935
	30	5.17		
2700			2.635	0.13174
	45	5.27		
3600			2.68	0.133
	60	5.36		
4500			2.695	0.1347
	75	5.39		
5400			2.7	0.135
	90	5.40		
6300			2.74	0.137
	105	5.48		
7200			2.76	0.138
	120	5.52		
8100			2.78	0.139
	135	5.56		
9000			2.79	0.1395
	150	5.58	_	0.2000
9900			2.81	0.1405
	165	5.62		012100
10800			2.82	0.141
	180	5.64		•
14400			2.87	0.1435
	240	5.74		012.000
18000			2.925	0.14625
	300	5.85		0121020
21600			2.975	0.14875
	360	5.95		0.14075
25200			3.055	0,15275
	420	6.11		5.152,5
28800	-		3.09	0 1545
	480	6.18		0.1040
32400		-	3.135	0.15675
	540	6.27	0.100	0.13075
36000			3.225	0 16125
	600	6.45	0	0.10125
39600			2 2	0 165
	660	6.60		0.105

The Hashemite University Faculty Of Engineering Mechanical Engineering Department

Strength Of Materials Lab

41400			3.355	0.16775
	690	6.71		
43200			3.43	0.1715
	720	6.86		
44100			3.46	0.173
	735	6.92		
45000			3.47	0.1735
	750	6.94		
45900			3.505	0.17525
	765	7.01		
46800			3.575	0.17875
	780	7.15		
47700			3.55	0.1775
	795	7.10		

solution:

Ext(2)=Ext(1)/2 =4.90/2=2.6 Time(s)=time(min)*60 =15*60 =900

Strain =Ext(2)/2* length =2.45/20=0.1225

Plot Strain against Time(s), the slope of the curve at the secondary region is the creep rate *έ*.

Creep rate έ.

slope=(1,6125-1,7150/(18000-28800)=4,04895*10^-5

Find the time required for each stage.

Time required for the primary creep=(0-1500) Time required for the secondary creep=(1500-3500) Time required for the tertiary creep=(3500-47700)

- Calculate the constant B.

محرمونالا - تحدامية - سلمان /1832971 P = C+ 273 14 + 273 = 287 B = 8.31 X = 0.85 E = - 12 0×10 $F = \frac{9}{A} = \frac{216.2124}{10} = \boxed{21.62}$ $F = (2 - 84 + 8 \times 2.4) + 4.9 = \boxed{216.2124}$ A = 2*5=10 = 5 slope = -> 4.04895*6 2 = Bre. ekr $B = \frac{\zeta}{e^{q_{c}} \cdot e^{-e/RT}} = \frac{4.04395 \times 10^{-5}}{e^{(q_{c}-6)/2} \cdot (q_{c}-q_{c})}$ = (18.31 + 207) REDMI NOTE 95 4895 500 = 6.043 # 6

- Discuss the advantages that can be obtained from the plot.
- 1. to find the time of the material to fracture .

The Hashemite University Faculty Of Engineering Mechanical Engineering Department

- 2. to find the strain
- 3. to find the secondary, primary ,tertiary.

The Hashemite University

Strength Of Materials Lab

Faculty Of EngineeringMechanical Engineering Department4. the property of creep in metals

- State 2 applications where the creep test is essential in elements and members design.

- 1.in the bridges
- 2.in the buildings
- 3.in cars
- 4.gas turbine engines