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Tensile Test  

Tensile test determines the strength of the material when subjected 

to a simple stretching operation. Typically, standard dimension test 

samples are pulled slowly and at uniform rate in a testing machine 

while the strain ( the elongation of the sample) is defined as: 

 

 

 

 

 

and the stress  ( the applied force divided by the original cross-

sectional area)  is defined as: 
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Ductility and Brittleness 
•Ductility:  presence of significant plastic region 

•Brittleness:  no plastic region before failure 

Necking of ductile material under tensile load 

Engineering stress-strain curves 

Ductile Material 
Brittle Material 



True stress-strain curve 
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Substitution of the current  area into the equation gives a larger stress (true stress) 

than the engineering stress. Note that engineering stress uses the initial area, 

regardless of the change in diameter during the tensile test. 



Tensile Test Stress Strain Diagram 
The applied stress versus the strain or elongation of the specimen  

shows the initial elastic response of the material, followed by 

yielding, plastic  deformation and finally necking and failure. 

Several measurements are taken  from the plot, called the 

Engineering Stress-Strain Diagram. These include:  

 

Modulus of elasticity  

Yield strength 

Tensile strength 

Modulus of resilience 

Failure stress  

Ductility  

Toughness 
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Modulus of elasticity - the initial slope of the curve, related 

directly to the strength of the atomic bonds.  



Yield strength, usually defined as the point at which a 

consistent and measureable amount of permanent strain 

remains in the specimen.  



0.2 %  Offset Yield StrengthOffset Yield Strength  

 

Defining the yield stress as the point separating elastic 

from plastic deformation is easier than determining that 

point. The elastic portion of the curve is not perfectly 

linear, and microscopic amounts of deformation can occur. 

As a matter of practical convenience, the yield strength is 

determined by constructing a line parallel to the initial 

portion of the stress-strain curve but offset by 0.2% from 

the origin. The intersection of this line and the measured 

stress-strain line is used as an approximation of the 

material's yield strength, called the 0.2% offset yield. 

 

 



0.2 % Offset Yield Strength 



 

  Tensile strength - the maximum stress applied to the specimen.  



Modulus of resilience - the area under the linear part of the 

curve, measuring the stored elastic energy.  



 

  Failure stress - the stress applied to the specimen at failure 

(usually less than the maximum tensile strength because 

necking reduces the cross-sectional area) 



Ductility - the total elongation of the specimen due to plastic 

deformation, neglecting the elastic stretching (the broken 

ends snap back and separate after failure).  



Ductility 

% Elongation: 

% elongation is a measure of ductility, which is given by: 

% elongation =100 * (Lf - Lo)/ Lo 

where, 

Lo = Initial length 

Lf  = Final Length 

Ductility 

% Reduction in Area: 

%  reduction in area is a measure of ductility, which is given by: 

 

% reduction in area =100 * (Ao - Af)/ Ao 

 

where, 

Ao = Initial arae 

Af  = Final area 



Toughness - the total area under the curve, which measures the 

energy absorbed by the specimen in the process of breaking. 



This is an Instron tensile-test machine. The specimen to be 

tested is clamped at its two ends by two grips. In the current 

setting, the upper grip is fixed although its vertical position 

can  be adjusted so as to accommodate specimens of 

different sizes. The lower grip is driven by a powerful 

hydraulic actuator. Once the specimen has been attached to 

the grips, the  vertical movement of the lower grip  

generates the desired loading on the specimen.  

Tensile Test Equipment 



In a uniaxial tension test, the particular deformation of 

the specimen which is of greatest interest is its elongation. 

The Instron machine automatically measures the distance 

between the two grips, and if the specimen is uniform, this 

would be its elongation. The elongation can be measured 

by a device called extensometer. The extensometer is 

attached at two points to the central uniform part of the 

specimen, and the extensometer continually measures the 

length of this segment as the test proceeds. This 

transducer is very sensitive. Care must be taken to avoid 

damaging the transducer when the specimen breaks.  



Electronic Extensometer 



The mechanical properties of a material are obtained by  

subjecting a specimen to prescribed loads and then 

measuring the resulting deformation. Usually, the test is 

carried out on a special machine that is specifically designed 

for this purpose. The measurements of the load and of the 

deformation are carried out by transducers in conjunction 

with a computer data acquisition system.  



Tensile Test Machine (Instron) 
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Comparison of Breaks. 

Steel              

neck down     

break 

Aluminum 

45 degree 

break 

Cast iron  

straight break 



SAE1045 Hot 

rolled steel 

Characteristics of Tensile Test Breaks 

for  various steel samples 

SAE1090 Hot 

rolled steel 

SAE1095 

Spheroidized steel 



Carbon Steel 

ASTM A36 

6016 Aluminum 

SAE1018Cold 

Drawn steel 



What happened ? 
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Preventing Failure 
In service, under loading (mechanical, thermal) 

• How to assure performance, safety and durability? 

– Avoid excess deformation that may deteriorate the 
functionality 

– Avoid cracking that may propagate to complete fracture 

• The study of deformation and fracture in materials 

 the response of materials to mechanical loads or 
deformation.  
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Deformation and Failure 

• Deformation  

– Time independent 

• Elastic  

• Plastic 

– Time dependent 

• Creep 

• Fracture 

– Static loading 

• Brittle: rapid run of cracks through a stressed material 

• Ductile 

• Environmental (combination of stress and chemical effects) 

– High-strength steel may crack in the presence of hydrogen gas 

– Creep rupture (creep deformation proceeding to the point of 
separation) 

 

– Fatigue/cycling loading 

• High cycle/low cycle 

• Fatigue crack growth 

• Corrosion fatigue 
37 



Types of Failure 

• Fracture 
– Cracking to the extent that component to be separated into pieces 
– Steps in fracture: 

 
• crack formation 
• crack propagation 

 
• Depending on the ability of material to undergo plastic deformation before the 

fracture two fracture modes can be defined - ductile or brittle 
 
– Ductile fracture - most metals (not too cold): 

• Extensive plastic deformation ahead of crack 
• Crack is “stable”: resists further extension unless applied stress is 

increased 
 

– Brittle fracture - ceramics, ice, cold metals: 
• Relatively little plastic deformation 
• Crack is “unstable”: propagates rapidly without increase in applied 

stress 
38 



Fracture of Materials 

39 

Crack formation mechanisms 

 

Metals typically form cracks by the accumulation of dislocations at 

a crack nucleation site (grain boundaries, precipitate interface, free 

surface, etc.) 

 

Ceramics, semiconductors, some plastics (hard and brittle, eg., 

thermosetting plastics) and intermetallic compounds form cracks by 

planar defects (grain boundaries, two-phase interfaces, etc.) 

 

Soft plastics crack by the sliding of the long polymer chairs across 

each other by breaking the Van der Wall bonds. 



Fracture of Materials 

40 

Fracture can be classified according to the path of crack propagation: 

 

•Transgranular – the crack travels directly through the grains of the 

material (sometimes called cleavage because it occurs along certain 

crystallographic planes).  It can be ductile or brittle. 

 

•Intergranular – the crack propagates along grain boundaries. This is 

primarily brittle fracture. 

 

A variety of Loading Conditions can lead to fracture: 

•Static Overloading ( > yield) and ( > Tensile Strength) 

•Dynamic Overloading (impacting) 

•Cyclic loading (fatigue) 

•Loaded at elevated temperatures (creep) 

•Loading at cryogenic temperatures (ductile to brittle transition) 

•Loading in a corrosive environment (stress corrosion) 



Brittle vs. Ductile Fracture 

• Ductile materials - extensive plastic deformation and energy 
absorption (“toughness”) before fracture 

• Brittle materials - little plastic deformation and low energy 
absorption before fracture 
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Brittle vs. Ductile Fracture 

42 



Ductile Fracture 
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Ductile Fracture 
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Brittle Fracture 
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Bending of Beams 

2.4  Deflections in Beams 

2.2  Stresses in Beams 

2.1  Revision – Bending Moments 
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2.4  Beam Deflection 

2.4.1  Moment-Curvature Equation 

Recall: THE ENGINEERING BEAM THEORY 
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From the Engineering Beam Theory: 
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Curvature Slope Deflection 

Since, xz
z

M
EIdx

yd















1
2

2

Curvature 

1

1
CdxM

EIdx

dy
xz

z














  Slope 

21

1
CdxCdxdxM

EI
y xz

z














  

Deflection 

Where C1 and C2 are found using the boundary conditions. 
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This value of x is then substituted into the above equation of the 

deflected shape in order to obtain vMax. 

To find vMax: 
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2.4.3  Summary 

After considering stress caused by bending, we have now looked at the 

deflections generated. Keep in mind the relationships between 

Curvature, Slope, and Deflection, and understand what they are: 

• Curvature 

• Slope 

• Deflection 
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Wheatstone Bridge 
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Full Bridge Strain Gauge 
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Bending Beam Load Cell 
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Strain Gauge 
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Fatigue Strength and Endurance Limit 
 Most machine parts have time varying loads that 

 produce time varying stresses 

 Materials behave differently under this cyclic loading 

 (Fatigue loads) – need to know fatigue strength 

 Each point on the surface goes from maximum  

tension to 0 stress to maximum compression 

 Run the test until failure 

 Count the cycles and evaluate the stress level 

 Repeat the test for different loads (stress levels) 

 Generate the stress-life diagram 

 Fatigue strength for  0 cycle is the same as Sut 

 The strength the decreases with increasing number of cycles 

 The curve levels off at 10
6
 cycles for steel and some other metals  

 (this is the endurance limit, below which will give infinite life) 

 

Fatigue Test 
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Fatigue is a Damage accumulated through the 
application of repeated stress cycles 

 
Variable amplitude loadings cause different levels of 

fatigue 
 
Fatigue is cumulative through the life of an engineering 

element 
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Factors Affecting Fatigue Life 

Loading Conditions 

– Type of stress 

– Stress amplitude, mean value 

Condition of Specimen/Structural Member 

– Stress concentrations  

– Surface finish 

Material 

– Thermal history (e.g. grain size in metals) 

Environmental conditions 

– Temperature 

– Corrosion effects 
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Fatigue-Life Methods 

 Fatigue Regimes 

Based on the number of cycles (of stress/strain) that the part must 

undergo in its lifetime, we consider: 

 Low-Cycle Fatigue (LCF) 

1  N  103 

 High-Cycle Fatigue (HCF) 

N > 103 

Stress-Life Approach 
Stress-based approach is most useful for HCF. 

- Works best when stress cycles are regular. 

- Seek the fatigue strength and endurance limit. 

- Perform design based on factor of safety applied to the fatigue 

strength 
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Strain-Life Approach 
-Strain-based approach is most useful for describing the crack      

   initiation stage. 

- Most often applied to LCF. 

Linear Elastic Fracture Mechanics (LEFM) 
- LEFM provides the best model for crack propagation stage. 

-  Most often applied to LCF. 

- Especially useful for predicting life of parts with known cracks. 
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The Stress-Life Method 
Fatigue Strength 

The Fatigue Strength, Sf (N), is the stress level that a material can endure for N 

cycles. 

The stress level at which the material can withstand an infinite number of cycles is 

call the Endurance Limit. 

The Endurance Limit is 

observed as a horizontal 

line on the S-N curve. 
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Endurance Limit 



 Definitions 
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Introduction 
Buckling is a mode of failure generally  resulting from 

structural instability due to compressive action on the 

structural member or element involved. 

Examples 
• Overloaded metal building columns. 

• Compressive members in bridges. 

• Roof trusses. 

• Hull of submarine. 

• Metal skin on aircraft fuselages or wings with excessive torsional 

and/or compressive loading. 

• Any thin-walled torque tube. 

• The thin web of an I-beam with excessive shear load 

• A thin flange of an I-beam subjected to excessive compressive 

bending effects. 

Long Column with Central Loading 
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The Nature of Buckling 
– The failure (buckling) load bears no unique relationship to the    

    stress and deformation at failure. 

– Our usual approach of deriving a load stress and load-deformation  

   relations cannot be used here, instead, the approach to find an  

    expression for the buckling load Pcr. 

– Buckling is unique from our other structural-element 

considerations in that it results from a  state of unstable equilibrium. 

– For example, buckling of a long column is not caused by failure of 

the material of which the column is composed, but by determination 

of what was a stable state of equilibrium to an unstable one. 

Definition 

“Buckling can be defined as the sudden large deformation 

of structure due to a slight increase of an existing load 

under which the structure had exhibited little, if any, 

deformation before the load was increased.” 
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Critical Buckling Load 

– The purpose of this analysis is to 

determine the minimum axial 

compressive load for which a column 

will experience lateral deflection. 

Governing Differential Equation: 

• Consider a buckled simply-supported 

column of length L under an external 

axial compression force P. The 

transverse displacement of the buckled 

column is represented by y. 
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Recall the relationship between the moment M and the transverse 

displacement y for the elastic curve, 

Buckling Solution: 
• The governing equation is a second order homogeneous ordinary 

differential equation with constant coefficients and can be solved by 

the method of characteristic equations. The solution is found to be, 
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• The lowest load that causes buckling is called critical load 

(n = 1). 
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Thin Walled Pressure Vessels 
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Consider a cylindrical vessel section of: 

L = Length 

D = Internal diameter 

t = Wall thickness 

p = fluid pressure inside the vessel.   
81 

Figure 6-1. Thin Walled Pressure Vessels 



By examining the free-body diagram of the lower half of 
the cylinder (Fig. 6-1b), one sees that the summation of 
forces acting normal to the mid-plane is given by : 

  

 [SF = 0 ]    F  =  pDL  =  2P   

82 

(A6.1) 

Figure 6-1b 



or        

 

The tangential or “hoop” stress, t, acting on the wall 
thickness is then found to be: 

 

      

 

or 

 

 

where r is the radius of the vessel. 
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pDL
P  (A6.2) 

(A6.3) 
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P
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

t

pr
t  (A6.4) 



For the case of the thin-walled cylinders, where r/t  10, 
Eq. 6-4 describes the hoop stress at all locations through 
the wall thickness.  The vessel can be considered as thick 
walled cylinder. 
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• Fig. 6-1c shows a free-body diagram to account for 
cylindrical stresses in the longitudinal direction.  The 
sum of forces acting along the axis of the cylinder is: 
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P
pD


4

2 (A6.5) 

Figure 6-1c 



• The cross-sectional area of the cylinder wall is 
characterized by the product of its wall thickness and 
the mean circumference. 

     i.e.,  

 

• For the thin-wall pressure vessels where D >> t, the 
cylindrical cross-section area may be approximated by 
Dt. 

• Therefore, the longitudinal stress in the cylinder is 
given by:   
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• By comparing Eq 6-3 and 6-6, one finds that the 
tangential or hoop stress is twice that in the 
longitudinal direction.   

• Therefore, thin vessel failure is likely to occur along 
a longitudinal plane oriented normal to the 
transverse or hoop stress direction. 

87 



Generalized Hooke’s Law 
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• A complete description of 
the general state of stress 
at a point consists of:  

– normal stresses in 
three directions, x (or 
11), y (or 22) and z 
(or 33),  

– shear stresses on three 
planes, x (or 12 ...),  
y (or 23 …..), and z 
(or 31 …...).  
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Figure 6-1.   



• The stress, x in the x-direction produces 3 strains: 

– longitudinal strain (extension) along the x-axis of: 

 

 

– transverse strains (contraction) along the y and z -axes, 
which are related to the Poisson’s ratio: 
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E
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
  (6.7) 

E
x

xzy


  (6.8) 



• Absolute values of  are used in calculations. 

 

• The value of  is about: 

– 0.25 for a perfectly isotropic elastic materials. 

– 0.33 for most metals. 
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Properties of   



• In order to determine the total strain produced along a 
particular direction, we can apply the principle of 
superposition. 

• For Example, the resultant strain along the x-axis, 
comes from the strain contribution due to the 

application of x, y and z. 

–  x causes:               in the x-direction  
 

– y causes:             in the x-direction  
 

– z causes:                in the x-direction  

– Applying the principle of superposition (x-axis): 
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_____________________________________________________ 

Stress               Strain in the              Strain in the           Strain in the  

                         x direction                y direction              z direction 

 

z

y

x







E

v

E

v

E

z
x

y

x

x
x
















E

v

E

E

v

z
y

y

y

x
y
















E

E

v

E

v

z
z

y

z

x
z
















The situation can be summarized by the following table: 

 

Table 6 -1 Strain Contribution Due to Stresses 
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By superposition of the components of strain in the x, y, and z  

directions, the strain along each axis can be written as: 

  zyxx v
E

 
1

  xzyy v
E

 
1

  yxzz v
E

 
1

(6.9) 
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The shearing stresses acting on the unit cube produce shearing  

strains. 

The proportionality constant G is the modulus of elasticity in  

shear, or the modulus of rigidity.  Values of G are usually  

determined from a torsion test.  See Table 6-2. 

xyxy G 

yzyz G 

xzxz G 

(6.10) 
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Table 6-2 Typical Room-Temperature values of elastic constants for 

isotropic materials. 

_______________________________________________________ 

                                     Modulus of             Shear                 

      Elasticity,               Modulus Poisson’s 

Material              10^-6 psi (GPa)      10^-6 psi (GPa)   ratio,  

_______________________________________________________ 

Aluminum alloys            10.5(72.4)              4.0(27.5)             0.31 

Copper                            16.0(110)               6.0(41.4)             0.33 

Steel(plain carbon 

and low-alloy)                 29.0(200)  11.0(75.8)           0.33 

Stainless Steel      28.0(193)   9.5(65.6)     0.28 

Titanium       17.0(117)   6.5(44.8)     0.31 

Tungsten       58.0(400)  22.8(157)            0.27 



The volume strain , or cubical dilation, is the change in 
volume per unit volume. 

 

 Consider a rectangular parallelepiped with edges dx, dy 
and dz.   

The volume in the strained condition is: 

   (1 + x)(1 + y)(1 + z) dx dy dz 

The dilation (or volume strain)  is given as: 
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Aanother elastic constant is the bulk modulus or the volumetric 

 modulus of elasticity K.  The bulk modulus is the ratio of the  

hydrostatic pressure to the dilation that it produces. 

Where -p is the hydrostatic pressure, and  is the compressibility. 

  

Many useful relationships may be derived between the elastic  

constants E, G, v, K.  For example, if we add up the three equations  

(6.9). 



 1










p
K m

 zyxzyx
E
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 




21

(6.11) 
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Another important relationship is the expression relating E, G, and  

v.  This equation is usually developed in a first course in strength  

of materials. 

m
E

v
3

21


 v

E
K m

213 






or 

 v

E
G




12

(6.12) 

(6.13) 



• Equations 6-9 and 6-10 can be expressed in tensor 
notation as one equation: 

 

 

Example, if i = j = x,  
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If i = x and j = y, 

 

 

 

 Recall Eq. 6-13, and the shear strain relation between  
and : 

 

 

 

 Therefore,  
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Special Cases 
• Plane Stress (3 = 0): This exists typically in: 

– a thin sheet loaded in the plane of the sheet, or 

– a thin wall tube loaded by internal pressure where there 
is no stress normal to a free surface. 

 

– Recall Eqs. 6-9, and set z = 3 =  0.  

Therefore,  
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From Eqs. 6-9a and 6-9b, we have, 

 

 

 

 

Therefore, 

 

 

Then, 
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• Plane Strain (3 = 0): This occurs typically when 

– One dimension is much greater than the other two 

Examples are a long rod or a cylinder with restrained ends. 

– Recall Eqs. 6-9,  

 

 

 

 

 This shows that a stress exists along direction-3 (z-axis) 
even though the strain is zero. 
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• Substitute Eqs. 6-18 and 6-19 into Eq. 6-9, we have 
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Example 1 

 A steel specimen is subjected to elastic stresses 
represented by the matrix 

 

 

 

 

 

Calculate the corresponding strains. 
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Solution 
Invoke Hooke’s Law, Eqs. 6-9 and 6-10.  Use the values of E, 
G and  for steel in Table 6-2 

 

 

 

 

 

 

 

 

 

Substitute values of E, G and  into the above equations.  
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Example 2 

A sample of material subjected to a compressive stress z is 
confined so that it cannot deform in the y-dir., but 
deformation is permitted in the x-dir.  Assume that the 
material is isotropic and exhibits linear-elastic behavior.  
Determine the following in terms of z and the elastic 
constant of the material: 

(a)  The stress that develops in the y-dir. 

(b)  The strain in the z-dir. 

(c)  The strain in the x-dir. 

(d)  The stiffness E’ = z / z in the z-dir.  Is this apparent 
modulus equal to the elastic modulus E from the uniaxial 

test on the material?  Why or why not?  
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Solution 

Invoke Hooke’s Law, Eq. 6-9  

The situation posed requires that - y  =  0,  x  =  0. 

We also treat z as a known quantity. 

 

(a) The stress in the y-direction is obtained as: 
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(b) The stress in the z-direction is obtained by substituting y 
into Eq. 6-9. 

 

 

 

(c)  The strain in the x-direction is given by Eq. 6-9, with y 
from above substituted.  
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(d)  The apparent stiffness in the z-direction is obtained 
immediately from the equation for z. 

 

 

 

 

Obviously, this value is larger than the actual E 

 

• The value of E is the ratio of stress to strain only for the 
uniaxial deformation. 

• For any other case, such ratios are determined by the 
behavior of the material according to the three-
dimensional form of Hooke’s Law.  
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Example 3 

 Consider a plate under uniaxial tension that is 
prevented from contracting in the transverse 
direction.  Find the effective modulus along the 
loading direction under this condition of plane strain. 
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Solution 
Let,   =  Poisson’s ratio 

 E = Young’s Modulus,  

 Loading         Direction 1 

 Transverse        Direction 2 

 No stress normal to the free surface,          3  =  0 

Although the applied stress is uniaxial, the constraint on 
contraction in direction 2 results in a stress in direction 2. 

 

The strain in direction 2 can be written in terms of Hooke’s 
Law (ref. Eq. 6-9) as 
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In direction 1, we can write the strain as: 

 

 

 

 

Hence the plane strain modulus in direction 1 is given as 

 

 

 

If we take  = 0.33, then the plane strain modulus  

     E’ = 1.12E  
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Example (4) 

A cylinder pressure vessel 10 m long has closed ends, a wall 
thickness of 5 mm, and a diameter at mid-thickness of 3 mm.  
If the vessel is filled with air to a pressure of 2 MPa, how much 
do the length, diameter, and wall thickness change, and in 
each case state whether the change is an increase or a 
decrease.  The vessel is made of a steel having elastic modulus 
E = 200,000 MPa and the Poisson’s ratio  = 0.3.  Neglect any 
effects associated with the details of how the ends are 
attached.  
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Attach a coordinate system to the surface of the pressure vessel as  

shown below, such that the z-axis is normal to the surface. 
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The ratio of radius to thickness, r/t, is such that it is reasonable to  

employ the thinwalled tube assumption, and the resulting stress  

equations A6-1 to A6-6. 

Denoting the pressure as p, we have 

 

 

 

 

 

 

 

The value of         varies from -p on the inside wall to zero on the  

outside, and for a thinwalled tube is everywhere sufficiently small 

that                 can be used.  Substitute these stresses, and the known  

E and v into Hooke’s Law, Eqs.6-9 and 6-10, which gives 
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These strains are related to the changes in length      , circumference     

              , diameter          , and thickness        , as follows: 

 

 

 

 

Substituting the strains from above and the known dimensions gives 

 

 

 

 

Thus, there are small increases in length and diameter, and a tiny 

decrease in the wall thickness. 
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Impact Fracture Testing 
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Fracture behavior depends on many external factors: 

 

•Strain rate 

•Temperature 

•Stress rate 

 

Impact testing is used to ascertain the fracture characteristics of materials at 

a high strain rate and a triaxial stress state. 

 

In an impact test, a notched specimen is fractured by an impact blow, and 

the energy absorbed during the fracture is measured. 

 

There are two types of tests – Charpy impact test and Izod impact test. 



Impact Test: The Charpy Test 

121 

The ability of a material to 

withstand an impact blow is 

referred to as notch toughness.  

The energy absorbed is the 

difference in height between initial 

and final position of the hammer.  

The material fractures at the notch 

and the structure of the cracked 

surface will help indicate whether it 

was a brittle or ductile fracture. 
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In effect, the Charpy test takes the tensile test to completion very 

rapidly. The  impact energy from the Charpy test correlates with the 

area under the total stress-strain curve (toughness)   

Impact Test (Charpy) Data for some of the Alloys 



Impact Test: The Izod Test 
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Generally used for polymers. Izod test is different from 

the Charpy test in terms of the configuration of the 

notched test specimen 
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Impact Test (Izod) Data for various polymers 



Impact Tests: Test conditions 
• The impact data are sensitive to test conditions. Increasingly 

sharp notches can give lower impact-energy values due to the 
stress concentration effect at the notch tip  

  

• The FCC alloys→ generally ductile fracture mode 

 

• The HCP alloys→ generally brittle fracture mode 

 

• Temperature is important 

 

• The BCC alloys→ brittle modes at relatively low temperatures and 
ductile mode at relatively high temperature    
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