تقدم: لجنة ElCoM الاكاديمية

ريبورتات لمختبر :

الفـززياء العامة العماية

ID\#: \qquad Section: 14

In figure M: mass of glider
 \mathbf{m}_{a} : added mass on glider \mathbf{m}_{h} : hanging mass

The theoretical equation of motion for this system is:

$$
\mathbf{m}_{\mathrm{h}} \mathbf{g}=\left(\mathbf{M}+\mathbf{m}_{\mathrm{a}}+\mathbf{m}_{\mathrm{h}}\right) \mathbf{a}
$$

Purpose: To investigate Newton's second law: How a given force accelerates different masses and how different forces accelerate a given mass.

Part (I): Acceleration and added mass with constant driving force.

Fill in table (1) with data from your experiment. Make a graph for m_{a} versus $1 / a$. Then answer the following questions.
a) What is your conclusion about the way in which the acceleration depends on the magnitude of the added mass ? When I increase magnitude of adding mass , the acceleration is decreased.
b) Find the slope of your $\left(\mathbf{m}_{\mathbf{a}}-\mathbf{1} / \mathbf{a}\right)$ graph.

Slope $=\frac{\Delta y}{\Delta x}=\frac{0.1-0}{0.52-0.315}=0.4878\left(\mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}\right)$

Glider's mass $=0.1 \mathrm{~kg}$			
Air pressure $\#$	Added mass $\mathbf{m}_{\mathbf{a}}(\mathrm{kg})$	Acceleration $\mathbf{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$\mathbf{1 / a}$ $\left(\mathrm{m} / \mathrm{s}^{2}\right)^{-1}$
4	0	3.17	0.31545741
5	0.020	2.91	0.34364261
6	0.050	2.45	0.40816326
7	0.100	1.92	0.52083

What does the slope represent? Driving force $\left(\mathrm{m}_{\mathrm{h}} \mathrm{g}\right)$
c) Determine the value of the glider $\operatorname{mass}(\mathbf{M})$ from the $\left(\mathbf{m}_{\mathbf{a}}-\mathbf{1} / \mathbf{a}\right)$ graph. And compare it with the real value.

From equation (1) (موجودة على الرسمة الأولى) , if $m_{a}=0$, then :
$M=\frac{-\left(M_{a}\right)(a)}{g}+0.148-\frac{0.148(a)}{g}$
$=0+0.148-\frac{0.148(3.17)}{9.8}=\mathbf{0 . 1 0 0 1 2 6 5 3}$
Percent error $=\frac{|0.1-0.10012653|}{0.1} \times 100 \%=0.12653 \%$

Part (II): Acceleration and driving force with constant total mass.

Fill in table (2) with data from your experiment. Then, draw a graph for $m_{h} g$ versus a.
a) What is your conclusion about the way in which the acceleration depends on the magnitude of the hanging mass?

When I increase the magnitude of hanging mass, the acceleration increase (directly) .

Air pressure	$\mathbf{m}_{\mathbf{a}}$ (g)	$\mathbf{m}_{\mathbf{h}}$ (g)	$\mathbf{m}_{\mathrm{h}} \mathrm{g}$ $($ dyne $)$	$\mathbf{a}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
7	100	50	49000	192
6	50	100	98000	398.2
5	20	130	127400	501.6
4	0	150	147000	587.3

b) Find the slope of your $\boldsymbol{m}_{\boldsymbol{h}} \boldsymbol{g}$ versus \boldsymbol{a} graph. What does the slope represent?

Slope $=\frac{\Delta y}{\Delta x}=\frac{1.47 \times 10^{5}-0}{587.3-0}=250.2\left(\right.$ dyne. $\left.\mathrm{s}^{2} / \mathrm{cm}\right)$, and represent $\left(\mathrm{m}_{\mathrm{h}}+\mathrm{m}_{\mathrm{g}}+\mathrm{m}_{\mathrm{a}}\right)$.
c) Do you expect that the $\boldsymbol{m}_{\boldsymbol{h}} \boldsymbol{g}$ versus \boldsymbol{a} curve should pass through the origin? Explain your answer. Yes, because when $m_{h}=0, a=0$, from equation (2), then the point should be $(0,0)$.

