تقدم: لجنة ElCoM الاكاديمية

ريبورتات لمختبر :

الفـززياء العامة العماية

Name: Mohammed H Abadi

ID\#: 2034513

Instructor: lyaad.

Section: 14

Purpose: To study irregular motion of your hand, by determining how the distance, velocity and acceleration are changing with time.

A. Fill in table (1) with data from your tape. Then, draw a graph of x versus t.
B. Use data from table (1) to fill table (2). Then, draw a graph of $\overline{\mathbf{v}}$ versus \mathbf{t}.

Then, draw the curve of the instantaneous velocity. \{Assume that the instantaneous velocity at the interval's mid-point equals the average velocity in that interval, and that the acceleration is constant between each two intervals.\}
C. Use data from table (1) to fill in table (3) .

Table(1)

Total time $\mathrm{t}(\mathrm{sec})$	Total distance $\mathrm{x}(\mathrm{cm})$
0.0	0.0
0.1	4.5
0.2	8.7
0.3	14.7
0.4	22.5
0.5	26.8
0.6	30.2
0.7	34.5

Table(2)

Time interval (s)	Average velocity $\overline{\mathbf{v}}=\frac{\Delta \mathbf{x}}{\Delta \mathbf{t}}$ $(\mathrm{cm} / \mathrm{s})$
$0.0-0.1$	45
$0.1-0.2$	42
$0.2-0.3$	60
$0.3-0.4$	78
$0.4-0.5$	43
$0.5-0.6$	34
$0.6-0.7$	34

Table (3)

$\mathbf{t}_{\text {mid }}$ (s)	$\mathbf{v}_{\text {mid }} \cong \overline{\mathrm{v}}$ $(\mathrm{cm} / \mathrm{s})$	$\overline{\mathbf{a}}=\frac{\Delta \mathbf{v}}{\Delta \mathbf{t}}$ $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
0.05	45	-30
0.15	42	
		180
0.25	60	
		180
0.35	78	
		-350
0.45	43	
		-90
0.55	34	
		0
0.65	34	

Use ($x-t$) graph to answer the following questions:
a) Determine one interval in which:

1- The velocity is increasing: $[0,0.4] \&[0.6,0.7]$
2 - The velocity is decreasing: [$0.4,0.6$]
3- The velocity is constant: [$0,0.2$]
b) Find the instantaneous velocity at $\mathbf{t}=\mathbf{0 . 4} \mathbf{s}$ from the slope of the tangent of the ($\mathbf{x}-\mathbf{t}$) graph.

$$
V_{i n s}=\frac{\Delta x}{\Delta t}=\frac{29-16}{0.5-0.3}=65 \mathrm{~cm} / \mathrm{s}
$$

Fill in table (4) below using data from table(1), and then answer the following
questions:
c) The midpoint for the given intervals is $\mathbf{t}_{\text {mid }}=0.4 \mathrm{~s}$.
d) As the time interval is shortened, is there any relation between average velocities in table (4) and instantaneous velocity at the midpoint? Yes, when $(\mathrm{t}=0.4 \mathrm{~s}),. \mathrm{V}_{(\text {At midpoint })} \approx \mathrm{V}_{(5-3)}$

Table (4)

Average velocity $\overline{\mathbf{v}}=\frac{\Delta x}{\Delta t}$ $(\mathrm{~cm} / \mathrm{s})$
$\bar{v}_{7-1}=\frac{x_{7}-x_{1}}{t_{7}-t_{1}}=50$
$\bar{v}_{6-2}=\frac{x_{6}-x_{2}}{t_{6}-t_{2}}=53.75$
$\bar{v}_{5-3}=\frac{x_{5}-x_{3}}{t_{5}-t_{3}}=60.5$

e) Write down the approximate instantaneous velocity at $\mathbf{t}_{\text {mid }}$ from table (4).
$\mathrm{V}_{(\text {At midpoint })}=65 \mathrm{~cm} / \mathrm{s}$
f) Compare this result with that you have found in question (b) above?

Use ($v-t)$ graph to answer the following questions:

g) Determine one interval in which the acceleration is positive : [$0.15,0.35$]
h) Find the instantaneous velocity at $\mathbf{t}=\mathbf{0 . 4} \mathbf{~ s e c}$ from the graph. $63 \mathrm{~cm} / \mathrm{s}$.
i) And compare it with the result in question (b).
$P . E=\left(\frac{|63-65|}{\left(\frac{(66+65)}{2}\right)}\right) \times 100 \%=3.125 \%$
j) Calculate the area under the instantaneous velocity in the interval [0.2-0.4] sec.

Now we divide the carve into 2 sections.
First section from [$0.2,0.35$] (Trapezoidal)
Second section from [$0.35,0.4$] (Trapezoidal)
Trapezoidal Area $=\frac{(\mathrm{a}+\mathrm{b})}{2} \times c$
Now, I want calculate area.
$x=$ Area for first section + Area for second section

$x=\left(\frac{(78+42)}{2} \times 0.15\right)+\left(\frac{(78+63)}{2} \times 0.05\right)=12.525$
k) What does this area represent? This area represents the distance traveled.

1) Compare it with the distance moved in the interval [0.2-0.4] sec from table (1). From table (1) : distance moved $=22.5-8.7=13.8 \mathrm{~cm}$.
now we want to calculate P.E.
$P . E=\left(\frac{|13.8-12.525|}{\left(\frac{(13.8+12.525)}{2}\right)}\right) \times 100 \%=9.7 \%$

Use Table (3) to answer the following questions:

n) How does the acceleration change from one interval to the other (is it uniform or irregular)? Its irregular.

