

تقدم لجنة ElCoM الاكاديمية

ريبورتات لمختبر : الفيزياء العامة العملية

1 Use the given ticker tape for the data in your report

Kinematics of Rectilinear Motion

Name: Mohammed H Abadi						Instructor: lyaad.					
ID#: 2034513						Section: 14					
Purpose: To acceleration a	•	0		your	hand,	by determini	ing how the	e distance,	velocity and		
• •	••	•	•	•	••	• ••	•	•	·Ź		

A. Fill in table (1) with data from your tape. Then, draw a graph of x versus t. B. Use data from table (1) to fill table (2). Then, draw a graph of \bar{v} versus t. Then, draw the curve of the instantaneous velocity. {Assume that the instantaneous velocity at the interval's mid-point equals the average velocity in that interval, and that the acceleration is constant between each two intervals.}

C. Use data from table (1) to fill in table (3).

Table(1)		Table(2)	Table (3)			
Total time	Total distance		Average velocity	t _{mid} (s)	$\mathbf{v_{mid} \cong \bar{v}}$ (cm/s)	$\bar{\mathbf{a}} = \frac{\Delta \mathbf{v}}{\Delta \mathbf{t}}$ (cm/s^2)	
t (sec)	x (cm)	Time interval (s)		0.05	45		
0.0 0.0			$\bar{\mathbf{v}} = \frac{\Delta \mathbf{x}}{\Delta \mathbf{t}}$			-30	
0.1	4.5		(cm/s)	0.15	42	100	
0.2	8.7	0.0 - 0.1	45	0.25	60	180	
0.3	14.7	0.1 - 0.2	42	0.25		180	
0.4	22.5	0.2 - 0.3	60	0.35	78		
0.5	26.8	0.3 - 0.4	78			-350	
0.3	20.8			0.45	43		
0.6	30.2	0.4 - 0.5	43			-90	
0.7	34.5	0.5 - 0.6	34	0.55	34		
		0.6 - 0.7	34			0	
				0.65	34		

Use (x-t) graph to answer the following questions:

a) Determine <u>one</u> interval in which:

- 1- The velocity is increasing: [0, 0.4] & [0.6, 0.7]
- 2- The velocity is decreasing: [0.4, 0.6]
- 3- The velocity is constant: [0, 0.2]

b) Find the instantaneous velocity at $\mathbf{t} = \mathbf{0.4 s}$ from the **slope** of the tangent of the (**x**-**t**) graph.

$$V_{ins} = \frac{\Delta x}{\Delta t} = \frac{29 - 16}{0.5 - 0.3} = 65 \ cm/s$$

Fill in table (4) below using data from table(1), and then answer the following questions:

c) The **midpoint** for the given intervals is $\mathbf{t}_{mid} = 0.4$ s.

d) As the time interval is shortened, is there any relation between average velocities in **table (4)** and instantaneous velocity at the midpoint? Yes, when (t = 0.4 s.), $V_{(At midpoint)} \approx V_{(5-3)}$

Table (4)					
Average velocity $\bar{\mathbf{v}} = \frac{\Delta \mathbf{x}}{\Delta \mathbf{t}}$					
(cm/s)					
$\bar{v}_{7-1} = \frac{x_7 - x_1}{t_7 - t_1} = 50$					
$\bar{v}_{6-2} = \frac{x_6 - x_2}{t_6 - t_2} = 53.75$					
$\bar{v}_{5-3} = \frac{x_5 - x_3}{t_5 - t_3} = 60.5$					

e) Write down the approximate instantaneous velocity at t_{mid} from table (4).

 $V_{(At midpoint)} = 65 \text{ cm/s}$

f) Compare this result with that you have found in question (b) above?

Use (*v-t*) graph to answer the following questions:

g) Determine <u>one</u> interval in which the acceleration is **positive** : [0.15, 0.35]

h) Find the instantaneous velocity at t = 0.4 sec from the graph. 63 cm/s.

i) And <u>compare</u> it with the result in **question** (b).

$$P.E = \left(\frac{|63 - 65|}{\left(\frac{(66 + 65)}{2}\right)}\right) \times 100\% = 3.125\%$$

j) Calculate the area under the instantaneous velocity in the interval [0.2-0.4] sec.

Now we divide the carve into 2 sections. First section from [0.2 , 0.35] (Trapezoidal) Second section from [0.35 , 0.4] (Trapezoidal) Trapezoidal Area $= \frac{(a + b)}{2} \times c$ Now, I want calculate area.

x = Area for first section + Area for second section

$$x = \left(\frac{(78+42)}{2} \times 0.15\right) + \left(\frac{(78+63)}{2} \times 0.05\right) = 12.525$$

k) What does this area represent? This area represents the distance traveled.

1) <u>Compare</u> it with the distance moved in the interval [0.2-0.4] sec from table (1). From table (1) : distance moved = 22.5 - 8.7 = 13.8 cm.

now we want to calculate P.E.

$$P.E = \left(\frac{|13.8 - 12.525|}{\left(\frac{(13.8 + 12.525)}{2}\right)}\right) \times 100\% = 9.7\%$$

Use Table (3) to answer the following questions:

n) How does the acceleration change from one interval to the other (is it uniform or irregular)? Its irregular.

