

Hashemite University College of Engineering , Department of Mechatronics Artificial Intelligence 110405532, (3 Credit Hours)

Instructor	
Name	Dr. Mohammad Abu mallouh
Email:	mmallouh@hu.edu.jo
Office:	3129
Office hours:	Sunday @ 3:00-5:00pm Also other time can be arranged

Midterm 40			
exam 40	C	Days	Sun+Tue+ Thur
Others: 20	0	Time	10:00-11:00
(Project,		Location	Online MS
HW, quiz) Final 4(•		teams

~ > 1 4/^/^ =				(
Course Number: 110405	т					
Prerequisite:	(110405331)					
Textbook:	Michael Negnevitsky (2005). Artificial Intelligence: A guide to intelligent systems, 2 nd edition. Addison Wesley .					
Course Description (as in the catalog):	Introduction to intelligent systems and their application in modeling and control, basic concepts of fuzzy logic elements, design, tuning and operation, basic concepts of neural network elements, architecture, and training, basic concepts of genetic algorithms.					
Specific Outcomes of Instruction (Course Outcomes):	CLO (1) : Understand history CLO (2): Build and analyze CLO (3): Analyze a neural n CLO (4): Analyze a hybrid A CLO (5): Understand the bas	a fuzzy logic system. etwork system (a, k) Artificial intelligent sy	stems (a, k))		
References:	• Fausett, Laurene, Fund, Prentice-Hall, 1994.	amentals of neural ne	g applications, Wiley, 2004, Second Edition . tworks : architectures, algorithms, and applicat e: A Modern Approach Prentice Hall, 2003,	ions		
Grading Plan:						
	Midterm exam	(40 Points)	<u>Thursday</u> 8/4/2021 @ 10:00-11:00			
	HW+ Quizzes	(20 Points)	TBD			
	Final Exam:	(40 Points)	Will be announced by the registrar			

Горіс	# Weeks	# Contact hours
1. Introduction (Chapter 1)	1,2	6
2. HW 1		
3. Fuzzy expert systems + (Matlab) (Chapter 2)	3,4,5,6	12
4. Quiz 1		
5. Artificial neural networks + (Matlab) (Chapter 3)	7,8,9,10	12
6. Hybrid intelligent systems + (Matlab) (Chapter 4)	11,12,13	9
7. Basic concepts of genetic algorithms (Chapter 5)	14,15,16	9
Total		48
Course Policy		

Dr. Mohammed Abu mallouh 20/2/2021