

تقدم لجنة ElCoM الاكاديمية

ريبورتات لمختبر : الفيزياء العامة العملية

Purpose: To investigate Newton's second law: How a given force accelerates different masses and how different forces accelerate a given mass.

Part (I): Acceleration and added mass with constant driving force.

Fill in table (1) with data from your experiment. Make a graph for m_a versus 1/a. Then answer the following questions.

a) What is your conclusion about the way in which the acceleration depends on the magnitude of the added mass ? When I increase magnitude of adding mass , the acceleration is decreased.

Glider's mass $= 0.1$ kg						
Air	Added	Acceleration a (m/s ²)	1/a (m/s ²) ⁻¹			
pressure	mass					
#	$\mathbf{m}_{\mathbf{a}}\left(\mathrm{kg}\right)$					
4	0	3.17	0.31545741			
5	0.020	2.91	0.34364261			
6	0.050	2.45	0.40816326			
7	0.100	1.92	0.52083			

b) Find the slope of your (m_a-1/a) graph.

Slope $=\frac{\Delta y}{\Delta x} = \frac{0.1-0}{0.52-0.315} = 0.4878 \text{ (kg.m/s}^2\text{)}$

What does the slope represent? Driving force $(m_h g)$

c) Determine the value of the glider mass(M) from the (m_a-1/a) graph. And compare it with the real value.

From equation (1) (موجودة على الرسمة الأولى), if $m_a = 0$, then :

$$M = \frac{-(M_a)(a)}{g} + 0.148 - \frac{0.148(a)}{g}$$
$$= 0 + 0.148 - \frac{0.148(3.17)}{9.8} = 0.10012653$$
Percent error = $\frac{|0.1 - 0.10012653|}{0.1} \times 100\% = 0.12653\%$

Part (II): Acceleration and driving force with constant total mass.

Fill in table (2) with data from your experiment. Then, draw a graph for $\mathbf{m}_h \mathbf{g}$ versus **a**. a) What is your conclusion about the way in which the $Air \quad \mathbf{m}_a \quad \mathbf{m}_h \quad \mathbf{m}_h \mathbf{g}$

acceleration depends on the magnitude of the hanging mass?

When I increase the magnitude of hanging mass, the acceleration increase (directly).

Air	ma	m _h	m _h g	$a (cm/s^2)$			
pressure	(g)	(g)	(dyne)	a (cm/s)			
7	100	50	49000	192			
6	50	100	98000	398.2			
5	20	130	127400	501.6			
4	0	150	147000	587.3			

b) Find the **slope** of your $m_h g$ versus a graph. What does the slope represent?

Slope $=\frac{\Delta y}{\Delta x} = \frac{1.47 \times 10^5 - 0}{587.3 - 0} = 250.2$ (dyne.s²/cm), and represent (m_h+m_g+m_a).

c) Do you expect that the $m_h g$ versus a curve should pass through the origin? Explain your answer.

Yes, because when $m_h = 0$, a = 0, from equation (2), then the point should be (0,0).

